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A criterion for the onset of vortex breakdown over a wide range of the Reynolds number is 
proposed. ~ased upon previous experimental, theoretical, and numerical studies, as well as a 
ne~ numencal study, an appropriately defined local Rossby number is used to delineate the 
region where breakdown occurs. Comparisons are made with previously suggested criticality 
parameters and_ the unique ~eatures of the proposed Rossby number parameter are shown. A 
nu~ber o~ pre~1ous t~eoret1cal studies concentrating on inviscid standing-wave analyses for 
tradmg w~ng-ttp vort1~ a_re reviewed and reinterpreted, along with the previous numerical 
a~d ex~enmental ~tud1~,. m terms of the R~ssby number parameter. For the case of trailing 
wmg-ttp-type vortices, 1t ts shown that previous numerical studies were performed at lower 
Reynolds numbers than the corresponding laboratory experiments. Utilizing a consistently 
defined Reynold_s number, Rossby number-Reynolds number plots of these previous vortex 
br~~d~wn stu~1~, ~or_ both trailing wing-tip and leading-edge vortices, are obtained. A 
cnttcahty cond1tton 1s identified for both types of vortices. 

I. INTRODUCTION 

Vortices can be generated in many ways. Of specific in­
terest are vortices generated by a finite plate or sharp-edged 
body at a nonzero angle of attack. These vortices are often 
highly stable structures characterized by a strong axial flow. 
Other examples of vortices with a strong axial velocity com­
ponent include tornadoes and waterspouts, intake vortices, 
and swirling flow in pipes and tubes. 

Leading-edge vortices shed from a delta wing induce a 
velocity field that results in increased lift and stability of the 
wing. However, under certain conditions related to the angle 
of attack of the wing, these vortices can undergo a sudden 
and drastic change in structure known as vortex breakdown. 
This breakdown can adversely alter the aerodynamic char­
acteristics of the wing. A similar vortex bursting phenomena 
has been observed for trailing wing-tip vortices, which is 
desirable because these vortices represent a hazard to 
smaller aircraft in areas of dense air traffic. The fundamental 
difference between these two classes of vortices lies in their 
circumferential velocity distributions. Far downstream, as 
was shown by Batchelor, 1 the circumferential velocity pro­
file of the wing-tip vortex behaves like the two-dimensional 
Burgers' vortex. However, Hall2 has shown that the circum­
ferential velocity distribution of the leading-edge vortex can 
be approximated using the concept of a viscous subcore very 
near the axis surrounded by an inviscid rotational conical 
flow region. Thus the radial gradients of the circumferential 
velocity near the axis of the leading-edge vortices are much 
larger than those of the wing-tip vortices. 

•> High Technology Corporation, P.O. Box 7262, Hampton, Virginia 
23666-0262. 

The ability to control these vortical structures is an im­
portant and active area of research. For example, it is desir­
able to delay the process over a delta wing and accelerate it 
for trailing-tip vortices. Unfortunately, a comprehensive 
scheme to describe the breakdown process and the param­
eters affecting it is presently lacking, although several theor­
ies have been proposed. 

Vortex breakdown was first observed experimentally by 
Peckham and Atkinson. 3 They observed that vortices shed 
from a delta wing at high angles of attack appeared to "bell 
out" and dissipate several core diameters downstream from 
the trailing edge of the wing. Since then, vortex breakdown 
has been observed in swirling flows in straj.ght pipes, nozzles 
and diffusers, combustion chambers, and tornadoes. Seven 
types of breakdown have been identified experimentally,4 
ranging from a mild "spiral"-type to a strong "bubble"-type 
breakdown. Observations in the early 1960's spurred consid­
erable effort to develop a theoretical explanation for the vor­
tex breakdown phenomena. Three different classes of phe­
nomena have been suggested as the cause or explanation of 
breakdown. These are ( 1) the concept of a critical state, 5-s 
( 2) analogy to boundary-layer separation, 2•

9 and ( 3) hydro­
dynamic instability. 10-

12 

The critical state theory is based upon the possibility 
that a columnar vortex can support axisymmetric standing 
waves. The supercritical state has low swirl velocities and the 
flow is unable to support these waves. Subcritical flows have 
high-swirl velocities and are able to support waves. Condi­
tions favorable for the occurrence of vortex breakdown can 
be related to the ability of the flow to sustain standing waves. 

In Hall's2 theory, the breakdown phenomena is taken to 
correspond to a failure of the quasicylindrical approxima-
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tion. The idea being that when streamwise gradients in the 
vortex become large the quasicylindrical approximation 
must fail, thus signaling breakdown. This is considered to be 
analogous to the failure of the boundary-layer equations, 
which signals an impending separation. 

