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Thermal lattice Boltzmann simulation for multispecies fluid equilibration

Linda Vahala
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529

Darren Wali and George Vahala
Department of Physics, William and Mary College, Williamsburg, Virginia 23187

Jonathan Carter
NERSC, Lawrence Berkeley Laboratory, Berkeley, California 97320

Pavol Pavlo
Institute of Plasma Physics, Czech Academy of Science, Praha 8, Czech Republic
(Received 13 January 2000

The equilibration rate for multispecies fluids is examined using thermal lattice Boltzmann simulations.
Two-dimensional free-decay simulations are performed for effects of velocity shear layer turbulence on sharp
temperature profiles. In particular, parameters are so chosen that the lighter species is turbulent while the
heavier species is laminar—and so its vorticity layers would simply decay and diffuse in time. With species
coupling, however, there is velocity equilibration followed by the final relaxation to one large co- and one large
counter-rotating vortex. The temperature equilibration proceeds on a slower time scale and is in good agree-
ment with the theoretical order of magnitude estimate of MpPdgys. Fluidss, 1420(1963)].

PACS numbegs): 47.11+j

[. INTRODUCTION irrespective of whether one is considering Maxwell, hard
sphere, or Coulomb interactions. th;#m,, then 7.t
The physics of the relaxation processes for multispecies>r,,.

fluids/gases has long been of interfist8]. A recent interest Here, we shall examine the relaxation of a two-fluid two-
in multispecies relaxation has been spurred on by the need imensional(2D) turbulent system in which each species
develop schemes that can cope with the wide range of collimitially has a double velocity shear layer—with one species
sionalities encountered in the outer regions of a tokafBdk ghear layer being perpendicular to that of the other. Thus
(the so-called “scrape-off layen” Under certain conditions, initially, species 1 has vorticity dependence only in the
it has been arguef®] that there can be three time scales of direction, w1(X), while fluid 2 hasw,= w,(y) only. More-

interest in the relaxation of a multispecies system to a finapyer, initially, each species is assumed to have a sharp tem-
thermodynamic equilibrium state. On the fastest time scale iSerature profile—withg, = 6,(x) and 6,= 6,(y) only.

the relaxation of the lighter species to a thermal distribution | the highly collisional regime of interest here, a two-
centered around the mean velocity of the heavier speciegpecies nonlinear fluid description is valid. To achieve a
The next time scale has the heavier species relaxing to gyantitative solution to the relaxation problem one must re-
thermal distribution on a time scale greater by a factor of the;gt to numerical techniques. In the conventiofuilec) ap-
square root of the mass ratio. The longest time scale is th%‘roach to solving the coupled macroscopic conservation
on which the light species and heavier species temperatur%uations of mass, momentum, and energy for each species,
equilibrate. Of particular interest is an order-of-magnitudegne would have to accurately resolve the nonlinear convec-
estimate of the ratio of the time for the species temperaturgye derivatives. This Riemann problem is computationally
difference to become negligible to the time for the speciesquite expensive and readily consumes over 30% of the run
mean velocity difference to become negligible. Under somgjme. Here, instead of applying the conventional approach,
simplifying assumptions, and for spatially homogeneous sysye shall introduce a kinetic lattice method, which, because
tems, this ratio scales §$] of the higher phase dimensionality, will obviate the Riemann
problem entirely. In particular, we shall consider a thermal
lattice Boltzmann modeg]9—-17] (TLBM). TLBMs are very
=1 1) appealing since they ar@ computationally more efficient
' than conventional Navier-Stokes solvers and(ayedeal for
parallel processors. The first hurdle that the TLBM must
overcome is the extra computational expense incurred by
whereng,mg are the density and mass of thif species and increasing the phase space dimensionality, which for a
collision-dominated regime seems to be an inverse statistical
mechanical description. However, this embedding into a
*Present address: High Performance Technologies, Aberdeehjgher dimensional phase space has potential advantages that
MD 21001. can be exploited. In particular, in the fluid limit, the exact

