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Cameras with telephoto lens are usually used to recover details of an object that is either small or located far away from the cameras.
However, the calibration of this kind of cameras is not as accurate as the one of cameras with short focal lengths that are commonly
used in many vision applications. This paper has two contributions. First, we present a first-order error analysis that shows the
relation between focal length and estimation uncertainties of camera parameters. To our knowledge, this error analysis with respect
to focal length has not been studied in the area of camera calibration. Second, we propose a robust algorithm to calibrate the camera
with a long focal length without using additional devices. By adding a regularization term, our algorithm makes the estimation of
the image of the absolute conic well posed. As a consequence, the covariance of camera parameters can be reduced greatly. We
further used simulations and real data to verify our proposed algorithm and obtained very stable results.

1. Introduction

In various vision based applications, a camera with a tele-
photo lens is often useful to acquire detailed information of
objects. It could capture high resolution face images for the
purpose of recognition and reconstruction even when a user
is at a distance [1]. It also could obtain eye images with rich
iris textures when a user is several meters away from the
camera [2, 3]. In [4], a telephoto lens is used to observe objects
under the influence of optical turbulence. By combining
with a wide-angle camera, a robotic vision system has been
shown in [5], which is suitable for remote surveillance or
minimally invasive surgical interventions that could have a
higher resolution than typical commercial endoscopes. As
the field of view of a telephoto lens could only have a few
degrees (e.g., around 8 degrees for a 300mm telephoto lens),
in order to either track objects or reconstruct complete views,
an accurate estimation of camera parameters is required.

In the photogrammetry community, camera calibration
usually is done by computing the projection matrix using
accurate 3D points and corresponding 2D observations [6, 7].
However, in practice, it could be difficult or expensive to
build an object with accurate coordinates, especially in a large

working space. In the area of computer vision, the calibration
technique [8] that requires only a planar pattern (e.g., a
checkerboard pattern) is widely used. In this technique, a
planar pattern is placed with different orientations and at
different distances from the camera. Homographies are esti-
mated between the planar pattern and its observations.These
homographies could form a homogeneous system that is
used to solve the image of the absolute conic. The intrinsic
and extrinsic parameters are then computed by using the
estimated homographies and the image of the absolute conic.
In the final step, the maximum likelihood estimation (MLE)
is applied to estimate the radial distortion and refine the
intrinsic and extrinsic parameters by minimizing geometric
errors.This technique has further been evaluatedwith respect
to image noise level, number of planes, and orientation of the
model plane. Various autocalibration techniques [9, 10] are
also proposed to estimate fixed or varying intrinsic param-
eters without predefined calibration patterns. The basic idea
is that the absolute conic is fixed when a camera is moving
rigidly.

Since focal lengths of cameras inmany vision applications
are relatively short, most of existing algorithms consider
image noise as a major source of estimation uncertainties
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and limited research has been conducted on the uncertainties
caused by focal length [11, 12]. In [11], Strobl et al. found that
the narrow field of view makes the calibration more difficult
due to lack of required evidence on perspectivity. In order to
improve the calibration accuracy, the camera with a narrow
field of view ismounted on a roboticmanipulator fromwhich
the rigid motions can be read. These rigid motions could
provide more constraints for solving the intrinsic parameters
and a relative geometric relation between the camera and the
robotic manipulator. Similarly, a pan-tilt unit could be used
during the calibration as shown in [12].

There are mainly two contributions in this paper. Firstly,
we present a first-order error analysis that shows the relation
between estimation uncertainties and focal length. Although
authors in [11, 12] briefly described the calibration problem
caused by long focal length, the error analysis with respect to
focal length has not been studied so far. Secondly, we propose
a robust algorithm without using additional devices, which is
based on the regularization term defined by the prior of the
image of the absolute conic.

The remaining of this paper is organized as follows.
Section 2 introduces necessary notations and background of
existing algorithm using estimated homographies. Section 3
gives the error propagation from image noise to cam-
era parameters. Our calibration algorithm is proposed in
Section 4. Section 5 shows the experiments on simulation and
real data. The conclusion is given in Section 6.

2. Notation and Background

In this section, we start with the notation and then briefly
introduce the calibration technique proposed in [8].

