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Abstract 

We investigated the effects of nanosecond pulsed electric fields (nsPEF) on three human 

cell lines and demonstrated cell shrinkage, breakdown of the cytoskeleton, nuclear 

membrane and chromosomal telomere damage. There was a differential response 

between cell types coinciding with cell survival. Jurkat cells showed cytoskeleton, 

nuclear membrane and telomere damage that severely impacted cell survival compared to 

two adherent cell lines. Interestingly, disruption of the actin cytoskeleton in adherent cells 

prior to nsPEF exposure significantly reduced cell survival. We conclude that nsPEF 

applications are able to induce damage to the cytoskeleton and nuclear membrane. 

Telomere sequences, regions that tether and stabilize DNA to the nuclear membrane, are 

severely compromised as measured by a pan-telomere probe. Internal pore formation 

following nsPEF applications has been described as a factor in induced cell death. Here 

we suggest that nsPEF induced physical changes to the cell in addition to pore formation 

need to be considered as an alternative method of cell death. We suggest nsPEF 

electrochemical induced depolymerization of actin filaments may account for 

cytoskeleton and nuclear membrane anomalies leading to sensitization. 

Keywords.  Nanosecond pulsed electric fields, cytoskeleton, nucleus, nuclear membrane, 

telomeres, cell survival. 
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1. Introduction 
Nanosecond pulsed electric fields (nsPEF) exposures are accomplished with ultra 

short duration (nanosecond), high intensity (kilovolt/centimeter) pulsed electric fields. 

Despite the field strength the energy that is delivered in a single pulse is only in the order 

of several hundred millijoules per cubic centimeter at most. For pulses longer than a few 

hundred nanoseconds (typical charging times for cells), the charge build-up at the 

membrane will eventually shield the inside of the cell [1, 2, 3].  With pulse durations that 

are short compared to the charging time of the cell membrane, the field penetrates 

throughout the cell, interacting with internal structures, creating distinct effects [1, 2]. 

Evidence for internal cellular effects with nsPEF parameters are well documented for 

membrane bound lysosomes and mitochondria, but less so for the nucleus and 

cytoskeleton. Morphological changes and nuclear shrinkage in tumors have been 

demonstrated by hematoxylin and eosin stain and transmission electron microscopy [4]. 

In other studies, nsPEFs induced DNA damage that was most likely a direct result of the 

electric fields, affected cell survival [5, 6]. The large surface area, along with the high 

negative electrostatic charge density of all cytoskeleton filament proteins presents a 

strong potential for interaction with electric fields if they can reach into the cell. 

The cytoskeleton is an extensive filamentous network that modulates the 

mechanical properties of a cell, and is also essential for functions such as locomotion and 

cytokinesis, as well as forming a continuous dynamic connection between cellular 

structures.  It presents an enormous surface area on which proteins, RNA, mitochondria, 

and other cytoplasmic components can dock. Chemical disruption of the cytoskeleton 

network and inhibition of tubulin and actin polymerization has been shown to induce 

apoptosis [7].  Indeed, the importance of tubulin directed drugs in the induction of cell 

death in the treatment of cancer is well documented [8, 9].  

The nuclear matrix is composed of many interacting structural proteins that 

provide a framework for chromatin organization, chromatin remodeling, DNA 

replication, and RNA transcription [10, 11].  Nuclear DNA is organized into chromatin 

loop domains, and nuclear matrix proteins anchor the base of these loops, in a cell type 

specific manner that allows access to the DNA by transcription factors [12]. The 

association of DNA to the nuclear matrix has been exploited in cancer treatment, for 

example, the DNA/matrix cross-linking effects of cisplatin, which affects nuclear 

metabolism, spatial organization of chromatin, and depolymerization of DNA bound 

actin filaments, leading to cell death [13].  The nuclear cytoskeleton stabilizes the nuclear 

membrane and importantly acts as a bridge between the nucleus and the cytoplasm.  

In this study, our objective was to describe nsPEF induced structural changes 

occurring at cytoskeleton and nuclear envelope and relate these findings to cell survival. 

We demonstrate a breakdown of the cytoskeleton and a reduction in binding efficiency of 

telomere specific probes that were related to cell survival. We observed a reduction in 

cell survival when the actin cytoskeleton had been disrupted prior to nsPEF exposure, 

suggesting a protective effect of the cytoskeleton network. 

