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a b s t r a c t

This paper explores a family of weak parallelogram laws for Banach spaces. Some basic
properties of such spaces are obtained. The main result is that a Banach space satisfies a
lower weak parallelogram law if and only if its dual satisfies an upper weak parallelogram
law, and vice versa. Connections are established between theweak parallelogram laws and
the following: subspaces, quotient spaces, Cartesian products, and the Rademacher type
and co-type properties.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The parallelogram law states that for any vectors x and y in a Hilbert space H , we have

∥x + y∥2
+ ∥x − y∥2

= 2∥x∥2
+ 2∥y∥2. (1)

Any normed space that satisfies the parallelogram law must in fact be an inner product space. However, by modifying
condition (1) somewhat, we arrive at a family of conditions that may be applied to a much broader class of spaces. Let
1 < p < ∞ and C > 0. Following [8], we say that a Banach space X satisfies the p-lower weak parallelogram law with
constant C if

∥x + y∥p
+ C∥x − y∥p

≤ 2p−1(∥x∥p
+ ∥y∥p) (2)

for all x and y in X. Let us abbreviate this condition as p-LWP(C). By analogy there is also an upper weak parallelogram law.
We say that X is p-UWP(C) if condition (2) holds with the inequality reversed.

Note that with the substitutions X = x + y and Y = x − y, we can express (2) equivalently as

∥X + Y∥
p
+ ∥X − Y∥

p
≥ 2(∥X∥

p
+ C∥Y∥

p). (3)

Furthermore, it is obvious that the constant C could just as well appear in the other term, i.e.,

C∥x + y∥p
+ ∥x − y∥p

≤ 2p−1(∥x∥p
+ ∥y∥p)

in the defining condition for p-LWP(C). Actually, the definitions make sense even on a linear space X that is not complete,
or if ∥ · ∥ is merely a semi-norm, or even a quasi-norm. From time to time it is convenient to suppress the parameters p
and C , and to speak of ‘‘weak parallelogram’’ laws and spaces with the obvious meaning. No assertion is made, at this point,
that the constants p or C are ‘‘optimal’’ in any way, and they are certainly not unique. These matters will be addressed more
precisely in due course.
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Theweakparallelogram lawswith p = 2were introducedbyBynumandDrew [3,4],whowere interested in the geometry
of Banach spaces. They obtained convexity, smoothness and duality conditions associated with this case.

Cheng and Ross [8] extended this investigation to the parameter range 1 < p < ∞, with the goal of applying the results
to the prediction of p-stationary processes. Indeed, they obtained: a sort of Pythagorean theorem for weak parallelogram
spaces; smoothness and convexity properties; growth estimates for moving average coefficients; a Baxter-type inequality;
and a characterization of ‘‘regularity’’ (in the sense of linear non-determinism) for a broad class of processes. This built upon
theworks [6,5,7,9], concerning the linear prediction of such classes of processes. It was also shown in [8] that for 1 < p < ∞,
the Lp spaces satisfy a range of weak parallelogram laws, and examples were given of weak parallelogram spaces that are
not Lp spaces.

Against this background, a number of reasonable conjectures immediately come to mind. For instance, a duality
relationship among weak parallelogram spaces suggests itself. This state of affairs would seem to justify further exploration
of the weak parallelogram laws on a more fundamental level, and on a broader class of spaces. Our present purpose, then, is
to present a general duality theorem for weak parallelogram spaces, and establish some consequences and related results.

2. Basic properties

Let us proceed by exploring some basic properties of weak parallelogram spaces. This will include the behavior of the
parameters p and C .

First, the following assertion about subspaces is obvious but worth recording. It will enable us to build additional
examples of weak parallelogram spaces.

Proposition 2.1. Let X be a Banach space, and let M be a subspace of X. If X satisfies p-LWP(C), then M satisfies p-LWP(C);
if X satisfies p-UWP(C), then M satisfies p-UWP(C).

The Lp example motivates the following result, which tells us that a general weak parallelogram space always satisfies
weak parallelogram laws for a wide range of parameter values. It will later help us handle the case p = q = 2 in the proof
of the main duality theorem.