The homography between the planar pattern and image
plane is denoted by𝐻 = [ℎ

1
ℎ
2
ℎ
3
], the intrinsicmatrix is given

by

𝐾 = [

[

𝛼
𝑥
𝑠 𝑢
0

0 𝛼
𝑦

V
0

0 0 1

]

]

, (1)

where (𝑢
0
, V
0
) is the coordinates of the principal point, 𝛼

𝑥
=

𝑚
𝑥
𝑓 and 𝛼

𝑦
= 𝑚
𝑦
𝑓 are scale factors, and 𝑚

𝑥
and 𝑚

𝑦
are the

number of pixels per unit distance in image along 𝑥 and 𝑦
directions. The image of the absolute conic is 𝜔 = 𝐾−𝑇𝐾−1.

Given an image of a planar pattern, two constraints can be
imposed on the intrinsic parameters, ℎ𝑇

1
𝜔ℎ
2
= 0 and ℎ𝑇

1
𝜔ℎ
1
=

ℎ
𝑇

2
𝜔ℎ
2
. Therefore, a constrained optimization can be formed

by

min
𝜔k

󵄩󵄩󵄩󵄩𝐴𝜔V
󵄩󵄩󵄩󵄩 ,

s.t. 󵄩󵄩󵄩󵄩𝜔V
󵄩󵄩󵄩󵄩 = 1,

(2)

where 𝜔V is a 6 × 1 vector extracted from 𝜔 and 𝐴 is a 2𝑛 × 6
matrix constructed from entries of 𝐻. The intrinsic matrix
𝐾 is computed by the Cholesky factorization. Since the
close form solution is obtained throughminimizing algebraic
errors, the maximum likelihood is further applied to refine
the results by minimizing geometric errors.
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Figure 1: Two cameraswith the same image plane and different focal
lengths.

The calibration performance with respect to image noise
level, the number of planes, and the orientation of the model
plane are also evaluated in [8]. Based on the computer sim-
ulations, the errors increase linearly with the image noise
level and decrease when more images are used. The best
orientation of the model plane is around 45 degrees.

3. Covariance of the Estimated
Intrinsic Parameters

In order to find out the relation between focal length and
uncertainties of camera parameters, it is not sufficient to only
have a point estimate of the parameters. In this section, we
present a first-order approximation to compute covariance of
estimated parameters.

Let us consider two cameras with different focal lengths
𝑓
1
and 𝑓

2
(assume 𝑓

1
> 𝑓
2
) and sharing a same image plane.

The origin 𝑂 is located at the center of projection of camera
1. Through a single point (𝑥󸀠, 𝑦󸀠) on the sensor, camera 1
observes a 3D point X

1
= (𝑋

1
, 𝑌
1
, 𝑍
1
)
𝑇 and camera 2

observes a 3D point X
2
= (𝑋

2
, 𝑌
2
, 𝑍
2
)
𝑇, while X

1
and X

2

are located on a same planar pattern. We also define a
transformation𝑀 that transforms the 3D points X

1
and X

2

to a coordinate system on the planar pattern such that new
depths 𝑍

1
and 𝑍

2
are equal to 0. Let us denote x̃

1
= 𝑀 ⋅ (𝑋

1
,

𝑌
1
)
𝑇 and x̃

2
= 𝑀 ⋅ (𝑋

2
, 𝑌
2
)
𝑇. The configuration is shown in

Figure 1.
As this configuration consists of the same image plane,

same 2Dobservations, and same orientations and locations of
the planar pattern, themajor difference between two cameras
is the focal lengths. For simplicity, we assume all the pixels are
square, we have

(𝑥
󸀠
, 𝑦
󸀠
)
𝑇

󳨃󳨀→
𝑓
1

𝑍
1

(𝑋
1
, 𝑌
1
)
𝑇

. (3)
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Figure 2: Comparison of uncertainties between the close form solution and theMLE solution [8] (𝑓 = 300mm,𝛼
𝑥
= 26034, and𝛼

𝑦
= 29163).

The image noise is 𝜇 = 0with𝜎 = 1.Themean relative errors of𝛼
𝑥
are 4.74% and 4.72%, themean absolute errors of 𝑢

0
are 1717 and 1689 pixels,

and the RMS reprojection errors are 19.5 and 3.2 pixels, for the close form and the MLE solutions, respectively.