2. Methods and Materials 
2.1 Cytoskeleton 

Jurkat cells, a suspension growing T-cell leukemia derived line, were grown in RPMI 

growth medium supplemented with 10% bovine serum, glutamine, penicillin and 

streptomycin at 37
o
C under a 5% CO2 atmosphere until ~70% confluence.  
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Pulsing equipment [1] was calibrated in HBSS in a 0.1cm electroporation cuvette 

(BioRad, Hercules, CA). Cell density was adjusted to 10
6
/ml and 140µl added to the 

cuvette and exposed to a single 60ns pulsed electric field (60kV/cm, 1.7J/cc). Controls 

were sham exposed.  

The adherent cell lines HeLa and SV40 Normal fibroblasts were grown on polylysine-

coated coverslips and exposed in situ to a single 60ns pulse (60kV/cm, 1.7J/cc).  Cells 

were fixed at 0, 1, 2, and 4 minutes after pulsing and prepared for immunocytochemistry 

using Oregon green 488 phalloidin, which stains F-actin filaments.  Nuclei were 

counterstained with DAPI. 

2.2 Cell survival 

Cell survival experiments are described in detail in [6]. On day 6, viable Jurkat 

cells were counted using trypan blue exclusion, and adherent cells by colony forming 

ability. The surviving fraction was calculated as (number of cells surviving 

exposure/number of cells surviving non-exposure) x 100%. Cells survival was measured 

and normalized to controls.  Actin filaments were disrupted using 5µg/ml cytochalasin B 

(Sigma, St. Louis, MO), for 30-40 minutes prior to nsPEF exposure and cell survival. 

2.3 Fluorescence in Situ Hybridization and Immunocytochemistry 

Cell lines were exposed to a single 60ns pulse in suspension. Cells were immediately 

removed and fixed in 3 changes of 3:1 methanol:acetic acid before applying gently to 

ethanol cleaned microscope slides. Hybridization to telomeres was accomplished using a 

FITC labeled pan-telomere probe (Vysis, Abbot Molecular, IL. USA) following the 

manufacturers instructions. Briefly, slides were denatured on a preheated block (80°C for 

3 min), transferred to a humidified chamber and hybridized in the dark for sixty minutes 

at 25°C. Coverslips were removed and the slides were washed twice in formamide 

solution for 15 min (70% formamide, 10 mM Tris, 0.1% BSA, pH=7.0–7.5) followed by 

three washes in Tween solution (1 M Tris, 0.15 M NaCl, 0.08% Tween, pH=7.0–7.5), 

5 min each. Slides were counterstained with DAPI/antifade mixture (Vectashield 

Burlingame, CA, USA).  

To identify the nuclear membrane specific protein Lamin B1, mouse anti-human 

Lamin B1 and rhodamine conjugated donkey anti-mouse monoclonal antibodies were 

purchased from USBiological, Massachusetts.   Cells were analyzed using a Zeiss 

Axiovert 200m epifluorescence microscope equipped with a 100W mercury lamp and a 

100/1.4 N.A. oil immersion lens. Images were captured using a CCD camera and Zeiss 

Axiovision 4.8 imaging software. 

3. Results 
3.1 Alteration in cell morphology in nsPEF exposed HeLa cells. 

Compared to mock exposed Hela cells (Here Figure 1A), within one minute of a 60ns 

(60kV/cm) pulse a change in cell morphology was evident (Here Figure 1B), with 

ruffling of the cell membrane. By 3-4 minutes, cells had rounded and actin filaments gave 

a speckled appearance, indicating a breakdown of the cytoskeleton (Here Figure 1C). 

Many cells exposed to nsPEF dropped from the coverslip, indicating that the cytoskeleton 

network is no longer anchoring the cells.  Preliminary data showed that when these cells 

were recovered and plated into tissue culture wells, they began to adhere and form 

colonies, suggesting the cells had survived nsPEF exposure and were viable.  

3.2 Alteration in cell morphology in nsPEF exposed Jurkat cells. 
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Suspension cells show an almost immediate change to the cytoskeleton compared to 

mock exposed cells (Here Figures 2A and 2B), with a speckled appearance of actin 

filaments being observed within seconds, and from which the cell does not recover. 

3.3 Telomere damage.   

In interphase nuclei, telomeres are bound to the nuclear membrane and therefore a 

potential target for damage by nsPEF-exposure. nsPEF exposed (1x60kV/cm) or sham 

exposed cells were gently applied to slides for FISH using a pan-telomere specific probe. 