Stability theory only allows one to investigate the ampli­
fication or decay of infinitesimally small disturbances im­
posed on the base vortex flow. Breakdown is then assumed to 
be analogous to laminar-turbulent transition. Of course, as 
pointed out by Leibovich, 13 breakdown can occur with little 
sign of instability and a vortex flow may become unstable 
and not undergo breakdown. 

In this paper, we first reexamine the previous theoretical 
studies and identify the common basis among them. A re­
view of these inviscid studies indicates that an appropriately 
defined Rossby number is the relevant controlling param­
eter. Next, the previous numerical studies are reexamined. 
The susceptibility of these results to breakdown in close 
proximity to the inflow boundary is analyzed and the need 
for a controlling parameter is identified. In conjunction with 
a consistently defined Reynolds number, a Rossby number­
Reynolds number plot of the previous numerical and experi­
mental studies for bubble-type breakdown is presented. The 
prediction capability of this plot is substantiated by one of 
the author's (RES) 14 recent numerical studies. In addition, 
a similar Rossby number-Reynolds number plot of some 
experimental studies for leading-edge-type vortices is pre­
sented. Finally, a comparison of the Rossby number-Reyn­
olds number parameter basis presented here, with previously 
suggested parameter bases, is made. The mathematical and 
physical consistency of the Rossby number-Reynolds num­
ber definitions, used in this study, relative to previous sug­
gestions is emphasized. 

II. THEORETICAL RESULTS REEXAMINED 

Throughout the remainder of this paper we use a cylin­
drical polar coordinate system, (r,0,z), and the correspond­
ing velocity components: U in the radial (r) direction, Vin 
the circumferential (0) direction, and Win the axial (z) 
direction. In discussing previous work, we adopt the (r,0,z) 
convention. 

Squires appears to be the first to have performed a theo­
retical analysis of vortex breakdown. He suggested that if 
standing waves were able to exist on a vortex core then small 
disturbances, present downstream, could propagate up­
stream and cause breakdown. This is analogous to the earlier 
work of Taylor15 on the stability of circular Couette flow. 
There, a linear stability analysis was performed to ascertain 
the ability of the base flow to support axisymmetric stand­
ing-wave disturbances. In all of the cases studied, Squire as­
sumed that the vortex flow was inviscid and axisymmetric. 
He then sought to determine conditions under which an in­
viscid, axisymmetric, steady perturbation to the flow could 
exist. This condition, which was necessary for the existence 
of a standing wave, was taken to mark the transition between 
subcritical and supercritical states. Two of the cases studied 
by Squire are relevant to the present study. 

In the first case W was taken to be a constant. Here V 
was taken to be that of a solid body rotation inside a core of 
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unit radius and that of a potential vortex outside. That is, 

V = V0r, O<r<l, 

V = Vc/r, r;;;,1, 
(1) 

with V0 a constant. He found that for standing waves to exist 
a swirl parameter k, the ratio of the maximum swirl speed to 
the axial speed, had to satisfy a criterion 

k = VmaJW>l.20. (2) 

When k = 1.20 the wave is infinitely long but has a finite 
wavelength for k > 1.20. 

In the second case W was also taken to be a constant, but 

V= (Vc/r)(l -e-r'), (3) 

with V0 a nondimensional parameter. Again, Squire found 
that there was a condition on the swirl parameter k for the 
existence of a standing wave. The condition was 

k=VmaJW>l.00, (4) 

where we note that 

Vmax = 0.638V0 • (5) 

Benjamin5 examined this phenomena from a different 
point of view. He considered vortex breakdown to be a finite 
transition between two dynamically conjugate states offtow. 
There is subcritical flow, which is defined as the state that is 
able to support standing waves, and a conjugate supercritical 
flow that is unable to support standing waves. In this context 
the work of Squires gives a condition marking the interface 
between these two states. As in the work of Squire, a univer­
sal characteristic parameter was defined that delineates the 
critical regions of the flow. This parameter, denoted by N, is 
the ratio of the absolute phase velocities oflong wavelength 
waves which propagate in the axial direction, i.e., 

(6) 

Here C + and C _ are the phase velocities of the waves which 
propagate with and against the flow, respectively. For N > 1 
the flow conditions are supercritical and for N < 1, subcriti­
cal. 

Benjamin applied this theory to a specific vortex flow, 
defined by W a constant, and 

V= V0r, O..;r,;;;;l, 
(7) 

V = Vc/r, 1 <r<R . 
If R .... oo , this is just the combined vortex studied by Squire. 
Benjamin found that the critical condition was of the same 
form as Squire's, 

VmaxlW = const. (8) 

The precise value of the constant depends on the value of R 
but lies between 1.92 when R = 1, and 1.20 when R = oo. 
Thus Benjamin ( although starting from a different perspec­
tive) arrived at the same critical condition for a combined 
vortex as did Squire. 