Since the center of projection of camera 2 is at (𝑓
1
− 𝑓
2
, 0)
𝑇,

through the same point (𝑥󸀠, 𝑦󸀠), we have

(𝑋
2
, 𝑌
2
)
𝑇

󳨃󳨀→
(𝑍
2
+ 𝑓
2
− 𝑓
1
)

𝑓
2

(𝑥
󸀠
, 𝑦
󸀠
)
𝑇

. (4)

Putting this together with (3) leads to the formula

x̃
2
= 𝑀 ⋅ (𝑋

2
, 𝑌
2
)
𝑇

󳨃󳨀→
𝑓
1

𝑓
2

⋅
𝑍
2
+ 𝑓
2
− 𝑓
1

𝑍
1

⋅ x̃
1
. (5)

Let x = (𝑥, 𝑦) be the image coordinate of the point
(𝑥
󸀠
, 𝑦
󸀠
) on the sensor. Assuming that two cameras have same

image resolution and the principal point, x is same for both
cameras. Let us further assume that the noise is limited to

the observed image with covariance Σx, the covariance of the
intrinsic parameters Σk is

Σk = 𝐽k𝐽𝜔V(𝐽
𝑇

hΣ
−1

x 𝐽h)
+

𝐽
𝑇

𝜔V
𝐽
𝑇

k , (6)

where 𝐽k, 𝐽𝜔V , and 𝐽h are the Jacobian matrices evaluated at
k̂, 𝜔̂V, and ĥ, respectively. k, 𝜔V, and h are the vectors made
up of the entries of the intrinsic matrix 𝐾, the image of the
absolute conic 𝜔, and 2D homography 𝐻. As Σx, 𝐽k, and 𝐽𝜔V
only depend on k and 𝜔V and are same for both cameras, we
only need to analyze the relation between 𝐽h of two cameras.
The Jacobian matrix 𝐽𝑖h = 𝜕x𝑖/𝜕(ℎ) for 𝑖th observed point is
given by

𝐽
𝑖

h =
𝜕x
𝑖

𝜕h
=
1

𝑤
󸀠

𝑖

[

[

x̃𝑇
𝑖

0𝑇 −𝑥
𝑖
x̃𝑇
𝑖

0𝑇 x̃𝑇
𝑖
−𝑦
𝑖
x̃𝑇
𝑖

]

]

. (7)
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Figure 3: Comparison of uncertainties of 𝛼
𝑥
between our algorithm and [8].

Based on (5) and (7), it is not difficult to find that

Σh
2

= (∑

𝑖

𝐽
𝑇

h
2
,𝑖
Σ
−1

𝑖
𝐽h
2
,𝑖
)

+

= (
𝑓
2

𝑓
1

)

2

(∑

𝑖

(
𝑍
2,𝑖
+ 𝑓
2
− 𝑓
1

𝑍
1,𝑖

)

2

⋅ 𝐽
𝑇

h
1
,𝑖
Σ
−1

𝑖
𝐽h
1
,𝑖
)

+

,

(8)

where h
1
and h

2
are vectors made up of the entries of hom-

ographies between the planar pattern and camera 1 and 2,
𝑍
1,𝑖
and 𝑍

2,𝑖
are depths of 𝑖th 3D points observed by cameras

1 and 2, respectively. Σ
𝑖
is the covariance matrix of the 𝑖th

measured image point. From this equation, we can find that
the covariance of 2D homography is also affected by focal
length and orientation and depth of the planar pattern.

Notice that 𝑓
2
− 𝑓
1
is usually far less than depths 𝑍

1,𝑖
and

𝑍
2,𝑖
; we could approximate (𝑍

2,𝑖
+ 𝑓
2
− 𝑓
1
)/𝑍
1,𝑖

by 𝑍
2,𝑖
/𝑍
1,𝑖
.

