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ABSTRACT

Invariant Manifolds of a Toy Climate Model

Michael Toner 

Old Dominion University, 1994 

Director: Dr. A. D. Kirwan Jr.

Co-Director: John E. Kroll

According to astronomical theory, ice ages are caused by variations in the Earth’s 

orbit. However, ice core data shows strong fluctuations in ice volume at a low fre­

quency not significantly present in orbital variations. To understand how this might 

occur, the dynamics of a two dimensional nonlinear differential equation representing 

glacier/temperature interaction of an idealized climate was studied. Self sustained 

oscillation of the autonomous equation was used to model the internal mechanisms 

that could produce these fluctuations. Periodic parametric modulation of a damped 

internal oscillation was used to model periodic climate response at double the external 

modulation period. Both phenomena rely on bounded, structurally stable invariant 

manifolds that occur when a constant equilibrium solution becomes unstable. For the 

autonomous formulation, asymptotic analysis was performed to obtain analytic ap­

proximations. An outflowing manifold of a second saddle equilibrium formed a hetero­

clinic connection to the small amplitude periodic orbit of the self sustained oscillation. 

This connection bifurcated to a homoclinic orbit when the periodic orbit intersected
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the saddle equilibrium. For periodic parametric modulations, internal frequencies 

that give rise to the period doubling phenomena were identified. The Poincare map 

showed cases where the bounded outflowing manifold intersects transversally with the 

unbounded inflowing manifold, a geometry indicative of chaotic dynamics.
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Chapter 1

Formulation

1.1 Introduction

Since the pioneering work of Lorenz in the early 1960’s [9] toy models have played an 

important role in both geophysics and dynamical systems. Toy climate models, for 

example, have been used as “sanity checks” for the results from prim itive equation 

based climate simulations [4].

Climate models fall in to two main categories [8]: equilibrium models and differen­

tia l models. Equilibrium models presume the climate is near equilibrium at all times 

and any change in the parameters of the planet results in a slow adjustment of the 

equilibrium. Differential models presume the climate is in motion and any change in

. i • 11 • /• n» i i *i'i • i » • r l'fr j • i 1 1
cue param eters varies tins inutiun. o tau ic  c4iiu1u11u.n1 auiutiuna ui unicicnuicu uiuucio

can give rise to simple equilibrium models.

A primary issue in climate dynamics [4] is to relate the surface albedo of the Earth

1
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to the global temperature. Of course the exact relationship between the two, if  one 

exists, is impossible to obtain. Thus, for practical reasons, we are forced to use small 

dimensional or toy climate models to relate gross aspects of the temperature to the 

albedo.

According to the astronomical theory of ice ages developed by Milankovitch [10], 

the Earth’s orbital variation causes cycles in the average radiation received from the 

Sun, thus contributing to the growth and recession of glaciers. However, very little  

orbital variation exists at the 100,000 year period although this period dominates 

climate data for the last 600,000 years [14],[8]. Dominant orbital variation exists at 

20,000 year and 40,000 year periods; thus internal mechanisms are believed to be 

responsible for the 100,000 year periodicity. This notion is supported by the fact that 

climate records longer than 600,000 years do not exhibit the strong 100,000  year cycle 

[8].

Clearly, an equilibrium model cannot explain the 100.000 year internal cycle. The 

mechanisms that contribute to this internal feedback are not obvious. Both deter­

ministic and statistical approaches have been utilized to approximate these internal 

mechanisms using differential models.

The models used by Nicolis and Nicolis [11] and Benzi et al. [1] use random 

forcing of a nonlinear energy balance differential equation governing temperature. 

Both models show two stable equilibrium temperatures separated by an unstable 

equilibrium. The random forcing term in both cases moves the temperature between 

the two stable temperatures. Nicolis and Nicolis use the Fokker-Planck equation with

2
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piecewise linear variation of albedo with, temperature. Benzi et al. directly impose 

three equilibria with the form of their equation, do not incorporate albedo effects and 

introduce 100,000 year periodicity.

Deterministic models include explicit mechanisms believed to be important in 

climate dynamics. Clearly, a system of linear differential equations cannot support 

structurally stable periodic motion without external forcing at the prescribed period. 

This lim itation can be overcome with a nonlinear system. Nonlinear systems of dif­

ferential equations exhibit a rich variety of behavior and allow plausable physical 

mechanisms missing from linear systems. Solutions comprising the invariant mani­

folds in the phase space of the equations give the local topology, showing how these 

mechanisms effect the dynamics.

North [12] studied the relationship between the solar constant and the latitude 

of the ice sheet edge between glaciated and unglaciated surface. A linear empirical 

formula for infrared flux in terms of temperature was utilized. Thermal diffusion 

was used for the energy balance equation to form a linear differential equation. By 

im plicitly defining the location of the ice sheet edge, the system became nonlinear. 

Analytic approximations in terms of hypergeometric functions showed two stable 

equilibrium latitudes (one corresponding to the present climate and one corresponding 

to an ice covered Earth) separated by an unstable equilibrium latitude. The results 

show that a small drop in the solar constant could move the present stable climate 

to an ice covered Earth.

Ghil and Tavantzis [5] utilized a piecewise linear radiation balance equation cou-

3
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pled to a nonlinear mass balance equation for the ice sheets. The assumptions on 

the ice sheets give a parabolic profile of the glaciers. Phase space analysis of the 

two autonomous differential equations showed a stable lim it cycle about a constant 

(unstable) equilibrium and two saddle type equilibria. The lim it cycle supported in­

ternal oscillation at the 100,000 year period. The two saddle equilibria as well as 

the stability constant for the lim it cycle were determined numerically. A homoclinic 

orbit bifurcating from the lim it cycle was shown to exist when an inflowing and an 

outflowing manifold of one of the saddle equilibria intersected. Also shown to exist 

was a heteroclinic connection between the two saddle equilibria while the lim it cycle 

was s till present.

The differential climate model developed by Posmentier [14] is particularily inter­

esting. This two dimensional model couples a logistic growth law for uniform depth 

glacier advancement with a nonlinear energy balance equation. A constant equilib-

ilU i.il 10 aaouiiicu., auu uuo u.j 14.00,111 V/oa ĉ uaiuuuo aic amiucu tu uuio ia ûhiisiiuiii uu ivim

deviation equations. Periodic parametric perturbations of these deviation equations 

represent the effects of orbital variations. Posmentier reported periodic, quasiperi- 

odic, and chaotic solutions but did not show how these solutions arise; nor did he 

examine the global behavior of the autonomous equations as did Ghil and Tavantzis 

[5].

The elegant formulation and the robust behavior of this model make it appealing. 

We present a thorough analysis using techniques of dynamical systems theory. In

4
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particular, invariant manifold structures that can provide low frequencies not present 

in orbital variation w ill be examined. Also, the question of how chaotic dynamics can 

occur w ill be addressed by studying these invariant manifolds.

Since both stable and unstable constant equilibrium solutions have been proposed, 

we w ill examine both. For the autonomous system, we obtain a phase portrait similar 

to the model used by Ghil and Tavantzis [5]. However, we provide an analytic stabil­

ity  constant for the lim it cycle, an asymptotic approximation of a second equilibrium, 

and an asymptotic approximation of when the lim it cycle bifurtcates to a homoclinic 

orbit. Periodic parametric perturbations of the stable equilibrium solution is exam­

ined using Floquet theory. A combination of simple analytic analysis and numerical 

computation of the monodromy matrix allows us to determine how the equilibrium 

becomes unstable, and the type of structure that bifurcates from it.

One of the most important characteristics of nonlinear systems is that they provide 

bounded behavior when the linearized version becomes unbounded. For example the 

scalar logistic growth model x = kx — Xx2, when linearized about x =  0, becomes the 

exponential growth model x =  kx. The bounded behavior of the logistic model is due 

exclusively to the nonlinear term A a:2 that provides the second equilibrium x =  k/X.

In the periodic orbits of the the Poincare-Andronov-Hopf bifurcation, which oc­

cur in two (and higher) dimensions, the nonlinear terms bound the outward radial 

component of spiral source equilibria for differential equations. Nonlinear terms also 

can bound the outflowing manifolds of equilibria for two dimensional maps via saddle 

node bifurcation. Both of these invariant manifold structures are utilized in studying

5
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Posmentier’s model.

