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ABSTRACT

CHARACTERIZING QUEUE DYNAMICS AT SIGNALIZED INTERSECTIONS
FROM PROBE VEHICLE DATA

Semuel Yacob Reeky Rompis 
Old Dominion University, 2015 

Director: Dr. Mecit Cetin

Probe vehicles instrumented with location-tracking technologies have become 

increasingly popular for collecting traffic flow data. While probe vehicle data have been 

used for estimating speeds and travel times, there has been limited research on predicting 

queuing dynamics from such data. In this research, a methodology is developed for 

identifying the travel lanes o f the GPS-instrumented vehicles when they are standing in a 

queue at signalized intersections with multilane approaches. In particular, the proposed 

methodology exploits the unequal queue lengths across the lanes to infer the specific 

lanes the probe vehicles occupy. Various supervised and unsupervised clustering methods 

were developed and tested on data generated from a microsimulation model. The 

generated data included probe vehicle positions and shockwave speeds predicated on 

their trajectories. Among the tested methods, a Bayesian approach that employs 

probability density functions estimated by bivariate statistical mixture models was found 

to be effective in identifying the lanes. The results from lane identification were then 

used to predict queue lengths for each travel lane. Subsequently, the trajectories for non­

probe vehicles within the queue were predicted. As a potential application, fuel 

consumption for all vehicles in the queue is estimated and evaluated for accuracy. The 

accuracies o f the models for lane identification, queue length prediction, and fuel 

consumption estimation were evaluated at varying levels of demand and probe-vehicle



market penetrations. In general, as the market penetration increases, the accuracy 

improves. For example, when the market penetration rate is about 40%, the queue length 

estimation accuracy reaches 90%. The dissertation includes various numerical 

experiments and the performance o f the models under numerous scenarios.
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CHAPTER 1 

INTRODUCTION

1.1 Background

The high cost of transportation infrastructure construction has triggered a need to maximize the 

efficiency o f the existing transportation system notably in big cities. The goal is to be able to 

minimize, if  not solve, transportation problems such as traffic jams, delays, and safety. Further, it 

is also required to have the capability to make the transportation system more environmentally 

friendly. This expectation has made reliable transportation data become more essential; however, 

using the existing transportation instrument, it is very costly to obtain the data, especially at the 

network level, which has always been a problem. Hence, researchers and traffic engineers have 

tried to find alternative devices that are able to provide reliable, but also affordable, 

transportation data.

Advances in information and technology have made it possible to collect comprehensive data 

from instrumented vehicles, also known as probe vehicles. The data collected by the probe 

vehicle system could be very detailed because o f the ability to collect second-by-second traffic 

parameter information.

The Federal Highway Administration (FHWA) [1] categorized five types o f ITS probe vehicle 

data collection: Signpost-Based Automated Vehicle Location (AVL), Automatic Vehicle 

Identification (AVI), Ground-Based Radio Navigation, Cellular Geolocation, and Global 

Positioning System (GPS). The advancement o f the satellite technology for communication 

systems has made the use o f probe vehicle systems with GPS instruments preferable among all



these types. The probe vehicles are capable of reporting their timely trajectories and speed in the 

link or network which are required to accurately estimate essential traffic parameters, such as 

queue length and even fuel consumption and emission, consumed and generated by each 

individual vehicle. Furthermore, wireless communication advancement has made it possible to 

have more and more mobile instruments such as smartphones, GPS navigators, etc. perform as 

the probe instrument.

Although this system is very promising, there are two main issues that need to be addressed. The 

classic one is the instrument vehicle market penetration rate. In the early years o f probe vehicle 

utilization, the market penetration rate has become an inevitable issue as it is very expensive to 

install instruments for most, if  not all, o f the vehicles in the network. However, as explained 

before, the improvement in information and technology has made it possible to have a higher 

probe vehicle market penetration rate. Still the problem is not solved. The reason behind this is 

the privacy issue; not everybody is willing to share their vehicle’s time and space information 

and thus it is still hard to have a high market penetration rate.

The challenge for the traffic engineer is how to conduct reliable traffic parameter estimation 

using a low/acceptable probe market penetration rate. Another substantial problem with this 

system is the instrument level o f accuracy. While it is capable to report vehicle position at every 

second, it also has accuracy error o f about 3 to 15 meters. The significance o f this issue really 

depends on the objective o f using the probe data. It might not be a big problem for traffic 

macroscopic modeling, but when it comes to a more detailed level, this error becomes a major 

problem. For example, when conducting research on lane identification, this GPS instrument 

issue will need to be considered seriously.



Most probe vehicle research has been carried out to predict the travel time, for example [2-4], 

Beside travel time prediction, a probe vehicle has been used for other traffic parameter prediction 

such as estimating queue length | 5] and even incident detection [6, 7], Recently, although only in 

limited numbers, researchers have conducted studies for utilizing a probe vehicle system to 

estimate fuel consumption and emission as demonstrated in [8]. This queue length, fuel 

consumption and CO2 estimation research was conducted by simplifying the lane problem which 

is related to the GPS error problem. The assumption is that either the estimation is for a single 

lane, or the lane is known or the queue is equal for multiple lanes, which obviously are not 

always true in real life.

This research was conducted to estimate the queue length and fuel consumption by taking into 

account the market penetration rate and the GPS instrument issue. To be more specific, this 

research is about lane-based queue length estimation and lane-based fuel consumption and CO2 

estimation using the probe vehicle data.

1.2 Problem Definition

There have been few studies reported about queue length and fuel consumption estimation using 

probe vehicles, particularly the GPS instrumented vehicle. As explained before, those previous 

studies were conducted while overlooking the GPS error problem.

Basically, this study is an attempt to optimize the probe vehicle system in predicting queue 

length and fuel consumption in an urban network, which in this case, is at a signalized 

intersection. This was done by identifying the lane of the probe vehicle to properly carry out the 

estimation. The challenge in this study is to find an appropriate technique in detecting a probe
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vehicles’ lane, by considering the instrument error, using the traffic flow theory and a statistical 

method.

Furthermore, as mentioned earlier, an essential issue in probe vehicle implementation is the 

market penetration rate o f probe vehicles which has also been addressed by [9, 10]. Logically, 

the higher the rate, the more accurate the result expected. However, it is not an easy task to apply 

a high probe vehicle penetration rate in real life. Therefore this issue, for the case o f probe 

vehicle usage in queue length and the fuel consumption estimation in particular, will be 

investigated in this study.

1.3 Research Questions

This study was conducted to answer the following research questions:

•  What is the best methodology for real-time probe vehicles’ lane identification at multiple- 

lane signalized intersections in the case o f unequal queues?

•  Given the previous question answered, what is the applicable method to estimate the 

queue length and fuel consumption properly?

•  At what rate can the probe market penetration be considered adequate to carry out 1) the 

probe vehicles’ lane identification, 2) the queue length estimation and 3) the fuel 

consumption estimation?

1.4 Research Objective and Scope of Study

The essential objective o f this research is to find an appropriate way in real-time identification of 

the probe vehicle lane so that data can be used to optimize the queue length and fuel 

consumption estimation in an urban network. The study is expected to give a good idea of the 

acceptable market penetration rate that is adequate to carry out the estimation properly.
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Although this study is an attempt to find an appropriate method for improving queue length and 

fuel consumption estimation, it is not within the scope to create a new fuel consumption and 

emission model. Instead, this study focuses on finding a methodology for optimizing the use of 

probe vehicles in estimating traffic parameters and fuel consumption.

1.5 Research Contribution

In this dissertation, various models have been developed and analyses were performed to 

investigate how probe vehicle data could be used to accurately, effectively, and efficiently 

estimate queue length and fuel consumption at signalized intersections with multiple lanes. The 

following are the key contributions o f this research:

1. This research, to the best o f the author’s knowledge, is the first attempt to estimate traffic 

parameters from probe vehicle data while considering its travel lane at signalized 

intersections. In previous studies, lane identification is either ignored or models are 

developed for single-lane roads.

2. New models, utilizing traffic flow theory and Bayesian inference, were developed to 

estimate the lane of the probe vehicle and queue lengths for each individual lane.

3. Based on empirical data from microsimulation, this research evaluated the best set of 

variables to be extracted from probe vehicle trajectories for lane estimation at signalized 

intersections with unequal queue lengths.

4. This research is one o f a very limited number o f studies on estimating fuel consumption 

from probe vehicle trajectories.

5. The dissertation documents a comprehensive set of simulation experiments and analyses 

for evaluating effectiveness o f different methods for lane prediction, queue length, and 

fuel consumption estimation.
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1.6 Dissertation Proposal Layout

This dissertation consists o f six chapters. Chapter 2 contains the literature review; in this chapter 

several theory and related studies about probe vehicle utilization, queue length estimation, and 

vehicle fuel consumption emission estimation were reviewed. In Chapter 3, the methodology for 

lane identification is proposed which includes case studies for several queuing scenarios. The 

implementation o f the lane identification for the queue length estimation is provided in Chapter

4. In Chapter 5 the application of lane identification for fuel consumption is covered. Finally, the 

conclusion of the previous chapters and recommendations for future research are given in 

Chapter 6.



CHAPTER 2 

LITERATURE REVIEW

2.1 Probe Vehicles

Probe vehicles are becoming an increasingly important topic in transportation systems. The 

system itself has been studied extensively both in real life and virtually (using transportation 

simulation software). Research has been conducted to explore the utilization of probe vehicle 

systems for travel time estimation [2, 4, 11], incident detection [6, 7], lane change maneuver 

detection [12], traffic states evaluation [13, 14], queue length estimation [5, 15-17], route choice 

behavior and origin-destination estimation [18], and even for pavement roughness estimation 

[19,20],

There are several kinds of probe vehicle systems based on their data transmission approaches. As 

stated in [13], there are three ways by which probe vehicles can transmit traffic information: 1) 

space-based, where the traffic information is transmitted to roadside devices as the probe 

vehicles pass observation points. These kind o f data can be retrieved from a beacon-based probe 

system, an electronic toll tag system or an automatic license plate recognition system; 2) time- 

based, where the traffic information is reported at every specific time instant wherever the probe 

vehicles are. These types o f data can be obtained from a GPS-based system or a beacon-based 

system; and 3) event-based, where traffic information is reported as a particular event (such as a 

traffic incident) occurs.
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2.2 The Advantages and Disadvantage o f Using Probe Vehicle Systems 

The FHWA in the Travel Time Data Collection Handbook [1] describes the common advantages 

and disadvantages o f using probe vehicles systems for travel time data collection, as shown in 

Table 1. Since the data needed for conducting this study are the same as for travel time data 

collection, the advantages and disadvantages mentioned in Table 1 also apply to this study.

Table 1. The profit and consequences of using probe vehicle systems

Advantages Disadvantages

Low cost per unit data High implementation cost

Continuous data collection Fixed infrastructure constraints

Automated data collection Requires skilled software designers

Data are in electronic 
format

Privacy issues

No disruption o f traffic Not recommended for small data collection 
efforts

The probe vehicle system has a high initial cost to install the necessary equipment and train 

personnel to operate it; however, once it has been done, the data could be collected easily at a 

low cost. Another disadvantage o f this system is that it is very costly to adjust the supporting 

infrastructure (such as the receiving antennas) in the size and system coverage area; thus, before 

implementation, a proper study will need to take place. This system also will need skilled 

personnel to operate, gather, and analyze the data. Another issue about probe vehicles is drivers’ 

privacy. As this system involves tracking the location o f drivers, motorists may think that their
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travel behavior is being monitored. Since this system requires an initial high cost, it is most cost- 

effective to be implemented within a large study area.

2.3 Probe Vehicle Data Collection System

As has been mentioned in the previous chapter, according to FHWA [1], there are five types of 

ITS probe vehicle data collection techniques:

Table 2. Probe vehicle data collection systems

Technique

Costs
Data

Initial Data DataInstallation _ Accuracy
costs Collection Reduction

Constraints
Driver

Recruitme
nt

AVL

AVI

High High

High High

Ground- 
Based Radio 
Navigation

Low Low

Low High Low

Low Low High

Low Low Moderate

No. of 
signpost 
sites, transit 
routes, and 
probes

No. of 
antenna sites 
and tag 
distribution

No. of 
probes and 
size of 
service area

None; uses
transit
vehicle

Required, 
but can use 
toll patrons

Required

Cellular
Geolocation

GPS

High High

Low Low

Low Moderate Low

Low Moderate High

No. of cell 
users and 
cell towers

No. of 
probes

None; uses 
current 
cellular 
users

Required, 
but can also 
use
currently 
instrumente 
d vehicles

Source :[1]
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•  Signpost-Based Automatic Vehicle Location (AVL), where the probe vehicles 

communicate with transmitters installed on an existing signpost structure;

•  Automatic Vehicle Identification (AVI), where electronic tags are installed in the probe 

vehicle so that the probe vehicle can communicate with roadside transceivers for 

identification and for collecting travel time between transceivers;

•  Ground-Based Radio Navigation, where the data are collected through probe vehicles and 

radio tower communication;

•  Cellular Geo-location, where cellular telephone call transmissions are tracked discreetly; 

and

•  Global Positioning System (GPS), where probe vehicles are equipped with the GPS 

transmitters and receivers. This system works with the assistance o f satellite service.

Table 2 demonstrates the comparison between those systems.

2.3.1 Signpost-Based Automatic Vehicle Location (AVL)

There are seven main components to collect and store travel time data in this system:

1. Infrastructure o f electronic transmitters,

2. In-vehicle receiver,

3. In-vehicle odometer sensor,

4. In-vehicle locating unit, or data microprocessor,

5. In-vehicle radio transmitter,

6. Central control radio receiver, and

7. Central control facility



The communication process o f signpost-based AVL is shown in Figure 1. This system has the 

following advantages: 1) simple infrastructure; 2) some types o f this system are capable of 

collecting vehicle performance data such as fuel consumption, oil pressure or cooling 

temperature; 3) some types of this system would be able to collect passenger count; these data 

will be useful for developing the origin-destination matrix in trip generation studies.

Location

Signpost 
ID  A

Signpost
Tiansimttcr

Central
Computet

Vehicle
Location'
Unit

Signpost I D . Bus I D 
Odometer Reading 
Time/Dafe Stamp

Radio
AntennaSignpost - Bus Communication Link

Radio - 
Transmitter

Bus - Computer Center Communication Link

Source :[l]

Figure 1. Signpost-Based AVL system

This system suffers from these disadvantages: 1) since it was originally designed to monitor 

transit fleet operations, travel time data may not be acceptable to be used in regular traffic 

studies; 2) with the same reason as the previous, tnis system covers only data that are limited to



roadways traveled by transit vehicles; 3) routine calibration will be needed in order to have 

accurate data; 4) advances in the field o f satellite technology have caused transit agencies to 

upgrade their systems to GPS technology that is more accurate and robust; and 5) the data 

produced from this system require extensive editing and quality control, sometimes even spot- 

editing (particularly from poorly placed or malfunctioning signpost transmitters).

Tag LD. #. 
Time Siamp 
Date Stamp. 
Antenna I D

Toll Plaza. Sign Bridge, Overpass, or Gantry

Central
Computer

READER T*®?"! 
UNIT Antenna 

Transceiver
Leased Phone Lines

[AVI tag

READER
U N IT

Tag I.D. #

Antenna Spacing 
Varies. Typically 
2-5 km

Coaxial Cable 
Radio Wave, or , 
M icrowave

Source : [1]

Figure 2. AVI System

2.3.2 Automatic Vehicle Identification (AVI)

There are four components (illustrated in Figure 2) that are needed in order to make the 

automatic vehicle identification (AVI) system work:



1. ITS probe vehicle with electronic transponders,

2. Roadside antenna to detect signal transmitted from electronic transponders,

3. Roadside readers to collect the data, and

4. Central computer for collecting and processing all data.

Compared to the other ITS probe vehicle systems, the AVI systems benefit from these 

advantages: 1) AVI systems have the capability to collect data continuously for an entire 24-hour 

period; 2) as this system is completely automated, very few human resources are needed to make 

this system work; therefore 3) this system has minimum risk o f injury and human error potential 

in the data collection process; 4) this system has been proven to have better accuracy in 

collecting the data and also immune to interference from cellular telephones, commercial radio 

signal and electric generators; 5) this system is able to collect data from specific lanes; and 6) 

this system is also appropriate to collect vast amounts o f data, for example, data collection for 

over a year in all types o f environmental situations. The disadvantages o f this system are 1) it 

depends heavily on infrastructure, i.e. the system can only collect data from roads within the 

coverage area o f AVI infrastructure (such as antennae of ETC booths); 2) data can only be 

collected from vehicles with tags in use inside the study area; 3) the clocks which assign the time 

stamp on each transponder read always need to be kept synchronized, otherwise this system will 

suffer from clock-biased problem; 4) this system utilizes unique tag IDs that correspond to 

individual drivers of probe vehicles which will elevate privacy issues; and 5) this system needs a 

large amount o f data storage space.

2.3.3 Ground-Based Radio Navigation

This probe vehicle system works by using a receiving antenna network and probe vehicles 

equipped with electronic transponders. The process o f ground-based radio navigation
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communication is illustrated in Figure 3. This system is commonly used by transit agencies and 

private companies to manage fleet operations.

Compared to the other probe vehicle systems, the advantages of this system are 1) the initial cost 

needed to run this system is low; 2) the more people using this system, the more widespread the 

use o f the technology; and 3) if  a ground-based location provider service is available, the data 

collection is relatively simple.

Vehicle
Location

Central
Computer

Vehicle I D.
Time Stamp

*A/WV”
Vehicle I D 
Time Stamp

Vehicle I D  
Time

Vehicle I D 
Stamp Ground-Based 

Radio Tower

Vehicle 
Location Unit

Source : [1]

Figure 3. Ground-based radio navigation system

This system has some disadvantages, too: 1) it suffers from low accuracy since the precision is 

affected by the topography o f the land and mounted in-vehicle equipment; 2) the technology is
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outdated and less precise compared to GPS technologies; 3) the density o f urban areas will affect 

signal penetration; 4) since this technology is used by commercial vehicles and transit agencies, 

the data may not represent the overall driving population and may be biased; 5) as this system is 

mainly operated by private companies, it will require their approval to get the data; 6) this 

system is currently available in certain cities particularly in dense urban areas with many transit 

agencies; and 7) this system will need driver recruitment which depends on the size and scope of 

the study.

