Old Dominion University

ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 2014

Improving Structural Features Prediction in Protein Structure
Modeling

Ashraf Yaseen
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

b Part of the Bioinformatics Commons, Biology Commons, and the Software Engineering Commons

Recommended Citation

Yaseen, Ashraf. "Improving Structural Features Prediction in Protein Structure Modeling" (2014). Doctor of
Philosophy (PhD), Dissertation, Computer Science, Old Dominion University, DOI: 10.25777/cahw-qg33
https://digitalcommons.odu.edu/computerscience_etds/68

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It
has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.


https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/68?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

IMPROVING STRUCTURAL FEATURES PREDICTION

IN PROTEIN STRUCTURE MODELING

by

Ashraf Yaseen
M.Sc. July 2003, New York Institute of Technology, Old Westbury, NY
B.Sc. August 2002, Jordan University of Science and Technology, Jordan

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
COMPUTER SCIENCE
OLD DOMINION UNIVERSITY
August, 2014

Approved by:

Yaohang Li ( Diréctor)

Hissein Abdel- Wahab (Merfibef) )

'Ku:_'t Maly (Me%ﬁ

Desh Ranjan (Mgthber)

J ian%y (Merﬁgr)



UMI Number: 3662389

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

" Dissertation Publishing

UMI 3662389
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



ABSTRACT

IMPROVING STRUCTURAL FEATURES PREDICTION
IN PROTEIN STRUCTURE MODELING

Ashraf Yaseen
Old Dominion University, 2014
Director: Dr. Yaohang Li

Proteins play a vital role in the biological activities of all living species. In nature,
a protein folds into a specific and energetically favorable three-dimensional structure
which is critical to its biological function. Hence, there has been a great effort by
researchers in both experimentally determining and computationally predicting the
structures of proteins.

The current experimental methods of protein structure determination are
complicated, time-consuming, and expensive. On the other hand, the sequencing of
proteins is fast, simple, and relatively less expensive. Thus, the gap between the number
of known sequences and the determined structures is growing, and is expected to keep
expanding. In contrast, computational approaches that can generate three-dimensional
protein models with high resolution are attractive, due to their broad economic and
scientific impacts. Accurately predicting protein structural features, such as secondary
structures, disulfide bonds, and solvent accessibility is a critical intermediate step stone to
obtain correct three-dimensional models ultimately.

In this dissertation, we report a set of approaches for improving the accuracy of
structural features prediction in protein structure modeling. First of all, we derive a
statistical model to generate context-based scores characterizing the favorability of
segments of residues in adopting certain structural features. Then, together with other
information such as evolutionary and sequence information, we incorporate the context-
based scores in machine learning approaches to predict secondary structures, disulfide
bonds, and solvent accessibility. Furthermore, we take advantage of the emerging high
performance computing architectures in GPU to accelerate the calculation of pairwise
and high-order interactions in context-based scores. Finally, we make these prediction

methods available to the public via web services and software packages.
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CHAPTER 1

INTRODUCTION

Understanding the implication between the genetic code and life could have
practically infinite applications, from ad-hoc drug synthesis to the creation of forms of
life with desired characteristics. However, we are still far from reaching this goal.
Research in this direction is still at its early stages, and one of the biggest open problems
nowadays is the prediction of protein structure.

Proteins are the primary components of living things. In nature, proteins fold into
specific three-dimensional structures which are critical to their functions. Therefore, there
has been a great interest by researchers in both experimentally determining and
computationally predicting the 3D structures of proteins.

The current experimental methods of protein structure determination are
complicated, time-consuming, and expensive. In contrast, computational approaches that
can generate 3D protein models with high resolution are attractive due to their broad
economic and scientific impacts. Correctly predicting structural features such as
secondary structures, disulfide bonds, and solvent accessibility, which we refer to as the
intermediate prediction steps, is a critical step stone to obtain correct 3D models
ultimately.

To illustrate the effectiveness of the intermediate prediction steps, we hereby use
protein secondary structure as an example. The prediction of secondary structure is an
important intermediate step; often viewed as a simplification of the more challenging
problem of the tertiary structure perdition. Correct prediction of protein secondary
structures can significantly reduce the degrees of freedom in protein tertiary structure
modeling and therefore reduces the difficulty of obtaining high resolution 3D models. For
example, if a segment in a protein is predicted to be an a-helix, we can take advantage of
the Ramachandran plot, shown in Figure 1, to derive a much smaller range of possible
torsion angles that can be assigned to the backbone of the predicted segment, or we can

simply use the ideal values of the torsion angles to build a helix.



Left
handed
aipha-heiix.

(o]

psi Right handed

alpha-helix.

-190_

-180 -phi 0 + phl 180

Figure 1 Ramachandran plot. Source:
http:/iwww.cryst.bbk.ac.uk/PPS98/course/3_geometry/rama.html.

Similar to secondary structure prediction, correctly predicting the formation and
connectivity of disulfide bonds and the residues’ solvent accessibility can reduce the
conformational space to aid modeling protein structures and help predict important
protein functions.

In conclusion, the knowledge of those structural features of protein residues,
when predicted with high accuracy, can provide extremely valuable information for

predicting protein 3D structure and function [1].

1.1 Problem Definition

Historically, the improvement of structural features prediction methods benefits
from the incorporation of effective features/information that helps separate among the
different structural states. Nowadays, almost all modern prediction methods make use of
evolutionary information revealed by multiple sequence alignment (MSA) of a family of
homologues proteins. This information forms the input encodings to a machine learning
algorithm, trained to recognize and discriminate the different structural states.

The accuracy of the current prediction methods is stagnated for the past few years
and obtaining improvements of even fractions of a percent is becoming very difficult. For
example, the accuracy of secondary structure prediction is stagnated between 76-80% in

3-state and ~68% in 8-state. Furthermore, most of the reported accuracies from different


http://www.cryst.bbk.ac.uk/PPS95/couree/3_geometry/rama.html

structural features prediction methods are not cross-validated and/or obtained from
several small datasets.

This dissertation work targets the research problem of how to continuously
improve the accuracy of predicting protein structural features toward their theoretical
upper bounds. The objective of this dissertation is to improve predictions of protein
structural features to a new level of accuracy.

Reducing the inaccuracy of protein structural features prediction, will be very
useful in improving the efficiency of protein tertiary structure prediction, because the
search space for finding a tertiary structure goes up super-linearly with the fraction of

inaccuracy in structural feature prediction.

1.2 Our Approaches

In machine learning, it is well-known that extracting and selecting “good”
features can significantly enhance the prediction performance of a predictor. Probably the
most effective features, when predicting the structural states of residues, are the structural
states of the neighboring residues (residue’s context). For example, a residue is likely
exposed to solvent if the neighboring residues are highly exposed to solvent. Moreover if
both adjacent neighbors are helices, the middle residue is most likely to be helix, and vice
versa; if the adjacent positions of a residue are not helices, it is impossible for this middle
residue to adopt helix as its secondary structure. In fact, our computational results show
that if the true secondary structures of neighboring residues are encoded, machine
learning using a simple feed-forward neural network can easily lead to above 90%
prediction accuracy, which exceeds the theoretical upper bound.

Unfortunately, using the true structural states as features is not feasible since they
cannot be known beforechand. However, this inspires us that the favorability of a residue
adopting a certain structural state can be also an effective feature. The statistical scores
measuring the favorability of a residue adopting a certain structural state within its amino
acid environment can be evaluated from the experimentally determined protein structures
in the Protein Data Banks (PDB). Encoding these scores as features provides a way to
address a long standing difficulty in machine learning methods, such as neural networks,

of taking interdependency among structural states of neighboring residues into account.



Previously, deriving statistically meaningful context-based scores to characterize
high-order inter-residue interactions was not feasible, until recently, where sufficient
numbers of experimentally determined protein structures are available in PDB. Moreover,
recent developments in GPUs with massively parallel computing mechanism offer
attractive opportunities to take advantage of the parallelism at the chip level to achieve
high performance computing. Implementation of an efficient, load balanced algorithm for
N-body interaction calculation on GPU will speed up the calculation of context-based
scores from high order inter-residue statistics.

In this work we derive a statistical model to generate context-based scores. The
context-based scores indicate the favorability of a residue adopting a structural state in
presence of its neighboring residues in sequence. These scores are incorporated as
sequence-structure features together with other sequence and evolutionary information in
machine learning approaches to predict secondary structures in 3-state and 8-state,
disulfide bonding states and bonding connectivity, and solvent accessibility. We validate
our methods on several commonly used benchmarks and compare our results with a set of
popular structural features prediction methods. Furthermore, we propose an approach for
accelerating high-order inter-residue interaction calculations by taking advantage of the
GPU architecture. Finally, we develop web services hosting our prediction methods for

the protein structure research community.

1.3 Background

The word “Protein” comes from the Greek word “Proteios” which means
“primary”, or “of prime importance.” Proteins are the primary components of living
things and the vital organism parts on the planet, making more than half of dry weight in
every cell. They are the molecules in charge of the essential functions of cells. For
example, they provide the infrastructure that holds a creature together (structural
support); they are enzymes that make the chemical reactions necessary for life possible;
they are the switches that control gene expression; they are the sensors that see, taste and
smell, and the effectors that make muscles move.

Proteins are complex molecules consisting of linear sequences of smaller

molecules called amino acids. A protein chain may contain from a few dozens to



thousands of amino acids. The term ‘residue’ is used to refer to an amino acid molecule
integrated into the protein chain.

There are twenty types of amino acids in nature. Each is referred to by three
letters code or one letter for short. An amino acid is made of a central carbon atom (Ca),
a hydrogen atom attached to Ca, an amine group (H2N), a carboxyl group (COOH) and a
side chain (R) that differs from one amino acid to another. Figure 2 shows the generic
structure of an amino acid. Amino acids in a protein chain (residues) are connected by
peptide bonds. Each bond is formed between the Carbon (C) atom from carboxy! group
of one amino acid and the Nitrogen (N) atom from amine group of the following amino

acid [2]. Figure 3 depicts the formation of a peptide bond between two residues.
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Figure 2 The generic structure of an amino acid.
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Figure 3 Two amino acids forming a peptide bond.




The composition of the side chain characterizes an amino acid -- it determines the
shape, the mass, the volume and the chemical properties of an amino acid. According to
the properties of the side chains, amino acids are classified into small/large, polar/non-
polar, hydrophobic/hydrophilic, aromatic or aliphatic. These properties play a significant
role in protein structure folding and protein-protein interactions. For example,
hydrophobic amino acids are usually buried in the middle of the protein 3D structure,
while hydrophilic amino acids are likely to be exposed to solvent. Figure 4 is a classical
Venn diagram grouping amino acids according to their properties. Original representation
and information can be found in [2, 3].

The different groups shown in Figure 4 are:

e Polar/Non-Polar: a non-polar molecule has a relatively even distribution of charge.
Some polar amino acids are positively or negatively charged in solution.

¢ Hydrophobic/Hydrophilic: hydrophobic residues tend to come together to form
compact core that exclude water; they tend to be on the inside of a protein, rather than

on its surface. Hydrophilic residues are the opposite.
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Figure 4 Amino Acids Properties (Venn diagram).
Source: http://www.dsimb.inserm.fr/~debrevern/VENN_DIAGRAM/.
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e Aromatic: aromatic amino acid forms closed rings of carbon atoms with alternating
double bonds
e Aliphatic: aliphatic amino acids side chain contains only carbon or hydrogen atoms
The differences in the physico-chemical properties of amino acids result in
different 3D proteins’ structures. Other aspects like electrostatic interactions, van der
Waals forces, and hydrogen bonding among the different amino acids are important
forces driving the protein folding process. Each different combination of amino acids will
result in different protein structural conformations, whose energy values are determined
by the interactions among the different amino acids within the structure as well as the

interactions between the amino acids and the surrounding solvent.

1.3.1 Protein Structure

According to Anfinsen’s thermodynamics hypothesis, under certain chemical and
physical conditions, a protein (at least globular protein) folds into a very specific
structure, the same structure every time, such that this structure is in the most stable state
it can adopt. This unique structure is referred to as the native structure. The sequence of

amino acids, building up the protein, ultimately determines its native structure [4].

Proteins start functioning when they are interacting with the cell molecules, or
with each other. In order for such interaction to take place and be effective, proteins need
to recognize other molecules and bind to them, like a lock and a key. Therefore, protein
structure determines its biological function.

Protein Structure can be expressed in different hierarchal levels:

1. Primary Structure: refers to the linear amino acid sequence in the protein. It shows the
order in which the amino acids are connected by peptide bonds forming the protein
chain. The two ends of the protein chain are referred to amino terminus (N-terminus)
to the left and the carboxyl terminus (C-terminus) to the right. The numbering of
amino acids start from N-terminus toward C-terminus.

2. Secondary structure: refers to the general 3D form of the protein local segments (with
no description of the atomic coordinates in 3D space), formally defined by the
patterns of hydrogen bonds between backbone amide (H-N) and carboxyl groups
(C=0), where the classification of secondary structure elements is determined by

recognizing these hydrogen bonding patterns.