However, the same tendency that keeps linearly unstable motion bounded also 

can cause chaotic dynamics. Chaotic dynamics are associated with intersecting sad­

dle manifolds where stretching and contracting occur in the phase space [16], [17]. 

Geometry is the key factor in chaotic dynamics. The Smale Horseshoe, for example, 

is a piecewise linear map that has a chaotic invariant set due to the geometry of the 

mapping. Although this map was contrived to produce such a set, it  does give a good 

indication of what goes on when certain geometrical conditions are met.

Often chaotic motion is declared to be present after a series of numerical exper­

iments calculating quantities such as Liapunov exponents or fractal dimension [13]. 

This technique has been applied with varying success to both data and model output. 

W ith this approach one cannot predict the onset of chaos, but merely suggest that 

it  is present. We w ill determine when chaos can occur by studying the inflowing and 

cutfloY/iiir'ani^olds th.6 ^oinczLrs rri 2.p psricd^c psxsmstric rr,od.m̂ wtlcn

Since the assumptions made in the formulation do not include such realistic fea­

tures as an atmosphere and ocean, variations in albedo, or vegetation we do not 

expect the model to reproduce geological data. There are many quantitative models, 

some of them quite large, that match some aspects of geological data. Instead, our 

focus is to understand the role of the nonlinear feedback mechanisms present in such 

models and how ditterent modes ot behavior can arise.

There has not been extensive application of dynamical systems techniques to cli­

matology. Consequently, we hope the results presented here w ill prove useful and

6
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significant in assessing other model performance.

1.2 Formulation

The modified logistic growth equation for a planetary glacier coupled with an energy 

balance equation for the planet takes the following form:

G = R G ( l - G )  -  AG -  B T +  C 

T = L G - K T A + F { \ - G ) .  (1 .2 .1)

Here G is the fraction of the planet surface covered by glaciation and T is the aver­

age radiation temperature of the planet. Although the model does not account for 

geographic variability or the presence of an ocean it does account for a number of 

physical processes that are believed to be important in climate fluctuations. This 

model was first introduced by Posmentier [14].

In the equation for T, the first term LG accounts for warming associated with 

latent heat released by growth of the glacier. The parameter L is proportional to the 

latent heat of evaporation. The long-wave black body radiation leaving the planet 

is accounted for by K T 4 with K  being proportional to the black-body emissivity. 

Absorption of short-wave radiation by the non-glaciated portion of the planet is rep­

resented by jF (1 — G) with F  being proportional to the albedo of the bare planet 

surface.

The first term in the function for G accounts for the portion of the total planetary 

evaporation that falls on the glacier, thus contributing to its growth. The parameter R

7
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is proportional to the evaporation rate. The AG term accounts for enhanced melting 

when the glacier grows and advances towards the equator. Next, BT  accounts for the 

balance between enhanced melting and increased precipitation when the temperature 

rises. For B > 0 the melting dominates and B < 0 the precipitation dominates. 

Finally, C is used as a planetary constant. The parameters A, B, C are considered 

soft since values can not be readily prescribed. We use them to tune the model.

The parameter C is chosen to obtain a constant equilibrium at T =  Te and 

G =  1 -  k T* where K  =  tzF and Te is a chosen temperature. Details are described 

in Appendix A. The equilibrium glaciation value is adjusted with the parameter k.

We begin by translating this equilibrium to the origin. Let

G =  yi + 1  -  /c Te4

T =  2/2 +  Te.

(1.2.2)

(1.2.3)

Equations (1.2.1) with C given by (A.5) then become

y =  A y  + f(y )

where y =
y i 

2/2

A  =
2Rk T ? - R - A - B

2LRk T ? - L R - L A - F  - L B - A k FT?

(1.2.4)

(1.2.5)

f (y) =
Ry\

LRyl + KFy* +  iK  Fy\Te + 6 k Fy\T*

(1.2.6)
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The equations (1.2.4) are called the deviation equations.

The parameters A and B  are used to prescribe the eigenvalues of A. Details are 

given in Appendix B.

In (1.2.4) the linearized flow (f = 0) is topologically governed by the eigenvalues 

of the coeficient matrix A. If the eigenvalues are of the form a ± i u ,  then for u ^ O ,  

all solutions w ill spiral toward zero for a < 0 , spiral away from zero for a > 0 , or 

form a periodic orbit about zero for a = 0 with a rotation period of 2ir/w.

Clearly, the periodic orbits of the linear system are structurally unstable. The 

nonlinear flow of (1.2.4) is much more interesting since a structurally stable periodic 

orbit can exist for a > 0 through Poincare-Andronov-Hopf bifurcation. This phe­

nomenon is often referred to as self sustained oscillation since no external mechanism 

is needed to obtain this periodic orbit.

The required values for A and B that provide eigenvalues of this type are given 

■l.. c o  o \ t u . ,  _ — j.:™  d  cd o \ v  n o  ^  n  e ; -~ o  a ,  „0i f
U y  { U . 4 J .  jljuC Ct(uauiuu 1U1 x j  ill \ l j . L i )  oiivho uiiclo ^  v? x s  S. v. umwo uuv/ ov/xa

sustained oscillation requires a > 0 , this provides an interpretation of the balance 

between enhanced melting and increased precipitation when the temperature rises; the 

increased precipitation effect must dominate enhanced melting as the glacier grows.

To study the internal mechanisms associated with self sustained oscillation, we 

consider an autonomous formulation. The bifurcation technique employed requires 

the radial motion (governed by a) to be small compared to the rotational motion 

(governed by w). Emphasizing this, we let a = Xu and consider 0 < A <  1 .
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The small amplitude periodic orbit is given by

cos 6(t)
y(t) = aP ' + 0(a3)

-s in  0 (f)

where the matrix P defined in (B.6) puts A  in Jordan Form, a is the approximate 

amplitude of the orbit in the coordinates u = P - 1y, and 0(f) parameterizes the orbit. 

Details are given in Appendix C. The bifurcation curve relating A with the radius 

a is given by A (a) =  -c 3 a2 + 0(a3) , a -» 0 where the constant c3 determines the 

stability of the resulting periodic orbit. For parameter values such that c3 < 0 stable 

periodic orbits exist. An analytic expression of c3 is given in (C.10).

To study further properties of the phase space for low frequency self sustained 

oscillations, we consider u also as a small expansion parameter. Using arguments 

presented in Appendix D when u = a =  0 it  is shown that a double root exists at 

y  = 0 . For w small a second equilibrium is 0(u2) close to the chosen equilibrium. The 

eigenvalues of the system linearized about this second equilibrium are ±u  + 0(u2) + 

O(^).  Therefore the topology we study for the autonomous formulation is that of a 

periodic orbit at y  = 0 with a nearby saddle at y  =  y 3addie-

To consider the question of external influence on the idealized planet in question, 

we w ill study the effect of a single frequency periodic perturbation to the devia­

tion equations. As discussed in [14] and [8], the Earth’s orbital parameters have 

strong 20,0Cu year variation uue to precession, a wc<tkci 40,000 year variation due 

to obliquity, and an even weaker 100,000 year variation due to ellipticity variations. 

Posmentier [14] analyzed the response of the model to the dominant 20,000 year vari-

10
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ation by replacing the parameter B in (1.2.4) by the term 5(1 +  Scos at) where 

a =  27r/20,000(yr-1). A wide variety of behavior was reported, including solutions 

that appeared to be chaotic.

W ith this perturbation, the equations (1.2.4) become

y =  A(<7 t ,£ )y  +  f(y ) (1.2.7)

where

0 - 1
A(at,6) =  A + $ coscrt (1.2 .8)

0 L

and S =  BS. Since A (fft) is periodic and (1.2.7) is homogeneous, the natural tool of 

analysis is the Floquet representation for the linearized Poincare map. This technique 

is described in Appendix E. The eigenvalues of this linearized Poincare map give local 

behavior of the nonlinear system near y = 0 .

The two dimensional nonlinear Poincare map can undergo a Poincare-Andronov- 

Hopf bifurcation similar to two dimensional nonlinear autonomous differential equa­

tions. However the resulting torus that is formed contains only the internal and 

external frequencies. The physics of this behavior s till relies on the self sustained 

oscillation.