2.3.4 Cellular Phone Tracking

There are two techniques to collect data for this probe vehicle system: cellular telephone 

reporting and cellular geolocating. In the cellular telephone reporting, the probe vehicle driver 

needs to call an operator of the central facility to inform that he or she has passed a certain 

checkpoint. The operator will then record the driver’s identification, location, and time of the 

call. The data between reporting locations can be determined by evaluating the time between 

successive telephone calls. This method is very useful in evaluating traffic conditions 

particularly when the traffic experiences delay after an unexpected event (e.g. incidents). The 

other technique o f this system, cellular geolocating, was conducted only once in an operational 

test in the Washington, D.C. area, sponsored by private and public organizations under the 

project name Cellular Applied to ITS Tracking And Location (CAPITAL).

As this technique utilizes an existing cellular telephone network, vehicle locating devices and a 

central control facility to collect data, all vehicles equipped with cellular telephones are potential 

probe vehicles. Every activity of cellular phones from vehicles is monitored by the system. The 

illustration o f this system is shown in Figure 4. The advantages o f this system compared to other 

probe vehicles systems are 1) no driver recruitment is necessary since all the vehicles with
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cellular phones can be potential probe vehicles; 2) this system does not need in-vehicle 

equipment to run and 3) as al) vehicles with cellular phones can be probe vehicles, this system 

has a large potential sample size.

Central
Computer Encrypted Call I.D.. Cell Site 

Time of Call. Channel 
Call Priority

W V \a- m  I^-A/VvV

Cell Phone 
Call

Cell Phone 
Call

- Car Phone 
Antenna

C ellu la r

Telephone
Antenna

Figure 4. Cellular Geolocation System for probe vehicles

Source :[1]

The disadvantages o f this system are, 1) until now, the cellular geolocating has been conducted 

only once through the CAPITAL Operational Test in the Washington, D.C. area: 2) this system 

has a high potential for privacy issues; 3) this system depends very much on infrastructure (in 

this case cellular infrastructure) and thus the data collection is limited to roads within the 

coverage area o f the cellular- network; 4) proper use o f this system really depends on cellular



phone use, and consequently data collection can break down during low cellular telephone use; 

5) this system suffers from inaccurate data collection due to topography and line o f sight barriers 

on the geolocating process; and 6) this system only represents the driving behavior o f motorists 

that use cellular telephones while driving, and this sample does not necessarily represent the 

whole population o f motorists in the study area, thus this system suffers from potentially biased 

samples.

2.3.5 Global Positioning System (GPS)

The Global Positioning System (GPS) is a space-based navigation system using satellite that 

gives location and time information anywhere on or near the earth in all weather conditions.

GPS
Satellites

Differential 
Correction Station

Transmission 
Tower

Probe Vehicle
Control Center/Dispatch

Source: [1]

Figure 5. Global positioning system for probe vehicles
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A GPS works properly only when there is unobstructed line o f sight to four or more GPS 

satellites. The system gives significant assistance to military, civil, and commercial users around 

the world. The system is operated and maintained by the United States government and can be 

accessed freely by anyone around the world with a GPS receiver.

The system was originally built by the U.S. Department o f Defense for tracking military ships, 

aircraft and ground vehicles. The signals are sent from 24 satellites orbiting the earth at 20,120 

km (12,500 mi). These signals are capable o f providing location, direction, and speed anywhere 

in the world, which has become the main reason for utilizing this system for probe vehicles. 

Figure 5 illustrates the communication process o f the GPS probe vehicle system.

Compared to other probe vehicle systems, the GPS probe vehicle technique benefits from these 

advantages: 1) relatively low operating cost after initial installation; 2 ) capability o f providing 

data continuously for all time and space; 3) availability is improving continually; and 4) using 

the GPS receiver, the data are collected automatically. However, this system also suffers from 

these disadvantages: 1) privacy issues arise as this system provides the location and time o f the 

driver anywhere in the world; 2 ) large buildings, trees, tunnels, or parking garages can impair the 

signal, resulting in data loss; 3) the difference in driving behavior makes it hard to achieve 

consistency between drivers, 4) two-way communication systems are needed to make this system 

work; and 5) this system has a relatively high installation cost, mainly for hardware investment.

2.4 Probe Vehicle Sample Size Issue

An essential issue in using the probe vehicle system is sample size. The question is, out o f the 

entire vehicle population, what is the probe vehicle percentage needed for obtaining reliable 

data? According to [21] in a project called ADVANCE (Advanced Driver and Vehicle Advisory



Navigation ConcEpt). for a simulation model o f the city o f Chicago that has a total o f 3,946 links 

over 465 square miles, 4,000 vehicles would ideally be needed as probe vehicles for a 200 square 

mile test area.

A research study [22] conducted on this topic for travel time data collection found that the 

number o f probe vehicles increases non-linearly as the reliability criterion is made more 

stringent. Another study [23] also tried to explore this topic for arterial speed estimation and 

found that their network needs to have 4% to 5% of active probe vehicles, or 10 vehicles 

minimum, passing through a link in the sampling period.

2.5 Previous Study in Probe Vehicle System Usage

The topic o f probe vehicle systems has been explored extensively. In this section, several 

research papers that have been conducted on this topic will be discussed to investigate their 

relevance to this study.

2.5.1 Probe Vehicle System to estimate travel time

There has been a lot o f research conducted to evaluate the application o f probe vehicle systems 

in estimating travel time at all levels (microscopic, mesoscopic, and macroscopic) of the 

transportation network. For example, by setting up experiments using a micro simulation model, 

[24] probe vehicle data from a signalized arterial were used to calibrate a delay (travel time) 

distribution for an isolated intersection that was derived from an analytical model under different 

circumstances. The authors concluded that the delay distribution, estimated based on both least- 

squares and maximum likelihood method under sparse traffic conditions, can well represent the 

simulation data. However, when the degree o f saturation increases, the maximum likelihood 

method performs better than least-squares method. In another study, [11] event-based traffic data



were used to estimate time-dependent travel time by tracing a virtual probe vehicle and 

determining its maneuver (acceleration, deceleration and no speed change) based on estimated 

traffic states. The authors claimed that the proposed model could generate accurate time- 

dependent travel times under various traffic conditions. A study for estimating travel time using 

a probe vehicle system at the macroscopic level was conducted by [25]. They utilized a statistical 

model (maximum likelihood estimation) to estimate urban road network travel time for any route 

between two points under specified trip conditions by using vehicle trajectories obtained from 

low frequency GPS probes as observations. They showed that sparse probe vehicle data can 

potentially monitor the performance o f the urban transport system. Another way for evaluating 

the travel time with probe vehicle system is by using Adaptive Kalman filter as described by [4] 

who performed travel time estimation for a freeway. Using a microscopic simulation model, the 

authors improved travel time estimates by incorporating data from a small sample o f probe 

vehicles and proposed an Adaptive Kalman Filter-based method that can dynamically estimate 

noise statistics o f a system model by adapting to real-time data. They discovered that the 

proposed algorithm significantly enhanced section travel time estimates compared to the cases 

when a single data source was used.

2.5.2 Probe Vehicle System to estimate traffic states

Travel time information is crucial to determine traffic states, thus by determining the travel time 

information one also can identify the traffic condition as shown by [26]. However, some research 

about traffic states determination using probe vehicles has been conducted by observing other 

traffic parameters and evaluating the travel time indirectly. For example, [27] conducted a study 

to estimate freeway density with both loop detector data and IntelliDrive-based probe vehicle 

data. This study used probe vehicle data to help determine density distribution between two loop
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stations. The authors found that the proposed method is valid and the algorithm can be used 

offline and in real time. Based on probe and loop detector data [28], others proposed an empirical 

model o f the effect o f sample size and detector spacing on the accuracy of freeway congestion 

monitoring in estimating delay, average duration o f congestion and average spatial extent of 

congestion. The model facilitates comparison o f the effect o f sample size and detector spacing in 

regard to the cost for achieving the same level o f accuracy. The authors showed that the result 

could be used as a guide to determine the sample size or detector spacing in planning new 

congestion monitoring. At a regional level, [29] proposed a probabilistic modeling framework 

for estimating and predicting arterial travel time distributions using sparsely observed probe 

vehicles. Their model was based on hydrodynamic traffic theory to learn the density o f vehicles 

on arterial road segments illustrating the distribution o f delay within a road segment. They 

utilized 500 taxis as probes to test the method to estimate real-time traffic for a subnetwork of 

San Francisco.

2.5.2.1 Probe Vehicle System fo r  automatic incident detection and weather condition detection 

Another application o f probe vehicle system is to detect incidents automatically as demonstrated 

by [6 ], where the researchers developed a neural network model for automatic incident detection 

using simulated data derived from inductive loop detectors and probe vehicles. They showed that 

it is feasible to develop advance data fusion neural network architectures or detection of 

incidents on urban arterials using data from existing loop detector configurations and probe 

vehicles. By the use o f microsimulation for generating probe data, [30] investigated the use of 

vehicle-infrastructure integration, that is, vehicles equipped to collect traffic probe data that can 

be used to assist transportation planning or operations. Considering different data requirements, 

in their work the authors considered application to weather condition detection, incident
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detection, and real-time adaptive signal control where in each application they evaluated the 

ability o f the probe sampling system to support the application. They found that the least- 

demanding application (such as weather condition detection), could be served well at low probe 

vehicle market penetration rates, but the most demanding applications (real-time adaptive signal 

control) would need the majority of the vehicles to be equipped.

2.5.3 Probe Vehicle System to estimate queue length

The first attempt to estimate queue length using vehicle probe data was done by [5] where they 

used a statistical method to build an analytical formulation based on conditional probability 

distribution to estimate the real time queue lengths and their variance from probe vehicle 

information in a queue at an isolated and undersaturated intersection. They found that in the case 

o f steady-state conditions and known arrival rates, the queue length can be estimated using only 

the location o f the last probe vehicle in the queue. Since vehicle sample size is the main problem 

of probe vehicle system usage, their study also considered this issue as one o f its discussion 

topics. From results obtained for undersaturated conditions, they came to the conclusion that the 

queue lengths can be estimated more effectively at relatively high volumes.

Later, in a study about estimating queue dynamics at signalized intersections, [15] introduced a 

method to estimate the LWR shockwave profile by determining the critical point using probe 

vehicle data. The critical points were determined from the time and space coordinates (vehicle 

trajectories) at the events when probe vehicles join the back of the queue. By knowing this 

critical point, the queue dynamics at traffic signals can be estimated. This method was built from, 

and thus applied to, the case o f oversaturated intersections where queue overflow occurred at 

most signal cycles. Another study about estimating queues in an urban network was conducted 

by [17]. This study proposed a method using probe GPS data to identify the queue profile in the



time-space plane that forms the shockwave profile from which the queue dynamics can then be 

estimated. Since the shockwave profile was formed by classifying and clustering the probe data, 

the proposed method does not require any explicit information about signal setting and arrival 

distribution, and thus they claimed this method can be applied both in undersaturated and 

oversaturated intersections.

2.5.4 Probe Vehicle System to estimate emissions

At the microscopic level, vehicle fuel consumption and emissions were estimated based on 

instantaneous speed and acceleration level as shown by [31]. The instantaneous speed and 

acceleration can be obtained from vehicles trajectories. An attempt to estimate vehicle emissions 

at the microscopic level using vehicle trajectories from probe vehicle data has been demonstrated 

by [8 ], where they estimated the total fuel consumption and CO2 emissions at a signalized 

intersection from the probe vehicle data by employing several methods, including simple 

extrapolation and using trajectories o f two consecutive probe vehicles for each signal cycle. In 

this latter method, the average o f two fuel consumption values (one for each trajectory) is taken 

to estimate the fuel consumption for the non-probe vehicles. In this study, fuel consumption and 

emissions were estimated using Virginia Tech Comprehensive Power-Based Fuel Consumption 

Model (VT-CPFM). An interesting conclusion from this study is the information about vehicle 

type and brand will not enhance the estimation accuracy significantly when a proper vehicle 

representation is introduced. This study was done by comparing every scenario to the “ground 

truth” of probe vehicle data attained from a microsimulation model. This study was one of a few 

studies for evaluating probe vehicle penetration that conducted using a microsimulation model. 

The reason for using the simulation model is because it is very expensive to obtain a ground truth 

for probe vehicle data in real life. However, since the vehicle trajectories were generated by



24

assigning a mean value, is it reliable to estimate fuel consumption from vehicle trajectories 

generated by a microsimulation model? This question was the main study topic used by [32] to 

examine the relevance o f using vehicle trajectories simulated by dynamic traffic models for 

estimating fuel consumption. Their study focused mainly on the feasibility o f a microscopic 

traffic model for fuel consumption estimation. Fuel consumption, which is estimated for real and 

simplified trajectories, and also connections between kinematic and the fuel consumption error, 

were investigated. The results showed that simplifying trajectories causes fuel consumption 

underestimation. A contribution o f their study was a method developed to quantify and reduce 

the errors occurring at each kinematic phase when acceleration distributions are approximated by 

their mean values.

2.6 Shockwave Profile

This current study employed a shockwave profile to predict the trajectories for all non-probe 

vehicles. The shockwave profile was predicted using vehicle trajectories based on the principal 

o f Kinematic Wave Theory (also known as LWR) macroscopic model. This section will describe 

the shockwave profile and traffic conditions in the signalized intersection.

2.6.1 The shockwave profile at signalized intersection

The first dynamic traffic model that used the fundamental diagram in the traffic conservation law 

was proposed by Lighthill and Whitham [33] and Richards [34], and is known as the LWR 

model. This traffic flow model was built based on the fluid dynamics continuity equation, known 

as the first-order LWR traffic flow model Using a traffic flow fundamental diagram, the general 

LWR shockwave model can be built.
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Figure 6 (a) shows the fundamental diagram and the shockwave speed due to the interrupted 

traffic flow during red light at signalized intersection. As the light turns red (point A), the 

capacity will drop to point B  (capacity -  0). Point C represents the capacity o f the link.
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Figure 6. The fundamental diagram and incidents shockwave profile
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Figure 6 (b) shows the shockwave profile o f the link due to an incident. Let us assume r denotes 

the duration o f the red time. In Figure 6 , r = while tc-G is defined as the total time from 

the beginning o f green to the time of last vehicle joining the queue, tp-tp is the total time from 

the beginning of green to the condition where the traffic reaches the free flow speed and Qm is 

the queue length. The total delay (TD) is the sum of the areas o f triangles EFG and FHG 

multiplied by the density o f each associate traffic state.

Using the fundamental diagram, the shockwave formation in time and space is drawn (see Figure 

6 ). The shockwave speed wab is the queue formation speed as the queue propagates upstream 

when the traffic is stopped for the red light, thus wAb is defined as queuing shockwave speed, 

calculated as equation ( 1 ).

R b ~ (!a

wab = -j— jT  Wkb ka

As the lights turn green, vehicles begin to discharge at saturation flow rate, forming another 

shockwave with shockwave speed wcb moving upstream, this shockwave is defined as discharge 

shockwave speed, formulated as equation ( 2 )

_  Qb ~  Qc
WcB ~  k  - k  WKb  k c

The position o f the last vehicle in queue defines the maximum queue length. At this point the 

queuing and discharge shockwave meet and a third shockwave with shock wave speed wac is 

generated propagating downstream. This shockwave is formed when the vehicle from upstream 

reaches the vehicles who are just leaving the queue with speed at capacity. This shockwave 

speed is defined as departure shockwave, shown by equation (3)



With the known shockwave speed wab and wcb and the length o f lane closure duration (r), by 

utilizing AEGI and AFGJ in Figure 6 , yields

Qm
Wcb =  — —  (4)

IC-t-F

Qm
Wab ~  r  +  (5)

By equating the Qm from equations (4) and (5), the total time from the beginning o f green light 

to the time of the last vehicle dissipating from the queue, to-tp (minutes) can be determined as 

shown by equation ( 6 ),

wA B r
tG- t F = --------------- (6 )

wcb ~ W ab

The queue length can be determined by the following procedure:

Q m ~  Wcb-tG-tF (7 )

Substituting tG„tF from the equation (6 ) into equation (7), the queue length (kilometers) can be 

determined as in equation (8 ),

r  \wCB\.\wAB\ 
60 |WCB| — |WyJg|Qm = 7 a  i . . .  . , (8)

Using ta-tp and Qm the total time from lane opening to normal conditions is formulated as follow, 

as in equation (9)



and in equation ( 1 0 )

tti ~ t p  = ( tH — tG) + (tG.  tF) (10)

Thus, the time needed from the beginning o f green back to free-flow traffic condition can be 

obtained as in equation ( 1 1 ),

tH — tF = — h (tG- t F) (11)
WAC

As stated earlier, total delay due to the red light interruption is the area o f AEFG plus the area of 

AFHG  multiplied by each traffic state density, as shown by equation (12).

7-p =  ^ ( f c B - M  +  (t" ~ y -  Q"  + (kc - k i -) (12)

2.6.2 Traffic flow  conditions in the signalized intersection

There are two kinds o f conditions occurring in signalized intersections: undersaturated and 

oversaturated. The undersaturated condition is the situation where the green time can 

accommodate all the queue and incoming traffic and thus clear all the queued vehicles in one 

cycle. On the other hand, the oversaturated condition is the situation where there is overflow 

queue (also known as spillover) where the queued vehicles will not be able to pass the 

intersection in one cycle. This study will focus on the undersaturated traffic flow condition and 

leave the oversaturated one for future work.
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2.7 Emissions Model

Similar to transportation models, emissions models have been built at the macroscopic, 

microscopic, and (recently) mesoscopic level. The macroscopic model uses average aggregate 

parameters such as average speed or mean speed distribution to estimate network-wide fuel 

energy and emissions rates. In average speed models, fuel consumption rates are a function of 

trip time, trip distance, and average speed. According to (35], as cited in [36], since macroscopic 

models did not take into account aerodynamic drag resistance at high speed, they could only be 

used appropriately for average speeds o f less than 50 km/h. At average speed over 55 km/h, as 

shown by [37], the aerodynamic effects on fuel consumption become significant.

Microscopic models, on the other hand, estimate second-by-second vehicle fuel consumption and 

emissions rate which are aggregated to estimate network-wide emissions rates [38]. The 

microscopic emissions model can be implemented to evaluate emissions from specific driving 

cycles or integrated directly with microscale traffic simulation (e.g. Vissim, Transmodeller, 

Paramics, etc). However, the problem with this approach as discussed in [39] is that it is more 

complicated to use this model for estimating larger, regional emissions because microscale 

models typically require extensive data on the system of the study location and are restricted in 

size due to the non-linear complexity that occurs within larger networks.