The two most common stable secondary structure elements are a-helices and B-
sheets; whose stability comes from the regular patters of hydrogen bonds.

a. a-Helix: stabilized by H-bonding between N-H group and C=0 group of peptide
bonds four residues apart. Its orientation produces a helical coiling of the peptide
backbone such that the side chain groups stem out of the helix and perpendicular
to its axis. Some amino acids prefer forming alpha helices (helix formers) and
others do not (helix breakers), due to some constraints of their side chains. For
example, Alanine, Asparatic Acid, Glutamic Acid, Isoleucine, Leucine and
Methionine favor the formation of a-helices, whereas, Glycine and Proline favor
disruption of the helix. Among the different types of proteins local structures, a-
helix is the most regular type.

b. [-sheet: is the second common conformation. It is composed of two or more
different segments (strands) of stretches along the primary structure of the protein.
Beta strands of 3 to 10 amino acids long are connected by at least 2 to 3 backbone
hydrogen bonds. Beta sheets are either parallel or anti-parallel. In parallel sheets
following peptide chains proceed in the same direction, whereas in anti-parallel
sheets following chains are aligned in opposite directions.

There are also other less commén forms of helices and strands, such as the 3o-
helix, n-helix, and B-bridge. Other forms of secondary structure elements are turns
and bends, linking the more regular secondary structure elements. Turns refer to the
close approach of two consecutive Co. atoms (less than 7 A) in which no hydrogen
bonds are formed, and bends are high twists in the protein chain. Finally, random
coils refer to any secondary structure type that lacks a regular form.

Figure 5 presents the composition percentage of the secondary structure states in

protein dataset Cull5547 [S5], which contains 5,547 protein chains, 25% pair-wise

sequence identity, and 2.0 A resolution. In general, n-helices and B-bridges have
relatively infrequent appearances in protein data banks (PDB).

Tertiary Structure: refers to the complete 3D structure of a single protein molecule.

Protein tertiary structure is stabilized by hydrophobic interactions, hydrogen bonding,

disulfide bonding (in some proteins), and non-bonded interactions including

electrostatic interactions, and Van Der Waals forces.



Figure 6 shows the first 3 levels of protein structure hierarchy.
4. Quaternary Structure: refers to multiple polypeptide chains that may form the protein
molecule. The quaternary structure is stabilized by the same interactions as the

tertiary structure.

1.3.2  Protein Structure Determination
The efforts of understanding protein structures and functions started in the 1950s.
Biochemists were trying to define the relationship between protein sequences and their

different chemical properties.
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1.10%
Figure 5 Distribution of secondary structure states in Cull5547.
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As an early step in characterizing protein chemistry, in 1955 British biochemist Sanger
designed an experiment to identify the sequence of insulin [6]. The early effort by
researchers on protein determination began in late 1950s. Two British scientists, John
Kendrew and Max Perutz, published the very first high resolution protein structure [7].

Nowadays, the most common technique to determine proteins’ 3D structures is X-
ray Crystallography. In this method, a protein molecule is crystallized first, then a beam
of X-rays hits the crystal where it will diffracts into many specific directions. A 3D
picture of the density of atoms within the crystal can be produced from diffraction
patterns, angles, and intensities of these diffracted beams [8]. This method determines the
actual positions of the proteins’ atoms and their chemical bonds. In fact, most of the
proteins in PDB were determined by this technique [9, 10]. Nuclear magnetic resonance
(NMR) is another popular technique used to determine the structure of proteins. With this
method, a protein molecule is placed inside a strong magnetic field and irradiated with
radio-frequency pulses. The energy radiated back at specific resonance frequency. will
then be used to calculate the positions of the atoms [11].

Applying either method is not a straightforward process. Both methods require
very expensive equipment, field experts, and weeks of work, which require extra dollars
for expert’s labor. Moreover, X-ray Crystallography is limited by the difficulty of some

proteins to form crystals and NMR can only be used to determine small proteins.

1.3.2.1 Secondary Structure

Once a protein 3D structure is determined, secondary structure elements can be
identified, either by recognizing patterns of hydrogen bonds [12] or by mapping the
backbone torsion angles into specific regions in the Ramachandran plot [13]. Several
automated methods have been developed to determine protein secondary structures. The
most commonly used method is DSSP (Dictionary of Protein Secondary Structure) [12].
Given the atomic coordinates of a protein, the DSSP program will assign a secondary
structure type for each residue. An a-helix assignment (state 'H') starts when two
consecutive amino acids have (i, i+4) hydrogen bonds, and ends likewise with two
consecutive (i-4, i) hydrogen bonds. This definition is also used for 3¢-helix (state 'G")
with (i, i+3) hydrogen bonds, and for n-helix (state 'I') with (i, i+5) hydrogen bonds as

well. Figure 7 shows the 3 different types of protein helical shapes.
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n-helix
Figure 7 Hydrogen bonding patterns in helical types.

Residues in a-helices typically adopt backbone (9, y) dihedral angles around (-
60°, -45°), such that the y dihedral angle of one residue and the ¢ dihedral angle of
the next residue sum to roughly -105°. On the other hand, residues in 3 0-helices typically
adopt (@, ) dihedral angles near (—49°, —26°), such that the y dihedral angle of one
residue and the ¢ dihedral angle of the next residue sum to roughly —75°. The majority
of n-helices are only 7 residues in length and do not adopt regularly repeating (o,
y) dihedral angles throughout the entire structure. When the first and last residue pairs
are excluded, dihedral angles exist such that the y dihedral angle of one residue and the ¢
dihedral angle of the next residue sum to roughly -125°. The first and last residue pairs
sum to -95° and -105°, respectively.

A minimal size helix is set to have two consecutive hydrogen bonds in the helix,
leaving out single helix hydrogen bonds, which are assigned as turns (state 'T").

Beta-sheet residues (state 'E') are defined as either having two hydrogen bonds in
the sheet, or being surrounded by two hydrogen bonds in the sheet. In the first case,
sheets can be anti-parallel or parallel, as illustrated in Figure 8. In the second case, when
sheets are being surrounded by hydrogen bonds forming isolated residues, are considered

as bridges (state 'B').
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(a) Paraliel B-Sheet (b) Anti-Parallel B-Sheet

Figure 8 Hydrogen bonding patterns in Parallel & Anti parallel B-sheets.

State 'S’ assignment by the DSSP program indicates a bend, which is an irregular

structure, corresponding to a high twist of at least 70" in the chain. The remaining DSSP

state is (space) which indicates an unassigned/other state. Table 1 list all 8-state of

protein secondary structure as defined by DSSP. Figure 9 illustrates various types of

secondary structures in protein IBOO(A).

Other structural features including disulfide bonds, contacts, and solvent

accessible areas can also be identified given protein 3D structure. The DSSP program can

also be used to determine these structural features.

Table 1 DSSP secondary structure states.

Output State Description
H a-helix Two consecutive amino acids with (i, i+4) hydrogen bonds, and ends
likewise with two consecutive (i-4, i) hydrogen bonds
G 30-helix  Same as a-helix but with (i, i+3) hydrogen bonds
I z-helix  Same as a-helix but with (i, i+5) hydrogen bonds
T Turn A hydrogen bonded turn
E B-sheet  (or B-strand) An extended strand (anti-parallel or parallel sheet)
B B-bridge Isolated residue - a single residue B-strand
S Bend A bend in the chain
Other Unassigned - any residue that does not belong to any of the previous 7

states.
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Figure 9 3D structure of Protein 1BOO Chain A.

1.3.2.2 Disulfide Bonds

Disulfide bonds (alternatively called disulfide bridges or SS-bonds) are covalent
bonds formed between two sulfur atoms from nonadjacent Cysteine pairs of a protein
structure. Figure 10 shows an example of a disulfide bond between two Cysteine residues
in protein 153L(A). Disulfide bonds are often found in extracellular proteins, which play
an important role in folding and enhancing thermodynamic and mechanical stability.
Disulfide bonding patterns can also be used to discriminate structure similarity, even
when low sequence similarities are present [14]. Furthermore, certain disulfide
configurations provide mechanisms for sensing and responding to tensile forces,
diversifying and functionalizing protein folds, minimizing aggregation, confining and
coupling conformational changes, and controlling packaging and releasing for

intercellular transport [15].
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Fiaure 10 Disulfide bond in protein chain.

1.3.2.3 Solvent Accessibility

The solvent-accessible surface area, or accessibility, of a residue is the surface
area of the residue that is exposed to solvent. The residue accessibility is a useful
indicator to the residue's location, on the surface or in the core, in the protein molecule.
Figure 11 shows the surface area surrounding a protein segment.

Residue solvent accessibility is usually measured by rolling a spherical water
molecule over a protein surface and summing the area that can be accessed by this
molecule on each residue. To allow comparisons between the accessibility of the
different amino acids in proteins, typically relative values are calculated as the ratio
between the absolute solvent accessibility value and that in an extended tripeptide (Ala-
X-Ala) conformation [16]; referred to as the percentage of maximally accessible area.
The DSSP program [12}, can be used to calculate the absolute solvent accessibility values

of proteins.

Figure 11 Surface area of a protein segment.




Residue solvent accessibility plays an important role in folding and enhancing
proteins’ thermodynamic and mechanical stability. The burial of residues at core
(hydrophobic residues) is a major driving force for folding [17]. Moreover, the
hydrophobic free energies are directly related to residues’ solvent accessibilities, of both
polar and nonpolar groups [18]. Furthermore, active sites of proteins are located on its
surface. Hence, prediction of the surface residues is considered an important step in

determining proteins functions [19].

1.3.3 Protein Structure Prediction

Protein in nature folds into a unique and energetically favorable 3D structure
which is critical and unique to its biological function. Hence, solving the protein folding
problem is the key to many applications in the fields of protein engineering and drug
design.

Genome projects came out with millions of protein sequences of which only a
small fraction have their 3D structure experimentally determined. (As of Tuesday April
29, 2014 there are 99,775 structures in pdb.org [9]). Researchers in the field of protein
structure determination are putting large effort on bridging the huge gap between
sequence and structure. The current experimental methods of protein structure
determination are complicated, time-consuming, expensive, and, in some cases,
unsuitable. Therefore, computational methods for structure prediction are becoming an
irreplaceable option.

In the early 1950s, an American biochemist, Anfinsen, observed that the active
polypeptide of a model protein could fold spontaneously into a unique 3D structure. He
also observed that an enzyme unfolded under extreme environment could refold
spontaneously into the same 3D structure that it folds into under natural conditions (its
original or native conformation) [20]. Based on his observations, Anfinsen had developed
his theory of protein folding: “The native conformation is determined by the totality of
interatomic interactions and hence, by the amino acid sequence, in a given environment”.
This theory, also known as Anfinsen’s thermodynamics hypothesis, established the
foundation of ab initio protein structure prediction problem, i.e. predicting the native

conformation of a protein from its primary sequence.
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Following Anfinsen’s thermodynamics hypothesis early approaches for solving
the protein structure prediction were based on the thermodynamics of protein folding.
Computer searching methods were applied to investigate the free energy of many local
minimum energy confrontations in an attempt to find the global minimum conformation
i.e., the thermodynamically most stable conformation of the protein. The main challenges
in these methods were in the huge conformational space, due to the flexibility of the
proteins, and the complexity of the energy functions.

The search space of the protein structure prediction problem is astronomically
large. In 1969, Cyrus Levinthal stated that the protein molecule has an astronomical
number of possible conformations, due to the large number of degrees of freedom in the
protein primary structure. Despite this huge search space, proteins fold reliably and
quickly to their native conformation. This is known as “Levinthal’s Paradox™ [21]. For
example, a protein molecule consisting of 100 residues will have 99 peptide bonds, and
therefore 198 different (¢, y) bond angles. If we assume that each of these angles can be
in one of three stable conformations, then the protein may misfold into a maximum of
3'%8 different conformations. Therefore, if we try to sequentially enumerate all the
possible conformations and evaluate each one, in order to get the one conformation with
the lowest energy, assuming that each conformation is sampled at 1 nanosecond
timescale, then this requires 9.4*10” years! The "paradox" is that most proteins fold
spontaneously on a millisecond or even microsecond time scale.

In order to reduce the search space of the protein structure prediction problem,
one must consider developing an accurate energy function and a rapid searching
algorithm. Hence, researchers dedicated large efforts in this area, which was then referred
to as ab initio structure prediction.

During these times when ab initio researchers were working on their energy
minimization approaches, other researchers were investigating different methodologies of
protein structure prediction. Back then, an important observation was marked; “proteins
that share similar sequences often share similar structures”. This observation opened the
gate towards a new method in solving the protein structure prediction problem, which
came to be known as template-based modeling. Below is a brief description of both,

template-based modeling and template-less modeling (ab initio).
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1.3.3.1 Template-based Modeling

The template-based modeling methods are based on knowledge learned from the
known protein structures deposited in protein databases [22]. These methods use
sequence similarity to model the unknown target structure based on known structures that
are understood to be homologous to it. When a query protein shares at least 30%
sequence similarity with a protein of known structure, template-based modeling can be
used to predict the structure with reasonably good accuracy [23, 24].