Tap 1 [NiMy+nomy| imy+m,
ny+n, mym,

TAp 2
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form of the collision operator is not critical. Hence one canmg, ng, v, 6, are the mass, density, velocity and tempera-

introduce, for example, the linear Bhatnagar-Gross-Krookyre of thesth species. Thesth species stress tenshi; is
[18] (BGK) operator instead of the complicated full nonlin- defined by
ear Boltzmann operatdii—4]. The beauty of the BGK col-

lision operator is that it is amenable to efficient numerics s Vsl 2

without sacrificing any of the essential continuum physics s ap=Ns0s00p— s EJ“ X, _§V Vsap
[1-5]. TLBM is intimately tied to the kinetic phase space

velocity lattice on which it will be solved. In particular, T [ [ Oss =05 (Vsg—Vs)? 5
TLBM is a maximally discretized molecular dynamics since + msnsa me B s ap

one attempts to minimize the number of discrete molecular

speeds needed to recover the correct fluid equations. The b (Vag u Vo) (Veg 5~ Veg) )
TLBM algorithm proceeds in three basic stes) free- ssha TsallTss B s Bl
stream the distribution function to different lattice sites ac-
cording to the lattice velocity vectoréh) recompute macro- While thesth species heat flux vector
scopic quantities at each nodal site; aogl perform BGK
collisional relaxation at each node. Thus the TLBM results in - _ (9_03 E s g _ —
. . . . . Os,a Kg +5Ng (05— Osg) (Vs o~ Vs a)
a very simple, efficient, and ideally parallel algorithm since ' Xe 2 Ty ’ ’
step(a) is a simple shiffadvection operator, while step&) 1
and (c) require information that is purely local at that node. — Emsns(\,s_\,ss,)Z(,,S‘a_ Vs a)- (6)

Having extolled the strengths of the TLBM one would be
amiss not to point out its well-known inherent weakness—

that of numerical instability10—13. Let it suffice that work :Sta”dvﬁ are trt‘gsm fp‘iﬁ'efha”d Cross-species rr?éaxa;"’”
is still in progress in combating this Achilles’ heel and some ates, €is and«s are thestn Species viscosily and con-

prelminary resuts wil be repored elsenndas], ean. S coeffents Tne effects of coss specis e,
while we deem it prudent to restrict ourselves to examinin 9y eq PP

2D turbulence—even though 3D modef42,15,14 are he right-hand sides df3) and(4). The convention of sum-

available, they are substantially more expensive computar:nlng over repeatedGree subscripts is employed here. For

tionally (while not increasing the numerical stability re- simplicity, we do not incorporate effects of sources/sinks in
the sth particle mass conservation equations.

gimes.
In Sec. Il the two-fluid nonlinear equations are presented o o .
as well as the two-species linear BGK kinetic equations A. Kinetic description of a multifluid system

which will, under standard Chapman-Enskog expansions, re- The conservation equatiofi3)—(6) can readily be derived

duce to the given macroscopic system. In Sec. Ill the equilifrom a simplified two-species kinetic descriptif#]. In par-

bration of different species velocities and temperatures anglcular, these macroscopic moment equations are readily de-

final velocity relaxation is examined for 2D turbulent double rived by a straightforward Chapman-Enskog expan$@in

shear layers, while we make some final comments in Sec. I\Vgn thesth species linearized BGRLO] for the distribution
function f4(x, &,t)

Il. MULTIFLUID SYSTEM ofs o et fs—0s fs—Osy @
—+ — (&0 =— -
Consider the two-fluid system described by the following gt ax, E Ts Tsy
ti ti f t : . . . .
conservation equations of mass, momentum, and energy The sth species relaxation distribution functiofior 2D
flows) is
a( )+ ’ ( )=0 (2 (£—Ve)?
— (mgng) + — (Mgngvg o) =0, m mg(&—V.
ate S gy, s sTs Js=Ngz—exg — — =, 8
20 20,

9 J while the cross-species relaxation distribution function is
E(msnsvs,a) + a_)(ﬁ(msnsVs,,BVs,a)

gee =N Mg exr{— ms(f_vss’) (9)
Mg 4p MNg S S27m sy 260.q '
== ToXa 7w (Vsa™ Vss',a)s ©) )
B s:s The cross-species parametetg and 6;¢ as well as the
cross-species relaxation parameteys satisfy certain physi-
P 9 cal constraints based on the relaxation physics. Here, we fol-
— (3Ngfs+ MNV2) + —— (g o[ 3N+ MgngV3]) low Greend 5] and impose the typical plasma species relax-
at 2N ation rates
__ 1 MNgTer = Mg Ngr T (10
__@(ZQS,a—szs,BHs,aﬁ)_E[Sns(as_ 033/) s'ls’s’s s'lls’ Isg -