The mesoscopic emissions model was created to overcome this problem. This model, as 

demonstrated by [36], employed link-by-link parameters such as average travel speed, number of 

vehicle stops per unit distance and average stop duration to construct synthetic drive cycles for 

the roadway segments. Those drive cycles were treated as inputs in the microscopic model to 

calculate emissions.



There are several known emissions models; at the macroscopic level there are the Elemental 

model and Watson model which were developed using average speed. At the microscopic level, 

there are CMEM and VT-MICRO models which utilize instantaneous speed and acceleration to 

predict the pollutant. Several efforts have been done to model the fuel consumption and 

emissions modeling at themesoscopic level, namely the Akcelik Model, MEASURE model and 

VT-Meso model. In the U.S., previously state and local agencies for transportation planning used 

a model developed by EPA called MOBILE. The latest version o f this is MOBILE 6.2. This is a 

macroscopic emissions model; recently, the EPA released a new model called MOVES to 

replace the MOBILE model that can estimate emissions in macroscopic, microscopic, and even 

mesoscopic level.

2.7.1 Elemental Model

This model, proposed by Herman and colleagues [37, 40], used average speed for its

macroscopic emissions model. This model stated fuel consumption in urban areas as a linear

function o f the average trip time per unit distance, formulated as shown by equation (13)

0  = +  K2T, V <  55 k m /h r  (13)

where 0  = fuel consumption per unit distance

T = average travel time per unit distance, and

V(~-l/T) = average speed

Kj (mL/km) represents the vehicle mass, while K2 (mL/sec) is a function o f vehicle average

speed.



31

2.1.2 Watson Model

The Watson model [41], as in [36], used average speed to develop the fuel consumption model. 

It integrated the changes in the positive kinetic energy during acceleration as a predictor variable, 

formulated as shown by equation (14)

F =  Kx +  ^  +  K3Vs + K4PKE (14)
Ks

where F  = fuel consumed (L/km)

Vs = space mean speed (km/hr)

PKE represents the sum of the positive kinetic energy changes in acceleration process (m/s2) and 

is expressed in equation (15),

where Vj 

V,

xs

PKE ^  v  vf  ~  v i
Z .  1 2 .9 6 0 ^

(15)

final speed (km/hr) /  

initial speed (km/hr) i 

total section length (km)

2.7.3 CMEM

CMEM stands for Comprehensive Modal Emissions Model [39], and is a fuel consumption and 

emissions model built by the College o f Engineering-Center for Environmental Research and 

Technology (CE-CERT) at the University o f Califomia-Riverside with researchers from the 

University o f Michigan and the Lawrence Berkeley National Laboratory in a four-year research 

project sponsored by the National Cooperative Highway Research Program (NCHRP, Project 25-
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11). CMEM uses a physical power-demand modal modeling approach based on a parameterized 

analytical representation of emissions production. The instantaneous emissions were modeled as 

a product o f fuel rate (FR), engine-out emission indexes (gemissior/gjuei), and catalyst pass fraction 

(CPF) as shown by equation (16),

tailpipe emissions = F R * J * C P F  (16)
( Bfoel /

w here: FR =■ fuel-use rate in grams/s,

gemissior/gfitei = grams o f engine-out emissions per grams o f fuel consumed,

CPF  = the catalyst pass fraction, defined as the ratio o f tailpipe to

engine-out emissions

The modal emissions model consists o f six modules: engine power demand, engine speed, air- 

fuel ratio, fuel rate, engine-out emissions and catalyst pass fraction.

2.7.3.1 Engine Power Demand Module

The engine power demand module was formulated as in equation (17)

Ptract = A. v  + B .v 2 + C .v3 + M .a  + M. g. v. sin 9

P = ^  + Pacc ( .7 )

where, Ptract = total tractive power (kw)

A = coefficient of rolling resistance

B = coefficient o f speed-correction to rolling resistance

C = coefficient o f air-drag factor

v = speed (m/sec)



a acceleration (m/s2)

g
•y

the gravitational constant (9.81 m/s )

0  = the road grade angle

P the engine power output

rjtj = the combined efficiency of the transmission and final drive

Pace ~ the engine power demand associated with the operation o f vehicle

accessories such as air conditioning, power steering and brakes, and

electrical loads.

2.7.3.2 Engine Speed Module

In this module, engine speed is simply expressed in vehicle speed, using gear ratios and a shift 

schedule to determine upshift or downshift. In the air/fuel ratio module, the air/fuel ratio is from 

three regions: lean, stoichiometric and rich.

2.7.3.3 Fuel Rate Module

The Fuel Rate Module was formulated as in equation (18)

(18)

where, k the engine friction factor,

N engine speed (revolutions per second)

V engine displacement (liter),

rjaO. 4 = a measure o f indicated efficiency
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2.7.3.4 Engine-out emissions Module

The engine-out emission module was formulated as in equations (19) to (22)

ECO *  [C0( l  -  0 _1) +  aC0]FR (19)

EHC *  aHCFR + YhC (20)

EN0X = a iNOx(FR -  FRNOx)0  < 1.05 (21)

ENOx = a 2NOx{FR -  FRm x )0  > 1.05 (22)

2.7.3.5 Catalyst Pass Fraction Module

The catalyst pass fraction module was formulated as in equation (23)

CPF{ei) =  1 -  £ei. exp{ [ -b ei -  cei * (1 -  0 -1)] * FR] (23)

where, ei = either CO or HC emissions

Egi — the maximum catalyst CO or HC efficiency

FR = the fuel rate (grams/second)

Bei -  the stoichiometric CPF coefficients

cei = the enrichment CPF coefficient

2.7.4 n '-M IC RO

The Virginia Tech Microscopic Energy and Emission Model (VT-Micro Model) [31, 42, 43] was 

developed for estimating vehicle fuel consumption and emissions rate which included CO, HC 

and NOx for five light-duty vehicles and three light-duty trucks as a function of vehicle
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instantaneous speed and acceleration level. The data were collected at the Oak Ridge National 

Laboratory (ORNL). The VT-Micro models estimate the instantaneous fuel consumption and 

emissions rates o f individual vehicles have a general formula as shown in equation (24),

MOEe =

3 3

exp(kf'j. v l. a J) for a > 0

i=0 j=0 
3 3

e x p f e .  v l. a ; ) for a <  0

(24)

v i=0 j=0

where : MOEe =

k?-*.j

Instantaneous fuel consumption or emissions rate (L/s or mg/s), 

Instantaneous acceleration o f vehicle (km/h/s)

Instantaneous speed of vehicle (km/h),

Vehicle-specific acceleration regression coefficients for MOEe

1?-h.j Vehicle-specific deceleration regression coefficients for MOEe

2.7.5 MOBILE and MO VES

MOVES is the latest regulatory mobile emissions model released by the U.S. Environmental 

Protection Agency to replace the former emissions model called MOBILE. MOVES was 

designed to estimate the vehicle emissions accurately under a wide range of user-defined 

conditions [44]. Table 3 exhibits the comparison between MOBILE 6.2 and MOVES2010.
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Table 3. MOBILE 6.2 and MOVES2010 comparison

Criterion MOBILE 6.2 MOVES2010

Model Based on average speed Based on modal activity
methodology

Software interface Model embedded calculation Graphical user interface

Emissions source On-road On-road and off-road

Spatial scale Single large regional scale Three scales o f analysis: 
macroscopic, mesoscopic, and 
microscopic

Pollutants Criteria pollutants, 
hydrocarbons, particulate

All pollutants plus new ones:

matter, air toxics, GHGs-C02, Sulfur dioxide (SO2), ammonia

methane (NH3), nitrogen oxides (NO2, 
NO), energy consumption

Emissions process Running exhaust Running exhaust
Start exhaust Start exhaust
Hot Soak Extended idling
Diumal Off-gassing (well-to-pump)
Resting loss Evaporative fuel permeation
Running loss Evaporative fuel vapor venting
Crankcase Evaporative fuel leaking
Refueling Brake wear
Brake wear 
Tire wear

Tire wear

Roadway Freeway Rural restricted access
classification Arterial and collector roads Rural unrestricted access

Local Urban restricted access
Freeway on- and off-ramps Urban unrestricted access

Vehicle 28 vehicle classes 13 vehicle classes
classification

Fuel type Gasoline Gasoline
Diesel Diesel fuel
Compressed natural gas Compressed natural gas (CNG) 

Liquid propane gas (LPG) 
Ethanol (E85)
Methanol (M85)
Gaseous hydrogen 
Liquid hydrogen 
Electricity
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Table 3. (cont.)

Temporal scale Analysis years: 1952 - 2050 Analysis years: 1999 -  2050

Speed Single speed for ramps and 
local roads

Speed distribution for all 
roadway types by area type 
(urban or rural)

Emissions Trip-based vehicle average Distributes total activity into
estimation speed source and operating mode bins

Meteorology data User supplied Default county-specific 
temperature and humidity 
values; users can overwrite the 
default data with local specific 
data

Fuel supply User supplied Default county-specific fuel 
supply values; users can 
overwrite the default data with 
local specific data

Inspection and
maintenance
program

User supplied Default county-specific 
inspection and maintenance 
program values; users can 
overwrite the default data with 
local specific data

Age distribution User supplied -  registration 
distribution

Default national age distribution 
for years 1999-2050

Output Emissions factors Emissions inventories or 
emissions factors, total energy 
consumption

Other significant 
features

None Ability to analyze advanced 
technology vehicles (e.g. hybrid 
vehicles)

Modal-based

Converters to translate 
MOBILE6  inputs to MOVES

Source : modified from  [45]
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2.7.6 Akcelik Model

In the fuel consumption model proposed by Akcelik [46], three portions o f the urban driving 

cycle which are cruising, idling and the deceleration-acceleration cycle were separated and then 

the fuel consumptions o f each portion were estimated separately. The Akcelik model was 

formulated as in equation (25),

P = f iX s + f 2ds +  h h  (25)

where F  = average fuel consumption per roadway section (mL)

Xs := total section distance (km)

ds = average stopped delay per vehicle (secs)

h = average number o f stops per vehicle

/ /  = fuel consumption rate while cruising (mL/km)

f 2 = fuel consumption rate while idling (mL/sec)

fs  = excess fuel consumption per vehicle stop (mL).

2.7.7 MEASURE Model

MEASURE (Mobile Emission Assessment System for Urban and Regional Evaluation) was a 

modal emissions model developed by researchers at the Georgia Institute o f Technology. This 

model is a GIS-based emissions model that predicts different vehicle modes and produces 

mesoscopic estimates o f HC, CO and NOx [47, 48], MEASURE was designed to suit the 

traditional four-step travel demand modeling. It consists o f start emissions module and on-road 

emission module.
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2.7.8 VT-Meso Model

Similar to the VT-Micro Model, the Virginia Tech Mesoscopic Energy and Emission Model 

(VT-Meso Model) was developed at Virginia Tech This model was proposed by Yue and Rakha 

and documented in Yue’s dissertation [36]. It was built using the microscopic vehicle fuel 

consumption and emissions model that was developed earlier at Virginia Tech (VT-Micro). In 

this mesoscopic model, link-by-link input parameters which are average travel speed, average 

number o f stops per unit distance and average stop duration were employed to construct a 

synthetic drive cycle and compute average link fuel consumption and emissions rates. The model 

then estimates the proportion of time that a vehicle typically spends for cruising, decelerating, 

idling and accelerating.when it traversed a link. Using the synthetic drive cycle and the time 

proportion, fuel consumption and emissions were estimated by utilizing VT-Micro model where 

several models were employed for each mode o f operation. Afterwards, the total estimation 

along a segment is obtained by summing across the different modes and dividing by the distance 

traveled. The VT-Meso model was built for normal and high emitting vehicles.



CHAPTER 3 

LANE IDENTIFICATION

3.1 Introduction

Instrumented vehicles, known as probe vehicles, have become increasingly popular since the 

current Intelligent Transportation Systems (ITS) strategies necessitate real-time traffic 

information. Among several probe vehicle systems, the Global Positioning System (GPS) probe 

vehicle systems has been recognized as a very efficient way to collect online data, especially at 

the network level [1]. This system has become more feasible since most portable devices such as 

smartphones and GPS navigation systems can be used as a platform to collect vehicle trajectory 

data. Processing large amounts o f real-time data from these GPS systems reliably is a significant 

challenge and critical for optimizing transportation systems.

Several issues have been addressed with regard to the utilization of GPS probe vehicle data for 

improving the transportation systems. One o f the most essential ones is the issue of GPS 

positioning error. It is well known that the GPS instruments are expected to produce location 

errors o f 3 to 15 meters [1, 49, 50]. The level o f error does not allow determining the probe 

vehicles’ lane, which is crucial especially in the case o f unequal queues. The current study is an 

attempt to predict an instrumented vehicles’ lane at a signalized intersection particularly when 

there is a significant difference between the queue lengths o f a lane as compared to the queue on 

another lane.

Researchers have conducted various studies to obtain travel information data using probe 

vehicles to estimate queue lengths particularly at signalized intersections. Several approaches 

have been exercised to carry out this kind o f study e.g., utilizing shockwaves theory as reported



in [15, 17, 51, 52] which is the most common approach for estimating queue lengths, making use 

of probe vehicles’ travel time as described in [53] and employing probabilistic probe vehicle 

based positioning method [5, 54]. Beside queue length estimation, another application o f these 

studies was estimating vehicle’s fuel consumption and emissions [8 ].
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Figure 7. Vehicle trajectories show the different SW speeds of different lane

Existing probe vehicle studies, to the best o f the author’s knowledge, do not address prediction 

of the probe vehicles’ lane. In the current literature, researchers either assume queuing on a 

single lane or equal parameters (queue length or emissions) for all lanes which may not be ideal 

for a real life situation. Unequal queuing, including cases where there is no vehicle at all in a 

lane, occur commonly at many signalized intersections. In particular, unequal queuing is normal 

when one o f the lanes is shared (e.g., shared right-tum and through movement) or when the lanes 

serve traffic destined for different downstream points and demand for the lanes is unbalanced.
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This dissertation is an attempt to bridge the gap in the literature by investigating different 

modeling approaches to infer the lane o f probe vehicles. Figure 7 is an example o f vehicles’ 

trajectories o f unequal queues on a two-lane intersection approach. The data for this figure were 

generated using PTV’s transportation simulation software Vissim [55].

3.2 Problem Definition

Figure 7 shows there is a significant difference between the queuing shockwave speeds formed 

in the long queue lane and the ones formed in the short queue lane. In this study, this information 

was used to identify a vehicles’ lane while queuing at signalized intersections.

The main objective o f this study was to predict the instrumented vehicle’s lane in a signalized 

intersection particularly in an unequal queue condition for real-time applications. This research 

focuses on undersaturated traffic conditions and left oversaturated conditions for future work. 

Several methods based on traffic flow theory and statistical learning techniques, were utilized to 

meet the goal. The traffic flow theory normally idealizes the traffic situations which make it 

prone to bias. On the other hand, probability theory normally deals well with the problem of 

uncertainties. This approach was chosen to deal with uncertainties related to traffic dynamic and 

the GPS probe system while keeping the principle of traffic theory.

3.3 Related Studies

Queue length is a crucial parameter in evaluating and optimizing traffic controls such as traffic 

signals. Studies have been conducted to model a queue either in an intersection or in metered on- 

ramps. Several approaches have been utilized or developed to do this task; the most common one 

is by using Lighthill and Witham [33] and Richard’s [34] (LWR) shockwave theory, for 

example, the study by Liu et al. [56]. In their study, the intersection queue length was measured



using the queue discharge process in the immediate previous cycle. By employing the LWR 

shockwave theory, they were able to separate the queue discharge flow state from the upstream 

arrival traffic state. Vigos et al [57] employed a Kalman-Filter to estimate the number of 

vehicles count in signalized links based on online measurement o f flow and occupancy from loop 

detectors. Wu et al. [58] tested three types o f methods for estimating queue length at metered on- 

ramps: Kalman filter, linear occupancy and Highway Capacity Manual (HCM) back o f queue. 

They concluded that the Kalman filter and linear occupancy methods are practical for real-world 

operations even though they have limitations, while the HCM back-of-queue method did not 

reliably estimate the on-ramp queue length. Cang and Su [59] attempted to predict intersection 

queue using optimization method. In their study, they employed the neural network models to 

predict the intersection queue. They claimed that starting from 3 time-steps ahead, their model 

was capable o f providing more than 90% accuracy. Geroliminis and Skabardonis [60] modeled 

traffic between successive traffic signals as a two-step Markov decision pocess, while the LWR 

theory was used to model the traffic dynamic. Then they used this approach to estimate queue 

lengths and predict travel times. They claimed their model was usable for cases where the loop 

detector data are unknown, inaccurate, or aggregated. Another study for modeling queues at an 

intersection using a Markov model was conducted by Viti and Zuylen [61]. In their study, they 

constructed a Markov model to calculate the dynamics of the queue. They found that the model 

introduced in the study was suitable for solving dynamic assignment problems.

The queue length modeling studies described above were using fixed sensor data as input. One of 

the first research projects for queue length estimation using probe vehicle data was conducted by 

Comert and Cetin [5]. To estimate the expected queue length and its variance, they developed an 

analytical formulation based on conditional probability distribution. They also discussed the



effects o f probe market penetration rate to the accuracy of their model. Using their work, one can 

estimate the queue length in a signalized intersection by knowing only the location information 

of the last probe vehicle in the queue. In a later study [54], they developed formulations to 

quantity the error in queue length estimation using probe vehicle data. An attempt to characterize 

the shockwave profile using probe vehicle data was conducted by Ramezani and Geroliminis 

[17]. In their paper, they constructed the queue profile by separating the input data into two 

groups which are stopping and moving, and then they clustered the stopped vehicles to cycles. 

They claimed their method was helpful for identifying spillback, constructing vehicle 

trajectories, and estimating fuel consumption and emissions. Beside these methods, there are 

several other methods that have been carried out by researchers in estimating the queue length 

using probe vehicles, such as identifying the critical points in a LWR shockwave profile [15] and 

using travel times from mobile sensors [53].

Most o f the studies listed above are not lane-based estimations, except for the studies conducted 

by Comert and Cetin [5, 54] which, in order to be able to properly estimate the queue length, still 

require knowledge of the probe vehicle’s lane position. As discussed before, it is problematic to 

determine a probe vehicle’s lane position due to the GPS error. This study basically was an effort 

to identify the probe vehicle’s lane before conducting the queue length estimation. In other 

words, the prediction discussed in this study becomes an input for properly estimating the queue 

length, particularly in a signalized intersection.