Template-based modeling consists of four steps:

a) Find a good template from already determined structures in the protein data bank, by
means of sequence alignments.

b) Align query sequence with the template structure.

c) Build the structural framework based on alignment, by copying aligned regions.

d) Fill up the gaps on the framework [25].

Template-based modeling has been successful in many cases when homologs with
high sequence similarity are available. However, when such homologs with high
sequence similarity are not present in PDB or sequence alignments are incorrect, building
high-quality templates becomes a difficult challenge. Moreover, the assumption that

proteins with high sequence similarity share similar structures is not always true.

1.3.3.2 Template-less Modeling

Different from template-based prediction, ab initio (or de novo) predictions are
methods that do not rely on templates of known structures with high sequence similarity.

An ab initio prediction system is generally composed of two main elements: a
search algorithm and a scoring function (or energy function). The search algorithm is
designed to broadly explore the protein conformation space guided by the scoring
function. The scoring function is derived from physics laws or statistics, or is a
combination of both, characterizing the favorability of a protein sequence adopting a
certain structural conformation. The scoring function should be able to distinguish good
conformations from bad confirmations. It should also properly describe the forces behind
the folding process. Many scoring functions have been proposed in the literature of ab
initio prediction. Examples include, DFIRE [26], a distance-based all atom knowledge-
based function, CHARMM [27], a physics-based energy function, ICOSA, a knowledge-



based contact potential correlating residue-residue interaction distance and orientation
[28], and ROSETTA[29], that includes terms combing physics-based and knowledge-
based approaches.

One of the main challenges in ab initio protein structure prediction is the
tremendously large conformation space. Reducing the conformation search space is the
key to successful ab initio prediction. For this regard, the structural features, such as
secondary structures, disulfide bonds, solvent accessibility, residue contacts, etc., become
extremely useful. For example, if a protein segment is predicted to be in a certain
secondary structure state with high confidence, then a limited range of the corresponding
torsion angles can be used. Such restrictions on the degrees of freedom in protein

segments will significantly reduce the conformation search space.

1.3.4 Protein Structural Features Prediction

The problem of structural feature prediction is formulated as a classification
problem, such that each residue is predicted to be in one of several states. A coarse-grain
classification of secondary structure uses 3 states (helix, sheet, and coil), whereas a fine-
grain classification uses all 8 states (o-helix, n-helix, 3o-helix, B-strand, B-bridge, turn,
bend and others). The disulfide bonding prediction involves two stages. The first stage is
the bonding state prediction, whose goal is to determine whether each Cysteine residue in
a protein chain is involved in forming a disulfide bond or not. Afterward, the second
stage carries out the connectivity prediction, where Cysteine pairs likely to form disulfide
bonds are identified. Residue solvent accessibility is usually classified into two states,
such that each residue is classified into either buried or exposed. Finer-grain
classification is also possible, where levels of solvent-exposure are defined and used in
the classification.

Almost all current methods for protein structural features prediction use
evolutionary information revealed by multiple sequence alignment (MSA) of a family of
homologues proteins. This information forms the input encodings into a machine learning

algorithm, trained to recognize and discriminate the different structural features’ states.



1.4 Dissertation Organization

The remainder of this dissertation is organized as following. Chapter 2 presents
the related work in predicting protein structural features and also the related work in
GPU-acceleration in general purpose computing and in computational biology. Chapter 3
describes our approaches for enhancing the accuracy of predicting protein structural
features. We present the application of the proposed approach in predicting secondary
structures, disulfide bonds, and solvent accessibility in Chapters 4, 5 and 6, respectively.
In each application area, we present implementation details of the approach,
computational results, and discussions. In Chapter 7, we present our method of
accelerating many-body potentials on the GPU. Finally, Chapter 8 summarizes our

conclusions and provides our future (post-dissertation) research directions.
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CHAPTER 2

LITERATURE REVIEW

In this literature review we present a review of the history of protein structural
features’ predictions. Three generations of predictors are presented in section 2.1, After
that, in section 2.2, we provide an analysis of the current prediction methods. In Section
2.3 we present a review of the GPU-acceleration in general purpose computing and in

computational biology.
2.1 History of Protein Structural Feature Prediction

Assuming that “there should be a strong correlation between amino acid sequence
and structural state,” historically, protein structural feature predictions evolve through

three generations.

2.1.1  1* Generation: Statistics-based methods

The early methods of prediction are based on the fact that amino acids vary in
their favorability in adopting specific structural states. Using secondary structure as an
example, some amino acids prefer to adopt helical conformations (Methionine and
Alanine), some favor 8-strand conformations (Tryptophan, Isoleucine and Valine), and
some are commonly found in turns (Proline and Glycine). Thereby, statistical analysis
can be performed for each amino acid in the various types of structural states which will
result in single-residue frequency. These statistical analysis approaches become the
foundation of the first-generation of structural features predictors.

Representative examples of the first generation methods include Chou and
Fasman’s method [30] and the GOR method for secondary structure prediction and a
method by Fiser et al. [31] for disulfide bonding state prediction.

Although these early statistics-based methods are very simple to implement,
databases of known protein structures are of limited size and, more importantly, simple
amino acid preferences are not sufficient enough to predict the protein structural

information with high accuracy. As a result, the accuracy of the early prediction methods
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did not exceed ~60% in 3-state secondary structure prediction and ~70% in disulfide

bonding prediction.

2.1.2 2™ Generation: Machine learning-based methods

The second generation of structural features predictors extends the early methods
by using the segment-based statistics (11-21 residues per segment). The basic idea is
based on the likelihood of the central residue in a segment (or window) of size N residues
to adopt a particular structural state.

In order to detect higher order correlations among amino acids, machine learning
methods were used in this era of structural features prediction history. The typical
methodology, based on the earliest published work by Qian & Sejnowski in 1988 [32], is
to train a learning machine (for example, a feed-forward neural network) to recognize
amino acid patterns adopting certain structural feature. In addition to neural networks,
support vector machine, nearest neighbors, random fields, and Hidden Markov Chain are
popular machine learning tools in predicting protein structural features.

Due to advancements in machine learning methods, the accuracy of structural
feature prediction is significantly improved. Secondary structure prediction approaches

70% and disulfide bonding state predictions reaches 81%.

2.1.3 3" Generation: Prediction with Effective Features

In addition to sequence information, computational biologists found that certain
information, when used as features in machine learning, can effectively enhance the
prediction accuracy. Therefore, modern predictors focus on generating and selecting
effective features in machine learning. The most effective feature is the evolutionary
information obtained by multiple sequence alignment (MSA). The fundamental idea of
using evolutionary information is based on the fact that structure is more conserved than
sequence. When MSA is used, one can extract more information, including conserved
residues and residue substitutions during evolution. Such information is particularly
useful to achieve further accuracy improvement.

The following subsections provide literature review of the current methods of

predicting protein structural features.
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2.1.3.1 3-state secondary structure

The first approach to use MSA profiles in secondary structure prediction was
developed by Rost and Sander [33, 34], in a method called PHD, presenting an accuracy
surpassing 70% for the first time when introduced. Additional input information derived
from the results of MSA, including conservation weights and number of insertions and
deletions, were used in later versions of PHD method [35] and resulted in ~1.6% increase
of the accuracy over the original PHD method.

The PSI-PRED program [36] uses PSI-BLAST to replace BLAST to generate
sequence position profiles and reaches an accuracy of ~76.5-78.3%. The more recent
update of PHD method, called PROFPHD [37], also uses PSI-BLAST-derived profiles as
well as ensembles of bidirectional recurrent neural network architectures and a large non-
redundant training set to achieve an overall prediction accuracy of ~78%.

More recent methods with enhanced strategies and additional features lead to
continuing improvements of secondary structure prediction accuracy. Porter [38], with
the use of bidirectional recurrent neural networks (BRNN) and PSI-BLAST profiles,
reached an accuracy of ~79%. YASPIN [39], with the use of HMM to filter the
prediction of a NN, leads to similar accuracies of ~79%. SPINE [40], with the inclusion
of physico-chemical properties of each amino acid combined with PSI-BLAST profiles,
obtains an accuracy of ~80%. Moreover, large scale training is been conducted in order to
improve the prediction performance. The recent version of PSI-PRED reported an
accuracy of ~80% due to large scale training. Furthermore, new approaches have been
proposed to apply a number of the recent prediction methods then combine their results
and take a consensus prediction on top of them. Jpred [41] is an example of consensus
predictors with an accuracy of ~81%.

All secondary-structure prediction methods are evaluated by the EVA experiment,
a Web based assessment tool that evaluates prediction servers since 2006 [42]. It is also
important to notice that there is certain grade of uncertainty in the assignment of
secondary structures. The theoretical maximum prediction accuracy for the 3-state
secondary structure is in the range between 88% and 90% [43], due to the errors resulted
from secondary structure assignments based on crystal structure, and due to inconsistency

of secondary structure assignments by different methods of different parameters, e.g.,
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DSSP [12] and STRIDE [24]. These errors will cause ambiguity in mapping 3D atom

coordinates into secondary structure classes.

2.1.3.2 8&-state secondary structure

Unlike 3-state secondary structure prediction, very few methods were developed
for the 8-state secondary structure prediction, to the best of our knowledge. Pollastri et al,
extend their 3-state prediction method, SSpro, by developing another version for 8-state
secondary structure prediction, SSpro8 [37]. The 8-state prediction accuracy reported in
their work was 62-63%. A more recent prediction method developed by Xu et al [44]
reports 67.9% accuracy through the use of conditional neural field (CNF) model, the
method is called RaptorXss8.

2.1.3.3 Disulfide bonding state and bonding connectivity

Regarding the disulfide bonding state prediction methods, the use of evolutionary
information contained in MSA leads to substantial improvements. Fariselli et al. [45]
designed a jury of NNs trained by sequence profiles using MSA and resulted in 81%
accuracy. Fiser and Simon [46] derived conservation scores from MSA to predict the
oxidation state of Cysteine residues and obtained an accuracy of 82%. More recent
methods with enhanced strategies and additional features lead to continuing
improvements of bonding state prediction accuracy. Mucchielli-Giorgi et al. [47]
investigated the contribution of the overall amino acid composition of the protein and
managed to increase the accuracy to 84%. Ceroni et al. [48] proposed a method using
spectrum kernel in SVMs, which yielded 85% prediction accuracy. Martelli et al. [49]
combined a hybrid HMM and a NN in their prediction system and reached 84% and 88%
accuracy measured on protein basis and Cysteine basis, respectively. Song et al. [50]
incorporated dipeptide composition as features in prediction and gained similar accuracy.

The connectivity prediction started with the early method proposed by Fariselli
and Casadio [S1] based on graph matching, such that edges are weighted by residue
contact potentials. Although this method was 17 times higher than a random predictor,
still it is not comparable with the current connectivity predictors that incorporate
evolutionary information contained in MSA, in advanced machine learning technologies.

Ceroni et al. [52] encoded MSA data into Recursive Neural Networks in their
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DISULFIND server with 54.5% pattern precision and 60.2% bonded pair accuracy. Ferre
and Clote [53] took advantage of secondary structure encoding in their DIANNA server
and reached 86% accuracy. Cheng et al. [54] performed large-scale prediction of
disulfide connectivity using kernel methods, two-dimensional recursive neural networks,
and weighted graph matching and obtained accuracy of 51% pattern precision. Vincent et
al. [55] took advantage of decomposition kernels for classifying chains instead of
individual residues and achieved prediction accuracy comparable to the other prediction

methods.

2.1.3.4 Solvent accessibility

A number of methods have been developed using different protein datasets and
different computational methodé, including neural networks [56-61], support vector
machines [62, 63], nearest neighbor [64, 65], information theory [66], and Bayesian
statistics [67]. In most of these methods, the prediction is performed in a discrete fashion,
where predictors discriminate among a number of predefined levels or states of residues’
exposure with predefined thresholds.

Predicting solvent accessibility using evolutionary information, revealed by
multiple sequence alignments, led to a significant accuracy increase. Rost et al [68], Cuff
et al [69], and Thompson et al [67] reported a two-state prediction accuracy of ~75% with
0.25 threshold. More recent prediction methods benefit from PSI-BLAST derived profiles
to reach higher accuracies of ~78% in two-state prediction with 0.25 threshold, and an
accuracy of ~64% in three-state prediction with 0.9 and 0.36 thresholds [59, 63-65].

Most of the current methods nowadays provide real value prediction, in addition
to discrete-fashion prediction (in 2-state, 3-state, or more). The Pearson correlation
coefficient (between the predicted and true values) reported in real value predictors is
~0.65 [64, 70].

2.2 Analysis of Protein Structural Feature Prediction

Large improvements have been obtained since the first generation structural
features predictors. However, little significant progress has been reported in the past few
years. Obtaining improvements of even a fraction of a percent has become very difficult.

One of the reasons is the closer to the theoretical upper bound, the harder to achieve a
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higher accuracy. More importantly, lack of further effective features limits the
performance of the learning machines.

Probably the most effective features, when predicting the structural state of a
residue, are the structural states of the neighboring residues. For example, if the
neighboring residues are exposed to solvent, the middle residue is likely exposed to
solvent as well. If the neighboring residues are helices (sheets), the middle residue also
has a high probability to adopt helix (sheet). Unfortunately, the structural features of the
neighboring residues cannot be directly applied to the learning machines, since they are
unknown beforehand.