5 2 Of course, other cross-species relaxation rates could be
+MgNs(Vs—Vgg) 1. (4 evoked, provided they do not violate the physics: The
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heavier species should not relax on the fastest time scale and
both species, irrespective of their mass, should be equally
affected by their mutual collisions. Moreover, the cross-
species collisions are chosen to conserve species densities, as
well as momentum and energy. In particular, for collisional

momentum conservation,

fs_ gs_ fs_ Osy

Ts Tss

Ozjdgmsg[_ +jd§ms’§

fs’_gs’_ fs’_gs’s

Tgr

X

Ts's

mgNg Mg N/

(Vss’_Vs)+ (Vs’s_vs’)-

ss' s’'s

Assuming the cross-species relaxation rates satisfy(H,

the collisional momentum conservation then requires
Vgg — Vgt Vgrg— Vg =0. (11

Similarly, the collisional energy conservatidmunder the

cross-species relaxation rate Ef0)] requires

055'_ 05 2

2,—Vv2)=0.

(12

IRyt i1
me ) T3 (Ves V) A

( 0575_ 05’

The macroscopic variabless, vy, 65 are defined by the
standard moments

ns:fdffs; nsVs:fdffsf; 2nses:J'd§fs§2_nsV§-
(13

For 2D flows, Eqs(11) and(12) place three constraints on
the six parametersgsy , Vgs, 0sg, Oy introduced in the
cross-species relaxation distribution function, E9).

THERMAL LATTICE BOLTZMANN SIMULATION FOR.. ..
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Mg O+ Mgy
Mg+ Mg/

ms( 05_ as’)
Mg+ Mg/

0357 =

(1_ ,82) MsMg,

2
Vs— Vor
6 ’]ns+’]ns’(s S)

. (14 8)? mg—mg

2
Mg(Vs— Vo y
12 mormy "sVs™Vs)

Mg O+ Mg b
s's™
Mg+ Mg/

ms( 95_ 6’5;)
Mg+ Mg/

(1_ ﬁz) msMg,
6 mgtmg

(Vs_Vs’)2

. (1+B)2 ms:—ms
12 mg+mg

ms’(Vs_ Vs’)z- (14)

For the problem we are considering, the self-species colli-
sional relaxation is taken to be that for hard sphéfgg]

12

1(mg 15
7-S'-\' ns 05 ’ ( )
and the cross-species collisional relaxatit?]
1+8 ngm
Teg=— — > Ts (16
Aggl ms“l‘ msr
with B> —1 arbitrary, andugy
MsMy; :83 93’ 12
1= Qg g~ 5 NN/ | — + — 1
Qg = Agrs (ms+ms')2 slls (ms Mg (17

The 2D transport coefficients in Eq$5) and (6) are
readily determined using standard Chapman-Enskog tech-
niques on Eq(7): the sth species viscosity.,= 7n0s and
the heat conductivityg=27n¢6s.

Further constraints on these parameters are obtained when

we require that the equilibration rates for the species velocity

and temperature

1% 1%
E(vs—vs,) and E(es— Os1)

have the same functional form in the BGK formalism as with
the full nonlinear Boltzmann collisional integrals. These con-
straints are quite complicated and the interested read

should consult the details in Mor$&] and Greeng5]. Suf-

fice it to say, and as Gred3] has pointed out, that these

constraints do not determine the six parametgts, Vg,

Osy , 05 Uniquely because of a redundancy. This redun

dancy allows the introduction of a free paramd®&r 3 with

Vst Vg IB(VS_Vs’)
2 2 '

Vsg =

_Vs+Vs’ B(Vs—Vsr)
Vgrg= 2 + 5 ,

B. TLBM for a two-species system

On discretizing the phase space velodtyhe continuum
distribution functionf¢(x, £,t) will be denoted byNgi(X,t):

fs(X,&,1) = Ngpi(X,1), (18
where the subscriptdenotes the lattice links to that particu-
lar spatial nodex and p denotes the different lattice speeds
required in order to recover the given macroscopic equations

?5)—(6). The range of values these subscripts take is totally

dependent on the particular velocity lattice chosen as well as
the level of moment closures besides the rest partigle,

