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FULLY GENERALIZED TWO-DIMENSIONAL CONSTRAINED
DELAUNAY MESH REFINEMENT∗

PANAGIOTIS A. FOTEINOS† , ANDREY N. CHERNIKOV†, AND

NIKOS P. CHRISOCHOIDES†

Abstract. Traditional refinement algorithms insert a Steiner point from a few possible choices at
each step. Our algorithm, on the contrary, defines regions from where a Steiner point can be selected
and thus inserts a Steiner point among an infinite number of choices. Our algorithm significantly
extends existing generalized algorithms by increasing the number and the size of these regions. The
lower bound for newly created angles can be arbitrarily close to 30◦. Both termination and good
grading are guaranteed. It is the first Delaunay refinement algorithm with a 30◦ angle bound and
with grading guarantees. Experimental evaluation of our algorithm corroborates the theory.

Key words. Delaunay triangulation, mesh generation

AMS subject classifications. 65D18, 68W05, 68W10, 68N19

DOI. 10.1137/090763226

1. Introduction. Delaunay refinement algorithms can be categorized into two
families of algorithms: truly Delaunay and constrained Delaunay refinement algo-
rithms. The former produce meshes which are truly Delaunay by repeatedly splitting
the constrained segments until they appear in the mesh. The latter produce meshes
which are as Delaunay as possible; i.e., they preserve most (but not all) of the nice
properties of truly Delaunay triangulations [8, 19]. The advantage of constrained De-
launay refinement algorithms is that they produce meshes with fewer elements and
guarantee better bounds on the minimum angles and grading. For these reasons, we
chose to develop a constrained Delaunay refinement algorithm.

Traditional Delaunay refinement algorithms [7, 8, 12, 15, 18, 20] improve the
quality of the mesh by inserting additional points into the mesh: the so-called Steiner
points. Specifically, they insert the circumcenter of a bad triangle and the midpoint
of an encroached segment.

There is no universal rule, however, for where the Steiner points should be in-
serted. In the literature, there are methods that insert points other than circumcenters
and midpoints. For example, in [22], a bad triangle is split with its offcenter instead
of its circumcenter producing a smaller mesh in practice. Similarly, in [10], a bad
triangle is split by inserting a point chosen among a total number of four candidate
points. Our goal is to develop an algorithm that allows for customizable point inser-
tion strategies. This flexibility could also help to remove slivers in three dimensions
deterministically, as opposed to randomized algorithms [9, 14]. In this paper, we show
that there is an infinite number of Steiner points that can be chosen to split a tri-
angle or a segment. The points that can be selected as Steiner points form selection
regions. When a bad triangle is considered for splitting, the selection region is a two-
dimensional region called a selection disk. (Sometimes, we refer to selection disks as
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2660 P. FOTEINOS, A. CHERNIKOV, AND N. CHRISOCHOIDES

selection circles). Similarly, when a segment is considered for splitting, the selection
region is a one-dimensional region called a selection interval.

Our group has already devised two generalized Delaunay refinement algo-
rithms [4, 6]. The algorithm in [4] (called semi-generalized refinement algorithm)
deploys only selection disks; i.e., selection intervals are not used. Rather, each en-
croached segment is traditionally split at its midpoint. The algorithm in [6] (called
generalized refinement algorithm) extends the semi-generalized refinement algorithm
by introducing the selection intervals. When the encroached segment to be split, how-
ever, forms an acute input angle, the selection interval is not defined; the generalized
refinement algorithm traditionally splits such segments at their midpoint. In this
paper, we extend the generalized refinement algorithm by introducing the selection
interval of segments forming acute input angles.

Some of the applications of selection regions are discussed in our previous work.
Specifically, our work in [3, 6] describes how the selection circles can be utilized
in order to decrease the size of the mesh. In addition, our work in [5] shows how
selection regions can incorporate many different point placement strategies performed
in parallel.

As proved theoretically in [21] and shown practically in [11], mesh quality strongly
affects the convergence speed and the solution accuracy of the finite element solver:
the larger the minimum angle of the mesh is, the lower the condition number of the
linear system becomes which yields a faster and a more robust solution.

Both the semi-generalized [4] and the generalized refinement algorithm [6] are
proved to terminate with a lower angle bound as high as 20.7◦. In this paper, we
improve the quality of the mesh, proving termination with a lower angle bound arbi-
trarily close (but not equal) to 30◦.

Hudson [13] developed a theoretical framework for both two and three dimensions
which shows that one can split elements at points other than their circumcenters. He,
however, derives a rather weak angle bound in two dimensions: his algorithm guaran-
tees that the lower bound for the angles is 20.7◦ (we guarantee that the lower bound
for the angles is 30◦). Furthermore, his framework suffers from a severe restriction:
the input cannot form acute angles. As it will become obvious in section 3, the input
of our algorithm can have acute angles as small as 60◦.

To our knowledge, among the truly Delaunay refinement algorithms guaranteeing
good grading, the algorithm presented by Miller, Pav, and Walkington [16] comes
with the highest lower angle bound (26.45◦). As far as constrained Delaunay refine-
ment techniques are concerned, Chew [8] describes a constrained Delaunay refine-
ment algorithm with a 30◦ lower angle bound, but with no proof of good grading.
Shewchuk [20] shows that Chew’s algorithm [8] offers good grading for a worse angle
bound (i.e., 26.56◦ instead of 30◦). In this paper, we show that Chew’s algorithm
produces well-graded elements with the original angle bound (i.e., 30◦), confirming
in this way the observations of practitioners. The work by Miller, Pav, and Walking-
ton [16] does not address this issue; they focus on inputs with small input angles. In
fact, the integration of our work in [16] is likely to yield graded elements with better
angles near the boundary of the input.

In summary, the contributions of this paper are twofold.
• It extends the flexibility offered by the existing generalized algorithms [4, 6,
13]: our algorithm presented here increases the number and size of regions
from where Steiner points can be chosen.D
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• It improves the quarantees on mesh quality: our algorithm terminates and
produces well-graded triangles for a lower angle bound arbitrarily close to
30◦.

The rest of the paper is organized as follows. In section 2, we briefly describe
the traditional Delaunay refinement algorithms. In section 3, we define the selection
regions and give the pseudocode of our algorithm. In section 4, we prove important
lemmas and theorems needed for the proof of termination and good grading. The proof
of good grading is presented in section 5 and the proof of termination in section 6.
Finally, section 7 experimentally evaluates our algorithm, and section 8 concludes the
paper.

2. Delaunay refinement background. The input domain Ω to be meshed is
usually described as a planar straight line graph (PSLG) [18, 20]. A PSLG X is a set
of input vertices and segments. The input segments are constrained ; i.e., they have to
appear in the final mesh, possibly as a union of smaller subsegments. We shall refer to
an input segment as simply a segment. The input vertices should also be preserved in
the final mesh. For brevity, we call both the segments and the input vertices features.

Let pi, pj be two vertices in the mesh. We denote the mesh edge that connects pi
with pj as e (pi, pj) regardless of whether it is an input segment or not. The Euclidean
distance between these points is denoted as ‖pi − pj‖.

We use the circumradius-to-shortest-edge ratio ρ of a triangle to measure its
quality. If the circumradius-to-shortest-edge ratio of a triangle t is equal to or larger
than a specified upper bound ρ̄, then t is said to be a poor or skinny triangle. Mesh
refinement algorithms split poor triangles until the circumradius-to-shortest-edge ratio
of all the triangles in the mesh is less than ρ̄. This upper bound sets a lower bound
for the angles in the mesh, since the circumradius-to-shortest-edge ratio of a triangle
with shortest edge l, circumradius r, and smallest angle A is ρ = r

l = 1
2 sinA [17, 20].

Therefore, when the refinement terminates, it is guaranteed that all the angles in the
mesh are larger than arcsin 1

2ρ̄ . For brevity, we denote this angle lower bound as θ:

θ = arcsin 1
2ρ̄ . Clearly, θ can only be an acute angle.

A triangle t is said to satisfy the constrained Delaunay property if there is no vertex
that lies strictly inside t’s circumscribed circle (circumcircle) and is visible from the
interior of t [8, 20]. Two vertices pi, pj are visible to each other if the line connecting
pi with pj does not intersect (at exactly one point) the interior of any constrained
segment. See Figure 2.1 (left) and (middle). At any time during the refinement process,
all the triangles in the mesh have to satisfy the constrained Delaunay property.

Cavity [12] of a point p is defined to be the set C (p) of triangles ti in the mesh such
that the circumcircle of every ti in C (p) includes the point p, and p is visible from the
interior of ti (see Figure 2.1 (right)). We denote ∂C (p) to be the set of boundary edges
of the cavity, i.e., the edges which are incident upon only one triangle in C (p). For our
analysis, we use the Bowyer–Watson (B-W) point insertion algorithm [1, 24], which
can be shortened as in Algorithm 1. Note that this definition of a cavity implies that if
p is inserted into the mesh, then all the triangles in C (p) do not satisfy the constrained
Delaunay property and must be deleted. After the deletion of these triangles, the
cavity has to be re-triangulated such that all the newly formed triangles respect the
constrained Delaunay property.