The main contribution of this work is the generation of context-based scores to
describe the favorability of the neighboring residues in adopting certain structural states
and then encode these scores to train machine learning methods, with the expectation of
improving prediction accuracy. In Chapter 3, we will explain our approach of extracting,
selecting, and then encoding these features in a neural network algorithm to improve the

prediction accuracy of protein structural features.
2.3 GPU-acceleration

Today’s Graphical Processing Units (GPUs) greatly outpace CPUs in arithmetic
throughput and memory bandwidth, forming a dramatic shift in the field of high
performance computing [71]. With the massively parallel computing mechanisms, GPUs
are able to deliver performance speedups tens of times more than the CPU (and
sometimes hundreds of times), to solve problems in few minutes instead of hours or days.
Hence, GPUs became the ideal processor to accelerate a wide variety of data parallel

applications.

2.3.1 GPU applications in general purpose computing

Efforts to utilize the GPU for non-graphical applications have been underway
since 2003. With the introduction of the CUDA environment from NVIDIA in 2007, a
wide variety of applications have emerged [71-73] taking advantage of the GPU
capabilities in accelerating the operations of these applications. Owens et al. [72]

described the techniques used in mapping general-purpose computation to GPUs, and
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they surveyed and categorized the latest developments in general-purpose application
development on GPUs. Another survey was conducted by Stone et al. [74] on the
development of molecular modeling algorithms that uses GPU computing. Zhu has
designed a number of GPU-accelerated algorithms with CUDA for global optimization
[75, 76]. Zhou and Tan [77] developed a parallel approach to run standard particle swarm
optimization on GPU with speedup of around 11. You [78] designed a parallel Ant
Colony Optimization (ACO) system for Traveling Salesman Problem on GPUs.
Bakhtiari et al. applied GPU to Monte Carlo optimization in dose calculation in radiation

therapy [79].

2.3.2 GPU applications in energy evaluations

It is common that the computation time of a protein structure modeling program
ranges from several hours to several days or even longer. Many protein structure
modeling applications can greatly benefit from a significant reduction in computation
time by enabling one to sample broader conformation space to discover the appropriate
structures, execute more simulation steps to obtain models with better accuracy, or carry
out simulation on much larger proteins.

The most costly operations in many protein modeling applications are energy
evaluations of protein molecules. Protein energy evaluation involves calculating all the
interactions among protein atoms, which is typically an N-body problem. Reducing the
energy evaluation time is the key to accelerate many protein structure modeling
applications.

Being able to simultaneously calculate interaction forces among N particles,
GPU has been employed to accelerate the N-body simulation in a variety of applications.
For example, Nyland, Harris, and Prins [80] developed a fast N-body astrophysical
simulation on NVIDIA GeForce 8800 GTX GPU. They reported on the performance of
the all-pairs N-body kernel for the simulation, demonstrating several optimizations to
improve the performance.

Stock and Gharakhani [81] introduced an efficient multi-pole-accelerated tree
code method for turbulent flows computations. Anderson, Lorenz, and Travesset [82]
developed a general purpose molecular dynamics program that runs entirely on the GPU,

showing that GPU provides an inexpensive alternative to a fast 30 processors distributed
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memory cluster. Mark et el. [83] described a complete implementation of all-atom protein
molecular dynamics running entirely on GPU, including all standard force field terms,
integration, constraints, and implicit solvent. They provided two implementations on ATI
and NVIDIA GPUs. Belleman, Bedorf and Zwart [84] took the advantage of the
parallelism in the GPUs in speeding up the force evaluations in a gravitational direct N-
body simulation. They concluded that modern GPUs offer an attractive alternative to

special purpose hardware designed for simulations.
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CHAPTER 3

CONTEXT-BASED MODEL

In this chapter we describe our proposed approach. An overview of the materials
and the methods are presented in section 3.1, implementation details are described in

section 3.2, and methods of evaluations are presented in section 3.3.
3.1 Model Overview

Figure 12 is a flow chart representing our developed approaches in predicting
protein structural features. The dashed lines in the figure represent optional steps. First of
all, in this work, we derive a statistical model to obtain context-based scores. Then,
together with other features such as evolutionary information, we incorporate the context-
based scores in machine learning approaches to predict secondary structures, disulfide

bonding state and bonding connectivity, and solvent accessibility.

Context-based Features (__ff{{e_'fw_ _

Multiple Sequence Generator GPU
Alignments .

l Generate

Features
Secondary Structure
Tempiates Constructor
Comtructi
]
. v
Disulfide Bond Secondary Structure [C-- Template I Solvent Accessibility
Prediction Prediction Prediction
y ¥y v
Bonding state Connectivity 3-state 8-state

Figure 12 The proposed methodologies in predicting protein structural features.
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Moreover, we take advantage of the emerging parallel computing architectures in
GPU to accelerate the derivation of context-based features. Finally, we make the
predictors available to the public via web services and software packages.

It is well known that there exist general short range regularities in the primary
structure of proteins [85]. Early studies have shown that the types and conformations of
neighboring residues play a significant role in the structural conformation a residue
adopts. In fact, taking advantage of the local information embedded in the context of a

residue is the foundation for most protein structural feature prediction methods.

3.1.1 Datasets
s Training Data Sets

A number of protein datasets are taken from the protein sequence culling server,
PISCES [5]: Cull16633, Cull7987 and Cull5547, referred to as CullPDB lists. Table 2
lists the characteristics of each dataset. These lists are used in our experiments for the
proposed approach in the different structural features prediction methods. Cull16633, the
largest among the datasets, is used for generating context-based statistics. The other two
datasets are used for NN training in structural prediction.

The structural features of each residue in the CullPDB lists are determined by the
DSSP program [12]. These features include 8 states of secondary structure, solvent
accessible surface areas, and disulfide bonds among Cysteine residues only. Figure 13
shows the distribution of various structural features in Culll6633. Similar to most
existing structural feature prediction methods, we apply a general elimination strategy to
CullPDB list. We eliminate very short chains with less than 40 residues, since the PSI-
BLAST program is usually unable to generate profiles for very short sequences. We also

remove very large chains whose lengths are greater than 1000 residues.

Table 2 Characteristics of CullPDB lists.

Cull16633 | Cull7987 | Cull5547
Number of chains 16,633 7,987 5,547
Pair-wise sequence identity | 50% 25% 25%
Resolution (A) 3.0 3.0 2.0
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Figure 13 Distribution of the structural states in the Cull16633.

s Benchmarks
For the purpose of comparing our methods with the current methods of structural
feature predictions, several protein benchmark sets are used. These sets include CB513

[69], Manesh512 [2], Carugo338 [86] and the CASP9 targets [87].

3.1.2 Multiple Sequence Alignment

Our proposed approaches critically rely on the evolutionary information in
multiple sequence alignment (MSA). Similar to many modern protein structural feature
predictors, this evolutionary information, representing the divergence of a protein chain
in its structural family of proteins and contained in matrix format referred to as PSSM
(Position Specific Scoring Matrix), is obtained by running PSI-BLAST with 3 iterations

of searching against non-redundant database of protein sequences (NR).

3.2 Model Implementation

Figure 14 depicts the flowchart of the proposed model. PSSM data of the
CullPDB sets are generated by running PSI-BLAST against the NR (non-redundant)
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database. After that, context-based features are generated based on the PSSM data of
Cull16633 and then combined with the PSSM data of Cull7987 or Cull5547 to describe
each residue. The resulting residues’ features are then encoded in neural networks for
training and testing. The context-based features are represented as pseudo-potential
scores to estimate the favorability of residues in adopting specific structural states within
their amino acid environment. These potentials are calculated based on the context-based

statistics, which are derived from the protein datasets.

3.2.1 Derivation of Context-based Scores

We extract statistics of residues at different relative positions in Culll6663
protein sequences. These statistics represent estimations of the probabilities of residues
adopting specific structural states when none, one, or more of their neighbors in context
are taken into consideration. Fortunately, the recent increasing number of determined
structures in protein data banks will make derivation of high-order-inter-residue

correlation statistics feasible.
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Furthermore, to obtain more precise neighboring correlation statistics of residues’
structural states, we consider the divergence of a protein sequence in its structural family
by using the PSSM data specifying the frequency of each amino acid type in a protein
MSA. The derived statistics of correlations between each residue and its nearby
neighbors are then used to calculate context-dependent pseudo-potential scores using
Sippl’s potentials of mean force method based on the inverse-Boltzmann theorem [88].

These scores are encoded in NN training for the different structural features predictors.

3.2.2 Machine Learning Algorithm
We consider neural network as our machine learning model. Implementation

details will be presented with each predictor in chapters 4, 5 and 6.
3.3 Methods of Evaluation

We use Qi and SOVi scores, where i is the number of states, to measure the

prediction quality of secondary structure and solvent accessibility. The definition of Qi is,

Q; =100+ pi/Ni , where P, is the total number of correctly predicted residues in state i

and N; is the total number of residues in this state. For example, in 3-state secondary
structure prediction, Q3 is the percentage of residues predicted correctly in one of the
three states: helix, strand, and coil.

For state i, SOVi (Segment overlap [89]) is defined as,

SOV, = 100 1 minOV(s1,s2) + 8(s1,s2)
. = K —— %
! N; Zs' maxO0V(s1, s2)

* len(s1)

,where (s1, s2) is a pair of overlapping segments, S, is the set of all overlapping pairs of
segments in state i and N; is the summation of the sl lengths in Si (where there is an
overlap with s2) plus the summation of the lengths of s1 in S’ (where there is no overlap
between segment s2 and s1). minOV(s1,s2) is the length of the actual overlap of (s1, s2)
in state i, maxOV(sl,s2) is the total extent for which either segment (sl or s2) has
residue in state i and 6(sl,s2) is defined as: 6(s1,52) = min{fmax0V(s1,s2) —
min0V(s1,s2), min0V(s1,s2), int(len(s1) / 2),int(len(s2) / 2)}, where len(s1)
and len(s2) are the lengths of sl and s2 respectively.
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In order to measure the quality of disulfide bond prediction, we use sensitivity
(Sn), specificity (Sp), and Matthew’s correlation coefficient (Mcc) [90]. The definitions

of each is given by
TP
Sn=""/(TP + FN)

= TN
So=""/(TN + FP)
(TP*TN —FN = FP)
cC =
J(TP+FN)«(TN + FP) « (TP + FP) » (TN + FN)

where TP, TN, FP, and FN are the number of true positives, the number of true negatives,
the number of false positives, and the number of false negatives, respectively. We also

use residue-level accuracy (Q.) and protein-level accuracy (@p) to measure the prediction

accuracy. The residue-level accuracy is defined as, Q. = PC/ N Where P is the total
c

number of correctly predicted residues (in a specific structural state), and N, is the total

. . . P .
number of residues. The protein-level accuracy is defined as, Q, = ”/ Ny where P, is

the total number of proteins where the structural states of all of its residues are correctly
predicted and N,, is the total number of proteins in the data set.

Furthermore, in order to have a reliable estimate of the prediction accuracy, N-
fold cross validation is conducted. We randomly divide the protein chains in the training
set into N subsets with approximately the same number of chains. At each fold, N-2
subsets are used for training, one for testing, and one for validation. To ensure complete
separation of the training set and testing set for each fold, we generate a set of scores only
based on the sequences in the N-2 training subsets and then encode it in training. Hence,
totally N sets of context-based scores are generated for N-fold cross validation. The
overall prediction accuracy is calculated as the average accuracy of the N fold
predictions.

Regarding the GPU acceleration, a simple performance metric is used to measure
the speedup, defined by dividing the CPU time (tCPU) by the GPU time (tGPU).
speedup = tCPU / tGPU.
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CHAPTER 4

SECONDARY STRUCTURE PREDICTION

Using the context-based model, we extract context-based statistical scores to
measure favorability of a residue adopting secondary structure in its amino acid
environment. The fundamental idea is based on the fact that the formation of secondary
structure exhibit strong local dependency, particularly, residues in a protein sequence are
strongly correlated in different sequence positions in coils, B-sheets, 3-10 helices, a-
helices, and n-helices. The context-based statistics indicate the favorability of a residue
adopting a secondary structure conformation in presence of its neighbors in sequence. We
derive statistics for singlets, doublets, and triplets in a sequence window from the
CullPDB dataset. Then scores measuring the pseudo-potentials of a residue adopting a
certain secondary structure are calculated using the potentials of mean force approach.
These scores are incorporated as sequence-structure features together with the PSSM data
to train the secondary structure prediction neural networks. We apply our approach to
predict secondary structures in both 3-state and 8-state. Our server implementing this
method is named SCORPION (SeCOndaRy structure PredictiON) [91]. C3-SCORPION
for 3-state prediction is available at: http:/hpcr.cs.odu.edu/c3scorpion and C8-
SCORPION for 8-state prediction is available at: http://hpcr.cs.odu.edu/c8scorpion, To
take advantage of available homolog information, we also develop a template-based
approach to construct templates for secondary structure predictors [92].

