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ABSTRACT

EXPERIMENTAL INVESTIGATION OF ELEMENTAL 
INCORPORATION IN THE OTOLITHS OF LARVAL AND JUVENILE FISH: 

IMPLICATIONS FOR USE AS ENVIRONMENTAL RECORDERS

Gretchen Bath Martin 
Old Dominion University, 2003 
Director: Dr. Mark J. Butler IV

Innovative techniques for discerning fish stocks, identifying nursery habitats, 

locating spawning sites, tracing larval transport pathways, and quantifying the degree of 

population connectivity are required to meet the goals of sustainable management of 

marine capture fisheries. One of the most promising techniques is the use of elemental 

signatures in fish otoliths (ear stones), which record valuable life history data and serve 

as the link between fish and their environment. To validate the assumption that otolith 

elemental composition is a function of water elemental concentrations, and to address the 

possible effects of external variables such as temperature and salinity, the composition of 

the ambient water must be known. Thus, three laboratory experiments were conducted 

using late larval to early juvenile stage spot (Leiostomus xanthurus) and gray snapper 

(Lutjanus griseus) to quantify the association between fish otoliths and water elemental 

composition, test the effects of water temperature and salinity on otolith element 

incorporation, and assess similarities or differences between species. Strontium/calcium 

(Sr/Ca) ratios in both L. xanthurus and L. griseus were significantly influenced by 

temperature. Sr/Ca partition coefficients (D$r) were affected by temperature and salinity 

in L. xanthurus. Magnesium/calcium (Mg/Ca) ratios and Z>Mg were influenced by otolith
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precipitation rates in L. xanthurus. Dun for L. xanthurus were significantly affected by 

both temperature and salinity. Although only barium/calcium (Ba/Ca) ratios in L. griseus 

otoliths were significantly affected by salinity, DBa in both L. griseus and L. xanthurus 

were affected by salinity. These results are independent of ontogenetic and diet effects, 

and represent one of the first attempts at validating minor and trace element incorporation 

in laboratory reared fish. This work also presents the first comparison of otolith element 

incorporation between fish species. The results prove that otolith element incorporation 

is not solely a function of water elemental composition because it is affected by both 

temperature and salinity and those effects varied uniquely among the elements 

investigated. This comparison between fish species draws attention to the necessity of 

validation experiments to interpret species-specific elemental signatures in otoliths.
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

Problems in fisheries management

Harvests from fish populations in United States waters have fluctuated 

substantially over the last century and in many cases have declined, creating serious 

economic, social, and ecological problems (NRC 1998). Out of 259 major stocks 

(landings greater than 90 tons) identified by the National Marine Fisheries Service, 43 are 

overfished and 41 are subject to overfishing (NMFS 2003). The list of overfished stocks 

includes some of the most valuable fishery resources, such as New England groundfish, 

Atlantic sea scallops, Atlantic bluefin tuna, swordfish, Chinook and Coho salmon, several 

Alaskan rockfish, and Alaskan king crab (NMFS 1999).

The challenge for fisheries managers is to rebuild overfished stocks, prevent 

further overfishing, and maintain future harvests at sustainable levels. Although the 

primary cause of overfishing is fishing effort and associated fishing mortality (Hutchings 

and Myers 1994; Myers et al. 1997), the natural variability of fish populations makes 

stocks more susceptible to overfishing during periods of naturally low abundance 

(Sissenwine 1984; Myers and Quinn 2002). Furthermore, other factors can contribute to 

stock declines such as habitat degradation (Murawski 2000) and fishery by-catch 

(Goodyear 1999). Consequently, developing population models that incorporate the 

complexities of natural and anthropogenic effects on fish stocks has become paramount 

for setting harvest levels and encouraging a precautionary approach to fisheries 

management.

The model journal for this dissertation is Canadian Journal o f Fisheries and Aquatic Sciences.
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Fishery managers responsible for managing fish stocks are often limited by an 

incomplete understanding of fish stock structure (NRC 1998). Typically, a fish stock is 

defined as an intraspecific group of randomly mating individuals with spatial or temporal 

integrity (Ihssen et al. 1981). Population genetic techniques using mitochondrial and 

nuclear DNA markers are commonly used to define stock structures, based on the 

premise that these tools can be used to precisely and accurately separate stocks (Park and 

Moran 1994; Wright and Bentzen 1994).

Recent studies have applied innovative analytical techniques to demonstrate that 

current stock definitions based on genetics do not necessarily reflect actual fish 

population structure. In a study by Thorrold et al. (2001), otolith (ear stone) chemistry 

was used to assess natal homing of weakfish, Cynoscion regalis. Thorrold et al. (2001) 

estimated spawning site fidelity ranged from 60 to 81%, which was comparable to natal 

homing estimates for birds and anadromous fish. These estimates were in contrast to 

genetic analyses (allozymes and mitochondrial DNA), which found no evidence of 

genetic differentiation between spawning sites. Because weakfish are managed as one 

unit stock (Vaughan et al. 1991), the evidence that weakfish may represent a 

metapopulation should provoke managers to reevaluate the management of this fishery.

Defining nursery habitats

Fishery managers are also faced with the largely unquantified effect of coastal 

habitat degradation on fisheries production. Nearshore estuarine and marine habitats 

including seagrass beds, marshes, and mangroves, have been identified as some of the 

most productive juvenile nursery habitats (Beck et al. 2001). Generally, an area is
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defined as a nursery if juvenile fish occur at higher densities, avoid predation more 

successfully, or grow faster there than in other habitats (Beck et al. 2001). Until recently, 

making habitat-specific assessments of juvenile production, either quantitative or 

qualitative, has been extremely difficult, thereby limiting the utility of the nursery habitat 

concept to fisheries management. Habitat conservation and fisheries management will 

improve with a better understanding of the habitats that serve as nurseries for marine fish 

species and the factors that create site-specific variability in nursery quality and fisheries 

production (Beck et al. 2001).

Although estuaries and associated seagrass beds are considered important nursery 

habitats for many reef fish based on occurrence and abundance of juvenile fish, little 

direct evidence exists of movement from estuaries to reefs. In a study by Gillanders and 

Kingsford (1996), Australian blue groper (Achoerodus viridis) recruits to the offshore 

adult population came primarily from young that settled in offshore rocky reefs, not from 

the abundant young inhabiting inshore seagrass beds. Gillanders and Kingsford’s (1996) 

data contradicted the conventional thought that seagrass beds serve an important role in 

the early life history stages of blue groper. Their work illustrates the fact that density 

estimates alone may not define nursery areas and thus highlights the importance of 

quantifying population connectivity rates (the exchange of individuals among 

geographically separated populations) to identify nursery habitats essential for fisheries 

productivity.
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Siting Marine Protected Areas

Marine Protected Areas (MPAs) are a management approach proposed to reduce 

the problems of overfishing and respond to uncertainty in fisheries management 

(Crowder et al. 2000). The goals of MPAs in fisheries management are to control 

exploitation rates, protect critical life history stages, reduce secondary fishing impacts, 

ensure against possible failures of conventional management systems, and conserve 

genetic diversity (NRC 2001). MPAs, as an alternative to conventional fisheries 

management, also have uncertainties associated with their performance (NRC 2001). 

Decisions regarding location, size, and linkages between MPAs and other ecosystem 

components have to be made to meet management objectives (NRC 2001). MPAs will 

only be effective management tools if specific information about fish populations 

including spawning locations (source of larvae), fate of larvae, and degree of connectivity 

is considered for each MPA site.

The concern for effectively siting MPAs is illustrated for Nassau grouper, 

Epinephelus striatus, an historically important species in the Caribbean island fisheries. 

Overfishing of Nassau grouper has driven the stocks below sustainable harvest levels in 

many areas and has eliminated the species from portions of their historical range. Nassau 

grouper is especially vulnerable to overfishing because it forms spawning aggregations 

during one or more winter full moons (Sala et al. 2001). These spawning aggregations 

are subject to intensive fishing pressure because of the guaranteed landings. Protection 

afforded by MPAs could benefit the species if MPAs were sited in locations specifically 

protecting spawning aggregations. However, repatriation of species where they have 

been driven to commercial and biological extinction does not offer a complete solution to
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the problem. Understanding the spatial connection between larval sources, transport, 

settlement, and degree of population connectivity would assist in the proper siting of 

MPAs to protect Nassau grouper stocks and thus encourage more effective stock 

management in the future.

Innovative techniques for discerning stocks, identifying nursery habitats, locating 

spawning sites, tracing larval transport pathways, and quantifying the degree of 

population connectivity are required to meet fishery management goals. One of the most 

promising techniques is the use of fish otoliths, which record valuable life history data 

and thus serve as the link between fish and their environment.

Otoliths as fish life history tools

Otolith development and composition

Otoliths are sensory receptors in the inner ear that enable fish to perceive 

frequency, amplitude, and direction of sound, as well as static and dynamic position in 

the water column (Mosegaard and Morales-Nin 2000). Otoliths form incrementally 

through the differential deposition of calcium carbonate (aragonite) and protein, 

influenced by both environmental and physiological factors including temperature, pH 

photoperiod, feeding, growth, and endogenous circadian rhythms (Simkiss 1974; Dacke 

1979; Campana and Neilson 1985; Kalish 1989; Gauldie and Nelson 1990; Payan et al. 

1997). These increments are formed on daily and annual growth cycles. Under 

conditions of food deprivation, otoliths continue to grow (Jones and Brothers 1987; 

Massou et al. 2002); additionally, otolith material is no longer biologically or
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physiologically active when fish are stressed by exertion or by exposure to low 

environmental pH levels.

Otoliths are used to estimate fish ages

The daily and annual increments formed in otoliths are used to estimate fish ages 

in days (Panella 1971; Jones 1986) and years (Beamish and McFarlane 1983). Age 

estimates from annual increments in otoliths are the basis for calculating growth 

mortality, and are therefore an essential tool for fish stock assessments (Campana 2001). 

Daily ages based on otolith microstructure are used for larval and juvenile stages to 

address questions about recruitment, settlement, temporal and spatial patterns in pre and 

post-settlement growth, stage duration, and larval transport (Thorrold and Hare 2002).

Otoliths are used to describe somatic growth

Just as otolith increments are used for determining fish ages, otolith size and 

growth are proxies for fish size and somatic growth (Campana and Jones 1992). Fish size 

and otolith size are positively correlated simply because both increase in size over time 

(Thorrold and Hare 2002). Back-calculation methods are used to estimate individual size 

and growth at age (Campana 1990; Francis 1990). Thus, temporal patterns in fish growth 

can be elucidated from the otolith microstructure. These patterns provide yet another 

level of detail for understanding population dynamics and have become instrumental for 

improving fisheries management.
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Otoliths mark life history transitions

In addition to recording age and growth information, otoliths form distinctive 

patterns at life history stage transitions. The first otolith increment occurs at hatching for 

some species, and at yolk absorption and first feeding in other species (Campana and 

Neilson 1985; Jones 1986). Eye migration in flatfish (Platichthys stellatus, 

Pseudopleuronectes americanus) and the larval-juvenile transition in bluefish 

(Pomatomus saltatrix) are marked by secondary growth centers (primordia) (Campana 

1984; Sogard 1991; Hare and Cowen 1994). In many other fish species, a distinctive 

pattern, or settlement mark, commonly occurs in the otoliths at the time of the larval- 

juvenile transition (Gartner 1991; Linkowski 1991; Wilson and McCormick 1997, 1999; 

Searcy and Sponagle 2001). The use of larval settlement marks to back-calculate timing 

of settlement and larval duration offers an efficient method of evaluating temporal 

recruitment patterns on larger spatial scales than previously possible using field sampling 

alone (i.e., visual surveys, settlement traps, and mark-recapture techniques) (Wilson and 

McCormick 1997).

Otoliths record ambient environment

Coupled with age, size, and development, environmental history experienced by 

individual fish is recorded in otolith chemistry. The use of otoliths is appealing since 

specific questions (i.e. natal origins, spawning site fidelity, return migrations) can be 

addressed through otolith chemistry that cannot be addressed by other techniques. 

Thorrold et al. (2001) used otolith chemistry to identify separate metapopulations of 

weakfish, C. regalis that were previously managed as one unit stock. Gillanders and 

Kingsford (1996) used otolith chemistry to demonstrate that seagrass beds were not the
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main nursery source of blue groper, A. viridis juveniles recruiting to the adult, fished 

population, contrary to conventional thought. Otolith chemistry techniques could also be 

used to quantify Nassau grouper population connectivity rates and describe larval 

transport, which would elucidate population information for fisheries management 

decisions regarding Nassau grouper stocks.

Instrumentation

The use of otoliths as environmental recorders is based on the premise that the 

concentration of elements in the otolith can be accurately and precisely measured. 

Analytical techniques currently used can be categorized into those that use whole otoliths 

(Fowler et al. 1995a) and those that sample at specific loci within the otolith (Fowler et 

al. 1995b). Dissolving whole otoliths provides an integrated elemental record over a 

fish's life history. Sampling at specific loci in a three-dimensional otolith provides 

environmental information at a particular location, corresponding to a particular point in 

time, related to growth rate, age, ontogeny, and environmental variation.

Inductively coupled plasma mass spectrometry (ICP-MS) is a highly sensitive 

analytical technique that combines the detection power of mass spectrometry with the 

capability of near-simultaneous element analyses of dissolved otoliths (Houk 1986; 

Beauchemin et al. 1987; Date 1991). Because of the ability to perform rapid isotope ratio 

measurements, ICP-MS makes stable isotope dilution techniques possible. Isotope 

dilution ICP-MS is based on the addition of a known amount of an enriched isotope spike 

to a sample. After equilibration with the natural isotope in the sample, mass spectrometry 

is used to measure the altered isotopic ratios (Fassett and Paulsen 1989). In principle and
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practice, isotope dilution ICP-MS provides a high degree of accuracy, precision, and 

sensitivity (Beauchemin et al. 1987; Fassett and Paulsen 1989; Catterick et al. 1995; 

Campana et al. 1997). Isotope dilution increases the accuracy of ICP-MS measurements 

by minimizing problems with matrix effects, plasma instability, changes in orifice 

geometry, and other instrument-related difficulties (Klinkhammer and Chan 1990).

Laser ablation ICP-MS is a method for the direct elemental analysis of solid 

samples that exposes material to a laser beam inside a cell through which an input carrier 

gas (typically He or Ar) passes (Wang et al. 1994). The ablated material is carried by an 

aerosol to the argon plasma torch and is analyzed by the mass spectrometer. Using LA 

ICP-MS minimizes interference, improves detection limits, and reduces sample 

preparation time, thus reducing a significant point of potential contamination (Wang et al. 

1994). Laser ablation ICP-MS surpasses the commonly used electron probe 

microanalyzer for in situ analyses of otolith chemistry (Secor 1992; Kalish 1990; Gunn et 

al. 1992; Thresher et al. 1994; Campana et al. 1997) in terms of spatial resolution, 

detection limits, and sample processing efficiency (Wang et al. 1994).

Applications of otolith chemistry 

Otolith elemental signatures

Differences in otolith elemental signatures are attributed to different geographical 

locations. Limitations of using this technique include unknown ontogenetic differences 

in incorporation rates, the specific behaviors of the trace elements examined, and 

technological limitations (i.e., precision and accuracy of technique or instrument used). 

Interpretation of these geochemical signatures is best applied to species that move

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

between or inhabit very different environments with respect to basin geology, watershed 

use/geology, proximity to land, and elemental composition of water. This technique has 

successfully been applied to specific stock identification questions on Scotian Shelf cod 

0Gadus morhua) (Campana et al. 1995). Other applications include discerning migration 

or transport (e.g., labrid fishes in the Great Barrier Reef, Gillanders and Kingsford 1996) 

and natal homing (weakfish; Thorrold et al. 2001).

Strontium/calcium thermometry

Strontium/calcium thermometry is the use of Sr/Ca ratios in biogenic calcium 

carbonate structures to reconstruct temperature histories of ancient and modem 

environments. Interest in Sr/Ca thermometry began in the 1960’s with the primary 

objective of understanding the influence of sea level rise and fall and melting glaciers on 

regional and global climate change. Sr/Ca thermometry has been used in corals (Swart 

1979; Smith et al. 1979; Shen et al. 1996), molluscs (Dodd and Crisp 1982; Stecher et al.

1996), foraminifera (Lea and Martin 1996; Elderfield et al. 1996; Lea et al. 1999), and 

more recently in fish otoliths (Thorrold et al. 1997a). Applications of this technique 

using otoliths include paleoclimate reconstructions as demonstrated by Kalish (1999) and 

more recently by Andms et al. (2002) for climate comparisons between El Nino and non- 

El Nino years. Another use of Sr/Ca ratios is the reconstruction of fish migration 

histories of anadromous fish (Kalish 1990; Limburg 1995; Secor et al. 1995; Tzeng et al.

1997). Limitations to Sr/Ca thermometry include interspecific differences in 

incorporation, variable calcification and increment formation along growth axes,
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variability in Sr/Ca composition of water, and technological limitations and resolution 

capabilities of instruments used in previous studies.

Individual fish transport pathways

Combining otolith elemental signatures and Sr/Ca thermometry techniques may 

allow for reconstruction of individual fish transport pathways associated with water 

masses. The time-keeping properties of otoliths and the high spatial resolution of LA 

ICP-MS may enable precise recovery of experienced environments. With the proper 

validation for individual species, the use of LA ICP-MS would complement tagging 

efforts currently conducted.

Assumptions of otolith element incorporation

The main assumption for both otolith elemental signatures and Sr/Ca thermometry 

is that otoliths incorporate minor and trace elements in proportion to free ion 

concentrations in the ambient water (Simkiss 1974). Farrell and Campana (1996) used 

radioisotopes of calcium and strontium to test for a relationship between water 

concentrations and otolith concentrations. They determined that the water contributed to 

75% of the calcium and 88% of the strontium incorporated in the otoliths of Nile tilapia, 

Oreochromis niloticus. The remainder of the strontium was assumed to be from the diet. 

Other studies have attributed some strontium to diet (Limburg 1995; Gallahar and 

Kingsford 1996; Kennedy et al. 2000) yet Hoff and Fuiman (1995) suggested otolith 

uptake of a suite of minor elements from food was minimal. More recently, Milton and 

Chenery (2001) verified that otolith trace metal concentrations were related to water
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concentrations, although, the otolith trace metal patterns did not extrapolate simply to the 

patterns measured in the natural environment, implying that the mechanisms of trace 

metal incorporation are more complex.

Specific to Sr/Ca thermometry, another critical assumption is that temperature 

affects Sr/Ca incorporation in the otolith, thereby allowing the otolith to act as a 

recording thermometer. Otolith Sr/Ca values have been used to examine transport 

pathways as a function of ambient temperature (Radtke 1989; Townsend et al. 1989, 

1992, 1995; Gallahar and Kingsford 1996). The relationship between temperature and 

Sr/Ca ratios in fish otoliths is likely complicated because the otolith is isolated from 

seawater by branchial, intestinal, and the endolymphatic membranes. Proposed 

relationships between Sr/Ca and temperature include that Sr/Ca ratios and temperature 

are positively correlated (Fowler et al. 1995a; Arai et al. 1996), negatively correlated 

(Townsend et al. 1992), and uncorrelated (Gallahar and Kingsford 1996). These 

inconsistencies are quite possibly a result of inter-specific variations in Sr uptake as a 

function of temperature or methodological artifacts in some or all of the experiments.