Proposition 2.2. Suppose that X is a Banach space, C is a positive constant, and 1 < p < ∞. If X is p-LWP(C), then
0 < C ≤ 1, 2 ≤ p < ∞, and X is r-LWP(B) whenever r ≥ p and B ≤ C r/p. If X is p-UWP(C), then 1 ≤ C < ∞, 1 < p ≤ 2,
and X is r-UWP(B) whenever r ≤ p and B ≥ C r/p.

Proof. Assume that X is p-LWP(C). Then when y = −x, we have

2pC∥x∥p
= ∥x − x∥p

+ C∥x + x∥p

≤ 2p−1(∥x∥p
+ ∥x∥p)

= 2p
∥x∥p

which forces C ≤ 1.
Next, suppose that r ≥ p, and apply the inequality for lp({1, 2}) norms, the p-LWP(C) condition, and Hölder’s inequality

to get

2

∥x∥r

+ C r/p
∥y∥r


≤ 2


∥x∥p

+ C∥y∥p
r/p

≤ 2

[1/2] · [∥x + y∥p

+ ∥x − y∥p
]

r/p
= 2 · 2−r/p


∥x + y∥p

+ ∥x − y∥p
r/p

≤ 21−r/p

∥x + y∥p·r/p

+ ∥x − y∥p·r/p
(r/p)(p/r)

1(r/p)′
+ 1(r/p)′

(r/p)/(r/p)′

= ∥x + y∥r
+ ∥x − y∥r .

Here (r/p)′ = 1 − (r/p), and we used

1 − (r/p) + (r/p)/(r/p)′ = 1 − (r/p) + (r/p)

1 − 1/(r/p)


= 0.

This affirms that X is r-LWP(C r/p).
Now observe that if X is p-LWP(C), then we can obviously replace C with a smaller positive constant B in the defining

inequality (2), and it remains true for all vectors x and y in X.
Finally, consider the inequality

∥x + y∥r
+ C∥x − y∥r

≤ 2r−1(∥x∥r
+ ∥y∥r)
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where x is a unit vector in X, and y = bx for some constant b, 0 < b < 1. Evidently,

C ≤
2r−1(1 + br) − (1 + b)r

(1 − b)r
.

Take the limit of the right hand side as b increases to 1. This requires two applications of L’Hôpital’s rule, with the result

C ≤ lim
b→1−

2r−1r(r − 1)br−2
− r(r − 1)(1 + b)r−2

r(r − 1)(1 − b)r−2
.

If r < 2, then the right hand side is zero, which means that X cannot be r-LWP. Therefore, the condition p-LWP(C) requires
that p ≥ 2.

This proves half of the assertion, and the other half is similarly handled. �

We now turn to the issue of optimal constants.

Proposition 2.3. Suppose that the Banach space X is p-LWP(B) for some B. There exists a unique constant C ≤ 1 such that X
is p-LWP(C), and B ≤ C whenever X is p-LWP(B). If the Banach space X is p-UWP(B) for some B, then there exists a unique
constant C ≥ 1 such that X is p-UWP(C), and B ≥ C whenever X is p-UWP(B).

Proof. The collection of constants B for which X is p-LWP(B) is nonempty and bounded above by 1. Therefore, it has a
supremum C which is bounded above by 1. If, for the sake of argument, it should happen that

∥x + y∥p
+ C∥x − y∥p > 2p−1(∥x∥p

+ ∥y∥p) (4)

for some x and y in X, then (4) also holds with C replaced by a value of B sufficiently close to C . This contradicts the
assumption that p-LWP(B) holds, and thus X must also be p-LWP(C).

Once again, the UWP case is analogous. �

Continuing with the matter of optimal constants, suppose that a Banach space X is given, and it satisfies r-LWP(Cr),
where Cr is the optimal constant associated with r . We already know that X must satisfy s-LWP(C s/r) for all s > r . Let us
write Cs for the optimal constant in that case. It follows that Cs ≥ C s/r

r , or C1/s
s ≥ C1/r

r . Consequently the expression C1/r
r ,

viewed as a function of r , is non-increasing as r decreases. Let p be the infimum of the collection of parameters r for which
X is r-LWP(C) for some constant C , and define C(p) = (limr→p+ C1/r

r )p. It may happen that C(p) = 0. Otherwise, suppose for
the sake of argument that there exist vectors x and ywith

∥x + y∥p
+ C(p)∥x − y∥p > 2p−1(∥x∥p

+ ∥y∥p). (5)

Then, by continuity, (5) also holds with p replaced by p+ϵ, and C(p) replaced by C (p+ϵ)/p
(p) , for ϵ sufficiently small and positive.