3.4 Queuing Shockwave Speeds from Probe Vehicles

The time and space coordinates at the moment the probe vehicles join the queue form a profile 

known as a shockwave. This back of the queue shockwave moves backward from the stop bar at 

a signalized intersection with a speed that is equal to the slope o f the line forming the profile.
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This shockwave speed is known as a queuing shockwave speed. The coordinates could be 

extracted from the vehicle trajectories data produced by a GPS probe vehicle. One crucial factor 

in determining the queue length is the arrival rate of vehicles. According to the traffic flow 

theory, the shockwave speed is the function o f the arrival rate and thus the queue lengths of two 

adjacent lanes will be significantly different when the arrival rate o f a lane is significantly 

different from one another as indicated in Figure 7.

In an ideal situation, which is normally assumed in the traffic flow theory, the queuing 

shockwave speed line formed from the vehicles’ coordinates when they join the queue is linear. 

However it is also well understood that this situation generally is not the case in the real life 

situation. There are several factors that may invalidate this ideal situation assumption, some of 

which are:

•  Randomness o f  arrival rates

Because the queuing shockwave speed is the function o f arrival rate, the fluctuations in 

the arrival rate over short time periods generate a nonlinear curve.

•  GPS error

Due to the GPS errors, the back o f the queue (the time and space coordinates when the 

probe vehicles join the queue) is not linear and many times those points are not in order.

For these reasons, in this study instead o f using queuing shockwave speeds generated from a 

group o f vehicles’ queue coordinates, the ones generated from individual vehicles in a cycle 

were used. This information is utilized to predict the vehicle’s lane in the unequal queue length 

case. The idea is to differentiate a vehicle’s lane based on its individual queuing shockwave 

speed. O f course, there will be variations o f individual shockwave speed generated from the
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same arrival rates; however, this can be approached by knowing the individual queuing 

shockwave speed distribution for each lane.

The aim o f this study is to provide representative online traffic information, therefore the data 

were analyzed independently every time each cycle data became available. A linear line was 

drawn using the time and space coordinates o f the red signal and a probe vehicle when it was 

joining the queue. This line slope’s value is the individual queuing shockwave speed. The same 

method was conducted to obtain all vehicles’ individual queuing shockwave speed.

The individual queuing shockwave speed is equal to a slope’s value of a line that connects the 

time and space coordinates o f an individual vehicle and red signal, calculated as shown in 

equation (26)

where i = 1 ,2 ,..., n; n  is the number o f probe vehicles in the c-th cycle; w f  is the individual 

queuing shockwave speed at the c-th cycle; X f  is position o f an individual vehicle when it joins a 

queue at the c-th cycle; X  is the position o f the traffic signal; t f  is the time o f an individual 

vehicle when it joins the queue at the c-th cycle; and t c is the time when the signal turns red at 

the c-th cycle. The illustration of this shockwave speed can be seen in Figure 9.

3.5 Traffic Simulation Scenarios and Data

In this study, vehicles’ trajectory data were generated from PTV’s microscopic simulation 

software Vissim. A simple network consisting o f a single link with two lanes was constructed as 

representation of an intersection arm. A traffic signal was installed downstream the link, 

consisting of just red and green with duration o f 45 seconds for each signal (cycle time = 90
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seconds). The desired speed was set to 60 km/h and lane change was not allowed. To have 

representative data, the simulation was run for 9,000 seconds (100 cycles).

3.5.1 Arrival rates scenarios

There are three arrival rate scenarios for unequal lane (SQL and LQL) organized in this study,

1.e. 300 vph and 900 vph (scenario 1), 450 vph and 900 vph (scenario 2), and 600 vph and 900 

vph (scenario 3). All the scenarios represent the undersaturated traffic flow condition.

3.5.2 Data Extraction

In this study, as stated before, the traffic flow theory and statistical model were combined to 

reach the goal. The essential data needed are the shockwave speed formed from the time and 

space coordinates when the vehicle stops and discharge at a signalized intersection. Those 

coordinates were extracted from the vehicle trajectory data generated in Vissim through the 

following steps (also illustrated in Figure 8 ):

1. Subset the trajectories for each vehicle i

<tf, = n m  = o  (27)

where d fi = data set for vehicle i

d f  = the entire data set

id  = vehicle index

2. Check if  the vehicle is experiencing queuing or not. The queuing definition in this study is 

when the vehicle is in full stop (speed = 0). If it never experiences a stop, skip to the next 

vehicle data set.
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where s

if ({ d /is  =  0 } =  0 ) , {next} 

vehicle speed (km/h)

(28)

180 225 /

Veh.i

Cycle 1 Cycle 2 Q

Figure 8. Trajectories of vehicle / in signalized intersection

3. Find the time coordinate o f the first point beyond stop bar

t* =  argm in(X -  X0) (29)

where t* = time coordinate o f the first point beyond the stop bar

t  = time coordinate

X  = distance coordinate

XQ = traffic light position

4. Find the cycle where the first vehicle that pass the stop bar discharged



where ct = cycle index (rounded number)

CL = cycle length

5. Subset all reading where speed is equal to zero (vehicle was stopping)

S = { d / | s  =  0} (31)

where S = data set when vehicle was stopping

6 . Take the last moment o f vehicle stopping (the first moment o f vehicle discharge)

D =  {S|t =  (32)

where D = data set o f the moment the vehicle discharging

7. Select the vehicle stopping data only for the current cycle. This was done to avoid stopping

data o f  vehicle i from previous cycle (see figure 9).

St = { S \ X  < X d + c t&X  > Xd - a ]  (33)

where Xd = distance o f the vehicle to the stop bar when it was discharging (taken

from D dataset)

a  = tolerance coefficient o f vehicle movement in the queue

8 . Take the arrival point data set

AP = { 5 ,11 =  tml„ } (34)

where AP  = arrival points (beginning o f the queue) data set

tmin = minimum time coordinate
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3.5.3 Market penetration scenarios

The probe market penetration rate was varied from 10% to 100% by increments o f 10%. A 

vehicle was stated to be in a queue when it was completely stopped (speed = 0 km/h). The reason 

for this queue definition was because o f the study using intersection data where the vehicle 

speeds are low and spacings are small.

3.6 Unsupervised Learning Methods

3.6.1 Naive Method

The simplest way to predict the probe vehicle’s lane is by clustering the individual queuing 

shockwave speed based on their values using a shockwave speed boundary. The next section will 

discuss this boundary.

3.6.1.1 The shockwave speed boundary

As explained before, individual vehicles’ queuing shockwave speed can be clustered based on 

their lanes in the case o f unequal queue where they normally will have different shockwave 

speed distribution. Thus, to reach this purpose, there should be a clear boundary between the 

shockwave speeds for each lane. However, naturally there will be shockwaves speeds that could 

belong to multiple lanes, especially the ones formed from the vehicles queued in the part o f the 

road where both lanes were occupied.
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Figure 9. Illustration o f individual and the boundary SW speeds

The shockwave speed boundary is a line that separates the individual queuing shockwave speeds 

o f a lane from the other lane based on the arrival rate proportion in each cycle. In this study the 

boundary for two unequal lanes is computed in equation (35),

where Bc = shockwave speed boundary at c-th cycle;

wc ~ set o f individual queuing shockwave speed o f c-th cycle;

Figure 9 illustrates the individual queuing shockwave speed lines and the boundary line for the 

two-lanes case.
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3.6.1.2 Clustering

After obtaining the boundary, the probe vehicles’ lanes were clustered based on their shockwave 

speeds relative to the boundary. The probe vehicles’ lanes were identified according to equations 

(36) and (37).

i f  min(wc) < w t < Bc , St = 1, V i  E V (36)

i f  Bc < W i <  max(wc) , St = 2, V i  E V  (37)

where Si = decision variable indicating the lane: St = 1 if  vehicle on SQL,

Si =  2 if  the probe vehicle on the LQL

i = index to a probe vehicle

V = the set of probe vehicles in a cycle,

3.6.1.3 Missing data cycles

Due to randomization, there could be cycles that have less than two, or even zero, probe vehicles. 

The number o f these occurrences becomes greater as the probe vehicle market penetration rate 

decreases. To calculate the shockwave speed boundary, at least two probe vehicles are needed. If 

there are less than two vehicles, then that particular cycle will not be included in the probe 

vehicle lane prediction. However, it should be noted that in queue length estimation this cycle 

can still use the queue length estimation from the previous cycle.



3.6.2 K-Means Clustering Method

K-Means clustering is a type of hard clustering implementation where the clusters were assumed 

to be independent and do not overlap. In this study, the clustering was carried out for one 

dimension K-means clustering, i.e., taking the individual shockwave speeds and clustering them 

based on the lane number.

The inputs for this method are

1 Number o f clusters (k)

2. Set o f points, in this case the individual SW speeds (wc) for the associated cycle

3. Partition the n  observation into sets p =  (p i ,p 2, •••. Pk)• 1° this study, there are only two 

partitions (fc =  2 ) which is short queue lane (px) and long queue lane (p2).

The K-means objective function:

k

arg min I K  -  Pill2 (38)
l  w i e p l

where p ; =mean o f points in p t 

The K-means were conducted according to the following algorithm:

1. Place centroids Ct ... Ck

2. Repeat until convergence :

a. For each point w*

i. Find nearest centroid
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(39)

where D(vVj, Cj) is distance between instance s f  and cluster center Cj.

ii. Assign the point w t to cluster j

b. For each cluster j  =  1 ... k

o A new centroid Cj = //, (mean of all points s f  assigned to cluster j in 

previous step)

(40)

3. Stop when none o f the cluster assignments change (convergence).

3.7 Supervised Learning Methods

The unsupervised clustering methods discussed force at least one probe vehicle per lane. 

However, this may not necessarily be the case, especially for a short queue. In order to overcome 

this shortcoming and accommodate scenarios where probes occupy only one o f the lanes, two 

supervised learning methods are explored in this section. Both use the optimal Bayes rule to 

predict the lane. The two models differ in terms o f the number of variables considered. The first 

one is a univariate model and utilizes shockwave speeds (w*) only and fits lognormal probability 

density functions to training data as explained below. The second model is bivariate and utilizes 

both shockwave speeds (Wj) and distance o f the probe vehicle to the stop bar. The probability 

density functions for the second model are found by fitting a mixture o f normal distributions to 

the training data as explained in Section 3.7.2.
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3 .7.1 Lognormal model ■

Two probability density functions fitted to the shockwave speeds (w*) are needed for the 

Bayesian decision rule: one for the SQL and another for the LQL. To investigate the appropriate 

distributions, the shockwave speeds (wQ from each lane were input to a probability distribution 

fitting software called CumFreg program [62]. The software fitted the data to the following 

distributions, Normal distribution. Logaritmic normal, Root normal. Square normal, Generalized 

normal, Logistic distribution, Logaritmic logistic, Generalized logistic, Cauchy distribution, 

Cauchy generalized, Exponential, Exponential mirrored, Gumbel, Gurnbel generalized, Gumbel 

mirrored, Gumbel mirror generalized, Student’s t-distribution, Weibull distribution and Weibul 

generalized.

The result showed that the data were distributed according to the lognormal distribution. The 

probability density function (pdf) o f the lognormal distribution for this study is given by equation

(41).

1  (lnwf-ji) 2
f ( w i\8i) =  J = e  2<r2 lw i > 0 (41)

W i W 2 n

where g  -  Mean of the shock waves on the log scale

a  = Standard deviation o f the shockwaves on the log scale

Once the marginal pdfs for each lane are found, the optimal Bayes rule to estimate the lane is 

given by equation (42).

ti(6  = 2 )
if f i w t\Si =  1) >  ^  =  q  f (V i\8 i  ■= 2l  s i = 1  els e Si -  2 (42)
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where f ( w i \6l — 1) r- the lognormal pdf estimated based on training data from SQL

f{Wi\6i  — 2) = the lognormal p d f estimated based on training data from LQL

7t(S  =  1) = the prior component o f group s which is the percentage o f s  from

population (rc(8 — I ) -- n (^  ~  *) : tota  ̂ number

of vehicles observed in SQL, n (6  = 2): total number o f vehicles

observed in LQL

n (8  =  2 ) = the prior componeni o f group s which is the percentage o f I from

population (* («  =  ?.) =

The prior components above were obtained using training data. In the real life situation, training 

data are a kind o f historical data taken from exactly the same location with identical or similar 

traffic conditions. In this study the training data were generated from the same traffic simulation 

setting in Vissim but with a different seed for random number generation.

3.7.2 Bivariate Mixture Model Clustering

In order to improve the accuracy of the prediction, in addition to the shockwave speeds the 

distance of the probe to the stop bar is also considered as an input. In that case, a bivariate pdf is 

needed to characterize the conditional distributions These pdfs are found by fitting a mixture of 

normal distributions to the training data which consists of two variables: wt and d f which are

denoted by vector x  =  [w*, d j T. Given the lane, the bivariate density is approximated by a

mixture o f  normals as formulated in equation ( 43),



f ( x \ S = j i - -  y  x„fk (x \S ^  i )  j  e  {1.2j  ( « )
t~ A
h~i

where fa -  pdf of mixture component fc

/  - index for the lane, either l(SQL) or 2 (LQL).

Gj ~ number of mixture lravJei components

r k ■= probability that an observation, comes from the fc-th mixture 

component. ( r ;, €i ( 0 , 1 1 and Zk xk -  1 )

Each component fa is a bivariate normal distribution [63] and has the probability density 

function as in equation (44),

exp { -  j  (Xj -  fi„) -  Mk) i
4>(xt. Hk! Sfc)   i—i  1 (44)

,/dot{27rZ k)

where fj.k -■ mean for component k 

-  covariance mairix

In this, study, the bivariate mixture model, clustering was applied using 2  variables as inputs 

which are the probe vehicle individual shockwave speeds and the probe vehicle distance in the 

queue to the traffic light. However, instead of using the mixture model directly for clustering, the 

model was used to get the best pdf for each. lane. These pdfs were then used for the clustering. 

The clustering was 'done according lo the following steps:
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1. Using 2 parameters obtained from the training data (the probe vehicle individual 

shockwave speeds and the distance to the traffic light while queuing), implement the 

mixture model to get the best pdf for each lane ( / ( x |5  =  1 ) & f ( x \ 8  =  2 )).

2. Calculate the density for each probe vehicle in the new data using the obtained pdf for 

each lane.

3. Calculate the prior (n ( 8  =  1) & n( 8  = 2 )) as in previous section.

4. Estimate the lane according to the equation (42).

5. Calculate the probability for the prediction confidence. The probability o f a probe vehicle 

to be in the short queue lane is given by equation (45) and likewise for the long queue 

lane is given by equation (46).

p( f i . -x ___________ rc(<? =  1 ) f { x \ 8  =  1 )__________
n ° l } jr(ff =  l ) / ( x | f f  =  l )  +  jr(ff =  2 ) / ( x |a  =  2) 1 '

it(8  — 2 ) f ( x \ 8  — 2 )
p m  = 2 ) = ------------------ ------------------------------------------  (46)

V ; n (8  = 1 ) f( jx \8  =  1 ) +  n (8  =  2) f ( x \ 8  = 2) V }

3.8 Results and Discussion

In this section, the results of all the methods discussed earlier are presented. The precisions of 

each method are calculated to assess the level o f accuracy obtained from each model. The 

precision is computed by the following steps,

1. Categorize the predictions based on the true lane as shown in Table 4.
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Table 4. Prediction categories

True lane Predicted lane Category

short short T1

long long T2

short long F2

long short FI

2. Calculate the precisions: The short queue lane identification precisions are calculated 

using the formula in equation (47) while the long queue lane identification precisions are 

calculated using equation (48).

<47>

P c, =  T ^ h ;  (48>

One o f the objectives o f identifying the probe vehicles’ lane in this study is to estimate the queue 

length properly. In queue length estimation, special attention should be paid to the last probe 

vehicle. Therefore in this study, the precision is calculated for every last probe vehicles in their 

predicted lane.

3.8.1 The naive method

The result o f the naive method for the three scenarios is presented in this section. In scenario 1 

(see Figure 10), all the precisions for the LQL are above 90% which is categorized as very good. 

On the other hand, the best accuracy o f the SQL is only 65% (at 90% market penetration),
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although the accuracy has surpassed 50% at 20% market penetration rate. The number o f  cycles 

exist using probe vehicles are the same for both lanes where at 10%, 20%, and 30% probe 

vehicles market penetration rate the available cycles are 21, 60, and 84 cycles, respectively. 

Starting from 40% to 100% market penetration, the available cycles are more than 90.

In scenario 2, the accuracies for LQL prediction are more than 90% for most market penetration 

except for 20%, 30% and 40% where the accuracies are 87%, 85%, and 89% respectively. This 

level o f accuracy can still be considered as very good. However, as in scenario 1, the result of 

SQL prediction is not as good as LQL. The best level o f accuracies for SQL prediction is reached 

at 90% market penetration where the precision reaches 73%. Again the accuracies surpass 50% 

at 20% probe market penetration. The available cycles o f SQL and LQL are the same for all 

market penetration in scenario 2  and they are slightly higher than the ones in scenario 1 although 

they have the same pattern.

In scenario 3 the level of accuracies for LQL prediction are declining, where the accuracies are 

about 84 to 85% except for 20%, 40%, and 50% probe vehicle market penetration rate where the 

accuracies are just 75%, 81%, and 82% respectively. On the other hand, the accuracies o f SQL 

prediction are increasing where all the accuracies are above 50% (reach 60% at 40% market 

penetration) although the best accuracy is just 67%. As in previous scenarios, the available 

cycles for both lanes are the same and also higher than previous scenarios.

The result o f the naive method showed that the precisions of the LQL predictions are always 

higher than the ones o f SQL. This is most likely because the overlapping o f individual 

shockwave speed happened more for SQL data distribution region; in other words, the greater 

the shockwave value, the more likely it will belong to SQL.
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Figure 10. The last probe vehicle prediction precision and available cycle using Naive Method

Another source o f error o f using this method is by taking the maximum and minimum individual 

shockwave values, the naive method is forced to always have probe vehicle on both lanes. This is 

a reason to constantly have the same number o f available cycles for both lanes in all scenarios, 

while it might not always be what has really happened, since sometimes there are no probe 

vehicle available in SQL. The results also show that for scenarios 1 and 2 the precision of the 

SQL prediction tend to incline as the market penetration rate gets higher. In scenario 3 this 

tendency can be seen only until 50% market penetration, which most likely is the result of a high 

number o f overlapping between SQL and LQL as the arrival rate o f SQL gets closer to the LQL.
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The precisions in LQL are relatively stable for all the market penetration rates in all scenarios, 

which means that the market penetration rates do not have significant effect on LQL lane 

identification prediction.