We test our methods on benchmarks of CB513 [69], Manesh215 [16], and
Carugo338 [86] as well as the CASP9 targets [87]. We compare our results with a set of
popular secondary structure prediction methods including Porter (ab initio) [38], Psipred
[36], PROFphd [35], Netsurfp [60], and Jpred [41] for 3-state predictions, and with
RaptorXss8 [44] for 8-state predictions. Prediction accuracy of our methods is further

analyzed in this work.


http://hpcr.cs.odu.edu/c3scorpion
http://hpcr.cs.odu.edu/c8scorpion
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4.1 C3-SCORPION

The early studies in protein secondary structure show that the types of nearby
neighboring residues play a predominating role to secondary structure conformation a
residue adopts. In particular, the formation of interactions within coils beyond nearest
neighbors appears not to contribute statistically significantly in determining coil structure
[93]. The hydrogen bonds between residues at positions i and i+3, iand i+4, and i and i+5
lead to the formation of 3-10 helices, a-helices, and n-helices, respectively. Moreover,
residues in contacting parallel or anti-parallel B-sheets are connected by hydrogen bonds
in alternative positions.

Figure 15 shows the probability of Alanine as the middle residue of a triplet with
neighboring residues at 1~5 positions away when adopting a-helix as secondary
structure. As expected, the nearest neighbors have the strongest influence to the middle
Alanine and the further the neighbors are away, the weaker the influence. However, even
residues five positions away have non-negligible influence on the secondary structure of
the middle Alanine.

Hence, capturing these correlations and then incorporate them as features into the

learning process of a secondary structure predictor can enhance the prediction accuracy.

4.1.1 Method Implementation

» Context-based Statistics

We extract statistics of singlets (R;), doublets (R;R,x), and triplets
(RiRi4+k,Ri4k,) residues at different relative positions from protein sequences in Cull
Database. These statistics represent the estimated probabilities of certain residues
adopting a specific structural state when none, one, or two of their neighbors in context
are taken into consideration, respectively [94].

The observed probabilities of the i residue R; in a singlet (R;), doublet (R;R;4),
and triplet (R;R;;k,Ri4x,) adopting a specific structural state C; will be respectively

estimated by

Nobs (Ci» Ri)

Pobs (CiiRy) = Noro(RD)
ops 1
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Nobs(Cis RiRi4k)
Nobs(RiRisx)

Nobs(Ci, RiRjsk, Risk,)
Nobs (RiRHk1 Ri+k2) '

Pobs(CiIRiRHk) = and

Pobs(cilRiRHk,Rsz) =

P{HIxAY)/P{H|A) P(H|x-A-y)/P(H|A)

P(H|x—A-y)/P(H|A) P(H|x—A—y)/P(H|A)

Figure 15 The probability of Alanine as the middle residue of a triplet with
neighboring residues at 1~5 positions away when adopting a-helix as secondary
structure. x, y, and - represent the left neighbor, right neighbor, and gap,
respectively. The neighboring residues are ordered by their favorability of forming
a-helix. The nearest neighbors have the strongest influences; however, neighbors
6 positions away still have certain non-negligible influences on the middie
Alanine.
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Here Nops (i, Ri), Nobs(Ci, RiRjzk), and Ngps(Cj, RiRj4k, Risk,) are the weighted
observed number of singlet (R;), doublet (R;R;,x), and triplet (R;Rj;,Risi,) with R;
adopting conformation C; in the protein structure database. Nops(R;), Nops(RiRi4+k), and
Nobs(RiRi+k, Risk,) are the weighted observed number of singlets, doublets, and triplets.

The observed numbers will be calculated as

Nos(R) = D D PSSM(R),

Protein j

Nobs(RiRisi) = ). > PSSMy(R;) * PSSM;(R 10,

Protein j

Nobs(RiRiskgRivig) = ). ) PSSMi(R;) + PSSM;(Ris, ) * PSSMy(Ris, )
Protein |
Ci=C;

Nows(CuRD= D D" PSSM(R),
Protein
Ci=Cy

Nobs(CoRiRisi) = D D PSSMy(R)) + PSSMy(Rys,0), and
Protein j
Cj=Cy

Nobs(CiRiRisk,Risig) = ). ) PSSM;(R) * PSSM(Ryei,) * PSSM(Riv, ),

Protein j

where PSSM;(R;) is the PSSM frequency for residue type R; at the " position of a

protein sequence.

»  Context-based potentials

The context-dependent pseudo-potentials are generated using the derived statistics
of correlations between each residue and its nearby neighbors based on Sippl’s potentials
of mean force method. According to the inverse-Boltzmann theorem [88], we calculate
the mean-force potential Ugingier (R;, C;) for a singlet residue R; adopting structural
state C;,

Pobs(ci'Ri)

Usm,qlet( i l) RT nPref(Cimi)

Here R is the gas constant, 7 is the temperature, and Pr.¢(C;|R;) is the referenced

probability. In our method, we employ the conditional probability approach described in

[95] to estimate the referenced probability by



38

;=€
Pref(CiIRi) = Z Nobs(Cj: Rj)/Z Nobs(Rj)-
J J

Similarly,  the  mean-force  potentials  Ugoupier (Ci) R;Riyx)  and
Um-p,et(Ci, RR;x 1R,-,,kz) for residue adopting structural state are calculated as

Pobs(ci |RiRi+k)Pref(Ci IRi)
Pres(CiIR;Ri k) Pops(CiR;)

Ugoubiet (Ci» RiRi4x) = —RTIn

and
Utriptet (Ci» RiRi+k,Ri+i,)

Pobs (Ci|RiRivic, Risi,)Pres (Ci| RiRisk,)Pres (Ci| RiRisk, )Pobs (CiIR;)
Pref (Ci|RiRisi, Rivk, )Pobs(Ci| RiRisk, )Pobs(Ci| RiRisk, )Pres (CilR:)

with the corresponding referenced probability,

= —RTin

Cs=Cy
Rivk=Risk

Prep CIRR) = D Nons(GRiRyue) / D" Nons(RiR;1),
j j

and

Cy=C;
R/+k1 =R‘+k1
R]+k2 =Rl+k2

Pref (IR Rk Rivi) = ) Nobe(Gy RiRy i Rray) / > Nobs(RiRy i, Ry
j J
Then, the context-dependent pseudo-potential for R; is the summation of singlet, doublet,
and triplet potentials within window size
U(Ci, Ri) = Usingiee (G, R)) + Z Udoubtet (Ci, RiRi41) + Z Ueriptet(Cis RiRisie, Rivk,).
k ky.k2
These pseudo-potential scores are then incorporated as sequence-structure

features together with the PSSM data to train the secondary structure prediction process.

»  Neural Network Model

We incorporate three phases of feed-forward neural network training in C3-
SCORPION. The first and second phases are sequence-to-structure and structure-to-
structure training, respectively, while the third phase is used to refine the prediction

results. Figure 16 illustrates the neural network encoding and architecture for three
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phases of training. In the sequence-to-structure training, a sliding window of 15 residues
is selected, where each neural network is trained to predict the class of that residue in the
middle of the window. Each residue is represented by 20 PSSM values and 1 extra value
to indicate C- or N-terminals overlap. When the context-based scores are incorporated, 3

additional encoding values for each residue are needed.

protein chain
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Figure 16 Three phases of prediction (architecture and encoding) for C3-
SCORPION.
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Overall, 360 input values are used to encode each residue in 3-state prediction.
After sequence-to-structure training, the next phase is to carry out a structure-to-structure
training to eliminate unrealistic secondary structure predictions such as ... CCCHCCC....
The last phase employs a similar manner as the first one, but setting some context-based
scores to “absolute favorable” if the results from structure-to-structure prediction
indicates that the probability of a residue adopting a certain secondary structure is higher
than 90%.

4,1.2 Results of C3-SCORPION

Table 3 compares the 7-fold cross validation Q3 and SOV3 accuracies of neural
networks for 3-state prediction with context-based score encoding (PSSM + Context-
based Score) and without context-based score encoding (PSSM Only). Both neural
network trainings go through the same training and cross-validation procedure. When the
context-based scores are incorporated, both Q3 and SOV3 accuracy enhancements are
observed in all three secondary structure classes. The overall cross-validated Q3 accuracy
is 82.74%, which is higher than the reported accuracies (~80%) in the popular secondary
structure prediction servers [35, 36, 38, 41, 60]. It is important to notice that the most
significant accuracy improvement (4.02%) is found in PB-sheets. This is particularly
encouraging because B-sheets are typically harder to predict than helices due to global
interactions. 2.55% and 1.47% accuracy improvement are also observed in helices and
coils, respectively. Due to the fact that residues in sheets and helices yield stronger
correlation to the neighboring residues than those in coils, the context-based scores are
more effective on sheets and helices predictions. The overall 7-fold cross-validated SOV3
accuracy reaches 86.25%, which is 2.39% higher than that of using PSSM encoding only.

Table 4 shows the Q3 accuracy and the composition frequency of each amino acid
type. The prediction accuracy for Cysteine is the lowest, mainly due to its lowest
composition frequency in protein sequences. Moreover, a Cysteine residue may form
disulfide bond with another Cysteine residue, which complicates the prediction of their

secondary structures.
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Table 3 7-fold cross validation Q3 and SOV3 accuracies for 3-state prediction in
SCORPION.

PSSM Only PSSM + Context-based Score
Qu 84.74% 87.29%
Qe 72.72% 76.74%
Qc 80.53% 82.00%
Qs 80.31% 82.74%
SOVy 87.85% 90.34%
SOVE 81.87% 84.13%
SOV¢ 81.19% 83.31%
SOV; 83.86% 86.25%

Table 4 Q3 accuracy for each amino acid type in SCORPION.

AA A R D C R E G H ]
Comp(%) __ B.11 __B.16 W33 B.92 [1.26 P88 b.88 .96 P33 .85
03(%) B3.59 B1.96 B1.96 [B3.67 11679 [B3.27 B3.03 [B3.56 B1.20 [84.29
AA ? K F 3 T W V
Comp(%) P64 582 1162 W19 K52 03 b45 142 B62 [1.00
03(%) B3.74 [B2.07 PB2.69 B0.65 B4.31 B0.72 B0.92 B0.02 [19.96 [3.70

Table 5 and Table 6 compare the Q3 and SOV3 accuracies between our method
and the popularly used secondary structure prediction servers, including Porter (ab
initio), PsiPred, ProfPhD, Netsurfp, and Jpred on benchmarks of CB513, CASP9,
Manesh215, and Carugo338. To enforce fairness comparison, we generate context-based
scores by removing all sequences with 25% or higher sequence identity to the sequences
in benchmark from Cull16633 and all homologs with higher than 25% sequence identity
to the chains presented in these benchmarks are excluded from Cull7987 when training
neural networks. It is interesting to notice that our prediction method has significant
higher accuracy in both a-helices and B-sheets than the other servers, with more than 5%
improvements in most cases. However, as a tradeoff, the accuracy of coils is around 5%
less compared to PsiPred, around 3.6% less compared to Netsurfp and around 2% less
compared to JPred. After all, compared to PsiPred with the highest Q3 accuracy, our
method’s improvement is from 0.5% to 2% on these benchmarks. Although 0.5% to 2%

accuracy improvement over PsiPred does not seem very attractive, it is important to
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notice that more than 5% improvement in SOV3 accuracy compared to PsiPred.

Moreover, the SOV3 accuracy of our server is 4.25% higher than Porter (ab initio) and is

more than 6% higher compared to Netsurfp, JPred, or PsiPred. This is because the

context-based scores incorporating secondary structure information of neighboring

residues enhance the coverage of the secondary structure segments.

Table 5§ Comparison of Q3 accuracy between SCORPION and other popularly used
secondary structure prediction methods including Porter (ab initio), PsiPred,
ProfPHD, NetSurfp, and JPred on benchmarks of CB513, CASP9, Manesh21§, and

Carugo338.
CB513 CASP9 Manesh215 Carugo338

= | 71.53 78.65 77.99 7.5

g 2 QH 81.30 85.45 81.72 80.67
& _é QE 66.18 67.4 66.73 66.21
~ {qQc 80.49 78.75 80.57 81.1
Q3 80.19 81.35 80.67 80.06

‘é_ QH 79.28 83.32 78.29 77.09
z QE 68.49 69.68 69.43 67.96
QC 87.11 85.84 88.63 88.87

Q3 76.52 76.91 76.77 76.47

% QH 80.06 84.41 80.02 78.76
£ QE 69.18 65.53 68.78 68.82
QC 77.54 76.48 78.06 78.8

Q3 77.88 79.35 78.7 78.24

‘\3 QH 77.21 82.46 77.39 76.2
§ QE 64.36 64.94 66.17 64.65
QC 85.56 84.27 86.39 87.1

Q3 78.72 79.24 79.32 78.67
3 QH 78.02 79.29 77.72 76.34
& QE 69.04 74.05 71.48 6937
QC 84.39 82.09 84.81 85.49
Z Q3 80.69 83.02 82.66 81.96

& % QH 85.27 88.38 86.22 85.51
©8 QE 72.69 77.66 75.97 74.07
2 [ac 81.15 81.44 82.95 83.43
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Table 6 Comparison of SOV3 accuracy between SCORPION and other popularly
used secondary structure prediction servers including Porter (ab initio), PsiPred,
ProfPHD, NetSurfp, and JPred on benchmarks of CB513, CASP9, Manesh215, and
Carugo338.