But we can further replace C (p+ϵ)/p
(p) by the equal or larger constant Cp+ϵ . This contradicts the condition (p + ϵ)-LWP(Cp+ϵ),

and we may then conclude that X is p-LWP(C(p)). Naturally, a similar thing holds for the upper weak parallelogram case.
Let us summarize this as follows.

Lemma 2.4. Suppose that the Banach space X satisfies a lower weak parallelogram law. Let p be the infimum of the set of
parameters r forwhichX satisfies an r-lowerweak parallelogram law, and let Cr be the optimal constant for each r-LWP condition.
If C = (limr→p+ C1/r

r )p is positive, then X is p-LWP(C).
Suppose that the Banach space X satisfies an upper weak parallelogram law. Let p be the supremum of the set of parameters

r for which X satisfies an r-upper weak parallelogram law, and let Cr be the optimal constant for each r-UWP condition. If
C = (limr→p− C1/r

r )p is finite, then X is p-UWP(C).

We rely on this result in the next section.

3. Duality

It was shown by Cheng and Ross [8, Propositions 2.1 and 2.2] that the Lp spaces, for 1 < p < ∞, are weak parallelogram
spaces, each for a wide range of parameter values. More precisely:

If 1 < p ≤ 2, and q is the conjugate index, then Lp is:

r-UWP(1) when 1 < r ≤ p;
r-LWP((p − 1)r/2) when 2 ≤ r ≤ q; and
r-LWP(1) when r ≥ q.
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If 2 ≤ p < ∞, and q is the conjugate index, then Lp is:

r-LWP(1) when p ≤ r < ∞;

r-UWP((p − 1)r/2) when q ≤ r ≤ 2; and
r-UWP(1) when r ≤ q.

These are extensions of the well known Clarkson’s Inequalities. Evidently, an Lp space is LWP if and only if its dual Lq is UWP.
Our main result is a duality theorem for general weak parallelogram spaces, suggested by this behavior of the Lp spaces.

Theorem 3.1. Let 1 < p < ∞, let q be its conjugate index, and let C > 0; (a) a Banach space X is p-LWP(C) if and only if its
dual space X∗ is q-UWP(C−q/p); (b) X is p-UWP(C) if and only if X∗ is q-LWP(C−q/p).

The next lemma takes the proof of this theorem a long way. Oddly, the method of the lemma fails when p = q = 2,
however; additional steps are therefore needed.

Lemma 3.2. Let 1 < p < ∞, p ≠ 2, let q be its conjugate index, and let C > 0; (a) if the Banach space X is p-LWP(C), then its
dual space X∗ is q-UWP(C−q/p); (b) if X is p-UWP(C), then X∗ is q-LWP(C−q/p).

Proof. Let u and v be positive numbers, and define the function f1 on the two points {1, 2} by f1(1) = u and f1(2) = v.
Similarly define f2(1) = u and f2(2) = −v. Let the measure µ be the mass v2 at the point {1}, and the mass u2 at the point
{2}. It is readily seen that


{1,2} f1f2 dµ = 0.

For any x1 and x2 in X; x∗

1 and x∗

2 in X∗; and scalars a1 and a2; we have
[f1(t)x∗

1 + f2(t)x∗

2][f1(t)a1x1 + f2(t)a2x2] dµ(t) = (2u2v2)[a1x∗

1(x1) + a2x∗

2(x2)]. (6)

Furthermore, the usual estimates provide that [f1(t)x∗

1 + f2(t)x∗

2][f1(t)a1x1 + f2(t)a2x2] dµ(t)


≤


|[f1(t)x∗

1 + f2(t)x∗

2][f1(t)a1x1 + f2(t)a2x2]| dµ(t)

≤


∥f1(t)x∗

1 + f2(t)x∗

2∥ ∥f1(t)a1x1 + f2(t)a2x2∥ dµ(t)

≤


∥f1(t)x∗

1 + f2(t)x∗

2∥
q dµ(t)

1/q
∥f1(t)a1x1 + f2(t)a2x2∥p dµ(t)