Another underlying assumption in otolith chemistry studies is that there are no 

differences in otolith elemental incorporation among different fish species. This 

assumption is not stated explicitly in many studies and has not been evaluated under 

controlled conditions in the laboratory.

The application of otolith chemistry potentially provides tools to address a 

number of issues relevant to fisheries management and ecology; however, to apply the 

method, the assumption must be validated that minor and trace elements in otoliths are 

deposited in proportion to dissolved concentrations in the ambient water. To quantify the
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relation between water mass elemental composition and otolith composition, and the 

possible effects of external variables such as temperature and salinity, the composition of 

the ambient water must be known. This is achieved most easily and accurately under 

laboratory conditions (Farrell and Campana 1996; Milton and Chenery 2001).

Dissertation research objectives

The next five chapters present the results from three laboratory experiments 

designed to test the relationship between otolith composition and ambient water 

chemistry, as well as the effects of water temperature and salinity on otolith element 

incorporation. Once the relation between otolith composition and ambient water 

chemistry is quantified, it may be possible to apply otolith elemental analyses to link fish 

dispersal and subsequent transport with different water masses. If successful, these 

techniques will provide tools for evaluating individual fish life history profiles, critical 

for understanding recruitment processes and habitat associations.

Outline of chapters

Chapter II examines the relation between water strontium and barium 

concentrations and otolith incorporation of strontium and barium using larval spot 

(.Leiostomus xanthurus) in a controlled laboratory experiment. The chapter also 

investigates the effects of temperature on otolith Sr/Ca and Ba/Ca incorporation.

The first experiment was not designed to calibrate the temperature dependence of 

[Sr/Ca]otoiith as fish were only reared at two temperatures. To further investigate the spot 

otolith temperature and salinity relationship, a second experiment was performed and
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reported in Chapter III. The objectives of this second experiment were to quantify the 

effect of temperature on [Sr/Ca]otoiith in spot larvae using four temperature treatments and 

to test the effect of salinity as a proxy for life history transitions from pelagic larvae to 

estuarine juveniles.

Chapter IV further analyzes the effect of temperature and salinity on barium, 

manganese, and magnesium incorporation in spot otoliths from the second experiment. If 

these elements are to be used in field applications, it is important to determine if their 

incorporation is effected by these environmental factors.

In the final experiment (Chapter V), juvenile gray snapper (Lutjanus griseus) 

were used to ascertain potential species differences in minor and trace metal 

incorporation with respect to temperature and salinity. This chapter uses a laser ablation 

sampling technique coupled with ICP-MS to sample specific locations in otoliths.

The final chapter is the research summary, which discusses applications of these 

experimental findings and identifies future directions for research.
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CHAPTER II

STRONTIUM AND BARIUM UPTAKE IN ARAGONITIC 

OTOLITHS OF MARINE FISH1

Introduction

Trace element studies of biogenic carbonates such as foraminiferal calcite and 

coral aragonite have provided a wealth of information on the physicochemical properties 

of modem and ancient aquatic environments. Recently, several workers have proposed 

that the isotopic and trace element composition of fish otoliths, or ear stones, may 

provide useful proxies for reconstructing temperature histories (Patterson et al. 1993; 

Thorrold et al. 1997a) and, perhaps, trace element concentrations in marine and 

freshwater systems (Thorrold et al. 1997b, 1998a). Otoliths are common in the fossil 

record from the late Cretaceous to the present (Nolf 1995), locally abundant in aboriginal 

middens (e.g., Kalish 1999), and highly resistant to diagenetic processes in sediments 

dating to the Jurassic Period (Patterson 1999). More importantly, in the context of 

oceanographic and climate proxies, otoliths form periodic rings of sufficient widths to 

allow sampling at a temporal resolution approaching the daily level using either 

micromilling (Wurster et al. 1999) or laser ablation techniques (Campana et al. 1994; 

Thorrold and Shuttleworth 2000). Analyses of otolith chemistry may, therefore, allow 

high-resolution reconstructions of temperature and water chemistry from aquatic 

environments where coral or sponge skeletons are not available (e.g., Patterson 1998). 

Trace elements and isotope values in otoliths may also serve as natural tags for

1 Reprinted from Geochimica et Cosmochimica Acta  Vol 64, Bath et al. Strontium and barium uptake in 
aragonitic otoliths o f  marine fish, pp 1705-1714, Copyright 2000, with permission from Elsevier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 6

identifying natal location and population structure of anadromous and marine fish species 

(Kennedy et al. 1997; Thorrold et al 1998b). For instance, Swearer et al. (1999) have 

recently developed an approach for tracing the dispersal histories of larval reef fish 

recruits using differences in larval growth rates and otolith chemistry as a natural tag of 

either local retention within near-coastal waters or larval development within open ocean 

waters.

Before otoliths can be used to reconstruct water chemistry, it is necessary to 

validate the assumption that trace metals in otoliths are deposited in proportion to 

dissolved concentrations in the ambient environment. This assumption is controversial, 

with good reason (Campana 1999). Otolith aragonite crystallizes from fluid within the 

endolymphatic canal of the inner ear. Bicarbonate, calcium, and at least some trace metal 

ions in the endolymphatic fluid are derived primarily from the ambient water (Farrell and 

Campana 1996; Thorrold et al. 1997a). However, these ions must first pass from the 

water into the blood plasma via branchial or intestinal membranes, and then cross another 

membrane into the endolymph. There is clearly potential for decoupling of free ion 

concentrations across the branchial membrane, as ion barriers are essential for any 

organism with high osmoregulatory requirements. Variations in the levels of metal- 

binding proteins within the blood plasma and the endolymphatic fluid may further 

complicate any correlation between water and otolith chemistry (Kalish 1991).

Any relationship between seawater composition and otolith chemistry will be 

determined by the kinetics of ion transport from water to the precipitating surface, but 

will also be a function of the mechanism by which the trace elements are incorporated 

into otolith aragonite. Divalent metals like Sr2+ and Ba2+ that have ionic radii similar to
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Ca2+ are generally considered to substitute for Ca2+ ions in the orthorhombic aragonite 

lattice (Speer 1983), at least in low-Sr aragonite such as fish otoliths (Greegor et al. 

1997). For these elements, partitioning between aqueous and solid aragonite phases can 

be conveniently described by a distribution coefficient. Boyle (1988) and Lea and Spero 

(1992, 1994) outline an approach that uses an empirically determined distribution 

coefficient, termed a partition coefficient by Morse and Bender (1990), to characterize 

the deposition of metal cations into biogenic carbonates. The trace metal composition of 

otoliths ([M e/CaJotoiith) can be related to that of the water ([Me/Ca]water) by way of this 

partition coefficient (Z>Me), where

(2 .1)
Me]
Calj

=  D ,M e
otolith

M e]
LCa[j,

This approach may be particularly useful in otolith and mollusc shell studies, where 

depositional surfaces are not in direct contact with the water and aragonite formation is 

mediated by water-soluble proteins (Asano and Mugiya 1993; Belcher et al. 1996; Falini 

et al. 1996).

Partition coefficients for any carbonate system may also be a function of physical 

parameters such as temperature and precipitation rate. Temperature is perhaps the most 

widely studied of these parameters in biogenic carbonates. Negative relationships 

between Sr/Ca ratios and temperature have been reported for coral skeletons (e.g., Beck 

et al. 1992; Shen et al. 1996). However, the slope of this relationship is significantly 

larger than that of inorganic aragonite (Kinsman and Holland 1969), suggesting that 

kinetic and/or vital effects must also play a role (Hart and Cohen 1996). The influence of
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rate-dependent processes on Sr incorporation is well established for inorganic carbonates 

(e.g., Lorens 1981; Rimstidt et al. 1998), but it remains uncertain if precipitation rate is 

an important parameter controlling Sr/Ca ratios in biogenic aragonite (deVilliers et al. 

1994; Shen et al. 1996). Less is known about the factors determining D Ba in biogenic 

aragonite. Lea et al. (1989) and Hart and Cohen (1996) noted positive correlations 

between quasi-annual cycles of Sr/Ca and Ba/Ca in corals, suggesting that either 

temperature or a correlated variable such upwelling intensity may influence DBa to some 

degree. Obviously it is necessary to characterize this relationship, if indeed any 

relationship exists, before it will be possible to reconstruct dissolved Ba concentrations in 

seawater from otolith aragonite.

To calculate partition coefficients for the uptake of Sr and Ba in fish otoliths, and 

the possible effects of external variables such as temperature, the composition of the 

ambient water must be known. This is achieved most easily and accurately under 

laboratory conditions. Lea and Spero (1992, 1994), Mashiotta et al. (1997), and Lea et al.

(1999) cultured planktonic foraminifera in the lab to calculate Mg/Ca, Sr/Ca, Cd/Ca and 

Ba/Ca partition coefficients for shell calcite. However, this approach has rarely been 

applied to the study of trace metals in otolith aragonite.

In this study, an experiment is described in which juveniles of an estuarine- 

dependent species of marine fish, Leiostomus xanthurus, were reared under controlled 

laboratory conditions to determine if Sr/Ca and Ba/Ca in otoliths are proportional to their 

concentrations in the rearing water. The effects of temperature on both Sr/Ca and Ba/Ca 

partition coefficients are also investigated. Finally, because fish were maintained under 

controlled conditions, the amount of otolith material deposited during the experiment was
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quantifiable. These data provide a test of the influence of precipitation rate on the 

chemistry of otolith aragonite.

Materials and methods 

Larval rearing

Spot (Leiostomus xanthurus) were spawned 22 November 1997 at the National 

Marine Fisheries Service, Southeast Fisheries Science Center in Beaufort, North Carolina 

for the experiment, assuring that the larvae were from the same brood stock and of known 

age. Larvae were reared in natural seawater at 30psu salinity, and in a common tank until 

42 days after hatching, at which time they were transferred to the experimental tanks. 

Mortality rates of new-hatched larval fish are generally high (>90%), and hence by 

rearing the fish for a period before initiating the experiment adequate survival rates of the 

experimental fish were ensured. At the outset of the experiment, fish were randomly 

distributed among a total of 24 acid-washed 20 L high-density polyethylene tanks at a 

density of 2 fish-L"1 and acclimated over several days to the 20psu salinity experimental 

conditions.

To minimize the possibility of contamination of water during the experiment, all 

tanks were located within a PVC frame covered with polyethylene sheeting. A 

continuous supply of filtered air, provided by a 0.2 jim HEP A unit, maintained positive 

pressure within the enclosure throughout the experiment. Room temperature was 

maintained at 18 °C, and aquarium heaters within each of the tanks were used to achieve 

desired temperatures of either 20 °C or 25 °C. The light:dark cycle was controlled at 12 

hr: 12 hr for the duration of the experiment. Fish were fed enriched Artemia for the first
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two weeks of the experiment, and thereafter fed an artificial diet (Hi-Pro Starter, 0.5 and 

0.7 mm, Corey Feed Mills, LTD.).

Artificial seawater (Instant Ocean®) was used as the water source throughout the 

experiment. Triplicate experimental tanks were randomly assigned 4 levels of Sr/Ca 

corresponding to ambient and then 1.2x, 1.4x and 1.8x ambient levels, and Ba/Ca 

corresponding to ambient and then 3x, 6x, and lOx ambient levels. The Sr and Ba spiked 

water was prepared by adding appropriate amounts of standard solutions (SPEX) of SrCl2 

and BaCl2 to each of the tanks. To maintain water quality and the desired elemental 

concentrations in the tanks, water was changed at 50% volume daily. The new water was 

spiked before being added to the tanks to ensure that dissolved Sr and Ba levels were 

maintained at the desired levels throughout the experiment. Water samples were 

collected from each tank every second day of the experiment. These samples were 

filtered through 0.22 pm cellulose nitrate membrane filters, acidified with trace metal 

grade 12 N HC1 to pH 2, and then stored frozen-acidified for subsequent analysis. Water 

temperature, salinity, and pH were also recorded daily (Table 2.1).

Otolith and water analyses

At the termination of the experiment, all remaining fish were measured, and then 

frozen in individual plastic bags. Sagittal otolith pairs were removed from the fish and 

scraped clean with acid-washed glass probes in a class-100 cleanroom. Otoliths were 

sonicated in Milli-Q water for 7 minutes and triple rinsed with ultrapure H20 2, followed 

by three sequential rinses of Milli-Q water and placed on acid-washed glass slides to dry 

for 36 hours under a class-100 laminar flow hood. After drying, otolith pairs were
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weighed to the nearest 10 p.g and transferred to acid-washed 1.5 ml high-density 

polyethylene vials. Otoliths from a subsample of fish archived at the start of the 

experiment were also removed and weighed to determine the proportion of otolith 

material in the experimental fish deposited during the initial larval rearing. Otoliths from 

these fish averaged less than 50 fig and 1 therefore concluded that conditions during the 

initial rearing period had little effect on the resultant otolith chemistry of the 

experimental fish.

Table 2.1. Summary of mean water temperature (T), pH, and dissolved Sr/Ca (mmol- 
mol'1) and Ba/Ca (jxmol-mol'1) levels within each of the 24 individual tanks during the 
course of the experiment.

Tank# T (°C ) pH Sr/Ca Ba/Ca Tank# T (°C ) pH Sr/Ca Ba/Ca

1 20.8 8.00 15.21 151.16 13 20.3 7.97 17.79 22.98

2 25.2 8.05 17.40 71.41 14 20.3 7.94 22.55 215.56

3 25.2 8.00 16.03 25.48 15 25.1 8.04 12.75 211.75

4 20.3 7.97 15.17 23.90 16 25.0 8.03 15.23 144.87

5 20.6 7.96 22.36 138.83 17 24.7 8.02 13.03 74.27

6 20.4 8.02 17.68 72.30 18 25.5 7.98 18.29 231.45

7 24.8 8.01 22.74 148.14 19 20.3 8.00 17.81 75.09

8 25.2 7.98 17.88 20.85 20 24.9 8.00 13.39 142.93

9 25.1 8.00 22.47 22.93 21 19.7 7.98 15.00 70.96

10 20.3 7.95 12.73 155.85 22 20.4 8.01 12.60 222.20

11 20.4 7.91 12.54 228.09 23 24.5 8.01 15.02 24.88

12 25.4 8.04 22.50 70.21 24 20.0 7.98 22.80 23.19

Otolith pairs were prepared for Sr/Ca and Ba/Ca analysis by isotope dilution 

inductively coupled plasma mass spectrometry (ICP-MS). Samples were dissolved in
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approximately 300 pi of 10% re-distilled nitric acid solution containing the enriched 

isotopes of the metals targeted for isotope dilution along with the internal standard. The 

enriched spike solution contained 87Sr and 137Ba, along with an internal standard, 69Ga, 

which was used to quantify Ca. All analyses were run on a Perkin-Elmer Elan 6000 ICP- 

MS equipped with a high-efficiency pneumatic nebulizer. The analyses were run in 

peak-hopping mode, and monitored 46Ca, 69Ga, 87Sr, 88Sr, 137Ba and 138Ba. The estimated 

limits of detection (3a based on a 1 mg otolith mass in a 0.3 ml final volume) were 500 

fig-g'1 for Ca, 6 pg-g_1for Sr, and 40 ng-g'1 for Ba.

Analyses of water samples collected during the experiment were also conducted 

using isotope dilution ICP-MS. Samples were selected at weekly intervals, including the 

start and end of experiment, so that a total of six samples were run from each tank. All 

samples were spiked with a solution containing 86Sr and 137Ba, along with an internal 

standard, 45Sc, which was used to quantify Ca levels. The solutions were then aspirated 

directly into a Turner SOLA ICP-MS, and the peak-hopping mode was again used to 

monitor 45Sc, 46Ca, 87Sr, 88Sr, 137Ba and 13SBa. Analyses of water samples were 

conducted in either duplicate or triplicate, and values presented here are means of the 

replicate analyses (Figs. 2.1, 2.2).

The use of artificial seawater presented two potential difficulties. First, Sr/Ca 

levels of seawater made from “Instant Ocean” salts are slightly higher, at 12 mmol-mol'1, 

than that found in normal seawater (typically 8.5-9 mmol-mol'1). However, little could 

be done to lower this value; although dilution will lower absolute Sr levels, it will not 

change Sr/Ca ratios in the water. The highest Sr/Ca values in this experiment were, 

therefore, approximately 2.5x that of normal seawater. This was not a problem with
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ambient Ba/Ca levels, as spiked levels within the tanks spanned a range (2,3 -  230 

fxmol-moF1), which would commonly be encountered by estuarine-dependent fish along 

the east coast of the United States (Coffey et al. 1997). Second, artificial seawater was 

used in an attempt to minimize variations in baseline Sr and Ba concentrations in the 

tanks. However, Sr/Ca levels fluctuated to some degree throughout the experiment (Fig.

2.1). This will have had the effect of increasing the variance of otolith Sr/Ca within 

individual tanks if fish were growing at different rates during the experiment. Given the 

coherence in Sr/Ca levels among tanks through time, mean values of otolith Sr/Ca from 

each of the tanks shouldn’t have been unduly affected by this variability.

Fig.'2.1. Mean Sr/Ca ratios (± SD) at ambient (♦) and 1.25x ( A ) ,  1.5x (■) and 2x (•) 
ambient levels at 20°C (filled symbols) and 25°C (open symbols), from weekly sampling 
throughout the experiment, along with mean values ((± SD) for each spike 
level/temperature combination (mean) over the duration of the experiment.

28.

o  2 2 -  
E

£
s

J
g
& 16-

2 3 5 61 4 mean

Time (weeks)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

Fig. 2.2. Mean Ba/Ca ratios (± SD) at ambient (♦ ) and 1.25x ( A ) ,  1.5x (■) and 2x (•) 
ambient levels at 20°C (filled symbols) and 25°C (open symbols), from weekly sampling 
throughout the experiment, along with mean values (± SD) for each spike 
level/temperature combination (mean) over the duration of the experiment.
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Results

Sr/Ca ratios

The Sr/Ca ratios of otoliths from 214 juvenile L. xanthurus ranged from 1.85 to 6.77 

mmol-mol"1, with an overall mean of 3.3 mmol-mol'1. Using tanks as the appropriate unit 

of replication, Sr/Ca ratios in otoliths were directly proportional to the Sr/Ca of the water 

in which the fish were raised (Fig. 2.3).
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Fig. 2.3. Mean Sr/Ca ratios ([Sr/Ca]otoiiths ± SE) in otoliths of lab-reared Leiostomus 
xanthurus plotted against Sr/Ca ratios of the rearing water ([Sr/Ca]water ± SE) at either 20 
°C (■) or at 25 °C (O). Lines were fitted by linear least-squares regression for each of 
the temperature treatments.
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Least squares regression described a linear relationship (r2 = 0.84) between [Sr/Ca]otoiith 

and [Sr/Ca]water at 20 °C

(2.2) [Sr/Ca]0toiith = 0.165 ± 0.052 (95% Cl) [Sr/Ca]water + 0.260 ± 0.897 (95% Cl)

and a linear relationship at 25 °C (r2 = 0.82)

(2.3) [Sr/CaWiith = 0.162 ± 0.054 (95% Cl) [Sr/Ca]water + 0.70 ± 0.954 (95% Cl).

Partition coefficients (Dsr) were calculated for both of the temperature treatments directly 

from [Sr/Ca]0toiith and [Sr/Ca]water data for each of the individual tanks. Note that this is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

algebraically equivalent to constraining regression lines through a zero intercept, on the 

basis that fish living in seawater without Sr would be expected to have no Sr in their 

otoliths. Estimates of D$r were 0.182 ± 0.011 (95% Cl) at 20 °C and 0.205 ± 0.04 (95% 

Cl) at 25 °C.