As expected, unexposed cells showed telomere sequences present in the DAPI stained 

nucleus (Here Figure 3A). In nsPEF exposed Jurkat cells, there were no telomere signals 

visible. By using image enhancement (Zeiss axioscope) we were able to visualize 

telomere sequences distal to, but not present in, the nucleus (Here Figure 3B). Cells from 

an SV40 transformed normal fibroblast cell line did not show telomere damage in nsPEF-

exposed cells (Non-enhanced, Here Figure 3C), and have telomeres located within the 

main body of the nucleus. Shearing of the nuclear membrane from the nucleus was also 

observed in nsPEF exposed Jurkat cells (Here Figure 3D).  

Telomeres were counted in 50 exposed and unexposed Jurkat cells and a 

significant difference noted. Sixty one signals were counted in unexposed cells 

(normalized to 100%). We observed a reduction in telomere numbers after a single pulse, 

(7 signals, 11.5% compared to unexposed), but when the images are software enhanced  

telomeres become visible and numbers observed are close to unexposed (56 signals, 92% 

compared to unexposed). This indicates that the probe was no longer binding to telomere 

sequences as efficiently as unexposed Jurkat cells, suggesting conformational changes of 

the target sequences. Five pulses demonstrate a reduction in telomere count (8 signals, 

13%), with no additional damage compared to a single pulse. These data demonstrate that 

nsPEF applications compromise the telomere/nuclear envelope structure.  

3.4 Cell survival. 

Following a single 60ns exposure Jurkat cells showed survival of 14.8+/-2.5% (n=4), 

HeLa cells 92.7+/-1.9% (n=3) and SV40 Normal fibroblasts 100.7+/-29% (n=6) 

normalized against unexposed controls. The apparent sensitivity of Jurkat cells to nsPEF 

induced cytoskeleton and telomere/nuclear envelope damage is indicative of mechanisms 

for decreased cell survival. Hypothesizing that the actin cytoskeleton has a protective role 

against nsPEF exposure, and that disruption of the actin cytoskeleton prior to nsPEF 

exposure would result in decreased cell survival; we treated HeLa cells with cytochalasin 

B, an agent that prevents actin polymerization, prior to nsPEF exposure. Surviving 

fractions (mean % survival +/-standard error. n=number of experiments), normalized to 

unexposed controls, were 96.9+/-4.8 n=4 (cytochalasin B treated only), 81.9+/-5.1 n=4 

(one 60nsPEF exposure), 62.4+/-7.3 n=4 (cytochalasin B treated prior to nsPEF 

exposure). Significant differences (t-test) were observed for control versus nsPEF 

(p=0.012), control versus cytochalasin B + nsPEF (p=0.002) and cytochalasin B treated 

versus cytochalasin B + nsPEF (p=0.008), indicating that internal mechanical breakdown 

of the cytoskeleton increases the susceptibility of HeLa cells to nsPEFs. 

4. Discussion and conclusion 
Following nsPEF application, cell morphology of adherent cells changed as cell 

borders retreated and cells rounded due to an apparent breakdown of the cytoskeleton. 

The speckled appearance of the cytoskeleton in rounded cells is similar to those seen with 

the F-actin filament disrupting agent cytochalasin B [14, 15], suggesting 
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depolymerization of actin filaments following nsPEF. This observation is in agreement 

with Berghöfer [16] whose report show that nsPEF applications trigger an actin response 

in plant cells. This group also observed a loss of nuclear shape attributed to nsPEF 

induced actin disruption. Although there are differences in pulse exposure (60ns, 

60kV/cm v 10ns, 33kV/cm) and cell type (human cells v plant cells), the cellular 

response is remarkably similar. Following disruption of the cytoskeleton network with 

cytochalasin B prior to nsPEF exposure, we found a significant reduction in cell survival 

compared to unexposed cells. It appears that the internal mechanical breakdown of the 

cytoskeleton increases the susceptibility of adherent cells to nsPEF’s, consistent with the 

increased susceptibility observed in suspension cells where a minimal network is present. 

Loss of an integral cytoskeleton may be a condition for nsPEF susceptibility. 