As a variation of the phase velocity criterion of Benja­
min, Tsai and Widnall 16 examined a group velocity criterion 
that follows more directly from the view that the breakdown 
occurs as a result of a wave trapping mechanism. 17 Their 
investigation was of swirling pipe flows where the radial and 
axial velocity distributions can both be fit to exponential pro-
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files. They used the least squares fit of Garg and Leibovich 18 

to calculate the dispersion relation from linear parallel sta­
bility theory. The group velocity associated with the various 
flow profiles was then calculated. The results showed that 
upstream of breakdown the group velocity of both the sym­
metric and asymmetric modes was directed downstream. 
Even though their criticality condition of zero group veloc­
ity proved an accurate guide for the various types of break­
down, they were unable to establish a relationship between 
vortex breakdown and wave trapping. 

Finally to complete this brief review of previous theo­
retical studies, a recent paper by Ito, Suematsu, and 
Hayase19 is considered. There, both stationary and unsteady 
vortex breakdown were examined. They considered the sta­
bility to small amplitude disturbances of a vortex with solid 
body rotation in a streamtube. The disturbances can be axi­
symmetric as well as asymmetric and steady or unsteady. 
Their analysis yields a criterion for breakdown from the re­
quirement for the existence of solutions to their disturbance 
equations. A comparison of these results with those ofBenja­
min5

•
6 for the same case of a finite-radius pipe containing a 

rigid-body rotation gives the same criterion for breakdown. 
The important aspect of the Ito et al. 19 work lies in their 
interpretive criterion. Their nondimensionalization leads to 
the Rossby number as the relevant parameter. For example, 
in the case of swirling pipe flow consisting of a solid body 
rotation, the relevant scales are the axial velocity W, pipe 
radius r•, and constant angular velocity of the flow n. 

It is advantageous to summarize this section by placing 
these theoretical analyses into perspective. As has been 
shown there is quantitative agreement among the results of 
Squire, 8 Benjamin,5 and Ito et al. 19 for the various test prob­
lems that have been examined. These analyses have been 
constrained by either the scope of the analysis (linear, paral­
lel, inviscid) or the narrow class of flows that have been 
considered. In the study of Tsai and Widnall, 16 the calcula­
tion of group velocity is an added task. This is generally not 
feasible in engineering applications where a criterion based 
solely on mean quantities may be necessary. Nevertheless, 
these analyses indicate that a criterion for vortex breakdown 
is available. In Sec. V, this Rossby number criterion is ap­
plied to a variety of computational and experimental, con­
fined and unconfined flows, and its range of applicability as a 
function of Reynolds number is examined. However, before 
proceeding with this analysis it is instructive to examine the 
large number of numerical studies that have been performed. 

Ill. ANALYSIS OF PREVIOUS NUMERICAL STUDIES 

Numerical simulations of vortex breakdown 
abound. 20-

23 The purpose of the computational experiments 
was to obtain additional information concerning the struc­
ture of the breakdown bubble as well as identifying the var­
ious parameters affecting its development. In all of the stud­
ies known to us, the flow was restricted to have axial 
symmetry and, as will be shown in the next section, a rela­
tively low range of Reynolds numbers when compared to 
experiments. Nevertheless, geometries and boundary condi­
tions were chosen to hopefully reflect experimentally ob-
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served flows. A possible criticism24 of these numerical ex­
periments is that when breakdown occurred, it invariably 
did so in close proximity to the inflow plane. There are two 
reasons why this proximity breakdown near the inflow 
boundary may be suspect: the first is related to the question 
of numerical accuracy, in general, and the second is related 
to the insensitivity of the flow to the choice of inflow bound­
ary conditions. 