Ba/Ca ratios

The Ba/Ca ratios of otoliths from juvenile L. xanthurus ranged from 1.7 to 15.2 

pmol-mof1, with an overall mean of 5.59 pmol-mol'1. Otolith Ba/Ca ratios were directly 

proportional to [Ba/Ca]water (Fig. 2.4) at both temperatures.

Fig. 2.4. Mean Ba/Ca ratios ([Ba/Ca]0t0iiths ± SE) in otoliths of lab-reared Leiostomus 
xanthurus plotted against Ba/Ca ratios of the rearing water ([Ba/Ca]water ± SE) at either 
20°C (■) or at 25°C (O). Lines were fitted by linear least-squares regression for each of 
the temperature treatments.
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A linear relationship (r2 = 0.90) between [Ba/Ca]0toiith and [Ba/Ca]water at 20 °C was 

described by least squares regression as:

(2.7) [Ba/Ca]otouth = 0.033 ± 0.007 (95% Cl) [Ba/Ca]wa«er + 1.358 ± 1.042 (95% Cl). 

A similar linear relationship (r2 = 0.98) was found at 25 °C:

(2.8) [Ba/Ca]otoihh = 0.039 ± 0.004 (95% Cl) [B a /C a W r + 1.350 ± 0.591 (95% Cl).

Dqa was calculated directly from the [Ba/Ca]otoiith and [Ba/Ca]water data, and found values 

of 0.06 ± 0.06 (95% Cl) at 20 °C and 0.06 ± 0.07 (95% Cl) at 25 °C.

Rate effects on otolith Sr/Ca and Ba/Ca

There was no significant correlation between otolith mass and Sr/Ca ratios (Fig. 

2.6), averaged within each of the experimental tanks (r = -0.314, p  = 0.134). There were 

no significant differences in otolith mass between the two temperatures (F(ij2o) = 0.022, p 

= 0.882). There was also no relation between Sr incorporation and fish growth rate, 

given the high correlation between fish standard length and otolith mass (r = 0.902, n = 

24). Correlations between Sr/Ca ratios and individual otolith mass within each of the 

tanks were also examined and 23 of the 24 correlations were negative. However, only 

one of the correlations was statistically significant, after adjusting the experiment-wise 

error to take into account the number of correlations performed.
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Fig. 2.5. Mean otolith Sr/Ca values (± SE) from lab-reared Leiostomus xanthurus plotted 
against mean otolith mass (± SE) for each of 24 rearing tanks maintained at either 20 °C 
(■) or at 25 °C (O).
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Barium incorporation into otoliths is unrelated to precipitation rate, as evidenced 

by a non-significant correlation (r = 0.177, p  = 0.4078) between the two variables 

averaged within each tank (Fig 2.7). Within-tank correlations were similarly weak, with 

only 1 tank out of a total of 24 being statistically significant.
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Fig. 2.6. Mean otolith Ba/Ca values (± SE) from lab-reared Leiostomus xanthurus 
plotted against mean otolith mass (± SE) for each of 24 rearing tanks maintained at either 
20 °C (■) or at 25 °C (O).
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Discussion

Sr/Ca ratios

It is apparent that Sr/Ca values in few, if any, inorganic or biogenic aragonites can 

be explained on the basis of thermodynamic considerations alone. Aragonite from 

hematypic coral skeletons typically have Sr/Ca values close to that of inorganic 

aragonite, with Dsr values of both systems ranging from 1 to 1.2, while the theoretical 

£>sr(equii) based on thermodynamic considerations is 0.095 (Plummer and Busenberg 

1987). This lack of equilibration is presumably due to kinetic processes at the crystal 

surface and within the solution boundary layer of inorganic aragonite, along with 

unknown vital effects in coral skeletons (Hart and Cohen 1996). Strontium uptake in
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otolith aragonite is also out of equilibrium with the ambient water, although apparently 

not to the extent of either inorganic aragonite or coral skeletons. In a study of several 

marine fish species, Kalish (1991) estimated £>sr to be 0.18 ± 0.04, a value almost 

identical to that found in the present study. However, Kalish measured Sr/Ca in the 

endolymphatic fluid rather than seawater, implying that Sr/Ca in the endolymph 

accurately tracks Sr/Ca values in seawater. Partition coefficients for aragonite in mollusc 

shells are also lower than inorganic aragonite, ranging from 0.23 to 0.31 (Stecher et al. 

1996). Otoliths and mollusc shells are similar in that the aragonite precipitates from a 

highly regulated internal body fluid rather than seawater. Hence, although DSr of both 

fish otoliths and mollusc shells are quite close to equilibrium values, it would be 

premature to conclude that these structures precipitate closer to thermodynamic 

equilibrium than inorganic aragonite and coral skeletons without more information on 

free ion concentrations within the endolymphatic and extrapallial fluids.

The observation that Sr/Ca values in fish otoliths were reasonably close to 

thermodynamic equilibrium was surprising given the potential for regulation of both Sr 

and Ca ions across membranes and within the blood plasma. However, the observation 

that Sr/Ca ratios in otoliths are deposited in direct proportion to Sr/Ca in the ambient 

water was more important in the context of using Sr/Ca ratios in otoliths as an 

environmental proxy. Although there has been growing acceptance of the observation 

that large differences in [Sr/Ca]water (i.e., from marine to freshwater systems) are 

faithfully recorded by otoliths (Campana 1999), this study suggests that more subtle 

variations will be also be recoverable. It should be noted that there was some scatter in 

relationship between [Sr/Ca]0toiith and [Sr/Ca]water within individual tanks. At least some
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of this variance may be due to temporal changes in [Sr/Ca]water of individual tanks (Fig.

2.1), despite the attempts to minimize such differences.

This experiment was not designed to calibrate the temperature dependence of DSr, 

as fish were only reared at two temperatures. However, it is possible to get a first-order 

estimate of the relationship between Dsr and temperature (n = 2) in otoliths based on 

these results. Least-squares regression of Dsr and temperature (I) suggests a significant 

linear relationship

The most obvious difference between the relationship and that found in corals is that 

temperature is positively, not negatively, correlated with DSr, although the degree of 

temperature dependence is similar. For instance, Shen et al (1996) found the following 

relationship between D$r and temperature in Porites corals:

Results from earlier studies on the effect of temperature on Sr/Ca ratios in fish otoliths 

are contradictory, in both the direction and magnitude of the temperature dependence. 

Negative (e.g., Radtke et al. 1990; Townsend et al. 1995), positive (Kalish 1989; Arai et 

al. 1996) and no relationships (Gallahar and Kingsford 1996; Tzeng 1996) between Sr/Ca 

and temperature have been reported in the literature. Limited data from marine mollusc 

shells, which like otoliths are low-Sr aragonite, suggest a positive relationship between

(2.4) £> sr = 0.0046 T°C + 0.089 (r2 = 0.62).

(2.5) Dsr = -(0.006011 r ° C )+  1.2077.
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Sr/Ca ratios and temperature (Stecher et al. 1996; ref. 23 in Hart and Blusztajn 1998), 

although Buchardt and Fritz (1978) found that Sr incorporation was independent of 

temperature in a freshwater gastropod. Data were reanalyzed from a laboratory study on 

the effects of temperature and salinity on trace element chemistry of another species of

sciaenid species, Micropogonias undulatus (Fowler et al. 1995a), assuming that there

were no differences in [Sr/Ca]water among tanks since all had a common water source. 

Although only five tanks at two temperatures were available, there was a significant 

positive relationship between £>sr and temperature,

(2.6) DSr = 0.0086 T°C + 0.124 (r2 = 0.85).

The relationship for M. undulatus otoliths is not significantly different from that of L. 

xanthurus otoliths determined in the present study. Clearly, these data are preliminary 

and the temperature dependence of DSl in fish otoliths will require careful calibration for 

individual species of interest. However, it may be possible to reconstruct temperatures 

from Sr/Ca ratios in otoliths where [Sr/Ca]water can be adequately constrained.

Ba/Ca ratios

The Z)Ba estimates calculated in this chapter are significantly lower than partition 

coefficients for hermatypic corals (~ 1.3, Lea et al. 1989), but are probably close to 

values for aragonitic mollusc shells (Stecher et al. 1996). Unlike Sr, no significant effect 

of temperature on DBa was found. Although Lea et al. (1989) reported quasi-periodic 

oscillations in coral Ba/Ca that were correlated with the seasonal temperature and
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upwelling cycles, later studies have found little evidence of a temperature effect on Ba/Ca 

in coral aragonite in the absence of upwelling (Sinclair et al. 1998). Rather, as with 

Ba/Ca in foraminifera shells (Lea and Spero 1992, 1994), Ba/Ca ratios in otoliths 

appeared to be accurately recording changes in the Ba/Ca composition of the ambient 

water, and were not influenced by temperature.

The relatively large standard deviations around the estimates of Ba partition 

coefficients were due to a non-linearity in the relationship between Z>Ba and [Ba/Ca]water 

at both 20 °C and 25 °C (Fig. 5). These data suggest that proportionally more Ba was 

incorporated in otoliths at low [BaCa]water values when normalized to Ca. Although this 

does not affect our ability to recover dissolved Ba concentrations from Ba/Ca ratios in 

otoliths over the [Ba/Ca]water range in this experiment (equation 2.3), extrapolation 

beyond these points would be not be justified without further data. It is difficult to 

speculate the cause of this non-linearity without information on ion transport within the 

fish .. It may be that proportionally more Ba, relative to Ca, was transported to the 

endolymphatic fluid in the low ambient Ba treatments than those tanks with higher Ba 

levels, up to a threshold level at approximately 150 fxmol-mol"1. Non-linear uptake of 

potentially toxic heavy metals across the branchial membrane has been documented in 

freshwater fishes (Olsson et al. 1988). Alternatively, discrimination may be occurring at 

the crystal surface, perhaps due to saturation of kink sites suitable for Ba2+ attachment 

(e.g., Watson 1996), or some other kinetic process. Distinguishing between biological 

and kinetic effects should be possible by examining Ba/Ca levels in blood plasma and 

endolymphatic fluid, along with [Ba/Ca]0t0iith and [Ba/Ca]water, and such experiments 

should be conducted in future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

Fig. 2.7. Relation between estimates (± SE) of Ba partition coefficients (Dba) for otoliths 
of lab-reared Leiostomus xanthurus and Ba/Ca ratios of the rearing water ([Ba/Ca]water) at 
either 20 °C (■) or at 25 °C (O).
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Rate effects on otolith Sr/Ca and Ba/Ca

The effect of precipitation rate on trace metal incorporation in biogenic aragonite 

remains ambiguous. Rate effects have generally not been found in synthetic aragonite 

studies (Kinsman and Holland 1969; Zhong and Mucci 1989) although they have been 

widely documented in synthetic calcite precipitates (e.g., Lorens 1981; Tesoriero and 

Pankow 1996; Rimstidt et al. 1998). It has proved similarly difficult to document rate 

effects in biogenic aragonite. Several studies have found Sr/Ca ratios correlated with 

coral extension rates (e.g., Weber 1973; deVilliers et al. 1994, 1995), while other workers 

have found no such relationship (e.g., Shen et al. 1996). Data on rate effects in mollusc 

aragonite are sparse compared to corals, but are equally contradictory. Stecher et al. 

(1996) speculated that seasonal differences in shell growth rates generated quasi-periodic
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cycles in Sr/Ca ratios in two species of bivalve mollusc. In contrast, Buchardt and Fritz 

(1978) found that Sr incorporation in the shells of a gastropod Limnaea stagnalis were 

independent of growth rate. My data allowed a definitive test of the relationship between 

precipitation rate and Sr/Ca and Ba/Ca ratios in otoliths, as the mass of individual fish 

otoliths provided an excellent proxy for average precipitation rate during the experiment.

There was no significant correlation between otolith mass and Sr/Ca ratios, 

averaged within each of the experimental tanks, suggesting that these data were not 

confounded by differences in biomineralization rates among the tanks. This conclusion 

was strengthened by the observation that there were no significant differences in otolith 

mass between the two temperatures. That is, the temperature dependence of Dst was not 

driven by differences in precipitation rates among tanks. This further implied that there 

was also no relation between Sr incorporation and fish growth rate, given the high 

correlation between fish standard length and otolith mass. Rate effects may be masked 

by temperature and water chemistry differences among tanks, so correlations between 

Sr/Ca ratios and individual otolith mass within each of the tanks were also examined. 

These data provided some evidence of a relation between Sr/Ca and otolith mass, as 23 of 

the 24 correlations were negative. However, only one of the correlations was statistically 

significant, after adjusting the experiment-wise error to take into account the number of 

correlations performed.

Barium incorporation into otoliths is unrelated to precipitation rate, as evidenced 

by a non-significant correlation between the two variables averaged within each tank. 

Within-tank correlations were similarly weak, with only 1 tank out of a total of 24 being 

statistically significant. As for Sr, this result implied that there was also no relation
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between fish growth and Ba/Ca ratios in otoliths. Metabolic influences, at least as 

manifested by individual fish growth rates, were not a principal determinant of Sr and Ba 

incorporation in fish otoliths.

In summary, otolith Sr/Ca and Ba/Ca ratios are deposited in proportion to their 

respective ratios in ambient waters. It should be possible, therefore, to reconstruct Sr/Ca 

and Ba/Ca levels in environments inhabited by fish based on otolith chemistry. Evidence 

of a non-linearity between Z)Ba and [Ba/Ca]water suggests, however, that careful calibration 

of the relation between Ba/Ca levels in otoliths and water will be required before 

extrapolating the results to lower Ba/Ca environments and to other species.

The estimates of £>sr for otoliths from this study are close to the theoretical 

distribution coefficient for aragonite based on thermodynamic equilibrium, although this 

may be due, at least in part, to differential uptake of Ca relative to Sr across the 

membranes separating the otolith from the ambient environment.

Temperature was positively related to D$r, unlike inorganic aragonite and coral 

skeletons in which the temperature dependence of D$r is negative. Although an adequate 

temperature calibration for Sr/Ca ratios could not be provided, temperatures may be 

reconstructed from juvenile L. xanthurus otoliths once this calibration has been achieved. 

Temperature had no detectable influence on Z>Ba> suggesting that most of the variation in 

Ba/Ca ratios in otoliths reflects concomitant variability in the Ba/Ca composition of the 

environment..

Effects of precipitation rate on Sr and Ba incorporation in otolith were weak and 

generally statistically insignificant. Metabolic effects were similarly weak, using 

individual fish growth rates as a measure of metabolic activity. Rather, Sr and Ba
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incorporation in otoliths is primarily a function of the chemistry of the ambient 

environment, as modified by temperature in the case of Sr. Otoliths represent an 

excellent, and as yet underutilized, record of the physicochemical properties of both 

modern and ancient aquatic environments.
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CHAPTER III

TEMPERATURE AND SALINITY EFFECTS ON STRONTIUM 

INCORPORATION IN OTOLITHS OF LARVAL SPOT 

(LEIOSTOMUS XANTHURUS)

Introduction

Inspired by Odum’s (1951a,b) and Turekian’s (1964) pioneering work on the 

biogeochemical cycling of strontium (Sr) in marine environments, scientists have used 

strontium concentrations of marine carbonate structures to infer temperatures of present 

and past marine environments. Strontium thermometry based on aragonite in coral 

skeletons may reveal temperature variation in marine environments over annual to 

millennial time scales (e.g., Beck et al. 1992; Alibert and McCulloch 1997). Several 

studies have also suggested that Sr deposition in the calcite tests of marine foraminifera 

may be temperature dependent (e.g., Lea and Martin 1996; Elderfield et al. 1996; Lea et 

al. 1999). Similarly, strontium/calcium (Sr/Ca) ratios in aragonite mollusc shells have 

been used to discern temperature and salinity variability in estuarine environments (Dodd 

and Crisp 1982; Stecher et al. 1996).

The geochemistry of otolith aragonite may also record temperature and elemental 

composition of ambient environments (Campana 1999). Otoliths are metabolically inert 

calcium carbonate structures that are formed by concentric daily growth increments in 

teleost fishes (Campana and Neilson 1985; Jones 1986). The chemical composition of 

otoliths may, in turn, reflect that of the surrounding water (Farrell and Campana 1996; 

Milton and Chenery 2001), as modified by temperature (Thorrold et al. 1997a; Bath et a l
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2000). This observation has led to the development of applications using otolith 

chemistry in conjunction with the chronological properties of otoliths to retrospectively 

track larval-transport pathways through time (Tzeng and Tsai 1994; Thorrold et al. 

1997a). Otolith Sr/Ca values have also been used to examine transport pathways as a 

function of ambient temperature (Radtke 1989; Townsend et al. 1989; Gallahar and 

Kingsford 1996) or salinity (Kalish 1990; Halden et al. 1995; Secor et al. 1995).

Strontium ions have the same valence and a similar ionic radius as calcium ions 

and are readily incorporated into aragonite by solid substitution for Ca according to the 

following equation:

(3.1) Sr2+ + CaC03 ■+ SrC03 + Ca2+.

The amount of substitution is a function of the partition coefficient (DSr) between 

aragonite and the fluid from which the Ca and Sr ions precipitate. In most otolith studies 

the partition coefficient is expressed relative to the ambient water, due to difficulties 

measuring concentrations in the endolymphatic fluid surrounding the otolith (Bath et al. 

2000; Milton and Chenery 2001; but see Kalish 1991). Therefore,

(3-2) [Sr/Ca]otolith = DSr [Sr/Ca]water

where Dsr is the partition or distribution coefficient representing the ratio between the 

Sr/Ca of the calcium carbonate structure and ambient water (Morse and Bender 1990).
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Strontium thermometry relies upon the observation that the Sr/Ca partition 

coefficient is temperature-dependent. Because biogenic aragonite is typically not in 

thermodynamic equilibrium, the exact form of the temperature dependence is usually 

determined empirically. Laboratory and in situ studies have been used to validate the 

temperature dependence of Dsr in aragonitic coral skeletons (e.g., Swart 1979; Smith et 

al. 1979; Shen et al. 1996). However, despite a number of apparently successful 

validation studies, there remains vigorous debate concerning the degree to which Sr 

levels in coral skeletons are affected by temperature compared to biological processes 

[e.g., presence of algal symbionts (Cohen et al. 2002)].

The relationship between temperature and Sr/Ca ratios in fish otoliths is likely to 

be even more complicated than in coral skeletons because the otolith is isolated from 

seawater by branchial, intestinal, and the endolymphatic membranes. Proposed 

relationships between Sr/Ca and temperature include that Sr/Ca ratios and temperature 

were positively correlated (Fowler et al. 1995a; Arai et al. 1996), negatively correlated 

(Townsend et al. 1992), and uncorrelated (Gallahar and Kingsford 1996). It is not clear if 

these inconsistencies are a result of inter-specific variations in Sr uptake as a function of 

temperature or by unspecified methodological artifacts in some or all of the experiments.

In one of the few studies to carefully constrain water chemistry and temperature, 

Bath et al. (2000; Chapter II) found a positive relationship between Dsr and temperature. 