Some 2D lattices Isothermal model Thermal model

Square lattice  i=1,..,4,p=1v2 i=1,.,4,p=1V2,2
Hexagonal lattice i=1,...,6,p=1 i=1,.,6,p=1.2
Octagonal lattice i=1,...,8,p=1 i=1,.,8,p=1.2

In essence, this table gives the total phase space velocity
information that is needed at each spatial node in the TLBM
in order to recover the full fluid conservation equations of
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interest. Thus for energy closure on a hexagonal grid, one However, the numerical stability of the TLBM rests on
requires only 13 real numbers éfinformation at each spa- the specification of the relaxed distribution functioN§®.

tial node. Typically, theseN®? are taken to have the form
The TLBM, in its simplest form, is first order in time and . 5
second order in space discretization of the continuum BGK ~ Negi=Asp(0sp) + Bsp( 6) Cpi- Vs Cs 05){Cpi- Vs}
equations7):
a + Dsp( 05)V§+ Esp( 05){Cpi'VS}V§
Nlpi(X"r‘ Cpi A+ — Nlpi(x!t)

+ Fsp( es){cpi‘vs}s'l' T (22)
- i[Nlpi(X,t)—N‘fSi(X,t)] and a similar form for the cross-specib§3 | where one
1 now replacesng,vs,0s by the cross-species variables
1 Nsy ,Vsy »0s¢ @s defined in Eq(17). One truncates these
= —[Ngpi(x,t) = NTZi(x, )], (199  Taylor expansions i, 6 depending on the moment level
712 closure invoked. The followinginfinite) set of discrete mo-
ments
Nopi(X+Cpi t+1) = Nopi(X,t)
1 Ned = Neédc .=
= 2 [N (X0~ NEH X0 2, NE=ns, 24 NEjGi=navs,
1 eq E eq _
- T_Zl[szi(th)_Nzlpi(th)]- (20) < Nspicpiacpiﬁ_nsesﬁaﬁ"'nsvs,aVﬁ,su

Equations(19) and (20) are written in TLBM units of 5t .
=1 andéx=1. ¢, is the kinetic velocity lattice vector, with E ngicpiacpiﬁcpiy: NsOd Vs o0, " 1+ NsVs o Vs gVs, 5
Cpi=PCi, and|c|= 1. Before specifying the relaxation distri-
butions N®9 in detail, we note that from Chapman-Enskog
theory thatNS, N¢g . can only be functions of the macro- E. NE I CpiaCpipChi=ANs028, 51 NSONES, 5+ BNsOss 4 Vs
scopic variablesig,vs, 65 andng ,Vg , 05, Where P

+ nsVS’a'l/Svﬁvg (23)

nszz Nspii nsVs:; Nspicpiv

pi are those satisfien the continuum limit by the Maxwell-

ian gs; and similarly for the cross-specie¢ld  and the
2nsas=% NspiCSi—nSV§ 1) cé%n?g)uum limit cross-species Maxwelliagyy defined in

Now the only way the macroscopic species veloaity

At each lattice sitex, the TLBM algorithm to propagate can arise on the right-hand side of EB3) is if it so appears

Nspi from time t—t+1 is (a) free-stream the distribution in the expansion form dﬂggi in Eq.(22). Thus, for example,
Nspi(X) — Ngpi(X+Cp); () recalculate the macroscopic vari- if we invoked moment closure at the third moment, then the

ablesng,vs, 05 using Eq.(21) and update all theN®%; (¢)  Taylor expansion oN¢% must include all appropriate com-

perform collisional relaxation at each lattice node: binations ofv up to tsepr'ms of0(v?), as is done in the ex-

1 1 plicit expansion of Eq(22). On the other hand, if one pushed
Nspi(X) = —[ Ngpi(X) = NEJ(X) 1= =—[Ngpi(X) for closure a;[r the fourth moment, one Woulq need to include

s Tss' terms ofO(vy) in Eg. (22). In this paper, we invoke closure
at the third moment and defer further comments on this to
the Conclusion section.

