4-2017

Fermi Questions, Question 1: Penny Floors; Question 2: Secondhand Smoke

Larry Weinstein
Old Dominion University, lweinst@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs
Part of the Physics Commons, and the Science and Mathematics Education Commons

Repository Citation
Weinstein, Larry, "Fermi Questions, Question 1: Penny Floors; Question 2: Secondhand Smoke" (2017). Physics Faculty Publications. 121.
https://digitalcommons.odu.edu/physics_fac_pubs/121

Original Publication Citation

This Article is brought to you for free and open access by the Physics at ODU Digital Commons. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Question 1: Penny floors; Question 2: Secondhand smoke

Citation: The Physics Teacher 55, 249 (2017); doi: 10.1119/1.4978731
View online: http://dx.doi.org/10.1119/1.4978731
View Table of Contents: http://aapt.scitation.org/toc/pte/55/4
Published by the American Association of Physics Teachers

Articles you may be interested in

Bait and switch
The Physics Teacher 55, 247 (2017); 10.1119/1.4978729

Question 1: Too many mosquitoes; Question 2: Tug of war
The Physics Teacher 55, 306 (2017); 10.1119/1.4981041

Question 1: Indoor flying; Question 2: Cell towers
The Physics Teacher 55, 189 (2017); 10.1119/1.4976672

Rolling Uphill
The Physics Teacher 55, 221 (2017); 10.1119/1.4978718

Know strings attached!
The Physics Teacher 55, 186 (2017); 10.1119/1.4976669

Mobile Phone Radiation and Cancer
The Physics Teacher 55, 210 (2017); 10.1119/1.4978714
alone, all the five masses of 0.100 kg together with the smartphone, are shown in Table I.

A graph of these values with its logarithmic linearization is shown in Fig. 6; the fit was verified in the logarithmic graph, shown to the right. The power of the mass was found to be 0.498 ± 0.012, which is approximately a square root. This result is typical of spring-mass systems.

With these simple results, it has been demonstrated that an accelerometer-equipped smartphone can be a very useful tool to determine the inertial mass of an object, with or without gravitational pull present. The smartphone, throughout the many references now published in various journals and presented in conferences, has established itself as a versatile tool for teaching and learning introductory physics.

### Table I. Period of inertial balance with smartphone and masses.

<table>
<thead>
<tr>
<th>Mass (kg)</th>
<th>Period (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.097</td>
<td>0.17±0.01</td>
</tr>
<tr>
<td>0.228</td>
<td>0.25±0.02</td>
</tr>
<tr>
<td>0.328</td>
<td>0.29±0.02</td>
</tr>
<tr>
<td>0.428</td>
<td>0.34±0.02</td>
</tr>
<tr>
<td>0.528</td>
<td>0.38±0.01</td>
</tr>
<tr>
<td>0.628</td>
<td>0.42±0.01</td>
</tr>
<tr>
<td>0.728</td>
<td>0.45±0.02</td>
</tr>
</tbody>
</table>

### Fig. 6. Period as a function of mass for the inertial balance as measured with the smartphone.

#### References


---

### Fermi Questions

**Question 1: Penny floors**

How many pennies does it take to tile the floor of a room? How much does that cost? (*Thanks to Delaney Wright, Olivia Reel, and Halina Garraway of my Oklahoma Scholar-Leadership Enrichment Program (OSLEP) class for suggesting the question.*)

**Question 2: Secondhand smoke**

How dangerous is secondhand smoke? (*Thanks to Olivia Reel from my Oklahoma Scholar-Leadership Enrichment Program (OSLEP) class for suggesting the question.*)

Look for the answers next month online at tpt.aapt.org. Question suggestions are always welcome! For more Fermi questions and answers, see *Guesstimation 2.0: Solving Today’s Problems on the Back of a Napkin*, by Lawrence Weinstein (Princeton University Press, 2012).

DOI: 10.1119/1.4978731