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Abstract The paper proposes a performance degradation analysis model based on dynamic ero-

sion wear for a novel Linear Electro-Hydrostatic Actuator (LEHA). Rather than the traditional sta-

tistical methods based on degradation data, the method proposed in this paper firstly analyzes the

dominant progressive failure mode of the LEHA based on the working principle and working con-

ditions of the LEHA. The Computational Fluid Dynamics (CFD) method, combining the turbulent

theory and the micro erosion principle, is used to establish an erosion model of the rectification

mechanism. The erosion rates for different port openings, under a time-varying flow field, are

obtained. The piecewise linearization method is applied to update the concentration of contami-

nated particles within the LEHA, in order to gain insight into the erosion degradation process at

various stages of degradation. The main contribution of the proposed model is the application of

the dynamic concentration of contamination particles in erosion analysis of Electro-Hydraulic

Servo Valves (EHSVs), throttle valves, spool valves, and needle valves. The effects of system param-

eters and working conditions on component wear are analyzed by simulations. The results of the

proposed model match the expected degradation process.
� 2017 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Integrated Electro-Hydrostatic Actuators (EHAs) have seen
increased application in More-Electric Aircraft (MEA), due
to their numerous advantages including high reliability, long

lifetime, and high efficiency.1–4 Traditional power-integrated
Rotary Electro-Hydrostatic Actuators (REHAs) are facing
many problems, such as severe heating, big inertia, low-
frequency response, and difficulty in redundancy configura-

tion. In order to solve these deficiencies, many researchers have
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proposed direct-drive EHAs.5–9 Li et al. have presented a novel
LEHA for the pump control system based on a collaborative
rectification structure for linear pumps where the fundamental

subsystem consists of two Direct Drive Pump Cells
(DDPCs).10 Their prototype has verified feasibility of the pro-
posed actuator and flexibility of the dual-control strategy.

Although the system has a number of advantages, its reliability
characteristics, such as degradation and life prediction, need to
be addressed and further improved. Applying the novel oper-

ating principle, the LEHA has improved these performance
issues, but it has also introduced a problem due to the fact that
it cannot integrate filters. The novel LEHA is also an inte-
grated closed system which can increase the power-to-weight

ratio. A linear resonance motor drives piston cylinder suction
and discharges oil. The spool of a rectification slide valve is
rigidly connected with the driving cylinder rod, resulting in

the active rectification mechanism to be in a high-frequency
condition. Due to non-filter design, contaminated particles will
continuously cycle in an LEHA during its operation, which

will precipitate further erosion and produce more contamina-
tion particles. Consequently, compared to a conventional
hydraulic system with filters, the rectification mechanism in

an LEHA can fail more rapidly, which can lead to a dominant
progressive degradation process.

The rectification mechanism is commonly present in
hydraulic systems, and when coupled with oil contamination,

it can result in system failure. Some research results have indi-
cated that contamination particles in oil wash out and wear the
edges of valve components.11 The resulting leakage increase

caused by wear accounts for approximately 60% of cases of
component failure. According to the research by Zhang
et al., the wear resulting from particulate contaminants causes

an increase in the internal leakage, the output current hystere-
sis and null leakage, the input current threshold, and the pres-
sure gain, as well as a decrease in the gain linearity of the

electrohydraulic servo valve.12 The Physics-of-Failure (PoF)
models of particle erosion wear introduced by Fang et al. show
that the erosion wear has significant impacts on the electrohy-
draulic servo valve’s service life and reliability.13 Furthermore,

the erosion of an LEHA is even more serious due to the par-
ticular type of motion and active rectification under relatively
severe conditions. This paper is focused on the performance

degradation of an LEHA induced by erosion wear.
Performance degradation analysis is extensively applied in

numerous engineering fields to evaluate safety of machine

parts and equipment.14 The associated theories can be divided
into three categories: (a) failure physics, (b) probability statis-
tics, and (c) artificial intelligence. The first approach studies the
structural integrity of an object with respect to operating con-

ditions and mechanical and physical properties of materials
used to make the object. Probability statistics models are
mainly suitable for analysis of degradation based on stress fati-

gue, which requires significant amount of test data. Alter-
nately, the artificial intelligence approach is dependent on
field performance degradation data. In the field of durability

analysis and life prediction, numerous physical experiments
are performed in order to evaluate the life and reliability of
hydraulic components. Therefore, during the design stage, it

is essential to analyze the overall LEHA system based on the
physical nature of erosion.

