The Effectiveness of Injury-Prevention Programs in Reducing the Incidence of Anterior Cruciate Ligament Sprains in Adolescent Athletes

Jeffrey Paszkewicz
Old Dominion University

Tristen Webb
Old Dominion University

Brian Waters
Old Dominion University

Cailee Welch McCarty
Old Dominion University

Bonnie Van Lunen
Old Dominion University, bvanlune@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/hms_fac_pubs

Part of the Rehabilitation and Therapy Commons, and the Sports Sciences Commons

Repository Citation
Paszkewicz, Jeffrey; Webb, Tristen; Waters, Brian; McCarty, Cailee Welch; and Lunen, Bonnie Van, "The Effectiveness of Injury-Prevention Programs in Reducing the Incidence of Anterior Cruciate Ligament Sprains in Adolescent Athletes" (2012). Human Movement Sciences Faculty Publications. 61.
https://digitalcommons.odu.edu/hms_fac_pubs/61

Original Publication Citation
The Effectiveness of Injury-Prevention Programs in Reducing the Incidence of Anterior Cruciate Ligament Sprains in Adolescent Athletes

Jeffrey Paszkewicz, Tristen Webb, Brian Waters, Cailee Welch McCarty, and Bonnie Van Lunen

Clinical Scenario: There is a high incidence of anterior cruciate ligament (ACL) injury in adolescents participating in pivoting sports such as soccer, basketball, and handball. Most ACL injuries in athletes are noncontact injuries, with a mechanism of sudden deceleration, change in direction, or landing from a jump. These mechanisms coupled with an increase in contraction of the quadriceps have been shown as risk factors for ACL injuries. Injuries to the ACL may require surgery, a long rehabilitation, and the potential for reinjury. Studies have shown reductions in lower extremity injury rates using training protocols that focus on landing mechanics, balance training, strength training, and/or agility training. There has been some thought that starting preventive training programs with adolescent athletes may be the most effective approach to reducing adolescent ACL injuries. Focused Clinical Question: Can lower extremity injury-prevention programs effectively reduce ACL injury rates in adolescent athletes?

Keywords: youth, preventive training program, knee injury

Summary of Search, “Best Evidence” Appraised, and Key Findings

• The literature was searched for studies of level 2 evidence or higher that investigated the effect of injury-prevention training programs on knee-sprain incidence in adolescent athletes.
• The literature search returned 10 possible studies related to the clinical question; 4 studies met the inclusion criteria and were included.
• Two high-quality cluster randomized controlled trials and 2 prospective cohort studies were included.
• Of the included studies, 2 demonstrated reductions of ACL injuries of the intervention group and 2 showed no statistical difference between the intervention group and control group.

Clinical Bottom Line

There is moderate evidence to support the use of a supervised injury-prevention training program that focuses on developing neuromuscular control of the lower extremity through neuromuscular strengthening exercises, plyometrics, and proprioception exercises. The program should include sessions in the preseason and in-season to reduce the rate of ACL injuries in adolescent athletes.
Strength of Recommendation: There is grade B evidence that supervised preseason and in-season lower extremity injury-prevention training programs incorporating neuromuscular strengthening exercises, plyometrics, and proprioception exercises are effective in reducing the rate of ACL sprains in adolescent athletes.

Search Strategy

Terms Used to Guide Search Strategy

- Patient/Client group: adolescent or youth
- Intervention/Assessment: prevention or prevention program
- Comparison: intervention
- Outcome: ACL injury or injury and incidence or risk

Sources of Evidence Searched

- The Cochrane Library
- PEDro Database
- Medline
- CINAHL
- SPORTDiscus
- Additional resources obtained via review of reference lists and hand search

Inclusion and Exclusion Criteria

Inclusion Criteria

- Level 2 evidence or higher
- Studies investigating the overall rate of ACL injury as the primary objective outcome measure
- Subjects who were actively participating in sport at the time of the study
- Limited to English language
- Limited to humans
- Limited to the past 10 years (2002–2011)