Beaudouin [17] reported that nuclear membrane breakdown proceeds by 

microtubule induced tearing of the nuclear lamina. Microtubule dependent forces can 

deform and stretch the nuclear membrane prior to breakdown. nsPEF may cause 

electrochemical changes, reducing mechanical stability within the cell, leading to 

increased fragility of the nuclear membrane and shearing from the nucleus, as observed in 

Jurkat cells. Alternatively, nsPEF induced depolymerization of nuclear actin filaments 

may lead to nuclear membrane fragility and rupture. Conformational changes to the 

nuclear membrane may also account for a reduced efficiency of binding to telomere 

sequences that are attached to the nuclear membrane. The stability of DNA within the 

nucleus is achieved by attachment of the telomere ends of each chromosome to the 

nuclear membrane by a protein complex. A reduction in the ability of a pan-telomere 

probe to bind to its complementary sequences in nsPEF exposed Jurkat cells led to a 

reduced telomere count in interphase nuclei. Image enhancement allows the probe to 

become visible to near normal levels. Conformational change in the DNA/protein/nuclear 

membrane complex resulted in the telomere probe being unable to recognize its target 

sequences as efficiency as in non-pulsed cells. Interestingly, cells showing shearing of the 

nuclear membrane away from DAPI stained nuclei resulted in a telomere free nucleus, 

with telomere sequences distal to the nucleus, but still co-localized to the nuclear 

membrane. A reduction in telomere binding efficiency is likely a secondary consequence 

to changes in the nuclear membrane complex. The total number of telomere signals 

counted per interphase nucleus is expected to be two per chromosome (92). Our counts 

are lower than expected, likely due to counting hybridization signals in different planes in 

a 3D nucleus. Confocal microscopy using z-stacks could help resolve this. The difference 

in counts between exposed and unexposed nuclei is large, and we do not consider a 

miscount in signals to account for the observed differences.  

We conclude that nsPEF applications are able to induce cytoskeleton and nuclear 

membrane damage and telomere sequences are severely compromised. The disruption of 

telomere sequences may be secondary to electrochemical changes to nuclear actin along 

with induced nuclear membrane fragility. Cytoskeleton actin anchors in the nuclear 

membrane hold proteins together in a network to stabilize this structure. These anchors 

maybe disrupted by pulsing, destabilizing the nuclear membrane. It appears that the 

minimal protection the cytoskeleton offers suspension cells allows the affects of the 

pulsing to be more readily felt at the nucleus, whereas in adherent cells, much of the 

energy is absorbed by the extensive cytoskeleton, with no nuclear effects. The telomeres 

are attached to the nuclear membrane. Once the nuclear membrane becomes destabilized, 
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there are physical changes that occur, including the telomere/nuclear membrane binding, 

which reduces the efficiency of the telomere specific probe. This is not seen in adherent 

cells as the nuclear membrane is not destabilized. Additionally, we suggest that chemical 

disruption of the cytoskeleton may increase the susceptibility of cells to nsPEF 

applications and may be an important consideration when using pulsed electric field 

parameters in the destruction of tumors. 

Acknowledgments 
We acknowledge the support of the Jeffress Memorial Foundation and the Breeden 

Adams Foundation. The study sponsors had no role in study design, collection, analysis 

and interpretation of data; writing the report or in the decision to submit the report for 

publication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7 

 

 

 

 

 

 

 

 

 

References 
[1] Schoenbach KH, Beebe SJ, Buescher ES  Intracellular Effect of Ultrashort Electrical 

Pulses.  Bioelectromagnetics.  22  (2001) 440-448. 

 

[2] Schoenbach KH, Ravindra P. Joshi, Juergen Kolb, Nianyong Chen, M. Stacey, P. 

Blackmore, E. Stephen Buescher and Stephen J. Beebe. Ultra short Electrical Pulses 

Open a New Gateway into Biological Cells.  Inst. Electrical and Electronic Engineers. 92 

(2004) 1122-37. 

 

[3] Beebe SJ. Fox PM. Rec LJ. Somers K. Stark RH. Schoenbach KH.  Nanosecond 

pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor 

growth inhibition.  IEEE Transactions on Plasma Science. 30 (2002) 286-292.  

 

[4] Chen X, James Swanson R, Kolb JF, Nuccitelli R, Schoenbach KH. Histopathology 

of normal skin and melanomas after nanosecond pulsed electric field treatment. 

Melanoma Res. 19 (2009) 361-371. 

 

[5] Beebe SJ. White J. Blackmore PF. Deng Y. Somers K. Schoenbach KH.  Diverse 

effects of nanosecond pulsed electric fields on cells and tissues.  DNA Cell Biol. 22 

(2003) 785-796. 

 

[6] Stacey M. Stickley J. Fox P. Statler V. Schoenbach K. Beebe SJ. Buescher S. 

