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GENERALIZED INSERTION REGION GUIDES FOR DELAUNAY
MESH REFINEMENT"*

ANDREY N. CHERNIKOVT AND NIKOS P. CHRISOCHOIDES'

Abstract. Mesh generation by Delaunay refinement is a widely used technique for constructing
guaranteed quality triangular and tetrahedral meshes. The quality guarantees are usually provided in
terms of the bounds on circumradius-to-shortest-edge ratio and on the grading of the resulting mesh.
Traditionally circumcenters of skinny elements and middle points of boundary faces and edges are
used for the positions of inserted points. However, recently variations of the traditional algorithms
are being proposed that are designed to achieve certain optimization objectives by inserting new
points in neighborhoods of the center points. In this paper we propose a general approach to the
selection of point positions by defining one-, two-, and three-dimensional selection regions such that
any point insertion strategy based on these regions is automatically endowed with the theoretical
guarantees proven here. In particular, for the input models defined by planar linear complexes under
the assumption that no input angle is less than 90°, we prove the termination of the proposed
generalized algorithm, as well as the fidelity and good grading of the resulting meshes.
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DOI. 10.1137/100809076

1. Introduction. Delaunay refinement is a popular mesh generation method
which allows for the mathematical proofs of termination and good grading. These
properties are particularly important for parallel and/or time critical applications
when human intervention and reruns are prohibitively time consuming.

Delaunay refinement algorithms are based on the idea of inserting new points into
the mesh to improve the aggregate quality of elements (triangles in two dimensions
or tetrahedra in three dimensions). Quality is traditionally defined as the ratio of
the circumradius of the element to the length of its shortest edge [19, 21, 13, 7, 9].
The use of this measure leads to the improvement of the minimum angle in two
dimensions, which helps to improve the conditioning of the stiffness matrix used by
a field solver. In three dimensions this measure does not yield such direct benefits,
however; it has been shown [13] that the bounded circumradius-to-shortest-edge ratio
of mesh elements is sufficient to obtain optimal convergence rates for the solution of
the Poisson equation using the control volume method. The analysis and rigorous
proofs of Delaunay refinement were pioneered by Ruppert [19] and Chew [6] and
further developed by Shewchuk [21, 20].

One of the central questions in Delaunay refinement research has been the choice
of the positions for the new points. The traditional approach uses circumcenters of
mesh elements; however, a number of other locations have been used to achieve vari-
ous mesh optimizations [17, 7, 11, 10, 23, 3]. Our goal is to provide a single theoretical
framework which makes it possible to develop multiple custom point placement tech-
niques by means of defining special regions, such that any Delaunay refinement-based
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technique which places points in these regions will automatically be endowed with
termination and good grading guarantees. Then the development of parallel versions
of all these techniques is reduced to the parallelization of this single generalized ap-
proach [4].

In the previous work [3] we listed two-dimensional and three-dimensional point
insertion methods and suggested the use of two-dimensional and three-dimensional
regions, respectively, which we called selection disks. These regions were defined for
the highest dimension only, and, hence, we termed the approach semigeneralized.
Later [5], we developed a fully generalized approach for two dimensions; i.e., we
defined the selection regions for both one-dimensional elements (segments) and two-
dimensional elements (triangles). We also pursued the constrained Delaunay approach
to improve the angle bound and to extend the selection regions in two dimensions [8].
In this paper we develop a three-dimensional fully generalized algorithm which utilizes
selection regions simultaneously for one-, two-, and three-dimensional elements. The
theory we develop here offers the following nontrivial contributions:

e We formulate a novel three-dimensional fully generalized Delaunay refinement
algorithm.

e We prove the geometric fidelity of the meshes produced by this algorithm,
i.e., that new points are always inserted inside the domain.

e We prove that this algorithm terminates and, moreover, produces well-graded
meshes.

The rest of the paper is organized as follows. In section 2 we introduce the back-
ground, the basic facts, and the definitions. In section 3 we define the proposed fully
generalized three-dimensional Delaunay refinement algorithm. Then in section 4 we
prove the geometric fidelity of the algorithm, in section 5 we prove that the algorithm
terminates, and in section 6 we prove that it produces well-graded meshes. Section 7
concludes the paper.

2. Background. We consider the input domain € described by a planar linear
complex (PLC) [19, 21, 7, 9, 14]. A PLC X consists of a set of vertices, a set of
straight line segments, and a set of planar facets. X describes a nonconvex bounded
polyhedral domain with holes. Each element of X' is considered constrained and must
be preserved during the construction of the mesh, although it can be subdivided into
smaller elements through the insertion of new vertices. The vertices of X must be a
subset of the final set of vertices in the mesh.

Let the mesh My for the given PLC X consist of a set V' of vertices and a set T'
of tetrahedra formed on the vertices from V. To measure the quality of a tetrahedron
t we follow the traditional approach [19, 21, 7, 9, 14] and use the circumradius-to-
shortest-edge ratio, or radius-edge ratio for short, which we denote as p(t). The
algorithm takes as input an upper bound p > 2 on the radius-edge ratio and outputs
a mesh with all tetrahedra satisfying this bound. We call the tetrahedra that violate
this bound skinny.