1/p

≤


uqv2

∥x∗

1 + x∗

2∥
q
+ u2vq

∥x∗

1 − x∗

2∥
q
1/q

·


upv2

∥a1x1 + a2x2∥p
+ u2vp

∥a1x1 − a2x2∥p
1/p

. (7)

Now, suppose that X satisfies p-LWP(C), and assume that p > q. Apply the above bound, taking v = 1 and u = C−1/(p−2).
The calculation then yields

(2u2)|a1x∗

1(x1) + a2x∗

2(x2)| ≤


uq

∥x∗

1 + x∗

2∥
q
+ u2

∥x∗

1 − x∗

2∥
q
1/q

·


up

∥a1x1 + a2x2∥p
+ u2

∥a1x1 − a2x2∥p
1/p

≤ u2
·


∥x∗

1 + x∗

2∥
q
+ u2−q

∥x∗

1 − x∗

2∥
q
1/q

·


∥a1x1 + a2x2∥p

+ C∥a1x1 − a2x2∥p
1/p

≤ u2
· [∥x∗

1 + x∗

2∥
q
+ u2−q

∥x∗

1 − x∗

2∥
q
]
1/q

·


2p−1(∥a1x1∥p

+ ∥a2x2∥p)
1/p

= 21/qu2
· [∥x∗

1 + x∗

2∥
q
+ u2−q

∥x∗

1 − x∗

2∥
q
]
1/q

·


(∥a1x1∥p

+ ∥a2x2∥p)
1/p

.

There is a common factor of u2 which can be canceled. Also, it is easy to check that u2−q
= C−q/p. Thus we may deduce that

21−1/q
|a1x∗

1(x1) + a2x∗

2(x2)| ≤


∥x∗

1 + x∗

2∥
q
+ C−q/p

∥x∗

1 − x∗

2∥
q
1/q

(∥a1x1∥p
+ ∥a2x2∥p)

1/p
.

Choose x1 and x2 to be unit vectors that are approximately norming for x∗

1 and x∗

2 , respectively. Then, take the supremum of
the left hand side over the condition (|a1|p + |a2|p)1/p = 1. The conclusion is

21−1/q(∥x∗

1∥
q
+ ∥x∗

2∥
q)1/q ≤ [∥x∗

1 + x∗

2∥
q
+ C−q/p

∥x∗

1 − x∗

2∥
q
]
1/q.

In other words, X∗ is q-UWP(C−q/p).
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If, on the other hand, X satisfies p-LWP(C) and p < q, then choose u = 1 and v = C−1/(2−p). The argument proceeds as
before, with the result that X∗ is q-UWP(C−q/p). (Note that the case p = q = 2 cannot be handled this way, as then u or v
ends up being zero, and the associated calculation tells us nothing.) This proves assertion (a).

To get (b), assume that X is p-UWP(C), and take u = v = 1 in (6) and (7). We invoke the weak parallelogram laws in the
form (3) to get

2|a1x∗

1(x1) + a2x∗

2(x2)| ≤


∥x∗

1 + x∗

2∥
q
+ ∥x∗

1 − x∗

2∥
q
1/q

·


∥a1x1 + a2x2∥p

+ ∥a1x1 − a2x2∥p
1/p

≤


∥x∗

1 + x∗

2∥
q
+ ∥x∗

1 − x∗

2∥
q
1/q

·


2(∥a1x1∥p

+ C∥a2x2∥p)
1/p

.

Proceeding as before, we take x1 and x2 to be unit vectors that are approximately norming for x∗

1 and x∗

2 , respectively. Then
take the supremum of the left hand side over the condition (|a1|p + C |a2|p)1/p = 1. The left hand side can be expressed as

2|a1x∗

1(x1) + (C1/pa2)C−1/px∗

2(x2)|.

We deduce that

21/q

∥x∗

1∥
q
+ C−q/p

∥x∗

2∥
q
1/q

≤


∥x∗

1 + x∗

2∥
q
+ ∥x∗

1 − x∗

2∥
q
1/q

which is to say that X∗ is q-LWP(C−q/p). �

We are now equipped to complete the proof of Theorem 3.1. First let us handle the p = q = 2 case omitted from
Lemma 3.2. Suppose that X is 2-LWP(C), with C being the optimal constant. Then X is r-LWP(C r/2) for every r > 2. It
follows from Lemma3.2 that the dual spaceX∗ is r ′-UWP(C−r ′/2), where r ′ is the conjugate index to r . Clearly the supremum
of all the values of r ′ that arise in this way is 2. Furthermore,

lim
r→2+

C1/r ′

r ′

2
≤


lim

r→2+
C (−r ′/2)/r ′

2
= 1/C .