CB513 CASP9 Manesh215 Carugo338
_ SOV3 80.21 82.41 80.90 80.03
:g :5;; SOVH 84.64 88.36 85.07 84.09
£ é SOVE 76.06 77.24 76.70 76.68
~ SOVC 78.76 79.87 79.32 78.61
SOV3 78.91 81.24 79.55 77.63
: SOVH | 83.61 87.21 84.00 82.40
;:af SOVE 77.35 78.62 78.56 77.15
SovC 75.80 77.19 75.96 74.03
SOV3 78.96 79.87 79.62 78.28
EQ SOVH | 83.79 86.42 83.59 82.55
£ SOVE 76.19 74.08 76.52 76.21
SOVC 76.44 77.09 77.64 75.99
SOV3 71.66 79.74 78.92 77.18
§ SOVH | 82.21 86.13 82.86 81.62
é’ SOVE 75.06 75.25 77.02 75.40
sovc | 75.26 76.38 76.31 74.52
SOV3 78.82 81.70 79.63 77.98
T SOVH | 82385 83.39 82.88 81.61
& SOVE 77.56 82.52 79.62 78.51
SOVC 76.11 79.74 76.63 74.71
Z SOV3 83.98 86.38 85.72 84.45
& g SOVH |88.71 89.88 89.52 88.37
©s5 SOVE 80.64 84.57 82.91 82.12
@ SOVC | 81.84 84.31 83.71 82.57

4.1.3 Discussions

s Prediction with High Confidence
The feed-forward neural networks used in SCORPION provide a confidence
interval to estimate the uncertainty of the prediction of each residue. When above 90%

confidence is obtained, the secondary structure prediction of a residue has rather high
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accuracy (98% for helices, 94% for sheets, and 90% for coils in 3-state prediction and
99% for a-helix and 98% for B-sheet in 8-state prediction). Therefore, if consecutive
residues in a helix or sheet segment are predicted with high confidence, misprediction of
this helix or sheet segment is very unlikely. This is particularly useful in a variety of
applications such as assigning secondary structures to NMR constraints or Cryo-EM
density maps as well as limiting backbone torsion angle variations to reduce degree of
freedoms in template-free predictions [96].

Table 7 compares the total number of residues predicted with over 90%
confidence in CB513, Manesh215, Carugo338, and CASP in SCORPION with and
without context-based score encoding. Overall there are 153,073 residues in these four
benchmarks. For neural networks with PSSM-only encoding, the secondary structures of
60,222 (39.3% of all residues) residues are predicted with over 90% confidence. When
context-based scores are incorporated, the total number of residue secondary structure
predictions with over 90% confidence is enhanced by 15.5% to 69,537 (45.4% of all
residues in benchmarks). Compared to the neural networks using PSSM only encoding,
the numbers of residues predicted with over 90% confidence increase by 6.7%, 9.9%, and

42.3% in helices, strands, and coils, respectively.

s A 3-State Prediction Example

Figure 17 depicts an example of 3-state secondary structure prediction on protein
3NNQ chain A from CASP9 targets. The Q3 accuracy of PSSM only neural networks is
83.33%. When context-based score encoding is incorporated, the Q3 accuracy is thereby
improved to 90.35%. The main prediction difference is on the highlighted a-helix where

the PSSM-only neural networks miss.

Table 7 Total number of correct predictions with over 90% confidence on
benchmarks of CB613, CASP9Y, Manesh215, and Carugo338.

PSSM Only | PSSM+Score

# of residues predicted as H with 90% confidence 33,292 35,533
# of residues predicted as E with 90% confidence 13,298 14,611
# of residues predicted as C with 90% confidence 13,632 19,393

Total # of residues predicted with 90% confidence 60,222 69,537
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Nevertheless, the context-based scores of the residues in the highlighted helix segment, as
shown in Table 8, indicate that secondary structure of helix is highly favorable, which

help the neural networks to identify the major part of this helix.

AR ORNOAOC DR BADIACOBDINAC0RANBOREATEARCORI00NABHBANOEERNARAR0SOBN0R0N0BRIAR T 111111 11111111
NRBAONSOTITT11111122202222023333313333444444444455555555556006066066677771777788788888889799999999000000000011111
1234357890123456 7890171456 7898123456 739012 3456787012 3456789012 34567898 123456789017 34567800 12345678901 2345678991 )2 | IWMQ-A

MIENSSPYTSEHFHYTVTDIKOL TKLGATYDKTKK YWVYQGKPYMPDQF TFEL LDFLHQL THLSF SKMKALLERSHSPYYMLNRORTLKNITE TCKACAQUNASKSL EHHHHEH

COCCCCOCCCCOCCCCHIHHHIHHMCCE EECCCCEEEECCEEEEHMAHIHIHHIMCCOMHIIMHCCCCEECCHMHHHIHHCHHIHHHHCCOCCCCOCCCC | DSSPSS3
CCCCCCOCCCCCEECCHHMHNNHHMCCEECOCCCERECCCCECCCHMMIRNA S MMIOCCHHNCCOCCEEECCHI I NCOCCEECOCCORMOONCCC | PSSM Ouly
CCCCCCOCCCCCEEECHHHHHHHHOCEECCCCCEEEECCEFCCOMMSHINHCCCHHHMCCOCCEEECOMMMMHMO HHHOCCCOCOCCOCCCE | PSSM +Score

Figure 17 3-state secondary structure prediction for protein 3NNQ chain A from
CASPS9 targets.

Table 8 Segment of 3NNQA (82-115).

AA Context-based scores Structure Predictions True
UG, ...) | U(E,...) | UH,...) | PSSM+Score | PSSMonly | Structure
94 E 1.57 0.73 -1.66 H H H
95 T 317 0.43 -3.12 H H H
96 C 0.12 0.37 -0.08 C C C
97 K 5.11 1.01 -5.11 H C H
98 A 1.91 0.88 -2.11 H C H
99 C 5.5 0.58 -5.31 H C H
100 A 0.49 0.5 -0.53 H E H
101 Q 2.18 0.22 -2.22 H E H
102 \" 0.91 -0.1 -0.65 C C H
103 N 2.13 0.22 -2.11 C C H
104 A -3.66 0.27 3.68 C C C
105 S -0.51 0.57 0.28 C C C




= Analysis of Misclassifications

The majority of the prediction errors in the set of benchmarks are resulted from
the misclassifications of type E and C with 8.34% and the misclassification of type H and
C with 7.98%. The misclassification of H and E is much less common with ~1.14%.
Table 9 shows the total number of misclassifications on the benchmark set of CB513,
CASP9, Manesh215, and Carugo338. A significant reduction of misclassifications is
observed upon the incorporation of context-based score encoding in the neural networks
in SCORPION. Misclassifying H to E and E to H has been reduced by 14.08%,
misclassifying H to C and C to H has been reduced by 8.83% and the misclassification of
E to C and C to E has been reduced by 5.18%.

Table 9 Misclassifications of secondary structure states on benchmark sets.

Misclassifications PSSM Only PSSM + Score
H->E 1864 1717

E->H 2318 1876

H->C 12997 11436

C->H 11550 10943

E->C 15125 13831

C->E 10383 10356

4.2 C8-SCORPION

Compared to the general 3-state secondary structure, DSSP program has more
detailed classifications of secondary structures to eight states, including 3-10 helix (G), a-
helix (H), n-helix (I), B-stand (E), bridge (B), turn (T), bend (S), and others (C). The 8-
state secondary structures convey more precise structural information than 3-state, which
is particularly important for a variety of protein structure modeling applications. For
example, accurate 8-state secondary structures predictions can restrict the variations of
backbone torsion angles within a smaller range according to the Ramachandran plot and

thus reduce the search space in template-free protein tertiary structure modeling.
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Moreover, differentiations among the different helical types (310-helix, a-helix and =-
helix) in secondary structure prediction aid to assign residues and fit protein structure

models in cryo-electron microscopy density maps [97].

4.2.1 Method Implementation

In this method, similar to C3-SCORPION using context-based model, we derive
the mean-force potential scores to estimate the favorability of a residue in adopting a
specific secondary structure state among the 8 states, within its amino acid environment.
These mean-force potentials are combined with PSSM data to train a two-stage neural

network for 8-state secondary structure prediction.

4.2.2 Results of C8-SCORPION

The overall Qg 7-fold cross validated accuracy on Cull7987 data set in C8-
SCORPION is 71.5%, where the accuracies of predicting 3¢o-helix (G), a-helix (H), =-
helix (1), extended strand (E), isolated bridge (B), bend (S), turn (T) and coil (C) are
22.7%, 92.4%, 0%, 82.9%, 2.4%, 22.3%, 51.6%, and 66.1%, respectively. The accuracy
comparison with prediction without using context-based score encoding is listed in Table
10. The prediction accuracies of the eight different secondary structure states vary
significantly. In particular, the prediction accuracy of G, I, B, and S are very low, mainly
due to the fact of their infrequent appearances in protein data banks (PDB), whose
distribution is shown in Figure 5. Hence, the 8-state classification is considered more
challenging than the 3-state, due to the extremely unbalanced distribution of the 8-
starctural states and their composition in native protein structures. As shown in Table 10,
when the context-based scores are incorporated, accuracy enhancements are observed in
all eight secondary structure classes, except for n-helix remaining at 0%. The very small
fraction of residues adopting m-helix (0.02%) structure makes it almost impossible to
predict.

To the best of our knowledge, SSpro8 and RaptorXss8 are the only two reported
public accessible servers for 8-state secondary structure prediction. At the time when this
dissertation is written, SSpro8 is not available online; however, RaptorXss8 has

demonstrated higher accuracy than SSpro8 in [44].
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Table 10 7-fold cross validation accuracy for 8-state prediction in SCORPION.

Qa Qu Q Qe QG |Qs Qr Qc Overall

PSSM Only 19.5% | 91.8% | 0.0% | 82.1% | 2.3% | 19.4% | 49.4% | 65.5% | 70.3%

PSSM+Score | 22.7% | 92.4% | 0.0% | 82.9% | 2.4% | 22.3% | 51.6% | 66.1% | 71.5%

Table 11 and Table 12 compare Q8 and SOV 8 accuracies of C8-SCORPION with
RaptorXss8 server on CB513, CASP9, Manesh215, and Carugo338, respectively. Similar
to 3-state prediction, in order to guarantee fairness, we generate a new set of context-
based scores by removing all sequences with 25% or higher sequence identity to the
sequences in the benchmarks from Cull16633 and all homologs with higher than 25%
sequence identity to the chains presented in the benchmarks are excluded from Cull7987
when training 8-state prediction neural networks. SCORPION has a higher accuracy, in
seven states except for n-helix, than RaptorXss8, with ~ 2% improvements in Q8 and ~

3% improvements in SOV8.

Table 11 Comparison of Q8 accuracy between SCORPION and RaptorXss8 on
benchmarks of CB513, CASP9, Manesh215, and Carugo338.

CB513 CASP9 Manesh215 Carugo338
Qs 65.59 69.31 67.69 66.64
Q 17.54 20.58 18.43 19.20
o | Qu 89.96 92.90 90.22 89.91
2 [Q 0.00 0.00 0.00 0.00
5 [Q 77.68 81.64 79.60 79.45
& Qs 0.09 0.00 0.32 0.44
S KoX 15.87 18.11 17.80 17.14
Qr 48.02 51.45 51.28 50.11
Qc 63.29 59.37 63.73 63.36
Qs 67.22 71.54 69.71 68.44
Q 21.81 22.46 23.01 22.42
z [ 90.95 93.58 91.42 90.55
= |Q 00.00 0.00 0.00 0.00
& [Q 80.31 83.95 82.54 81.44
2 | 1.43 1.04 1.79 2.22
© Qs 19.86 23.41 21.99 21.95
Qr 49.44 53.87 53.03 52.65
Qe 63.54 62.82 64.93 64.69
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Table 12 Comparison of SOV8 accuracy between SCORPION and RaptorXss8 on
benchmarks of CB513, CASPY, Manesh215, and Carugo338.

CB513 CASP9 Manesh215 Carugo338
SOVs 64.99 69.84 68.00 66.88
SOV, 20.04 21.27 20.81 2171
w | SOVi 88.95 90.71 89.97 89.24
4 [Sov, 0.00 0.00 0.00 0.00
5 [sove 82.50 84.81 84.15 84.61
g [Sovs 0.09 0.00 0.32 0.44
% [sovs 17.72 19.74 19.40 18.78
SOVy 50.79 53.92 54.73 53.74
SOV 55.13 59.61 58.78 58.01
SOV, 67.66 73.47 70.79 69.50
SOVg 25.39 26.41 27.23 26.01
Z [SOva 92.24 93.66 92.80 91.65
= [sov, 0.00 0.00 0.00 0.00
& [SOVs 85.25 88.68 87.05 86.57
% [SOVs 1.43 1.04 1.78 221
% [SOVs 21.88 25.36 23.70 23.95
SOV, 52.98 56.97 56.71 56.89
SOV 56.28 64.28 60.69 60.14

4.2.3 Discussions

We analyze the misclassifications among helices and strands in SCORPION. The
benchmark set (CB513, Manesh215, Carugo338 and CASP9) include 10,011 helices
ranging from 3- to 18-residue long and 13,877 strands from 1- to 16-residue long. The
total number of helices and strands that are correctly predicted as whole structures using
SCORPION, are 4,880 and 5,467 respectively (the percentages are 48.75% and 39.40%
respectively); leaving the rest of the predictions with at least one residue misclassification
in the structure. Table 13 shows a detailed analysis of the misclassifications in helices
and strands in this benchmark set.