Consider an n-simplex £ (n = 1,2,3) embedded in three dimensions which is
a straight line segment, a triangular face, or a tetrahedron. Let us call the open
ball corresponding to the smallest sphere which passes through the vertices of £ the
circumball of . The center of the circumball is called the circumcenter of the element.

DEFINITION 2.1 (Delaunay simplex [20]). An edge, triangular face, or tetrahedron
whose vertices are members of V is said to be Delaunay if there exists an empty sphere
that passes through all of its vertices.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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BOWYERWATSON(M, v)
Input: M = (V",T") is the mesh of PLC X at time step n before the insertion of v
Output: M = (V" T"t1) after the insertion of v
1. Vit v u{v})
2: T T™\ Crn (V) U {(VE) | £ € OCrn (V)}
// Here (v€) is the tetrahedron obtained by connecting vertex v
// to the vertices of triangle &.

Fi1c. 1. The Bowyer—Watson point insertion algorithm.

Fi1G. 2. Encroachment in three dimensions.

Here a sphere is considered empty if it does not contain any of the mesh vertices
in its interior; however, parts of edges and faces are allowed.

If all simplices in a three-dimensional mesh are Delaunay, then the whole mesh
is said to satisfy the Delaunay property. Moreover, all the two-dimensional meshes of
the PLC facets are also Delaunay in their respective planes.

Traditional Delaunay mesh generation algorithms start with the construction of
the initial mesh, which conforms to X', and then refine this mesh until it has no more
skinny tetrahedra. The general idea of Delaunay refinement is to insert additional
(so-called Steiner) points inside the circumballs of skinny tetrahedra, which leads
to their removal, until they are gradually eliminated and replaced by better quality
tetrahedra.

We will use the notion of cavity [9], which is the set of tetrahedra in the mesh
whose circumballs include a given point v. We will denote Cr (v) to be the cavity of v
with respect to the set of tetrahedra T and JCr (v) to be the set of triangles that form
the boundary of the cavity, i.e., the triangles which belong to only one tetrahedron in
Cr (v). We will use the Bowyer—Watson point insertion algorithm [2, 24], which can
be written briefly as in Figure 1.

Delaunay refinement algorithms observe special encroachment rules. In particu-
lar, if a Steiner point v is considered for insertion, but it lies within the circumball
of a constrained subfacet £, v is not inserted, but a point on the facet containing &
is inserted instead. Similarly, if v is inside the circumball of a constrained subseg-
ment, then a point inside this subsegment is inserted instead. In contrast to faces and
edges, there can be no encroached vertices. Consider the example in Figure 2. The
new Steiner point v is inside the circumball of a constrained face pqr. In this case,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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POINTINSERTION(X, M, v)
Input: X is the input PLC
M is a Delaunay mesh of X before the insertion of v
Output: M after the insertion or the rejection of v
1: if v encroaches upon some constrained subsegments
Mark one of these subsegments as encroached
elseif v encroaches upon some constrained subfaces
Mark the subface containing the projection of v as encroached

BOWYERWATSON(M, v)

2
3
4
5: else
6
7: endif

Fic. 3. The point insertion scheme which covers encroachment.

v is rejected, and the algorithm attempts to insert point v’ in the facet containing
triangle pqr. If v/ does not encroach upon any constrained subsegments, it is inserted
into the mesh. If, however, it encroaches upon a constrained subsegment, which is
Xy in our example, v’ is also rejected, and point v” in xy is inserted. With each
boundary face we associate an inside and an outside normal vector. Also, for each
tetrahedron we consider its centroid, which is obviously inside both the tetrahedron
and the domain. If v is a point chosen to remove a skinny tetrahedron ¢, then a
boundary face £ is considered encroached upon by v if and only if v is inside the
circumball of ¢ and the centroid of ¢ is toward the inside direction of £. Similar rules
are used for other encroachment instances.

These encroachment rules serve two related goals: (1) to preserve all of the sub-
features of the PLC in the Delaunay mesh by means of ensuring they have empty
spheres passing through their vertices (the smallest such sphere is chosen—the one
corresponding to the circumball); (2) to ensure that inserted Steiner vertices are inside
the mesh domain ) (as can be seen from Theorem 4.1). The algorithm in Figure 3
shows the logic behind point insertion and rejection.

To make the proof of termination possible, Delaunay refinement needs to avoid in-
finite encroachment sequences. To prevent infinite encroachment on adjacent features,
we follow the previous approaches and make a simplifying assumption that there are
no angles less than 90° between adjacent features of the PLC. As a result, no point
on one of the PLC features, say, £, can be inside the circumball of an adjacent PLC
feature, say, ', independently of where the point is located in a selection ball defined
in €.