Exclusion Criteria

- Participants more than 18 years of age
- Studies that did not report specific details of the intervention protocol
- No use of a control group
- Studies using protective equipment as part of the intervention

Results of Search

Four relevant studies were located and categorized as shown in Table 1 (based on Levels of Evidence, Centre for Evidence-Based Medicine, 2009).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Summary of Study Designs of Articles Retrieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of evidence</td>
<td>Study design</td>
</tr>
<tr>
<td>1b</td>
<td>Cluster randomized controlled trial</td>
</tr>
<tr>
<td>2b</td>
<td>Prospective cohort</td>
</tr>
</tbody>
</table>

Best Evidence

The studies in Table 2 were identified as the best evidence and selected for inclusion in this clinically appraised topic (CAT). These studies were selected because they were graded with a level of evidence of 2 or higher, they examined an injury-prevention training intervention in adolescent athletes, and the effect of the intervention on the outcome of interest (rate of ACL injuries) was described.

Implications for Practice, Education, and Future Research

Based on this appraisal, two\(^2,4\) of the four\(^1,3\) studies displayed a significant reduction in ACL injury risk. None of the 4 studies showed an increased risk of ACL injury after the preventive training program. The findings indicate that preventive training programs that focus on developing neuromuscular control of the lower extremity are moderately effective in reducing the risk of ACL sprains in adolescent athletes. The designs of the preventive training programs in each study differed in specific points of emphasis, including implementation of strengthening exercises, plyometrics, balance, and participant compliance in completing the required sessions.

The cluster randomized controlled trial\(^2\) that demonstrated a significant reduction in ACL injuries used a preventive training program that incorporated a warm-up, balance exercises, plyometric exercises, strength and power exercises, and instruction emphasizing technique in planting, cutting, and jumping balance. The cohort study\(^4\) that demonstrated a significant reduction in ACL injuries used a preventive training program that incorporated a warm-up, stretching, strengthening exercises, plyometric exercises, and sport-specific agility. The cluster randomized controlled trial\(^1\) that did not report a decrease in ACL injury rate used a preventive training program that included core stability, balance exercises, plyometric exercises, and strengthening exercises. The other cohort study\(^3\) that did not find a reduction in ACL sprains used a preventive training program that incorporated a progression of plyometric exercises and agility. Even though all 4 of the studies were performed in a...
<table>
<thead>
<tr>
<th>Study design</th>
<th>Participants</th>
<th>Olsen et al<sup>2</sup></th>
<th>Pfeiffer et al<sup>3</sup></th>
<th>Mandelbaum et al<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clusters</td>
<td>109 soccer teams with a total of 2020 female players age 13–17 y (mean 15.4 ± 0.8).</td>
<td>Cluster randomized controlled trial 120 team handball clubs with a total of 1837 subjects age 15–17 y.</td>
<td>112 teams at 15 high schools with a total of 1439 high school sophomore-to senior-level female athletes (soccer, basketball, and volleyball at the varsity, junior varsity, and sophomore levels) for 2 consecutive seasons.</td>
<td>Year 1: 147 soccer teams with a total of 2946 female subjects age 14–18 y from the same league. 1041 female soccer players (52 teams) were in the intervention group and 1905 (95 teams) were in the control group. Year 2: 157 soccer teams with a total of 2757 female players age 14–18 y. 844 female athletes (45 teams) were in the intervention group and 1913 (112 teams) were in the control group. The 2 groups were age and skill matched during both years. The teams who wished to be a part of the soccer training program were the teams enlisted into the intervention group.</td>
</tr>
<tr>
<td>Block-randomized</td>
<td>947 subjects in the control group and 1073 subjects in the intervention group.</td>
<td>879 subjects (778 female and 101 male) in the control group and 958 subjects (808 female and 150 male) in the intervention group.</td>
<td>862 subjects in the control group and 577 subjects in the intervention group. Schools were placed into either the intervention group or the control group based on their willingness to incorporate the KLIP training into their daily practice routines.</td>
<td></td>
</tr>
<tr>
<td>Block-randomized teams</td>
<td>68 subjects dropped out of the intervention group and 51 subjects dropped out of the control group.</td>
<td>No inclusion or exclusion criteria.</td>
<td>Schools needed to have an athletic trainer available to assist with the study.</td>
<td></td>
</tr>
</tbody>
</table>