To study different phenomena, we consider how lower frequencies can be intro­

duced internally without relying on the self sustained oscillation. These frequencies 

come about through saddle node bifurcation and a phenomenon called period dou­

bling. The period doubled is that of the external modulation.

11
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Physically, we consider the internal response to be that of damped oscillatory 

motion with a frequency near the modulation frequency. Thus, eigenvalues of the 

matrix A  are set to a ±  ilj with a < 0. We w ill assume that the internal damping 

(governed by a) is small compared to the internal rotation rate (governed by w), 

although the technique employed does not require this. For uniformity we w ill let 

a = and consider -1  <  A < 0.

We use simple analytic analysis to determine possible w values that could support 

the period doubling phenomenon. Both cases of subexternal and superexternal plane­

tary response to the modulation are examined. A numerical bifurcation curve for the 

eigenvalues of the monodromy matrix determines specific (d, w) values needed. The 

eigenvalues of this matrix are the same as the eigenvalues of the linearized Poincare 

map.

Using the eigenvectors of the monodromy matrix for in itia l conditions, we then ex-

cuxiiuc one oauuic nicuunviuo vx one nennneaa x omocuo xxxa*̂». x eneix Nxeixexixag uj

occurs when the outflowing manifolds remain bounded.

If the inflowing and outflowing manifolds of a two dimensional map intersect 

transversally, then the typical response is the generation of a chaotic invariant set. 

This intersection provides the generation of a transversal homoclinic point. It is 

rare to be able to estabish theoretically the existence of such a point [7]. Generally, 

numerical evidence must used.

12
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Chapter 2

Internal Frequency Analysis

2.1 Introduction

The unperturbed equations 1.2.4 have several types of invariant manifolds. There are 

two equilibria, one of which is either a spiral sink or source. The other equilibrium is 

a saddle. When the spiral equilibrium is a source, we have the additional invariant 

set of a periodic orbit. Emanating from the saddle are four invariant manifolds: two 

inflowing manifolds and two outflowing manifolds. What is the relationship between 

the two equilibria? What, if  any effect does one have on the other? Are there 

trajectories linking the two and what does the local phase space look like? What 

is the difference between the linear frequency and the frequency of the nonlinear 

equations:

We w ill use a combination of the asymptotic analysis and numerical integration 

to answer these questions. Of primary focus, we w ill consider the rotation rate u  of

13
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the linear system near the chosen equilibrium. Our approach here w ill be to fix the 

radius of the periodic orbit and consider how the system changes as a function of the 

frequency.

There are two classes of parameters to be treated here: soft and fixed. Although 

by no means is the distinction clear as to the class in which a particular parameter 

is in, for the purposes of this chapter, we w ill treat the frequency u as the most 

flexible parameter. The equilibrium radiation temperature w ill mostly be taken to be 

Te = 246(°K) as in [14], although certain bifurcation values of u> w ill be plotted for a 

range of Tc.

For the parameters considered as fixed, we w ill use the values given by [14]

L =  20 (°K)

K  =  1.07 * lO"10 ( ^ — )
°Kyr

F =  .43395 (— ) 
yr'

R =  8 * 1(T5 (— ). (2.1.1)
y r

The units of A and C are (1/yr), the units of B are (0K-1 yr-1), and the units of a 

and u  are yr-1. Both components of the vector u and the radius a are in units of 

(yr2/°K). Time w ill be scaled by r  =  u>t. For notations] convenience we w ill write 

Ge = l -  kT*.

The parameter a gives the most direct control of the magnitude of the periodic 

orbit. Although the assumption that a -> 0 places an inherent restriction on the 

radius of the periodic orbit, this “near equilibrium” analysis is useful in determining

14
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parameter interplay. We w ill set a =  0.1 (y r2/°K ) for the experiments to show the 

general trend of the model.

Certainly quantitatively different results can be obtained by examining a wider 

range of parameter values. However, we expect the qualitative behavior to be the 

same.

Integrations are done (in y coordinates) with the LSODA routine of the public 

domain software ODEPACK using in itia l conditions from Maple. In itia l conditions 

for the periodic orbits are obtained using asymptotic analysis resulting from the 

Poincare-Andronov-Hopf bifurcation described in Appendix C. The saddle manifolds 

of the second equilibrium axe determined by first locating the equilibrium numerically 

and then calculating the eigenvalues and eigenvectors of the matrix (D.7) at the 

determined equilibrium. Then the outflowing manifolds are integrated in positive 

time using small (10-5 to 10~9) displacements from the second equilibrium in the 

direction of the eigenvectors corresponding to the positive eigenvalue. The inflowing 

manifolds are integrated in negative time along the eigenvectors corresponding to the 

negative eigenvalue. Trajectories integrated in positive time axe solid lines, while 

dashed lines correspond to trajectories integrated in negative time. Arrows indicate 

the direction of the flow for positive time.

Several types of invariant sets axe obtained in this chapter. For higher frequencies, 

one outflowing manifoid forms a heterociinic orbit connecting the saddle equilibrium 

to either the spiral sink (for a < 0) or the periodic orbit about the spiral source 

(for 0 < a <  1). In studying the periodic orbits for lower frequencies, we find the

15
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additional invariant set of a homoclinic orbit that occurs when an inflowing and an 

outflowing manifold cross. Some of these results are given in [15].

2.2 Maximum w for stable periodic orbits

Recall that the stability of the periodic orbit depends upon the sign of the constant C3 

defined in (C.10). Treating C3 as a function of u we can determine what ranges of cj 

give rise to stable (£3 < 0) and unstable periodic orbits. The stablity of the periodic 

orbit is independent of the radius a <C 1 .

We set Te = 246(°K) and plot C3 in Fig. 2.1. The maximum w value for stability 

can be determined by locating the value cj =  umas such that c3(wmai) =  0. From 

(C.10), we see that C3 = 0 only at the roots of the quadratic in cj2

3 I2 (lOL/c FT3 + TeR + F1) w4+

t • « r O TiO O r~\ y O 1—>0 0 r-nG , « r t-i mt l->0{iiaL-r-K,-iei i -  dh-r -K- i ;  ■fubrni^xv-

12 LF 2k T?R +  30 LFhc Te3 + 2 FT?R2 + ZF3)u 2 

+ 8  k2T*F3 (2 TCR -  3 F) (8  LRk Tc4 + 2 TeR + 3 F)

=  0. (2 .2.2)

The maximum value of cj that produces a stable periodic orbit is then

, ,2    1____________ f _ q  p 3
“Vos 60 a FTJL3+ 6 L2RTC+6 L2F  1 o r

-4 8 L2ic2T jR F2 +  72L2k,2F 3T3 -S L R 2k T*F  
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+12 LRk T?F2 -  30 L k F 3T3 -  2 R2F T 2 

+ F {  1 +  4 k T3L) ( 816 L2k2F 2R2T3 

-1008 L2k2RF3T2 -  324I2k W ®

H 8 L R 3k FT* -  1cI L k F 2R}TI 

+72 LRk F 3T'? -  4 RAT* -  108 I k  F 4T3

-12 R2F 2T2- 9 F i  f 2 } . (2.2.3)

Plotting Pmin = 27r/wmai verses Te in Fig. 2.2 we obtain minimum stable periods 

as a function of the chosen equilibrium temperature. Notice that this minimum period 

is independent of the radius a.