A common approach for dealing with small input angles consists in isolating
the regions around them and meshing their neighborhood with a predefined pattern.
Bern, Eppstein, and Gilbert [1] cut off the acute interior angles by creating isosce-
les triangles at their apex vertices. Mitchell and Vavasis [15] in the context of their
octree-based algorithm enclose such angles in protected boxes which are triangulated
in a specific way. Ruppert [19] describes how to use circles with radius equal to a
fraction of the local feature size to shield vertices at sharp interior angles by creating
triangles around these vertices. Rand and Walkington [16] extend this approach to
three-dimensional Delaunay refinement by using two types of protective regions—so-
called collars and intestines. Miller, Pav, and Walkington [12] developed a variation
of Ruppert’s algorithm which allows for a larger angle bound by introducing a spe-
cial rule for treating skinny triangles across from input angles. We expect that the
application of these techniques can be combined with our analysis to eliminate the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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restriction of the 90° minimum input angle; however, this is beyond the scope of the
current exposition.

DEFINITION 2.2 (local feature size [21]). The local feature size function lfs (v) for
a given point v is equal to the radius of the smallest ball centered at v that intersects
two nonincident elements of the PLC.

The 1fs () function satisfies the Lipschitz condition.

LEMMA 2.3 (Lipschitz condition, Lemma 2 in [21]). Given any PLC and any two
points u and v, the following inequality holds:

(2.1) Ifs (v) < 1fs(u) + |[lu—v|.

Here and in the rest of the paper we use the standard Euclidean norm || - ||.

The traditional proofs of termination and of good grading of Delaunay refinement
algorithms explore the relationships between the insertion radius of a point and that
of its parent. Stated briefly, the insertion radius of point v is the length of the
shortest edge connected to v, and the parent is the vertex which is “responsible” for
the insertion of v [21].

DEFINITION 2.4 (insertion radius [21]). The insertion radius R (v) of point v is
the length of the shortest edge which would be connected to v if v is inserted into the
mesh, immediately after it is inserted.

The following definition of a parent vertex generalizes the corresponding definition
in [21]. In our analysis, even though the child is not necessarily the circumcenter of an
encroached subfacet or subsegment, the parent is still defined to be the same vertex.

DEFINITION 2.5 (parent of a Steiner vertex). The parent v of vertex v is the
unique vertex which is defined as follows:

e Ifv is an input vertex, it has no parent.

o If v lies on an encroached subsegment or subfacet &, then Vv is the earliest
detected point (possibly rejected for insertion) encroaching upon &.

o Ifv isinserted to remove a chosen skinny tetrahedron t, v is the most recently
inserted vertex of the shortest edge of t.

3. Generalized Delaunay refinement: Definitions and algorithm. We
begin this section by introducing the definitions and the analysis tools that allow us
to insert Steiner vertices in arbitrary positions within so-called selection balls.! We
conclude the section by describing the complete algorithm.

DEFINITION 3.1 (Type-d vertex). A vertex in three-dimensional space is consid-
ered of Type 0, Type 1, Type 2, or Type 3 if it is an input vertez, lies on an input
segment, lies on an input planar face, or none of the above, respectively.

DEFINITION 3.2 (selection ball). For a d-simplex & with circumcenter ¢ and
circumradius r, under one of the following conditions:

e d=1; or
e d=2; or
o d = 3, the shortest edge length of £ is equal to I, and the radius-edge ratio
p=r/l>p>2;
the selection ball of € is the closed d-ball with center ¢ and radius r(1 — 04) in the
hyperplane defined by & (line, plane, or three-dimensional space), where §q (d =1,2,3)
are constant parameters chosen such that

(3.1) 516205 > % 5L <1, Gy, 65 < 1.

Tn this paper we deviate from our previously used term selection disk and use selection ball
instead, as it appears to be more intuitively understandable.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Fic. 4. (Left) One-dimensional selection ball (thick segment). (Center) Two-dimensional se-
lection ball (shaded circle). Also illustrates the proof of Theorem 5.3. (Right) Three-dimensional
selection ball (shaded sphere).

See Figure 4 for an illustration.

The inequality limiting the product in (3.1) arises from the requirement imposed
by the termination condition (see section 5), i.e., that the algorithm does not create
a sequence of ever shorter edges. As can be seen later, in the worst case a new edge
length is a multiple of §1/v/2 - d2/v/2 - 63p of some existing edge length, and this
multiplier needs to be greater than or equal to one.

DEFINITION 3.3 (originating vertex). The originating vertex is an inserted (i.e.,
not rejected) vertex of Type d (d = 0,1,2) which either has no parent or has a parent
of Type k (k =0,1,2) which lies on a PLC feature nonadjacent to the one containing
this vertez.

For example, all vertices of the PLC satisfy the definition of an originating vertex
since they are inserted into the mesh (before the Delaunay refinement phase) and
have no parents.

The following definition is adapted and modified from [22].