In the case of incompressible flow calculations, and irre­
spective of the formal accuracy of the numerical algorithm, 
the accuracy of a numerical solution of the full Navier­
Stokes equations near and at a computational boundary is 
dictated by the accuracy with which the boundary condi­
tions approximate the physical flow situation. At free­
stream boundaries, sufficiently far away from the dominant 
dynamic regions of the flow, inaccuracies in boundary con­
dition specifications are not that critical to the overall accu­
racy of the numerical solution. This is because of the lack of 
significant source dynamics and momentum or vorticity flux 
at these boundaries. However, at outflow or inflow boundar­
ies the situation is much more volatile. Clearly, at outflow 
boundaries the inability to properly handle momentum or 
vorticity flux will soon destroy the global accuracy of a nu­
merical solution. Even in the best of circumstances, it is ex­
ceedingly difficult, if not impossible, to obtain completely 
"transparent" boundary conditions at outflow boundaries 
for incompressible finite Reynolds number flows. At inflow 
boundaries, a similar situation to the outflow boundary 
arises; although, because of the dominance of the mean flow, 
the situation is not nearly as critical. Nevertheless, for the 
numerical solution of the Navier-Stokes equations for in­
compressible flows, it is once again extremely difficult to 
choose the "correct" inflow boundary condition. Specifical­
ly, if the inflow boundary condition does not exactly satisfy 
the Na vier-Stokes equations, there must be some spatial ad­
justment range over which the solution adjusts to a solution 
of the Navier-Stokes equations. The spatial extent of this 
adjustment region varies depending on the physical problem 
at hand, but it does exist, and in flows which may be close to 
some criticality threshold, this region of adjustment may 
trigger unwanted and unrealistic numerical solutions. Clear­
ly, the conclusion that can be drawn from the discussion of 
"numerical" boundary layers induced by numerical bound­
ary conditions is to be cautious of the physical significance of 
results obtained near computational boundaries. As pre­
viously indicated, there is another reason why vortex break­
down near the inflow boundary may be suspect. 

A review of the previous computational studies has re­
vealed that, irrespective of the type of inflow boundary con­
ditions, breakdown invariably occurred near the inflow 
boundary in these studies. This is somewhat surprising. 
Even though breakdown may occur well upstream near the 
turning vanes of the generating apparatus in some experi­
ments, there are several cases where it occurs well down­
stream within the test section. In addition, Leibovich24 has 
pointed out that the internal structure of the numerically 
generated breakdown bubbles is not consistent with the 
structure observed experimentally. The question that arises 
is as follows: "Why the apparent insensitivity to inflow con-
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ditions?" As examples of the types of boundary conditions 
that have been used in the numerical studies, consider the 
studies of Kopecky and Torrance20 and Grabowski and 
Berger.21 The numerical work that followed22

•
23 these stud­

ies appears to be redundant as far as types of boundary con­
ditions and results are concerned. 

Kopecky and Torrance19 solved for the unsteady axi­
symmetric swirling flow through a cylindrical streamtube 
with uniform streamwise velocity. The exponential distribu­
tion of swirl velocity, assumed at inflow, was continuous 
(along with its radial derivatives) and behaved as a solid 
body near the axis and a potential vortex away from the axis. 
The inflow profiles were not a solution to the finite Reynolds 
number Navier-Stokes equations. A parametric study was 
performed with the Reynolds number, based on mean axial 
velocity in the streamtube and streamtube radius, ranging 
from 50 to 500; and the swirl ratio ( defined in terms of 
streamtube radius) ranging from 0.4 to 10.0. The develop­
ment of a recirculation zone was demonstrated as the swirl 
was increased for fixed Reynolds number and viscous core 
diameter. Similar results were obtained when the core diam­
eter and swirl ratio were fixed while the Reynolds number 
was increased. In all cases, the breakdown occurred within 
one streamtube radius of the inflow boundary. 

As an example of a different type of inflow boundary 
condition consider the work of Grabowski and Berger. 21 

They solved the steady axisymmetric Navier-Stokes equa­
tions for a free vortex embedded in an irrotational flow. This 
was approximated by a two parameter family of assumed 
inflow velocity distributions. The velocity profiles were the 
polynomial profiles given by Mager25 in his integral analysis 
and are assumed to be approximations to experimentally 
measured profiles. The axial velocity profiles were allowed 
to range from wakelike to jetlike profiles. It is worth noting 
that at inflow the vorticity distribution was continuous; 
however, the radial gradient of vorticity was discontinuous 
at the interface between the free vortex and the irrotational 
flow. Once again the inflow velocity profiles were not a solu­
tion to the finite Reynolds number Na vier-Stokes equations. 
Solutions with vortex breakdown were obtained for Reyn­
olds numbers based on free-stream axial velocity and core 
radius of up to 200. These solutions were obtained with in­
flow conditions that were, in many cases, subcritical. The 
results showed that breakdown was enhanced by increasing 
the swirl and was relatively Reynolds number independent. 
In the cases studied ( Reynolds number of 200), breakdown 
appeared to occur within two core radii downstream of the 
inflow boundary. 