In Fig. 2.3 the periodic orbit is shown in y coordinates for the maximum stable 

frequency u  = 2 7r/1055(yr-1). The same orbit in u coordinates in shown in Fig. 2.4.

o o a /r  r    . r  s. j.  : u i  , i _  j  i i ._
i i . o  x v x c iA im u ix x  u j  x u r  t w u  e x ju x x x u rx c i ctxxu cxxe x x c tc -

roclinic connection

We have set an equilibrium temperature and hence an equilibrium glaciation is ob­

tained by (C.10) with T =  Te. However, care needs to be taken when examining the 

dynamics of the second equilibrium because it may not lie in physical space. The 

approximation of this second equilibrium in (D.6) allows us to estimate when two 

equilibria lie in physical space. Since the glaciation must be between 0 and 1, we can

17
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Figure 2.1: Stability constant £3(0;) plotted near the maximum stable frequency 

umax = 2 7r/1055(yr-1)
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Figure 2.2: Minimum stable period Pm;n (yr) plotted verses equilibrium temperature
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Figure 2.3: Periodic orbit in y coordinates 3/2 (°K) vs y\ (unitless) for the maximum 

stable frequency w = 27r/1055(yr-1).
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Figure 2.4: Periodic orbit in u (y r2/°K ) coordinates for u =  27r/1055(yr-1).
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solve

(1 + 4:k T 'L ) u2 3«F 4r e2(-2 i?T e +  3 f)a 2 4
2 2 k T?{2RT' + %LRk T? + 3 F )F  2 RTe + 8 LRk T? + 3 F

(2.3.4)

for G2 =  1 and G2 =  0 in terms of u.

Examining (2.3.4), we see that for real u values, G2 r  1. Thus we axe left to

examine where G2 > 0. Doing this yields

2 Sn2T?F5{2 R T '-Z F )a 2 2 k T 2 {2RTe + 8 T fk T e4 +  3E )F (/cTe4 -  1)
1 + 4 k I J I  1 + 4 * T*L

(2.3.5)

For the parameters selected, we have U2Cq = 2 7r/5482(yr_1). However, this is 

based upon an asymptotic approximation for the second equilibrium. Using a numer­

ical root finder, we see that this value is s till too large.

We examine the phase portrait of the system for u =  2 7r/5700(yr_1). In Fig. 2.5 

the y  coordinates are shown with the boundaries of the physical space. Figure 2.6 

allows the topological aspect of the local phase space to be discerned.

2.4 Minimum u  and the homoclinic orbit

If the periodic orbit intersects the second equilibrium we expect a bifurcation to 

occur. So we may obtain a minimum frequency of the periodic orbit in terms of 

a bv using u coordinates, since the orbit in this coordinate system is a circle. This 

intersection is determined by solving the equation

a =  ||P_1 (ywdie)]^ (2.4.6)
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Figure 2.5: Phase trajectory in y (yr2/°K ) coordinates showing the physical space 

for u = 2 7r/5700(yr-1).
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Figure 2.6: Phase trajectory in u (y r2/°K ) coordinates showing the topology for 

u = 2 7r/5700(yr-1).

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where ||u||u = y u j +  u\ is the Euclidean norm in u coordinates. When this is done, 

we get the approximation

2 _  8 F3Te5*2 ( 2  flTe+8 LRk T«+3 F ) _
umin ~  1+4KTIL a

+0{a2) + 0(to4). (2.4.7)

In Fig. 2.7 we set a =  0.1 (y r2/°K ) and plot Pmas =  2ir/tomin as a function of 

equilibrium temperature Te. Notice that this period is governed in magnitude by a 

factor of Ijy/a.

Let us now examine how the saddle manifolds behave as to approaches wm;n- For 

Te =  246(°K), we have umin = 2^/102,681(yr-1). We w ill see that this value is too 

small.

The stable and unstable manifolds of the second equilibrium are shown in Fig. 2.8 

for to =  2 7t/20, 000(yr_1). In Fig. 2.9 we decrease to to 27t/50, 000(yr-1) and see 

the periodic orbit approach the saddle manifolds. When to =  2^/120,000(yr-1) the 

inflowing and outflowing manifolds cross each other, as seen in Fig. 2.10. Since the 

manifolds depend continuously upon to, we conclude they must intersect for some 

value between 27r/50,000(yr-1) and 27r/120,000(yr-1) to form a homoclinic orbit.

Finding the exact value of to via computer experiments is not, in general, pos­

sible. We may get very close by observing the crossing of the inflowing and out­

flowing manifolds and adjusting to appropriately, essentially a bisection technique. It 

should be clear that even if  such a value of to were determined to arbitrary preci­

sion, computer roundoff w ill not allow a simulation of a true homoclinic orbit. For
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Figure 2.8: Inflowing and outflowing manifolds of the second equilibrium and the 

periodic orbit about the chosen equilibrium in u (y r '/°K ) coordinates for to = 

2 7r/20,000(yr—1). The attracting region for the periodic orbit is bounded by the 

two inflowing manifolds.
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Figure 2.9: Inflowing and outflowing manifolds of the second equilibrium and the 

periodic orbit about the chosen equilibrium in u (y r2/°K ) coordinates for w = 

27r / 5G,000 (y r_1).
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Figure 2.10: Crossing of the inflowing and outflowing manifolds of the second equi­

librium  in u (y r2/°K ) coordinates for w = 2 7t/ 120, 000(yr—x).
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the parameters selected, the inflowing and outflowing manifolds intersect between 

u =  2 7r/89,276(yr-1) and u = 27t/89, 277(yr—1). Fig. 2.11 shows the approximate 

homoclinic orbit.

When V =  2 t/89 , 276(yr-1), the local phase space topology is that of Fig. 2.8 and 

Fig. 2.9 where the periodic orbit attracts in positive time and the attracting region 

for this periodic orbit is bounded between the two inflowing manifolds.

When oj =  2 7t/89, 277(yr—1), the local phase space topology is that of Fig. 2.10 

where the periodic orbit attracts in negative time and solutions leave this orbit in 

positive time through the region bounded by the two outflowing manifolds. Details of 

the types of structures that bifurcate from the intersection of inflowing and outflowing 

manifolds can be found in [2],

A short time series for all four of the saddle manifolds are shown with w = 

2 7r/89277(yr_1) in Fig. 2.12 and with u = 2 7r/89276(yr-1) in Fig. 2.13.

2.5 Linear verses nonlinear periods

The parameter u gives the rotation rate of solutions to the linearized equations about 

the chosen constant equilibrium. This u value also corresponds asymptotically to the 

rotation rate of solutions to the nonlinear equations in itia lly  near the equilibrium. 

However the frequency of the periodic orbit we obtained for the nonlinear equations 

differs from the value of w, especially as w —> u w . This is expected, since the period 

of the homoclinic orbit is infinite. Because the period of the orbit varies smoothly
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Figure 2.11: Inflowing and outflowing manifolds in u (y r2/°K ) coordinates at the 

approximate intersection value of u =  2 7r/89277(y r-1).
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Figure 2.12: The time series y2 (°K) vs r  (unitless) of the saddle manifolds for u = 

27r/89277(yr-1). The periodic orbit bifurcating from the homoclinic orbit attracts

iii negative tiuic.
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27r/89276(yr_1). The periodic orbit bifurcating from the homoclinic orbit attracts 
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with the parameters, we can plot the nonlinear period as a function of u.

By calculating the fixed point of the Poincare map, we can determine the period 

of the nonlinear periodic orbit. We use the line u\ =  0 for calculating the Poincare 

map. Geometrically, the Poincare map of any point u(0) lying on the line u\ =  0, is 

given by u(tp0iric) =  IIu(O), where tp0mc is the smallest time needed for the solution 

to cross the line u\ =  0 again. This process is depicted in the sketch Fig. 2.14.

The in itia l condition of the fixed point in y coordinates is given by

y(0) — QfixcdP-1 (2.5.8)
1 

0

where a ,f ixed is such that y ( t pcTio i)  = y(0) and t peTi0i  gives the first intersection of y ( t )  

with y(0). For larger u  values, t P„ : 0i  — 2t t /w .  However, as Fig. 2.15 shows, there is 

considerable difference between 2ixju  and tp„ l0i.

2.6 Wave forms as a function of u

We now consider the magnitude and shape of the wave representing the deviations 

from equilibrium for the temperature, j/2> aJid the glaciation, y i, as w decreases from 

the maximum to the minimum value.