One immediately notes thds) is a simple shift operation ~ On Substituting Eq(22) into (23) one must evaluate the
numerically, while(b) and (c) require only local data at the 'atticé geometry-dependent basis moments of the form
spatial node sit&. Thus the algorithm is ideal for multipar-

allel processing elements and more details on the message TV =2 T =2 > Cpia**Cpic (24)
passing interface parallelization can be found in Réi. P P

Moreover, the shift operation ia) implies that we are run- . .

ning at a kinetic CoSrant-Freg?)icksF-)Levy number GEL for the nth moment. .Equatlo(l24) consists ofnc,; products.
This implies no numerical dissipation or diffusion is intro- FOF closure at the third moment, one must evalTaté up to
duced. It is precisely these properties of the TLBM that makd!€ Sixth basis moment tensar=6. Thus, having chosen

it so attractive as an alternative to the normal computationafloSure at the third moment, discrete lattice effects will not
fluid dynamic approach. From the discrete Chapman-EnskoQ}ervade_ the final macroscopic conservation eqyat|ons_ if all
procedure[20], it has been shown that the transport coeffi-t€ basis tensor momeni®", for n up to 6, are isotropic.
cients are augmented bysafactor: No

_Nggpi(x)]ﬁNspi(x) at time t+ 1.

(4) — ...
/‘LS:(TS_%)nsesi Ks= 2(7'5_%)n505- Tp,aﬁyﬁ_ waaB75+ ¢p( 5aﬁ575+ )a (25)
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FIG. 2. The vorticity layers after 1000 TLBM time steps (
=1 K). The vorticity layers retain their identities, but fluiddpper
plot) already shows the formation internal vortices. The vorticity
x strengths are fluid Yupper plo}, —3.6X 10 2<w,<3.5x 10 ?;
fluid 2 (lower plot, —2.2X10 3< w,<2.2x 10" 2,

FIG. 1. The initial vorticity layers,w; and w,, for the two

interacting fluid species. The upper plot is for fluid 1 widhy ) o ) . )
= w,(y): solid lines are for positive vorticity while dashed lines are constraints on the distribution function expansion coeffi-

for negative vorticity. The lower plot is the vorticity layeis,  Cl€NtSAgp,... in Eq.(22). For the TLBM parameter range of
= w,(x) for the more massive and denser fluid @, 10m;, n, interest to us, we have found the square lattice to be ex-
=3n,). Initial species velocity profiles were chosen so thattremely numerically unstabled].

max(m,n|v4|)=max,n,|v,|), which results inw;~30w,, i.e., on Now the hexagonal lattice has a higher symmetry, and
a normalized 64 64 mesh(with the simulations themselves being this is reflected in the fact that now,=0. ThusTffZlM(s is
performed on a 256256 spatial grigl fluid 1 has a negative vor-  automatically isotropic Wh”é’éﬁ,lﬁyasg is anisotropic at each

ticity layer v, = —5.6x 10"# for 20<y<23 and a positive vorticity  gpeedp. Unfortunately[10], for the hexagonal lattice, one
layer w,=6.3x 1077 for 41<y<44. Similarly, for fluid 2, the vor- 530t form composite lattices that will enforce the isotropy

oY B = M
icultgiga]%errzlirfgid—hz.4x10 for 20<x<23 and wp=-24 %Tflﬁyﬁgg. For the square lattice, however, one can
achieve isotropy ofST{) . o . for p sufficiently large
Toongyose="Y oY apyoee™ Mp(apY yoor ) p eIt .
[10]—but we have found this representation to be extremely
+D(8,pT et -00), (26)  numerically unstable. Thus, the simulations reported here
have been performed on the hexagonal lattice, with the co-
WhereY .5, is the higher dimension Kronecker tensor andefficients Ag),... being those determined by Alexander,
is anisotropic. Only the 2D Kronecker tensdy is isotro-  Chen, and Sterling9]. While this will introduce some
pic. The parameterg,, ¢, ,... aredependent on the particu- higher-order(macroscopig nonlinearities into the momen-
larly chosen lattice geometry. tum and energy equatiorjd0], these should play a negli-
For a square latticey,#0. Thus evenTEf[)yBWs is aniso-  gible role in our present free-decay simulations since the
tropic for anyp. Thus to enforce botf’}) ; andT), ;,, one  flow Mach number is quite low. We are currently working on
must choose sufficiently large as well as an imposition of the octagonal lattice representation, in which the isotropy of
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FIG. 4. The vorticity contours at=4 K. The merging of like-
signed vorticies is beginning to occur for fluiddpper curvé The
vorticity strengths are fluid Tupper plo}, —7.1X10 3<w;<6.8
x1073; fluid 2 (lower plot, —2.1X 10 3< w,<1.9x10° 3,

It should now be apparent as to what some of the diffi-
culties are facing the TLBM: The discrete distribution
functions, Eq.(22), must be non-Maxwellian in order to re-
move discrete velocity lattice effects. With the loss oftan
theorem, one is faced with numerical instabilities.