3.8.2 The K-Means Clustering Method

The results o f K-Means and naive method clustering show many commonalities. LQL prediction 

accuracies were higher than those o f SQL. This is expected for the reason explained in the 

previous section. Figure 11 shows the result o f the K-means clustering method.
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Figure 11. The last probe vehicle prediction precision and available cycle using K-Means Method
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In scenario 1, similar to the naive method, the accuracies of LQL for all market penetration is 

more than 90%, which is very good. On the other hand, the best accuracies for SQL is 67% 

(100% market penetration) although the accuracy has been equal to or more than 50% starting 

from 20% to 100% market penetration rate. For available cycle, both lanes have relatively the 

same result where starting from 40% market penetration rate there are more than 90 cycles 

available.

In scenario 2, the accuracies o f LQL prediction for almost all market penetration rates are greater 

than 90% except for 20%, 30%, and 40% market penetration rate where the levels o f accuracy 

are 87%, 85%, and 89%, respectively. The levels o f accuracy of SQL prediction surpass 50% at 

20% market penetration rate; however, the best level of accuracy is just 74% which is reached at 

100% market penetration rate. Again, the available cycles for both lanes are the same, and at the 

first three market penetration rates, the number o f available cycles are slightly higher than the 

ones in scenario 1. Starting from 40% market penetration rate there are more than 90 cycles 

available. In scenario 3, the levels o f accuracy o f LQL, prediction are declining to a range o f 83% 

to 8 6 %. At 20% market penetration rate, the levels o f accuracy were declining to 75%. On the 

other hand, the levels o f accuracy of SQL prediction in general were increasing. For all market 

penetration rates, the accuracy level exceeded or equaled 50%, although the highest accuracy 

level is only 70% (100% market penetration rate). In this scenario almost all market penetration 

rates have more than 95 available cycles, except for 10% and 20% market penetration rates with 

34 and 77 available cycles, respectively.

The similarities o f the naive clustering and K-means clustering results are due to their nature as 

hard clustering methods, where overlapping clusters is not allowed. Similar to the naive method, 

in K-mean the number o f the clusters has been determined; this forces the method to always have
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a probe vehicle in both lanes. This source of error has become the drawback o f both methods, 

especially in SQL prediction. The effects o f market penetration on the lane identification 

precision using this method are similar to the naive method, where the effects were more 

significant to SQL than LQL lane identification.

3.8.3 The Lognormal mixture model

Considering the shortcoming o f the previous method as discussed earlier has brought the idea of 

using soft clustered method. In this study, as explained before, the first soft clustering method is 

conducted using the lognormal mixture model. The result o f this method can be seen in Figure 

12.

In scenario 1, as in the previous methods, the accuracies of LQL prediction are greater than 90% 

for all market penetration rates. On the other hand, the accuracies o f SQL for all market 

penetration are greater than 50%. The least accuracy is 52% (50% market penetration rate) while 

the best accuracy is 72% (10% market penetration rate). On average, the accuracy o f SQL 

prediction for all market penetration is 63%. Unlike the previous methods, this time the available 

cycles for each lane is different. The available cycle of the LQL prediction for almost all market 

penetration are greater than 90 cycles, except for the 10% market penetration which is 75 cycles, 

while the available cycles for SQL are much less especially in the first three market penetration 

which are 18, 37, and 52 cycles for 10%, 20%, and 30% market penetration rate, respectively.

In scenario 2, the level o f accuracy o f LQL and SQL prediction on average were less than the 

previous scenario. For LQL prediction, the accuracy is 83% for 10% and 20% market 

penetration, 8 6 % and 89% for 30% and 40% market penetration rate, respectively and the rest 

are greater than 90%, while for SQL the accuracy for most o f the market penetration are above
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50% except for 10% market penetration. The highest accuracy level is 71% (100% market 

penetration rate). For available cycle in LQL, for most market penetration are greater than 90 

cycles except for 10% market penetration while for SQL the first two market penetration rate 

have relatively low available cycle which are 22 and 44 for 10% and 20% market penetration 

rate.
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Figure 12. The last probe vehicle prediction precision and available cycle using Lognormal Mixture
Model Method
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In scenario 3, the precision o f LQL as well as SQL predictions decline even more, compared to 

the previous scenarios. For LQL, the accuracy o f the first and the second probe market 

penetration rates are 74% and 75%, respectively. The rest have accuracies from 82% to 85%. For 

SQL there are two market penetrations that have accuracies o f less than 50% which are the 10% 

and 30% market penetration, with accuracies 42% and 48%. respectively. The average accuracy 

for SQL prediction is 54%, while the highest accuracy is 62% for 100% market penetration rate.

Figure 13. Bivariate mixture model pdf of (a) SQL (b) LQL

The available cycles in this scenario for both LQL and SQL have the same patterns as the ones 

from previous methods, with slight improvement. Using the lognormal mixture model, although 

the results are still not as expected, the predictions become more realistic where the cycles 

available for each market penetration in SQL are not the same as the ones in LQL.
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3.8.4 The Bivariate Mixture Model Clustering

Another effort for solving the clustering problem in this study is by conducting bivariate mixture 

model.
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Figure 14. The last probe vehicles’ lane prediction precision and available cycle for Short Queue 
Lane using Bivariate Mixture Model Clustering Method
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Figure 15. The last probe vehicles’ lane prediction precision and available cycle for Long Queue 
Lane using Bivariate Mixture Model Clustering Method

In this method, beside the individual shockwave speed, the distance was used as another 

variable. The bivariate mixture model is implemented by utilizing the package mclust [64] in R 

programming software. The model is implemented to get the best pdfs o f each lane.
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Figure 13 exhibits the example o f pdf for each lane estimated using the bivariate mixture model. 

Figure 13(a) is the pdf for SQL while Figure 13(b) is the pdf for LQL. In this example, based on 

the shockwave and distance, the SQL data is clustered to become five components while the 

LQL data become eight components. As explained earlier, the lane identification is not obtained 

directly from this clustering process. Instead, the model is used only to fit the best distribution 

for both lanes. Once the best pdfs for both lanes is obtained, the optimal Bayes rule for allocation 

is implemented for clustering.

In Figure 14, the comprehensive result for the last probe vehicle prediction precisions and 

available cycles for SQL using Bivariate Mixture Model Clustering Method is presented, while 

Figure 15 shows the ones for LQL. The horizontal axis (probability) o f all the charts in both 

figures was calculated using the prediction probability (equations (45) and (46)). Both Figure 14 

and Figure 15 show that in general for all scenarios, the more the probability the more the 

accuracy, but with fewer available cycles.

3.8.4.1 Predictability

The probe vehicles’ lane identification heavily depends on the individual shockwave speed 

difference between the two lanes, thus the more the difference, the better the lane prediction 

accuracy. However, due to the random nature, there were sometimes cycles where it is difficult 

to distinguish between the individual shockwave of each lane. Figure 16 displays the example of 

the low prediction probability cycles. The red circles represent the individual shockwaves in 

SQL, while the black dots are for the ones in LQL. The figure indicates that in those cycles, it is 

hard to differentiate the probe vehicles’ lane position even by taking only the last probe vehicles. 

The overlapping of the shockwaves makes them undistinguishable. The individual shockwaves 

in these cycles normally have low prediction probability (as calculated using equations (45) and
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(46)) which are usually less than 50%. In other words, using the prediction probability, at a 

certain threshold which is apparently more than 50%, the identification can be carried out with 

high confidence.
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Figure 16. Example of low prediction probability cycles

3.8.4.2 Probability Threshold

As mentioned in the previous section, at a certain degree of probability the probe vehicles’ lane 

prediction can be made with high confidence. However, determining the probability threshold in 

this study is a bit problematic since there are ten different market penetration rates for three 

scenarios. Apparently, the desired probability threshold is the probability where the precisions 

are acceptable but also provide enough number of available cycles for all market penetration



rates. In this study, to determine the probability threshold, the mean precision and also mean 

available cycle for all market penetration rates were calculated. The result o f the calculation is 

shown in Table 5.

Table 5. The mean of the precision and available cycle of all market penetration in each scenario

SQL LQL
Probability

Precision Cycle Precision Cycle
Sc. 1 Sc. 2 Sc. 3 Sc. 1 Sc. 2 Sc. 3 Sc. 1 Sc. 2 Sc. 3 Sc. 1 Sc. 2 Sc. 3

50 74% 68% 62% 71 84 86 97% 91% 82% 93 93 93
55 76% 69% 64% 67 83 83 97% 91% 82% 93 91 91
60 78% 70% 62% 63 79 82 97% 92% 82% 92 90 90
65 79% 72% 64% 59 76 77 98% 93% 82% 90 88 89
70 79% 71% 68% 58 71 73 97% 94% 83% 90 85 88
75 80% 71% 70% 52 67 69 „ -! 84
80 84% 72% 76% 47 59 61 97% 94% 82% 86 84 75
85 aj 98% 94% 86% 84 83 56
90 89% 87% 78% 27 23 17 99% 95% 88% 81 78 39
95 88% NA NA 14 0 0 100% 96% 88% 74 63 19
100 NA NA NA 0 0 0 NA NA NA NA NA NA

Table 5 shows that for SQL. at probability 85%, the precision for scenarios 2 and 3 are the best 

and still acceptable for scenario 1 (>85/4). Except for scenario 2, the available cycles for this 

threshold are greater than 40. For LQL, at the probability 75%, the combination o f the precision 

and the available cycle are pretty good (in all scenarios except 3, the precisions are greater than 

85%). Using these considerations, the 85% probability is set as a threshold for SQL, while for 

LQL the probability threshold set is 75%.

By applying the probability threshold, the prediction precision and available cycle for both lanes 

are provided by Table 6 . This table shows that, on average, the precision o f lane identification
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for both lanes are good (> 85%), except for scenario 3. Most likely this happens since in scenario 

3 the arrival for SQL are larger than the other two scenarios, thus this scenario has more 

overlapping individual shockwaves that make them undistinguishable. Unexpectedly, the 

available cycles in scenario 2 for both SQL and LQL are the lowest among the three scenarios.

Table 6. The precision and available cycle (threshold 85% SQL and 75% LQL probability)

MP
Precision Available Cycles

SQL LQL SQL LQL
Sc. 1 Sc. 2 Sc. 3 Sc. 1 Sc. 2 Sc. 3 Sc. 1 Sc. 2 Sc. 3 Sc. 1 Sc. 2 Sc. 3

0.1 91% 83% 79% 98% 94% 88% 11 6 14 62 63 58
0.2 85% 84% 75% 98% 93% 88% 20 19 24 81 75 72
0.3 92% 83% 73% 97% 93% 85% 24 23 37 88 81 81
0.4 91% 88% 71% 98% 93% 83% 33 32 45 91 84 84
0.5 86% 83% 77% 96% 95% 83% 36 46 57 93 87 87
0.6 82% 80% 75% 97% 95% 83% 44 51 63 93 88 88
0.7 85% 81% 75% 97% 94% 84% 54 57 67 92 90 88
0.8 86% 81% 78% 97% 95% 83% 58 62 72 92 91 90
0.9 87% 78% 79% 97% 95% 85% 61 67 75 92 91 92
1 88% 79% 78% 98% 95% 83% 64 71 76 94 92 94

Average 87% 82% 76% 97% 94% 85% 41 43 53 88 84 83

This means that, in this scenario, there are fewer cycles that have at least one vehicle with 

prediction probability within the threshold, or in other words, there are fewer cycles that have a 

probe vehicle whose lane can be identified with high confidence. The result also shows that, 

except for available cycles, there is no clear relationship pattern between the penetration rate and 

the lane identification precision.



3.8.5 Lane identification methods comparison

In the previous sections, several methods for the probe vehicles’ lane identification have been 

discussed. The results show that in general,

1. The precision levels o f LQL are higher than those o f SQL.

2. The lane identification in LQL results in satisfactory precision level.

3. The precision o f the lane identification gets higher when the precisions account only for 

the last probe.
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Figure 17. SQL lane identification result comparison (Scenario 1)

Since the SQL lane identification in general has low precision, more attention is given to the 

prediction for this lane. The result comparison for all methods in scenario 1 is displayed by 

Figure 17. The comprehensive comparison o f all the methods for all scenarios can be seen in 

Appendix J -  Appendix L. The results (also seen in Figure 17) identified that from all the method
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discussed previously, the Bivariate normal method is superior compared to other methods. The 

precision o f all the methods above can increased by implementing the confidence level of the 

results instead o f just taking the averages o f the precision values. However, one thing that also 

need to be considered is that filtering the results by taking only the high confidence level will 

decreased the number o f the available cycles. In the Bayes allocation model using the Bivariate 

mixture model PDFs instead of implementing the confidence level, the high confidence results 

are obtained from the high probability values.

3.8.6 Summary and conclusion

In this study, a methodology to identify a probe vehicles’ lane in a multiple-lane signalized 

intersection was developed. The probe vehicles’ individual shockwave speeds are used to detect 

their lanes. A nai've method and clustering algorithms were examined to produce the best 

identification result. Beside the shockwave speed, the probe vehicles’ distance was used in a 

Bivariate Mixture model for clustering their lanes. Instead o f clustering data o f both lanes in the 

bivariate mixture model, the model is used to obtain the best probability density function for 

each lane using both traffic parameters. The probe vehicles’ lanes were then identified by 

implementing the Optimal Bayes Rule for allocation, using the obtained probability density 

functions.

The result demonstrates that using Bivariate Mixture model, the lane identification can be carried 

out with acceptable results when the predictability probability is greater than or equal to 85% for 

short queue lanes and greater than or equal to 75% for long queue lanes. The result also indicates 

that the more the arrival rate, the less the precision o f lane identification.



CHAPTER 4 

QUEUE LENGTH ESTIMATION

4.1 Introduction

Queue length is an important traffic parameter needed to optimize the transportation system, 

especially at the network level. Researchers and traffic engineers have exercised several methods 

for queue length estimation. The most common method is by using the shockwave speed formed 

by a vehicles’ time and space coordinates when they join the queue. This method typically is 

applied using a loop detector data as input. However, the installation and maintenance cost of 

this equipment has prevented the application o f these technologies for many arterial networks 

around the world. Additionally, there is a great chance that the loop detectors will be in error and 

malfunctioning, as pointed out by [65]. Another drawback of a loop detector is that since most of 

the time there are only two detectors in a lane o f an intersection arm the queuing shockwave line 

for all the vehicles in between should be projected from these detectors’ points. Thus, the 

shockwave line o f a cycle is assumed to be linear, which in reality is not always true.

All these reasons have motivated the transportation engineering community to come up with new 

technology to collect traffic data which are more reliable and more cost effective. Reliable 

information can be obtained from vehicle trajectory data which are high-resolution, second-by- 

second travel data consisting o f vehicle time and space information including speed. This 

information can be produced by the Global Positioning System (GPS) instrumented vehicle 

system, also known as GPS probe vehicle system. However, this system has its own drawback of 

this GPS instrument in that it typically yields location information errors. This is a common 

problem for this equipment. It is well-known that the GPS has accuracy between 3 to 15 meters
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[1, 49, 50] and thus instead o f forming a neat shockwave line, this system might produce a series 

o f random points that will not shape the shockwave line properly.

Nonetheless, the GPS instrumented vehicle system has been well recognized as an important 

element in the vehicle communication system for both vehicle to vehicle (V2V) and vehicle to 

infrastructure (V2I) scenarios because o f its capability to provide trajectories o f a probe vehicle 

[65] and its potential for significant reductions in infrastructure cost [6 6 ]. As more and more 

mobile instruments such as smart mobile phone or GPS navigator can be used as probe 

instruments, more and more proportions of the vehicle population can be employed as probe 

vehicles. Ideally, if  all the vehicles on the road participated as probe vehicles (labeled as 100% 

probe market penetration), then high-resolution traffic data such as speed, density, flow and even 

travel time and queue length would become available. These data are needed to optimize the 

transportation system, for example one would be able to estimate the emissions properly using 

those data [8 ].

Alongside its advantages, other than the aforementioned issue, several other items of concern 

also need to be put addressed. The first is the privacy issue as discussed in [67] and [6 8 ]. The 

GPS instrument provides the time and location information of each probe vehicle and sends these 

data to a server to be analyzed. Some people consider this as interference with their privacy and 

thus did not allow their travel information to be known by others. Another issue is, in a large 

network, there will be vast miles o f travel distance and total travel time and also an enormous 

number o f vehicles This means that for 100% probe vehicle market penetration, there will be a 

huge amount o f high-resolution data collected to the server, which creates other needs such as 

gigantic storage to accommodate all the data, super computers to carry out the online and offline 

analysis, and so on.
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These issues have changed the perspective that it is not always ideal to have 100% probe vehicle 

market penetration. The new definition o f an ideally-instrumented vehicle application is having a 

minimum market penetration rate but still being able to optimize the transportation system 

properly, particularly at the network level. A new challenge for researchers now is how to 

optimize the use o f probe vehicle data resulting from the minimum market penetration rate.

The objective o f this study is to determine the optimal probe market penetration rate in the 

application o f dynamic queue length estimation particularly in signalized intersection. The rest of 

this chapter is organized as follows. Section 2 formulates the problem and states the focus of this 

chapter. Section 3 provides review o f previous studies about queue length estimation. In Section 

4 , the proposed methodology is introduced including the explanation of the data and simulation, 

while the results and discussion are described in Section 5. Finally, Section 6  gives the summary 

and conclusions.

4.2 Problem Definition

Research has been carried out to estimate the queue length, particularly in signalized 

intersections [56, 61, 69] and metered on-ramps [57, 58]. Most o f them were conducted using 

detector data as inputs. As the probe vehicle is becoming increasingly popular, researchers 

started to estimate this traffic parameter from probe vehicle data, for example in [5, 53]. 

However, in these probe vehicles’ utilization studies, the approaches were either applied to a 

single lane, assumed equal queue length for multilane cases, or assumed that the probe vehicles’ 

lane are known, which may not always be true in reality. There are many instances o f unequal 

queues occurring in multiple lanes o f a signalized intersection approach, especially when there is 

a shared lane (i.e. one lane for multiple movements/turns, for example, straight-through, and



right turn lane) in the approach. This study is an attempt to fill this gap, i.e. using probe vehicle 

data to estimating the queue length for unequal queue situations.

4.3 Related Studies

One of the most common approaches to estimate the queue length is the input-output approach. 