We have determined the approximate A (a) giving a periodic orbit of radius a in u 

coordinates by (G .ll). However, to relate this to physically meaningful coordinates, 

we need to determine how this orbit maps to y  coordinates. Using y = Pu and r = a
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Figure 2.14: Geometric sketch of the Poincare map for a two dimensional phase 

trajectory.
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Figure 2.15: Period (yr) of the periodic orbit plotted verses 27r/w(yr). Solutions 

near the equilibrium (inside the periodic orbit) w ill rotate at the rate of 27r/w(yr) 

initially. However, at t oo, the rotation rate slows to the given period value as it  

approaches the periodic orbit.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in (C.3) we see that

yperiodic :

-4  k F 2T l +  Lw2 

L W  + P

acos(9)

Fu  -(■ 4 Fu k T2 L 0(a3)
+ asin(0) +

0 0(a3)
(2.6.9)

where 9 = 9{t). The approximate maximum deviation from equilibrium temperature 

is then

Tmax = (L2u>2 + F 2) a (2.6.10)

and the approximate maximum deviation from glaciation equilibrium is

Ĝ r.zx — Fmax
16 a2F 2T f + uF

(2.6.11)
L W  + F 2 '

In Fig. 2.16 and Fig. 2.17 we set a = 0.1 (y r2/°K ) and Te =  246 (°K) (equilibrium 

glaciation G. =  1 -  k,T* =  0.0970) to plot these deviations from Pmm to Pmax.

There is good agreement in the shape of the periodic wave corresponding to the 

fixed point of the Poincare map and the approximation in (2.6.9) for a values in 

Fig. 2.15 where the period ~  27r/w. W ith the parameters chosen, this period is less 

than about 70,000(yr). This is, of course, due to the fact that the second equilibrium 

is rather distant from the periodic orbit and the linear approximation agrees with the 

nonlinear dynamics.

However, as the proximity of the second equilibrium approaches the periodic orbit, 

the resultant wave form deviates from the linear approximation. In Fig. 2.18 and
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Figure 2.16: Maximum temperature deviation from equilibrium Tmax(°K ) plotted 

from Pmin (yr) to Pmax (yr) with Te = 246 (°K ) and a =  0.1 (y r2/°K ).

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34



G
m

a
x

0.0004 r 

0.00038 ( 

0.00036 f 

0.00034 1 

0.00032 j- 

0.0003 H

0.00028 j- 

0.00026 L
0 20000 40000 60000 80000 100000 120000

P
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Fig. 2.19 we show the wave forms as a function of 9 = 2T:tjtp„ i 0i  where i pen-0d is 

defined in (2.5.8). In both figures, 8 goes from 0 to 4 7r thereby showing two wave 

forms. The three w values shown aretJi = 2 tt/70, 000(yr-1), lj2 = 27r/79,600(yr-1), 

and W3 =  2 7r/89,200(yr-1); the rotation rate of the linearized equations increase 

uniformly by 9,600(yr). However, as Fig. 2.15 shows, the period of the nonlinear 

equations increases much more than the rotation rate of the linearized equations. 

From « i to w2 the period increases by approximately 20,000(yr); from u2 to w3 the 

period increases by approximately 70,000(yr).

The phase portrait in y  coordinates for the minimum and maximum u are shown 

in Fig 2.20. Notice the distortion in the ellipse when the second equilibrium is near 

the periodic orbit at the minimum w value.
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Figure 2.18: Wave forms in glaciation for wi =  2tt/70, 000(yr x) (top wave), w2 = 
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Chapter 3 

Periodic Orbital Variation

3.1 Introduction

We consider how orbital variation affects the stable constant equilibrium by allowing 

periodic modulation of the parameter B as described in Sect. 1.2. The deviation 

equations are given by (1.2.7). The phase space of the differential equations is now 

H 2 x S1 and the dynamics can be studied using the Poincare map defined by

n y(0) =  y(2 ir/a) (3.1.1)

where y (t) is the solution to (1.2.7).

The linearized equations

■\r — A ( r r  i  y r f Q 1 0̂

where A(cr t, <?) is given by (1.2.8) allow us to determine the character of the linearized 

Poincare map using Floquet theory.
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Once this character is determined, the invariant manifolds of the nonlinear equa­

tions may be studied by using information provided by the linearized approximation. 

Determining the Floquet monodromy matrix analytically is in general not feasible. 

We will calculate this matrix numerically.

To obtain behavior different from the self sustained oscillations, we seek parameter 

modulations such that the eigenvalues of the monodromy matrix are both real. Of 

course if  both eigenvalues have magnitude less than 1, then the invariant set is still 

the equilibrium y = 0.

As an eigenvalue passes through 1 or -1, while the other eigenvalue is not of unit 

magnitude, a saddle node bifurcation of the nonlinear Poincare map typically occurs. 

For an eigenvalue passing through 1, the fixed point of the Poincare map along the 

outflowing manifold produces structurally stable periodic motion at the frequency 

of modulation. For eigenvalues passing through -1, the typical bifurcation is that 

of structurally stable periodic motion at twice the modulation frequency; the fixed 

point occurs for two iterations of the map. The eigenvectors of the monodromy matrix 

provides us with initial conditions to study the nonlinear Poincare map.

3.2 The eigenvalues of the monodromy matrix

Wp consider t.be dvna.mic.s nf t.hp. linear avst.em (3.1 ?.V Wbat. t.vnp of bifurcation can 

we expect? If a =  0, then the resulting autonomous system bifurcates to a saddle for
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8  >  Sautobif where

u 2 +  a 2
Oautobif *“ (3.2.3)

F

Of course nonautonomous equations, regardless of how small cr is, do not bifurcate 

as the autonomous equations. If  the matrix A(<rt,5) in (1.2.8) was symmetric in the 

time dependence, then we could study 6uf(cr) analytically. However this is not the 

case, and it serves our purposes to treat a as fixed and consider 8 a bifurcation 

parameter for the eigenvalues of the monodromy matrix. These eigenvalues must be 

calculated numerically.

Since the external frequency a =  2 7r /20 ,000(yr-1 ) is fixed, we will consider the 

internal frequency u also as a bifurcation parameter. Let M(w, 8) be the monodromy 

matrix of the linear system (3.1.2) corresponding to the 20,000 year periodic coeffi­

cients. Necessary details of Floquet theory are given in Appendix E. The linearized 

Poincare map is then given by

I W ( 0 )  = My(0) (3.2.4)

The eigenvalues of the matrix M(w, d) will determine the stability of (3.2.4) and hence 

the stability of (3.1.2). Let 7i )2(w,£) denote these eigenvalues.

We know exactly 71,2(0),0). Specifically the matrix M(w,0) is eA2,r/,<r. The eigen­

values of this matrix are the same as the eigenvalues of the matrix ej2ff/ff where

a w
J = . (3.2.5)

—w a
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Thus we have

7i ,2(w, 0) = e2** ^cos ±zsin (3.2.6)

This will allow us to analytically locate the initial point on the bifurcation curve. 

The relationship between the internal frequency u and the external modulation fre­

quency a can be seen by examining (3.2.6). Clearly, the magnitude of 7i,2(w,0) are 

less than 1 since a < 0. However the sign of f?e(7 i i2(u»,0 )) depends upon the sign of 

cos (27rw/cr).

What is the significance of the sign of the eigenvalues at the time of bifurca­

tion to a saddle? With a saddle type equilibrium, the linear system is unstable if 

| 7 1)2(w,£) |> 1 regardless of the sign of these quantities. However, the sign does 

play an important role in determining characteristics of the nonlinear map which can 

bound these instabilities.

Assuming the slope of the bifurcation curve for 0)) remains relatively

constant until bifurcation to a saddle, we can identify likely values of u that produce 

the negative eigenvalues identified with period doubling.

If cos(2ttw/o-) = 0, then u = \a, |cr, |<r, |<r, ... For |cr < < |<r we have

Re (71,2 (w,0)) < 0 and the modulation is superinternal. All other regions that have 

Re (7^2  (w,0)) < 0 correspond to subinternal modulation.

By fixing cr =  2 7r /20 ,000(yr-1), the interesting range for ui is 2x/80,000(yr-1) < 

w < 27t/26, 6 6 6 .6 (y r-1) for superinternal modulation and an infinite number of ranges 

for subinternal modulation. The first two subinternal ranges are 2tt/16, 000(yr—x) <
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u < a  27r/11429(yr-1 ) and 27r/8,888.8(yr-1) < w < 27r/7,272.72(yr_1). Although 

u> values in these ranges do not ensure negative real eigenvalues upon bifurcation, 

they give values to investigate. Similarly, these ranges do not exclude negative real 

eigenvalues for u values outside these ranges. We set A =  -0.05 and show bifurcation 

curves in Figs. 3.1 - 3.6 of 7 1i2(w,6) by fixing u increasing 6.