As mentioned above, refinement algorithms repeatedly split skinny triangles until
the ratio of all the triangles in the mesh is less than the upper bound ρ̄. Traditionally,
a skinny triangle t is deleted by inserting its circumcenter p (using the B-W point
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p

ti

s

p

tj

s

p

tj

ti

s

Fig. 2.1. (Left) Triangle ti satisfies the constrained Delaunay property: although p is inside the
circumcircle, it is not visible from the interior of ti because of the constrained segment s. (Middle)
Triangle tj does not respect the constrained Delaunay property: p lies inside the circumcircle and is
visible from the interior of tj . (Right) The cavity C (p) of p includes only the triangle tj . Although
p lies inside ti’s circumcircle, ti does not belong to C (p), since p is not visible from the interior of
ti. Notice that ti respects the constrained Delaunay property, but tj does not; therefore, tj must be
deleted.

Algorithm 1: The Bowyer–Watson point insertion procedure.

1 Algorithm: BowyerWatson(V , T , p)

Input : V is the set of vertices.
T is the set of triangles.
p is the Steiner point to be inserted.

Output: V and T after the insertion of p.

2 V ← V ∪ {p};
3 T ← T \ C (p) ∪ {(pξ) | ξ ∈ ∂C (p)};

insertion algorithm). We will show, however, that there is a whole two-dimensional
space inside the circumcircle of t where a Steiner point p can be chosen from.

Even though the Steiner point p of a skinny triangle ti is always inserted inside ti’s
circumcircle, ti may not belong to C (p). This can happen when p is not visible from
the interior of ti; that is, when ti and p lie on opposite sides of a constrained segment.
See Figure 2.1 (right) for an illustration: in such a case, the insertion of p fails to
remove the skinny triangle ti from the mesh. To deal with these circumstances and
to prevent the insertion of Steiner points outside the domain, Delaunay refinement
algorithms obey special encroachment rules [8, 20]. We define encroachment as follows.

Definition 2.1 (encroachment of a constrained segment). A segment s is said
to be encroached upon by a skinny triangle t if pi is not visible from the interior of t
due to s; i.e., the line connecting pi and any point in the interior of t intersects the
interior of s. If more than one segment lies between t and pi, the segment closest to
t is encroached.

See Figure 2.2 for an illustration.
If a skinny triangle t encroaches upon a segment s, then its Steiner point is rejected

from the mesh. In addition, all the free vertices (i.e., vertices that neither are input
vertices nor lie on segments) which lie inside the diametral circle of s and are visible
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pi

s

t

pi

t

s
pi

t
s

pu

Fig. 2.2. A skinny triangle t and its Steiner point pi when (left) t encroaches upon segment
s and when (middle) it does not. (Right) Does t encroach upon s or not? No matter where pi is,
the case illustrated in this figure cannot happen, since t did not satisfy the constrained Delaunay
property before the insertion of pi. Indeed, pu lies inside t’s circumcircle and is visible from the
interior of t, because the line connecting pu with any point in the interior of t does not intersect the
interior of s but one of its endpoints.

from the interior of s are deleted. (The diametral circle of a segment is the smallest
circle that circumscribes the segment.) Then a new Steiner point is inserted on s.
Traditionally, the midpoint of s is inserted, but we will show that there is a whole
one-dimensional space inside s from where a Steiner point can be chosen.

The following definitions of the local feature size, insertion radius, and parent
play a central role in the analysis in [18, 20], and we use them for our analysis in the
generalized form, too.

Definition 2.2 (local feature size (lfs) [18, 20]). The function lfs (p) for a given
point p is equal to the radius of the smallest disk centered at p that intersects two
nonincident features of the PSLG.

lfs (p) satisfies the following Lipschitz condition.
Lemma 2.3 (see Lemma 1 in [18], Lemma 2 in [20]). Given any PSLG and any

two points pi and pj, the following inequality holds:

(2.1) lfs (pi) ≤ lfs (pj) + ‖pi − pj‖.

Definition 2.4 (insertion radius). The insertion radius R (p) of point p is the
distance from p to its nearest visible vertex, immediately after p is inserted. If p is
an input vertex, then R (p) is the Euclidean distance between p and the nearest input
vertex visible from p.

Remark 1. Assume that pl and pm are mutually visible vertices inserted into the
mesh and that pl was inserted after pm (or both pl and pm are input vertices); then
R (pl) ≤ ‖pl − pm‖. Indeed, if pm was the closest visible vertex from pl at the time
pl was inserted into the mesh (in the case of input vertices, assume that they were
inserted simultaneously), then R (pl) = ‖pl − pm‖ by the definition of the insertion
radius; otherwise, R (pl) < ‖pl − pm‖.

Remark 2. As shown in [20], if p is an input vertex, then R (p) ≥ lfs (p). Indeed,
the (closed) disk with center p and radius R (p) intersects two nonincident features:
the input vertex p and p’s closest visible vertex.

Next, we define the parent of a Steiner point.
Definition 2.5 (parent of a Steiner point). The parent p̂i of point pi is the

vertex defined by the following four rules:
Rule 1. If pi is either an input vertex or a rejected vertex, then it has no parent.
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Rule 2. If pi is inserted inside the circumcircle of a poor quality triangle t, p̂i is
the most recently inserted vertex of the shortest edge of t. See Figure 2.3
(left).

Rule 3. If pi is inserted on a segment s, encroached upon by a skinny triangle t
and no nonfree vertex visible from pi lies inside the diametral circle of
s, then p̂i is the most recently inserted vertex of the shortest edge of the
encroaching triangle. See Figure 2.3 (middle).

Rule 4. If pi is inserted on a segment s, encroached upon by a skinny triangle t,
and at least one nonfree vertex visible from pi lies inside the diametral
circle of s, then p̂i is the nonfree, visible vertex which is closest to pi. See
Figure 2.3 (right).

Lemma 2.6. The parent p̂i (if one exists) of a point pi is visible from pi.
Proof. Let pi be a vertex and p̂i be its parent. For the sake of contradiction,

assume that p̂i is not visible from pi due to a segment s̄; i.e., the line connecting pi
and p̂i intersects the interior of s̄. We will investigate what that means for each rule
of Definition 2.5.

Rule 1 does not apply, since we have assumed that pi does have a parent in this
lemma. This also implies that pi is neither an input nor a rejected vertex.

If Rule 2 applies, then consider Figure 2.4 (left): the skinny triangle t must
encroach upon s̄. But that means that pi should have been rejected from the mesh: a
contradiction.

If Rule 3 applies, then consider Figure 2.4 (right): the skinny triangle t does not
encroach upon s but upon s̄: a contradiction.

Finally, if Rule 4 applies, p̂i and pi are visible to each other by definition: a
contradiction.

Notice that a rejected point does not have a parent according to our definition
(Rule 1), whereas it does in the traditional approaches. This change is not necessary,
but it considerably simplifies the proofs in the next sections.

Also, observe that the parent of a Steiner point pi inserted on an encroached,
constrained segment s might lie outside the diametral circle of s (see Figure 2.3

p̂i

pi

t

s

p̂i

pi
pj

t

s

p̂i

pi
pj

t

s

s′

Fig. 2.3. Different cases of parenthood as defined in Definition 2.5. t is a skinny triangle, pi, pj
are Steiner points, and s, s′ are (constrained) segments. Point pi is inserted after pj. (Left) t does
not encroach upon s, and therefore, its Steiner point pi is not rejected. The parent p̂i of pi is the
most recently inserted vertex of t’s shortest edge. (Middle) t encroaches upon s and its Steiner point
pj is rejected. Instead, the Steiner point pi is inserted on s. Since the diametral circle of s is empty
of nonfree vertices, the parent of pi is the most recently inserted vertex of t’s shortest edge. (Right)
t encroaches upon s, and therefore, its Steiner point pj is rejected. Instead, the Steiner point pi
is inserted on s. Since the diametral circle of s contains a nonfree vertex lying on the constrained
segment s′, the parent p̂i of pi is this nonfree vertex.
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p̂i

pi

t

s

s̄

p̂i

pi

pj

t

s

s̄

Fig. 2.4. The constrained segment s̄ is shown with the dashed line. (Left) Rule 2 applies (i.e.,
pi is not rejected), as in Figure 2.3 (left), but now s̄ obstructs visibility between pi and p̂i. (Right)
Rule 3 applies (i.e., t encroaches upon s), as in Figure 2.3 (middle), but now s̄ obstructs visibility
between pi and p̂i.

(middle) for an illustration). This is different from the traditional approaches where
the parent of pi is always inside or on the diametral circle of the encroached segment.
This modification of the parent definition is crucial, since the diametral circle of an
encroached segment might not contain any traditional parent candidates at all in our
generalized algorithm. For our analysis, it is useful to know whether the parent of pi
is strictly inside the diametral circle of s or not; we, therefore, classify the parent as
either an external or a nonexternal parent according to the following definition.