A significant number of studies have been performed to
analyze the effect of erosion on system performance degrada-

tion. Fitch and Hong investigated the effects of contaminated
oil on erosion in pumps and contaminant lock in servo valves,
and proposed a new method to predict service life.15 The

occurrence of contaminant lock is accidental whereas the ero-
sion caused by contaminant particulates is a continuous pro-
cess which takes place as long as the system is operational.

Vaughan et al. examined the effects of the particle size and
concentration, differential pressure across the metering land,
spool opening, spool surface, flow direction, as well as fluid

characteristics on erosion wear.16 Yang et al. adopted a
gamma process to describe the internal structure degradation
under erosion for electrohydraulic servo valves.17 Zhang
et al. presented a degradation assessment and life prediction

method for electrohydraulic servo valves based on the CFD
method and hydraulic simulation.12 In addition, other
researchers have predicted structural wear by CFD tech-

niques.18–20 The mechanism of erosion for a ductile metal
material is a micro-cutting process, which was put forward
by Finnie, who also presented an analytical erosion model to

calculate erosion rates.21 Tilly proposed that erosion of ductile
materials could occur in two stages, where the first stage is
micro-cutting whereas the second stage is surface fragmenta-

tion, and found that resulting estimates gave a good correla-
tion with experimental data.22 Recent theoretical and
experimental studies explored the effects of particle properties,
impacting speed and angle, and material properties on the

severity of erosion. Among those studies, the Edwards model
has been widely accepted to be applicable to erosion for gas-
solid, liquid-solid, or gas-liquid-solid flow, where particle

properties, impacting speed and angle, and material properties
are taken into account.23 Therefore, the Edwards model is uti-
lized in this study because of its extensive applicability and

high prediction accuracy. In addition, erosion due to the recti-
fication mechanism in an LEHA under the influence of con-
taminant particles in hydraulic oil falls within the model

framework.
This paper proposes a new method for analyzing perfor-

mance degradation under dynamic erosion wear. The Edwards
model is utilized to obtain erosion rates due to its broad appli-

cability and high prediction accuracy. Furthermore, erosion
rates of the rectification mechanism for different port openings
and different degradation stages are estimated. In addition, in

order to obtain the degradation curve under dynamic erosion
wear, the concentration of contaminant particles is updated
at different stages of degradation. Finally, the proposed degra-

dation model is applied to simulate the wear degradation pro-
cess in an LEHA under different flow conditions, and results
are compared with results from traditional wear studies.

2. Problem description

2.1. Working principle of the LEHA

The schematic representation of the proposed LEHA architec-
ture is shown in Fig. 1, whereas Fig. 2 represents the hydraulic

circuit diagram and control loop of a traditional REHA. The
REHA utilizes a motor and a pump to convert electrical
energy to hydraulic energy, where the motor has reversible

rotation in order to control the flow direction of hydraulic
oil. Compared with the REHA, the proposed LEHA has the
following distinct characteristics: (1) a linear resonance motor

Erosion degradation characteristics of a linear electro-hydrostatic actuator 915



corresponding to the rotating electric machine, (2) a single

direct drive piston cylinder corresponding to the traditional
rotary piston pump, (3) a rectification model with passive reli-
ance on a valve plate and active collaborative rectification

dependence on a three-position four-way slide valve, and (4)
direction control achieved through the phase difference
between two DDPCs. The linear motor commonly operates
in the resonant working mode in order to generate the maxi-

mum energy output. A Direct Drive Pump Module (DDPM)
consists of DDPC1 and DDPC2, which are characterized with
collaborative rectification. A DDPC consists of a cylinder and

a valve, where a piston rod and a valve spool are integrated,
and is driven directly by the linear resonating motor. X and
Y are the interface ports of the DDPCs: one is the inlet and

the other is the outlet. The deflection angle of aircraft’s control
surface is h. As a result, the novel pump is more compact and
has better controllability. The theoretical research and experi-
mental results conducted on the prototype valve have demon-

strated that the DDPC-discharged kinematic flow volume
depends on the phase difference between the two cells.