For w =  27t/20,000(yr_1), we have 7i(w,0) = 72(w,0) = e2,rA. This can be seen 

by examining (3.2.6) with w = Aja  =  a. Figure 3.1 shows that they remain real 

until 7 i (u>,6) > 1. Thus, the Poincare map experiences only monotone decay until 

bifurcation to a saddle.

The values

u = 27r/21,000(yr-1) 

u = 27r/18,000(yr_1) 

w = 27t/16, 000(yr-1) 

u =  27t/12, 500(yr_1) 

w = 2ir/26,666(yr-1)

all have 7 i,2(w, 0) as complex conjugate pairs. Consequently, for S small, the Poincare 

map will experience oscillatory decay. Figures 3.2 - 3.6 show the Poincare map will 

experience monotone decay upon increasing 6 until bifurcation to a saddle.

For u =  27t/21, 000(yr-1) and u =  27r/18,000(yr_1), i2e (71,2 (^, 0)) > 0; upon 

bifurcation to a saddle, Figs. 3.2 - 3.3 show 7 i(w,£) passes through 1. Although for
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w = 27r/16,000(yr-1) we have Re (71,2 (w, 0)) = 0, Fig. 3.4 shows that 71 (w, 6 ) also 

passes through 1 upon bifurcation to a saddle.

We give two values of u that could lead to period doubling. For the value 

u> = 27r/12,500(yr-1) the modulation is subinternal; for w = 2tt/26, 666(y r_1) the 

modulation is superinternal. Both have 7 i(w,d) passing through -1 upon bifurcation 

to a saddle as seen in Figs. 3.5 and 3.6.

Notice for the superinternal modulation in Fig 3.6 that the equilibrium becomes 

stable again upon increasing 5. We will not pursue this phenomenon here, although 

it is interesting.

The geometry of a linear saddle map with positive eigenvalues is given by the 

cartoon in Fig. 3.7. The map with negative eigenvalues is shown in Fig. 3.8. To 

transform the Poincare map of (3.1.2) to appropriate coordinates, we determine the 

matrix P such that

71 0
P -1 M P  =

0 72

(3.2.7)

and let

y  = Pu. (3.2.8)

We will normalize the eigenvectors used to form P. Thus the coordinates u will 

be unitless.
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3.3 The period doubling effect

We examine the outflowing manifolds of the Poincare map for the nonlinear system 

(1.2.7) with parameters such that the monodromy matrix of (3.1.2) has negative 

saddle eigenvalues. Saddle node bifurcation of the map corresponds to a fixed point 

along the outflowing manifold. For period doubling, this fixed point occurs in two 

iterations of the map.

The outflowing manifold is tangent at the origin to the eigenvector of the mon­

odromy matrix corresponding to the eigenvalue with magnitude greater than 1. To 

find the fixed point, an initial condition is selected at a small displacement along 

this eigenvector. When the distance between sucessive double iterations is small, the 

period double solution is approximated.

For demonstration, we set A =  -0.05 and select two (w,5) combinations, rep­

resenting both subinternal and superinternal modulation. In both cases, the initial 

displacement along the eigenvector is 10-6  and the relative tolerance for the double 

fixed points is 10-4. The outflowing manifolds are shown in the u coordinates defined 

by 3.2.8. Time is scaled by r  =  at.

In Fig. 3.9 the double period fixed points and the outflowing manifolds are given 

for u =  27t/12,500(yr-1) and S/B =  0.0076; the double period waveforms are given 

in Fig. 3.10. Figure 3.11 and Fig. 3.12 show the results for u = 27t/26, 66 6(y r-1) and 

S/B =  0.00272.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4 The geometry of chaos

We examine the geometric relationship between the inflowing and outflowing saddle 

manifolds of the Poincare map for parameter values that cause these manifolds to 

intersect transversally. While difficult to establish, the numerical evidence indicates 

the existence of a transversal homoclinic point. The specific criteria for the mapping 

to be chaotic depends upon the images and pre-images of sector bundles, which we 

will not go into here. For a very thorough discussion of this topic, see [17].

Inflowing and outflowing manifolds are viewed in u coordinates defined in 3.2.8. 

Diamonds represent integrations in positive time and pluses represent integrations 

done in negative time.

The parameters used are A =  -0.05 and u — 2 7t/12, 500(yr-1). Saddle manifold 

structure is first shown for the nonchaotic parameter S/B =  0.0076 corresponding 

to the period doubling phenomenon in Fig. 3.13. When S/B = 0.0084, the period 

doubling algorithm used in the previous section fails. Figure 3.14 indicates why. The 

transversal intersection of the inflowing and outflowing manifolds can be clearly seen.

To emphasize how the solutions differ for the two S/B values examined, we show 

the time series of four initial conditions for S/B =  0.0076 in Fig. 3.15 and for S/B = 

0.0084 in Figs. 3.16 and 3.17. Two solutions are initially on one side of the outflowing 

manifold and two axe on the other. Figure 3.15 shows solutions initially in phase 

along the same side of the outflowing manifold coalesce after 100 iterations of the 

Poincare map. In Fig. 3.16 the solutions remain in phase after 20 iterations of the
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Poincare map. However, after 50 iterations, Fig. 3.17 shows the chaotic nature of the 

system.
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against 6/B.
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I1A

Figure 3.7: Generic mapping for a saddle type linear map with two positive eigenval­

ues.
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IIB

IIA

Figure 3.8: Generic mapping for a saddle type linear map with, two negative eigen­

values.
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coordinates for u =  2 7t/12, 500(yr_1) and S/B =  0.0076.
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2 7r/12,500(yr-1) and S/B = 0.0076.
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Chapter 4

Conclusions

The original question considered was the following: How can frequencies present in 

ice core data and absent from astronomical variations be generated by the planet 

internally with global scale thermodynamics? Attempting an answer, we studied an 

ideal set of physical processes that could describe the interaction of glacier growth with 

temperature fluctuations. These processes took the form of two nonlinear differential 

equations. We examined two types of dynamics that give structurally stable periodic 

motion.

First, orbital variation was neglected. Self sustained oscillation of the internal 

dynamics about a constant unstable equilibrium was introduced using Poincare- 

Andronov-Hopf bifurcation, a well established technique. An analytic expression 

ot the stability constant showed that beiow a maximum frequency, these oscillations 

are stable.

The resulting local phase topology involving the second saddle equilibrium, how-
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ever, gives a more complete picture of the dynamics. Although not foreseen, the 

inflowing manifolds of the saddle gave a region of attraction for the periodic orbit. 

Also not foreseen was the heteroclinic connection to the periodic orbit along an out­

flowing manifold of the saddle and the resulting homoclinic orbit bifurcating from 

this connection. This homoclinic orbit occured when the radius of the self sustained 

oscillation was fixed and the frequency was lowered, causing the saddle equilibrium 

to intersect the periodic orbit.

Second, the impact of periodic orbital variation on a stable equilibrium climate 

was examined. Without relying on the physics of the self sustained oscillation, a 

periodic internal response at double the external modulation period occured through 

saddle node bifurcation. Physically, if the external modulation were removed, the 

climate behavior would be damped oscillation at a prescribed internal frequency near 

the modulation frequency.

LAn rtl J ̂  A  ̂ AWA a1 AA All! AW 1 £ A /J 4̂1 A A J a w AA
V t l  U .C U LX X ^/^.U  iU V S * J . U O i  V d U U X C h lf lW iX  W W V /  i U U U U U l ^ U  O U .a u  j J i O U U O C U  U U C  U X ' l / '

essary double period of the Poincare map upon bifurcation to a saddle. The location 

of the double period fixed point of the Poincare map was at the end of the bounded 

outflowing manifold.

For one particular period doubling scenario, increased magnitude of external mod­

ulation caused the inflowing and the outflowing manifolds of the equilibrium to inter­

sect transversally. Hence, the geometric condition of chaotic dynamics was satisfied.