As indicated by Sharma et al. [70], the maximum queue length can be obtained from the queue 

polygon by finding the ordinate at the beginning or green plus start-up lost time. Lawson et al. 

[71] proposed another method to estimate the queue length using the input-output diagram. They 

modified the input-output diagram to include the number of vehicles that reach the back of the 

queue in a certain time unit.

However, as stated by Liu et al. [56], the traditional input-output method can only deal with 

queues that are in the distance between the vehicle detector and intersection stop line since the 

cumulative vehicle count will not be available at the moment the detector is occupied by the 

queue. Therefore, instead o f using the traditional input-output method, they utilized the queue 

discharge process and applied the Lighthill and Witham [33] and Richard [34] (LWR) kinematic 

wave theory to estimate the queue length. Wu and Liu [72] developed a traffic model for a 

congested arterial network which they called the shockwave profile model using the LWR 

kinematic wave theory. The method handled homogeneous road segments with constant capacity 

as a section which differentiates the method from the conventional macroscopic model.

Another approach to estimate the queue length is by using optimization method as demonstrated 

by [59] where they constructed neural network models to predict intersection queue. Statistical 

models such as Markov chains also have been employed to model the queue length in signalized 

intersections as shown in [60, 61]. Beside Markov chains, queue length estimation also has been
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conducted using a Kalman Filter such as in [69] where they developed a real-time approach for 

lane-based queue lengths at isolated signalized intersections while [57] and [58] employed a 

Kalman Filter to estimate the queue length at a metered on-ramp.

All the aforementioned studies were conducted using loop detector data. Along with the scheme 

o f vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication technologies, the 

use o f instrumented (probe) vehicle data became a hot topic in this field. The probe vehicle 

system is considered to be very useful in dealing with the real time estimation. Researchers 

began to exercise with probe data in traffic parameter estimation including queue length 

estimation. One o f the first real time queue length estimation studies was conducted by [5], In 

their study, they built an analytical formulation based on conditional probability distribution to 

estimate queue length and its variance. They found that using only the location information of 

the last probe in a traffic signal cycle, the queue length can be estimated. They also evaluated the 

model accuracy for each market penetration o f probe vehicles. In their later study [54], they tried 

to quantify the error using this approach. Cetin [15] developed a formula to determine the critical 

points to characterize the queue dynamic from probe vehicle data and employed the LWR 

kinematic wave theory to estimate the real time queue length. Ban et al. [53] reconstructed the 

real time queue length by detecting the critical points in intersection travel times or delay. These 

studies have somehow proved that the probe vehicle data can be used properly to estimate queue 

length. However, an essential problem with these studies is that the arrival rate was assumed to 

be uniform, which does not always happen in reality. An attempt in estimating queue length 

using probe vehicle without this assumption was done by Ramezani and Geroliminis [17]. In 

their study, they tried to construct queue profiles from probe vehicle data by clustering them into 

moving and stopped data and then derived the queue length based on the shockwave profiles.
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They claimed that using the estimated queue profiles the arrival distribution patterns and signal 

settings can be predicted properly. However, the issue of the error measurements o f the probe 

vehicle data was not addressed. As mentioned before, the GPS error may cause the vehicle stop 

coordinates to look like a bunch of random points rather than a shockwave pattern.

All the aforementioned studies overlooked the lane-based queue length estimation problem by 

applying the approach to a single lane or by assuming the queue are equal in the case o f multiple 

lanes. This study is an attempt to estimate lane-based queue length using the GPS-equipped 

probe vehicle in the case o f unequal queues by considering the GPS instrument error.

4.4 Methodology

Similar to the previous chapter, the data for this study are generated using transportation 

simulation software Vissim version 6.0. The simulation setting in this research is explained in 

Section 3.5. As in previous studies in this dissertation, there are three demand scenarios which 

are 300 and 900 vph, 450 and 900 vph, and 600 and 900 vph for scenarios 1, 2 and 3, 

respectively.

The LWR shockwave theory is employed to estimate the queue length using the probe vehicle 

information. The application o f the theory for queue length estimation is discussed in detail in 

Section 2.6. The probe vehicle time and space coordinates o f the probe vehicle when they join 

the queue and also when they discharge were used to estimate the queue length.

Considering the GPS instrument error, ahead of estimating the queue length, the probe vehicles’ 

lanes need to be identified. The probe vehicles’ lane identification process is discussed 

comprehensively in chapter 3.



In this research, the lane identification is conducted by adopting the Bivariate Mixture Model 

Clustering as describe in Section 3.7.2. Following lane identification as discussed in previous 

sections, the queue length estimation is conducted using the probe information o f each lane 

which is the one with short queue length (labeled as short queue lane / SQL) and the one with 

long queue length (labeled as long queue Jane / LQL). The limitation o f LWR shockwave theory 

is that the queue length was defined by the intersection between queuing shockwave and 

discharging shockwave. This means this theory can only predict the maximum queue that can 

take place instead of the real queue length.

vlax QL 
(e itimatkm)

MaxQL 
(ground tn th)

Figure 18. Maximum queue length estimation using LWR shockwave theory

Considering this limitation, the error o f the queue length estimation is obtained by comparing the 

maximum queue length calculated from the true last probe vehicle and the estimated one, as 

illustrated in Figure 18. The queue length estimation error is obtained by comparing the vertical 

distance o f the shockwave intersection points as shown in the figure.
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4.5 Result and Discussion

Mean absolute error (MAE) is utilized to measure the bias between the estimation and the 

ground truth. The MAE are calculated according the formula in equation (49).

n

MAE =  ~ ^ | e t | (49)
i=1

where n = number of samples

e,- = error o f sample i

The MAE values are compared to the shockwave mean value to understand the proportion of 

error (labeled as mean absolute percentage error/MAPE). In this research, the probe market 

penetration is varied from 10% to 100% by increments of 10%. The more the market penetration, 

the more the number o f available cycles expected. The lane-based MAE and MAPE values and 

also the number o f available cycles o f each market penetration for each scenario are presented in 

Figure 19. As expected, the figure shows that in all cycles for all market penetration the number 

o f cycles for SQL are always less than the number o f cycles for LQL. The figure also exhibits 

that the MAE for LQL is less than SQL for all scenarios where the MAPE for LQL for scenarios 

1 and 2 reach below 10% in 40% market penetration and for scenario 3 in 70% market 

penetration. Although the MAPE of SQL are a bit large, but actually the bias is tolerable except 

for scenario 3, where on average the bias for scenarios 1, 2, and 3 are 5 meters, 16.4 meters, and

23.1 meters, respectively. Appendix N provides full details about the result.
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Figure 19. Queue length estimation error and available cycles

One reason that the SQL results are not very good is that in the lane identification process, the 

vehicles that are taken to be identified properly are the vehicles that comply with a probability 

threshold o f 85% for SQL and 75% for LQL, while all the others that do not meet these 

thresholds were filtered out. Because o f this process, the last vehicle identified in a lane might 

not really be the last vehicle estimated in the cycle, which produces more bias.
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Figure 20. Queue length estimation error and available cycles by determining the last probe first

To deal with the aforementioned issue, the process order is reversed, i.e. the last probe vehicles 

are determined first and then the probability threshold is applied after that. This is done to 

decrease the MAE, however it is worth noticing that there is tradeoff between the improvement 

o f accuracy and the cycle availability as shown in Figure 20. The figure confirms the 

improvement in estimation accuracies, where the biases for SQL queue length estimation on
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average are 4.5 meters, 8.3 meters, and 16.4 meters for scenarios 1, 2 and 3, respectively. 

Meanwhile, for LQL, the MAPE value are equal to or below 10% starting from 40% market 

penetration for all scenarios. However, as stated above, the number o f cycles decreases 

significantly for SQL for almost all market penetration rates in all scenarios. The comprehensive 

results for this method are provided by Appendix Q.

Another important finding to mention is that, using all approaches, the queue length estimation 

accuracy o f LQL is always better when compared to SQL. The best explanation for this is that 

the queue length estimation precision depends much on the accuracy of the lane identification. 

As has been demonstrated by the result in the lane identification chapter, the accuracies of probe 

vehicles’ lane identification for LQL are better than SQL for all scenarios. The results show that 

the more SQL demand, the more inaccurate the queue length prediction. Again, this tends to 

have a linear relationship with the lane identification, where the more the demand the less 

accurate the lane identification. The explanation o f this is the higher the demand for SQL the 

more chance that the shockwave speeds between both lanes overlap which lessens the probability 

for their lane to be identified correctly.

4.6 Summary and Conclusion

This study has demonstrated the uses o f probe vehicles in estimating queue length. Ten probe 

market penetration scenarios in three demand scenarios have been built to generate data using the 

traffic simulation software. The LWR shockwave theory has been utilized successfully to 

estimate the queue length following the probe vehicles’ lane identification.

The result shows that in most cases using 40% market penetration rate is enough to reach about 

90% accuracy. The results also confirm that lane identification plays an important role in
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estimating queue lengths o f unequal queues, which can be predicted well if  the lane 

identification is conducted properly.



CHAPTER 5

FUEL CONSUMPTION ESTIMATION

5.1 Introduction

According to the US Environmental Protection Agency (EPA), in 2011 the transportation sector 

contributed approximately 28% o f the total U.S. greenhouse gas emissions which is the second 

largest emissions contributor after the electricity sector. Furthermore, as indicated by [73] 

vehicle emissions is the main cause of nearly 53,000 early deaths in the U.S. annually. These 

facts have made vehicle emissions and fuel consumption a critical issue in the area of 

transportation engineering. Thus, there is an obvious need for finding the methodology in 

estimating the fuel consumption and emissions properly.

Related to this, researchers have built emissions model such as MOBILE [74, 75] which later 

was replaced by MOVES [44]. The latter model is capable to model the emissions at the 

microscopic level. The traffic parameters, i.e. speed and acceleration, are the main factors that 

impact the level o f fuel consumption and emissions in this modeling level.

Probe vehicle system is an appropriate Intelligent Transportation Systems (ITS) application to 

collect high resolution (second-by-second) traffic parameter data. This system is capable of 

providing the probe vehicles’ speed as well as the time and space information known as vehicles 

trajectories. Using these data, the instantaneous speed and acceleration level can be captured. 

Currently, researchers have used the probe vehicle to estimate the travel time, where relatively 

accurate travel estimation can be achieved using low probe vehicle market penetration rate. Due 

to more and more mobile instruments being used as GPS instruments, higher penetration rates
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can be achieved. With a high enough penetration rate, researchers have been able to estimate the 

queue length using probe vehicle trajectories information. However, the number o f studies 

conducted for implementing the probe vehicle in fuel consumption and emissions estimation is 

still very limited. Furthermore, those studies were still not able to predict lane-based emissions 

estimation. The capability to carry out the lane-based emissions estimation is essential because 

there are a lot o f real-life situations where the queue lengths are not the same in the case of 

multiple lanes. This study is an attempt to estimate the fuel consumption in the case o f unequal 

queue at multilane signalized intersection using the probe vehicle information. This chapter was 

organized as follows: the next section formulates the issue that will be solved in this study, in 

Section 3, related studies are discussed, Section 4 provides the methodology, while Section 5 

presents the results and discussion. Finally, Section 6  summarizes and concludes the study.

5.2 Problem Definition

This study is an attempt to properly estimate the fuel consumption using probe vehicles by 

considering the position of the vehicle in the lane while it was queuing. Benefitting from this 

knowledge, fuel consumption can be estimated properly, especially in unequal queue length 

cases. Using the fuel consumption by knowing a constant, the CO2 emissions can be calculated 

since the emissions is related proportionally to the fuel consumption. This study also is an 

attempt to have a good description on the probe vehicle market penetration amount that is 

considered as adequate to predict the emissions accurately.

The question that is tried to be answered in this study are formulated as follows:

•  How significant is the role o f probe vehicles’ lane identification in fuel consumption 

estimation?
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• What is the sufficient probe market penetration rate to predict the fuel consumption 

properly?

5.3 Related Studies

Several efforts have been made to estimate the vehicle emissions and fuel consumption, for 

example the implementation o f statistical model to estimate the emissions as demonstrated by 

[76]. Related to this, researchers are also developing emissions model such as MOBILE [74, 75] 

which is a macroscopic emissions model sponsored by the EPA. Later, this model was replaced 

by MOVES (motor vehicle emission simulator) which is an emissions model that can be used at 

the macroscopic, mesoscopic, and microscopic levels, as indicated by [45]. Studies also have 

been conducted to increase the accuracy o f fuel consumption and emissions model in 

macroscopic emissions model by replacing the speed average value by mean speed distribution, 

for example as shown in a study conducted by [77]. Another study carried out in Europe [78] 

about the sensitivity o f the pollutant estimation to the driving speed confirmed this idea and 

claimed that the precision and quality o f driving speeds description will impact the pollutant 

emissions estimation significantly. Furthermore, the authors claimed that applying speed 

distribution instead o f the average values into the emissions functions will result in fuel 

consumption and emissions estimations that are 14% lower in urban areas, 30% and 20% higher, 

on rural roads and on motorways, respectively.

To increase the pollutant estimation accuracy, [31] estimates the vehicle and fuel consumption 

based on instantaneous speed and acceleration levels. The accuracy gets higher since the latter 

technique was done microscopically or in more detailed level. In this fuel consumption 

estimation, the speed data involved were not average speeds or mean speed distribution as 

usually applied in a macroscopic way but second-by-second speed data that can be used to
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capture the acceleration and deceleration. These data are one o f the essential factors to predict 

vehicle fuel consumption and emissions properly. Using this model, in his Ph.D. dissertation, 

[36] developed the mesoscopic model for fuel consumption and emissions estimation. However, 

in this model, the input was built by constructing a synthetic drive cycle and then estimated the 

proportion o f the average time that a vehicle spends cruising, decelerating, stopping (idling) and 

accelerating while traveling on a link.

5.4 Methodology

5.4.1 Data

Similar to the vehicle identification study, the data for this part o f the research are generated 

using transportation simulation software called Vissim version 6.0. The simulation setting in this 

research is explained in Section 3.5. As in previous studies in this dissertation, there are three 

demand scenarios which are 300 and 900 vph, 450 and 900 vph, and 600 and 900 vph for 

scenarios 1, 2, and 3, respectively.

The LWR shockwave theory is employed to estimate the queue length using the probe vehicle 

information. The application of the theory for queue length estimation is discussed in detail in 

Section 2.6. The probe vehicle time and space coordinates o f the probe vehicle when they join 

the queue and also when they discharge from the queue were used to estimate the queue length.

5.4.2 Lane identification

Considering the GPS instrument error, ahead o f estimating the queue length, the probe vehicles’ 

lane needs to be identified. The probe vehicles’ lane identification process is discussed 

comprehensively in chapter 3. In this research, lane identification is conducted by adopting 

Bivariate Mixture Model Clustering, as described in Section 3.7.2.



5.4.3 Synthetic trajectories reconstruction

As trajectories o f all vehicles in the intersection are needed to estimate the fuel consumption, the 

subsequent step after the lane identification is the construction o f synthetic trajectories, which are 

trajectories that are constructed based on the probe vehicles’ information. The synthetic 

trajectories are constructed according to the following steps:

1. Using the probe vehicle information when they are starting joining and discharging from 

the queue, create the shockwave profile.

2. Estimate the number of vehicles whose trajectories are needed to be developed. There 

will be three condition types to reconstruct the synthetic trajectories. The first is the ones 

between the traffic light and the first probe which is estimated by equation (50),

where rtf - number o f vehicles in between the traffic light and the first

probe vehicle at cycle c.

distance o f the first probe to the traffic light at cycle c

s spacing headway

The second is the ones between two probe vehicles, estimated by equation (51),

s
(51)

where n f i+ 1 number o f vehicles between probe vehicles i and i T 1 at cycle

c

d f i+1 -  distance between probes vehicle i and i + 1  in cycle c
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s = spacing headway

The last is the ones between the last probes and the maximum queue, estimated by 

equation (52),

n *1Qmax
t'Qmax (52)

,c = distance between probe vehicles i and i +  1  in cycle c

-= spacing headway

where n i,qmax = number o f vehicles in between probe vehicles i and qmax at

cycle c

d-Umax

s

3. Calculate each synthetic vehicle’s distance, when it joins the queue, to the traffic light. If 

there is any vehicle between the first probe vehicle and the traffic light, the first synthetic 

vehicle is considered to have zero (0) distance with the traffic light. Meanwhile, the 

distance for the rest o f the synthetic vehicles (if any) in this gap is calculated as in 

equation (53).

ds[ = § x ( i d f -  1) (53)

where d s f  = distance o f synthetic vehicle i to the traffic light at cycle c

d i = distance between the first probe vehicle at cycle c and the

traffic light 

= index of the synthetic vehicle j  at cycle c 

If the gap between probe vehicles is not the last gap, the distance o f a synthetic vehicle to 

the traffic light is calculated as equation (54)

id f
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d?.“ i,i+ 1

dsJ =  ^ T - r x idJ + d f  <54>• H  1x1 ■ 1

where d f = distance o f nearest (in the gap) probe vehicle i to the traffic

light at cycle c

In case o f the last gap, the distance o f a synthetic vehicle, when it started joining the 

queue, to the traffic light is calculated as in equation (55),

d s c = x i d j + d c (55)
i.Q m a x

4. Calculate each synthetic vehicle stop time. If the synthetic vehicle is not in the last gap, 

the stop time o f synthetic vehicle j  at cycle c is calculated as in equation (56),

sti = r c ~ T 'T x  idJ +  s t i (56>n i,i+ 1  'r  1

where stj = stop time o f a synthetic vehicle j  at cycle c.

l t f  i + 1  = lapse o f time between stop time o f probe vehicle i and i +  1

atcycle c

s t f  = stop time of probe vehicle i at cycle c

In case the synthetic vehicle is in the last gap, its stop time is calculated as in equation 

(57),



where ^ q max>i ~ lapse o f time when queue reaches maximum queue length and

stop time of probe vehicle i. The time when the queue reaches 

maximum can be obtained by equation (58),

c Q^max 
i l mcuc c

w s l p

s t^a x  is the time associated with maximum queue at cycle c 

(QL^nax) calculated using LWR model and wsfp is the

associated queuing sbockwave (calculated using the last 

probe).

Calculate the discharging time for each synthetic vehicle. This information is calculated 

using the same procedure except that obviously this procedure will utilize the probe 

vehicle discharging time instead o f the stopping time.