Ill. 2D TWO-SPECIES DOUBLE VELOCITY SHEAR
TURBULENCE

We consider the free-decay of a two-species system (
. _ =10my,n,=3n,) in which there are horizontal velocity
FIG. 3. (a) The vorticity contours at=2 K. The fluid 1(upper  gnear Jayers in fluid 1 interacting with weak vertical shear
plot) Igye;ls _r(;a;/e 9|'|Ve” way to mdn_m_zluelll Vort'c'gs' while t:e mo;]e layers in fluid 2. Initially, the mean velocity of fluid 1 is
.m]fi‘ss've uf' " sti rfta"zs ]llts.(\jlolrt'%:y ay?.rs.’t ”tt no"zhs OWSﬂt_gchosen to be an order of magnitude greater than the mean
influence of the coupling 1o Tluid . The vorticily strengths are fiuld, o |56ty in fluid 2, with fluid 1 having an initial Reynolds
1 (upper plo}, —2.0x 10 “<w;<2.1X 10 4; fluid 2 (lower plob, .
" 5 N number Re=20 000, a factor of over 25 greater than that in
—2.2X10 °<w,<2.2X10 °. (b) The corresponding=2 K to- . . ) . . .
¢ . : o i fluid 2. Thus the lighter fluid 1 is turbulent while the heavier
al (density weightefd vorticity i (X)=[N1(X)Mw1(X) . . . . .
+ 1) My@,(3) 1[N () My + Np(X) My ]. fluid 2 is laminar. In fact, if the species were uncoupled, the
fluid 2 vortex layers would undergo viscous decay and dif-
EDTE)(Sz)sz&sg can be enforced and thereby eliminate the spufusion because of its low Reynolds number. The simulations
rious higher-order nonlinearities. Moreover, based on the linwere performed on a 256256 spatial grid, with periodic
ear octagonal stability analysgls] we expect this represen- boundary conditions and with,;=0.5056, 71,= 9438, 74,
tation to be quite numerically stable. These results will be=0.507, andr,,=278668. The plots are shown on a res-
reported on in the near future. caled 64< 64 mesh.
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FIG. 5. The vorticity contours at=7 K. There is now strong FIG. 6. The vorticity contours d@t=9 K. Equilibration of nearly
influence of one species on the other for both fluids 1 and 2. Thell vortex structures in fluid 1 and fluid 2 has now occurred. The
geometry of the merging vortices in fluid 1 tends to rotate them intovorticity strengths have equilibrated, with fluid Wpper ploj,
the direction of the initial vertical layers of fluid 2. These layers are —1.4x 10" 3<w;<1.4x 10" %; fluid 2 (lower ploy, —1.4x10 3
still quite evident in fluid 2. The vorticity strengths are fluid 1 <w,<1.4x10 3.

(upper ploj, —1.9(—3)<w;<1.7(—3); fluid 2 (lower plob,
—1.6(—3)<w,<1.6(—3). low Reynolds number, the vertical vortex layer structures are
still dominant. However, due to the fluid-fluid coupling, vor-

The initial vorticity contour plots for fluid Xupper ploy  t€x structures have now formed. In particular, the construc-
and fluid 2(lower plob are shown in Fig. 1 after the appli- tive interference between the positive vortex layer of fluid 1
cation of a 1% perturbation to the velocity fields. Positiveand that of fluid 2 results in an imbedded co-rotating vortex
and negative vorticities will be represented throughout byat (x,y) =(21,42) and an imbedded counter-rotating vortex
solid and dashed curves. It should be noted that the initiaht (42, 21, relative to the axes labeling in Fig. 1. These

vorticity ranges for the two fluids are quite disparate: imbedded vortices are over 50% stronger than the imprinted
co- and counter-rotating vortices &1, 43 and (31, 22,
Fluid 1:—5.6X10 2<w;<6.3X10 2, respectively In Fig. &), the total(density weightegvortic-
ity surface is plotted at=2 K.
Fluid 2:—2.4X10 3<w,<2.4x10 3, By t=4 K (Fig. 4), the fluid 1 individual vortices are