Subjects were eligible if they were registered by the team as participating in the U17 league system (age 16 and under).

Subjects were excluded if they reported an injury at the start of the season.

48 subjects dropped out.

No inclusion or exclusion criteria.

Downloaded by OLD DOMINION UNIVERSITY on 06/29/18, Volume $article.issue.volume$, Article Number $article.issue.issue$
Table 2 (continued)

<table>
<thead>
<tr>
<th>Intervention investigated</th>
<th>Steffen et al<sup>1</sup></th>
<th>Olsen et al<sup>2</sup></th>
<th>Pfeiffer et al<sup>3</sup></th>
<th>Mandelbaum et al<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All coaches and players received a detailed brochure describing the intervention program and how the exercises should be performed, as well as common errors. The program was introduced to the teams by an instructor of the study. The coaches were asked to use the program in the team setting every training session for 15 consecutive sessions and thereafter once a week during the rest of the season, replacing any warm-up routine normally used by the team. The program lasted about 20 min, including 5 min of jogging that was not a part of the intervention protocol before starting the exercises. The “11” program included 10 exercises focusing on core stability, balance, dynamic stabilization, plyometrics, and eccentric hamstring strength. The 1st component, a focus on fair play, was not emphasized. The coaches and players were instructed to watch each other closely during the training sessions and give continuous feedback, and coaches provided compliance information. No variation or progression. No blinding of subjects or therapists.</td>
<td>The clubs received an exercise book, 5 wobble boards, and 5 balance discs. The instructors visited with each team once at the start of the season and again midway through the season (4 mo later). Coaches were to use the program in the team setting at the beginning of every training session for 15 consecutive sessions and then once a week throughout the remainder of the season. The program consisted of 4 different sets of exercises with the exercise ball, including the use of the wobble board and balance mat for warm-up, technique, balance, strength, and power. Each set of exercises increased in difficulty. The warm-up was defined in the intervention protocol and included jogging, backward running with sidesteps, forward running with knee lifts and heel kicks, sideways running with crossovers (“carico”), sideways running with arms lifted (“parade”), forward running with trunk rotations, forward running with intermittent stops, and speed running. The focus of the exercises was to improve awareness and control of knees and ankles during standing, running, cutting, jumping, and landing. Players were instructed to spend 4–5 min on each exercise group for a total duration of 15–20 min. They were also encouraged to provide each other with feedback. No blinding of subjects or therapists.</td>
<td>Intervention groups received personalized instruction in the implementation of the KLIP program, an instructional videotape, and printed handouts. Coaches were asked to incorporate the KLIP in the team setting at either the beginning or the end of practice. The intervention was implemented 2 times per week. It was examined over the course of 2 y. The 20-min intervention program focused on development of sound body mechanics when decelerating during running with directional changes and when landing on 1 or 2 feet. The warm-up was defined in the intervention protocol and included jogging, shuttle running, and backward running. Emphasis was placed on proper technique components of landing. The intervention lasted 20 min and was used as a warm-up program. Compliance forms were used to track adherence to the program.</td>
<td>Each team in the intervention group was mailed an educational videotape about the program and a supplemental literature packet. The Prevent Injury and Enhance Performance program was introduced and described to coaches at a mandatory league meeting. Coaches used the intervention program in the team setting before athletic activity. The program video consisted of education and demonstration of 3 basic warm-up activities, 5 stretching techniques for the trunk and lower extremity, 3 strengthening exercises, 5 plyometric activities, and 3 soccer-specific agility drills. The warm-up was defined in the intervention protocol and included jogging, shuttle running, and backward running. Emphasis was placed on proper technique components of landing. The intervention lasted 20 min and was used as a warm-up program. Compliance forms were used to track adherence to the program.</td>
</tr>
</tbody>
</table>
Table 2 (continued)