Definition 2.7 (external parent). Assume that pi is a Steiner point inserted on
an encroached segment s. If its parent p̂i lies on or outside the diametral circle of
s, then we say that p̂i is an external parent. Conversely, if p̂i lies strictly inside the
diametral circle of s, then we say that p̂i is a nonexternal parent.

pi

t

s

pm

pk

pi

t

s

pm

pk

Fig. 2.5. The separator of an encroached (constrained) segment s. A skinny triangle t encroaches
upon the constrained segment s (because t and its Steiner point pi lie on opposite sides of s). The
edge e (pmpk) is the separator of s. Intuitively, the separator of s is the edge of t which s would fall
on if we moved s toward t. The right figure illustrates the special case where the encroached segment
coincides with its separator.
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For example, the point p̂i is an external parent in Figure 2.3 (middle), but it is a
nonexternal parent in Figure 2.3 (right).

Remark 3. If p is inserted on a segment s, encroached upon by a skinny triangle
t, and p̂ is an external parent, then p̂ is the most recently inserted vertex of t’s shortest
edge. Indeed, if Rule 3 did not apply, then Rule 4 would; i.e., p̂ would lie inside the
diametral circle of s: a contradiction.

Next, we define the separator of an encroached segment.
Definition 2.8 (separator of an encroached, constrained segment). Let t en-

croach upon a segment s. The separator of s is the unique edge of t that lies between
s and the interior of t.

Notice that the separator of an encroached segment always exists and is unique.
See Figure 2.5 for a couple of examples.

The density [20] of a vertex p, denoted as D (p), is defined as follows:

(2.2) D (p) =
lfs (p)

R (p)
.

Refinement algorithms are proved to produce well-graded triangles by showing that
the density of all mesh vertices is less than a constant.

3. Generalized Delaunay refinement algorithm. In the following sections,
we will show that our generalized constrained Delaunay refinement (GCDR) algorithm
guarantees termination and good grading for a circumradius-to-shortest-edge ratio
upper bound ρ̄ arbitrarily close to 1. This value for ρ̄ corresponds to an angle lower
bound of θ = arcsin 1

2 = 30◦.
Definition 3.1 (selection circle). For a skinny triangle with circumcenter c,

shortest edge length l, circumradius r, and circumradius-to-shortest-edge ratio ρ =
r/l ≥ ρ̄ ≥ 1, the selection circle is the circle with center c and radius r(1− δ2), where
δ2 is a constant parameter chosen such that

(3.1)
1

ρ̄
≤ δ2 ≤ 1.

See Figure 3.1 (left) for an illustration.
Remark 4. If δ2 = 1, then the selection circle shrinks to the circumcenter point.
Definition 3.2 (type B selection interval). If s is an encroached segment with

center c, then the type B selection interval of s is the subsegment of s with center c
and length |s|(1 − δ1), where δ1 is a constant parameter chosen such that

(3.2)
1

ρ̄δ2
≤ δ1 ≤ 1,

and |s| is the length of s. See Figure 3.1 (middle) for an illustration.
Remark 5. If δ1 = 1, then the type B selection interval shrinks to the center

point.
Remark 6. If ρ̄ = 1, then both δ2 and δ1 can only be equal to 1; therefore, both

the selection circles of skinny triangles and the type B selection intervals of encroached
segments shrink to the respective center points.

Remark 7. If δ2 = 1
ρ̄ , then δ1 can only be equal to 1; therefore, the type B

selection intervals of encroached segments shrink to the center points.
Remark 8. If δ1 = 1

ρ̄ , then δ2 can only be equal to 1; therefore, the selection
circles shrink to the circumcenters.
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pk

pl = p̂i
pm

pi c

δ2‖c− pl‖

pu

pv

pi

pl = p̂i

c

pk

δ1‖c− pv‖

pj

pm

α

pu

pv

pi

p̂i

c

μ‖c− pv‖pw

Fig. 3.1. The three kinds of selection regions. Large dots denote nonfree vertices lying on (con-
strained) segments, while small dots denote free vertices. Point c is not a part of the mesh; it is
rather an auxiliary point that denotes the center of the selection regions. Point pi is a Steiner point
inserted into the mesh. Point pj is a Steiner point rejected from the mesh. (Left) Selection circle
(shaded) for the skinny triangle �pkplpm with the shortest edge e (plpm). Also illustrates case (1)
from Table 4.1. (Middle) Type B selection interval (bold) for an encroached segment e (pupv). Also
illustrates case (2) from Table 4.1. The constrained segment e (pupv) is encroached since the skinny
triangle �pkplpm and its Steiner point pj lie on opposite sides. The Steiner point pj is rejected, and
the diametral circle is emptied of vertices which are free and visible from the interior of e (pupv);
in this example, only the free vertex pm is deleted. Another Steiner point pi in the type B selection
interval of e (pupv) is inserted instead. The parent p̂i of the vertex pi may be an external vertex (as
depicted), i.e., a vertex outside the diametral circle of e (pupv). (Right) Type C selection interval
(bold) for an encroached segment e (pupv). Also illustrates case (4) from Table 4.1. The Steiner point
pi has been inserted in the type C selection interval. The parent p̂i is a nonexternal vertex which
lies on a segment incident to e (pupv). The input angle formed by the segments e (pupv), e (pupw) is
denoted with α.

Definition 3.3 (type C selection interval). If s is a segment with center c, then
the type C selection interval of s is the subsegment of s with center c and length
|s|(1− μ), where μ is a constant parameter chosen such that

(3.3) 2 cosαmin ≤ μ ≤ 1,

and αmin is the minimum input angle in the PSLG. Clearly, αmin cannot be smaller
than 60◦. See Figure 3.1 (right) for an illustration.

Remark 9. If μ = 1, then the type C selection interval shrinks to the center
point. In our previous generalized algorithms [4, 6], the type C selection interval is
always the center point.

Remark 10. If αmin is equal to 60◦, then μ can only be equal to 1, and therefore,
the type C selection interval of the corresponding segment shrinks to its center point.

Remark 11. If δ1 = δ2 = μ = 1, then our GCDR algorithm is identical to Chew’s
second algorithm, as described in [20].

Algorithm 2 presents the GCDR algorithm. For brevity, let us classify the non-
rejected Steiner points, inserted by the GCDR algorithm, into three categories:

• If a point pi is inserted inside the selection circle of skinny triangle, then pi
is called a type A point.
• If a point pi is inserted on an encroached segment s, and there is no nonfree
vertex strictly inside the diametral circle of s and visible from pi, then pi is
called a type B point. Type B points are only inserted in the type B selection
interval of encroached segments.
• If a point pi is inserted on an encroached segment s, and there is at least
one nonfree vertex strictly inside the diametral circle of s and visible from pi,
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Algorithm 2: The generalized constrained Delaunay refinement
algorithm.

1 Algorithm: GeneralizedDelaunayRefinement(X , ρ̄, δ2, δ1, μ, FA(), FB(),
FC(),M)

Input : X is the input PSLG.
ρ̄ is the upper bound on circumradius-to-shortest-edge ratio, ρ̄ ≥ 1.
δ2 is the parameter which defines selection circles for skinny
triangles, 1

ρ̄ ≤ δ2 ≤ 1.
δ1 is the parameter which defines type B selection intervals of
encroached segments, 1

ρ̄δ2
≤ δ1 ≤ 1.

μ is the parameter which defines type C selection intervals of
encroached segments, 2 cosαmin ≤ μ ≤ 1, where αmin is the
minimum input angle present in X .

FA(), FB(), and FC() are user-defined functions which return
specific Steiner points of type A, type B, and type C, respectively.
M = (V, T ) is an initial constrained Delaunay triangulation of X ,
where V is the set of vertices and T is the set of triangles.

Output: A constrained Delaunay meshM whose triangles have
circumradius-to-shortest-edge ratio less than ρ̄.

2 Let SkinnyTriangles be the set of triangles in T whose
circumradius-to-shortest-edge ratio is larger than or equal to ρ̄;

3 while SkinnyTriangles �= ∅ do
4 Pick t ∈ SkinnyTriangles;
5 p← FA(M, δ2, t); /* p is of type A */

6 if t encroaches upon a segment s then /* p is rejected */

7 Delete the free vertices inside the diametral circle of s;
8 if there is a nonfree vertex which lies strictly inside the diametral circle

of s and is visible from the interior of s then
9 p← FC(M, μ, s); /* p is of type C */

10 else
11 p← FB(M, δ1, s); /* p is of type B */

12 end

13 end
14 BowyerWatson(V , T , p) ; /* insert p into the mesh */

15 Update SkinnyTriangles;

16 end

then pi is called a type C point. Type C points are only inserted in the type
C selection interval of encroached segments.

For example, the vertex pi in Figure 3.1 (left), (middle), and (right) is a type A,
a type B, and a type C point, respectively.

Notice that the parent of type B and type C points is not the same as in our
previous generalized refinement algorithm presented in [6]: the parent p̂ of a type C
point p is now a nonfree vertex strictly inside the diametral circle of an encroached
segment s, regardless of whether p̂ lies on a segment incident to s or not. This change
is not necessary, but it further simplifies the proofs in the sections that follow.
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The analysis below assumes that all angles in the input PSLG are not less than
60◦. (Input angles less than 60◦ can be removed via postprocessing techniques [8] or
via concentric circular shell splitting [18, 20], but without guarantee of good grading.)