The output flow in one cycle from a DDPM port is represented
by

V ¼ �8AcSp sinu ð1Þ
where V is the output flow in one cycle from a DDPM port, Ac

is the piston’s effective area, Sp is the resonance amplitude of a
DDPC, and u is the phase difference between the two cells.

The kinematic volume efficiency is maximum for u =
±p/2, and zero for u = 0 or u = ±p.

2.2. Dominant mode of gradual failure

At an earlier stage, a Failure Mode and Effect Analysis
(FMEA) was performed for the LEHA.24 The results show
that resonant spring fatigue damage and rectification mecha-

nism erosion are the two major progressive failure modes
affecting the performance of the LEHA. The LEHA failure
is defined as a condition when a performance indicator cannot

be maintained within a specified range. The effect of rectifica-
tion mechanism erosion is shown in Fig. 3, where P, T, A, and
B are the hydraulic oil ports of the three-position four-way

valve. The figure indicates possible fluid flow patterns in the
rectification slide valve when port P is connected with X and
port T is connected with Y. It can be seen that the rectification

valve is characterized by reciprocating flushing which is differ-
ent from single-direction flushing which occurs in a traditional
valve. The rectification valve at the middle position is equiva-
lent to a piston pump at the upper or lower dead point. Con-

sequently, wear of the internal structure can cause an increase
in internal leakage and result in power loss.

The major sources of initial contamination include particu-

lates resulting from the manufacturing process, dust inclusions
from storage, and contaminant particles mixed in oil. These
contaminants can impact the system in three different ways:

(a) three-body abrasion, (b) particle impingement erosion,
and (c) motion impediment.15 Motion impediment is rare in
practice and caused by relatively large particles. However,
the erosion problem is common, and can become serious as

the process has a tendency of having positive feedback.

Fig. 1 Hydraulic circuit diagram of the novel LEHA design.

Fig. 2 Functional diagram and control loop of an REHA.
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The major impact of erosion is reflected on the performance
of the LEHA. Namely, there are two ways in which the power/
weight ratio of the LEHA can be affected: one is a change in

the resonant frequency and the other one is a change in the
amplitude. The resonant amplitude is subject to the size of
the DDPM, which makes modification in the frequency
become the most effective method. The initial clearance

between the valve spool and sleeve in new valves is generally
in the range of 3–5 lm, and the corner radius of edges is gen-
erally below 0.5 lm. Throughout their lifecycles, valves will

undergo erosion which will cause an increase in internal leak-
age, which, on the other hand, will ultimately degrade the sys-
tem performance.

3. Mathematical model of the degradation process

The erosion-induced performance degradation process can be

analyzed in three consecutive steps: (1) identification of the
potential erosion location and determination of the fluid
dynamic boundary, (2) determination of the structural degra-

dation after erosion, and (3) prediction of the erosion rate.

3.1. Stress-strain equation of the dynamic boundary

The erosion wear is analyzed in both valve and piston regions

as indicated in Fig. 4. Pv1, Tv1, Av1, and Bv1 are the hydraulic
oil ports of the valve in DDPC1. Ap2 and Bp2 are the cylinder
chambers in DDPC2. The displacement of the mover is x1 in

DDPC1, and the velocity is v1. Similarly, the displacement of

the mover is x2 in DDPC2, and the velocity is v2. The positive
direction is the cylinder pointing to the valve. When the spool
in DDPC1 or DDPC2 is at the zero displacement, i.e., x1 = 0

or x2 = 0, there is no connection between P, T and A, B. The
piston determines the flow velocity and flow rate through the
valve inlet, and in turn, the valve transfers the load pressure
to the piston.