These two numerical studies, Kopecky and Torrance20 

and Grabowski and Berger,21 serve as examples of the vul­
nerability of the vortex to breakdown near the inflow bound­
ary, irrespective of the details of the inflow boundary condi­
tions. These results, along with those of the other numerical 
studies, 22

•
23 suggest that there must be another alternative to 

the formulation of these flow problems. If this is not the case, 
then there appears to be no way of obtaining numerical re­
sults that yield breakdown away from an inflow boundary. 
From the previous discussion on computational boundary 
layers and computational boundary conditions, the restruc-
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tion would seriously curtail the usefulness of numerically 
simulated vortex breakdown. 

IV. BREAKDOWN CRITERION 

It is apparent from previous theoretical work that a 
criticality condition, in terms of a Rossby number, can be 
established for the onset of breakdown. This choice is moti­
vated by the fact that both the Squires and Benjamin5 studies 
can be reinterpreted in terms of this parameter and the re­
cent work of Ito et al. 19 explicitly expresses the result in 
terms of a Rossby number. 

The Rossby number ( or inverse swirl ratio) must be 
defined in a consistent manner with respect to the basic type 
of vortex flow being considered. It is defined as 

Ro= W lr*O., (9) 

where W, r*, and n represent a characteristic velocity, 
length, and rotation rate, respectively. For the velocity pro­
files consistent with swirling flows, leading-edge, and trail­
ing wing-tip vortices we define r* as the radial distance at 
which the swirl velocity is a maximum. As pointed out by 
Leibovich, 13 this is a characteristic viscous length scale ap­
propriate for swirling flows. Here W represents the axial 
velocity at r*. This is justified by the fact that it is a consistent 
velocity scale for both uniform and radially varying axial 
velocity profiles, and it is also consistent with the "swirl ve­
locity scale" implied by r*O.. A characteristic property of 
trailing wing-tip vortices is the solid body rotation occurring 
near the vortex centerline. This rotation rate is considered to 
be the characteristic rate n of the vortex. 

The swirl velocity component of wing-tip vortices is of­
ten described in terms of the two-dimensional Burgers' vor­
tex, which is given by 

V(r) = (K Ir) [ l - exp( - ar212v)] , ( 10) 

where a is an adjustable constant associated with the core 
size, v is the kinematic viscosity, and K is proportional to the 
circulation. Here, n is the limit of V Ir as r--0, i.e., 

n = lim( V Ir) = aK 12v. (11) 
r-0 

The characteristic length is taken as 

r* = l.l2✓2vla , (12) 

which is the radius of maximum swirl velocity. For the case 
of the combined vortex considered by Squires and Benjamin5 

the characteristic radius r* is 1. Note that the parameter k 
given by Squire for the combined vortex is the inverse of the 
Rossby number ( or swirl ratio), since the characteristic rate 
of rotation is given by the solid body rotation of the vortex 
core V0 . 

For consistency, the Reynolds number is defined here in 
terms of the viscous length scale r* and the axial velocity W 
at the radius r*. A third parameter associated with such 
flows is the Eckman number, or a "rotational" Reynolds 
number, but in this context it is not an independent param­
eter. Based on this discussion, it appears that a consistent 
parameter basis for characterizing these flows is the Rossby 
number-Reynolds number set. The relationship of this set to 
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other parameter bases, proposed earlier, will be examined in 
the next section; however, first this duo will be applied to 
both trailing wing-tip and leading-edge vortices. 

V. APPLICATION OF CRITERION 

Figure 1 is a plot of the Rossby number versus Reynolds 
number for a variety of numerical and experimental studies 
of swirling flows and trailing wing-tip vortices. Throughout 
the figure, the open symbols denote no breakdown and the 
solid symbols denote breakdown. For these computational 
and confined experimental studies, breakdown is defined as 
stagnation of the axial velocity on the axis. For the uncon­
fined experimental studies, breakdown is defined as a rapid 
expansion of the core coupled with a strong deceleration of 
the axial velocity. The data in the figure show that the nu­
merical work to date, expressed in terms of the viscous core 
radius r*, has been performed at relatively low Reynolds 
numbers compared to the experimental studies. With the 
exception of one of the Kopecky and Torrance20 data points, 
all the numerical studies consistently delineated the critical 
region. An examination of the numerical results, presented 
in their study (Fig. 2a, p. 295), did not reveal any axial 
stagnation point. Both numerical and/or graphical resolu­
tion restrictions may have precluded such a representation 
for this threshold case. Since such an evaluation was outside 
the intent of the present investigation, it will suffice to in­
clude this data point as a case representing no breakdown. 
Since the results are Reynolds number dependent in the 
range of computational test cases, direct application of invis­
cid theory in this range is invalid. 