beginning to merge with spatial locations no longer deter-

By 1 K time stepgwith a fluid 1 eddy turnover time being mined by the initial horizontal layers. The vortex structure
~400 TLBM time steps, based on the initial velocity mag- for fluid 2 is similar to that at=1 K. In Fig. 5, att=7 K,
nitude the vorticity layers in the lighter fluid 1 have become the vortex structures in fluid 1 and fluid 2 are becoming
unstable with co- and counter-rotating vortices formingsimilar. In particular, fluid 1 now exhibits marked effects of
within their respective vortex layers. The vorticity layers of the vertical vortex layers of fluid 2 while its vortex-merging
fluid 2 do not yet exhibit any internal structures, while the structures rotate more and more towards the vertical. The
coupling between fluid 1 and fluid 2 results in an imprinting fluid 2 vortex pattern, however, continues to be dominated
of the major fluid 1 localized vorticies in fluid 2—see Fig. 2. by two large vortices situated within the vertical layers—and
These internal vortex structures in fluid 1 now become thehese two vorticegone co- and the other counter-rotating
dominant feature instead of the initial vortex layer itself by have the same spatial location as fer4 K to within 5%.
t=2K, Fig. 3a). For fluid 2, dominant due to its initially The vortex structures in fluids 1 and 2 have become quite
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FIG. 7. The vorticity contours at=30 K. The system is evolv- FIG. 8. The vorticity contours at=109 K. The system is close
ing slowly towards the final relaxed state. The initial vortex layerst0 the final relaxation states of one large vortslid curve with
have been replaced by individual vortices whose strengths are fluigg>0 and one large vortexdashed curvewith »<0. Vortex

1 and 2,—4.5x 10 *<w; ,<4.5x 107%.

mode locked to each other, even in magnitudest 59 K,

strengths are fluids 1 and 2,4.5X 10 %< w; ;<4.5X 1074,

IV. CONCLUSIONS

Fig. 6. Att=30K, Fig. 7, the initial vortex layer structures =~ We have considered the equilibration and relaxation of a
are no longer evident, and global vortex structures are dom2D turbulent binary system using the TLBM, an extremely
nant, with the spatial locations of these dominant vorticesfficient and highly parallel and vector algorithm. As dis-
being not more than 12% from their positiong&t4 K. One  cussed by Mors¢l], for a spatially homogeneous system,
moves quite close to the final relaxed state of one co-rotatinthe velocity equilibration time for the two species is given by

and one counter-rotating vortex Iy 109 K, Fig. 8.
The temperature surfaces relax even slower than the vor-

tex surfaces, as expected from simple kinetic theory argu-ﬁ(vs—

ments[1]. Initially, one has peaked temperature profiles for
each species, parallel to their species initial vortex layers,
i.e., 0= 6041(y), while 6= 6,(x). There is little change in the
peak temperature profiles by 1 K, Fig. 9. The temperature
profiles for fluid 1 and fluid 2 are still very different from
each other at=9 K (Fig. 10 in contrast to the fluid vortici-
ties that have already equilibrated with each other, Fig. 6.
However, byt=30K (Fig. 11) there is global equilibrium

and much of the local temperature profile features have
equilibrated. Total temperature equilibration for the two spe-

cies has been achieved by 60K (Fig. 12—but it is diffi-

cult to quantitatively correlate the vorticity surfaces to the
corresponding temperature surfaces. Qualitatively, howevernder

Vgr)=—

ot

the

Agg

0
—(0s— 0g)=—asg

1 1 mg+ Mg/
+
ngMg  Ng/Mg 2

(Vs_vs’)a

(27)

while the temperature equilibration time for the two species
is given by

1 1
(95_95’)(n+ )

S Ng/

_ 2
(Vs Vs’) (ms_ ms’) (28)