Once all this information is obtained, build the synthetic trajectories o f each synthetic 

vehicle. There are four types o f movements in these synthetic trajectories: cruising, 

deceleration, stopping and acceleration. In this case, the cruising itself is divided into two 

parts: cruising before stopping and the cruising after stopping. The total cruising duration 

was obtain by equation (59),

d-i d-acc d-dec  / r Q \cr = ----------------------  (59)
V

where cr -  total cruising duration for each synthetic vehicle (s)
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d t = link length

d-acc = acceleration distance

d dec = deceleration distance

v  := average speed (m/s)

The total travel time for each synthetic vehicle is calculated according to the equation 

(60),

t t t j  =  ctj +  d r  +  stTj + ar  (60)

where t t t j  = total travel time of synthetic vehicle j  

dr = deceleration duration

stTj = stop duration; discharge time -  stop time o f synthetic vehicle j

( d t f - s t f )  

ar  = acceleration duration

The cruising duration before stopping is calculating by equation (61),

( sg  -  d s j )  -  ddec
crbs = -------------------------

v

where crbs = cruising duration before stopping (s) 

sg  = signal distance from upstream

dsj = distance of synthetic vehicle j  to the signal when it joins the

queue.
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5.4.4 Acceleration and deceleration modeling

The input for estimating the fuel consumption is the spontaneous speed, therefore after the 

synthetic trajectories reconstruction, the synthetic speed profile for the unobserved vehicle needs 

to be modeled. The idea of the synthetic speed profile is adopted from the study conducted by 

[36]. There are four types o f speed for the synthetic vehicle, which are the cruising, decelerating, 

idling/stopping and accelerating. For a stopping vehicle, the speed -- 0 km/h while for cruising 

vehicle the speed = free flow speed. Thus, the acceleration and deceleration speed profiles are 

the only ones that need to be modeled. Using training data generated from exactly the same 

simulation setting with different seed, the acceleration and deceleration speed profiles were 

extracted. The data extraction for deceleration speed profile was carried out through the 

following algorithm:

1. Subset data for a vehicle (using training data) that experiences stopping.

2. Find the coordinates (time and space) when it is stopped (speed = 0).

3. Find the cruise coordinates before vehicle stopped (speed > (Average Speed -  Speed 

standard deviation) & time stamp < time stamp when it stops).

4. Subset the deceleration data which is the data between last cruise coordinate and first stop 

coordinate.

5. To make sure that data are taken from the same stop (vehicle might have stopped twice), 

subset the deceleration data only for the ones before the first stop.

While the data extraction for acceleration speed profile are carried out through the following 

algorithm:
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1. Subset data for a vehicle (using training data) that experiences stopping.

2. Find the coordinates (time and space) when it stopped (speed = 0).

3. Find the cruise coordinates after vehicle stopped (speed > (Average Speed -  Speed 

standard deviation) & time stamp > time stamp when it stops).

4. Subset the acceleration data which is the data between last stop coordinate and first cruise 

coordinate (after stop).

5. To make sure that data taken are from the same stop (vehicle might have stopped twice) 

the acceleration data was subset only for the ones with space coordinate after the stopping 

space coordinate and before the second stop (if there is any).

The extracted deceleration and acceleration data are used to model the deceleration and 

acceleration. Both are modeled using linear, quadratic, logarithmic, exponential, power, and 

polynomial regression. The criterion for the chosen model is the model with the highest 

coefficient o f determination (R2) value. The next information needed is the acceleration duration 

and deceleration duration, both obtained by taking the mean of the associated data.

5.4.5 Fuel Consumption Estimation

The Virginia Tech Comprehensive Power-Based Fuel Consumption model (VT-CPFM) model is 

utilized to estimate the fuel consumption. This model was discussed in detail in [42, 79]. The 

fuel consumption VT-CPFM model is formulated as in equations (62) - (64),

R( t )  = CDChAf v { t )2 +  9 . 8 0 6 6 m ^ ( c 1v (t)  +  c2) +  9.8066m G (t) (62)
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( R ( t )  + 1 .0 4  m a ( t) \

p ( t )  =  (  3600na r () (63)
PC(t) - a°+cli-P^ +tX2P̂ 2 v p ( f )2 0

where R( t )  = resistance force (N)

p  = the density o f air at sea level at 15°C = 1.2256 kg/m 3

CD = vehicle drag coefficient (unitless)

Ch = correction factor for altitude (unitless) = 1-0.085 H\ H is the

altitude (km)

Af  = vehicle frontal area (m2)

Cr, cv  c2 = rolling assistance parameters

m  = vehicle mass (kg)

a ( t)  = vehicle acceleration (m/s2) at time t

p d = driveline efficiency

G = roadway grade

In this study, the roadway grade is set to 0 (flat road) and the vehicles are assumed to be uniform 

and the type is Toyota Camry. Both probe vehicles’ and synthetic vehicles’ speed information 

were used as inputs to calculate fuel consumption.

5.5 Results and Discussion

5.5.1 Synthetic vehicle trajectories construction

Basically, the synthetic trajectories were formed by assuming that both queuing and discharging 

shockwave lines in between probe vehicles are linear. Likewise for the lines between the traffic
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light and the first probe and between the last probe and calculated maximum queue as shown by 

Figure 21.
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Figure 21. Synthetic, probe and ground truth vehicles’ queuing and discharging points

The figure confirms that this assumption is relatively true for the discharging points, but it is not 

necessarily true for the queuing points. Therefore this become a source o f error; however, this 

approach is the best that can be done since there is no other information available.

Spacing headway is an essential input to reconstruct the trajectories. How many vehicles can fit 

between two probe vehicles genuinely depends on spacing headway, particularly queuing 

spacing headway. The spacing headway calculated from vehicles stopping coordinates extracted
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from training data was used to determine the mean spacing headway. The length o f the car as 

documented in Vissim is 3.75 to 4.76 meters; therefore, the spacing data were subset for only the 

ones that were more than 3 meters and less than 10 meters, which is most likely to be the 

headway spacing for single vehicle.

Spacing Headway

i------------1------ 1------------- 1------------- 1--------------------- 1----------1------------- 1------- 1

3 4 5 6 7 8 9 10 11 12

meter

Figure 22. Spacing headway distribution

Figure 22 shows the spacing headway distribution, the mean space headway is 6 . 6  meters. In this 

study the mean space headway is determined to be 6  meters.

5.5.2 Acceleration and deceleration modeling

Table 7 shows that the best fit for the deceleration data for all scenarios is the logarithmic model, 

on the other hand the polynomial model is the best fit for the acceleration data for all models.



101

Table 7. The R2 of linear and nonlinear model (acceleration and deceleration)

R2
M od el ____________

D ec Acc

Linear 0 .2 9 0 .2 4

Q uadratic 0 .2 9 0 .2 4

Logarithmic
njuuuK
flHPr 0 .5 2

E xponential 0 .1 6 0 .1 7

P ow er 0 .1 9 0 .4 4

Polynom ial 0 .3 8 jM B
(H U

Based on this result, the logarithmic model was chosen to calculate the speed when the synthetic 

vehicle decelerates, likewise the polynomial model was selected for the synthetic vehicle 

acceleration.

Table 8. The acceleration and deceleration model

 Acceleration type______________________________ Model_________________________
Deceleration speed = 48.36 — 10.62 log(time)
(logaiithmic model)
Acceleration speed = -0 .68  + 10.94 (time) -  0.72 (time)2 + O.Ol(time)3
(polynomial model)_____________________ _________________________________________

Table 8  presents the acceleration and deceleration model built using the chosen regression 

model. The deceleration data indicated that the average duration for a vehicle to decelerate is 14 

seconds while the acceleration data revealed that the average acceleration duration is 7 seconds. 

Using the model in Table 8 , the synthetic vehicle speed when decelerate and accelerate were 

calculated. These speeds, combined with the cruising and stop speeds, were then used to form a 

synthetic speed profile as shown in figure 23.
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Figure 23. Illustration of the synthetic speed profile

Figure 23 gives an example o f the synthetic speed profile. The cruising speed is the free flow 

speed, while in this study the average speed is taken from the desired speed in the simulation (60 

km/h). This study is for undersaturated traffic condition cases and thus the vehicle is assumed to 

experience merely a single stop in the link.

5.5.3 The precision o f  fuel consumption estimation

Mean absolute error (MAE) was utilized to measure the bias between the fuel consumption 

estimation and the ground truth. The MAE are calculated according the formula in equation (49).

Similar to the previous research in this dissertation, the probe market penetration were varied 

from 10% to 100% by increment o f 10%. The more the market penetration, the more the number 

o f available cycles expected.
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Figure 24. FC estimation MAE

Figure 24 shows that there is increase in error as the demand increases. On average the fuel 

consumption in scenario 2 generated about 0.63 liter more error compare to scenario 1; likewise 

the scenario 3 generated about 0.64 liter more error compare to scenario 2. The main reason for 

this is the increasing demand as also can be seen in the lane identification result. The accuracy of 

fuel consumption estimation more or less depends on the precision o f the lane identification that 

has the same error tendency. Furthermore, the more vehicles (as in scenario 2 compared to 

scenario 1, and scenario 3 compared to scenario 2) the more variation can appear in each cycle 

and thus also becomes another source o f error.
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Figure 25. FC estimation MAPE and cycles available

The MAE values were compared to the fuel consumption mean value to understand the error 

relativity (mean absolute percentage error/MAPE) as shown in Figure 25. The figure shows that 

in scenario 1 the MAPE has reached less than or equal to 15% starting from 20% market 

penetration rate with 20 available cycles for SQL and 81 for LQL, likewise in scenarios 2 and 3 

the MAE also are less than or equal to 15% starting from 40% market penetration where there 

are 32 available cycles for SQL, 84 for LQL and 45 for SQL, 84 for LQL, respectively. As 

expected, the more the market penetration, the less the MAE, and directly proportional to that, 

the MAPE. The full description of the fuel consumption MAE and available cycles can be seen
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in Appendix T. The result presented here is the result without the missing cycle. As was 

discussed earlier, there will be missing cycles when using the probe vehicle especially in the low 

market penetration rate.

5.6 Summary and Conclusion

In this research, the real time fuel consumption estimation was conducted using probe vehicles 

by considering their lane position in the queue. The probe vehicle queuing and discharging 

information was used to build a shockwave profile for each cycle. Using this profile, synthetic 

trajectories were built. This synthetic trajectories became the base for assigning synthetic speed 

profile. There are four speed conditions for the profile which are cruising, decelerating, stopping 

and accelerating. The cruising speed was using the free flow speed while the stopping speed is 

equal to zero. The decelerating and accelerating speed were modeled using training data.

These synthetic profile speeds were then assigned to the reconstructed trajectories to be able to 

calculate the fuel consumption. Eventually, the fuel consumption of both probe and synthetic 

vehicles were calculated using the Virginia Tech Comprehensive Power-Based Fuel 

Consumption Model. The results are very encouraging, where the mean absolute error was 

satisfactory starting from a reasonable market penetration rate.

This research has demonstrated that the probe vehicles can be used properly to estimate the fuel 

consumption, particularly in signalized intersections where there are cases o f unequal queues. 

The result shows that the more the arrival rates, the more variation appears which generates more 

error. Furthermore, this study has demonstrated that the precision of the lane identification 

process has a great impact on the fuel emissions accuracy. A limitation o f this study is that the 

result displayed is only for the available cycles since there is no treatment for the missing cycle, 

which commonly arises when using probe vehicles. This issue can become a gap to be



considered in future study. Additionally, this study simplifies the vehicle types by assuming that 

they were all uniform. Future studies can be conducted by considering this issue to make this 

method more applicable.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusion

This study presents the use o f probe vehicles for analyzing queue dynamics including fuel 

consumption estimation in signalized intersections. This is done by considering the probe 

vehicles’ lane position particularly in the case o f unequal queues at multiple-lane links. The 

conclusion can be divided in three categories: lane identification, queue length estimation and 

fuel consumption estimation.

6.1.1 Probe vehicles ’ lane identification

This study develops a framework for identifying the probe vehicles’ lane in real time at 

signalized intersections in the case o f unequal queues at multiple-lane signalized intersections. 

The proposed model is intended to be used as probe vehicle data preprocessing in estimating 

queue length and fuel consumption properly. The results demonstrate that:

1. Instead of using the queuing shockwave speed calculated from all probes vehicles 

available, the probe vehicles’ individual shockwave speed can be employed to better 

identify their lane while queued.

2. Beside the individual queuing shockwave speed, the lane position o f probe vehicles can 

also be characterized by their mean distance to the traffic light.

3. The probe vehicles’ lane can be predicted properly when their individual queuing 

shockwave speed and distance predicted probability is larger or equal to 85% for short 

queue lane and larger or equal to 75% for long queue lane.
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4. The more the arrival rates, the less the precision o f the lane identification.

6.1.2 Queue length estimation

This study investigates the role o f lane identification for estimating the queue length. 

Furthermore, this study explores the acceptable market penetration rate for queue length 

estimation using probe vehicles’ information. The conclusions are:

1. The precision o f probe vehicles’ lane identification have a great impact for queue length 

estimation. The queue length accuracy is positively correlated to the lane identification 

precision.

2. The queue length estimation can be performed successfully by recognizing the last probe 

vehicle that its lane was identified properly.

3. The acceptable market penetration rate is 40% where in this rate the queue length 

estimation reached about 90% accuracy.

6.1.2 Fuel consumption estimation

This study presents methodology to utilize probe vehicles’ information in fuel consumption 

estimation. After identifying the probe vehicles’ lane, synthetic trajectories were reconstructed 

using shockwave profiles built from the probe vehicles’ queuing information. The acceleration 

and deceleration modeling are carried out using training data. The result combined with the 

synthetic trajectories are used to produce a synthetic speed profile. Finally, the fuel consumption 

estimation using the probe vehicle and the synthetic trajectories are estimated using the Virginia 

Tech Comprehensive Power-Based Fuel Consumption Model. The results shows that:

1. The probe vehicles’ information can be used to estimate the fuel consumption in 

signalized intersection properly.
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2. The higher the arrival rate on SQL, the larger the estimation errors.

3. Similar to the queue length estimation, the lane identification process plays an important 

role in fuel consumption estimation.

4. The market penetration rate o f 40% was adequate to produce acceptable results.

6.2 Recommendations for Further Research

In general, this research has demonstrated that the probe vehicles’ lane identification plays an 

important role in queue length and fuel consumption estimation at signalized intersection. 

However, the following areas are recommended to improve the current research work:

1. Future research should consider the issue o f heterogeneity in vehicles’ type.

2. Future research needs to deal appropriately with the missing cycle as the result of the 

probe vehicles’ low market penetration rate.
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APPENDIX A - LANE IDENTIFICATION USING THE NAIVE METHOD (SCENARIO 1)

Naive Method Scenario 1 (300 900)
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0 .1 48% 94% 21 21 48% 95% 21 21

0 .2 50% 97% 60 60 50% 98% 6 0 60

0 .3 49% 95% 84 84 51% 94% 8 4 8 4

0 .4 51% 96% 93 93 57% 97% 9 3 93

0 .5 53% 95% 96 9 6 55% 97% 9 6 96

0 .6 54% 95% 98 98 60% 97% 98 98

0 .7 58% 95% 98 98 60% 97% 9 8 98

0 .8 59% 95% 98 98 61% 97% 9 8 98

0 .9 59% 95% 98 98 65% 97% 9 8 98

1 57% 95% 98 98 63% 98% 9 8 98
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APPENDIX B - LANE IDENTIFICATION USING THE NAIVE METHOD (SCENARIO 2)

Naive Method Scenario 2 (450 900)
o
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0 .8 57% 87% 99 99 69% 92% 9 9 99

0 .9 58% 87% 99 99 73% 93% 9 9 99

1 60% 87% 99 99 73% 94% 99 99
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APPENDIX C - LANE IDENTIFICATION USING THE NAIVE METHOD (SCENARIO 3)

Naive Method Scenario 3 (600 900)
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APPENDIX D - LANE IDENTIFICATION USING THE K-MEANS METHOD (SCENARIO

1)

K-Means Method Scenario 1 (300 900)
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0.1 44% 91% 21 21 43% 95% 21 21
0.2 49% 96% 60 60 50% 98% 60 60
0.3 47% 95% 84 84 53% 94% 84 84
0.4 51% 96% 93 93 59% 97% 93 93
0.5 53% 95% 96 96 57% 97% 96 96
0.6 54% 95% 98 98 60% 97% 98 98
0.7 58% 95% 98 98 61% 97% 98 98
0.8 61% 95% 98 98 66% 97% 98 98
0.9 59% 95% 98 98 66% 97% 98 98
1 58% 96% 98 98 67% 98% 98 98
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APPENDIX E - LANE IDENTIFICATION USING THE K-MEANS METHOD (SCENARIO

2)

K-Means Method Scenario 2 (450 900)
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0.1 40% 95% 26 26 46% 96% 26 26
0.2 53% 87% 71 71 56% 87% 71 71
0.3 51% 86% 89 89 51% 85% 89 89
0.4 55% 88% 96 96 63% 89% 96 96
0.5 54% 88% 96 96 59% 90% 96 96
0.6 59% 88% 98 98 66% 92% 98 98
0.7 57% 88% 99 99 71% 92% 99 99
0.8 58% 88% 99 99 69% 92% 99 99
0.9 58% 88% 99 99 70% 93% 99 99
1 60% 89% 99 99 74% 94% 99 99
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APPENDIX F - LANE IDENTIFICATION USING THE K-MEANS METHOD (SCENARIO 3)

K-Means Method Scenario 3 (600 900)
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0.1 44% 80% 34 34 50% 85% 34 34
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0.4 55% 76% 98 98 62% 83% 98 98
0.5 57% 76% 99 99 67% 84% 99 99
0.6 57% 76% 99 99 65% 86% 99 99
0.7 56% 75% 99 99 65% 86% 99 99
0.8 55% 75% 99 99 63% 84% 99 99
0.9 56% 75% 99 99 66% 86% 99 99
1 57% 75% 99 99 70% 84% 99 99
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APPENDIX G - LANE IDENTIFICATION USING THE LOGNORMAL MODEL METHOD
(SCENARIO 1)

Lognormal Mixture Model Method Scenario 1 (300 900)

10 20 30 40 50 60 70 80 90 100

Market penetration rate {%)

Precision___________ Cycles ________ Precision (Last Probe)_____Cycles (Last Pro be)
p SQL LQL SQL LQL SQL LQL SQL LQL