The two nonlinear terms in the equations, logistic growth of the glacier and black 

body radiation of the temperature, were crucial for the bounded, structurally stable
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invariant manifolds observed. Although the physics described is extremely simple, it 

was sufficient to produce a wide variety of behavior not available with linear systems. 

This tends to support the importance of these processes in climate dynamics.

Future work could take two general directions. More detailed analysis of the 

chaotic dynamics is one direction. Verifying chaotic dynamics with other tools of 

dynamical systems theory is definitely worth pursuing. Posmentier (personal com­

munication) claimed to calculate positive Liapunov exponents, although exact values 

were not given. Studying these exponents would give an idea of how chaotic the 

system is and give an indication of the time when solutions separate. The dimension 

of the attractor could also be calculated to see if it is fractal.

Adding more realistic features to the model is the other direction future work 

could take. These features could include more albedo variations, temperature effects 

on vegetation, and more realistic orbital variation. Comparing the model output to 

ice core data would be useful for simulation of the climate.

Since chaotic dynamics seem to occur with this model, it  is very plausible that 

more realistic models could exhibit similar behavior. The work done here empha­

sizes the importance of nonlinear dynamics in climate modelling. Techniques used in 

the analysis of this model are applicable to larger systems of differential equations, 

although technical complications arise.
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Appendix A

Chosen Equilibrium

The simplest solutions of (1.2.1) are values of G and T where G = T = 0. While phys­

ically rather uninteresting, equilibrium solutions provide a mathematical template of 

phase flow. Locating such points and determining the stability of each provides neigh­

borhoods in phase space where solutions have predictable behavior. In this section 

ws choose — sc[u^ibrinrn w’th. sô t p3irsTnstsr C in (1.2.1).

To locate constant equilibrium solutions we observe that (1.2.1) may be written

as

1 n G R.G!\ -G )  -  AG -  BT + C
(A.l)

One root of the right hand side of (A .l) may be chosen using the constant C as 

follows. First substitute

G = \ - k Ta (A.2)

1 0 G R G (1 -G ) -  AG -  BT + C

- L  1 T - K T A + F  (1 -  G)
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where we have written

for convience. Then we solve

K  = k,F (A-3)

Rk2Ts + (Ak + Rk) T * - B T  +  C - A  =  0. (A-4)

We may choose an equilibrium temperature Te by setting

(A.5)

With this choice of C, we factor (A.4) to obtain

(T -  r e) {-R iS T 7 -  TcRk,2T6 -  T2Rk2Ts 

- T 2Rn2P  + k {R -  Rk Te4 + A) T3 

+Ten (R -R k T ?  + A )T 2 

+T2it (R -R k T ?  +  A)T  

-R k 2TJ + T2Ak, + T2Rk - B }  =  0. (A.6)

Other equilibria must be roots to the above seventh order polynomial which de­

pends, among other parameters, on the chosen equilibrium Te. The k (2 < k < 8) 

equilibrium solutions of (1.2.1) may be indexed as

Gi

Ti

1 - k T4

T

f  A *7\

v * '')

where Ti is a solution of (A.6) for i = 1,2,..., k and T\ = Tt .
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Notice that a second distinct equilibrium must exist provided the chosen Tc is 

not a double root of (A.4). It turns out for the parameter ranges we select, there is 

only the second equilibrium solution to consider, so we have k =  2. The polynomial 

(A.6) will be examined in Appendix D to locate the other root asymptotically using 

expansion parameters introduced in Appendix C.
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Appendix B

Complex Eigenvalues and Normal 

Form

The eigenvalues of A  are (<r(A) ±  <Jdisc(A)) /2 where disc{A) = tr(A )2 -  4dei(A) 

is the discriminant, tr(A) is the trace, and det(A) is the determinant of the two

j *  : . _ . i ___« ov A i J -  _____________i i t  - ____ i .......................... il  . _.rx
uiiTiciiaiuIlai iua.uiiA n.. ±u uuicuu cxgcuvcuuca ui ouc luim u X  cuj wc wuoe one auio

parameters A and B in terms of a and w. Specifically, if we set <r(A) = 2 a and 

dei(A) = or + w2 then we have the following system

2Rk T' -  R -  A -  LB -  bn FT2 = 2a 

±Rk F T * -8 R k2T7J  + IA k FT3c - B F  = a2 + u2 (B.l)

which may be solved to obtain

16 k2F 2T? + 8 K F T laA  a2 + u2
B = —

F ( i + 4 « re3i )  
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A =
1

F(1 + 4 k T?L)

2Rk Tc4F + 8Rk,2T 'F L  - R F -  4RFtcT*L

-4 /cF 2Te3 - 2 F a  + L(a2 + w2)} . (B.2)

When (B.2) is put into (1.2.5) the system (1.2.4) will behave as desired. When 

this is done, we get

1
A(a,io)  =

F{1 + 4Lk T?)

4 k. F 2T2 16 k: F 2T® 

- F 2 - 4k F 2TI3

+ a
2 F  8 /c FT?

2 LF  8 L/t FTe3

+ (a2 + w2) (B.3)
- I  1 

- L 2 L

Note that f(y) defined in (1.2.6) remains unchanged since A and B  are coefficients of 

exclusively linear terms.

Putting (1.2.4) in a form amenable to analysis, we seek a transformation of the 

form

y = Pu (B.4)

where P is a nonsineular matrix such that

P_1 A P  =
-w  a

(B.5)
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To calculate the transformation matrix P we determine the eigenvectors of the 

matrix A. Recall that if a matrix has eigenvalues a ±  i u, then the eigenvectors are 

of the form £r ± i£ ;. Then we form the transformation matrix by setting P =  [£r | £;]. 

Having done this, we see that

P =
-4  k F 2T2 0 

F 2 0

4L k FTz - F  0
+ a

+ w

-2  LF 0

0 - F ( l  + 4/cTe3T) 

0 0

+  (a2 +  w2)
L 0 

L2 0

(B.6)
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Appendix C

Poincare-Andronov-Hopf

bifurcation

To study the stability of the Poincare-Andronov-Hopf bifurcation we follow the tech­

nique outlined in [7]. Let a  = Aw and consider |A| <  1. Transforming time to t  =  u t

j.1 - i  f i  n t \  ...ul, ( O l, .____one ayaociu j  wiou ̂ iu.-rj  uaomca

U =
0 1 

-1  0

u + g (u)

where () =  ^  and

g(u) = Au + - P ~ 1f(P u )
u>

Now we make the coordinate transformation

u = r
cos 6 

-s in0

(C .l)

(C.2)

(C.3)
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From the form of
9'

when (C.3) is used in (C.l), it can be shown that ^  > 0

in a neighborhood of r  = 0. Consequently r  may be eliminated to obtain the one 

dimensional equation

^  = Ar + c2(A,0) r2 +  c3(A, 9)r3 + 0 (r4). (C.4)

The “B'g 0 ” notation is slightly abused in that the coefficients of the higher order 

terms are 2 x periodic dependent on 9.

The coordinate transformation to eliminate the 9 dependence in the first few terms 

of (C.4) is of the form

r = p + b2{\,9 )p2 + b3{\,9 )p3 (C.5)

where 62(A) 9) and 63(A) 9) are chosen to be 2 x periodic in 9. When this transformation 

is put in (C.4) the resulting differential equation for p is

te -  X p + { C l- d¥ ~ x ^ l't

+ (c3 + 262̂ - ^ - 2 A ( 6 3 + 622)]p3

0(P4)- (C.6 )

By requiring

^ ( U )  =  c2 ( A , 0 ) - c 2 ( A )  
aa

^ (A ,0 )  = C3(A,«) + 2f e ( A , 9 ) ^ M - c 3(A)

(C.7)
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where the constants c2(A) and c3(A) represent the “average” of the coefficients c2(A, 6) 

and c3 ( A , 0 )  by

1 ft*
52(A) = —  c2(A,s) ds

l i t  Jo

dd
1 ft*

ds

= 7T I  °2 (C.8)
u  7T J  0

we obtain the desired transformation.

From the symmetry in forming (C.4) from a two dimensional equation, c2 = 0. 