Differential effects in cells exposed to ultra-short, high intensity electric fields: cell 

survival, DNA damage, and cell cycle analysis.  Mutation Research. 542 (2003) 65-75. 

 

[7] Yamazaki Y. Tsuruga M. Zhou D. Fujita Y. Shang X. Dang Y. Kawasaki K. Oka S.  

Cytoskeletal disruption accelerates caspase-3 activation and alters the intracellular 

membrane reorganization in DNA damage-induced apoptosis.  Exp Cell Res. 259 (2000) 

64-78. 

 

[8] Berrieman HK. Lind MJ. Cawkwell L.  Do beta-tubulin mutations have a role in 

resistance to chemotherapy?  Lancet Oncol. 5 (2004) 271-272. 

 

[9] Huang YC.  Guh JH.  Teng CM.  Induction of mitotic arrest and apoptosis by 

evodiamine in human leukemic T-lymphocytes.  Life Sci. 75 (2004) 35-49. 

 



 8 

[10] Herrmann H and Foisner R.  Intermediate filaments: novel assembly models and 

exciting new functions for nuclear lamins.  Cell Mol. Life Sci. 60 (2003) 1607-1612. 

 

[11] Shumaker DK. Kuczmarski ER. Goldman RD.  The nucleoskeleton: lamins and 

actin are major players in essential nuclear functions.  Current Opinions in Cell Biol.  15 

(2003) 358-366. 

 

[12] Dunn KL. Zhao H. Davie JR.  The insulator binding protein CTCF associates with 

the nuclear matrix.  Exp. Cell Research.  288 (2003) 218-223. 

 

[13] Wozniak K and Blasiak J.  Recognition of repair of DNA-cisplatin adducts.  Acta 

Biochimica Polonica. 49 (2002) 583-596. 

 

[14] Ujihara Y, Miyazaki H, Wada S. (2008). Morphological study of fibroblasts treated 

with cytochalasin D and colchicine using a confocal laser scanning microscopy. J Physiol 

Sci. 58 (2008) 499-506. 

 

[15] Nagayama K and Matsumoto T. Estimation of single stress fiber stiffness in cultured 

aortic smooth muscle cells under relaxed and contracted states: Its relation to dynamic 

rearrangement of stress fibers J. Biomechanics. 43 (2010) 1443-1449. 

 

[16] Berghöfer T, Eing C, Flickinger B, Hohenberger P, Wegner LH, Frey W, Nick P.  

Nanosecond electric pulses trigger actin responses in plant cells. Biochem Biophys Res 

Commun. 387 (2009) 590-5.  

 

[17] Beaudouin J. Gerlich D. Daigle N. Eils R. Ellenberg J.  Nuclear envelope breakdown 

proceeds by microtubule-induced tearing of the lamina.  Cell. 108 (2002) 83-96. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 9 

 

 

 

 

 

 

 

 

 

 

 

Figure legends 

 

Figure 1. Cytoskeleton damage induced by nsPEF application. Figure 1A shows 

unexposed HeLa cells with an extensive actin network.  One minute post pulse (1B) cells 

still exhibit an extensive actin network but with evidence of a ruffled outer cell 

membrane (arrowed).  Four minutes post pulse (1C) cells have become rounded with the 

appearance of intensely staining actin spots (arrowed). 

 

Figure 2. Cytoskeleton damage induced by nsPEF application. nsPEF unexposed (2A) 

and exposed Jurkat cells (2B). Unexposed cells showed a uniform stain over the cell, 

whereas exposed cells show intensely staining actin spots, suggesting nsPEF-induced 

breakdown of the actin network.   

 

Figure 3. Telomere localization in Jurkat and SV40 normal fibroblast cell lines. 3A and 

3C show unexposed Jurkat and SV40 transformed fibroblast cell nuclei respectively, with 

all telomeres located with the cell nucleus (arrowed).  Figure 3B shows an enhanced 

image of an nsPEF-exposed Jurkat cell with telomeres (white arrow) now distal to the 

main body of the nucleus (black arrow). Figure 3D shows the nuclear membrane sheared 

away from the nucleus detected by an anti-laminB1 monoclonal antibody. 

 



Figure 1



Figure 2



Figure 3



Research Highlights 
1. Human cell type specific responses to nsPEFs were observed. 

2. The cytoskeleton, nuclear membrane and telomeres show pulse induced damage. 

3. Chromosomal telomeres are sheared away from the main body of the nucleus. 

4. Disruption of the cytoskeleton prior to nsPEF exposure reduces cell survival. 

*Highlights
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