4. Point spacing theorem. The main result of this section is Theorem 4.6
which establishes the relation between the insertion radius of a point and that of its
parent or the local feature size. In particular, in both cases, the insertion radius is
bounded from below, and therefore, the lengths of the edges created by the GCDR
algorithm are bounded from below. This result allows us to prove in the following
sections the termination of the algorithm and the good grading of the meshes it
produces.

First, we prove Lemmas 4.1, 4.2, 4.3, 4.4, and 4.5 that establish important re-
lations used in the proof of Theorem 4.6 as well as in the proof of good grading in
section 5. Lemmas 4.1, 4.2, and 4.3 bound the insertion radius of a Steiner point from
below in terms of the size of the corresponding selection region. Lemma 4.4 relates the
length of the encroached segment with the length of the circumradius of the encroach-
ing triangle. Finally, Lemma 4.5 determines which of the edges of a skinny triangle
can be the shortest.

Lemma 4.1. If a Steiner point pi is of type A, then

(4.1) R (pi) ≥ δ2r,

where r is the circumradius of the corresponding skinny triangle.
Proof. Consider Figure 3.1 (left). By the way we defined type A Steiner points

(see section 3), pi is actually inserted into the mesh; therefore, there is no segment
that lies between pi and the skinny triangle t = 
pkplpm (i.e., t does not encroach
upon any segment). By the constrained Delaunay property, t’s circumcircle does not
contain vertices visible from t’s interior. Since pi and t lie on the same side of any
constrained segment, there is no vertex inside the circumcircle which is visible from pi.
Therefore, the “donut” between the boundary of the circumcircle and the boundary
of the selection circle cannot contain points visible from pi. Thus, the distance from
pi to the closest mesh vertex visible from pi has to be greater than or equal to the
width of the donut. This implies that the insertion radius of pi has to be greater than
or equal to the width of the donut which is equal to δ2r.

Lemma 4.2. If a Steiner point pi, inserted on an encroached segment s, is of type
B and p̂i is either a type A point or a nonfree external parent, then

• there are no nonfree vertices inside the diametral circle of s that are visible
from pi, and

• the following inequality holds:

(4.2) R (pi) ≥ δ1
|s|
2
.

Proof. For the first part, for the sake of contradiction, assume that the diametral
circle of s is not empty of nonfree vertices visible from pi. Let pj be the closest to
pi nonfree vertex which is inside the diametral circle of s and visible from pi. By
Definition 2.5 (Rule 4), pj is the parent of pi. However, pj is neither a type A point
(since it is a nonfree vertex) nor an external parent (since it lies inside the diametral
circle of s): a contradiction.

For the second part, recall that all the free vertices which are inside the diametral
circle of s = e (pupv) (see Figure 3.1 (middle)) and visible from the interior of s are
deleted. Also, from the first part above, there are no nonfree vertices which lie inside
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the diametral circle of s and are visible from pi. Therefore, one of the endpoints of
s—say the endpoint pv—is the vertex closest to pi among the vertices that are visible
from pi. This means that R(pi) = ‖pi − pv‖, and from the definition of the type B

selection interval, R (pi) ≥ δ1
|s|
2 .

Lemma 4.3. If pi, inserted on an encroached segment s, is of type C, then
• if p̂i is the closest vertex to pi, the following equality holds,

(4.3) R (pi) = ‖pi − p̂i‖,

or
• if one of the endpoints of s is closest to pi, the following inequality holds:

(4.4) R (pi) ≥ μ
|s|
2
.

Proof. Consider Figure 3.1 (right). By the way we defined a type C point, there
is at least one nonfree vertex strictly inside the diametral circle of s = e (pupv) and
visible from the interior of s (i.e., visible from pi). Therefore, by Definition 2.5 (Rule
4), p̂i is the closest to pi, nonfree vertex visible from the interior of s. Recall, however,
that all the free vertices which are inside the diametral circle of s and visible from the
interior of s are deleted. Therefore, there are two scenarios: either p̂i or one of the
endpoints of s is the closest vertex to pi. In the first case, (4.3) holds by definition
of the insertion radius (Definition 2.4). In the second case, since pi is inserted in the
type C selection interval of s, pi is separated from the endpoints of s by a distance at

least μ |s|
2 , and inequality (4.4) holds.

Lemma 4.4. Let pi be a Steiner point inserted on a segment s encroached upon
by a skinny triangle t with circumradius equal to r. If the parent of pi is an external
parent, then

• s intersects t’s selection circle, and
• the following inequality holds:

(4.5)
|s|
2
≥ r
√

2δ2 − δ22 .

Proof. From Remark 3, we obtain that the parent p̂i of pi is a vertex of t (in
fact, p̂i is the most recently inserted vertex of t’s shortest edge). We claim that s has
to intersect t’s selection circle. Indeed, if it does not, either s cannot be encroached
upon by t (see Figure 4.1 (left)) or pi cannot be an external parent (see Figure 4.1
(middle)): a contradiction.

For the second part, observe that the length of s reaches its smallest value when
s is tangent to t’s selection circle and its endpoints lie precisely on t’s circumcircle.
See Figure 4.1 (right) for an illustration. From the right triangle formed, we obtain

that |s|
2 is at least

√
r2 − r2(1− δ2)2, and (4.5) holds.

Lemma 4.5. Let triangle t encroach upon the constrained segment s. The separator
of s cannot be the shortest edge of t.

Proof. See Figure 3.1 (middle). From Definition 2.8, the separator of s = e (pupv)
is the edge e (pmpk). We will prove the lemma by showing that the angle ∠pkplpm
cannot be the smallest angle of the encroaching triangle t = 
pkplpm.
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pk
pl = p̂i

pm

c

t

s

pk
pl = p̂i

pm

c

t
s

pk
pl = p̂i

pm

c

t

s

r r(1 − δ2)

Fig. 4.1. The shaded circle represents the selection circle of the skinny triangle t. Point c is the
center of the selection circles. (Left) Segment s does not intersect the selection circle, but t cannot
encroach upon s. (Middle) Segment s does not intersect the selection circle, t encroaches upon s,
but p̂i is not an external parent since it lies strictly inside the diametral circle of s. (Right) If s
intersects the selection circle, then its length is minimized when it is tangent to the selection circle.
The radius of t’s circumcircle is denoted as r.

For the sake of contradiction, assume that φ = ∠pkplpm is the smallest angle of
t. It is well known that all inscribed angles subtended by the same arc of a circle
are equal. Therefore, we can turn t into an isosceles triangle, without changing the
value of φ, by moving appropriately the point pl on t’s circumcircle. Now, observe
that the value of φ decreases as the endpoints of e (pmpk) move on t’s circumcircle
and away from the point pl. Thus, the smallest value that φ can take is when e (pmpk)
is tangent to the selection circle of t, as depicted in Figure 4.2. Note that the edge
e (pmpk) cannot move farther away from pl since otherwise t could not encroach upon
s any more.

See Figure 4.2. From the right triangle 
pmpjc, we obtain that ‖pm − pj‖ =

r
√

δ2(2− δ2). Similarly, from the right triangle 
pmpjpl, we obtain that ‖pm−pl‖ =
r
√

2(2− δ2). Therefore, we have that

pl

pj

φ

c

r

r(1 − δ2)

pm pk

Fig. 4.2. The skinny triangle t = �pkplpm where e (pmpk) is the separator of the encroached
segment. Since e (pmpk) is tangent to the selection circle at the point pj, angle φ takes its minimum
value. Without loss of generality, t is an isosceles triangle with e (pmpk) being the base.

D
ow

nl
oa

de
d 

10
/2

3/
17

 to
 1

28
.8

2.
25

3.
43

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2672 P. FOTEINOS, A. CHERNIKOV, AND N. CHRISOCHOIDES

Table 4.1

All possible type combinations of pi and p̂i. The cells above labels “external” and “nonexternal”
correspond to the cases when p̂i is an external and a nonexternal parent, respectively. Also, the cells
above labels “incident” and “nonincident” correspond to the cases when pi and p̂i lie on incident
and nonincident constrained segments, respectively. Each of the cases (n) is analyzed separately.

Type−B

Type−A

Type−C

non−external external non−external

Type−A Type−B Type−C−or−input

non−incidentincidentincident non−incident

external

pi

p̂i

(1)

(2) (3)(3)

(4)(4) (5) (5)

n/an/a

n/an/an/a

n/an/a

sin φ
2 =

‖pm−pj‖
‖pm−pl‖ (from the right triangle 
pmpjpl)

=
r
√

δ2(2−δ2)

r
√

2(2−δ2)

=
√

δ2
2

≥
√

1
2ρ̄ (from (3.1))

=
√
sin θ

≥ sin θ (0 < sin θ < 1; therefore,
√
sin θ > sin θ),

yielding that φ > 2θ.
However, since t is a skinny triangle, its smallest angle must be no larger than θ:

φ ≤ θ, a contradiction.
Theorem 4.6 (point spacing theorem). With the use of the GCDR algorithm

either

(4.6) R (pi) ≥ Cn ·R (p̂i) , n = 1, 2, 3,

or

(4.7) R (pi) ≥ Cn · lfs (pi) , n = 4, 5,

where Cn are defined separately for each of the cases (n) from Table 4.1 as follows:

C1 = ρ̄δ2, C2 = δ1
√
3

2 , C3 = ρ̄δ1
√
2δ2 − δ22, C4 = μ

2 cosαmin
, C5 = μ

2−μ , where αmin is
the minimum input angle of the PSLG.