The continuity equations of hydraulic chambers Ap2 and
Bp2 can be written as

dPdA2

dt
¼ � be

VdA2

½qdA2out þ CipðPdA2 � PdB2Þ þ CepPdA2 � Ac _x2�
ð2Þ

dPdB2

dt
¼ be

VdB2

qdB2in þ CipðPdA2 � PdB2Þ � CepPdB2 � Ac _x2

� �
ð3Þ

VdA2 ¼ VdA02 þ Acx2 ð4Þ

VdB2 ¼ VdB02 � Acx2 ð5Þ
where PdA2 is the hydraulic pressure in the left chamber, PdB2

is the hydraulic pressure in the right chamber, be is the effective
bulk modulus (including hydraulic oil, connecting pipes, and
the cylinder’s mechanical flexibility), VdA2 is the volume of

the left chamber (including valves and connecting pipes),
VdB2 is the volume of the right chamber (including valves
and connecting pipes), Cip is the cylinder’s internal leakage

coefficient, Cep is the cylinder’s external leakage coefficient,
qdA2out is the outflow from the cylinder’s left chamber, qdB2in

Fig. 3 Fluid flow in the rectification slide valve when P is connected with X and T is connected with Y.

Fig. 4 Schematic diagram of the reciprocating system.
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is the inflow to the cylinder’s right chamber, VdA02 is the initial

volume of the left chamber, and VdB02 is the initial volume of
the right chamber.

The fluid flow rate Q from the driven hydraulic cylinder

chamber to the valve entrance can be described by the follow-
ing orifice flow equation:

Q ¼ CdAe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðPf � PbÞ

q

s
ð6Þ

Q ¼ vpaAp ð7Þ
where Cd is the flow coefficient of the orifice, Ae is the effective
area of the orifice, Pf is the hydraulic pressure in front of the
orifice, Pb is the hydraulic pressure behind the orifice, q is

the fluid density, vpa is the average velocity of fluid at the valve
inlet, and Ap is the cross-sectional area of the valve inlet.

3.2. Continuous flow model

The continuous phase modeling uses Reynolds averaged
Navier-Stokes equations. Because of enhanced accuracy for

rapidly strained and swirling flows, the RNG k-e model is
selected for turbulence, where the continuity equation is
described as

r� ðqvÞ ¼ 0 ð8Þ
where v is the velocity of fluid.

3.3. Structural degradation model

According to a significant number of published results, erosion
has the greatest impacts on the radial clearance between the
spool and the sleeve, and on the throttle edge radii. An ideal
geometry calls for the throttle edges to be perfectly square with

no rounding.11–13,25,26 The erosion process will cause the throt-
tle edges to wear and develop radii, resulting in an increase of
the radial clearance between the spool and the sleeve, as shown

in Fig. 5. The radial clearance between the spool and the sleeve
has a small initial value because of the fluid’s lubrication.

According to the Pythagorean theorem, the gap between

the spool and the sleeve can be determined as

d2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1 þ r1 þ r2ð Þ2 þ r1 þ r2ð Þ2

q
� ðr1 þ r2Þ ð9Þ

where d1 is the radial clearance between the spool and the

sleeve, d2 is the flow clearance between the spool and the
sleeve, r1 is the radius of the spool’s throttle edge, r2 is the
radius of the sleeve’s throttle edge.

It is assumed that r= r1 = r2, since the difference between

r1 and r2 is relatively small.

3.4. Wear volume model

The geometry of the cylindrical spool changes during erosion
wear as indicated in Fig. 6. Assuming the same wear condi-
tions between contact surfaces, then the degrees of wear of

the spool and the sleeve can be assumed to be equal. In addi-
tion, it is assumed that the wear rate of each orifice is the same.
Since the edge radius, r, is small compared to the spool radius,
Rs, the radius of the spool, Rs, is considered to remain constant

throughout the process.
The longitudinal cross section of the wear-free spool is

assumed to be rectangular with square edges. As wear pro-

gresses, the spool edges start to develop a quarter-round geom-
etry of radius r. The total wear volume of a valve’s orifice can
be obtained by the following equation:

Vo ¼ 2Vs ¼ 2 1� p
4

� �
r2c ¼ 0:4292r2 ð10Þ

c ¼ 2pRs ð11Þ
where Vo is the total wear volume of a valve’s orifice, Vs is the

wear volume of a single throttle edge, r is the equivalent radius
of the throttling edge, c is the perimeter of the throttle edge,
and Rs is the radius of the spool’s boss.