Figure 18 shows the length distributions of helices and sheets when the whole
structures are missed from prediction in SCORPION. The most misclassified helices are
3-10 helices (all of three-residue helices and portion of longer helices) and the most

misclassified sheets are isolated B-bridges (residue size of 1). 3-10 helices are much rarer
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in PDB than o-helices, which has a very low prediction accuracy (~14%) in literature

[98]. Also, most of the 3-10 helices are short with three or four consecutive residues.

Similarly, the isolated p-bridges are also rare and short and probably more importantly,

the isolated PB-bridges are the results of global interactions. Generating statistically

meaningful context-based scores to sensitively identify 3-10 helices and B-bridges is

rather difficult. Therefore, the context-based scores help but with limited contribution in

correctly identifying 3-10 helices and p-bridges.

Table 13 Detailed description of Helix and Strand misclassifications on
benchmark set of CB513, CASP9, Manesh215, and Carugo338.

Helix% | Strand% Description
missed at begin (only) 5.36 8.28 only the first residue at the beginning of a structure
missed at middle 15.80 13.89 at least one is misclassified anywhere in between
the two ends
missed at end (only) 11.59 8.87 only the last residue at the end of a structure
missed at begin & end
beg 1.70 2.08 misclassified at both ends (2 residues)
(only)
missed the whole
16.80 27.48 the whole structure misclassified
structure
1o Helix Misclassifications B, ,  Strand Misctamsifications
(whole structure) (whole structure)
1000 2000
0 & xn-belix () = B-sheat
5 * a-belix (H) E""" ) .
O 600 = 310-hdix (G) o
3 % 100
= 400 [l
200 I 500 - l
Al le=_ _ _ | ° Il--__
3 4 %5 6 7 8 9 101112135 1418 1 2 3 45 6 7 8 9101112131418
Helix Length Strand Length

Figure 18 Histograms of the numbers of misclassified helices (A) and strands (B)
in SCORPION by their lengths.




51

4.3 Template-based SCORPION

Most current methods for secondary structure predictions do not rely on similarity
to proteins of known structures, in other words, these methods are simply ab initio, i.e.,
from sequence information only to predict the structural features.

However, we cannot neglect the fact that many protein sequences have some
degree of similarity among themselves. Actually, over half of all known protein
sequences have some detectable similarity (higher than 25%) to one or more sequences of
known structures [99, 100]. Around 75% was reported as the percentage of those newly
deposited protein structures in the PDB database showing significant similarity to
previous deposited structures. Consequently, taking advantage of structural similarity of
proteins with sequence similarity may lead to significant improvement of protein
structure prediction. In fact, the latest version of Porter has used homology-based
templates for 3-state secondary structure prediction [100]. Porter has been reported to
achieve prediction accuracy improvement when known structures with >30% sequence
similarity are available and even surpass the theoretical upper bound when such sequence
similarity is higher than 50%.

Incorporating homology information is very useful in protein structure modeling.
Hence, in this approach, we extract structural information from templates constructed for
protein chains with known structures that exhibit homology to our training set. The
structural information, when available, is incorporated as features together with the
PSSM data. In the case where structural information is not available, context-based
scores of secondary structures is incorporated instead, as sequence-structure features to

train the neural networks for secondary structure prediction.

4.3.1 Method Implementation

» Template construction

Figure 19 illustrates the procedure of constructing structural templates. First of
all, for a given protein sequence target, PSI-BLAST is used to search against the NR
database with Evalue=0.001 and at most 3 iterations to generate the PSSM data. Then,
the PSSM s used to search against the Protein Data Bank for alignments with Evalue=10.
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8ec.8truct 1
Sec.Struct 2

B8ec.Struct 3

Template 1
Template 2

Template 3

Figure 19 Construction of Templates.

If known structures are available in PDB, their 8-state assignments are determined by the
DSSP program and then a structural template is built for the correspondent residue
positions. Among the list of templates constructed, we select the top one that is less than

95% sequence similarity, according to PSI-BLAST ranking.

»  Encoding

We use a window size of 15 residues for input encodings. Each residue is
represented with 20 values from the PSSM data, 1 extra input to indicate if the residue
window overlaps C- or N-terminal, 1 value for degree of similarity, and 8 values for
structural information from template or context-based secondary structure scores. Hence,
a total number of 450 values are used to describe each residue.

Figure 20 shows an example of encoding residues in a protein sequence. For a
residue with available structural information in the template, the corresponding secondary
structure state is set to 1 while the other states are set to 0. At the same time, the degree of
similarity is set for the sequence similarity. On the other hand, if the structural
information for a residue is not available in the template, the degree of similarity is set to
zero and the context-based scores are incorporated instead. These pseudo-potentials are
incorporated as context-based scores representing sequence-structure features in neural

network training when structural information from templates is not available.
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Sequence [VEKSKICSSRYEPTVRIGGRDGMCVDVYDNGYHNGNRI IMWKCKD Degree of Similarity
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Figure 20 Encoding for template-based 8-state secondary structure
prediction.

»  Neural network model
We incorporate two phases of standard feed-forward neural network training for
the prediction method. Figure 21 shows the encoding diagram and the two-phase neural

network architecture.

protein chain
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Figure 21 Two phases of template-based 8-state secondary structure
prediction (architecture & encoding).
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4.3.2 Results of Template-based SCORPION

Upon the selection of the best alignment with similarity less than 95% for all
protein chains in the Cull5547 dataset, the final Q8 seven-fold cross validated accuracy
after applying the template-based 8-state prediction reaches 78.85%. Table 14 lists the Q8
and SOV 8 accuracies of 7-fold cross validation for each state. Table 15 compares the Q8
and SOV8 accuracy of using predictions with and without templates on benchmarks of
CB513, CASP9, Manesh215, and Carugo338. Clearly, when homology structural
information is available, the 8-state prediction accuracy is significantly improved. It is
also interesting to find that when structural templates are used, the 8-state prediction
accuracy improvement in CASP9 is much less than the other benchmark sets. This is due
to the fact that in the CASP9 experiment, targets are deliberately selected to have
relatively low similarity to sequences with existing structures in PDB.

Figure 22 shows the distribution of the prediction accuracy as a function of
sequence similarity in levels in CB513, CASP9, Manesh215, Carugo338 as well as
Cull5574 in cross-validation. Without surprise, the better templates with higher sequence
similarity level, the more accurate the prediction results. More importantly, even
templates with only 20%~30% sequence similarity can improve the prediction accuracy

by near 5% in various benchmark sets compared to predicted results without templates.

Table 14 7-fold cross-validation accuracy in template-based 8-state prediction.

G H | E B S T C Overall

Qs | 4399 | 92.48 | 0.00 | 88.30 | 27.86 | 43.46 | 64.18 | 75.51 78.85

SOVe | 4796 | 95.19 | 0.00 | 92.77 | 27.57 | 4532 | 66.64 | 71.45 80.10

Table 15 Comparison between 8-state predictions with and without template on
CB513, CASP9, Manesh215, and Carugo338.

Qs SOV,
No-Template With-Template No-Template With-Template
CB513 67.22 79.39 67.66 80.64
CASP9 71.54 76.36 73.47 78.15
Manesh215 69.71 81.10 70.79 82.99
Carugo338 68.44 80.39 69.50 81.95
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Figure 22 Distribution of 8-state secondary structure prediction accuracy (Q8)
as a function of sequence similarity- the first group of bars corresponds to
template-less predictions.

Figure 23 uses the A chain of protein IBTN as an example to demonstrate the
effectiveness of template-based 8-state secondary structure prediction. Prediction without

template has 73.6% Q8 accuracy.

MEGF L NRKHEWE AHNIKASSRSWHNVYCVINNQEMGF YKDAK SAASGIPYHSEVPVS L KEATCEVALOYKKKKHVFKLRLSDGNE YL FQAKDDEEMNTWIQAISSA  Sequence
CEEEEEEEEEECSTTCBCSCCCCEEEEEEEETTEEEEESSIMMMITCCSSSCCCEECTTCEEEECSSCCIBEEEEECTTSCEEREECSSHHM MMM DSSP
EER-C-CE-E-EC--CEC--CCC-EEEEE------ EEESSHH M- -T-885-CCCEEC--C~EC-TC-S~SSEEEE-C-SS-EEEEECSS - -HH e oHv -~ - - H  Template
CCEEEEEEEEEETTSCCCCSSCCEEEEEEEETTEREEEEC CCCC(SC(EECWEEEEEC"C’EEEEEETTSCEEEEECW Template-less pred.
CEEEEEEEEEEEETTEECTSCCCEEEEEEEETTEEEEES FTCOSSCCCCEECTTCREEECTTC EEEEECTTSCEEEEECSSHIMHMESIHIHIC  Template-based prad.

Figure 23 Comparison between template-less and template-based predictions
on 1BTN chain A,
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The best template found in PDB has 61% sequence similarity. Under the guidance of the
structural template, the mispredicted helix segment and bend segment in template-less
prediction (highlighted in Figure 23) are corrected, which leads to overall 89.6% Q8

accuracy.

4.3.3 Discussions

As shown in Table 14, the prediction accuracies for different states vary largely
due to the very unbalanced appearing frequencies of the eight states in protein structures.
In this work, we are particularly interested in the effectiveness of structural templates in
improving the prediction accuracies of those states with low accuracy in prediction
without templates. From Cull5547, we create five subsets of chains that have structural
templates with similarity level in intervals of (0%, 10%], (10%, 20%], (20%, 40%],
(40%, 70%], and (70%, 95%], respectively. Then, 7-fold neural network trainings are
carried out for each subset and the average cross validation prediction accuracy for each
state is reported in Table 16.

For a-helices (H), the prediction accuracy using templates with very low sequence
similarity (0%, 10%] is already rather high (92.05%), mainly because there are sufficient
number of a-helix samples available and the formation of a-helix is mainly result from
local interactions. Anyway, the structural templates help refine the a-helix predictions
with slight accuracy improvements. When structural templates with 40% or better
similarity are available, the prediction accuracy of B-sheets (E) is also improved to above
90%, reaching the theoretical upper bound in secondary structure prediction. 40%+
similarity templates also significantly improve the accuracies of 3-10 helices (G) and
bends (S) from 20%+ to 50%-+. Similar but not as significant improvements are found in
turns (T) and coils (C). However, the prediction results for bridges (B) and n-helices (1)
are disappointing. Only when templates with very high similarity (>70%) are available,
we can obtain 44% prediction accuracy in bridges (B). The prediction accuracy for n-
helices (I) is still 0%. This is mainly due to the facts that n-helices are extremely rare

(0.02%) and n-helices (1) are often misclassified into a-helices (H).
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Table 16 Comparison of 7-fold cross validation prediction accuracies in eight

states when templates with different sequence similarities are used.

(©, 10] (10, 20] (20, 40] (40, 70] (70, 95]

# of chains 4,426 4215 3,204 1,437 1,133
Qu 92.05 92.70 93.60 94.97 95.94
Qs 22.07 23.93 35.09 55.03 69.44
Q 0.00 0.00 0.00 0.00 0.00
Qe 83.37 84.53 86.59 90.16 93.61
Q% 1.53 3.59 7.24 22.30 44.26
Qr 53.35 55.34 60.89 69.66 77.06
Qs 22.83 26.41 35.19 54.09 73.40
Qe 66.55 67.84 71.81 79.56 86.80
Qs 71.33 73.01 76.29 82.11 88.01
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CHAPTER §

DISULFIDE BONDING PREDICTION

Disulfide bonding prediction is accomplished in two stages. The first stage is the
bonding state prediction, whose goal is to determine whether each Cysteine residue in a
protein chain is involved in forming a disulfide bond or not. Afterward, the second stage
carries out the connectivity prediction, where Cysteine pairs likely to form disulfide
bonds are identified.

Our approach of generating context-based features and then combining them with
PSSM data is applied to develop our method for predicting disulfide bonds. Our disulfide
prediction algorithm is implemented on a web server named “DINOSOLVE” available

at: http://hpcr.cs.odu.edu/dinosolve [101].
5.1 DINOSOLVE

The neighboring residues have strong and probably deterministic influence to the
chemical property of Cysteine residues in forming disulfide bond [102]. Actually,
Cysteine often forms particular motifs of biochemical functions with neighboring
residues, such as Cys-X-X-Ser [103], Cys-X-X-Cys [104], Leu-X-Cys-X-Glu [105], Cys-
X-X-Asp-X-X-Cys [106], etc. Figure 24(A), (B), and (C) show the probability of
Cysteine at position i in disulfide bonding state with the neighboring residues at i-1 and
i+l, i-2 and i+2, and i-3 and i+3 positions, respectively. One can notice that the
neighboring residues separated by two residues in the middle still have strong influences
on the bonding state of the center Cysteine residue.