However, their experiment was designed to test the influence of water chemistry on 

otolith composition, and only consisted of two temperature treatments at a constant 

salinity. My objectives in this chapter were to resolve the temperature dependence of the 

Sr/Ca partition coefficient in larval spot (Leistomus xanthurus), and to examine if the
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partition coefficient was also influenced by ambient salinity. Based on Bath et al.’s

(2000) results, the null hypothesis is that Sr/Ca ratios in larval spot otoliths are not 

affected by temperature or salinity after appropriate correction for the Sr/Ca ratio of the 

ambient water. If the relation between Sr/Ca and temperature is sufficiently predictive, 

this would allow for reconstruction of temperature histories from the otoliths of 

individual spot larvae. Such reconstructions could, in turn, provide information on larval 

dispersal pathways that would be difficult, if not impossible, to gather using conventional 

approaches.

Materials and methods

Spot {Leiostomus xanthurus) were spawned and hatched on 10 December 1999 at 

the NOAA, National Ocean Service, Center for Coastal Fisheries and Habitat Research in 

Beaufort, North Carolina. Larvae were reared in a common tank in natural seawater at 

34psu salinity for 42 days, at which time they were randomly distributed among 24 acid- 

washed 20 L high-density polyethylene tanks at a density of 2 fishrL'1. Fish were 

acclimated to the experimental treatments for a week before initiating the experiment to 

ensure adequate survival of the experimental fish. The light: dark cycle was controlled at 

12 h: 12 h for the duration of the experiment. The fish were fed an artificial diet (Golden 

Pearls, 300-500 and 500-800 microns, Brine Shrimp Direct) twice daily ad libitum.

Experimental tanks were randomly assigned 2 salinity treatments (15 and 25psu) 

and four temperature treatments (17, 20, 23, and 26 °C). Three replicate tanks were used 

for each treatment combination (24 tanks in total). Room temperature was maintained at 

16 °C, and aquarium heaters were used to regulate temperatures within individual tanks.
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Artificial seawater (Instant Ocean®) mixed with deionized water was used to regulate 

salinity. Water was changed at 50% volume daily to maintain water quality and salinity.

Water samples from each tank were collected every third day and were filtered 

through 0.22 pm cellulose nitrate membrane filters, acidified with 12 N trace-metal grade 

HC1 to pH 2, and then stored frozen for subsequent analysis. Water temperature, salinity, 

and pH were also recorded daily (Table 3.1). After termination of the experiment, all 

surviving fish were measured and frozen in individual plastic bags.

Table 3.1. Summary of mean water temperature (Temp., °C, ± standard error (SE)), 
salinity treatment (Sal., psu), [Sr] (pg®g‘ , ± SE), Ca (pg®g’i, ± SE), dissolved Sr/Ca 
(mmobmof1, ± SE), number of otoliths analyzed (n), mean otolith mass (OM [mg], ± SE) 
and somatic growth rate (GR [mm®d_I], ± SE) within each of the 24 tanks during the 
course of the experiment.

Tank #  Temp. Sal. [Sr] [Ca] [Sr/Ca] n OM GR

9 17.5 ± 0 .1 15 7.87 ± 0.43 234 ± 16.9 15.5 ± 0.35 7 0.95 ± 0.23 0.47 ± 0.040

11 18.1 ±0 .1 15 6.92 ± 1.73 199 ± 4 9 .4 15.8 ± 0 .2 8 7 0.99 ± 0 .1 9 0.46 ± 0.03

20 18.5 ± 0 .1 15 6.89 ± 0.54 188 ± 1 5 .6 16.8 ± 0 .85 8 0.62 ± 0.08 0.31 ± 0 .0 2

24 20.1 ± 0 .1 15 6.72 ± 1.68 200 ± 50.5 15.6 ± 0 .4 3 8 0.71 ± 0 .21 0.36 ± 0.02

5 20.8 ± 0 .1 15 7.25 ± 0 .7 9 203 ± 23.8 16.5 ± 1.02 7 0.99 ± 0.29 0.45 ± 0.04

18 21.2 ± 0 .2 15 8.57 ± 0.50 253 ± 11.8 15.5 ± 0.30 8 0.88 ± 0 .1 4 0.42 ± 0.02

10 22.7 ± 0.3 15 6.87 ± 0.42 199 ± 14.2 15.9 ± 0 .4 4 8 1.21 ± 0 .1 8 0.52 ± 0.02

21 23.4 ± 0.2 15 8.10 ± 0 .5 8 235 ± 15.3 15.8 ±0.41 8 1.13 ± 0 .2 3 0.48 ± 0.03

22 23.8 ± 0 .4 15 7.33 ± 0.22 216 ± 11.9 15.6 ± 0.39 8 0.79 ± 0.27 0.37 ± 0.03

4 26.1 ± 0 .2 15 7.81 ± 0 .4 5 223 ± 10.8 16.1 ± 0 .6 9 8 1.21 ± 0 .2 9 0.50 ± 0.04

14 26.2 ± 0.2 15 8.42 ± 0.47 246 ± 12.3 15.6 ±0.21 8 0.96 ± 0.23 0.42 ± 0.03

16 26.8 ± 0.2 15 7.36 ± 1.05 215 ± 31.1 15.7 ± 0 .1 6 8 1.24 ± 0 .2 0 0.50 ± 0.02

1 17.5 ± 0 .1 25 10.33 ± 0 .91 334 ± 39 .1 14.4 ± 0.67 8 0.61 ± 0.26 0.32 ± 0.02
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Table 3.1 continued 

7 17.8 + 0.1 25 11.23 ± 0 .6 8 366 ± 14.2 14.0 ± 0 .6 5 4 0.79 ± 0.20 0.31 ± 0 .0 3

15 18.7 + 0.1 25 10.25 ± 1.04 332 ± 4 1 .9 14.3 ± 0 .6 0 8 0.54 ± 0 .1 3 0.28 ± 0.02

2 19.9 + 0.1 25 12.12 ± 1.32 382 ± 5 2 .8 14.7 ± 0.62 8 0.69 ± 0.24 0.30 ± 0.02

8 20.2 + 0.0 25 10.89 ± 1.01 356 ± 2 7 .2 14.0 ±0 .71 8 0.63 ± 0.22 0.26 ± 0.03

6 20.3 ± 0.0 25 10.68 ± 0.25 349 ± 22.8 14.1 ± 0 .78 8 0.70 ± 0 .1 9 0.34 ± 0.02

23 23.2 + 0.0 25 11.53 ± 0 .8 3 376 ± 20.5 14.0 ± 0.70 8 0.94 ± 0.36 0.43 ± 0.05

12 23.3 + 0.4 25 12.19 ± 0 .41 382 ± 17.0 14.7 ± 0.54 7 1.03 ± 0.36 0.43 ± 0.05

13 23.5 + 0.3 25 13.17 ± 0 .6 6 410 ± 21.1 14.7 ± 0 .37 8 0.88 ± 0 .1 8 0.39 ± 0.02

19 25.6 ± 0 .2 25 12.60 ± 0 .6 9 406 ± 14.0 14.2 ± 0.45 8 0.91 ± 0 .31 0.39 ± 0.05

3 25.8 + 0.4 25 10.44 ± 1.64 321 ± 4 0 .8 14.7 ± 0.55 1 0.88 0.33

17 26.3 + 0.1 25 11.58 ± 1.36 371 ± 3 4 .9 14.2 ± 0.52 6 1.06 ± 0 .2 7 0.44 ± 0.04

Sagittal otolith pairs were removed from the fish and scraped clean with acid- 

washed glass probes in a class-100 cleanroom. Otoliths were ultrasonically cleaned in 

Milli-Q water for 7 minutes and triple rinsed with ultrapure H2O2 (Ultrex, J.T. Baker) 

followed by three sequential rinses of Milli-Q water. Otoliths were then placed on acid- 

washed glass slides to dry for 36 hours under a class-100 laminar flow hood. After 

drying, otoliths were individually weighed to the nearest 10 pg and transferred to acid- 

washed 1.5 mL high-density polyethylene vials.

Otoliths from fish archived at the start of the experiment (n = 12) were also 

removed and weighed to determine the proportion of otolith material in the experimental 

fish deposited during the initial larval rearing. Otoliths from 2 - 4  fish were pooled for 

each of three samples to assure adequate masses for analyses, decontaminated, and then
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Sr/Ca ratios assayed using the approach outlined below. The mean Sr/Ca ratio from the
_ |

pooled samples (n = 3) of pre-experiment otoliths was 3.0 ± 0.2 mmohmoF .

A maximum of eight fish were randomly selected from each tank and their 

otoliths prepared for Sr/Ca analysis by inductively coupled plasma mass spectrometry 

(ICP-MS). If the total number of remaining fish in the tank after the experimental period 

was less than eight fish, all remaining fish were used in the tank (see Table 3.1 for fish 

numbers per tank). Otoliths were dissolved in 70% ultrapure nitric acid (Ultrex, J.T. 

Baker) and then diluted to achieve a total dissolved solid concentration of 0.1 mg®g'1 in a 

1% nitric acid solution. Otolith solutions were stored at 4 °C until the ICP-MS analysis. 

All analyses were run on a Thermo Finnigan Element 2 ICP-MS equipped with a self- 

aspirating (20 |iL®min'1) PFA nebulizer and a dual-inlet quartz spray chamber. The 

method measured 48Ca and 86Sr in low resolution (R = 300) during a 2-minute acquisition 

time (a total of 126 passes). Quantification of Sr/Ca ratios followed the procedure 

outlined by Rosenthal et al. (1999). All samples were standardized to a dissolved 

solution (0.1 mg®g_1) of an otolith reference powder with a certified Sr/Ca ratio of 2.782 

mmoFmol"1 (Yoshinaga et al. 2000). The matrix of the standard was, therefore, matched 

to the dissolved Ca levels in the samples. An internal laboratory standard was run after 

each reference sample to estimate precision of the Sr/Ca method. The reference material 

was then treated as an unknown, and Sr/Ca values determined as for individual samples 

above. Measured precision (percent relative standard deviation (%RSD), n = 34) of the 

Sr/Ca method was 0.06% (Fig. 3.1).

Analyses of water samples collected during the experiment were also conducted 

using ICP-MS. Four samples were run from each tank including the start and end of the
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experiment and two others at 11-day intervals. All samples were spiked with Indium (In) 

(to 4.5 (ig®g"1), which was used as an internal standard. The solutions were then aspirated 

into a Thermo Finnigan Element 2 ICP-MS, via a self-aspirating nebulizer (50 fiL®min'1) 

and Scott’s double pass spray chamber. Due to the presence of significant interferences 

on most of the Ca isotopes, 44Ca, 88Sr, and u5In were measured in medium resolution 

(nominal R = 4500). Four samples from each tank were averaged and the mean values 

were then used in all subsequent analyses. To estimate precision of the water 

measurements we determined Ca and Sr values in a seawater reference material (High 

Purity Standards, Inc. seawater certified reference material (CRM)). The estimates of 

precision for both Ca and Sr concentrations in the seawater CRM were less than 2% RSD 

(n = 8).

Fig. 3.1. Solution-based inductively coupled plasma mass spectrometer (ICP-MS) 
measurements of Sr/Ca values in an otolith certified reference material ([Sr/Ca]ref. std.) 
plotted in run order through the two days of sample analyses. Overall precision across all 
runs (n = 34) was 0.06% relative standard deviation (RSD) in the reference material with 
a certified value of 2.782 mmoFmol"1 (Yoshinaga et al. 2000).
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Partition coefficients (Dsr) were calculated by dividing the Sr/Ca ratio measured 

in an otolith by the Sr/Ca ratio measured in the treatment tank water. Otolith Sr/Ca values 

from individual fish were averaged within tanks, and then the three tank averages were 

used as replicates for each of the eight treatments.

Analysis of covariance (ANCOVA) was used to test the influence of otolith 

precipitation rate on [Sr/Ca]otoiith- The influence of otolith precipitation rate was also 

tested by correlating otolith mass with Sr/Ca ratios within each of the 23 tanks of 

sufficient sample sizes. This provided a test of rate effects on Sr/Ca ratios because all 

fish within the tanks have experienced identical environmental conditions (Bath et al. 

2000). ANCOVAs were also used to test the influence of somatic growth rate on 

[Sr/Ca]otoiith- Finally, the influence of somatic growth rate on otolith precipitation rate was 

tested by correlating growth rate with [Sr/Ca]otoiith within each of the 23 tanks of 

sufficient sample sizes. Individual growth rates were calculated as the difference 

between the mean standard length (SL) of pooled fish at the beginning of the experiment 

and the SL of individual fish at the end of the experiment divided by the number of 

experiment days. The means of fish-growth rates were calculated for individual tanks.

A 2 x 4 model I analysis of variance (ANOVA) was used to test for significant 

differences in [Sr/Ca]otouth and Dsr among temperature and salinity treatments. Salinity 

and temperature were treated as independent categorical variables, and [Sr/Ca]otouth and 

Dsr as dependent variables in the analyses. The assumptions of ANOVA were met: 

residuals were normally distributed and homogeneous among factor levels. Finally, 

because temperature was a quantitative variable, the significance of the relation between
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both [Sr/Ca]otolith and DSr with temperature was tested using both linear and quadratic

functions.

Results

Conditions during the initial rearing period had little effect on the resultant otolith 

chemistry of the experimental fish because otoliths from these fish averaged less than 50 

pg compared to a mean value of 890 |ig for otoliths from fish at the end of the 

experiment. The Sr/Ca ratios of otoliths from 175 juvenile L. xanthurus ranged from

3.05 to 6.08 mmol'mol'1, with an overall mean of 4.40 mmol^moF1. Water Sr/Ca values 

ranged from 11.91 to 19.36 mmol’mol'1 with an overall mean of 15.09 mmoPmof1. 

Sr/Ca partition coefficients (£>*•) ranged from 0.20 to 0.43 with an overall mean of 0.29.

Biomineralization and growth rate effects

Using otolith mass as a proxy for aragonite precipitation rates, an ANCOVA 

demonstrated no significant effect of mean otolith mass among tanks on [Sr/Ca]0t0iith (F = 

0.021, p > 0.05, n = 24). There was, however, significant variability in [Sr/Ca]otoiith 

among tanks that were functions of temperature and salinity treatments, and considerable 

variations in otolith mass among individual fish within tanks (Table 3.1). Because 

individual fish within a tank had experienced identical conditions (i.e., were non- 

independent), we also ran Pearson correlations between otolith mass and otolith Sr/Ca on 

individual fish within each of 23 tanks. A total of 14 out of 23 correlations were 

negative, but only 3 out of 23 correlations were significant after Bonferroni correction for 

multiple tests. Somatic growth rates were, as expected, significantly affected by water

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

temperature (F = 4.52, p = 0.019, n = 24), and water salinity (F = 11.43, p = 0.004, n = 

24). An ANCOVA also demonstrated no significant effect of mean growth rates among 

tanks on [Sr/Ca]otoiith (F = 0.016, p = 0.900, n = 24). Looking at the relation within tanks, 

Pearson correlations between growth rate and [Sr/Ca]otoiith demonstrated that although 16 

out of 23 correlations were negative, only 2 out of 23 correlations were significant after 

Bonferroni adjustment.

Water chemistry

Elemental concentrations of ambient water in the tanks were significantly 

different between salinity treatments (Fig. 3.2). As expected, both Ca and Sr were higher 

at 25psu than at 15psu ([Ca]water: ltlo.os,(2),22 = 14.62, p < 0.05 ; [Sr]water: ltl0.05,(2),22 = 11.85, 

p < 0.05). Water Sr/Ca ratios did not vary among temperature treatments (F = 0.042, p = 

0.988, n = 24) but were significantly different between salinity treatments (F = 86.843, p 

= 0.000, n = 24). Proportionately lower Ca concentrations relative to dissolved Sr in 

15%o salinity tanks led to higher Sr/Ca ratios in the low salinity treatment (Table 3.1, Fig.

3.2), presumably because Sr/Ca ratios were higher in the deionized water source than in 

the 25psu salinity artificial seawater.
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Fig. 3.2. Measured tank water Ca (panel a) and Sr (panel b) concentrations (pg*g" ) ± 
standard error (SE) by sample date for the duration of the experiment. Panel c is the 
calculated Sr/Ca ratio (mmoEmoF1) in these water samples. The black symbols represent 
the 25psu salinity treatment tanks and the open symbols represent the 15psu salinity 
treatment tanks. Each of the four temperature treatments is represented by a different 
symbol: 17 °C (•), 20 °C (▼), 23 °C (■), and 26 °C (♦).
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Otolith [Sr/Ca]

The results of the two-way ANOVA indicate significant salinity and temperature 

effects on [Sr/Ca]otoiith (Table 2). The interaction term was not significant (Table 3.2). A 

post-hoc Tukey multiple comparison showed that significant differences existed among 

all temperature treatments. There was also a significant linear, but not quadratic, relation 

between [Sr/Ca]otoiith and temperature (Table 3.2, Fig. 3.3). At 25psu salinity, the linear 

least-squares regression equation between [Sr/Ca]0t0iith and temperature (r2 = 0.95, n = 12) 

was

(3.3) [Sr/Ca]0touth = 0.154 ± 0.012 (T °C) + 1.16 ± 0.256 (95% Cl).

For 15psu salinity, the linear equation (r2 = 0.92, n  = 12) was

(3.4) [Sr/Ca]otoiith = 0.179 ± 0.017 (T °C) + 0.348 ± 0.382 (95% Cl).

Table 3.2. Leiostomus xanthurus. Analysis of variance (ANOVA) table (SS -  sums of 
squares; df -  degrees of freedom; MS -  mean squares) summarizing the effect of salinity 
and temperature treatments on otolith [Sr/Ca] and the Sr distribution coefficient (Dsr), 
along with significance tests of linear and quadratic contrasts between temperature and 
otolith [Sr/Ca] and temperature and DSr.
Source SS df MS F p < F

Salinity 0.241

Otolith [Sr/Ca]

1 0.241 7.42 0.015

Temp 6.20 3 2.1 63.6 < 0.001

Salinity *temp 0.068 3 0.023 0.695 0.569

Error 0.520 16 0.032

Linear 6.24 1 6.24 189 < 0.0001

Quadratic 0.048 1 0.048 1.47 0.244
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Table 3.2 continued

DSr

Source SS df MS F p < F

Salinity 0.011 1 0.011 61.8 < 0.0001

Temp 0.027 3 0.009 52.2 < 0.0001

Salinity*temp 0.0004 3 0.000 0.78 0.524

Error 0.003 16 0.000

Linear 0.028 1 0.028 154 < 0.0001

Quadratic 0.0002 1 0.0002 1.18 0.294

Fig. 33 . Sr/Ca (mmol^mol'1) ratios in otoliths of laboratory-reared Leiostomus xanthurus 
as a function of tank temperatures (°C) at two salinity levels, 15psu (•) and 25psu (o). 
The lines were fitted by linear least-squares regression for each of the salinity treatments.

25psu: [Sr/Ca]otolilh = 0.154 (T°C) + 1.16 

?  = 0.95, n = 12

15psu: [Sr/Ca]ololitll = 0.179 (T °C) + 0.348

3 1---------------- ■---------------- .---------------- r-
17 20 23 26

Temperature mean (°C)

Sr/Ca partition coefficients

I detected significant salinity and temperature effects on Sr/Ca partition 

coefficients (Table 3.2), with a non-significant interaction between the two factors (Table

3.2), The linear function between D$r and temperature was significant, but the quadratic
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function was not (Table 3.2, Fig. 3.4). For 25psu salinity, the linear least-squares

regression equation between Dsr and temperature (r2 = 0.90, n = 12) was

(3.5) DSr = 0.010 ± 0.001 (T °C) + 0.088 ± 0.025 (95% Cl).