Therefore, by Lemma 2.4, X∗ satisfies 2-UWP(C2) for some constant C2 ≤ 1/C . A second application of Lemma 3.2 now
provides that the second dual X∗∗ satisfies 2-LWP(1/C2). But X is isometrically isomorphic to a subspace of X∗∗, and so X
is 2-LWP(1/C2). Since C was chosen to be the optimal constant for X satisfying the condition 2-LWP(·), and C ≤ 1/C2, it
must be the case that C2 = 1/C . (Actually, a LWP space is already uniformly convex, and hence reflexive; however, this does
not hold for UWP spaces, and thus it does not help the other half of the proof.)

This verifies that if X is 2-LWP(C), then X∗ is 2-UWP(1/C). As ever, a similar argument shows that if X is 2-UWP(C),
thenX∗ is 2-LWP(1/C). (This improves on the constants in [3, Theorem 9], a duality statement for the 2-weak parallelogram
laws.)

We have, as another corollary to Lemma 2.4 and Proposition 2.1, the following statements. If X∗ is p-LWP(C), then X
is q-UWP(C−q/p); if X∗ is p-UWP(C), then X is q-LWP(C−q/p). As before, this is because X is isometrically isomorphic to a
subspace of X∗∗.

At last, the proof of Theorem 3.1 is complete.

4. Further developments

With the duality theorem in hand, we are in a position to relate weak parallelogram laws to quotient spaces. Let us
also connect the weak parallelogram laws to Cartesian products. This enables us to identify additional examples of weak
parallelogram spaces. Finally, we establish a link to the notions of Rademacher type and co-type.

As a quick consequence of duality, we have this statement about quotient spaces.

Proposition 4.1. Let X be a Banach space, and let M be a subspace of X; (a) if X satisfies p-LWP(C), then X/M satisfies
p-LWP(C); (b) if X satisfies p-UWP(C), then X/M satisfies p-UWP(C).

Proof. Let X be p-LWP(C), and M a subspace of X. Then (X/M)∗ is isometrically isomorphic to M⊥, a subspace of X∗.
Thus (X/M)∗ is q-UWP(C−q/p), where q is the conjugate index of p. But (X/M)∗∗ must then be p-LWP(C), as must X/M
itself. That proves (a), and (b) is proved analogously. �

Let us add that the weak parallelogram laws are preserved under Cartesian products, endowed with an associated norm.

Proposition 4.2. Let (X1, ∥ · ∥(1)) and (X2, ∥ · ∥(2)) be Banach spaces.
If X1 is p1-LWP(C1), and X2 is p2-LWP(C2), then the Cartesian product X1 × X2, endowed with the norm

∥⟨x1, x2⟩∥ =


∥x1∥

p
(1) + ∥x2∥

p
(2)

1/p
,

is p-LWP(C), where p = max{p1, p2} and C = min{Cp/p1
1 , Cp/p2

2 }.
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If X1 is p1-UWP(C1), andX2 is p2-UWP(C2), then the Cartesian product (X1×X2, ∥·∥) is p-UWP(C), where p = min{p1, p2}
and C = max{Cp/p1

1 , Cp/p2
2 }.

Proof. Suppose that X1 is p1-LWP(C1), and X2 is p2-LWP(C2). Then by Proposition 2.2, both X1 and X2 are p-LWP(C). Now
for x1 and y1 in X1, and x2 and y2 in X2,

∥⟨x1, x2⟩ + ⟨y1, y2⟩∥p
+ C∥⟨x1, x2⟩ − ⟨y1, y2⟩∥p

= ∥x1 + y1∥
p
(1) + ∥x2 + y2∥

p
(2) + C∥x1 − y1∥

p
(1) + C∥x2 − y2∥

p
(2)

≤ 2p−1

∥x1∥

p
(1) + ∥y1∥

p
(1)


+ 2p−1


∥x2∥

p
(2) + ∥y2∥

p
(2)


= 2p−1


∥⟨x1, x2⟩∥p

+ ∥⟨y1, y2⟩∥p

.