Proof.
Case (1): By the definition of the parent vertex, Definition 2.5 (Rule 2), p̂i is

the most recently inserted endpoint of the shortest edge of the triangle. Consider
Figure 3.1 (left). Without loss of generality, let p̂i = pl and e (plpm) be the shortest
edge of the skinny triangle 
pkplpm with circumradius r. Then

R (pi) ≥ δ2r (from Lemma 4.1)
= δ2

r
‖pl−pm‖‖pl − pm‖

= δ2ρ‖pl − pm‖
≥ δ2ρ̄‖pl − pm‖ (since ρ ≥ ρ̄ )
≥ δ2ρ̄R (pl) (from Remark 1)
= δ2ρ̄R (p̂i) ;
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therefore, (4.6) holds with C1 = ρ̄δ2.
The argument above holds for all types of p̂i, because it does not involve the

properties of p̂i specific for a particular type.
Case (2): See Figure 3.1 (middle). In this case, pi is a type B point inserted

on an encroached, constrained segment s = e (pupv), and its parent p̂i is of type A.
Therefore, Lemma 4.2 holds.

From the first part of Lemma 4.2, we have that there are no nonfree vertices that
are inside the diametral circle of s and visible from pi. Therefore, by Definition 2.5
(Rule 3), the parent p̂i of pi is the most recently inserted vertex of the shortest edge
of the encroaching triangle t = 
pkplpm. By Lemma 4.5, e (pmpk) cannot be the
shortest edge of t, since it is the separator of s. Therefore, the shortest edge of t
is either e (plpm) or e (plpk). If e (plpm) is shorter than e (plpk), then the parent is
the vertex pl or pm. In either case, R (p̂i) ≤ ‖pl − pm‖ from Remark 1; otherwise,
e (plpk) is the shortest edge, and thus, the parent is the vertex pl or pk. In either case,
R (p̂i) ≤ ‖pl−pk‖ from Remark 1. Hence, no matter which exact vertex is the parent,
we obtain that R (p̂i) ≤ min{‖pl − pm‖, ‖pl − pk‖}.

Furthermore, from the second part of Lemma 4.2, we obtain that R (pi) ≥
δ1

‖pu−pv‖
2 (inequality (4.2)).

We next try to find an upper bound for the ratio R(p̂i)
R(pi)

. Without loss of generality,

assume that segment s has been rotated around its midpoint c in such a way that
the separator of s (i.e., e (pmpk)) is parallel to s, as depicted in Figure 3.1 (middle).
Note that this rotation does not change either the upper bound of R (p̂i) or the lower
bound of R (pi) because both the length of s and t’s vertices remain intact.

Keeping the lower bound of R (pi) fixed (i.e., keeping the position of s’s endpoints
fixed), we will first try to calculate what is the maximum value R (p̂i) can reach. See
Figure 3.1 (middle): by moving the endpoints of the edge e (pmpk) (the separator
of the encroached segment) on t’s circumcircle and toward the encroached segment
e (pupv), R (p̂i) does not decrease, because the length of the edges e (plpm) and e (plpk)
increases. Note that e (pmpk) can at most fall on e (pupv), since otherwise e (pupv)

A

c′
pu pv

pm pkc

pl

Fig. 4.3. Points c and c′ are the centers of the encroached segment s = e (pupv) and the
circumcircle of the encroaching triangle t = �pmplpk, respectively. The endpoints of the separator
of s (points pk and pm) have moved exactly on s, while t is an isosceles triangle (with e (pmpk)
being the base) maximizing in this way the upper bound of R (p̂i).
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would intersect the interior of t. Also, by moving appropriately the vertex pl on the
circle between the endpoints of e (pmpk), we can turn t into an isosceles triangle,
and therefore, we can further increase the quantity min{‖pl − pm‖, ‖pl − pk‖}. See
Figure 4.3 for an illustration.

R (p̂i) ≤ min{‖pl − pm‖, ‖pl − pk‖}
= ‖pl − pm‖ (since t is turned into an isosceles triangle)

= ‖pm−c‖
cosA (from the right triangle 
pmcpl of Figure 4.3)

≤ ‖pu−pv‖
2 cosA

≤ R(p)
δ1 cosA (from inequality (4.2)).

However, Lemma 4.5 also implies that the minimum angle of t is A, and since t is a
skinny triangle, we have that A ≤ θ. Therefore, we finally get that

(4.8) R (p̂i) ≤ R (p)

δ1 cos θ
.

Since θ is an acute angle, we obtain that

cos θ =
√
1− sin2 θ

=
√
1− 1

4ρ̄2 (since sin θ = 1
2ρ̄ by definition)

≥
√
1− 1

4 (since ρ̄ ≥ 1 from Definition 3.1)

=
√
3
2 ,

and inequality (4.8) becomes

R (p̂i) ≤ 2R (p)

δ1
√
3
.

Therefore, (4.6) holds with C2 = δ1
√
3

2 .
Case (3): Let t be the triangle encroaching upon s, l be its shortest edge, and

r be its circumradius. From Remark 3, we have that p̂i is the most recently inserted
vertex of l. Since t is a poor triangle, |l| can at most be equal to r

ρ̄ . Therefore, from
Remark 1, we obtain that

(4.9) R (p̂i) ≤ r

ρ̄
.

Also, notice that

R (pi) ≥ δ1
|s|
2 (from inequality (4.2))

≥ δ1r
√

2δ2 − δ22 (from inequality (4.5))

≥ δ1ρ̄R (p̂i)
√
2δ2 − δ22 (from inequality (4.9)).

Therefore, in this case, (4.6) holds with C3 = ρ̄δ1
√
2δ2 − δ22 .

The argument above holds for each type of p̂i shown in Table 4.1, because it does
not involve the properties of p̂i specific for a particular type.

Case (4): Since pi is a type C point, Lemma 4.3 holds. Consider Figure 4.4 (left).
Based on Lemma 4.3, we separate two possibilities:
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pu

pv

pw

c

pi p̂i

α α

ξφ

pu

pv

c

pi

p̂i

pw

pxμ‖c− pv‖

Fig. 4.4. Point pi is a type C point inserted on the encroached segment s. Point p̂i is a nonex-
ternal parent. Point c is not part of the mesh; it is an auxiliary point that denotes the center of
the segments. (Left) Points pi and p̂i lie on incident constrained segments separated by angle α,
60◦ ≤ α < 90◦ (case (4) from Table 4.1). (Right) pi and p̂i lie on nonincident constrained segments
(case (5) from Table 4.1).

(a) If the parent p̂i is the closest point to pi, then

R(pi)
R(p̂i)

= ‖pi−p̂i‖
R(p̂i)

(from (4.3))

≥ ‖pi−p̂i‖
‖p̂i−pv‖ (from Remark 1)

= sinα
sinφ (considering 
pipv p̂i).

We wish to determine what values angle φ can take. Since ‖pi−p̂i‖ ≤ ‖pi−pv‖
by our assumption, we get that α ≤ ξ from
pipvp̂i. Therefore, φ ≤ 180◦−2α.
This implies that

R(pi)
R(p̂i)

≥ sinα
sin (180−2α)

= sinα
sin (2α)

= sinα
2 sinα cosα

= 1
2 cosα ,

yielding that

(4.10) R (pi) ≥ 1

2 cosαmin
R (p̂i) .

(b) If an endpoint of the constrained encroached segment e (pupv) is the closest
point to pi, then

R(pi)
R(p̂i)

≥ μ ‖pu−pv‖
2

R(p̂i)
(from inequality (4.4))

≥ μ‖pu−pv‖
2‖p̂i−pv‖ (from Remark 1).

An upper bound for the distance ‖p̂i − pv‖ is obtained when p̂i lies on the
diametral circle of the segment e (pupv) (in fact, p̂i cannot lie exactly on the
diametral circle, since it is a nonexternal vertex). From the isosceles triangle

p̂icpv (see Figure 4.4 (left)), we get that ‖p̂i − pv‖ < ‖pu − pv‖ cosα, and
therefore,

R(pi)
R(p̂i)

> μ‖pu−pv‖
2‖pu−pv‖cosα

= μ
2 cosα ,
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obtaining in this case that

(4.11) R (pi) >
μ

2 cosαmin
R (p̂i) .

In both cases, C4 = μ
2 cosαmin

satisfies both (4.10) and (4.11), and thus, (4.6)
holds.

The argument above holds for each type of p̂i shown in Table 4.1 because it does
not involve the properties of p̂i specific for a particular type.

Case (5): See Figure 4.4 (right). Based on Lemma 4.3, we, again, separate two
possibilities:

(a) If p̂i is the vertex closest to pi, then, from (4.3), R (pi) = ‖pi − p̂i‖. Since,
however, pi and p̂i lie on nonincident features, we obtain that lfs (pi) ≤ ‖pi−
p̂i‖ (see Definition 2.2), yielding that R (pi) ≥ lfs (pi).