The total wear volume of the valve can be obtained by the
time integration of the erosion wear rate as follows:

6Voqp ¼ se

Z t

0

qeðtÞdt ð12Þ

where qp is the contaminated particle’s density, se is the eroded
area, and qe(t) is the erosion rate function.

3.5. Contaminant particle concentration model

During a lifetime of LEHA operation, metal particles gener-
ated by wear end up in hydraulic oil. Since the LEHA is a

closed system, it is reasonable to assume that all particles pro-
duced by wear are accumulated in the working hydraulic oil.
The contaminant particulate concentration can be expressed

by the following mass conservation equation:

g0
Q
Vh þ 12qpVo ¼ g

Q
Vh ð13Þ

where g0 is the initial particle mass flow rate, g is the particle
mass flow rate with the corresponding wear volume Vo, and
Vh is the hydraulic oil volume in the LEHA.

Fig. 5 Throttle edge after wear. Fig. 6 Geometries of worn throttle edges.
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3.6. Discrete phase model

The dynamics equation of a particle in a Lagrangian reference
frame can be expressed as

dup
dt

¼ FD u� up
� �þ g qp � q

� �
qp

þ Fx ð14Þ

where u is the fluid velocity, up is the particle velocity, and up is
the scalar form of the particle velocity. FD(u � up) represents

the force load on unit particle mass, g is the acceleration of
gravity, and Fx is the additional force including Saffman’s lift
force, the virtual mass force, the pressure gradient force, the

thermophoretic force, the forces in moving reference frames,
and the Brownian Force.

FD ¼ 18l

qpd
2
p

� CDRe

24
ð15Þ

Re ¼ qdp up � u
		 		
l

ð16Þ

where dp is the particle’s diameter, Re is the relative Reynolds
number, l is the dynamic viscosity of the fluid, and CD is the
drag coefficient, which is defined by Haider and Levenspiel27

as

CD ¼ 24

Re
1þ b1Re

b2
� �þ b3Re

b4 þ Re
ð17Þ

b1 ¼ expð2:3288� 6:4581Uþ 2:4486U2Þ
b2 ¼ 0:0964þ 0:5565U

b3 ¼ expð4:905� 13:8944Uþ 18:4222U2 � 10:2599U3Þ
b4 ¼ expð1:4681þ 12:2584U� 20:7322U2 þ 15:8855U3Þ

8>>><
>>>:

ð18Þ

U ¼ s

S
ð19Þ

where U is the particle shape factor, s is the surface area of a
sphere with the same volume as the particle, and S is the actual

surface area of the particle, and b1, b2, b3, and b4 are coeffi-
cients related to U.

It can be assumed that the particle volume fraction or con-

centration is very low and that the collision between particles
can be neglected.

3.7. Particle-wall collision-rebound model

When particles impinge the valve wall at a certain angle and
speed, they rebound at a certain angle and speed, as shown

in Fig. 7. The energy loss during collision can be determined
from the impulse-momentum principle where normal and tan-
gential restitution coefficients are employed, which are intro-

duced as

eN ¼ vp2;n
vp1;n

ð20Þ

eT ¼ vp2;t
vp1;t

ð21Þ

where eN is the normal restitution coefficient, eT is the tangen-

tial restitution coefficient, vp1,n and vp1,t are the particle’s nor-
mal and tangential velocities with respect to the wall prior to
collision, and vp2,n and vp2,t are the particle’s normal and tan-

gential velocities after collision.
It has been demonstrated by Grant and Forder et al. that

restitution coefficients are dependent on the particle impinge-

ment angle, ap.
28,29 Furthermore, Forder et al. provided the

expressions of restitution coefficients as follows:

eN ¼ 0:988� 0:78ap þ 0:19a2p � 0:024a3p þ 0:027a4p ð22Þ

eT ¼ 1� 0:78ap þ 0:84a2p � 0:21a3p þ 0:028a4p � 0:022a5p ð23Þ

3.8. Semi-empirical material removal model

The Edwards model is commonly used to determine the ero-
sion rate for certain particle concentration and wall bound-
aries, and can be expressed as follows:

Rerosion ¼
XNp

p¼1

mpCðdpÞfðapÞvbðvpÞp

Aface

ð24Þ

where Np is the number of particles that impact the area rep-
resented by Aface, mp is a particle’s mass, C (dp) is the function

of a particle’s diameter, vp is the particle velocity relative to the
wall, b(vp) is the function of the relative particle velocity, Aface

is the area of the cell face on the wall, and f (ap) is the function
of the impact angle, which is determined as

fðapÞ ¼

0:04ap 0 � ap < 20�

0:02ap þ 0:4 20� � ap < 30�

� 1
30
ap þ 2 30� � ap < 45�

� 1
450

ap þ 0:6 45� � ap � 90�

8>>><
>>>:

ð25Þ

4. Simulation of erosion wear

A well-established three-step erosion prediction approach
using the Eulerian-Lagrangian approach is used in this work
to simulate the process. The model, which has been adopted

by many authors, consists of the following steps: (1) flow field
prediction using viscous or inviscid models, (2) particle trajec-
tory calculation by modeling discrete particle dynamics, and

(3) determination of erosion wear using a material removal
model. The development of the Eulerian-Lagrangian model
of fluid particle flows is well documented and will not be dis-

cussed in detail. However, certain aspects of the erosion model
applied in this study are discussed below.

The model of fluid flow is based on the Reynolds averaged

Navier-Stokes equations, while the RNG k-e model, due to its
enhanced accuracy for rapidly strained and swirling flows, isFig. 7 Schematic diagram of particle-to-wall collision-rebound.
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used to describe turbulence. The particle trajectory and its
velocity are determined by solving a set of ordinary differential
equations formed by the Lagrangian method. A simulation is

performed with ANSYS Workbench 15.0.
The simulation is based on the implementation of the flow

chart shown in Fig. 8. Firstly, the spool position and the con-

centration of contaminant particles are determined. A dimen-
sional fluid domain model is established next, followed by
meshing, parameter initialization, and calculation of erosion

wear. The erosion wear is recalculated when the spool position
or contaminated particles’ concentration changes. Finally, an
erosion degradation curve is obtained by integrating the ero-
sion rate with respect to time.

The main structural parameters of the LEHA’s rectification
mechanism are given in Table 1. The initial flow rate of
hydraulic oil with contaminant particles can be obtained by

7th level.12 It is assumed that the particles are pure iron, the
reciprocating frequency is 100 Hz, and the opening size is
±3 mm. The dynamic fluid boundary conditions can be

obtained from Eqs. (7) and (8). In order to achieve high com-
putational effectiveness, an optimal algorithm is used to bal-
ance the grid quality and calculation time. The resulting

computational domain mesh is shown in Fig. 9. The standard
case simulation parameters are given in Table 2.

In addition, the conventional SIMPLE algorithm is applied
to couple pressure and velocity via a second-order upwind

scheme for the momentum. The convergence criterion is set
so that the residual is smaller than 10�3.

The simulation results representing the erosion rate con-

tours of the spool valve are shown in Fig. 10. The results indi-
cate that the edge of the throttle orifice is experiencing the
most serious erosion. The results are consistent with the pub-

lished results focused on erosion of EHSVs, throttle valves,
and needle valves.11–13,17,25,30,31 The particle path lines and
associated velocity magnitudes are shown in Fig. 11. The areas
with high-speed profiles are evident in the orifice edge region,

where the particle velocity can be in excess of 100 m/s. Having
a large number of particles with significant kinetic energy,
directly impinging the orifice, will result in a severe erosion

of the surface.

5. Results and discussion

5.1. Effect of the opening gap on the erosion rate

The average erosion rate of a sharp edge as a function of the
valve opening (dop), during the early stage of degradation, is
shown in Fig. 12. Correspondingly, Fig. 13 depicts the erosion

rate distribution in the throttling edge for different valve open-
ing sizes. The results are for valve port opening between 0 mm
and 3 mm. It can be observed that the maximum average ero-
sion rate occurs when the EHSV opening is 0.5 mm, and that

the average erosion rate decreases rapidly for opening sizes
between 0.5 mm and 1.0 mm.Fig. 8 Algorithm for erosion prediction.