DEFINITION 3.4 (parent sequence). The parent sequence of a vertex v.= vy is a
sequence of vertices {v;}1,, such that the following conditions hold:

(i) v1 can be a vertex of any type,

(i) Vi1 is the parent of v; fori=1,...,m—1,

(i) vy, is an originating vertex.

The complete Generalized Delaunay Refinement algorithm is presented in
Figure 5.

4. Proof of fidelity. In this section we prove that the algorithm maintains geo-
metric fidelity to the domain §2; in other words, all Steiner vertices are inserted inside
Q). The following theorem shows that the use of encroachment rules prevents Steiner
points from being inserted outside 2. In other words, a point is either encroaching
and rejected or inside ().

THEOREM 4.1. Let t be a d-dimensional simplex of a d-dimensional Delaunay
mesh (d = 2,3) of domain Q bounded by a set T' of (d — 1)-dimensional simplices.
Let v be an arbitrary point inside the d-dimensional circumball of t considered for
insertion by the stated Generalized Delaunay Refinement algorithm under the spec-
ified encroachment rules and priority in point insertion. Then either v € Q, or v
encroaches upon some (d — 1)-dimensional simplex £ € T.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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GENERALIZEDDELAUNAYREFINEMENT (X, p, 1, 02, 03, k1(), k2(), x3(), M)
Input: X is the PLC which encloses the domain 2
p is the upper bound on radius-edge ratio, p > 2
01, 02, 03 are the parameters that define selection regions; see (3.1)
k1(), k2(), r3() are user-defined functions which return specific positions
for Steiner points within respective selection balls
M = (V,T) is an initial Delaunay mesh of X', where V is the set of vertices
and T is the set of tetrahedra
Output: A refined Delaunay mesh M which respects the bound p
1: Let ENCROACHEDSEGMENTS() return the current set of encroached subsegments
2: Let ENCROACHEDFACES() return the current set of encroached triangular subfaces
3: Let SKINNYTETRAHEDRA() return the current set of skinny tetrahedra in T'
4: while (ENCROACHEDSEGMENTS()# 0 or
ENCROACHEDFACES()# () or
SKINNYTETRAHEDRA()# 0)

5 if ENCROACHEDSEGMENTS()# ()
6: Pick s € ENCROACHEDSEGMENTS()
7 v« k1(d1, $)
8: POINTINSERTION (X, M, v)
9: elseif ENCROACHEDFACES()# ()
10: Pick f € ENCROACHEDFACES()
11: v« k2(d2, f)
12: POINTINSERTION(X, M, v)
13: elseif SKINNYTETRAHEDRA()# ()
14: Pick ¢t € SKINNYTETRAHEDRA ()
15: V 53(53, t)
16: POINTINSERTION (X, M, v)
17: endif

18: endwhile

Fic. 5. A high level description of the proposed Generalized Delaunay Refinement algorithm.
Here we omit some details that do not influence the analysis, such as the location or type of the
encroaching vertex v, and the implementation of updates and queries to the sets of segments, faces,
and tetrahedra.

Proof. We present a proof for three-dimensions, and the two-dimensional case
follows trivially.

The proof is by contradiction. For the sake of contradiction, assume that v is
outside of €2 and does not encroach upon any of the boundary triangles. Below we
will show that under this assumption at least one mesh vertex is inside the circumball
of ¢, and therefore there is a contradiction with the Delaunay property.

Let u be an arbitrary vertex of ¢, and let w be the point of intersection of the
straight line segment uv with the boundary I'; see Figure 6. There are three inter-
section cases:

(A1) If w falls onto one of the mesh vertices, let @ = w be this vertex, and let £
be one of the boundary triangles with vertex q and other two vertices p and
r.

(A2) If w falls onto a mesh edge, let pq be this edge, £ be one of the boundary
faces with edge pq, and r be the third vertex of €.

(A3) Otherwise, w has to fall strictly inside some boundary face. Let £ be this
boundary face with vertices p, q, and r.

In Figure 7 we show examples of the mutual position of ¢ and &.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Left/ Right

[

circumball of &

circumball of ¢

F1G. 6. Illustration of the proof of Theorem 4.1. = is the plane containing a boundary simplex
& with vertices p, q, and r. By construction, the upper side of £ faces the outside of the domain S,
and the lower side of & faces the inside of Q.

P,

Fic. 7. Ezamples of the mutual position of tetrahedron t and boundary face &, corresponding
(left to right) to three, two, one, and zero shared vertices.

Let = be the plane defined by £. Consider two circles: (1) open circle A’ with
center C’ and radius R’, which is the intersection of = with the circumball of ¢
(C is the circumcenter of t); and (2) open circle B with center ¢ and radius r, which
is the circumscribed circle of triangle £&. These two circles lie in the same plane = by
construction.