(b) Otherwise, an endpoint of the constrained encroached segment e (pupv) is the
closest point to pi. Then, if c is the center of s, by Definition 2.2 of the lfs ()
function,

(4.12) lfs (c) ≤ ‖c− p̂i‖.

Therefore,

lfs (pi) ≤ lfs (c) + ‖pi − c‖ (from Lemma 2.3)
≤ ‖c− p̂i‖+ ‖pi − c‖ (from (4.12))

≤ |s|
2 + ‖pi − c‖ (because p̂i is inside the diametral

circle of s)

≤ |s|
2 + (1 − μ) |s|2 (since pi lies in the type C selection

interval of s)

= (2 − μ) |s|2
≤ (2 − μ)R(pi)

μ (from inequality (4.4)).

In both cases, C5 = μ
2−μ satisfies the inequality (4.7).

The argument above holds for each type of p̂i shown in Table 4.1 because it does
not involve the properties of p̂i specific for a particular type.

5. Proof of good grading. The main result of this section is Theorem 5.5
which proves that GCDR produces well-graded triangles. Theorem 5.5 will also allow
us to prove termination, since it is possible to bound from below the closest distance
of any two visible vertices. Notice that we first prove good grading and then we prove
termination.

First, we prove Lemmas 5.1, 5.2, and 5.3 that bound from above the distance
from a point to its parent in terms of the size of the point’s corresponding selection
region. These results are used to prove Lemma 5.4 which shows that the vertex density
in a point is bounded from above by a linear function of the density in its parent.
Lemma 5.4 is proved only for cases (1)–(4) from Table 4.1, since for case (5) the
relation of the insertion radius to the local feature size proved by Theorem 5.5 follows
directly from the spacing theorem. Finally, we prove Theorem 5.5 by enumerating all
possible type combinations of a point and its parent.

Lemma 5.1. If p is of type A, then

(5.1) ‖p− p̂‖ ≤ (2− δ2)r,
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pu

p̂

c

c′

r
s

d

r(1 − δ2)

Fig. 5.1. The circumcircle and selection circle of the triangle t which encroaches upon the
constrained segment s. The point c is the center of s. The parent p̂ has been moved to the position
that maximizes the distance ‖c− p̂‖, while s remained fixed. Next, keeping the position of c fixed, we
are moving the endpoints of s such that |s| is minimized; in this case, s is tangent to the selection
circle, and at least one endpoint of s lies precisely on the circumcircle.

where r is the circumradius of the skinny triangle t.
Proof. If c is the circumcenter of t, then

‖p− p̂‖ ≤ ‖p− c‖+ ‖c− p̂‖ (from the triangle inequality)
≤ (1− δ2)r + ‖c− p̂‖ (since p is in the selection circle)
= (1− δ2)r + r (since p̂ is a vertex of t)
= (2− δ2)r.

Lemma 5.2. If p, lying on an encroached, constrained segment s, is of type B and
its parent p̂ is an external parent, then

(5.2) ‖p− p̂‖ ≤
(
1 +

√
2− δ2
δ2

− δ1

)
|s|
2
.

Proof. By Definition 2.5 (Rule 2), p̂ is a vertex of the skinny triangle t encroaching
upon s.

First, we will try to find a tight upper bound for the ratio ‖c−p̂‖
|s| , where c is the

center of s.
Keeping the position of c and the position of s’s endpoints fixed, we are trying

to increase the distance ‖c− p̂‖ by moving only the parent p̂ on t’s circumcircle. See
Figure 5.1: the distance ‖c− p̂‖ reaches its largest value when p̂ lies on the extension
of the straight line connecting c and t’s circumcenter c′.

Conversely, keeping the position of c fixed, we are trying to decrease |s| by moving
only the endpoints of s: the length of s reaches its smallest value when s is tangent
to the selection circle, and one of its endpoints—say the point pu—lies precisely on
the circumcircle. See Figure 5.1 for an illustration. Note that if s did not intersect
the selection circle at all, then the first part of Lemma 4.4 would be violated: a
contradiction.
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From the right triangle 
cdc′ (see Figure 5.1), we obtain that

‖c− c′‖2 = ‖d− c′‖2 + ‖c− d‖2
= r2(1− δ2)

2 + ‖c− d‖2
= r2(1− δ2)

2 +
(

|s|
2 − ‖pu − d‖

)2
= r2(1− δ2)

2 +
(

|s|
2 − r

√
2δ2 − δ22

)2
(from the right triangle 
kdpu)

= r2 + |s|2
4 − r|s|

√
2δ2 − δ22 ,

yielding that

(5.3) ‖c− c′‖ =
√
r2 +

|s|2
4
− r|s|

√
2δ2 − δ22 .

We also have that

‖c−p̂‖
|s| = r+‖c−c′‖

|s| (since c, p̂ and c′ are collinear)

=
r+

√
r2+

|s|2
4 −rs

√
2δ2−δ22

|s| (from (5.3)),

and after the simplification, we finally get that

(5.4)
‖c− p̂‖
|s| =

(
r

|s|
)
+

√(
r

|s|
)2

+
1

4
−
(

r

|s|
)√

2δ2 − δ22 .

Basic calculus, however, reveals that the right-hand part of (5.4) is an always
increasing function with respect to the “variable” r

|s| . Also, from inequality (4.5), we

already know that r
|s| ≤ 1

2
√

2δ2−δ22
. Thus, by replacing r

|s| in the right-hand part of

(5.4) with its largest value and simplifying the result, we get that

(5.5)
‖c− p̂‖
|s| ≤ 1

2

√
2− δ2
δ2

.

Lastly, the desired outcome is as follows:

‖p− p̂‖ ≤ ‖p− c‖+ ‖c− p̂‖ (from the triangle inequality)

≤ (1− δ1)
|s|
2 + ‖c− p̂‖ (since p is in the type B

selection interval)

≤ (1− δ1)
|s|
2 + |s|

2

√
2−δ2
δ2

(from (5.5))

=
(
1 +

√
2−δ2
δ2
− δ1

)
|s|
2 .

Lemma 5.3. If pi is of type C, then

(5.6) ‖pi − p̂i‖ ≤ (2− μ)
|s|
2
,

where |s| is the length of the encroached segment s.
Proof. If c is the center of s, then

‖pi − p̂i‖ ≤ ‖pi − c‖+ ‖c− p̂i‖ (from the triangle inequality)

≤ (1− μ) |s|2 + ‖c− p̂i‖ (since pi is in the type C
selection interval)

≤ (1− μ) |s|2 + |s|
2 (since p̂i is a nonexternal parent)

= (2− μ) |s|2 .
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Lemma 5.4. If p is a vertex of the mesh inserted by the GCDR algorithm and Cn

(n = 1, 2, 3, 4) are the constants specified by Theorem 4.6 for the corresponding cases
listed in Table 4.1, then the following inequality holds:

(5.7) D (p) ≤ Bn +
D (p̂)

Cn
, n = 1, 2, 3, 4,

where B1 = 2−δ2
δ2

, B2 = B3 =
1+

√
2−δ2
δ2

−δ1

δ1
, B4 = 2−μ

μ .
Proof. First, we prove the inequality

(5.8) ‖p− p̂‖ ≤ Bn · R (p)

for each of the cases below.
Case (1):

‖p− p̂‖ ≤ (2 − δ2)r (from Lemma 5.1)

= 2−δ2
δ2

δ2r

≤ 2−δ2
δ2

R (p) (from Lemma 4.1);

therefore, inequality (5.8) can be satisfied with B1 = 2−δ2
δ2

.
Case (2): In this case, pi is of type B and its parent p̂i is a type A point. We

assume that pi is an external parent, since if it was a nonexternal parent, the distance
between pi and p̂i would be smaller.

‖p− p̂‖ ≤
(
1 +

√
2−δ2
δ2
− δ1

)
|s|
2 (from Lemma 5.2)

=
1+

√
2−δ2
δ2

−δ1

δ1
δ1

|s|
2

≤ 1+
√

2−δ2
δ2

−δ1

δ1
R (p) (from inequality (4.2));

therefore, inequality (5.8) can be satisfied with B2 =
1+

√
2−δ2
δ2

−δ1

δ1
.

Case (3): The analysis is exactly the same as in case (2), since pi is a type B
point and p̂i is an external parent. Therefore, inequality (5.8) can be satisfied with
B3 = B2.

Case (4): Based on Lemma 4.3, we separate two possibilities.
(a) If p̂i is closest to pi, then ‖pi − p̂i‖ = R (pi) from equality (4.3).
(b) If an endpoint of s is closest to pi, then

‖pi − p̂i‖ ≤ (2− μ) |s|2 (from Lemma 5.3)

= 2−μ
μ μ |s|

2

≤ 2−μ
μ R (pi) (from inequality (4.3));

therefore, inequality (5.8) can be satisfied with B4 = 2−μ
μ in both cases.

Now, for all cases (1)–(4),

lfs (p) ≤ lfs (p̂) + ‖p− p̂‖ (from Lemma 2.3)
≤ lfs (p̂) +BnR (p) (from (5.8))
= D (p̂)R (p̂) +BnR (p) (from (2.2))

≤ D (p̂) R(p)
Cn

+BnR (p) (from Theorem 4.6).