Table 1 Main structural parameters of the LEHA.

Structural parameters Value

Diameter spool dsp 7 mm

Diameter cylinder’s rod dcr 7 mm

Diameter cylinder’s piston dcp 10.5 mm

Valve stroke Sv 3 mm

Diameter hydraulic pipe dp 3 mm

Hydraulic oil volume Vh 0.5 L

Fig. 9 Computational domain and mesh (when the valve

opening is 50%).
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5.2. Effect of the inlet velocity on the erosion rate

In this section, the effect of the inlet velocity (vin) on flow ero-

sion is studied. Simulations are performed for different inlet
velocities while keeping other parameters the same as those
in the standard case. The erosion rate distribution in the throt-
tling edge as a function of the inlet velocity is shown in Fig. 14.

It is apparent that an increase in the inlet velocity increases the
erosion severity of both the sleeve and the spool. It is also

apparent that the erosion is maximum at the maximum-
velocity locations, which occurs at the gap between the edges
of the valve spool and sleeve. The simulation results indicate

that the erosion zone on the spool wall increases simultane-
ously with an increase in the severity of erosion as the inlet
velocity increases from 45 m/s to 65 m/s, while the erosion in

the sleeve is consistently spread over the entire throttle side.
The maximum erosion rate on the spool occurs at an inlet

velocity of 65 m/s and is about 8.9 times higher than that at
an inlet velocity of 45 m/s, while the maximum erosion rate

along the sleeve throttle side for an inlet velocity of 65 m/s is
6.1 times higher than that for an inlet velocity of 45 m/s.

5.3. Effect of the inlet pipe diameter on the erosion rate

The erosion rates for different inlet pipe diameters but for con-
stant pressure and opening are shown in Fig. 15. It can be

observed that the maximum erosion wear rate initially
increases and then decreases with an increase of the inlet diam-
eter. The magnitude of the maximum erosion rate, for both the

spool and the sleeve, is largest at din = 4 mm. The erosion rate
of the valve spool for an inlet pipe diameter of din = 2.5 mm is
approximately 8%, whereas for din = 4 mm, it is 7.5%.

The results indicate that increasing the diameter of the inlet

pipe results in an increase of the flow through the gap between
the spool and the sleeve, which ultimately leads to an increase
in the erosion severity.

5.4. Effect of the load pressure on the erosion rate

The results indicating the erosion rate distribution on the valve

spool and along the sleeve for different levels of load pressure
(Pl) are shown in Fig. 16. When the load pressure increases
from 0 MPa to 5 MPa, the erosion wear rate decreases slowly,
whereas the erosion rate decreases rapidly with the load pres-

sure increasing from 5 MPa to 8 MPa. The maximum erosion
rates on the spool and along the sleeve throttling edges for a
load pressure of 0 MPa are respectively 3.21 times and 3.46

times higher than those for a load pressure of 5 MPa. The ero-
sion rate decreases rapidly when the load pressure increases to
8 MPa.

A lower load pressure causes a greater pressure drop on the
valve path, resulting in a greater velocity of particles impinging
on the valve wall, which increases erosion wear.

5.5. Effect of the particle concentration on the erosion rate

The results indicate that the particle concentration (cp),
expressed as the particle mass flow rate, plays a significant role

in affecting the erosion, as shown in Fig. 17. In addition,
increasing the particle mass flow rate results in an increase of
the erosion-dominated zone as well as the severity of erosion.

Table 2 Standard case simulation parameters.

Case Valve opening Inlet velocity Inlet pipe diameter Load pressure Particle concentration Particle diameter

Standard 0.5 mm 55 m/s 3.0 mm 3 MPa 1.78 � 10�7 kg/s 5 lm

Fig. 10 Erosion rate contours of the valve.

Fig. 11 Particles’ path lines of the velocity magnitude.