The authors have performed numerical calculations us­
ing a numerical algorithm in which no assumption of axi­
symmetry has been made. The algorithm is the three-dimen­
sional extension of the earlier work of Gatski, Grosch, and 
Rose, 26 using vorticity-velocity variables and a compact dis­
cretization of the Navier-Stokes equations. Application of 
this algorithm to the numerical study of the breakdown phe­
nomena for a variety of flow conditions and parameters is 
presented in Ref. 14. For a Reynolds number of 200 and a 
Rossby number of 0.5, breakdown occurred at the inflow 
plane. For the same Reynolds number and a Rossby number 
of0.64, a decrease in axial velocity occurred near inflow, but 
did not result in breakdown. In addition, for a Reynolds 
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FIG. 1. Rossby number dependence of wing-tip vortices. 
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number of 50 and Rossby number of 0.5, breakdown oc­
curred at inflow. 

The experimental studies have been conducted for both 
confined and unconfined flows at higher Reynolds number. 
Figure 1 shows the results for the confined flows of Garg and 
Leibovich, 18 which are characteristic of the wing-tip class of 
vortices. Since the data were fit to Burgers' vortex, the 
Rossby number is easily obtained. Here the Reynolds 
numbers ranged from 1288 to 21 SO. The mean position of the 
upstream stagnation point of the breakdown bubble ranged 
from 2.3 to 5.6 cm downstream from the beginning of the 
diverging section of the duct. The data points were all taken 
0.2 cm downstream from the beginning of the diverging sec­
tion. This location corresponded to a range of r* values 
between 0.29 and 0.38 cm. The points representing the spiral 
form of breakdown were taken within 3 cm of the breakdown 
initiation point, with a corresponding r* value of ~0.44 cm. 
This initiation point occurred further downstream ( ~ 15 
cm) than the upstream stagnation point of the bubble-type 
breakdown. A single set of data was available from the study 
of Uchida and Nakamura.27 This is a confined flow with 
axisymmetric breakdown occurring at a Rossby number of 
0.64. The data point from Singh and Uberoi28 is for an un­
confined trailing wing-tip vortex of a laminar flow wing. In 
this case the minimum axial velocity rapidly decreases to 
0.3 W,,, , which suggests vortex breakdown. 

Figure 2 displays the relationship between Rossby num­
ber and Reynolds number for the leading-edge class of vorti­
ces. The experimental data were obtained from reports by 
Owen and Peake, 29 Anders, 30 Verhaagen and Kruisbrink, 31 

and Pagan and Solignac. 32 Once again open symbols denote 
no breakdown and closed symbols denote breakdown. 

In the study of Owen and Peake, 29 axial core blowing 
was introduced into vortices shed from delta wings in order 
to study its effect on breakdown. The symbols in Fig. 2 repre­
senting this data are variations based on a blowing coeffi­
cient Cµ, at fixed streamwisestationsz/c = 3 andz/c = 4 (c 
is the chord length of the delta wing). As Cµ increases, the 
corresponding axial velocity increases and the Rossby num­
ber increases past critical. They state that breakdown occurs 
for the case Cµ = 0.0, while for Cµ = 0.05 and 0.12 the flow 
is stabilized and no breakdown occurs. For the study of 
Anders, 30 the variation of the data in Fig. 2 is parametrized 
by the angle of attack of the delta wing. The results for the 

2 ,4 cµ = 0.1~ 
0 Owen & PeoKe, f- = 3 

◊ owen & PeoKe, f = 4 

D Anders 

2.0 j 
RossDy numDer I. 6 

cµ = o.o5 

(,:n) J.2 

0,8 

r, verhaogen & KrutsortnK 

o Pogen & sol i gnoc 

0"' = 19,3° 

a= 28.9' •• 
r, 

Open symools - no DrepKdown 
Sol id symDots - DreoKdown 

0,4 ~--'---'--~'--'------'---'--'----'-1-.L--------'---'-LJ 
102 103 104 

Reynolds numDer ~w~•) 
105 

FIG. 2. Rossby number dependence ofleading-edge vortices. 
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two angles of attack, a= 19.3° and a= 28.9°, at essentially 
the same downstream location, are shown in the figure. As 
shown the higher angle of attack causes breakdown to occur 
closer to the wing leading edge. Verhaagen and Kruisbrink31 

measured the flow properties of the core to support and vali­
date the development of mathematical models. They report 
that no breakdown occurred. The final study that was exam­
ined for the leading-edge-type vortices was by Pagan and 

. Solignac.32 They generated a leading edge vortex from a del-
ta wing at an angle of attack of 19.3°. An adverse pressure 
gradient was imposed in their wind tunnel, by a set of adjus­
table flaps downstream of the air duct, to facilitate break­
down. The vortical structure upstream of the breakdown 
( ~0.09 chord length of the delta), but downstream of the 
trailingedgeofthewing ( ~0.375 chord lengths), was near­
ly symmetric. At this location, the local Rossby number was 
slightly less than 1.0 with a corresponding Reynolds number 
of ~9800. It is important to note that for this class of vorti­
ces, as well as for the trailing wing-tip vortices, the Reynolds 
number range over which the Rossby number criterion holds 
is significant. 