The result follows from the division of both sides by R (p).
Theorem 5.5. Suppose that the following five inequalities hold:
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I 1. ρ̄ > 1 (implying a lower angle bound arbitrarily close to 30◦),
I 2. αmin > 60◦ (recall that αmin is the smallest input angle),
I 3. δ2 > 1

ρ̄ ,

I 4. δ1 > 1
ρ̄ , and

I 5. μ > 2 cosαmin.
Then, there exist fixed constants DA ≥ 1, DB ≥ 1, and DC ≥ 1 such that, for any
vertex p inserted by the GCDR algorithm, the following inequalities hold:

(5.9) D (p) ≤
⎧⎨
⎩

DA if p is of type A,
DB if p is of type B,
DC if p is of type C.

Therefore, the insertion radius of p has a lower bound proportional to its local feature
size.

Proof. First of all, observe that there are legal values for the parameters δ2, δ1,
and μ that satisfy inequalities I 1, I 2, I 3, I 4, and I 5. In fact, the parameters satisfy
these inequalities if they are assigned to any value other than their minimum possible
value as defined in Definition 3.1 (selection circles), Definition 3.2 (type B selection
intervals), and Definition 3.3 (type B selection intervals), respectively.

The proof is by induction and is similar to the proof of Lemma 7 in [20]. The base
case covers the input vertices, and the inductive step covers the other three types of
vertices.

Base case: The theorem is true if p is an input vertex, because in this case, by
Remark 2, D (p) = lfs (p) /R (p) ≤ 1.

Inductive hypothesis: Assume that the theorem is true for p̂; i.e.,

(5.10) D (p̂) ≤
⎧⎨
⎩

DA if p̂ is of type A,
DB if p̂ is of type B,
DC if p̂ is of type C.

Inductive step: For each of the cases (n), n = 1, 2, 3, 4, we start with (5.7) and
apply the inductive hypothesis considering the possible type combinations of p and p̂
from Table 4.1. As a result, the inequalities in (5.9) can be satisfied if DA, DB, and
DC are chosen such that the following inequalities (5.11)–(5.18) hold.

Case (1):

(5.11) B1 +
DA

C1
≤ DA,

(5.12) B1 +
DB

C1
≤ DA,

(5.13) B1 +
DC

C1
≤ DA.

Case (2):

(5.14) B2 +
DA

C2
≤ DB,
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Case (3):

(5.15) B3 +
DB

C3
≤ DB,

(5.16) B3 +
DC

C3
≤ DB.

Case (4):

(5.17) B4 +
DB

C4
≤ DC ,

(5.18) B4 +
DC

C4
≤ DC .

For case (5), from Theorem 4.6, we have D (p) = lfs (p) /R (p) ≤ 1/C5; i.e., the
inequalities in (5.9) can be satisfied if DC is chosen such that the following inequality
holds.

Case (5):

(5.19)
1

C5
= B4 ≤ DC .

Notice that since Bn ≥ 1 for every n = 1, 2, 3, 4, the solution of the system above
guarantees that DA, DB, DC are larger than or equal to 1.

From (5.11), we obtain that

(5.20) DA ≥ B1C1

C1 − 1
.

From (5.15), we obtain that

(5.21) DB ≥ B3C3

C3 − 1
.

Also, from (5.18), we have that

(5.22) DC ≥ B4C4

C4 − 1
.

Finally, from (5.12)–(5.14), (5.16), (5.17), and (5.19)–(5.22), we obtain the fol-
lowing solution:

(5.23)

DA ≥ max
{

B1C1

C1−1 ,
B3C3

C1(C3−1) +B1,
B4C4

C1(C4−1) +B1

}
,

DB ≥ max
{

B3C3

C3−1 ,
B1C1

C2(C1−1) +B2,
B4C4

C3(C4−1) +B3

}
,

DC ≥ max
{

B4C4

C4−1 ,
B3C3

C4(C3−1) +B4, B4

}
.

If we plug in the values for Bn and Cn, we have the following:
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DA ≥ 2−δ2
δ2

+max

{
2−δ2

δ2(ρ̄δ2−1) ,

(
2−δ2+(1−δ1)

√
2δ2−δ22

)

δ2
(
ρ̄δ1
√

2δ2−δ22−1
) , 2−μ

ρ̄δ2(μ−2 cosαmin)

}
,

DB ≥
1+

√
2−δ2
δ2

−δ1

δ1
+max

{
1+

√
2−δ2
δ2

−δ1

δ1
(
ρ̄δ1
√

2δ2−δ22−1
) , ρ̄(2−δ2)2

δ1(ρ̄δ2−1)
√
3
, 2−μ

ρ̄δ1
√

2δ2−δ22(μ−2 cosαmin)

}
,

DC ≥ 2−μ
μ +max

{
2(2−μ) cosαmin

μ(μ−2 cosαmin)
,
2ρ̄ cosαmin

(
1+

√
2−δ2
δ2

−δ1
)√

2δ2−δ22

μ
(
ρ̄δ1
√

2δ2−δ22−1
)

}
.

Note that the inequalities I 1, I 2, I 3, I 4, and I 5 guarantee that the grading
constants DA, DB, and DC are well defined, i.e., they are not infinite.

The area (size) of the selection regions affects the grading of our algorithm, the-
oretically at least. Indeed, if either of the parameters δ1, δ2, or μ decreases (thus
increasing the area of the selection regions), then the lower bounds for the constants
DA, DB, and DC of Theorem 5.5 increase, making the grading worse. In practice,
when we increase the area of the selection regions, the deterioration of grading is less
severe (see section 7).

6. Proof of termination. The good grading of GCDR implies termination as
well. For reasons of completeness, however, we present a concrete proof.

Theorem 6.1. GCDR terminates, producing triangles with angles arbitrarily
close to 30◦.

Proof. To prove termination, it suffices to prove that no two vertices, visible to
each other, are closer than a real constant C′ > 0, since the insertion of an infinite
number of vertices would necessarily introduce at some point two visible vertices closer
than C′. From Remark 1, however, the distance of any two visible vertices is bounded
from below by the insertion radius of one of these vertices. Therefore, it is adequate to
prove that the insertion radius of any point is not less than the positive, real constant
C ′.

Table 4.1 presents an exhaustive enumeration of all possible parent-child com-
binations. First, we prove by contradiction that the combinations marked as “n/a”
cannot arise. These combinations can occur in the following two cases:

1. A type B point pi lies on an encroached segment s, and its parent is a nonfree
nonexternal vertex; i.e., p̂i is a nonfree point that lies strictly inside the
diametral circle of s. Recall that the parent of any point pi is visible from pi
(see Lemma 2.6). By the way we defined type B points, however, there is no
nonfree vertex strictly inside the diametral circle of s and visible from pi: a
contradiction.

2. A type C point pi lies on an encroached segment s, and its parent is either a
free vertex or a nonfree external parent. By the way we defined type C points,
the diametral circle of s contains at least one nonfree vertex visible from pi.
Therefore, from Definition 2.5 (Rule 4), the parent of pi is the closest to pi,
nonfree vertex that lies inside the diametral circle of s and is visible from pi.
This means that pi can be neither a free vertex nor an external parent: a
contradiction.

All the remaining parent-child combinations (marked with numbers) have been
analyzed in Theorem 5.5. From that theorem it follows that with the use of the GCDR
algorithm the insertion radius of any vertex is no less than C ′ = lfsmin

max{DA,DB ,DC} ,
where lfsmin = min

p∈Ω
lfs (p) > 0. Note that inequalities I 1, I 2, I 3, I 4, and I 5 of

Theorem 5.5 imply that the positive constants DA, DB, and DC cannot approach
infinity, and therefore, C′ is a positive real number.
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7. Experimental evaluation. In this section, we experimentally evaluate the
grading achieved by GCDR. We have implemented GCDR on top of the Computa-
tional Geometry Algorithms Library (CGAL) [2]. For the visualization of the mesh,
we used the C++ Visualization Toolkit Library (VTK) [23].

The input PSLG used for the experiments is depicted in Figure 7.1. Other input
PSLGs yielded similar results.

We conducted two experiments denoted as experiment 1 and experiment 2. In
experiment 1, we executed GCDR 32 times. At every execution, we changed the size
of the selection regions by altering the values of the parameters δ2, δ1, and μ. Also,
for each execution, all the Steiner points inserted (or considered for insertion) by
GCDR lay exactly on the boundary of selection circles or selection intervals. More
precisely, every type A Steiner point is inserted as close to an arbitrary vertex of the
corresponding skinny triangle as possible, and every type B/type C Steiner point is
inserted as close to an arbitrary endpoint of the corresponding encroached segment
as possible. In this way, we test our algorithm when the inserted Steiner points lie in
extreme positions.