Since image resolution and focal length are fixed for two
cameras, in order to reduce the uncertainties of the estimated
homography, one possible direction is to increase the pan
and tilt angles of the planar pattern so that 𝑍

2,𝑖
/𝑍
1,𝑖

is very
close to 0. However, as mentioned in [8], the best orientation
is around 45 degrees, which means that this ratio cannot be
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Figure 4: Comparison of uncertainties of 𝑢
0
between our algorithm and [8].

very small. This direction is also not feasible in practice due
to the limited depth of field. When the region of the planar
pattern is outside the depth of field, the sharpness of the
region decreases and image noise modeled by Σx increases.
Moreover, as the planar pattern could be considered as being
uniformly distributed within the field of view of a camera,
expectations of both 𝑍

1,𝑖
and 𝑍

2,𝑖
are close to the depth 𝑍

0

shown in Figure 1.Therefore, for simplicity, it is reasonable to
approximate𝑍

2,𝑖
/𝑍
1,𝑖
as 1. As a result, (8) could be simplified

to Σh
2

= (𝑓
2
/𝑓
1
)
2
⋅ Σh
1

, and the relation between covariance
matrices of intrinsic matrices of two cameras is given by

Σk
1

= (
𝑓
1

𝑓
2

)

2

⋅ Σk
2

. (9)

Therefore, uncertainties of intrinsic parameters k increase
when focal length increases. Since extrinsic parameters for
each image can be determined by intrinsic parameters and
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the corresponding homography, it is easy to find out that the
uncertainties of extrinsic parameters also depend on focal
length.

One might think that it is possible to reduce the uncer-
tainties by choosing the affine camera model. The intrinsic
matrix in the affine camera model could contain less param-
eters (i.e., does not have a principal point), and one way
to avoid over-fitting problem is to choose a simpler model.
However, the scale factors still exist in the intrinsic matrix
of the affine camera model. The similar derivations shown in
this section can be easily extended to the affine cameramodel.
Therefore, it can be shown that estimation uncertainties using
the affine camera model also increase when focal length
increases.

4. Calibration Using Regularized Least Squares

When a long focal length is used, the matrix 𝐴 that is used
to estimate 𝜔V (shown in (2)) is ill conditioned. As a result,
large perturbations of the intrinsic parameters can have only
small changes in the error sum of squares. Since it is often
difficult to obtain other data points outside the scope of the
sensor that has a limited physical dimension, in this section,
we apply a simple and effective prior of the image of absolute
conic to reduce the uncertainties.

First, focal length is set as the one provided by the camera.
Although this value is different from the focal length in the
pin-hole camera model, they are usually in the same order.
The number of pixels 𝑚

𝑥
and 𝑚

𝑦
can be computed by using

sensor size and image resolution. Skew factor is close to 0.The
principal point is located around themiddle of an image.This
location is a close approximation according to [13], which
shows that the principal point varies around the image center
with some nonlinear patterns when zoom and focus factors

vary. Thus, the prior knowledge of the intrinsic parameters
can be denoted as (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
)
𝑇
= (𝑚
𝑥
𝑓,𝑚
𝑦
𝑓, 0, 𝑥, 𝑦)

𝑇.
One possible solution is to apply this prior directly for

the estimation of 𝐾. However, it could require a nonlinear
optimization due to the Cholesky decomposition. In order to
obtain a close form solution, we transform it to the prior of
the image of absolute conic based on 𝜔 = 𝐾−𝑇𝐾−1. Hence,
the prior used in our algorithm is defined by

𝑐 =

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

1

−
𝑥
3

𝑥
2

𝑥
2

1
+ 𝑥
2

3

𝑥
2

2

−
𝑥
2
𝑥
4
− 𝑥
3
𝑥
5

𝑥
2

−
𝑥
5
𝑥
2

1
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5
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3
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4
𝑥
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𝑥
2

2
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2
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𝑥
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5
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2

2
𝑥
2

4
− 2𝑥
2
𝑥
3
𝑥
4
𝑥
5
+ 𝑥
2

3
𝑥
2

5

𝑥
2

2

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

. (10)

Notice that we normalize 𝑐 such that the first entry of 𝑐 is
1.This is different from the original constraint ‖𝜔V‖ = 1 in (2).
The reason is that some entries are very close to 0 when long
focal length is used and it could be numerically unstable for
solving the intrinsic parameters k. For example, for a 300mm
lens and around 4000 × 3000 image resolution, some entries
of 𝜔 are in the order of 10−10 and some entries during the
Cholesky factorization could be in the order of 10−20 when
‖𝜔V‖ = 1 is applied.
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Figure 6: Uncertainties of 𝛼
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, and V
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using our algorithm.