For 15psu salinity, the linear equation (r2 = 0.91, n = 12) was

(3.6) DSr = 0.012 ± 0.001 (T °C) + 0.013 ± 0.026 (95% Cl).

Fig. 3.4. Sr/Ca partition coefficients (Dsr) for otoliths of laboratory-reared Leiostomus 
xanthurus as a function of tank temperatures (°C) at two salinity levels, 15psu (•)  and 
25psu (o). The lines were fitted by linear least-squares regression for each of the salinity 
treatments.

0.40
25psu: DSr = 0.010 (T  °C) + 0.088 

r2 = 0.90, n = 12
0.35

O 0.30

0.25 r  = 0.91, n = 12

15psu: DSr = 0.012 (T °C) + 0.013

0.20
17 20 23 26

Temperature mean (°C)
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Discussion

Both [Sr/Ca]0toiith and DSr increased linearly as a function of temperature over the 

ranges analyzed (17 -  26 °C). The temperature effect was not a result of differences in 

water chemistry among temperature treatments, as elemental concentrations and Sr/Ca 

ratios did not differ among temperature treatments. Presumably, there was no effect of 

diet, as all fish were fed the same food. Moreover, several experimental studies have 

found little evidence for an effect of diet on otolith Sr incorporation (Hoff and Fuiman 

1995; Farrell and Campana 1996; Milton and Chenery 2001). Physiological differences 

cannot be eliminated when such differences are correlated with growth because there was 

a significant effect of temperature on growth rate. However, aragonite precipitation rates 

and larval growth rates within individual tanks were in most cases not significantly 

correlated with Sr/Ca ratios in otoliths. Temperature was; therefore, the dominant 

variable controlling Sr/Ca ratios in the otoliths of larval spot in our experiment.

Bath et al. (2000) provided a first order approximation of the temperature- 

partition coefficient relation for larval spot, L. xanthurus (18 - 32.6 mm SL, mean = 24.2 

mm SL)

(3.7) DSr = 0.0046 T °C + 0.089 (r2 = 0.62).

Two points are worth noting with respect to the results of my earlier study. First, Bath et 

al. (2000) reported Sr/Ca partition coefficients that were significantly lower at a given 

temperature (0.18 at 20 °C, 20psu) than found in the present study (0.26 at 20 °C, 15psu; 

0.30 at 20 °C, 25psu). The intercept of the linear regression between Dsr and temperature
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(for the 20 and 25 °C treatments) was statistically indistinguishable between the two 

experiments. However, the temperature sensitivity of the relation between Dsr and 

temperature in the present study (~ 5%®°C'1) was approximately twice that reported by 

Bath et al. (2000) (~ 2%*°C"1). Larvae were reared at two temperatures in the earlier 

study (20 and 25 °C). It is possible therefore, that Bath et al. (2000) underestimated the 

temperature dependence due to a lack of temperature treatments. It is more difficult to 

reconcile the different estimates of DSr between the two studies because both were based 

on multiple treatments with adequate levels of replication. Apparently there are other 

factors influencing the magnitude of Dsr in the otoliths of larval spot that remain to be 

identified.

The effect of temperature on Sr/Ca ratios in the otoliths of other fish species is 

ambiguous. Several studies have also shown positive effects of temperature on Sr 

incorporation into otoliths (Kalish 1989; Limburg 1995; Arai et al. 1996). Other 

researchers have suggested an inverse correlation between temperature and Sr/Ca ratios 

in otoliths (Radtke 1989; Sadovy and Severin 1992; Secor et al. 1995), or have been 

unable to detect any temperature dependence of [Sr/Ca]0toUth (Gallahar and Kingsford 

1996; Tzeng 1996; Chesney et al. 1998). Methodological problems may be responsible 

for at least some of these discrepancies, as few studies have adequately constrained 

[Sr/Ca]water. The choice of analytical instrumentation may also be a factor, as most 

studies have used electron probe microanalysis (EPMA). The application of Sr/Ca 

thermometry, at least in coral skeletons, generally requires instrument precision of better 

than 0.5% RSD (Lea and Martin 1996). However, instrument uncertainty of Sr/Ca 

measurements in otoliths using EPMA is typically on the order of 5-10% (RSD) (e.g.,
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Gunn et al. 1992; Campana et al. 1997). Precision of the Sr/Ca method using sector-field 

ICP-MS that we employed was 0.06% RSD, matching the best precision reported for 

instruments routinely used to determine Sr/Ca ratios in biogenic carbonates (Rosenthal et 

al. 1999; Schrag 1999). The increased precision of these estimates over earlier probe- 

based methods certainly increased the ability to detect relatively subtle, but predictable, 

effects of temperature on Sr/Ca ratios. Developmental stage may also influence Sr/Ca in 

otoliths. Kalish (1990) suggested that variations in Ca-binding proteins caused by 

changes in reproductive status influenced Sr/Ca ratios in otoliths of adult fish. Such 

regulation may then be less important in the larval stages that we examined compared to 

studies on older life history stages. Finally, it is likely that Sr and Ca uptake in otoliths is 

species-specific, and therefore a single relationship between Sr/Ca and temperature may 

not apply to all marine fish species.

Considerable debate also surrounds the temperature dependence of Sr/Ca partition 

coefficients in other biogenic carbonates. Most work has been conducted on the 

aragonite skeletons of hermatypic corals that typically demonstrate an inverse relation 

between DSr and temperature (Smith et al. 1979; Beck et al. 1992; Sinclair et al. 1998). 

Positive correlations have been identified between Dsr and temperature in molluscs 

(Buchardt and Fritz 1978; Klein et al. 1996; Vander Putten et al. 2000) and calcitic 

foraminifera (Elderfield et al. 1996; Lea et al. 1999). Interestingly, Sr/Ca ratios of the 

aragonite from studies that documented a positive relation between DSr and temperature 

were considerably lower (< 2.5 mmoFmol'1) than that found in coral or sclerosponge 

aragonite (8-10 mmobmol'1). There may, therefore, be fundamentally different 

mechanisms generating the temperature dependence of Sr/Ca ratios between low Sr and
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high Sr aragonite. Stecher et al. (1996) and Purton et al. (1999) suggested metabolic 

effects that were correlated with temperature led to positive correlations between Sr/Ca 

and temperature in bivalve and gastropod shells. Correlations between otolith Sr/Ca and 

several proxies of metabolic rate (somatic and otolith growth) in individual spot larvae do 

not seem to exist. Clearly more work in this area is needed, although there is now 

sufficient evidence to reject analogies between the temperature dependence of DSr in 

coral skeletons and fish otoliths.

More Sr was incorporated into larval spot otoliths at salinities of 25psu than at 

15psu, after accounting for differences in the Sr/Ca ratios of the rearing water. Dietary 

effects were unlikely to have caused the differences, following the argument outlined 

above for temperature. Rather, absolute Sr levels appeared to influence otolith Sr/Ca 

values beyond that predicted by [Sr/Ca]water. Recent studies by Chowdhury and Blust 

(2001, 2002) provide a potential mechanism for our observations. They found that 

dissolved Ca and Sr in freshwater carp mutually inhibited uptake of ions across branchial 

and intestinal membranes. Positive, non-linear inhibition of Ca ions by Sr ions at uptake 

sites on these membranes would, in turn, result in the observed effect of dissolved Sr on 

Sr/Ca ratios in otoliths.

The observation that Sr/Ca ratios in otoliths depend on temperature, [Sr/Ca]water 

and [Sr]water raises a number of potential problems for fish Sr thermometry. Both 

[Sr/Ca]water and [Sr]water must be constrained before temperature can be estimated from 

otolith Sr/Ca. Because Sr and Ca have long (~ 106 years) residence times in the world’s 

oceans, fish that spend their entire lives in shelf or oceanic water masses will not 

experience significant variations in either [Sr]water or [Sr/Ca]water. However, many fish
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species living in coastal waters are estuarine dependent and traverse waters of variable 

water chemistry and temperature. Reconstruction of temperature histories will, therefore, 

require independent estimates of [ S r ] water and [Sr/Ca]water- Temperature and salinity are 

easy to measure and are frequently incorporated in sampling designs. Water strontium 

and calcium concentrations are rarely measured yet seem to be critical for the application 

of strontium thermometry to field-collected fish.

In summary, Sr/Ca ratios in the otoliths of larval spot are determined primarily by 

the physicochemical properties of the ambient water. When combined with the results of 

my earlier study (Bath et al. 2000), temperature, [Sr/Ca]water, and [Sr]water all have 

significant effects on otolith Sr/Ca ratios. In contrast, there was no consistent evidence 

for metabolic effects on Sr/Ca ratios in otoliths at least to the extent metabolic rates are 

correlated with individual growth rates. Unfortunately, this does not mean that otolith 

Sr/Ca thermometry will be easy in estuarine-dependent fish species because independent 

geochemical tracers that constrain both [Sr/Ca]water and [ S r ) w a t e r  will need to be 

developed. For instance, both stable oxygen (180 /160 ) and strontium (87Sr/86Sr) isotopes 

vary linearly with [Sr]water and [Ca]water in estuarine systems (Chesney et al. 1998; 

Thorrold et al. 1997c). Marine fishes that do not experience significant variations in 

[Sr]water and [Ca]water are logical species to test the ability to reconstruct temperature 

histories from Sr/Ca ratios in otoliths.
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CHAPTER IV 

TEMPERATURE AND SALINITY EFFECTS ON BARIUM, 

MANGANESE, AND MAGNESIUM INCORPORATION IN 

OTOLITHS OF LARVAL SPOT (LEIOSTOMUS XANTHURUS) 

Introduction

Elemental and isotopic concentrations in fish otoliths may serve as natural tags, or 

signatures to differentiate fish stocks and infer movement by attributing fish to different 

geographically located water bodies (Edmonds et al. 1989; Campana et al. 1994; 

Gillanders and Kingsford 1996; Begg et al. 1998; Thorrold et al. 2001). Using elemental 

signatures in otoliths is based on the assumption that fish otoliths incorporate minor and 

trace elements from the water and thus record an environmental signature uniquely 

experienced by individual fish. The promise of otolith elemental signatures is the ability 

to examine the spatial structure of fish populations.

Several studies have used otolith minor and trace metal concentrations to 

successfully discriminate fish populations and assign individual fish to specific water 

bodies. Thorrold et al. (1998a) were able to classify estuarine dependent weakfish 

(Cynoscion regalis) to nursery areas based on their otolith elemental signatures (Mg/Ca, 

Mn/Ca, Sr/Ca, and Ba/Ca) and had improved accuracy once measurements of otolith §13C 

and S180  were added to the models. In another study by Thorrold et al. (1998b), otolith 

elemental signatures (Mg/Ca, Mn/Ca, Sr/Ca, and Ba/Ca) elucidated the possibility of 

spawning site fidelity of anadromous American shad (Alosa sapidissima).
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Elemental signatures in otoliths have also been used as natural tags to infer 

juvenile nursery habitats and assess the relative contribution of juveniles from these 

different nurseries to the adult fished population. Gillanders and Kingsford (2000) found 

significant otolith metal (Sr, Ba, and Mn) concentration differences among nursery areas 

in estuarine dependent trumpeter (Pelates sexlineatus) juveniles, but also revealed that 

temporal variation in otolith elemental signatures complicate interpretation of nursery 

habitat assignments. Elements (Li, Mg, Mn, Sr, Ca) in juvenile Pacific bluefin tuna 

(Thunnus orientalis) otoliths (Rooker et al. 2001) showed clear population separation 

between three nursery areas over a three-year period although they did not calculate the 

relative juvenile contributions to the adult population.

Water bodies have different elemental compositions based on the geochemistry of 

the watershed, anthropogenic and natural inputs to the system, and the behavior of 

elemental species as influenced by complexation, biological uptake, and sorption on 

suspended solids (Bender et al. 1977; Turner et al. 1981; Bmland 1983; Byrne et al. 

1988; Morel and Hering 1993). These compositional differences in water chemistry 

potentially contribute to distinct environmental signatures in otoliths. Different otolith 

elemental signatures may represent different locations, and similarly, indistinguishable 

signatures in otoliths may imply fish came from the same location based on the 

assumption otolith elemental composition is proportional to the ambient water elemental 

composition. What if otoliths record distinct signatures but in fact the fish did not come 

from different locations? Additionally, what if otoliths that record indistinguishable 

signatures, do in fact come from different locations? Otolith element incorporation may 

not be solely a function of the ambient water elemental composition. The factors and
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mechanisms that influence element incorporation in otoliths need to be tested under 

controlled conditions and data must be groundtruthed in order to apply it to population- 

level assessments.

How the physical properties of the environment influence the uptake of minor and 

trace elements in otoliths is poorly understood. Each element may behave differently and 

the specific processes that affect otolith incorporation need to be revealed. Without 

testing the effects of external variables on otolith element incorporation, such as water 

temperature, salinity, and elemental concentrations, the measured elemental differences 

used to develop elemental signatures could be misinterpreted and individual fish 

incorrectly assigned to locations. Because fisheries management is based on the accurate 

classification of fish stocks, the potential for making erroneous classifications and 

therefore poor management decisions based on inaccurate assumptions, is increased.

Confounding the environmental effects on otolith element incorporation is the 

influence of aragonite precipitation rate on element incorporation in biogenic aragonite, 

including fish otoliths, coral skeletons, and mollusc shells. Studies on synthetic aragonite 

have found no effect of precipitation rate on element incorporation (Kinsman and 

Holland 1969; Zhong and Mucci 1989), whereas studies on biogenic aragonite have been 

contradictory. Some work has shown Sr/Ca in corals correlate with coral growth rates 

(Weber 1973; deVillers et al. 1994, 1995), although Shen et al. (1996) found no such 

relationship. In molluscs, Buchardt and Fritz (1978) found Sr incorporation to be 

independent of growth rate, but Stecher et al. (1996) speculated that there was a seasonal 

growth effect on Sr incorporation of two species of bivalves. In one of the first otolith 

studies to test these rate effects, Bath et al. (2000; Chapter II) found no effect of otolith
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precipitation rate on Sr and Ba incorporation in otoliths, using otolith mass as a proxy, 

and no effect of metabolic rates, using somatic growth rate as a proxy.

There have been few experiments designed to address the effects of temperature 

and salinity on otolith element and isotope concentrations (Kalish 1989; Fowler et al. 

1995a; Hoff and Fuiman 1995; Chesney et al. 1998; Milton and Chenery 2001; Elsdon 

and Gillanders 2002) limiting our understanding of otolith elemental signatures and their 

applications.

The objective of this chapter is to test the effects of temperature and salinity 

treatments on the incorporation of Mg, Mn, and Ba in larval spot (Leiostomus xanthurus) 

otoliths as a test for the application of otolith elemental signatures for an estuarine- 

dependent species. The partition coefficients DMe (see Chapters II and III, Introductions) 

for each of these elements are also tested for temperature and salinity effects. The null 

hypothesis is that temperature and salinity do not have significant effects on otolith 

incorporation of Mg/Ca, Mn/Ca, or Ba/Ca after appropriate correction for the 

metal/calcium (Me/Ca) ratios of the ambient water and the precipitation rate of the 

otoliths. If these otolith elemental signatures in otoliths are going to be used in field 

applications, and subsequently used to make fishery management decisions for some 

species, it is important to determine if their incorporation is affected by these 

environmental factors, as is the case strontium as reported in Chapter III (Martin et al. In 

Press).
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Materials and methods

Spot (Leiostomus xanthurus) were hatched on 10 December 1999 at the NOAA, 

National Ocean Service, Center for Coastal Fisheries and Habitat Research in Beaufort, 

North Carolina (USA). Larvae were reared in a common tank in natural seawater at 

34psu salinity and 20 °C for 42 days, at which time they were randomly distributed 

among 24 acid-washed 20 L high-density polyethylene tanks at a density of 2 fish’L '1. 

Fish were gradually acclimated to the experimental temperature and salinity treatments 

for a week before initiating the experiment to ensure adequate survival of the 

experimental fish. The lightidark cycle was controlled at 12 h:12 h for the duration of the 

experiment. Fish were fed an artificial diet (Golden Pearls, 300-500 and 500-800 

microns, Brine Shrimp Direct) twice-daily ad libitum. Water was changed at 50% 

volume daily to maintain water quality and salinity.

Experimental tanks were randomly assigned 2 salinity treatments (15 and 25psu) 

and four temperature treatments (17, 20, 23, and 26 °C). Three replicate tanks were used 

for each treatment combination (24 tanks in total). Room temperature was maintained at 

16 °C, and aquarium heaters were used to regulate temperatures within individual tanks. 

Artificial seawater (Instant Ocean®) mixed in deionized water was used to regulate 

salinity.

Water samples from each tank were collected every third day and were filtered 

through 0.22 pm cellulose nitrate membrane filters, acidified with 12 N trace-metal grade 

HC1 to pH 2, and then stored frozen for subsequent analysis. Water temperature and 

salinity were also recorded daily (Table 4.1).
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Table 4.1. Summary of mean water temperature (°C), salinity (psu), dissolved Mg/Ca 
(mol'moF1), Mn/Ca (pmol^moF1) and Ba/Ca (pmol»mol) levels, individual element 
concentrations, and number of otoliths analyzed (n), within each of the 24 individual 
tanks during the course of the experiment.

Tankfi Temp. Salinity [Mg/Ca] [Mn/Ca] [Ba/Ca] [Mg]
gmolL"1

[Mn]
pm ol'L 1

[Ba]
pmol'L"1

[Ca]
m m ol’L'1

n

9 17.5 15 4.57 115.86 17.72 645.83 37.30 14.13 5.83 7

11 18.1 15 4.79 108.86 14.93 577.25 30.05 9.71 4.97 7

20 18.5 15 5.19 133.26 20.07 589.03 33.86 12.85 4.69 8

24 20.1 15 4.69 115.87 17.76 559.36 29.91 11.73 4.98 8

5 20.8 15 5.03 110.52 19.12 616.72 30.33 13.26 5.06 7

18 21.2 15 4.63 111.38 17.63 710.03 39.03 15.28 6.32 8

10 22.7 15 4.81 121.25 18.12 580.61 33.13 12.37 4.96 8

21 23.4 15 4.65 100.47 20.18 661.11 32.38 16.2 5.87 8

22 23.8 15 4.72 120.37 17.70 618.93 35.1 13.13 5.4 8

4 26.1 15 4.89 100.13 18.19 661.76 30.21 13.88 5.55 8

14 26.2 15 4.61 84.60 17.21 687.50 28.40 14.49 6.14 8

16 26.8 15 4.75 84.30 17.64 612.10 23.76 12.94 5.35 8

1 17.5 25 4.76 99.86 15.01 961.36 45.3 16.91 8.32 8

7 17.8 25 4.71 87.14 10.01 1044.05 43.24 12.82 9.14 4

15 18.7 25 4.81 95.32 14.56 961.32 43.61 16.06 8.29 8

2 19.9 25 4.83 75.62 14.9 1106.77 38.84 19.77 9.53 8

8 20.2 25 4.67 109.78 16.78 1008.92 52.91 20.36 8.88 8

6 20.3 25 4.69 71.47 13.18 994.07 34.81 15.72 8.71 8

23 23.2 25 4.65 95.98 13.04 1060.17 50.32 16.16 9.39 8

12 23.3 25 4.82 72.08 9.75 1116.45 37.92 12.37 9.52 7

13 23.5 25 4.66 68.84 16.35 1156.58 39.4 22.95 10.23 8

19 25.6 25 4.63 52.6 12.97 1139.03 28.93 18.33 10.12 8

3 25.8 25 4.83 73.15 18.22 938.76 29.31 20.11 8.02 1

17 26.3 25 4.67 64.46 14.31 1045.31 30.76 17.72 9.26 6
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After termination of the experiment, all surviving fish were measured and frozen 

in individual plastic bags. Sagittal otolith pairs were removed from the fish and scraped 

clean with acid-washed glass probes in a class-100 clean room. Otoliths were 

ultrasonically cleaned in Milli-Q water for 7 minutes and triple rinsed with ultrapure 

H2O2 (Ultrex, J.T. Baker) followed by three sequential rinses of Milli-Q water. Otoliths 

were then placed on acid-washed glass slides to dry for 36 hours under a class-100 

laminar-flow hood. After drying, otoliths were individually weighed to the nearest 10 pg 

and transferred to acid-washed 1.5 ml high-density polyethylene vials.