Although the evaluation of the Rossby number is ap­
proximate, one may conclude that vortex breakdown for 
leading-edge vortices occurs at a higher Rossby number than 
for trailing wing-tip vortices. This may be because of the fact 
that the swirl velocity profiles are of a different type. Far 
downstream, the flow outside the core of a trailing wing-tip 
vortex is nearly irrotational. For a leading-edge vortex, the 
flow at the edge of the core is rotational and nearly inviscid. 
In addition, the leading-edge vortex contains a narrow vis­
cous subcore where the radial gradients of the circumferen­
tial velocity are extremely large. In contrast, the wing-tip 
vortex approaches a solid body rotation as the axis is ap­
proached. Upstream ofbreakdown both types of vortices can 
generally be approximated as quasicylindrical. The authors 
can find no analyses that seeks standing-wave solutions to 
profiles applicable to leading-edge vortices. If these were 
available, an analytic Rossby number criterion could be ob­
tained. Based on experimental results, it should be near uni­
ty. 

It is necessary to compare the present criterion for vor­
tex breakdown with previous attempts at establishing a criti­
cality condition. Sarpkaya33 proposed a parameter basis of 
Reynolds number-circulation number as a means of predict­
ing tqe location of the onset of breakdown. These parameters 
were defined in terms of the mean axial velocity in the vortex 
tube, the imposed circulation, and the characteristic diame­
ter of the apparatus. Escudier and Zehnder34 extended this 
parameter basis to include a third parameter, the ratio of 
radial to tangential velocity. Both of these studies were for 
confined flows and, as indicated, the scaling parameters 
were based on apparatus characteristic scales. No local flow 
measurements were taken in the vortex breakdown region, 
thus precluding inclusion of this data in Fig. 1. Extension of 
the criterion established in either of these studies to uncon­
fined flows is not straightforward as a result of the defining 
characteristic scales used. Nevertheless, these studies sug­
gest that breakdown location is dependent on Reynolds 
number. Leibovich 13 points out that this is probably not the 
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case, since the breakdown process is essentially governed by 
inviscid dynamics. Certainly there is a threshold where vis­
cous effects must have some impact; however, the point of 
the objection concerns regimes where the Reynolds number 
is above this threshold value. Leibovich 13 identifies the prob­
lem in these studies33

•
34 as the choice of characteristic length 

scale. The variation of the characteristic diameter changes 
the value of the Reynolds number, but it also affects the 
magnitude of swirl and vortex core vorticity (i.e., circulation 
can be kept constant). Therefore, even for fixed circulation 
number, the Reynolds number is not an unambiguous mea­
sure of the importance of viscous forces in the flow. As Lei­
bovich 13 has suggested, the correct choice of characteristic 
length scale is the vortex core diameter, which is the choice 
used [ cf. Eq. ( 9) ] in the Rossby number-Reynolds number 
set of the present study. For example, for the case of the 
trailing wing-tip-type vortex breakdown, Fig. 1 clearly 
shows that the breakdown dynamics is essentially "inviscid" 
for Reynolds numbers greater than about 200. 

Another attempt at establishing a criticality condition 
for vortex breakdown was made by Kopecky and Tor­
rance. 20 This numerical study has been reviewed earlier in 
connection with breakdown occurring near the inflow com­
putational boundary and has also been included in the data 
set of Fig. 1. The parameter basis proposed in their study was 
the swirl ratio-Reynolds number set. At first this appears to 
be the same basis as proposed in the present study (recall 
that the swirl ratio can be interpreted as simply the inverse of 
the Rossby number); however, closer examination reveals 
there are two differences. The first difference is the choice of 
characteristic length scale. Kopecky and Torrance20 choose 
the streamtube radius (height of computational domain) as 
their characteristic length rather than the core radius; thus 
the results are vulnerable to the same physical misinterpreta­
tion as the Sarpkaya33 and Escudier and Zehnder34 results. 
The second, related difference is the inclusion of a parameter 
B that adjusts the radius of the viscous core at the inflow 
boundary. Their results on a criticality condition are some­
what misleading since the swirl ratio and Reynolds number, 
as defined, need to be supplemented with a conversion factor 
B 112

, to take into account the effect of viscous core size. In 
addition, application of this swirl ratio-Reynolds number 
basis set to experimental results would be complicated by the 
need to extract out a parameter B from the experiments. 