Theoriginal homogeneous system in (2) is then converted
to an inhomogeneous system by applying the prior from (10):

min
𝜔k

󵄩󵄩󵄩󵄩𝐵𝜔̃V − 𝑏
󵄩󵄩󵄩󵄩 ,

s.t. 󵄩󵄩󵄩󵄩𝜔̃V − 𝑐
󵄩󵄩󵄩󵄩 ≤ 𝜂

(11)

for an appropriate value of 𝜂, where 𝐴 = [𝑏𝐵] (𝑏 is the first
column of 𝐴) and 𝜔̃V and 𝑐 are 2–6 elements of 𝜔V and 𝑐,
respectively. The estimate 𝜔𝜆V can be obtained by solving cor-
responding unconstrained regularized least squares problem

𝜔̃
𝜆

V = (𝐵
𝑇
𝐵 + 𝜆𝐼)

−1

(𝐵
𝑇
𝑏 + 𝜆𝑐) (12)

for some positive constant 𝜆. The expectation of 𝜔̃𝜆V can be
computed by

𝐸 (𝜔̃
𝜆

V ) = 𝜔̃V + 𝜆(𝐵
𝑇
𝐵 + 𝜆𝐼)

−1

(𝑐 − 𝜔̃V) . (13)

Thus the estimator from (12) is biased after introducing the
prior 𝑐. The second term of this equation is the bias. As 𝜆
increases the bias increases, and expectation of 𝜔̃𝜆V converges
to 𝑐 eventually. In order to evaluate the covariance of 𝜔̃V, let
us define the function:

Φ(h, 𝜔V) = (𝐵
𝑇
𝐵 + 𝜆𝐼) 𝜔̃V − 𝐵

𝑇
𝑏 − 𝜆𝑐 = 0. (14)
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Based on the implicit function theorem in [14, 15], the Jaco-
bian 𝐽

𝜔̃V
can be approximated by

𝐽
𝜔̃V
= −(

𝜕Φ

𝜕𝜔̃V
)

−1
𝜕Φ

𝜕h
, (15)

where (𝜕Φ/𝜕𝜔̃V)
−1 and 𝜕Φ/𝜕h can be computed by

(
𝜕Φ

𝜕𝜔̃V
)

−1

≈ (𝐵
𝑇
𝐵 + 𝜆𝐼)

−1

,

𝜕Φ

𝜕h
= 𝐶𝐷,

𝐶 = (

𝜔̃V
𝜔̃V

d
) , 𝐷 =(

𝜕b
1

𝜕h
𝜕b
2

𝜕h
...

),

(16)

where b
𝑖
is 5 × 1 vector of the 𝑖th row of (𝐵𝑇𝐵 + 𝜆𝐼)𝜔̃V − 𝐵

𝑇
𝑏.

The covariance of 𝜔̃V is given by

Σ
𝜔V
= (𝐵
𝑇
𝐵 + 𝜆𝐼)

−1

𝐶𝐷Σh𝐷
𝑇
𝐶
𝑇
(𝐵
𝑇
𝐵 + 𝜆𝐼)

−1

. (17)

Since𝐶 and𝐷 are independent from 𝜆 and only (𝐵𝑇𝐵+𝜆𝐼)−1
depends on the𝜆, we can see that the covarianceΣ

𝜔V
decreases

as 𝜆 increases. The larger the 𝜆, the closer the 𝜔̃V is to 𝑐. If we
consider the mean squares error,

MSE = Bias2 + Variance (18)

it is possible to select an optimal value of 𝜆 > 0 at which the
mean squared error from testing set isminimized. In practice,
we could divide 2D points on a planar pattern into training
and testing sets and apply the cross-validation to choose the
optimal 𝜆.

5. Experiments

We tested our proposed algorithm on simulated data and real
data over a large range of settings of focal lengths and image
noise.

5.1. Simulations. In our simulations, image resolution is set to
2048×1536. Sensor size is 23.6×15.8mmand focal lengths are
50mm, 100mm, 200mm, 300mm, 400mm, and 500mm.
Skew factor 𝑠 is set to 0.009. The principal points (𝑢

0
, V
0
)

are set to the image center. Table 1 gives focal lengths and
corresponding scale factors used in the experiments. Gaus-
sian noise with 𝜇 = 0 and 𝜎 = (1, 3) are added to the 2D
observations. Since depth of field is limited when a long focal
length is used, the observed points could be easily blurred
when pan and tilt angles are large. Thus, we use a large
standard deviation (𝜎 = 3) of image noise to further test the
robustness of our algorithm. The planar pattern is generated
randomly with different pan/tilt angles and at different
depths from the camera. Angles are uniformly distributed

Table 1: Scale factors of the camera used in simulations.