If ¢ = C’, we consider two cases:

(B1) If r < R/, vertices p, q, and r must be inside the circumball of ¢, and the
proof is finished.
(B2) If r > R/, we consider two subcases:

(B2-a) Suppose u = w (and therefore from (Al) w = q). At least one vertex
(say, s) of t must be distinct from p, q, and r. s must be outside of
the circumball of £ due to the encroachment rules and on the other side
of E from v since t is inside 2. Then v clearly cannot be inside the
circumball of ¢; see Figure 8-(left).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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oV oV

Fic. 8. Illustration of the proof of Theorem 4.1.

(B2-b) If u # w, the argument is the same as in the previous subcase (with u
instead of s), and this subcase is also not possible.
Therefore, for the rest of the proof we assume that ¢ = C'.

For clarity of presentation we drew Figure 6 such that the straight line cC’ is
parallel to the view plane. Because of this orientation, the circle at the intersection of
the circumballs of ¢ and of £ is perpendicular to the view plane and is represented in
the figure as a straight line segment, ab. We denote the plane defined by this circle
as P and the partition of space induced by P as “left” and “right.”

If all three vertices p, q, and r are inside A’, they are also inside the circumball
of t, and the proof is finished. Otherwise, without loss of generality, assuming p is
outside of A’, we will show that both q and r cannot be outside of A’, and therefore
at least one of the vertices q and r must be inside the circumball of ¢. Consider the
straight line defined by points p and w (p # w by construction; see (A1)—(A3)).
Since w is inside &, this line intersects segment qr at some point, say, d. (As special
cases we have d = q and w = d = q.) Now we can state the following facts:

(C1) p is outside of A’ by assumption.

(C2) p is to the left of or on P, as follows from construction and (C1).

(C3) v is to the right of P, since it is inside the circumball of ¢ and outside of the
circumball of &.

(C4) u is to the right of or on P, as it is on the boundary of ¢’s circumball (being
a vertex of t) and outside of the circumball of £ (by the encroachment rules).

(C5) w is to the right of P, as follows from construction, (C3), and (C4).

(C6) d is to the right of P, as follows from construction, (C2), and (C5).

(C7) w is inside of A’ because v is inside the circumball of ¢, and u is inside or on
the boundary of the circumball of .

(C8) w is inside or on the boundary of B because it is inside or on the boundary
of €.

Based on these point positions, noting that (C7) and (C8) imply that A’ and B
intersect, we consider three configurations for the intersection of A’ and B:

(D1) A’ and B are exactly equal. This case is not possible since ¢ # C'.

(D2) Boundaries of A’ and of B touch in a single point p while A’ is inside B. By
an argument similar to case (B2), this case is also not possible, see Figure 8
(right).
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(D3) Boundaries of A" and of B intersect in exactly two distinct points, x and y,
and each of these two points may or may not be equal to p. Since part of the
circle B which is on the right side of P is completely inside A’, from (C6) it
follows that at least one of the points q and r has to be to the right of P and
therefore both inside A’ and inside the circumball of . O

5. Proof of termination. In this section we prove the termination of the Gen-
eralized Delaunay Refinement algorithm. The underlying idea of the analysis is to
show that the length of the mesh edges created by the algorithm is bounded from
below by a constant which depends only on the input PLC.

First, we need to recall the following lemma.

LEMMA 5.1 (projection lemma [21]). Let f be a subfacet of the Delaunay tri-
angulated facet F. Suppose that f is encroached upon by some vertexr v, but v does
not encroach upon any subsegment of F. Then projp(v) lies in the facet F, and v
encroaches upon a subfacet of F that contains projp(v).

Note that this lemma requires that subsegment encroachment is resolved before
subfacet encroachment. We satisfied this requirement in the way we formulated the
Generalized Delaunay Refinement algorithm in Figure 5.

Now we need to establish the following two facts that will be used later on.

STATEMENT 5.1. Given a triangle pqr with circumradius r and point u inside
this triangle, the distance from u to the closest vertex of pqr is less than or equal
tor.

This statement follows from the definitions of circumcircle and circumradius.

LEMMA 5.2. If v is a Type-d vertex inserted (or considered for insertion and
rejected) inside the selection ball of a d-simplex € (d = 1,2,3) with circumradius equal
to r, then

(5.1) R(v) > éqr.

Proof. By the Delaunay property and the encroachment rules, the circumball of
¢ is empty; therefore, the closest vertex to v has to be at a distance greater than or
equal to dgr. O

THEOREM 5.3 (point spacing theorem). For a vertex v of Type d inserted (or
considered for insertion and rejected) by the Generalized Delaunay Refinement algo-
rithm, either

(5.2) R(v)>Cha-R(¥), n=1,2,
or
(5.3) R(v) > Cphq-Us(v), n=3,

where Cy, 4 are defined separately for each of the cases from Table 5.1 as follows:

_ 0d 04
(5'4) 0173 = 53p, C27d = ﬁa C&d = 2——501'
Proof. Below we analyze the corresponding cases.
e The constant C' 3 is established by considering the cases when v is of Type 3.
Type-3 vertices are inserted only in the selection balls of skinny tetrahedra,
i.e., tetrahedra with

(5.5) p=r/l=p,
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TABLE 5.1
All possible type combinations of a vertexr v and its parent v with the corresponding constants
from Theorem 5.3. Vertices of Type-0 and Type-1 cannot be rejected by the algorithm, and therefore
the corresponding columns are not shown. For the child vertex v we do not distinguish between
inserted and rejected cases because the analysis is the same.