<table>
<thead>
<tr>
<th>Outcome measures</th>
<th>Steffen et al</th>
<th>Olsen et al</th>
<th>Pfeiffer et al</th>
<th>Mandelbaum et al</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary outcome: Overall injury rate in both groups.</td>
<td>Primary outcome: An acute injury to the knee or ankle in both groups.</td>
<td>Primary outcome: noncontact ACL injury in both groups.</td>
<td>Primary outcome: noncontact ACL injury in both groups.</td>
</tr>
<tr>
<td></td>
<td>Secondary outcomes: Proportion of injured players and the incidences of ankle, knee, groin, hamstrings, and other injuries in both groups during the same study period.</td>
<td>Secondary outcomes: Any injury to the lower limbs, any injury to the upper limbs, and all injuries</td>
<td>Secondary outcomes: Compliance with the intervention and injury incidence expressed as the number of noncontact ACL injuries per 1000 player-exposures.</td>
<td>Secondary outcomes: Total number of athlete exposures (game and practice).</td>
</tr>
<tr>
<td>Main findings</td>
<td>Average player attendance was 67% ± 10% at each intervention session. Each subject participated in an average of 15 sessions.</td>
<td>87% compliance in the intervention and control groups. Each subject participated in an average of 27 intervention sessions.</td>
<td>The average number of KLIP training sessions per player was 18, 23, and 22 on the basketball, soccer, and volleyball teams, respectively. Percentage compliance was not reported.</td>
<td>Average number of intervention sessions and percentage compliance were not reported.</td>
</tr>
<tr>
<td></td>
<td>9 ACL injuries occurred (0.07 injuries/1000 h, 95% CI 0.02–0.11), 4 in the intervention group and 5 in the control group (RR 0.8, 0.2–2.9; P = .73).</td>
<td>9.9% (95) of subjects in the intervention group sustained an injury, whereas 19% (167) of subjects in the control group sustained an injury, 0.49 (0.36-0.68), P < .0001.</td>
<td>3 noncontact ACL injuries occurred in the intervention group and 3 occurred in the control group. There were 38,662 player-exposures in the control group, yielding an ACL injury incidence of 0.078 per 1000 exposures. There were 17,954 player-exposures in the intervention group, yielding an ACL injury incidence of 0.167 per 1000 exposures.</td>
<td>During the first year, there were 37,476 exposures with 2 noncontact ACL tears for the intervention group and 68,580 exposures with 32 noncontact ACL tears for the control group.</td>
</tr>
<tr>
<td></td>
<td>No difference in overall injury incidence between the intervention group and the control group. The rate ratio for the intervention vs the control group was 1.0 (CI 0.8–1.2, P = 0.94) for all injuries, 1.1 (0.9–1.3, P = .54) for acute match injuries and 0.7 (0.5–1.1, P = .12) for acute training injuries.</td>
<td>6.9% (66) of subjects in the intervention group sustained a lower extremity injury, whereas 13.1% (115) of subjects in the control group sustained a lower extremity injury, 0.49 (0.36-0.73), P < .0001.</td>
<td>Compliance analysis revealed no differences in injury incidence.</td>
<td>Average player attendance was 87% in the intervention and control groups. Each subject participated in an average of 27 sessions.</td>
</tr>
<tr>
<td></td>
<td>Compliance analysis revealed no differences in injury incidence.</td>
<td>3 ACL injuries in the intervention group (n = 958) and 10 ACL injuries in the control group (n = 879).</td>
<td>The odds of injury were equivalent for the 2 groups (odds ratio = 2.05; 95% confidence interval = 0.12 to 21.7).</td>
<td>Compliance analysis revealed no differences in injury incidence.</td>
</tr>
<tr>
<td></td>
<td>(continued)</td>
<td>(continued)</td>
<td>(continued)</td>
<td>(continued)</td>
</tr>
</tbody>
</table>
Table 2 (continued)