𝑓 (mm) 50 100 200 300 400 500
𝛼
𝑥

4339 8678 17356 26034 34172 43390
𝛼
𝑦

4861 9722 19443 29163 38886 48608

Table 2: Priors of the intrinsic parameters.

𝑓 Sensor size 𝛼
𝑥

𝛼
𝑦

𝑠 𝑢
0

V
0

300mm 22.2 × 14.8mm 30486 30486 0 1128 752

between −60 and +60 degrees. Foreshortening effects are not
considered in the simulations. Depths are also uniformly
distributed within 6 meters. As the calibration technique
in [8] is widely used in the area of computer vision, we
implemented this algorithm as a baseline in order to compare
calibration performance between existing algorithms and
our algorithm. In our simulations, we add 5% offsets to the
priors of both the focal length and the principal point. We
conducted 20 trials for each configuration.

Figure 2 shows a comparison of uncertainties between
the close-form solutions and the solutions from MLE when
𝑓 = 300mmis used. Figure 2(c) shows that RMS reprojection
errors are reduced by minimizing the geometric errors.
However, as the cost function is not a convex function and
initial guess from the close-form solution could be far away
from the global minimum, the uncertainties of intrinsic
parameters cannot be reduced by the nonlinear refinement
as shown in Figures 2(a) and 2(b). The results are similar to
other settings in Table 1.This experiment shows that theMLE
can reduce RMS errors for training data points. However, it
cannot reduce the uncertainties of camera parameters.

Figures 3 and 4 show the relation between focal lengths
and the uncertainties of intrinsic parameters. It shows that
uncertainties increase with the increase of focal length. The
absolute errors of the principal point could be very large. It
indicates that the estimated principal point could be very far
away from the image plane for long focal lengths. Figures 3(c),
3(d), 4(c), and 4(d) show the results by using our algorithm.
the uncertainties of both the focal length and the principal
point are reduced to few percents. The estimated values by
using our algorithm converge to the bias (i.e., 5%), which is
consistent with (13). This further means that our algorithm
should bemainly used for the camera with a long focal length
(e.g., 𝑓 ≥ 200mm as shown in Figures 3 and 4). When focal
length is short, we need to choose either algorithm [8] or a
very small 𝜆.

5.2. Real Data. We also test our algorithm for the real data.
The camera to be calibrated is a Canon EOS 450D. The
sensor size is 22.2 × 14.8mm. Image resolution used in the
experiments is 2256 × 1504. We use a 300mm telephoto lens
in the experiments. The prior of the skew factor is set to 0.
The prior of the principal point is set to the image center.
The 𝛼

𝑥
and 𝛼

𝑦
are computed based on the sensor size, image

resolution, and focal length. Table 2 shows the priors for the
intrinsic parameters.
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18 images of a planar pattern with different orientations
and at different depths are captured within 6meters. 9 images
of them are randomly selected every time for calibration and
the same calibration procedure is repeated 20 times. Figure 5
show the calibration results using Zhang’s algorithm. We can
see that the uncertainties of the intrinsic parameters are very
large when a 300mm telephoto lens is used. The estimated
principal point could be far away from the image plane, which
in practice is not reasonable.

Figure 6 shows our calibration results with different 𝜆.
Similar to the results of simulations, the uncertainties are
reduced greatly and estimated intrinsic parameters converge
to the priors when 𝜆 increases.

6. Conclusion

As a camera with a telephoto lens could be used in various
vision based systems, it is necessary to calibrate the camera
accurately. Many existing algorithms that are designed for
cameras with relatively short focal lengths could cause large
uncertainties of estimated parameters even that the RMS
reprojection errors of training data are small after a nonlinear
optimization. In this paper, we first give a detailed error anal-
ysis that shows the relation between uncertainties and focal
length.Thenwe propose a robust calibration algorithm based
on the regularized least squares to reduce the uncertainties.
Looking into future, wewill apply our approach to the camera
network that contains the camera with a telephoto lens in the
area of remote surveillance and scene reconstruction.
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