Type of v
Type of v | Type-0 Type-1 Type-2 Type-3
inserted | inserted | rejected | inserted | rejected | inserted
Type-1 Cs1 C31 Ca1 C31 Ca1 n/a
Type-2 C32 C32 n/a C32 Ca 2 n/a
Type-3 C1,3 C1,3 n/a C1,3 n/a C1,3

where [ and r are the shortest edge and the circumradius of a tetrahedron,
respectively. By the definitions of the parent and the insertion radius,

(5.6) R(v) <lI;
therefore,
R(v) > d3r (from Delaunay property and Lemma 5.2)
> I3pl (from (5.5))
> 03pR (V) (from (5.6)),

and (52) holds with 01’3 = §3p.

The constants Cz 2 and C5; are established by considering the encroachment
instances when either both v and v lie in the same PLC facet, or v does not lie on
an element of the PLC. These constants are derived separately below.

e To find Cs 9, let pgr be the encroached boundary triangle containing proj(¥)
according to the projection lemma, Lemma 5.1; see Figure 4(center). Without
loss of generality, let p be the vertex of the triangle pqr which is closest to
proj(v). Then from Statement 5.1,

(5.7) [proj(v) —pll <,

where 7 is the circumradius of pqr. Since Vv is inside the three-dimensional
circumball of triangle pqr,

(5.8) [V —proj(v)|| <.

From (5.7) and (5.8), considering the right triangle with vertices v, proj(v),
and p, we obtain that

(5.9) R(¥) <[V —p| < V2r,
Therefore,

R(v) > dor (from Lemma 5.2)
> 5,29 (from (5.9)),

and (5.2) holds with Cp» = %%.
e To find (51, note that v is a rejected vertex of Type 2 or Type 3 that
lies inside the circumball of the encroached segment containing v. Let this

segment be pq. Then
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R(v) < min{|[v-pl,[v—ql}

< \/ir

< 2%}’) (from Lemma 5.2).

Therefore, (5.2) holds with Cs; = %.
To establish C3 4 (d = 1, 2), we consider all the encroachment configurations when
the encroaching point v lies on a facet or a segment that is not adjacent to the facet
or the segment containing v. In this case ¥ is an inserted (not a rejected) vertex, and
v is an originating vertex. Let & be the encroached subsegment or triangular subface
with center ¢ and radius r» which contains v. We have two subcases, depending on
whether or not v is the vertex closest to v, since in a Delaunay triangulation every
vertex is always connected to its closest neighbor.
(i) If ¥ is the vertex closest to v, then R (v) = ||v — V|| > lfs (v).
(ii) Otherwise, let w be the vertex closest to v, which, by Delaunay property, has
to lie outside the circumball of £. Then

(5.10) R(v) =||lv—wl| > dqr.

Because circumcenter ¢ of £ and v lie on nonadjacent features, by Defini-
tion 2.2 of the Ifs () function,

(5.11) Ifs(c) < |lc—9|.
Therefore,
Ifs(v) < lIls(c)+|v—c| (from Lemma 2.3)

< Je=v| +]v—c] (from (5.11))
< r+lv—c| (because Vv encroaches upon &)
< r4+(1—-0dq)r (since v lies in the selection ball of &)
= (2 - 5d)’l”
< (2-09)EY (from (5.10)).

In both subcases, C5 4 = 25%(1 (d = 1,2) satisfies the inequality (5.3). O
THEOREM 5.4. The Generalized Delaunay Refinement algorithm terminates.
Proof. Figure 9 shows the relationship between the insertion radius R (v) of a

vertex v and the insertion radius R (V) of its parent v within a single parent sequence.

We can easily see that all loops have a product of multipliers greater than or equal

to one. Therefore, for each parent sequence the algorithm does not create edges

shorter than R (v,,) multiplied by a constant, where v, is the originating vertex of
this sequence. From (5.3) R(vy,) is lfs (v,,) multiplied by a constant. Hence, the
algorithm will not create edges shorter than a constant fraction of minycq Ifs (v) and

will eventually terminate because the domain has a finite volume. 0

6. Proof of good grading. The quantity D (v) is defined as the ratio of lfs (v)
over R (v) [21]:

_ Ifs(v)
CR(v)

(6.1) D(v)

It reflects the density of vertices near v at the time v is inserted, weighted by the
local feature size. To achieve good mesh grading we need this density to be as small
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inserted rejected
Type—0
% M
Type—1
Type—2 Type-2
% M %
Type-3 — Type-3
03p

03P

Fic. 9. A diagram illustrating the relationship between the insertion radius R (v) of a vertex
v and the insertion radius R (V) of its parent v within a single parent sequence. The head of each
arrow points to the box marked with the type of v, and the tail leaves from the boxr marked with
the type of V. The arrows are labeled with the minimum value of R(v) in terms of R(V), i.e.,
R(v) > C - R(V), where C is the label on the corresponding edge. The arrows pointing to the
originating vertices are not shown since they are outside of the parent sequences.

as possible. If the density is bounded from above by a constant, the mesh is said to
have a good grading property.