0.1 68% 86% 18 75 72% 92% 18 75
0.2 67% 85% 37 91 70% 96% 37 91
0.3 61% 85% 52 95 62% 95% 52 95
0.4 55% 85% 67 97 56% 97% 67 97
0.5 52% 84% 76 98 52% 97% 76 98
0.6 53% 83% 84 98 56% 97% 84 98
0.7 58% 83% 93 98 60% 97% 93 98
0.8 58% 82% 96 98 66% 97% 96 98
0.9 58% 83% 97 98 68% 97% 97 98
1 58% 83% 99 98 67% 98% 99 98
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APPENDIX H - LANE IDENTIFICATION USING THE LOGNORMAL MODEL METHOD
(SCENARIO 2)

Lognormal Mixture Model Method Scenario 2 (450 900)
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Precision_____________ Cycles  Precision (Last Probe)________ Cycles (Last Probe)
p SQL LQL SQL LQL SQL LQL SQL LQL

0.1 48% 80% 22 84 45% 83% 22 84
0.2 60% 77% 44 95 59% 83% 44 95
0.3 54% 76% 62 98 53% 86% 62 98
0.4 58% 76% 72 98 56% 89% 72 98
0.5 57% 76% 80 98 58% 90% 80 98
0.6 58% 77% 89 98 62% 92% 89 98
0.7 58% 76% 94 98 69% 93% 94 98
0.8 56% 76% 96 99 67% 92% 96 99
0.9 56% 76% 98 99 68% 93% 98 99
1 57% 76% 99 99 71% 94% 99 99
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APPENDIX I - LANE IDENTIFICATION USING THE LOGNORMAL MODEL METHOD
(SCENARIO 3)

Precision Cycles Precision (Last Probe) Cycles (Last Probe)
p SQL LQL SQL LQL SQL LQL SQL LQL

0.1 46% 69% 24 86 42% 74% 24 86
0.2 56% 66% 43 97 53% 75% 43 97
0.3 51% 66% 64 99 48% 83% 64 99
0.4 56% 67% 75 99 57% 82% 75 99
0.5 56% 65% 85 99 55% 83% 85 99
0.6 55% 65% 93 99 53% 84% 93 99
0.7 54% 66% 95 99 53% 85% 95 99
0.8 56% 66% 98 99 58% 84% 98 99
0.9 56% 66% 99 99 59% 85% 99 99
1 56% 66% 99 99 62% 84% 99 99
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Lognormal Mixture Model Method Scenario 3 (600 900)
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APPENDIX J - LANE IDENTIFICATION RESULTS COMPARISON FOR SCENARIO 1

Method
Precision Cycles Precision (Last Probe) Cycles (Last Probe)

P SQL LQL SQL LQL SQL LQL SQL LQL
Naive 0.1 48% 94% 21 21 48% 95% 21 21

0.2 50% 97% 60 60 50% 98% 60 60
0.3 49% 95% 84 84 51% 94% 84 84
0.4 51% 96% 93 93 57% 97% 93 93
0.5 53% 95% 96 96 55% 97% 96 96
0.6 54% 95% 98 98 60% 97% 98 98
0.7 58% 95% 98 98 60% 97% 98 98
0.8 59% 95% 98 98 61% 97% 98 98
0.9 59% 95% 98 98 65% 97% 98 98
1 57% 95% 98 98 63% 98% 98 98

K-Means 0.1 44% 91% 21 21 48% 95% 21 21
0.2 49% 96% 60 60 50% 98% 60 60
0.3 47% 95% 84 84 51% 94% 84 84
0.4 51% 95% 93 93 57% 97% 93 93
0.5 53% 95% 96 96 55% 97% 96 96
0.6 54% 95% 98 98 60% 97% 98 98
0.7 58% 95% 98 98 60% 97% 98 98
0.8 61% 95% 98 98 61% 97% 98 98
0.9 59% 95% 98 98 65% 97% 98 98
1 58% 96% 98 98 63% 98% 98 98

Lognormal 0.1 68% 86% 18 75 72% 92% 18 75
0.2 67% 85% 37 91 70% 96% 37 91
0.3 61% 85% 52 95 62% 95% 52 95
0.4 55% 85% 67 97 56% 97% 67 97
0.5 52% 84% 76 98 52% 97% 76 98
0.6 53% 83% 84 98 56% 97% 84 98
0.7 58% 83% 93 98 60% 97% 93 98
0.8 58% 82% 96 98 66% 97% 96 98
0.9 58% 83% 97 98 68% 97% 97 98
1 58% 83% 99 98 67% 98% 99 98

Bivariate 0.1 92% 95% 11 62 91% 98% 11 62
Normal 0.2 88% 93% 20 81 85% 98% 20 81

0.3 90% 94% 24 88 92% 97% 24 88
0.4 87% 94% 33 91 91% 98% 33 91
0.5 83% 94% 36 93 86% 96% 36 93
0.6 77% 94% 44 93 82% 97% 44 93
0.7 81% 94% 54 92 85% 97% 54 92
0.8 83% 94% 58 92 86% 97% 58 92
0.9 83% 94% 61 92 87% 97% 61 92
1 83% 94% 64 94 88% 98% 64 94
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APPENDIX K - LANE IDENTIFICATION RESULTS COMPARISON FOR SCENARIO 2

Method
Precision Cycles Precision (Last Probe) Cycles (Last Probe)

P SQL LQL SQL LQL SQL LQL SQL LQL
Naive 0.1 41% 96% 26 26 46% 96% 26 26

0.2 50% 87% 71 71 54% 87% 71 71
0.3 49% 84% 89 89 51% 85% 89 89
0.4 54% 86% 96 96 56% 89% 96 96
0.5 55% 86% 96 96 56% 90% 96 96
0.6 57% 87% 98 98 66% 92% 98 98
0.7 58% 86% 99 99 68% 93% 99 99
0.8 57% 87% 99 99 69% 92% 99 99
0.9 58% 87% 99 99 73% 93% 99 99
1 60% 87% 99 99 73% 94% 99 99

K-Means 0.1 40% 95% 26 26 46% 96% 26 26
0.2 53% 87% 71 71 56% 87% 71 71
0.3 51% 86% 89 89 51% 85% 89 89
0.4 55% 88% 96 96 63% 89% 96 96
0.5 54% 88% 96 96 59% 90% 96 96
0.6 59% 88% 98 98 66% 92% 98 98
0.7 57% 88% 99 99 71% 92% 99 99
0.8 58% 88% 99 99 69% 92% 99 99
0.9 58% 88% 99 99 70% 93% 99 99
1 60% 89% 99 99 74% 94% 99 99

Lognormal 0.1 48% 80% 22 84 45% 83% 22 84
0.2 60% 77% 44 95 59% 83% 44 95
0.3 54% 76% 62 98 53% 86% 62 98
0.4 58% 76% 72 98 56% 89% 72 98
0.5 57% 76% 80 98 58% 90% 80 98
0.6 58% 77% 89 98 62% 92% 89 98
0.7 58% 76% 94 98 69% 93% 94 98
0.8 56% 76% 96 99 67% 92% 96 99
0.9 56% 76% 98 99 68% 93% 98 99
1 57% 76% 99 99 71% 94% 99 99

Bivariate 0.1 86% 92% 6 63 83% 94% 6 63
Normal 0.2 86% 91% 19 75 84% 93% 19 75

0.3 80% 91% 23 81 83% 93% 23 81
0.4 80% 90% 32 84 88% 93% 32 84
0.5 81% 89% 46 87 83% 95% 46 87
0.6 78% 88% 51 88 80% 95% 51 88
0.7 78% 88% 57 90 81% 94% 57 90
0.8 78% 88% 62 91 81% 95% 62 91
0.9 77% 89% 67 91 78% 95% 67 91
1 77% 89% 71 92 79% 95% 71 92
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APPENDIX L - LANE IDENTIFICATION RESULTS COMPARISON FOR SCENARIO 3

Method
Precision Cycles Precision (Last Probe) Cycles (Last Probe)

P SQL LQL SQL LQL SQL LQL SQL LQL
Naive 0.1 45% 81% 34 34 50% 85% 34 34

0.2 55% 74% 77 77 58% 75% 77 77
0.3 53% 74% 96 96 54% 84% 96 96
0.4 55% 74% 98 98 60% 81% 98 98
0.5 58% 74% 99 99 67% 82% 99 99
0.6 58% 74% 99 99 66% 84% 99 99
0.7 56% 74% 99 99 64% 85% 99 99
0.8 56% 74% 99 99 64% 84% 99 99
0.9 55% 74% 99 99 64% 85% 99 99
1 55% 73% 99 99 66% 84% 99 99

K-Means 0.1 44% 80% 34 34 50% 85% 34 34
0.2 56% 74% 77 77 62% 75% 77 77
0.3 55% 75% 96 96 57% 84% 96 96
0.4 55% 76% 98 98 62% 83% 98 98
0.5 57% 76% 99 99 67% 84% 99 99
0.6 57% 76% 99 99 65% 86% 99 99
0.7 56% 75% 99 99 65% 86% 99 99
0.8 55% 75% 99 99 63% 84% 99 99
0.9 56% 75% 99 99 66% 86% 99 99
1 57% 75% 99 99 70% 84% 99 99

Lognormal 0 1 46% 69% 24 86 42% 74% 24 86
0.2 56% 66% 43 97 53% 75% 43 97
0.3 51% 66% 64 99 48% 83% 64 99
0.4 56% 67% 75 99 57% 82% 75 99
0.5 56% 65% 85 99 55% 83% 85 99
0.6 55% 65% 93 99 53% 84% 93 99
0.7 54% 66% 95 99 53% 85% 95 99
0.8 56% 66% 98 99 58% 84% 98 99
0.9 56% 66% 99 99 59% 85% 99 99
1 56% 66% 99 99 62% 84% 99 99

Bivariate 0.1 79% 84% 14 58 79% 88% 14 58
Normal 0.2 77% 83% 24 72 75% 88% 24 72

0.3 71% 81% 37 81 73% 85% 37 81
0.4 72% 81% 45 84 71% 83% 45 84
0.5 75% 80% 57 87 77% 83% 57 87
0.6 74% 81% 63 88 75% 83% 63 88
0.7 72% 80% 67 88 75% 84% 67 88
0.8 70% 80% 72 90 78% 83% 72 90
0.9 72% 81% 75 92 79% 85% 75 92
1 71% 80% 76 94 78% 83% 76 94
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APPENDIX M - BIVARIATE MIXTURE MODEL DENSITY ESTIMATION

Lane 1 (SQL)

Density estimation via  Gaussian f in it e  mixture modeling

Mclust WE (e llip so id a l, equal orientation) model with 5 components:

log .lik elih ood  n df bic icl
-898.5791 361 25 -1944.38 -1978.328

Clustering table:
1 2 3 4 5

90 60 52 30 129

Lane 2 (LQL)

Density estimation via Gaussian f in ite  mixture modeling

Mclust w v  (e llip so id a l, varying volume, shape, and orientation) model with 8 
components:

log .lik elih ood  n df bic i c l  
-6362.11 1348 47 -13062.92 -13756.06

Clustering table:
1 2 3 4 5 6 7 8  

97 85 94 362 292 261 77 80
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APPENDIX N - QUEUE LENGTH ESTIMATION BY APPLYING THE THRESHOLD FIRST

MP MAE1 PerMAEl MAE2 PerMAE2 ncyclel ncycle2
Scenario 1

0.1 7.7 35% 20.2 22% 11 62
0.2 6.0 29% 14.7 16% 20 81
0.3 5.6 26% 11.0 13% 24 88
0.4 5.8 30% 7.2 8% 33 91
0.5 5.0 25% 6.4 8% 36 93
0.6 5.0 26% 4.4 5% 44 93
0.7 5.2 25% 3.0 4% 54 92
0.8 4.8 23% 2.7 3% 58 92
0.9 4.7 22% 2.4 3% 61 92
1 5.2 24% 0.9 1% 64 94

Scenario 2
0.1 18.8 54% 24.1 22% 6 63
0.2 17.3 48% 17.4 17% 19 75
0.3 16.2 45% 14.8 15% 23 81
0.4 16.5 46% 8.2 8% 32 84
0.5 17.8 49% 5.2 5% 46 87
0.6 15 3 43% 4.3 5% 51 88
0.7 15.7 44% 4.0 4% 57 90
0.8 16.1 46% 3.5 4% 62 91
0.9 15.2 44% 3.4 4% 67 91
1 14.7 43% 2.7 3% 71 92

Scenario 3
0.1 21.8 48% 19.7 19% 14 58
0.2 23.6 50% 18.9 18% 24 72
0.3 22.0 48% 16.8 17% 37 81
0.4 21.8 49% 13.2 13% 45 84
0.5 22.8 49% 12.2 12% 57 87
0.6 24.0 50% 10.9 11% 63 88
0.7 23.6 49% 8.1 8% 67 88
0.8 23.7 48% 7.8 8% 72 90
0.9 24.0 47% 6.0 6% 75 92
1 23.7 47% 5.7 6% 76 94
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APPENDIX O - QUEUE LENGTH ESTIMATION BY SELECTING THE LAST PROBE
FIRST

MP MAE1 PerMAEl MAE2 PerMAE2 ncyclel ncycle2
Scenario 1

0.1 7.7 35% 20.2 22% 11 62
0.2 6.4 30% 14.6 16% 17 80
0.3 4.9 23% 10.9 12% 21 87
0.4 4.7 24% 7.1 8% 26 88
0.5 3.9 19% 6.5 7% 25 89
0.6 4.1 22% 4.3 5% 30 89
0.7 3.9 20% 2.9 3% 35 88
08 3.4 18% 2.5 3% 36 88
0.9 3.0 15% 2.2 3% 37 89
1 2.7 13% 0.1 0% 37 90

Scenario 2
0.1 19.1 59% 24.1 22% 4 62
0.2 12.0 43% 17.4 17% 10 75
0.3 12.9 41% 15.2 15% 13 78
0.4 10.9 40% 8.3 8% 15 80
0.5 7.5 30% 5.3 5% 17 83
0.6 3.4 15% 4.5 5% 15 83
0.7 4.7 20% 3.7 4% 16 84
0.8 5.4 24% 3.0 3% 18 84
0.9 3.8 16% 2.8 3% 18 82
1 3.5 15% 1.9 2% 18 80

Scenario 3
0.1 21.9 47% 19.8 19% 13 51
0.2 20.6 44% 18.3 17% 17 61
0.3 18.1 41% 14.4 13% 19 68
0.4 10.7 27% 10.5 10% 16 71
0.5 14.7 34% 10.0 9% 20 67
0.6 18.1 39% 8.5 8% 21 67
0.7 18.1 38% 5.5 5% 23 70
0.8 17.3 37% 5.0 5% 23 73
0.9 13.8 30% 3.3 3% 21 74
1 11.0 24% 2.7 3% 20 75
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APPENDIX P - QUEUE LENGTH ESTIMATION VERSUS GROUND TRUTH (SCENARIO 1)

Queue Length (10% MP, Sc.1) Queue Length (40% MP, Sc.1)
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APPENDIX Q - QUEUE LENGTH ESTIMATION VERSUS GROUND TRUTH (SCENARIO

2)

Queue Length (10% MP, Sc.2)
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APPENDIX R - QUEUE LENGTH ESTIMATION VERSUS GROUND TRUTH (SCENARIO 3)

Queue Length (10% MP, Sc.3) Queue Length (40% MP, Sc.3)
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APPENDIX S - SUMMARY OF BEST REGRESSION MODEL

Deceleration - Logarithmic model 

> summary(dec_logarithmi c l)  

c a l l :
1m(formula * deceldatal$SPEED ~ 1og(deceldatalSsecond))

Residuals:
Min IQ Median 3Q Max

-35.056 -6.944 1.146 7.209 45.839

Coeffi c ie n ts :
Estimate s td . Error t  value P r ( > |t |)

( in te rc e p t)  48.35810 0.09742 496.4 <2e-16 ***
log(deceldatalSsecond) -10.62477 0.04501 -236.1 <2e-16 ***

S ign if. codes: 0 ****’ 0.001 ***’ 0.01 0.05 0 .1  ‘ ' 1

Residual standard e rro r : 11.42 on 79506 degrees o f freedom 
M ultiple R-squared: 0.4121, Adjusted R-squared: 0.4121
F - s ta t i s t ic :  5.572e+04 on 1 and 79506 DF, p-vatue: < 2.2e-16

Acceleration -  Polynomial model 

> summary(acc_polynomial1)

Call:
lm(formula = acceldatalSSPEED ~ acceldatalSsecond + I(acceldatal$secondA2) 

I(acce1datal$secondA3))

Residuals:
Min IQ  Median 3Q Max

-94.599 -4.373 2.100 5.549 53.986

coeffi cients:
Estimate Std. Error t  value P r(> (t|)

( in te rc e p t)  -0.6832433 0.1261615 -5.416 6.14e-08 ***
acceldatalSsecond 10.9442236 0.0492897 222.039 < 2e-16 ***
i(acceldatal$secoiidA2) -0.7220020 0.0049623 -145.498 < 2e-16 ***
I(acceldatalSsecondA3) 0.0118087 0.0001145 103.103 < 2e-16 ***

S ign if. codes: 0 '***’ 0.001 ***’ 0.01 0.05 0.1 * ' 1

Residual standard error: 8.849 on 38142 degrees of freedom 
Multiple R-squared: 0.6532, Adjusted R-squared: 0.6532
F -s ta tis t ic :  2 .395e+04 on 3 and 38142 DF, p-value: < 2.2e-16
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APPENDIX T - FUEL CONSUMPTION MAE AND AVAILABLE CYCLES

Scenario 1 Scenario 2 Scenario 3
 MAE_________Cycle________ MAE_________ Cycle_________ MAE_________ Cycle
Itr/cycle % SQL LQL Itr/cycle % SQL LQL Itr/cycle % SQL LQL

1.28 16% 11 62 1.83 17% 6 63 2.65 16% 14 58
1.00 14% 20 81 1.54 15% 19 75 2.24 17% 24 72
0.97 11% 24 88 1..38 15% 23 81 2.10 17% 37 81
0.78 11% 33 91 1.49 13% 32 84 2.15 14% 45 84
0.69 11% 36 93 1.48 13% 46 87 2.14 14% 57 87
0.64 11% 44 93 1.38 13% 51 88 2.00 14% 63 88
0.58 9% 54 92 1.31 12% 57 90 1.83 14% 67 88
0.50 9% 58 92 1.30 13% 62 91 1.78 14% 72 90
0.50 9% 61 92 1.15 13% 67 91 1.75 13% 75 92
0.65 10% 64 94 1.04 14% 71 92 1.66 14% 76 94
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