With the transformation (C.5) and the defintion (C.7) we obtain

^  = Xp + (c3 + 0(X)) p3+ 0(pi ). (C.9)

We analytically determine c3 to be

. = (  \ ( L W  + F 2\
° 3 \ l  +  i L K T * ] {  2 w 3 j

/  r 2 f i  n r  *  f t 3 _l t  v> ±_ t? \ , A
 ̂ ~ j. e | i j. y u/

+ (48 L2F \ 2T7eR ~ 72 L2F \ 2Tt 

+&LFKT5eR2 - 1 2 LF 2k T?R 

+30 L F \  T3 + 2 FT 2R2 + 3 F3) w2 

+ 8 k2T*Fz (2 TeF  -  3 F) (8 LRk T*t

+2TeR + iF )  } + 0(A). (C.10)

The stability of (C.9) is determined by the sign of c3. Parameter ranges such that

c3 < 0 will give rise to a stable nontrivial periodic orbit about the origin. Letting a
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represent the radius of the periodic orbit in u coordinates, we have the approximate 

bifurcation curve

A(a) = -C3 a2 +  0(a3) , a —> 0. (C .ll)
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Appendix D

The Second Equilibrium

Since the polynomial (A.4) is of even order and we chose one real root using (A.5), 

there must exist a second real root. In this section, we find an asymptotic approxi­

mation for this second equilibrium. With an analytic approximation for the second 

equilibrium we may analyze the topological character of the dynamics near this equi-

rv» A f Vio T'sTrwirmif tt r\ om ulikrium  txnfVi fn  +V1 0  rVincpn PnniliKnumujr Vi uiiiO v<^uiiiWi«uiu • • * v ** * wv* - ~ v w

is of interest.

In choosing an expansion parameter, we notice that setting a =  u =  0 in (B.2) 

and putting this in (A.6) causes Te to be a double root. This can be seen by factoring 

the resulting polynomial to obtain

(T -  Tc)2 { -  Rk2T6 -  2 Rk2TcT s -  3 Rk2̂

- 4 Rk2T3T3 -  tK 12LRk£ + 3t^ + iF y .T2

2Ti(4LRKT*+RTc+AF)K2 ^
1+4k T2L l
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T?(l2F+RT'+4LRKny 1 _ n 
1+4 * T e3L

Clearly with the choice of a =  u = 0 the Jacobi matrix evaluated at the first 

equilibrium is singular. However, this does provide us with convienent expansion pa­

rameters. We will use the approximate radius of the orbit about the first equilibrium, 

o, as an expansion parameter instead of a so we can relate the expansions to the 

phase dynamics. The coefficients of a in the expansion are then approximated for 

small u.

To obtain an expansion in a for T2 in (A.7), we substitute (B.2) in (A.6) using 

(C .ll). Recalling that a = Aw and c3 is given from (C.10), we let

r 2 =  r 0 + r 1a + r 2a2 + O(a3) (D.2)

and see that T0 is the root of the seventh order polynomial

- R k2T7 -  Rk2T'T6 -  Rk2T 2Tz -  Rk2T2Ta

* (rkt*f+4Rk2t7cfl+Lw2-4Kf2t2) z 
F (1 + 4 *T 3L) 2

, KT^RKTiF+iR^TlFL+L^-inF2̂ )  2 
+ F(i+4*r3L) 1

, * T l  ( R k  T * F+4 R k2T I F L + L u 2—4 ftF 2T 3)

+  F (1 + 4 *T 3L) 2

, 12 k2F 2T ° + u 2+ k2 F T }  R + 4 k? F T } 0 L R + u 2k T } L  _  n m  ^
+  F (1+4k T3L) “  U-

A QQiiTnmiTKr n n w  t.ha.t.------ Q

To = 7o + 7iw  + 72w2 + 0 (w3) (D.4)
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we obtain

To = T' +
(1 + 4 *  T*L)

8 F T Ik2 (2RT' + 8 L£/c T4 + 3 F )

+ <V).

W

(D.5)

Now using (D.5) in (D.2) the terms I \  and r 2 can be found from (A.6) with (B.2), 

(C .ll), and (C.10). With the resultant approximation of T2, Gz is found using (A.7), 

and we obtain the approximation for the second equilibrium as

y2 =
G2

t2

1 - / cT4

Te

( i+ 4 * r |L )
(2Hre+8 LRk T*+3F)

+ 3F*{2R Te-3 F )
2 RTc+8 LRk  T£ +3 F

-1
2 kTZF

1
8FTfi?

1
4re

+ (D.6)
0(w4) + 0(w2a2)

0(w4) + 0(w2a2)

We may now use the approximation (D.6) to evaluate properties of the lineariza­

tion of (1.2.1) about the second equilibrium. Instead of re-translating to the origin as 

in (1.2.2), we take advantage of the form of (D.6) and use the coordinates y already in 

use. This should avoid confusion about which orisin is beine discussed, as v = 0 will

still be the chosen equilibrium. If we let h(y) = Ay + f(y) then the Jacobi matrix of
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(1.2.4) is

Dh(y) = A + (D.7)
-2Ryi 0

-2LRyi - 4 k  Fyl -  12k  FyjTc -  12k  Fy^T^ 

where we use the matrix A  is defined in (B.3).

Using (D.6), we approximate the discriminant of Dh to determine the nature of 

the eigenvalues using the lowest order terms in a and u. Specifically, we see that

— A /.i^disc (D h(y2)) =  4u>

- ( 8  (2 RTt -  3 F )2 F ak2T ^  a2

+0(w4) + 0(w2a2). (D.8)

So we will expect two real eigenvalues for fixed cj as a —► 0. Forming the rest of 

the eigenvalues, we have

, , (l+4 «TjL) (2 R T c- 3 F )  2
-  H U  +  4 k t * ( 2 R T c+ & L R k T £ + 3 F ) F

+ C V )  + 0 (£ ) .  (D.9)

Clearly this equilibrium has a saddle character as one eigenvalue is positive and 

one is negative. Thus we introduce the notation ysa.ddu =  y 2' With an equilibrium

of this type, the natural structure of the one dimensional invariant manifold provides

borders for the phase flow. These inflowing and outflowing (stable and unstable) 

manifolds may intersect to form a homociinic orbit.

Homoclinic orbits for conservative or Hamiltonian systems may be written down 

exactly when they exist. However this luxury is not available for general systems
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and numerical integration becomes the basis for determining the existence of such an 

orbit. In seeking such an orbit, it is helpful to know the stability properties. From [2] 

it is shown that if  the trace of the matrix Dh. in (D.7) is negative, then the homoclinic 

orbit, if  it exists, is asymptotically stable. Analyzing the trace of (D.7) evaluated at 

(D.6) we see that

tr r n u f , .  u  _ (l+4* Tj.£/)(2R T e -3 F )  _2
[y s a d d le  j )  ~  2k T 2(2R T C+ 8L R k T } + 3 F ) F U

8 T jK2 F 5 (2 RTe-3 F )  (2 RTe+8 L R k  T * + 3 F )  a2 

~  1+4 k T 2L  Z?

+0(w4) +  0(a2). (D.10)

Noting that all parameters are positive, it follows that the trace is negative for 

small u as 0  —► 0 if Te < |^ .
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Appendix E

Floquet Theory

Consider the following linear system

y = A (cri)y  (E.l)

where A(cr t) has period 27r/er. Every fundemental matrix solution of (E.l) has the 

form

Y{t) = Q{at)eBt (E.2)

where Q (at) is a periodic matrix of period 27rjcr and B is a constant matrix. Both 

Q(cr £) and B are 2 x 2. See [6] or [3] for details on Floquet theory.

Now an appropriate change of coordinates exists to eliminate the time dependence 

of (E.l), namely we let

y = Q (at)w  (E.3)

The dynamics of w are then given by

w = Bw (E.4)
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The Poincare map of the linear equation (E.l) is found from the eigenvalues and 

eigenvectors of the monodromy matrix

(E.5)

This matrix is difficult in general to determine analytically and we must rely on 

numerical computation.

In particular, one can obtain the monodromy matrix by integrating the linear 

equations over one period, 2ir/cr, with initial conditions

yi(o) =

and

ya(o) =

(E.6)

(E.7)

The monodromy matrix is then formed by augmenting the resulting solutions at 

t =  2 7r/cr

M  = [y i(27r/er) | y2(27rja)) (E.8)
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