LEMMA 6.1. If v is a Type-d (d = 1,2,3) nonoriginating vertex of the mesh
inserted by the Generalized Delaunay Refinement algorithm into the selection ball of a
d-simplezx &, and C,, 4 are the constants specified by Theorem 5.3 for the corresponding
cases listed in Table 5.1, then the following inequality holds:
(6.2) D(v)SBd—I—D(V), n=1,2 whereBd:ZEdd.

n,d d

Proof. If c is the circumcenter of £ and r is the circumradius of £, then

[v—v] < Jlv—c|+|c—V] (from the triangle inequality)
< Q=dg)r+|c—v| (since v is in the selection ball of &)
< (1- 5d)r +r (since v is on or inside the circumball of &)
= (2—da)r
= Z d(sdT'
< 2 %dR( ) (from Lemma 5.2),
or
N 2-6
(6.3) Iv=v¥l<Bi-R(v), Ba=—5 a3
Then
Ifs(v) < IUs(v)+]v-— V|| (from Lemma 2.3)
< 1fs( )+ Bi-R(v) (from (6.3))
= D()-R(¥)+Ba-R(v) (from (6.1))
< D) £2 + By R(v) (from Theorem 5.3).

The result follows from the division of both sides by R (v). O
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THEOREM 6.2. There exist fized constants D; > 0, such that, for any vertex v of
Type i inserted (or considered for insertion and rejected) by the Generalized Delaunay
Refinement algorithm with p > 2, the following inequality holds:

(6.4) D(V)<D;, i=0,....3.

Therefore, the insertion radius of v has a lower bound proportional to its local feature
size.

Proof. The proof is by induction. The base case covers originating vertices, and
the inductive step covers nonoriginating vertices.

Base case. If v is an input vertex (Type-0), then all other input vertices must
be at a distance of lIfs (v) or greater, and therefore R (v) > lfs(v). Then D (v) =
Ifs (v) /R (v) <1, and the theorem holds with

(6.5) Do = 1.

The theorem is also true if v is a Type-1 or a Type-2 originating vertex (there
are no Type-3 originating vertices) since from Theorem 5.3 (case n = 3) D (v) =
Ifs(v) /R(v) < 1/C3 4. Therefore, we can choose any Dy and Dy which satisfy in-
equalities (6.6) and (6.7):

1
6.6 Dy > —
( ) 1= 03717
(6.7) Dy >
' 2= Cs.2

Inductive hypothesis. Assume that the theorem is true for any Type-j vertex v;
i.e., there exists a constant D; > 0 such that

(6.8) D(¥)<D;, j=0,...,3.

Inductive step. Now we prove that under the base case and the inductive hypoth-
esis the theorem also holds for any nonoriginating vertex v with parent v. For the
cases n = 1 and n = 2 from Table 5.1 (remember that for n = 3, v is an originating
vertex), we start with (6.2) and apply the inductive hypothesis:

D) <+

. < A )
(6.9) D(v)<B;+ o o

n=1,2.

As a result, the inequalities in (6.4) can be satisfied if the constants D are chosen
such that the following inequalities hold:

D
(6.10) Bi+CT <D;,, n=1,2.

Using Table 5.1, we expand the inequalities in (6.10) and obtain the inequali-

ties (6.11)—(6.17).
Forn=1,

D
(6.11) Bs + = < Dj,
Ci,3
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(6.12) Bs+ 2L < p,,
Ch.
D

(6.13) By + =2 < D,
Cis
D

(6.14) Bs + == < Dj.
Ci,3

For n =2,

D

(6.15) By + =2 < D,
Cao
D

(6.16) By + == < Dy,
Ca

(6.17) Bi+2% <p,.
Ca1

Now we have a system of recursive inequalities (6.6), (6.7), and (6.11)—(6.17).
From (5.4) and (3.1), noting that p > 2, it follows that C; 3C31C2 2 > 1; therefore,
from (6.12), (6.16), and (6.15) we can derive (6.18)—(6.20):

C1 3(Bs + C22(B2 + C2,1B1))
6.18 Dy > = : 151)
( ) b= C1,3C21C22 — 1

C21(B1+ C13(Bs + C22B2))
- C1,3C21C22 — 1 ’

V

(6.19) Dy

Ca2(Bs + Cy1(B1 + C1 3B3))
6.20 D3 > : : : .
( ) 3= 01,302710272 —1

By direct substitution, we can verify that inequalities (6.18)—(6.20) satisfy the rest of
the system, i.e., inequalities (6.6), (6.7), (6.11), (6.13), (6.14), and (6.17). By choosing
the smallest admissible values (corresponding to the equalities) for constants Dy, Do,
and Dg, and by plugging in the expressions for B and C, we conclude that the theorem
holds with

(2(2 = 83) + V2(2 — 62)83 + (2 — 61)0203)p

(6.21) Dy = e 7
(6.22) Do = V22 =01 + (V201(2 - 35) +61(2 — 82)d3)p

' ? 515253[) -2 ’
(6.23) Dy = V22 =0)+(2-61)0+ 01852 -0)p

515253,5 -2
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TABLE 6.1
Several sample values of algorithm parameters and the corresponding grading constants.