Table 7.1 summarizes the results for the first experiment under the label “Experi-
ment 1.” The quality upper bound is set to ρ̄ =

√
2 which means that δ2 ≥ 1√

2
≈ 0.71

and that δ1 ≥ 0.71
δ2

. Since αmin = 90◦, we also have that μ ≥ 0. Each row of the
table corresponds to a specific execution where the values for the parameters are
shown in the 2nd, 3rd, and 4th cells of each row. The table reports the largest density
observed in practice per point type: the largest density observed among type A points
(8th column), among type B (9th column), and among type C points (10th column).
For comparison, the table also depicts (at the 5th, 6th, and 7th column) the tightest
theoretical upper bound of the density per point type for the respective configuration,
as calculated in inequality (5.23) of Theorem 5.5.

The observed largest densities of experiment 1 should be less than their theoret-
ical counterparts. Indeed, the grading achieved in practice is much smaller than the
theoretical bound of Theorem 5.5. This fact verifies the theory and also implies that
GCDR behaves much better than theory suggests.

Fig. 7.1. (Left) The input PSLG used for the experiments. It consists of five concentric squares.
The horizontal and vertical distance between two adjacent squares is one-hundredth of the side length
of the outermost square. (Right) The output mesh obtained by GCDR on the input PSLG with ρ̄
being set to 1. GCDR terminates producing 3200 triangles whose angles are more than 30◦.
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Table 7.1

The 32 configurations used by experiment 1 and experiment 2. The results are shown in the last
7 columns.

Experiment 1 Experiment 2

C
o
n
fi
g
u
ra
ti
o
n
Id

δ2 δ1 μ DA DB DC

m
a
x

p
is

ty
p
e
A
D

(p
)

m
a
x

p
is

ty
p
e
B
D

(p
)

m
a
x

p
is

ty
p
e
C
D

(p
)

N
u
m
b
er

o
f
tr
ia
n
g
le
s

m
a
x

p
is

ty
p
e
A
D

(p
)

m
a
x

p
is

ty
p
e
B
D

(p
)

m
a
x

p
is

ty
p
e
C
D

(p
)

1 1.00 1.00 1.00 3.41 4.94 1.00 1.93 0.70 1.00 1583 1.93 0.70 1.00
2 1.00 1.00 0.80 3.41 4.94 1.50 1.75 0.68 1.00 1814 2.21 0.74 1.00
3 1.00 1.00 0.60 3.41 4.94 2.33 2.19 0.70 1.15 2052 2.41 0.74 1.20
4 1.00 1.00 0.40 3.83 4.94 4.00 2.20 1.01 1.99 2557 2.49 1.09 2.19
5 1.00 0.90 1.00 5.03 5.70 1.00 1.60 0.79 1.00 1571 1.99 0.80 1.00
6 1.00 0.90 0.80 5.03 5.70 1.50 1.48 0.76 1.00 1804 2.19 0.79 1.00
7 1.00 0.90 0.60 5.03 5.70 2.33 2.02 0.78 1.15 2047 2.35 0.80 1.19
8 1.00 0.90 0.40 5.03 5.70 4.00 2.23 0.86 1.66 2546 2.50 1.15 2.06
9 1.00 0.80 1.00 10.13 12.92 1.00 1.60 0.87 1.00 1565 1.85 0.89 1.00
10 1.00 0.80 0.80 10.13 12.92 1.50 1.95 0.86 1.00 1818 2.18 0.91 1.00
11 1.00 0.80 0.60 10.13 12.92 2.33 2.02 0.88 1.15 2047 2.64 0.90 1.22
12 1.00 0.80 0.40 10.13 12.92 4.00 2.37 0.97 1.69 2505 2.48 1.61 2.11
13 0.90 1.00 1.00 5.70 7.69 1.00 2.26 0.70 1.00 1586 2.41 0.70 1.00
14 0.90 1.00 0.80 5.70 7.69 1.50 1.99 0.71 1.00 1799 2.57 0.76 1.00
15 0.90 1.00 0.60 5.70 7.69 2.33 2.63 0.70 1.15 2055 2.63 0.76 1.24
16 0.90 1.00 0.40 5.70 7.69 4.00 2.61 1.01 1.95 2595 2.62 1.02 2.26
17 0.90 0.90 1.00 6.22 8.66 1.00 2.04 0.77 1.00 1540 2.70 0.82 1.00
18 0.90 0.90 0.80 6.22 8.66 1.50 1.98 0.76 1.00 1807 2.49 0.81 1.00
19 0.90 0.90 0.60 6.22 8.66 2.33 2.79 0.78 1.15 2083 2.79 0.83 1.20
20 0.90 0.90 0.40 6.22 8.66 4.00 2.60 1.07 1.93 2578 2.84 1.40 2.13
21 0.90 0.80 1.00 12.70 14.61 1.00 2.47 0.87 1.00 1541 2.47 0.92 1.00
22 0.90 0.80 0.80 12.70 14.61 1.50 2.53 0.87 1.00 1811 2.56 0.92 1.00
23 0.90 0.80 0.60 12.70 14.61 2.33 2.79 0.88 1.15 2091 2.57 0.91 1.20
24 0.90 0.80 0.40 12.70 14.61 4.00 2.52 1.21 1.93 2540 2.71 1.25 1.94
25 0.80 1.00 1.00 12.92 16.14 1.00 2.71 0.70 1.00 1615 2.81 0.70 1.00
26 0.80 1.00 0.80 12.92 16.14 1.50 4.32 0.71 1.00 1868 4.32 0.78 1.00
27 0.80 1.00 0.60 12.92 16.14 2.33 3.65 0.70 1.15 2139 3.65 0.78 1.20
28 0.80 1.00 0.40 12.92 16.14 4.00 3.73 0.97 1.95 2628 3.54 1.35 2.10
29 0.80 0.90 1.00 12.92 18.05 1.00 2.46 0.77 1.00 1562 3.15 0.84 1.00
30 0.80 0.90 0.80 12.92 18.05 1.50 3.47 0.76 1.00 1843 2.96 0.85 1.00
31 0.80 0.90 0.60 12.92 18.05 2.33 3.53 0.83 1.15 2118 2.90 0.83 1.21
32 0.80 0.90 0.40 12.92 18.05 4.00 3.31 1.07 1.93 2615 3.26 1.23 1.95

Also, notice that the densities of type C points seem to strongly affect the size of
the output mesh. Indeed, at every execution where the maximum density of type C
points exceeds 1.00, the number of triangles is more than 2000. On the contrary, high
grading of type A points (e.g., 26th execution) or high grading of type B points (e.g.,
9th execution) do not result in a large size output mesh. This fact is attributable to
the high number of type C points: in all the executions, the number of type C points
(inserted into the mesh) is 3 to 4 times more than the combined number of type A
and type B points.

Lastly, observe that each parameter seems to deteriorate the density of points
of a certain type. Specifically, the decrease of δ2 leads to a higher density of type A
points, the decrease of δ1 leads to a higher density of type B points, and the decrease
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of μ leads to a higher density of type C points. This should be expected, since the
parameters δ2, δ1, and μ determine the size of the selection regions of type A, type B,
and type C points, respectively.

Although the Steiner points, in experiment 1, are inserted in extreme positions,
it is not certain whether the measured maximum densities are the worst. For exam-
ple, see the second configuration under the label “Experiment 1”: type C Steiner
points lie farther from the center of the encroached segments than they do in the first
configuration, but the maximum practical densities observed do not increase.

Therefore, we conducted another experiment which could potentially generate
the highest (i.e., worst) practical densities. The results are illustrated in Table 7.1
under the label “Experiment 2.” Here, each configuration of the previous experiment
is repeated for 100 times (and not just once as before). Each time, the Steiner points
inserted were randomly chosen from within their corresponding selection region (i.e.,
they do not always lie on the boundary of the selection regions as before). We re-
port the highest density per point type among the densities observed during the 100
repetitions.

The maximum densities measured in experiment 2 are slightly higher than before
but still less than the theoretical counterparts. These observations further verify the
theory and suggest that GCDR behaves much better in practice.

8. Conclusions and future work. We have presented and implemented a con-
strained Delaunay refinement algorithm in two dimensions. Our algorithm is more
flexible than the traditional approaches, since the user can choose which Steiner point
to insert into the mesh among an infinite, enumerable number of choices. Our algo-
rithm significantly increases the number of these choices over our previous generalized
algorithms [3, 4, 5, 6]. The flexibility offered by generalized algorithms can benefit
sliver removal in three dimensions [9, 14], since the area from which Steiner points
are selected now increases, potentially allowing to achieve even better dihedral angles.
These customizable point insertion strategies offered by our algorithm can also help
in boundary recovery by inserting, for instance, points on the boundary while refining
the mesh. Other applications of generalized algorithms can be found in [6].

Furthermore, this paper improves the quality guarantees: we have proved that our
algorithm terminates and preserves good grading for a lower angle bound θ arbitrarily
close to 30◦. Experimental evaluation of our algorithm verified the theory.

The parallelization of our generalized algorithm is left as future work. A paral-
lel generalized algorithm would automatically imply the parallelization of any point
insertion strategy as long as the Steiner points lie in the selection regions.

Lastly, we wish to implement our algorithm in three dimensions and identify point
insertion strategies suitable for sliver removal.

Acknowledgments. We thank the anonymous reviewers from the SISC journal
whose insightful comments on our earlier paper [6] motivated some of the research
presented in this manuscript.
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