It suffices to point out, finally, that these previous stud­
ies did not attempt to extend their parametrization bases to 
breakdown of leading-edge-type vortices. The inclusion of 
this type of vortex breakdown in the present study further 
validates the applicability of the proposed Rossby number­
Reynolds number criterion. It also shows that the criticality 
condition for the leading-edge vortices is different (slightly 
higher) than the criticality condition for the trailing wing­
tip vortices. 

VI. CONCLUSIONS 

The results shown in Fig. 1 make it apparent that experi­
mentally, analytically, and computationally, the critical 
Rossby number for the symmetric form of trailing wing-tip 
vortex breakdown for Reynolds numbers greater than 100 is 

Spall, Gatski, and Grosch 3439 



 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to

IP:  128.82.253.83 On: Fri, 16 Oct 2015 18:34:08

about 0.65. For lower Reynolds numbers, the value of the 
critical Rossby number is lowered, undoubtedly owing to the 
increased damping effects of viscosity on the wave motions. 

Figure 1 sheds light on the proper way to perform com­
putational experiments. The inflow profile should corre­
spond to a Rossby number greater than the critical value. 
This prevents the possibility of wavelike solutions near the 
inflow thus precluding breakdown. A mechanism, either in­
herent in the dynamics of the flow or externally imposed, 
must then modify the local Rossby number as the flow 
evolves in the streamwise direction. For example, the decay 
of a jetlike axial flow due to viscosity or the imposition of an 
adverse pressure gradient might be sufficient to lower the 
local Rossby number. Once the critical condition is achieved 
the possibility of wavelike solutions arises. One would expect 
a standing wave to originate at this location. If, on the other 
hand, the Rossby number at inflow is less than the critical 
value, axisymmetric waves can be expected to originate at 
the inflow boundary. Here, the velocity profiles are fixed, 
thus acting as an "artificial" critical condition. Thus break­
down occurs at this point. 

This scenario for numerical computations corresponds 
to the way in which experiments conducted in tubes have 
been carried out. A supercritical flow is drawn toward criti­
cal as it evolves downstream as a result of the slight expan­
sion of the tube. At the critical station, breakdown occurs. 

The theoretical analyses of Squire, 8 Benjamin, 5•
6 and Ito 

et al. 19 reduce to a criterion for the existence of axisymmetric 
standing waves based on a Rossby number. The exponential 
profile [Eq. ( 10)] that most closely models experimental 
flows yields a critical Rossby number of0.57. This value is 
shown as a dashed line in Fig. 1. The experimental data of 
Garg and Leibovich, 18 interpreted in terms of a Rossby num­
ber, shows that breakdown occurs when the local Rossby 
number falls in the range of0.57 to 0.63. Numerical experi­
ments reveal a high Reynolds number limit (Re> 50) of 
about Ro= 0.6forbreakdown to occur. For lower Reynolds 
numbers, a lower Rossby number is required to initiate 
breakdown. 

The case for the breakdown of the leading-edge vortices 
is shown in Fig. 2. The data for this case are more difficult to 
cast in terms of the Rossby number and Reynolds number 
than the data for the trailing wing-tip vortices. This is be­
cause of the small viscous subcore characteristic of the type 
of vortex. However, the data shown in Fig. 2 were obtained 
from a more diverse set of flow conditions than the trailing 
wing-tip vortices. For example, there was a case where vor­
tex core axial velocity blowing was used, 29 a case where vari­
ation of the angle of attack of the delta wing was used, 30 and a 
case where an adverse pressure gradient was imposed. 32 

Nevertheless, in these studies, the data was consistent with 
the concept of a Rossby number criterion. 

The comparison, between the Rossby number-Reyn­
olds number parameter basis, proposed in the present study, 
and the parameter bases proposed previously, 20

•
33

•
34 showed 

that the present formulation is both physically consistent 
and less ambiguous than the previous studies. 20

•
33

•
34 The 

choice of characteristic scales associated with the vortex it­
self allows for the application of the established criterion to 
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both confined and unconfined vortical flows, as well as trail­
ing wing-tip and leading-tip-type vortices. 

It is apparent from the results of this paper that retard­
ing or precluding vortex breakdown is a practical and viable 
objective. This altering of the vortex characteristics can be 
accomplished by either reducing the characteristic rotation 
rate of the vortex or enhancing the streamwise velocity. The 
rotation rate can be reduced, for example, by imposing trans­
verse pressure gradients, or the streamwise velocity can be 
enhanced by imposing streamwise pressure gradients. In ei­
ther approach the effective measure is the Rossby number. 
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