3 Ng  Ng

approximation B(— Vg )?<(0s/mg)

one can usually find peaks in the temperature profiles at the- (6 /mg). agy iS given by Eq.(16). Thus, to leading
corresponding vorticity minima, and vice versa. order, the velocity equilibration time is
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FIG. 9. The temperature profileés ,att=1 K for fluid 1 (upper FIG. 10. The temperature profiles &9 K, a time at which
plot) and fluid 2(lower plod. Initially, there are sharp peaks with there is almost total equilibration of the vorticity surfaces for fluid 1
0= 61(x) and 6,= 0,(y). and 2: wq(X,y;t=10K)~w,(X,y;t=10K), see Fig. 6. There is

some similarity in the temperature profiles; The spatial locations
1 ( 1 1 ) mg+ Mg where 0,(x,y) — 8,>0 for fluid 1 are basically the same as those
— =gy + , wheref,(x,y) — 6,>0 for fluid 2, Hered, is the base temperature.
TAy NngMs  NgrMg/ 2

The temperature magnitudes are, however, significantly different
while the temperature equilibration time is and are biased by the initial profiles.
the coupled system no longer follows the Morse prediction
and spatial dimensionality becomes important.

A reason for our continued interest in the TLBM is its
) . possible role in studying the scrape-off-layer in a tokamak.
One thus has the order of magnitude estinjate In this region, there are time varying spatial domains in
which the neutral particle collisionality ranges from highly
collisional (fluid) to the kinetic(Monte Carlg regime. While
attempts are being made to couple plasma-fluid codes to
Monte Carlo codes, this coupling is necessarily numerically
for the relative equilibration times for the disappearance oftiff due to the disparate length and time scales involved in
temperature differences between the two species compargie these schemes. On the other hand, a coupling of the
to that for the mean velocity differences. This estimate iSTLBM with Monte Carlo codes should be more straightfor-
independent of spatial dimension since Morse was consideward since both schemes are kinetic. It is also possible, as
ing pure collisional relaxation in a spatially homogeneoussuggested by som@&ef.[21]), that one may be even able to
system. For the parameters considered harg<10m,, n, utilize the TLBM algorithm even in the weakly collisional
=3n,, and initially v, =30v,) this order-of-magnitude esti- Monte Carlo regime. Then the TLBM algorithm would itself
mate ry,t~47,, agrees well with the TLBM spatially inho- cover the whole collisionality regime-albeit with appropri-
mogeneous simulation result ef+~3.3r,,, cf, Figs. 6 and ately modified collision operators.
12. The reason that the role of spatial dimension is sup- The major hurdle facing the extensive use the TLBM is its
pressed in our simulation is that the heavier fluid 2, if un-numerical instability when wide parameter regimes are con-
coupled from the turbulent fluid 1, is laminar, with the tem- sidered. Considerable research is underway to obviate this,
perature profile undergoing simple linear decay andbutthe root of the problem is clear: If one introduces discrete
diffusion. However, on increasing the Reynolds number ofphase space velocity lattices, one is forced to consider relax-
fluid 2 (e.g., increasing,) so that its flow becomes turbulent ation distribution functions that must be non-Maxwellian.
(in the sense that its temperature profile undergoes signifithe number of constraints needed to be enforced®his
cant nonlinear modificationsthen the equilibration ratio for reduced as one moves to higher isotropy lattice. In particular,

1
T T sy
TAl

1 1
—+ :
Ng Ng

Tap 1 (NniMi+nomy\/m+m,
TAy 2 nl+n2 m1m2
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FIG. 11. The temperature profiles a&30K. Temperature FIG. 12. The temperature profiles &t60K. Temperature
equilibration between the two species is almost complete. equilibration between the two species is now complete.

the hexagonal lattice is more stable than the square latticgcl;lr;%i;ittilfizntr\1/\il1%l:r|101| zggtti):l gﬁgiszféyeﬁ,ﬂggfgce flgrter—
. . . . . (6) .
[13] while the octagonal latticewith its inherentTo'as, sy -hounded flows We are currently looking into employ-

|§otropw IS more stable_ th"%” the hexagonabl. However, ing temperature-dependent velocity lattices, and will present
since the octagonal lattice is no longer space filling the SPa ase results elsewhere

tial grid is necessarily uncoupled from the velocity lattice.
This uncoupling requires an extra step to be incorporated
into the TLBM algorithm—an interpolation procedure that
couples the free-streaming with the nodes of the chosen spa- The computations presented here were performed on the
tial grid [13]. Even if one employed lower symmetry space- NERSC J90’s and T3E as well as on NASA Goddard’'s T3E.
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