P& d2 03 Dy Do D3
2.1 1.0 1.0 1.0 92.70 64.84 45.14
25 1.0 1.0 1.0 22.07 14.90 9.83
3.0 1.0 1.0 1.0 13.24 8.66 5.41
3.0 1.0 1.0 0.9 18.74 12.54 8.16
3.0 1.0 1.0 0.8 32.49 22.26 15.04
3.0 1.0 1.0 0.7 128.70 90.30 63.14
3.0 1.0 09 1.0 19.10 12.80 7.37
3.0 1.0 09 0.9 30.77 21.05 12.62
3.0 1.0 09 038 81.83 57.16 35.60
3.0 1.0 0.8 1.0 33.73 23.14 12.24
3.0 1.0 0.8 0.9 83.39 58.26 32.11
3.0 1.0 0.7 1.0 136.15 95.57 46.38
3.0 09 1.0 1.0 19.35 11.53 7.45
3.0 09 1.0 0.9 31.14 19.04 12.75
3.0 09 1.0 0.8 82.71 51.86 35.96
3.0 09 09 1.0 31.71 19.40 11.57
3.0 09 09 09 72.05 45.07 27.91
3.0 09 08 1.0 85.82 53.84 29.61
3.0 08 1.0 1.0 34.61 18.73 12.54
3.0 0.8 1.0 0.9 85.36 47.44 32.84
3.0 08 09 1.0 86.92 48.32 29.97
3.0 0.7 1.0 1.0 141.43 69.08 48.14

40 10 10 1.0 8.83 5.54 3.21
80 1.0 1.0 1.0 5.89 3.45 1.74
16.0 1.0 1.0 1.0 5.04 2.86 1.32
16.1 0.5 0.5 05 5713.13 2018.84 712.71
320 1.0 1.0 1.0 4.71 2.62 1.15

320 05 05 0.5 70.97 24.03 7.44

By examining the expressions for D1, D2, and D3, we also note that Dy > Do >
D3 for all admissible values of 41, d2, d3, and p. Indeed, denoting for convenience

N

Di—Dy=———
! 2 515253,5—2’

we have

N = (2(2 — 53) + \/5(2 — 52)53 + (2 — 51)5253),5
—V2(2 = 81) — (V261(2 — 63) + 61(2 — 02)83)p
= 4p+ 2(\/5 — 1)53,5+ (2 — \/5)5253[)
—2v2 =01 ((2v2+ (2= V2)d3)p — V2)
4p+2(vV2 = 1)d3p +2(2 — V2)
—2v2 — ((2v2+ (2= V2)85)p — V2) (using (3.1))
0

(since p > 2),

v

>

and therefore D1 > D,. Similarly it can be shown that Ds > Ds. In other words,
grading is always better (in the worst-case analysis) in the interior of the domain than
on the boundaries.

In Table 6.1 we list the values of Dy, Do, and D3 corresponding to a few values of
parameters d1, d2, 03, and p. As expected, grading becomes worse with the increase
in the size of the selection balls. This follows from the fact that larger selection balls
allow for shorter mesh edges. Also, an increase in size of one type of selection ball
leads to an increase of all grading constants, which is due to the involvement of parent
points in the grading analysis.
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7. Summary. We developed a novel generalized three-dimensional guaranteed
quality Delaunay refinement algorithm and proved its termination as well as fidelity
and good grading of the resulting mesh. The presented algorithm and analysis extend
the previous approaches by introducing a sequence of three types of insertion regions,
corresponding to the points inserted on the domain features of each dimensionality.
The sizes of the regions can be chosen for each instantiation of the algorithm, based
on its requirements with respect to the grading—flexibility tradeoff.

A parallelization [4] of this generalized algorithm immediately implies paralleliza-
tions of all conforming instantiations. Subject to further analysis, the proposed se-
lection balls could offer the flexibility and a unified theoretical framework to insert
points in a variety of positions dictated by various Delaunay-based mesh optimizations
techniques such as the following;:

e avoiding slivers by inserting points into the neighborhoods of circumcenters [7,
11],

e reducing the final mesh size by picking specific “off-center” positions [23], and

e creating a hierarchy of nested meshes [18] by choosing points on the existing
mesh edges [17].
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