Fig. 12 Erosion wear rate under different valve opening sizes.
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As the mass flow rate increases from 1.78 � 10�7 kg/s to
3.56 � 10�7 kg/s, the erosion zone extends to the entire
throttling edge. The peak erosion rate of the spool at a particle

mass flow rate of 3.56 � 10�7 kg/s is approximately 2.64 times
of that at a flow rate of 1.78 � 10�7 kg/s. Whereas, the
maximum erosion rate along the sleeve at a particle mass flow

rate of 3.56 � 10�7 kg/s is about 2.21 times of that at a flow
rate of 1.78 � 10�7 kg/s.

The higher the particle mass flow rate is, the more particles

impinge on the spool and the sleeve per unit time. The result is
that the same region is impacted by a larger number of
particles.

5.6. Effect of the particle diameter on the erosion rate

The results indicate that the particle diameter clearly affects
the erosion rates of both the spool and the sleeve, as illustrated
in Fig. 18. As the particle diameter increases from 1 lm to 3
lm, the erosion rate increases rapidly; however, as the particle

diameter increases from 3 lm to 20 lm, the erosion rate
decreases slowly. The maximum erosion rates of the spool
and along the sleeve at a particle diameter of 3 lm are respec-

tively 2.41 and 2.35 times higher than those for a particle diam-
eter of 1 lm. Furthermore, the maximum erosion rates of the
spool and along the sleeve for a particle diameter of 3 lm

Fig. 13 Erosion rate distribution in the throttling edge under different valve opening sizes.
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are respectively 16.23 and 15.64 times of those for a particle
diameter of 15 lm. The results indicate that the particle diam-
eter has a significant effect on erosion.

The underlying assumption is that the mass flow rate of
particles is constant. Consequently, the larger the diameter
of a single particle, the greater the mass of a single particle,
and the smaller the number of particles. When the number

of particles in the unit volume decreases, the probability of

the particles impacting the spool or the sleeve is reduced with
the number of particles passing through the gap between the
valve spool and the sleeve. For the same velocity, a particle

of a larger mass has greater kinetic energy than that of a par-
ticle of a smaller mass. As a result, assuming the same inci-
dence angle, a particle of a larger mass causes more severe
erosion than a particle of a smaller mass. As the particle diam-

eter increases from 1 lm to 3 lm, the particle inertial force

Fig. 14 Erosion rate distribution in the throttling edge under different inlet velocities.

Fig. 15 Erosion rate distribution in the throttling edge under different inlet pipe diameters.
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plays a dominant role in the erosion process, while for particle

sizes between 3 lm and 15 lm, the number of particles plays a
primary role.

6. Conclusions

The paper introduces the working principle of a novel LEHA
design, which is an integrated closed system without filters. A

study was performed to analyze the effects of contaminant par-
ticles, caused by the system erosion wear, on the internal leak-
age of the valve and ultimately on its performance. According

to failure analysis, erosion is the dominant progressive failure

mode of the LEHA. Since the system does not include filters,

the mass of contaminant particles accumulates over the life
of the valve, which can lead to progressive failure of the sys-
tem. Simulation results provide insight into the effects of valve

opening on the erosion rate and the relationship between the
erosion rate and structural degradation. A comparison
between the simulation results and published wear erosion
results for EHSVs indicates that the proposed analysis

approach is effective. The following conclusions can be made
based on the simulation results: (1) the erosion wear dominates
the service life of the LEHA (not considering accidental fail-

ure), (2) the throttle edge erodes fastest, caused by dissipation

Fig. 16 Erosion rate distribution in the throttling edge under different load pressures.

Fig. 17 Erosion rate distribution in the throttling edge under different particle concentrations.
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of the kinetic energy of a large number of high-speed particles

at that location, and (3) the erosion of the LEHA is an accel-
erated degradation process. The proposed approach can be
used to evaluate the service life of the LEHA and to further

guide the design of the LEHA’s rectification valve structure.
An experimental setup is under construction, which will

provide verification of the proposed analysis model, and
enable further studies of erosion phenomena in the LEHA

and their effects on performance degradation of the LEHA.
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