<table>
<thead>
<tr>
<th></th>
<th>Steffen et al¹</th>
<th>Olsen et al²</th>
<th>Pfeiffer et al³</th>
<th>Mandelbaum et al⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of evidence</td>
<td>1b</td>
<td>1b</td>
<td>2b</td>
<td>2b</td>
</tr>
<tr>
<td>Validity score</td>
<td>PEDro 7/10</td>
<td>PEDro 7/10</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Injury rates were not different between the intervention and control groups, but this may be attributed to low compliance to the program. The program was not varied and did not include progressions, and this may have affected the outcome.</td>
<td>The incidence of knee and ankle injuries can be reduced by at least 50% when including a structured warm-up program designed to improve awareness and control of knees and ankles during landing and pivoting movements. A high compliance (87%) could be a factor in contributing to the success of the program.</td>
<td>The incidence of ACL injury is consistently lower in the intervention group than the control group. A 20-min plyometric-based program that is completed twice a week throughout the season produces no differences in ACL injury rate for adolescent females.</td>
<td>The incidence of ACL injury is consistently lower in the intervention group than the control group. A preventive training program that focuses on developing neuromuscular control of the lower extremity through strengthening exercises, plyometrics, and sports-specific agility may address the proprioceptive and biomechanical deficits that are demonstrated in the high-risk female athletic population.</td>
</tr>
</tbody>
</table>

Abbreviations: KLIP, knee-ligament-injury prevention; ACL, anterior cruciate ligament; RR, rate ratio.
team setting as part of the regular training or practice session, lasted about 20 minutes, and were supervised by a coach, the 2 studies\(^2,4\) that demonstrated significant reductions in ACL injuries incorporated a standardized warm-up consisting of defined running tasks within the intervention protocol.

Adolescent ACL-injury-prevention programs should consider a supervised preseason phase and in-season phase that incorporates a dynamic warm-up, stretching exercises, lower extremity strengthening exercises, plyometrics, balance, and sport-specific agility with emphasis on proper landing technique stressing a “soft landing” and deep hip and knee flexion\(^2\). Furthermore, it is important to consider progressions in exercises throughout the duration of the program. Clinicians and coaches should stress to the adolescent athletes that participating in each session is important, and their compliance will be helpful in preventing injury.\(^1,2\) Supervised injury-prevention programs are easy to incorporate into a warm-up before structured activity and can be incorporated at a low cost to the clinician and team.

Future research regarding adolescent ACL-injury-prevention programs should include well-designed prospective randomized controlled trials that allow for blinding of the subjects and assessors to improve study quality,\(^1,3,4\) longer subject follow-up periods, and longer intervention periods that extend over consecutive years.\(^1,3,4\) Although the incorporation of a standardized warm-up was associated with reductions in ACL injury,\(^2,4\) other key factors such as participant compliance with the intervention protocol may also be a factor in reduction of ACL injuries. More prospective studies over a longer period of time while tracking participant compliance are needed to determine if the intervention is effective at decreasing ACL injury rate in adolescent athletes.\(^1,2\)

Future research should also investigate the effect of similar aspects of ACL-injury-prevention training programs (ie, strengthening, balance, plyometrics, stretching, and agility) on ACL injury rates between adolescent males and females and compare variations (different sets, repetitions, frequencies, duration, and exercises) to determine the most effective ACL-injury-prevention training program. This CAT should be reviewed in 2 years or when additional best evidence becomes available to determine whether additional information has been published that may change the clinical bottom line for the research question posed in this review.

References