A maximum of eight fish were randomly selected from each tank and their 

otoliths prepared for analysis by inductively coupled plasma mass spectrometry (ICP- 

MS). If the total number of remaining fish in the tank after the experimental period was 

less than eight fish, all remaining fish were used in the tank. Otoliths were dissolved in 

70% ultrapure nitric acid (Ultrex II, J.T. Baker) and then diluted to achieve a total 

dissolved solid concentration of 0.1 mg®g4 in a 1% nitric acid solution. Otolith solutions 

were stored at 4 °C until the ICP-MS analysis. Otolith analyses were run on a Thermo 

Finnigan Element ICP-MS equipped with a self-aspirating (50 pL-min"1) PFA nebulizer 

and a dual-inlet quartz spray chamber. The method measured 25Mg, 48Ca, 55Mn, and

138~ Ba in low resolution (R = 300) during a 2-minute acquisition time. Quantification of 

metal/calcium (Me/Ca) ratios followed the procedure outlined by Rosenthal et al. (1999). 

All samples were standardized to a dissolved solution (0.1 mg»g4) of an otolith reference 

powder with certified Me/Ca ratios of 89.25 pmoBmof1 for Mg/Ca, 0.257 pmoFmof1 for 

Mn/Ca, and 2.174 pmobmol'1 for Ba/Ca (Yoshinaga et al. 2000). The matrix of the 

standard was therefore matched to the dissolved Ca levels in the samples. Detection
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limits were calculated as 3a values of 1% HN03 sample blanks (n = 37) that were run 

throughout the analyses. These limits were 0.2% of the average sample intensity for 

25Mg, 0.05% for 48Ca, 0.3% for 55Mn, and 0.1% for 138Ba. An internal laboratory 

standard was run after each reference sample to estimate precision of the Me/Ca method. 

The reference material was then treated as an unknown, and Me/Ca values determined as 

for individual samples above. Measured precision (% relative standard deviation (RSD), 

n = 37) of the Me/Ca method was 2.7% for Mg/Ca, 2.8% for Mn/Ca and 0.5% for Ba/Ca.

Analyses of water samples collected during the experiment were also conducted 

using ICP-MS. Four samples were run from each tank including the start and end of the 

experiment and two others at 11-day intervals. All samples were spiked with Indium (to

4.5 pg®g'1), which was used as an internal standard. The solutions were then aspirated 

into a Thermo Finnigan Element 2 ICP-MS, via a self-aspirating nebulizer (50 pL-min'1) 

and Scott’s double pass spray chamber. Due to the presence of significant interferences 

on most of the Ca isotopes, 44Ca, 25Mg, 55Mn, 137Ba, and 115In were measured in medium 

resolution (nominal R = 4500). Four samples from each tank were averaged and the 

mean values were then used in all subsequent analyses. To estimate precision of the 

water measurements, Ca, Mg, Mn, and Ba values in a seawater reference material (High 

Purity Standards, Inc. seawater CRM) were determined. Our estimates of precision for 

element concentrations in the seawater CRM were 1.4% RSD for Ca, 1.4% RSD for Mg, 

2.7% RSD for Mn, and 1.7% RSD for Ba (n = 8).

Partition coefficients (Dmc) were calculated by dividing the metal/calcium 

(Me/Ca) ratio measured in an otolith by the mean Me/Ca ratio measured in the treatment 

tank water (Morse and Bender 1990). Otolith Me/Ca values from individual fish were
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averaged within tanks, and then the three tank averages were used as replicates for each 

of the eight treatments.

Analysis of covariance (ANCOVA) was used to test the influence of otolith 

precipitation rate on each [Me/Ca]otoiith, using otolith mass as a covariate and temperature 

and salinity as independent categorical variables. The influence of otolith precipitation 

rate was also tested by correlating otolith mass with Me/Ca ratios within each of the 23 

tanks of sufficient sample sizes. This provided a test of rate effects on Me/Ca ratios 

because all fish within the tanks have experienced identical environmental conditions 

(Bath et al. 2000). ANCOVAs were also used to test the influence of somatic growth rate 

on each [Me/Ca]otoijth, using growth rate as a covariate and temperature and salinity as 

independent categorical variables. Finally, the influence of somatic growth rate on 

otolith precipitation rate was tested by correlating growth rate with [Me/Ca]0t0Hth within 

each of the 23 tanks of sufficient sample sizes. Individual growth rates were calculated 

as the difference between the mean SL of pooled fish at the beginning of the experiment 

and the SL of individual fish at the end of the experiment divided by the number of 

experiment days. The means of fish growth rates were calculated for individual tanks.

Two-way analysis of variance (ANOVA) was used to test for significant 

differences in [M e /C a ]water, [Me/Ca]otoiith, and Dmc among temperature and salinity 

treatments. Salinity and temperature were treated as independent categorical variables, 

and [Me/Ca]water, [Me/Ca]otoiith, and D^e as dependent variables in the analyses. The 

assumptions of ANOVA were met: the data was normally distributed and variances were 

homogeneous among factor levels. To control for experiment-wise error, the critical p
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value (0.05) was adjusted (0.017) to account for the three individual ANOVAs 

performed.

Conditions during the initial rearing period had little effect on the resultant otolith 

chemistry of the experimental fish because otoliths from these fish averaged less than 50 

{Xg compared to a mean value of 890 |ig for otoliths from fish at the end of the 

experiment.

Results

The [Mg/Ca]0toiiths from 172 juvenile L. xanthurus ranged from 0.676 to 4.74 

mmohmof1, with an overall mean of 1.80 mmohmol'1. Water Mg/Ca values ranged 

from 4.38 to 6.40 m ol'm of1 with an overall mean of 4.75 mobmol'1. Mg/Ca partition 

coefficients {DMg) ranged from 0.00014 to 0.00102 with an overall mean of 0.00038.

The [Mn/Ca]0toiiths from 173 juvenile L. xanthurus ranged from 6.32 to 101.01 

pmohmof1, with an overall mean of 18.055 pmobmof1. Water Mn/Ca values ranged 

from 19.71 to 200.89 pmol^mof1 with an overall mean of 94.72 pmolrniof1. Mn/Ca 

partition coefficients (DMn) ranged from 0.055 to 0.92 with an overall mean of 0.196.

The [Ba/Ca]otoiiths from 173 juvenile L. xanthurus ranged from 2.02 to 15.8 

pmol^mol'1, with an overall mean of 6.01 pmol'mol'1. Water Ba/Ca values ranged from 

1.83 to 28.40 pmol'mol'1 with an overall mean of 16.08 pmol^mol'1. Ba/Ca partition 

coefficients (DBa) ranged from 0.11 to 1.23 with an overall mean of 0.37.
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Water chemistry

Elemental concentrations in the tank water were significantly different between 

salinity treatments. As expected, Ca, Mg, Mn, and Ba concentrations in the water were 

higher at 25psu than at ISpsti ([Ca]water: l t l o .o 5 , ( 2 ) ,2 2  = 14.62, p = 0.000 ; [Mg]water: l t l 0 . 0 5 , ( 2 ) ,2 2  

= 16.57, p = 0.000; [Mn]water: l t l o .o 5 , ( 2 ) ,2 2  = 2.99, p = 0.003; [Ba]water: l t l o .o 5 , ( 2 ) ,2 2  = 4.03, p = 

0.000;). [Mg/Ca]water were not significantly different between salinity treatments (F = 

0.565, p = 0.463, n = 24) or temperature treatments (F = 0.339, p = 0.797, n = 24). 

[Mn/Ca]water were significantly different between salinity treatments (F = 32.325, p = 

0.000, n = 24) and temperature treatments (F = 6.648, p = 0.004, n = 24 ). [Ba/Ca]water 

were significantly different between salinity treatments (F = 19.282, p = 0.000, n = 24) 

but not among temperature treatments (F = 0.366, p = 0.779, n = 24). Lower absolute 

Mn, Ba, and proportionately lower Ca concentrations in 15psu salinity tanks led to higher 

Mn/Ca and Ba/Ca ratios in the low salinity treatment (Table 4.1, Fig. 4.1) presumably 

because Me/Ca ratios were higher in the deionized water source than in the 25psu salinity 

artificial seawater.
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Fig. 4.1. Calculated metal/calcium ratios in the tank water Mg/Ca (panel a), Mn/Ca 
(panel b), and Ba/Ca (panel c) concentrations ± SE by sample date for the duration of the 
experiment. The open symbols represent the 25psu salinity treatment tanks and the black 
symbols represent the 15psu salinity treatment tanks. Each of the four temperature 
treatments is represented by a different symbol: 17 °C (♦), 20 °C (■), 23 °C (A) ,  and 26 
°C (•).
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Temperature and salinity did not have a statistically significant effect on 

[Mg/Ca]otolith (Fig. 4.2, Table 4.2) and the interaction between the two factors was not
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significant. There was no significant temperature, or salinity effect on [Mn/Ca]otoiith (Fig. 

4.3, Table 4.2) and the interaction between the two factors was not significant. There was 

no significant temperature or salinity effects on [Ba/Ca]otoiith (Fig. 4.4, Table 4.2) and the 

interaction between the two factors was not significant.

Table 4.2. Results of three separate two-way Analysis of Variance analyses testing the 
effect of temperature and salinity on three elemental signatures (log-transformed) in the 
otoliths of juvenile Leiostomus xanthurus (n = 24). T = Temperature, S = salinity, and T x 
S = temperature salinity interaction, * = significant at a  = 0.017.

Factor df MS F P

[Mg/ Ca] otolith T 3 483322.15 3.660 0.035

S 1 361225.57 2.736 0.118

T x S 3 47976.76 0.363 0.780

[Mn/ Ca] otolith T 3 33.497 1.766 0.194

S 1 5.484 0.289 0.598

T x S 3 33.343 1.758 0.196

[Ba/Ca]otoiith T 3 2.567 0.717 0.556

S 1 12.285 3.431 0.083

T x S 3 2.273 0.635 0.603
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Fig. 4.2. Mg/Ca (mmol-mof1) ratios in otoliths of laboratory-reared Leiostomus
xanthurus as a function of tank temperatures (°C) at two salinity levels, 15psu (•) and
25psu (o).
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Fig. 4.3. Mn/Ca (pmol-moF1) ratios in otoliths of laboratory-reared Leiostomus 
xanthurus as a function of tank temperatures (°C) at two salinity levels, 15psu (•) and 
25psu (o).
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Fig. 4.4. Ba/Ca (pmol-mof1) ratios in otoliths of laboratory-reared Leiostomus xanthurus
as a function of tank temperatures (°C) at two salinity levels, 15psu (•)  and 25psu (o).
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Me/Ca partition coefficients

Temperature and salinity did not have significant effects on Dms and the 

interaction between the two factors was also not significant (Fig. 4.5, Table 4.3). 

Temperature and salinity had significant effects on Dmh, with a significant interaction 

between the two factors (Fig 4.6, Table 4.3). Salinity had a significant effect on DBa, 

with non-significant temperature effect, and non-significant interaction between the two 

factors (Fig 4.7, Table 4.3).
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Table 4.3. Results of three separate two-way Analysis of Variance analyses testing the 
effect of temperature and salinity on three partition coefficients (log-transformed) in the 
otoliths of juvenile Leiostomus xanthurus (n = 24). T = Temperature, S = salinity, and T x 
S = temperature salinity interaction, * = significant at a  = 0.017.

DMg

A v ln

DBa

Factor df MS F P

T 3 0.019 ~ T 5 8 4
_ _ _

S 1 0.018 3.452 0.082

T x S 3 0 . 0 0 2 0.450 0.721

T 3 0 . 0 2 0 13.617 0 .0 0 0 *

S 1 0 . 0 2 0 13.316 0 .0 0 2 *

T x S 3 0.008 5.187 0 .0 1 1 *

T 3 0 . 0 2 1 0.640 0.600

S 1 0.267 8.158 0 .0 1 1 *

T x S 3 0 . 0 2 1 0.648 0.595

Fig. 4.5. Mg/Ca partition coefficients (Z>Mg) for otoliths of laboratory-reared Leiostomus 
xanthurus as a function of tank temperatures (°C) at two salinity levels, 15psu (•) and 
25psu (o).
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Fig. 4.6. Mn/Ca partition coefficients (DMn) for otoliths of laboratory-reared Leiostomus
xanthurus as a function of tank temperatures (°C) at two salinity levels, 15psu (•) and
25psu (o).

0.5

0.4

0.3

0.2

0.1

0.0
16

8
0

18

O
o

 1---------------1--
20 22

Temperature (°C)
24 26

Fig. 4.7. Ba/Ca partition coefficients (DBa) for otoliths of laboratory-reared Leiostomus 
xanthurus as a function of tank temperatures (°C) at two salinity levels, 15psu (•) and 
25psu (o).

1.0

0.8

0.6

0.4

0.2

0.0

o
o

8

o

o

— J—

24

o

16 18 20 22 
Temperature (°C)

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

Biomineralization and growth rate effects

Using otolith mass as a proxy for otolith precipitation rates, there was a 

significant effect of mean otolith mass among tanks on [Mg/Ca]0toiith (F = 40.541, p = 

0 .0 0 0 , n = 24), no significant effect on [Mn/Ca]otoiith (F = 0.295, p = 0.595, n = 24), and 

no significant effect on [Ba/Ca]otouth (F = 0.010, p = 0.923, n = 24). There was, however, 

significant variability in [Me/Ca]otoiith among tanks that were functions of temperature 

and salinity treatments, and considerable variations in otolith mass among individual fish 

within tanks (Table 4.1). A total of 22 out of 23 correlations between otolith mass and 

[M g /C a ]otoiith for each metal were negative, and 17 out of 23 correlations were significant 

after applying the Bonferroni correction for multiple tests. For [Mn/Ca]0t0iith a total of 9 

out of 23 correlations were negative, and 1 out of 23 correlations were significant after 

applying the Bonferroni correction for multiple tests. For [Ba/Ca]0t0iith a total of 1 0  out of 

23 correlations were negative, and none of the 23 correlations were significant after 

applying the Bonferroni correction for multiple tests. In summary, otolith precipitation 

rates significantly affected [Mg/Ca]0toiith, but did not affect [Mn/Ca]otoiith or [Ba/Ca]otoiith-

Somatic growth rates were, as expected, significantly affected by tank 

temperature (F = 4.52, p = 0.019, n = 24), and tank salinity (F = 11.43, p = 0.004, n = 24). 

Mean growth rates among tanks had a significant effect on [Mg/Ca]otoiith (F = 19.261, p = 

0 .0 0 1 , n = 24), and no significant effect on [Mn/Ca]otoiith (F = 0.118, p = 0.736, n = 24) or 

[Ba/Ca]otoiith (F = 0.143, p = 0.711, n = 24). Looking at the relation within tanks, 

correlations between growth rate and [Mg/Ca]otoiith demonstrated that 2 2  out of 23 

correlations were negative, and 14 out of 23 correlations were significant after Bonferroni 

adjustment. Correlations between growth rate and [Mn/Ca]otoiith demonstrated that 6  out
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of 23 correlations were negative, and only 2 out of 23 correlations were significant after 

Bonferroni adjustment. Correlations between growth rate and [Ba/Ca]0toiith demonstrated 

that 10 out of 23 correlations were negative, and none of the 23 correlations were 

significant after Bonferroni adjustment. Similar to the results for otolith precipitation 

rates, somatic growth rates significantly affected [Mg/Ca]otoiith but did not effect 

[Mn/Ca]0t0iith or [Ba/Ca]otoiith-

Discussion

This experiment represents the first reported attempt at validating temperature and 

salinity effects on the incorporation of Mg, Mn, and Ba in fish otoliths. All fish were 

from the same brood stock and the same age, therefore limiting any possible genetic or 

ontogenetic effects on otolith metal incorporation. All fish were fed the same diet as 

well, which eliminates the effect of diet on otolith metal incorporation. The metal 

composition of the water was relatively constant among experimental treatments. 

Therefore, the metal composition of the otoliths was tested directly for temperature and 

salinity effects without the confounding effects of genetics, ontogeny, diet, or water 

compositional differences.

Water chemistry

Mg/Ca ratios were relatively constant among all treatment tanks throughout the 

experiment with no significant difference among salinity treatments. This result was 

expected since the lower salinity water was a straight dilution using deionized water. 

There was greater variation in Mn/Ca and Ba/Ca among treatment tanks, despite the
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attempt to maintain constant concentrations. The relative differences over the course of 

the experiment were significantly different for Mn/Ca and Ba/Ca among salinity 

treatments, which was contrary to what was expected. This issue was reported in Chapter 

III (Martin et al. In Press) for strontium. Because the water for the lower salinity was a 

dilution of the higher salinity water, one would expect that the absolute concentrations of 

the metals would be different but the ratios would remain the same. The dilution source 

water was only deionized, and not Milli-Q water; therefore, the concentrations of Mn and 

Ba were higher in the deionized water, lending to higher Mn/Ca and Ba/Ca ratios in the 

15psu treatment tanks. To account for any variability in water metal composition within 

tanks throughout the experiment, water samples were measured and partition coefficients 

were calculated (Morse and Bender 1990).

[Mg/Ca]otoiith and DMg

Although temperature did not have a statistically significant effect on 

[Mg/Ca]otoiith and DMg at p = 0.017, the plotted data (Fig. 4.2 and Fig. 4.5) revealed a 

negative influence of temperature independent of salinity on Mg incorporation in the 

otoliths of larval L. xanthurus. Assuming this trend is real, one might ask whether or not 

otoliths could be used as Mg/Ca thermometers given the moderate success of other 

biogenic Mg/Ca thermometers. Aragonitic corals (Hart and Cohen 1996; Mitsuguchi et 

al. 1996), molluscs (Crick and Ottensman 1983; Vander Putten et al. 2000), and calcitic 

foraminifera (Lea et al. 1999; Elderfield and Ganssen 2000; Rosenthal and Lohmann 

2002) have been used as paleothermometers based on the Mg/Ca concentrations in their 

skeletal calcium carbonate. The focus of these other studies is obtaining climate data
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using the organisms as passive environmental recorders, whereas, the focus on using 

elemental signatures in fish otoliths is to answer questions pertaining to fish stocks and 

fish movement (Campana and Thorrold 2001). Some research has used Sr/Ca in otolith 

fossils for reconstructing paleoclimates (Patterson, 1993; Kalish 1998; Patterson et al. 

1999), but the majority of the otolith elemental studies are concentrating on using otoliths 

as tools to better understand fish populations. Thus, the use of [Mg/Ca]0toiith 

concentrations as climate thermometers is not practical for questions concerning fish 

stocks.