The rest is similar. �

The above assertion directly extends to Cartesian products of any finite or countably infinite length. This, in conjunction
with the previous results, helps us to identify many more examples of weak parallelogram spaces. The Sobolev space
W 1,p(Ω) of functions on a domain Ω , for instance, can be identified with that subspace of Lp(Ω) × Lp(Ω) consisting of
pairs of the form ⟨f ,Df ⟩, where D is the appropriate weak derivative.

The Besov space Bα
p,r can similarly be expressed as a subspace of an infinite Cartesian product of copies of Lp([0, 2π)).

The norm in this case is

∥f ∥α
p,r =


∞
k=0

2αk
∥Wk ∗ f ∥r

p

1/r

where {Wk}
∞

k=0 is a standard sequence of convolution kernels [2]. Thus for α > 0, the space Bα
p,r is r-LWPwhen 2 ≤ p ≤ r <

∞, and it is r-UWP when 1 < r ≤ p ≤ 2.
The Rademacher type and co-type properties (see [1, p. 145ff]) constitute another way to generalize the parallelogram

law. Here is the precise connection between them and the weak parallelogram laws.

Proposition 4.3. Let X be a Banach space, and let 1 < p ≤ 2, and 2 ≤ q < ∞. The spaceX is Rademacher type p with constant
Tp(X) = 1 if and only if X is p-UWP(1); andX is Rademacher co-type q with constant Cq(X) = 1 if and only if X is q-LWP(1).

Proof. Let {rn(t)}∞n=1 be the Rademacher functions on the interval [0, 1]. IfX is Rademacher type pwith constant Tp(X) = 1,
then for any x and y in X,

∥x + y∥p
+ ∥x − y∥p

= 2
 1

0
∥r1(t)x + r2(t)y∥p dt

≤ 2 Tp(X)p

∥x∥p

+ ∥y∥p


= 2

∥x∥p

+ 1 · ∥y∥p


which shows that X is p-UWP(1).
Conversely, if X is p-UWP(1), and {xn}Nn=1 are vectors in X, then

∥x1 + x2 + x3∥p
+ ∥x1 − x2 − x3∥p

≤ 2

∥x1∥p

+ ∥x2 + x3∥p


∥x1 + x2 − x3∥p
+ ∥x1 − x2 + x3∥p

≤ 2

∥x1∥p

+ ∥x2 − x3∥p

.

Add the corresponding sides, and apply the p-UWP(1) property to the right side, to get

∥x1 + x2 + x3∥p
+ ∥x1 − x2 + x3∥p

+ ∥x1 + x2 − x3∥p
+ ∥x1 − x2 − x3∥p

≤ 2

∥x1∥p

+ ∥x1∥p
+ ∥x2 + x3∥p

+ ∥x2 − x3∥p


≤ 4

∥x1∥p

+ ∥x2∥p
+ ∥x3∥p


.

Note that the set of points t on which r1(t), r2(t) and r3(t) have the same sign has measure 1
4 , and likewise with other

permutations of signs. It follows that 1

0
∥r1(t)x1 + r2(t)x2 + r3(t)x3∥p dt ≤ ∥x1∥p

+ ∥x2∥p
+ ∥x3∥p.
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Repeating this argument with x4, x5, . . . , xN leads to 1

0

 N
n=1

rn(t)xn


p

dt ≤

N
n=1

∥xn∥p.

That is, X is type p with constant 1. The other case is treated in the same way. �

Thus many of the present results agree with the Rademacher type theory within their common scope, e.g., the Lp spaces
with 1 < p < ∞. However, an important difference is that the full duality theorem for Rademacher type only holds in one
direction [1, p. 139], whereas the duality theorem for weak parallelogram laws holds in both directions.

5. Conclusions

The main result of this paper asserts that a Banach space satisfies a lower weak parallelogram law if and only if its dual
satisfies an upper weak parallelogram law, and vice versa. It was also shown that the weak parallelogram laws are well
behaved with respect to subspaces, quotient spaces and Cartesian products; and that these properties overlap with the
notions of being Rademacher type and co-type. Examples of weak parallelogram spaces were identified: they include not
only the Lp spaces, but also certain Sobolev and Besov spaces. The present results, in conjunctionwith the applications of the
weak parallelogram laws established in [8], assure us that the weak parallelogram laws are a worthwhile subject for study
and merit further investigation.
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