Another caveat to using otoliths as Mg/Ca thermometers is that temperature also 

influences somatic growth rate and thus otolith precipitation rate. It would be difficult to 

separate the effect of temperature on Mg/Ca incorporation independent of the growth rate 

effect. In corals, Mg/Ca incorporation is independent of growth rate (Wantanabe et al.

2001). Consequently, the relation between temperature, growth rate, and Mg/Ca 

incorporation should be evaluated more closely in other fish species and at different 

ontogenetic stages before considering otoliths for Mg/Ca thermometry. Similarly, 

because somatic growth rate and otolith precipitation rate influenced [Mg/Ca]otoiith in this 

study, more experiments should be conducted to test these results in order for Mg to be 

used in otolith elemental signatures. Differences in [Mg/Ca]otouth may also be a result of 

growth rate differences and not solely environmental differences.

[Mn/Ca]otoiith and DMn

There was no effect of temperature or salinity on [Mn/Ca]otoiith, although there 

was a significant effect of temperature, salinity, and a significant interaction on Dmh-
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These results imply [Mn/Ca]otoiitb incorporation relative to [Mn/Ca]water concentrations is 

complex. Additionally, there was a significant difference in [Mn/Ca]water between salinity 

treatment tanks, which could cause these significant results for DMn-

Magnesium, barium (nutrient-type distribution), and calcium are conservative 

elements in seawater with relatively long residence times (Broeker and Peng 1982). In 

contrast, Mn is not conservative, is weakly complexed (Byme et al. 1988), and highly 

vulnerable to redox cycling (Shen et al. 1991). Therefore, Mn may not be a reliable 

element for otolith elemental signatures because it is unstable within a given water 

column.

Dissolved Mn is rapidly oxidized in estuarine waters, aided by microbial catalysis 

which plays a dominant role in the scavenging of Mn onto particles in the aquatic 

environment (Sunda and Huntsman 1987; von Langen et al. 1997; Klinkhammer and 

McManus 2001). Microbial-aided oxidation was likely in the experimental tanks given 

the high variability in Mn/Ca concentrations throughout the experiment. Bacterial 

growth was observed in the tanks, even though water was changed out daily and solid 

particles removed by siphoning. It is entirely possible that bacteria served as catalysts 

forming manganese oxides, which precipitated out of solution, therefore creating unstable 

Mn/Ca concentrations in the tanks over time. Manganese concentrations fluctuate among 

different geographically located water bodies and have been used successfully in 

combination with other metals for discriminant function analyses to differentiate fish 

populations by locations. However, because otolith elemental signatures rely on using 

multiple elements for classification, the impact of [Mn/Ca]0toiith on the variability within 

the analyses remains undefined. The Mn/Ca relation between the environment and the
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otolith remains unclear and for this reason the Mn/Ca values in otoliths should be 

interpreted with caution.

[Ba/Ca]otoiith and DBa

The results showed a significant effect of salinity on Dbo- This salinity effect on 

Dea could be explained by the significant difference in the [Ba/CaJwater of the two salinity 

treatment (15 and 25psu) tanks. If there is no significant effect of temperature or salinity 

on [Ba/Ca]0toiith, then [Ba/Ca]water is possibly the main factor controlling [Ba/Ca]otoiith, 

similar to calcitic foraminifera (Lea and Spero 1992,1994) (Bath et al. 2000).

Ba concentrations vary among estuaries as attributed to catchment rock types, 

weathering rates, river flows, and groundwater discharge (Coffey et al. 1997; Shaw et al. 

1998). It has typically been assumed that Ba end members range from 90-634 nM in 

freshwater, to 36-40 nM in seawater, with a linear mixing curve between the two except 

for the initial decrease at salinities below 5psu (Coffey et al. 1997; Shaw et al. 1998). 

Shaw et al.’s (1998) work shows groundwater discharge contributes significantly to Ba 

concentrations along inner shelf waters of the U.S. southeast Atlantic coast, which could 

influence Ba concentrations along the proposed gradient between end members. This Ba 

input could have a significant impact on the use of [Ba/Ca]0t0iith to describe transport or 

migration patterns corresponding to ambient Ba/Ca in the water. Although the end 

members may not change, the variability between them could be nonlinear. Therefore, 

water samples should be taken simultaneously to ground truth the otolith composition if 

Ba/Ca is used for reconstructing individual fish transport paths.
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Biomineralization and growth rate effects

Otolith precipitation rates had a significant inverse correlation with [Mg/Ca]0toiith 

as there was proportionately less Mg/Ca incorporated into the otoliths as a function of 

otolith size; however, there was no correlation between otolith precipitation rate and 

[Mn/Ca]otoiith or [Ba/Ca]otoiith- Otolith precipitation rates and somatic growth rates within 

individual tanks were not significantly correlated with [Mn/Ca]otoiith and [Ba/Ca]otoiith but 

were significantly correlated with [Mg/Ca]otoiith- Somatic growth rates were significantly 

influenced by temperature; therefore, physiological differences contributing to otolith 

Mg/Ca incorporation cannot be ignored.

In summary, [Ba/Ca]0t0iith seems to be indicative of the water Ba/Ca composition 

and not influenced by temperature or salinity. Although temperature did not have a 

statistically significant effect on [Mg/Ca]0toiuh, the plotted data revealed [Mg/Ca]0t0uth was 

influenced by temperature but salinity had no effect. [Mg/Ca]0toiith was also significantly 

affected by otolith precipitation rate and somatic growth rate. It is therefore difficult to 

separate the direct effect of temperature on otolith Mg/Ca incorporation as temperature 

also affected somatic growth. [Mn/Ca]otoiith may be unpredictable for elemental 

signatures in otoliths since Mn concentrations are so variable in the aquatic environment 

at relatively short temporal and spatial scales. The results of this experiment are specific 

to larval L. xanthurus (17.3-38.0 mm SL) for the controlled conditions tested 

(temperature range: 17-26 °C, salinities 15 and 25psu). Based on the results from this 

experiment, Mg should not be used for elemental signatures in L. xanthurus otoliths for 

the fish size ranges tested because of the biomineralization and temperature effects on 

Mg incorporation. Manganese also should not be used because of the likelihood of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

significant variability in the water composition experienced by individual fish, lending to 

a higher degree of erroneous elemental signatures and therefore misallocation. It may be 

possible to extrapolate these results to the larvae of other estuarine dependent species that 

have a similar life history as L. xanthurus (i.e., other Sciaenidae), however, not enough 

work has been done to say this with confidence. We still do not know what role 

ontogeny plays in the incorporation of elements in fish otoliths, nor do we have enough 

data to assess incorporation differences among species. So, both Mg/Ca and Mn/Ca may 

be useful as “natural” tags provided there is adequate groundtruthing. However, neither 

are likely to provide and estimate of Mg and Mn levels in the water column.
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CHAPTERV

EFFECT OF TEMPERATURE AND SALINITY ON THE OTOLITH 

CHEMISTRY OF JUVENILE GRAY SNAPPER

(LUTJANUS GRISEUS)

Introduction

Elemental signatures in fish otoliths have been used to discriminate fish stocks 

(Campana et al. 1994; Begg et al. 1998), describe natal homing (Thorrold et al. 2001), 

identify the relative contribution of juveniles from different nursery habitats to fished 

populations (Gillanders and Kingsford 1996, 2000; Rooker et al. 2001), and to detect 

transport or migration pathways for individual fish (Secor 1992). The assumption 

underlying these applications is that fish incorporate elements from their environment, 

and these elements are permanently recorded in their otoliths. The specific behavior of 

individual elements is often ignored and few studies have tested the effect of water 

temperature and salinity on element incorporation in otoliths (Farrell and Campana 1996; 

Chesney et al. 1998; Bath et al. 2000; Milton and Chenery 2001; Elsdon and Gillanders 

2002; Martin et al. In press).

Although elemental signatures in otoliths have successfully been used as natural 

tags in some species, important assumptions that influence the unambiguous use of these 

signatures have not been validated. For example, species-specific differences in 

elemental incorporation have not been evaluated, and for most species, the potential 

effect of differences in salinity or water temperature is unknown. Although understanding
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the details of elemental incorporation is not necessary for all applications of otolith 

elemental signatures, physical and biological factors can influence the concentrations of 

these elements in the otolith, rendering the interpretation of elemental signatures more 

complex than assumed.

The objectives of this experiment were to validate element incorporation in gray 

snapper (Lutjanus griseus) otoliths by quantifying the relation between otolith and water 

element concentrations (Sr/Ca, Mg/Ca, Mn/Ca, and Ba/Ca) as a function of differences in 

water temperature and salinity. The methods employed were similar to those used for 

spot (.Leiostomus xanthurus-, Chapters II -  IV), and thus permit a species-specific 

comparison of temperature and salinity effects on otolith element incorporation.

Materials and methods

Gray snapper (Lutjanus griseus) were collected on a rising tide from the channel 

spanned by Pivers Island Bridge, near Beaufort, North Carolina (USA), approximately 2 

km inside of Beaufort Inlet. Larvae were collected using a 1 x 2 m neuston net (1 mm 

mesh) with a floating live-box attached to the cod-end, fished at the surface (Hettler 

1979). Sampling was conducted during nighttime maximum flood tides and concentrated 

around the days preceding full and new moons (Tzeng et al. In Press). Snapper were 

gently dipped from the live-box and transferred to 100 L holding tanks with flow-through 

seawater for temperature acclimation (1 “C-d"1).

Two fully crossed, 2 x 5  factorial designs with equal replication (n  = 5) were used 

to investigate the effects of 2 0  different temperature and salinity combinations on otolith 

element incorporation in juvenile gray snapper. Temperature (18, 23, 28, and 33 °C) and
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salinity (5, 15, 25, 35, and 45psu) levels were chosen to represent nursery habitat 

conditions for gray snapper. The experiments were carried out in two separate trials due 

to space limitations. The first trial included the 28 and 33 °C treatment temperatures and 

fish collected 5-6 days preceding the September new moon ( 1 - 5  September, 2002). The 

second trial included the 18 and 23 °C temperature treatments and the fish collected in the 

5 days preceding the October new moon (30 September -  5 October 2002).

Once the desired temperature treatment levels were attained in the 100 L tanks, 

fish were individually stocked into treatment tanks. The four salinity levels were 

randomly assigned to the experimental tanks and were maintained by mixing filtered sea 

water (30 -  35psu) with either conditioned well water or Instant Ocean® synthetic sea 

salt. Salinity levels were adjusted 5psu-d4  until the desired salinity treatment levels were 

reached. When all fish were at the desired treatment levels, they were acclimated for one 

week and then measured (standard and total lengths in mm and weight in mg).

Each day snapper were fed Artemia, a prepared gel diet, or larval fish 

(Eucinostomus sp. or guppies) prey, offered ad libitum. A one third volume water change 

was performed daily to prevent the buildup of metabolic wastes and to maintain the 

desired salinity levels. Tank water temperatures and salinities were measured daily. 

Experimental conditions were maintained for 55 days. At the end of each experimental 

trial, the final weights and lengths of individual fish were measured.

Water samples

Water samples (n = 5 per tank) were taken weekly for inductively coupled plasma 

mass spectrometry (ICP-MS) analysis of elemental water signatures. Samples were
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collected using acid-washed 10 mL polypropylene syringes and filtered through 0.2 pm 

polypropylene syringe filters (Whatman) into 7 ml acid-washed polypropylene vials. 

Each sample was acidified to ~ pH 2  with ultrapure HClconc and stored frozen until 

subsequent analyses.

Otolith Analyses

At the conclusion of each experimental trial, all of the remaining fish were 

measured and their sagittal otolith pairs removed for otolith analyses. Otoliths were 

scraped clean with acid-washed glass probes in a class-100 clean room. Otoliths were 

ultrasonically cleaned in Milli-Q water for 7 minutes and triple rinsed with ultrapure 

H2O2 (Ultrex, J.T. Baker) followed by three sequential rinses of Milli-Q water. Otoliths 

were then placed on acid-washed glass slides to dry for 36 hours under a class-100 

laminar-flow hood. After drying, otoliths were stored in acid-washed 1.5 ml high-density 

polyethylene vials. The left otolith of each pair was mounted on a petrographic slide with 

superglue and polished along the sagittal plane. After polishing, the otoliths were soaked 

in milli-Q water, cleaned, and dried as described above. Finally otoliths were mounted 

on petrographic slides (21 per slide) for LA ICP-MS analyses.

Because the fish for the two trials were live-captured at different times and 

possibly experienced different water masses different initial otolith element compositions 

were assumed. For that reason, laser ablation was used to sample the portion of the 

otolith that corresponded in time to the period during which fish were exposed to the 

experimental conditions (> 30 days old). Curvilinear transects (800 pm) were ablated on 

each otolith (Fig. 5.1) using a New Wave UP-213 laser with a 40 pm beam width coupled
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with a Thermo Finnigan Element ICP-MS equipped with a self-aspirating (50 jxL-min l) 

PFA nebulizer and a dual-inlet quartz spray chamber. The method measured 25Mg, 48Ca, 

55Mn, 86Sr, and 138Ba in low resolution (R = 300) during a 2-minute acquisition time.

Quantification of metal/calcium (Me/Ca) ratios followed the procedure outlined 

by Rosenthal et al. (1999). All samples were standardized to a dissolved solution (0.1 

mg»g_1) of an otolith reference powder with certified Me/Ca ratios of 89.25 pmoFmol1 

for Mg/Ca, 0.257 pmobmol' 1 for Mn/Ca, 2.782 mmoFmol"1 for Sr/Ca, and 2.174 

pmoFmoF1 for Ba/Ca (Yoshinaga et al. 2000). The matrix of the standard was therefore 

matched to the Ca levels in the samples. Detection limits were calculated as 3<r values of 

1% HNO3 sample blanks (n =18) that were run throughout the analyses. These limits 

were 1.5% of the average sample intensity for 25Mg, 0.1% for 48Ca, 21% for 55Mn, 0.04% 

for 86Sr, and 0.2% for 138Ba. An internal laboratory standard was run after each reference 

sample to estimate precision of the Me/Ca method. The reference material was then 

treated as an unknown, and Me/Ca values determined as for individual samples above. 

Measured precision (% relative standard deviation (RSD), n = 18) of the Me/Ca method 

was 0.3% for Mg/Ca, 1.2% for Mn/Ca, 0.4% for Sr/Ca, and 0.4% for Ba/Ca.
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Fig. 5.1. Lutjanus griseus sagittal otolith polished in the sagittal plane showing the laser 
scar (indicated by the arrow), which sampled along growth increments corresponding to 
the time period during which fish experienced experimental conditions.

Water analyses

Analyses of water samples collected during the experiment were also conducted 

using ICP-MS. Three samples were run from each tank representing the average 

conditions over the course of the experiment. All samples were spiked with Indium (to 

4.5 (ig®g"1) 5 which was used as an internal standard. The solutions were then aspirated 

into a Thermo Finnigan Element 2 ICP-MS, via a self-aspirating nebulizer (50 pJL-min"1) 

and Scott’s double pass spray chamber. Due to the presence of significant interferences 

on most of the Ca isotopes, 44Ca, 88Sr 25Mg, 55Mn, 137Ba, and n5In were measured in 

medium resolution (nominal R = 4500). Three samples from each tank were averaged 

and the mean values were then used in all subsequent analyses. To estimate precision of 

the water measurements, Ca, Sr, Mg, Mn, and Ba values in a seawater reference material 

(High Purity Standards, Inc. seawater CRM) were determined. The estimates of 

precision for element concentrations in the seawater CRM for trial 1 were 2.1% RSD for
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Ca, 4.2% RSD for Sr, 1.7% RSD for Mg, 12.2% RSD for Mn, and 4.5% RSD for Ba (n = 

3) and trial 2 were 1.4% RSD for Ca, 1.3% RSD for Sr, 1.3% RSD for Mg, 6 .8 % RSD for 

Mn, and 3.9% RSD for Ba (n = 3).

Partition coefficients (DMe) were calculated by dividing the metal/calcium 

(Me/Ca) ratio measured in an otolith by the mean Me/Ca ratio measured in the treatment 

tank water (Morse and Bender 1990). Otolith Me/Ca values from individual fish per tank 

were used as replicates for each of the twenty treatments.

Statistical analyses

Two-way analysis of variance (ANOVA) was used to test for significant 

differences in [Me/Ca]water, [Me/Ca]otoiith, and £>Me among temperature and salinity 

treatments for each trial. Salinity and temperature were treated as independent 

categorical variables, and [Me/Ca]water, [Me/Ca]otoiith, and Z)Me as dependent variables in 

the analyses. Because the [Me/Ca]otoiith and DMe data did not meet the homogeneity of 

variance assumption of ANOVA, various transformations of these data were attempted. 

Although the log-transformation did not make the variances homogeneous, it did lessen 

the magnitude of the differences among treatment groups. The F  statistic has been 

proven to be very robust despite assumption violations (Lindman 1974).

Results

The means and ranges of [Me/Ca]0t0iiths> and Due from 90 juvenile Lutjanus 

griseus and the tank [Me/Ca]water, (n = 90) are reported in Table 5.1.
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Water chemistry

As expected, elemental concentrations in the tank water were significantly 

affected by salinity treatments for both trials: [Sr/Ca]water (Trial 1 : F = 66.160, p = 0.000, 

n = 45; Trial 2: F = 6.670, p = 0.000, n = 45), [Mg/Ca]water (Trial 1: F = 166.829, p = 

0.000, n = 45; Trial 2: F = 332.576, p = 0.000, n = 45), and [Ba/Ca]water (Trial 1: F = 

47.049, p = 0.000, n = 45; Trial 2: F = 39.131, p = 0.000, n = 45) (Fig. 5.2). [Mn/Ca]water 

was not significantly different at a  = 0.0125 (Trial 1: F = 2.664, p = 0.049, n = 45; Trial 

2: F = 3.059 , p = 0.029, n = 45).

Table 5.1. Lutjanus griseus. Combined trial means and ranges for each [Me/Ca]0toiith (o) (n 
= 90), [Me/Ca]water(w)(n = 90), and Z)Me (n = 90). [Mg/Ca]water values are mol-mol' . 
[Sr/Ca]otoiith, [Sr/Ca]water, and [Mg/Ca]otouth values are mmol-mof , [Mn/Ca]otoiith,
[Mn/Ca]Water, [Ba/Ca]0toiith, and [Ba/Ca]water values are pmol mol' .

source mean range source mean range source mean range

[Sr/Ca]0 2.27 1.72-2.88 [Sr/Ca]w 7.97 6.52-9.86 D Sr 0.287 0.211-0.380

[Mg/Ca] „ 0.088 0.036- [Mg/Ca]w 7.97 2.65-5.35 DMg 2 .19x l0 '5 7.65x10®-

0.247 8.91xl0"5

[Mn/Ca]0 8.22 1.38-29.36 [Mn/Ca]w 35.98 12.54- 0|vfn 0.285 0.0176-1.02

117.94

[Ba/Ca]0 1.24 0.491-3.12 [Ba/Ca]w 0.13 4.31-15.28 DBa 0.13 0.043-0.45
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Fig. 5.2. Calculated metal/calcium ratios in the tank water for both trials: Sr/Ca (panel 
a), Mg/Ca (panel b), Mn/Ca (panel c), and Ba/Ca (panel d) concentrations ± 1 SE by 
temperature treatment. Each of the five salinity treatments is represented by a different 
symbol: 5 (•), 15 (o), 25 (▼), 35 (V), and 45psu (■). The bars in panel b and d indicate 
significant differences in Me/Ca concentrations by temperatures representing the two 
separate trials.
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Otolith [Me/Ca]

Temperature (Trial 2 ) and salinity (Trial 1 ) had significant effects on [Sr/Ca]otoiith 

for L. griseus with no interaction effect (Table 5.1, Fig. 5.3). Neither temperature or 

salinity had a significant effect on [Mg/Ca]otoiith and there was no interaction effect (Table

5.1, Fig. 5.4). Temperature nor salinity had significant effects on [Mn/Ca]0t0iith and there 

was no interaction effect (Table 5.1, Fig. 5.5). There was a significant salinity effect 

(Trial 1 ) but no significant temperature effect on [Ba/Ca]0t0iith (Table 5.1, Fig. 5.6) and 

the interaction between the two factors was not significant.
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Table 5.2. Results of four separate two-way Analysis of Variance analyses for each trial 
testing the effect of temperature and salinity on four elemental signatures (log- 
transformed) in the otoliths of juvenile Lutjanus griseus. T = Temperature, S = salinity, 
and T x S = temperature salinity interaction, * = significant at a  = 0.0125.

Trial 1 Factor df MS F P

[Sr/Ca]0toiith T 1 0.005 3.109 0.087

S 4 0 . 0 1 0 6 . 6 6 6 0 .0 0 0 *

T x S 4 0.004 2.844 0.038

[Mg/Ca]otolith T 1 0.035 0.917 0.345

S 4 0 . 0 1 2 0.316 0 . 8 6 6

T x S 4 0.035 0.938 0.454

[Mn/Ca] otolith T 1 0.007 0.064 0.802

S 4 0.093 0 . 8 8 6 0.483

T x S 4 0.117 1.108 0.368

[Ba/Ca]otoiith T 1 0.014 0.651 0.425

S 4 0.087 4.033 0.009*

Trial 2

T x S 4 0 . 0 2 0 0.939 0.453

[Sr/CaJotoKth T 1 0 . 0 2 0 10.146 0.003*

S 4 0.003 1.509 0 . 2 2 1

T x S 4 0.003 1.515 0.219

[Mg/Ca] otolith T 1 0.019 0.459 0.502

S 4 0.044 1.065 0.388

T x S 4 0.037 0.882 0.485

[Mn/Ca]otoiith T 1 0.031 0.429 0.517

S 4 0.037 0.520 0.721

T x S 4 0.105 1.458 0.236

[Ba/Ca] otolith T 1 0.004 0.118 0.734

S 4 0.037 1.009 0.416

T x S 4 0.041 1.098 0.373
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Fig. 5.3. Mean Sr/Ca (mmol-mol4) ± 1 SE in otoliths of Lutjanus griseus for both trials
as a function of tank temperatures (°C) at five salinity levels, 5 (•), 15 (o), 25 (▼),
35(V), and 45psu (■).
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Fig. 5.4. Mean Mg/Ca (mmol-mol1) ± 1 SE in otoliths of Lutjanus griseus for both trials 
as a function of tank temperatures (°C) at five salinity levels, 5 (•), 15 (o), 25 (▼), 
35(V), and 45psu (■).
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Fig. 5.5. Mean Mn/Ca (pmol-mof1) ± 1 SE in otoliths of Lutjanus griseus for both trials
as a function of tank temperatures (°C) at five salinity levels, 5 (•), 15 (o), 25 (▼),
35(V), and 45psu (■).
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Fig. 5.6. Mean Ba/Ca (pmol-mof1) ± 1 SE in otoliths of Lutjanus griseus for both trials 
as a function of tank temperatures (°C) at five salinity levels, 5 (•), 15 (o), 25 (▼), 
35(V), and 45psu (a).
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Me/Ca partition coefficients

Temperature (Trial 2) and salinity (Trial 1) had significant effects on Dst, with no 

interaction between the two factors (Table 5.2, Fig 5.7). The temperature effect occurred 

at the lower temperature treatments (18 and 23 °C), and the salinity effect occurred only 

at the higher temperature treatments (28 and 33 °C). If the four temperature treatments 

could have been included in the same analysis (could not because of time difference), this 

salinity effect at low temperatures would probably be manifested as a temperature x 

salinity interaction. There was no significant temperature, salinity effect on Dus, or 

interaction between the two factors (Table 5.2, Fig. 5.8). Temperature and salinity did 

not have significant effects on Dun, with no interaction between the two factors (Table

5.2, Fig 5.9). Salinity had a significant effect on £>Ba in both trials, with non-significant 

temperature effect, and non-significant interaction between the two factors (Table 5.2, 

Fig 5.10).

Table 5.3. Results of four separate two-way Analysis of Variance analyses for both trials 
testing the effect of temperature and salinity on four Z>Me (log-transformed) in the otoliths 
of juvenile Lutjanus griseus. T = Temperature, S = salinity, and T x S = temperature 
salinity interaction. * = significant at a  = 0.0125.

Trial 1 Factor df MS F P

DSr T 1 0.003 1.599 0.214

S 4 0.019 9.079 0 .0 0 0 *

T x S 4 0.006 3.172 0.025

DMg T 1 0.036 0.981 0.329

S 4 0.114 3.083 0.028

T x S 4 0.029 0.787 0.541

©Mn T 1 0.003 0.018 0.895

S 4 0.371 2.310 0.077
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Table 5.3 continued

T x S 4 0.104 0.645 0.634

Djja T 1 0.017 0.743 0.395

S 4 0.124 5.595 0 .0 0 1 *

T x S 4 0.015 0.681 0.610

Trial 2 Factor df MS F P

Dsr T 1 0.025 10.865 0 .0 0 2 *

S 4 0 . 0 0 2 0.824 0.519

T x S 4 0.003 1.318 0.283

DMg T 1 0.017 0.411 0.525

S 4 0.082 2.037 0 . 1 1 0

T x S 4 0.038 0.946 0.449

DMn T 1 0.028 0.349 0.558

S 4 0.098 1.198 0.329

T x S 4 0.097 1.196 0.330

Dsa T 1 0 . 0 0 2 0.077 0.783

S 4 0.181 5.880 0 .0 0 1 *

T x S 4 0.038 1.227 0.317
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Fig. 5.7. Mean Sr/Ca partition coefficients (DSt) ± 1 SE for otoliths of Lutjanus griseus
for both trials as a function of tank temperatures (°C) at five salinity levels, 5 (•), 15 (o),
25 (▼), 35(V), and 45psu (■).
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Fig. 5.8. Mean Mg/Ca partition coefficients (Z>Mg)  ± 1 SE for otoliths of Lutjanus griseus 
for both trials as a function of tank temperatures (°C) at five salinity levels, 5 (•), 15 (o), 
25 (▼), 35(V), and 45psu (a).
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Fig. 5.9. Mean Mn/Ca partition coefficients (DMn) ± 1 SE for otoliths of Lutjanus griseus
for both trials as a function of tank temperatures (°C) at five salinity levels, 5 (•), 15 (o),
25 (▼), 35(V), and 45psu (■).
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Fig. 5.10. Mean Ba/Ca partition coefficients (Z)Ba) ± 1 SE for otoliths of Lutjanus griseus 
for both trials as a function of tank temperatures (°C) at five salinity levels, 5 (•), 15 (o), 
25 (T), 35(V), and 45psu (■).
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Discussion

The main objective of this experiment was to test the effect of temperature and 

salinity on element incorporation in the otoliths of juvenile gray snapper and compare the 

results to those from a similar experiment conducted on spot, Leiostomus xanthurus 

(Chapters III and IV). To make the comparison, I used the same temperature and salinity 

ranges for both species by recalculating the ANOVAS for L. griseus, having eliminated 

the 33 °C temperature treatment and the 5 and 45psu salinity treatment results (n = 40) 

which were not used in experiments with L. xanthurus. Temperature significantly 

affected [Sr/Ca]0toiith in L. griseus and L. xanthurus within the treatment ranges I 

compared. There were no significant salinity or interaction effects between temperature 

and salinity treatments for [Me/Ca]otolith for either species (Table 5.4). For L. xanthurus, 

Dsr was significantly affected by both temperature and salinity. The £>sr for L. griseus 

was of borderline significance with an a  = 0.0125 and a p-value = 0.019. Temperature 

and salinity had significant effects on Dun for L. xanthurus, but not for L. griseus. DBa 

was significantly affected by salinity for both species (Table 5.4).

Differences in ontogeny do not explain the varied results of temperature and 

salinity effects on otolith element incorporation because both experiments were 

conducted with fish at the same life stage (late larval-early juvenile). The diets fed to the 

fish for each experiment were different, which may explain some of the variability in the 

relative [Me/Ca]0toiith values, although, experimental studies have found little evidence for 

an effect of diet on otolith element incorporation (Hoff and Fuiman 1995; Milton and 

Chenery 2001).
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Table 5.4. A comparison between Analysis of Variance results for the same temperature 
(15-28 °C), and salinity (15-35psu) ranges with the temperature-salinity interaction 
effects on each [Me/Ca]otoiHh and D Me from Leiostomus xanthurus (n = 24, Chapter IV), 
and Lutjanus griseus (n = 40, Chapter V). “Y” signifies a significant result a  = 0.0125.

Temperature Salinity Interaction

L. gris. L. xan. L. gris. L. xan. L. gris. L. xan.

[Sr/Ca]0t0ijth Y Y

[Mg/Ca]otolith

[Mn/Ca]otoiith

[Ba/Ca] otoiith

Dsr Y Y

DMg

Dmii Y Y Y

Dfia Y y

Few laboratory-based validation experiments have been used to address otolith 

element incorporation for different species. The majority of the experiments conducted 

looked only at Sr and Sr/Ca concentrations in otoliths, and most did not analyze water 

samples to calculate partition coefficients. The only other laboratory experiments to 

address the effect of temperature and salinity on Sr/Ca, Mg/Ca, Mn/Ca, and Ba/Ca 

incorporation in otoliths (Elsdon and Gillanders 2002) used both single-factor and two- 

factor designs. They found significant temperature and salinity interaction affects on all 

four Me/Ca ratios in juvenile black bream {Acanthopagurus butcheri). If the assumption 

that otolith element incorporation is proportional to the water elemental composition
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were correct, then, the most appropriate way to discern interspecies differences would be 

to compare partition coefficients. Elsdon and Gillanders (2002) did not calculate 

partition coefficients, but best estimates of the ranges made by inspection of their graphs 

and the water data table indicate that their Dsr ranges were ~ 0.42-0.6, DMg ranges were ~ 

0.0004-0.0005, £>Mn ranges were ~ 0.2-0.55 and DBa ranges were ~ 0.26- 0.79. The DSr 

values for A. butcheri were higher than the values for both L. xanthurus and L. griseus. 

Whereas, the Dun values for A. butcheri were similar to L. xanthurus, and only slightly 

higher than L. griseus. Dug values were similar between A. butcheri and L. xanthurus, 

but were an order of magnitude greater than those calculated for L. griseus. Similarly, 

Dqa ranges were the same for A. butcheri and L. xanthurus, but higher than DBa in L. 

griseus. These discrepancies highlight the potential for species-specific element 

incorporation. Whichever mechanisms controlling the uptake of individual elements into 

the otolith matrices are differentially influencing these partition coefficients.

In summary, L. griseus [Me/Ca]otoiith and DMe values were lower than L. xanthurus 

[Me/Ca]otolith and Dyie for Sr, Mg, Mn, and Ba. The effects of temperature and salinity 

changed between species when partition coefficients were compared (Table 5.4). There 

were significant differences in otolith element incorporation between species, as 

demonstrated for L. griseus and L. xanthurus and as compared to A. butcheri (Elsdon and 

Gillanders 2002). Otolith element incorporation is not solely a function of water 

elemental composition as it is influenced by temperature and salinity and affected 

uniquely for each element investigated. Somatic growth rate and otolith precipitation rate 

may also influence element incorporation as demonstrated for [Mg/Ca] 0toiith in L. 

xanthurus (Chapter IV).
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Species-specific differences in elemental incorporation in otoliths make it difficult 

to generalize results among tax a, but perhaps of greater importance to studies using these 

techniques are the marked differences in element incorporation attributable to changes in 

temperature and salinity. For example, studies on eels (Tzeng et al. 1996; Jessop et al.

2 0 0 2 ) and striped bass (Secor 1992; Secor et al. 1995) have used [Sr/Ca]otoiith as proxies 

for salinity changes in the water. These studies interpreted fish migration paths based 

primarily on salinity differences from Sr/Ca signatures in the otoliths. However, 

conclusions about fish migrations based the [Sr/Ca]otoiith -  salinity relationship in otoliths 

is potentially confounded by the effect of temperature on [Sr/Ca]0toiith incorporation. 

The same [Sr/Ca]0toiith may represent both cool, salty water and warm, fresh water 

although, the relative magnitude of these effects may not make enough of a difference.

The interaction between temperature and salinity affects will also complicate the 

prospect of retrospectively identifying individual fish transport pathways as a function of 

their otolith elemental signatures through time. These experiments only address otolith 

element incorporation for two species. Clearly more research is needed to better 

understand the magnitude of temperature and salinity effects on element incorporation in 

otoliths of marine fish species. Nevertheless, this species comparison draws attention to 

the necessity of validation experiments to translate species-specific elemental signatures 

in otoliths.
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CHAPTER VI 

SUMMARY: APPLICATIONS AND FUTURE DIRECTIONS

Without adequate validation, otolith elemental signatures must be interpreted with 

caution because of interspecific or ontogenetic differences in elemental incorporation, as 

well as the specific behavior of metals that affects their speciation in ambient waters and 

their thermodynamic and physiologically mediated incorporation in otoliths. The key 

assumption for using otolith elemental signatures is that otoliths incorporate minor and 

trace elements in proportion to free ion concentrations in the ambient water. However, 

the relationship between [Me/Ca]water and [Me/Ca]otoiiths is complicated because the 

otolith is isolated from the ambient water by branchial, intestinal, and endolymphatic 

membranes. Another underlying assumption in otolith chemistry studies is that otolith 

elemental incorporation is the same among species, which until this comparison, had 

never been evaluated.

In Chapter H, I showed that in spot (Leiostomus xanthurus), [Sr/Ca]0toiith and 

[Ba/Ca]otoiith are deposited within otoliths in proportion to their respective ratios in 

ambient waters. Evidence of a non-linearity between D%a and [Ba/Ca]water (see Chapter 

II, Fig. 2.7) suggested that careful calibration of the relation between Ba/Ca levels in 

otoliths and water will be required before extrapolating the results to lower Ba/Ca 

environments and to other fish species. The estimates of Dsr for otoliths from Chapter II 

are close to the theoretical distribution coefficient for aragonite based on thermodynamic 

equilibrium, although this may be due, at least in part, to differential uptake of Ca relative 

to Sr across the membranes separating the otolith from the ambient environment.
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Temperature was positively related to Dst, unlike inorganic aragonite and coral skeletons 

in which the temperature dependence of Dsr is negative. Temperature had no detectable 

influence on Dea> suggesting that most of the variation in Ba/Ca ratios in otoliths reflects 

concomitant variability in the Ba/Ca composition of the environment. Effects of 

precipitation rate on Sr and Ba incorporation in otolith were weak and generally 

statistically insignificant. Metabolic effects were similarly weak, using individual fish 

growth rates as a measure of metabolic activity. Thus, Sr and Ba incorporation in otoliths 

is primarily a function of the chemistry of the ambient environment, as modified by 

temperature in the case of Sr.

In the second experiment using L. xanthurus (Chapter III), I showed that Sr/Ca 

ratios in the otoliths of larval spot are determined primarily by the physicochemical 

properties of the ambient water. When combined with the results from Chapter II, 

temperature, [Sr/Ca]water, and [ S r ] w a te r  have significant effects on otolith Sr/Ca ratios. 

There was no consistent evidence for metabolic effects on Sr/Ca ratios in otoliths at least 

to the extent metabolic rates are correlated with individual growth rates. Unfortunately, 

otolith Sr/Ca thermometry may not be straightforward in estuarine-dependent fish species 

because independent geochemical tracers that constrain both [Sr/Ca]water and [Sr]water will 

need to be developed. Marine fishes that do not experience significant variations in 

[Sr]water and [Ca]water are logical species to test the ability to reconstruct temperature 

histories from Sr/Ca ratios in otoliths.

Chapter IV addressed temperature and salinity effects on Ba/Ca, Mg/Ca, and 

Mn/Ca in spot otoliths from the second experiment. The [Ba/Ca]0t0iith signature in L. 

xanthurus seems to be indicative of the water Ba/Ca composition and not influenced by
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temperature or salinity (Chapter IV). [Mg/Ca]otoiith was influenced by temperature but 

salinity had no effect. [Mg/Ca]otoiith was also significantly influenced by otolith 

precipitation rate and somatic growth rate. It is therefore difficult to separate the direct 

effect of temperature on otolith Mg/Ca incorporation as temperature also affected somatic 

growth. [Mn/Ca]otoiith may be too unpredictable for use in elemental signatures in otoliths 

because Mn concentrations are so variable in the aquatic environment at relatively short 

temporal and spatial scales. Based on the results from this experiment, Mg should not be 

used for elemental signatures in L. xanthurus otoliths for the fish size ranges tested 

because of the biomineralization and temperature effects on Mg incorporation. 

Manganese also should not be used because of the likelihood of significant variability in 

the water composition experienced by individual fish, lending to a higher degree of 

erroneous elemental signatures and therefore misallocation. It may be possible to 

extrapolate these results to other estuarine dependent species at the larval stage that have 

a similar life history as L. xanthurus (i.e., other Sciaenidae), however, not enough work 

has been done to say this with confidence.

In Chapter V, I tested the assumption that otolith element incorporation is similar 

between species. There were differences in otolith element incorporation between 

species, as demonstrated for L. griseus and L. xanthurus. The [Me/Ca]otoiith and £>Me 

values in gray snapper (Lutjanus griseus) were lower than L. xanthurus [Me/Ca]otoath and 

f>Me- The differential effects of temperature and salinity on individual element 

incorporation changed between species when partition coefficients were compared. 

Somatic growth and otolith precipitation rate may also influence element incorporation as 

demonstrated for [Mg/Ca]otoiith in L. xanthurus (Chapter IV). Thus, otolith element
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incorporation is not solely a function of water elemental composition as it is affected by 

temperature, salinity, individual growth characteristics, taxa, and the element in question.

The interaction between temperature and salinity affects, in particular, will also 

complicate the prospect of retrospectively identifying individual fish transport pathways 

as a function of their otolith elemental signatures through time. This species comparison 

draws attention to the necessity of validation experiments to translate species-specific 

elemental signatures in otoliths.

Elemental signatures in fish otoliths provide a potentially innovative technique for 

discerning stocks, identifying nursery habitats, locating spawning sites, tracing larval 

transport pathways, and quantifying the degree of population connectivity, all of which 

are all required to meet fishery management goals. Applications of otolith elemental 

signatures have accelerated over the past decade but few validation experiments have 

been performed to test the effect of temperature and salinity on minor and trace metal 

otolith incorporation. Still, there are geographic differences in water elemental 

composition and fish have been accurately assigned to water bodies based on the 

elemental signatures in their otoliths. Experimental studies across species and 

ontogenetic stages will only help to improve the accuracy of these classifications. With 

improved accuracy and understanding of the physicochemical environmental properties 

that influence otolith metal incorporation, the next step is to reliably reconstruct 

individual fish movements by differentiating between water bodies of different 

temperatures and salinities through concentrations of elements and isotopes in fish 

otoliths.
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