Hence, capturing the correlations among residues, where Cysteine residues are
present, and then incorporate these correlations as features into the learning process of a

disulfide bond predictor can enhance the prediction accuracy.


http://hpcr.cs.odu.edu/dinosolve
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(b) Probability of Cysteine in bonding state
with neighbors ati- 3 and i + 3 positions

Figure 24 Probability of Cysteine in disulfide bonding state with neighbors at
different positions.

5.1.1 Method Implementation

s Context-based statistics

We derive the first-order and second-order mean-force potentials according to the
amino acid environment around the Cysteine residues from large number of Cysteine
samples, collected from Cull16633. The mean-force potentials are integrated as context-
based scores to estimate the favorability of a Cysteine residue in disulfide bonding state
as well as a Cysteine pair in disulfide bond connectivity. These context-based scores are
then incorporated as features together with other sequence and evolutionary information
to train neural networks for disulfide bonding state prediction and connectivity

prediction.
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The first-order statistics estimate the correlations between a Cysteine residue and
one of its neighboring residues while the second-order statistics estimate the correlations
between a Cysteine residue and the coexistence of two neighboring residues. Both first-
order and second-order statistics are extracted from protein chains in the Cull16633
dataset. For a Cysteine sample with window size of K, there are K-l position
combinations for first-order statistics in total. Figure 25 shows the three possible
situations of two neighbors relative to a Cysteine residue when extracting second-order
statistics, including (a) both neighbors on the left; (b) two neighbors on both sides; and

(c) both neighbors on the right. Therefore, considering a window size of K for a Cysteine
sample, there are totally (Kél) position combinations for the second-order statistics of a

Cysteine residue in bonding state.

Similar to the bonding state statistics, the first-order and second-order statistics of
a disulfide bonded Cysteine pair related to its neighboring residues are also extracted
from the Cull dataset. These statistics are used to estimate the probability of a Cysteine

pair in forming disulfide connectivity.

i-m i+2 i+3

ojoYel:lelele

(a) Both neighbors on the left hand side of Cysteine

oRelIeNo

{b) Two neighbors on both sides of Cysteine

i+ i+m i+n

OOO@O-® O

{c) Both neighbors on the right hand side of Cysteine

Figure 25 Three possible positions of two neighbors to a Cysteine residue.
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Compared to the statistics in estimating a Cysteine residue in a bonding state, the main
difference lies in the different number of position combinations in second-order statistics
since the two neighboring residues may belong to two different Cysteine residues. Figure
26(a) shows the situation that both neighboring residues belong to one Cysteine residue
and Figure 26(b) shows the situation that the two neighboring residues belong to different
Cysteine residues. Therefore, considering a window size of K for both Cysteine residues

2K -2

connected in a disulfide bond, there are totally ( 5

)/ 2 position combinations for

the second-order statistics of a bonding Cysteine pair.

Similar to our method in predicting secondary structures, to obtain more precise
neighboring correlation statistics to disulfide bonding states, we consider the divergence
of a protein sequence in its structural family by using the PSSM data specifying the
frequency of each amino acid type in a protein multiple sequence alignment.

Let R; denote residue R at position i in a protein sequence and let Ry denote
residue R at relative position j to a cysteine residue. In the first-order statistics, the
observed probability, Pobs(Bonded IR(k)), of residue type R with relative distance kto a

bonded cysteine in a specific protein data set is estimated as

i+ 1 i+2 i+3

OOOBO000
QOO®OO0

- j+1 j+2 j+3
(a) Both residues are the neighbors of one Cysteine residue

i P+ 1 i+2 i+3

O O@OO0O
D O@OO0

iv+1 jv2  j+3

{b) One residue is the neighbor of Cystelne i and the other is the neighbor of Cysteine j

Figure 26 Possible positions of two neighbors to a Cysteine residue pair in
disulfide bond.
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Zprotein ZCYSi is bonded PSSM(Ry41) * PSSM(CYS;)
Zpratein ZCYSi is bonded PSSM (CYS,-) ’

where PSSM(R;) is the PSSM frequency of residue type R at position i in a protein

Pobs(Banded]R(k)) =

sequence. Similarly, in the second-order statistics, the observed probability,
Pabs(Bondele(kl), R(kz)), of the coexistence of residues Ry and R,y to a bonded
cysteine is estimated as

Pobs(Bonded|R,), Re,)

_ Zprotein Lovs, is bonded PSSM(Rivx, ) * PSSM(CYS;) » PSSM(Riy,)
zprotein ZCYSi is bonded PSSM(CYSi)

The neighboring correlation statistics to the disulfide bonding pair are obtained in

a similar manner as bonding state.

= Context-based potential

In this method, we consider the first-order and the second-order mean-force
potentials only. Currently, there is insufficient number of available protein structures in
PDB to derive meaningful statistics for estimating higher order interactions.

According to the inverse-Boltzmann theorem, we introduce the first-order mean-
force potential U(R(x), Bonded) to treat the interaction between residue Ry and
cysteine in forming a disulfide bond,

Pobs (Bonded l R(k))
Pref(Bonded I R(k) )

U(R ) Bonded) = —RTin

Here R is the gas constant, T is the temperature, and Pref(BondedIR(k)) is the reference

state, which is estimated as

protein cys; PSSM(Riyy) * PSSM(CYS))
Zprotein ZCYS,- PSSM (CYS,-)

Similarly, the second-order mean-force potential U(R(kl), R(kz),Bonded) is

Pref(Bondele(k)) =

calculated as
U(R(kl)r R(kz)r Bonded)

Pobs(Bonded|R k), Rix,)) Pres(Bonded| R,y )Pres(Bonded| Ry, )
P-,-ef(BO'ndedIR(kl), R(kz))Pobs (BondedlR(kl))Pobs(Bondele(kl))

= —RTIn

with the second-order reference state,
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Pref(BO'ndele(kl), R(kz))

_ Zprotein Zevs, PSSM(Riyi.,) * PSSM(CYS;) » PSSM(Ry,,)
Zprotein ZCYSi PSSM(CYSi) ‘

Influenced by all of its neighboring residues, the overall mean-force potential for

the interactions of a cysteine residue in bonding state is the summation of all first-order

and second-order potentials while the higher-order interactions are ignored

k%0 ky20 k%0
U(CYS;, Bonded) = Z U(R), Bonded) + Z Z U(Rk,) Rek,), Bonded).
k ky ks

The potential U(CYS;, CYS;, Connected) for a bonded cysteine pair CYS; and
CYS; can be obtained in a similar way. These potentials are used as context-based scores

to be encoded in neural network training for bonding state and connectivity predictions.

= Neural network model

We adopt the standard feed-forward back-propagation neural network architecture
for both disulfide bonding state prediction and connectivity prediction. The neural
network for bonding state prediction uses a window size of 15 residues for input
encodings. Each residue is represented with 20 values from the PSSM data and 1 extra
input to indicate if the window overlaps C-terminal or N-terminal. When incorporating
the context-based scores in training the neural network predictor, two more inputs
specifying the scores of the cysteine residue being in free and bonding state are added.
Hence, a total number of 317 values are used to describe each cysteine residue. 100
hidden nodes are used in the neural network for bonding state prediction.

The neural network for connectivity prediction incorporates two windows, each
with size of 15 residues, for input encoding. Each window encodes the amino acid
environment of a cysteine residue in a cysteine pair. Each residue is encoded with 20
PSSM values and | boundary indicator. The predicted results (bonded or free) from the
bonding state prediction for both cysteine residues and the context-based scores for
connectivity are also encoded as input. As a result, there are totally 636 input values for
each cysteine pair. 150 hidden nodes are used in the neural network for connectivity
prediction. Figure 27 and Figure 28 illustrate the encoding and neural network

architecture for disulfide bonding state and connectivity prediction, respectively.
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Figure 27 Encoding and neural network architecture for disulfide bonding state
prediction
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Figure 28 Encoding and neural network architecture for disulfide connectivity
prediction.
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5.1.2 Results of DINOSOLVE

»  The bonding state prediction

Table 17 compares the prediction qualities of bonding states with PSSM-only
encoding and PSSM with context-based scores encoding after 10-fold cross validation.
Compared to the one trained with PSSM data only, the neural network using context-
based scores as additional features results in improvements in all performance indexes,
including Sn, Sp, Qc, Qp, and Mcc. The residue-level prediction accuracy (0.908) and
protein-level prediction accuracy (0.856) are higher than the reported accuracies in
popular disulfide bond prediction servers. Table 17 also compares the prediction qualities
when Cull25 and Cull50 are used as training sets. Cull50 has more than twice cysteine

samples as Cull25, which leads to better prediction performance than Cull25.

»  Connectivity prediction

Table 18 compares the computational results of 10-fold cross validation for
disulfide bond connectivity predictions on Cull50 using PSSM-only and PSSM with
context-based scores for neural network encoding. Similar to bonding state prediction,
one can find that incorporating the context-based scores as features in neural network
training enhances the connectivity prediction accuracy, where sensitivity (Sn), specificity
(Sp), and overall accuracy (Qc) are improved from 73.07%, 91.03%, and 86.91% to
73.42%, 91.61%, and 87.34%, respectively, compared to PSSM only encoding. These
prediction results are also higher than the reported disulfide connectivity accuracies in the

popular disulfide bond prediction servers.

Table 17 Comparison of prediction performance of bonding states using PSSM
only and PSSM with context-based scores on Culi25 and Cull50 using 10-fold
cross validation.

Cull25 Cull50

PSSM Only PSSM+Score PSSM Only PSSM+Score
Sy 0.554 0.616 0.655 0.720
Sp 0.945 0.956 0.947 0.959
0. 0.870 0.888 0.885 0.908
0 0.719 0.751 0.829 0.856
Mcc 0.574 0.646 0.734 0.801
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Table 19 lists the prediction results on protein chains in Manesh215, Carugo338,
and CASP9, which include at least one disulfide bond. The percentage of chains where
all disulfide bonds are correctly predicted is 87.8%.

Table 18 Computational results of 10-fold cross validation on Cull50 using PSSM
only and PSSM + Score in neural network encoding.

PSSM only PSSM + Score

fold Sn Sp Qc Sn Sp Qc

1 73.90 91.60 87.50 74.90 91.60 87.70
2 72.80 93.00 88.10 71.70 93.10 88.00
3 70.70 91.90 86.50 71.40 92.40 87.10
4 78.80 82.30 82.20 77.80 84.10 82.60
5 75.20 91.40 87.60 74.10 92.00 87.80
6 71.40 92.30 87.70 71.30 93.00 88.10
7 74.50 92.40 88.50 76.00 92.40 $8.80
8 66.80 93.60 87.40 70.40 93.30 88.00
9 69.00 90.20 85.20 68.40 91.50 86.10
10 77.60 91.60 88.40 78.20 92.70 89.20
Average 73.07 91.03 86.91 73.42 91.61 87.34

Table 19 Prediction performance on protein chains in Manesh215, Carugo338, and
CASP9.

| T——__ | Manesh215 Carugo338 | CASP9 | An
[ of disulfidelf of  [# of correctly B of [ ofcorrectly fiof [ ofcorrectly ffof ¥ of correctly
bonds chains jpredicted chains |predicted chains predicted chains predicted
1 14 13 23 23 1 i 38 37
2 12 11 21 21 0 0 33 32
3 9 7 19 16 1 1 29 24
4 3 2 13 12 0 0 16 14
5 3 3 6 5 0 0 9 8
6 1 0 2 2 0 0 3 2
7 1 1 2 I 0 0 3 2
8 2 1 2 2 0 0 4 3
9 0 0 3 0 0 0 3 0
10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0
13 0 0 0 0 1 0 1 0
Summary ] 139 122 (87.8%)
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Figure 29 depicts an example of the disulfide connectivity prediction on protein
153L chain ‘A’ listed in Manesh215. The native 153L(A) structure has four cysteine
residues: CYS(4), CYS(18), CYS(29), and CYS(60). CYS(4) is connected to CYS(60)
and CYS(29) is connected to CYS(60) by disulfide bonds. In the bonding state
prediction, the predicted bonding probabilities for CYS(4), CYS(18), CYS(29), and
CYS(60) are 0.82, 0.84, 0.95, and 0.94, respectively, which are all higher than 0.5
indicating that they are all bonded. In the connectivity prediction, the predicted bonding
probabilities for the potential disulfide bonds are listed in Table 20.

Connect ivity (CYS(4) -CYR{60))

CYS (4) Plconnected) = 0.68&

Y{Bonded) = .82

CYXS8 (60)

Protein 1533LA (1:108) P (Bonded) = 0,94

cYs(18)
F{Bonded) - 0.63

cYs8(29)
Conpactivity (CYS{1A} CYS(29)) P (Bondad)= 0.9%

Pl{connected) - 0.84

Figure 29 Disulfide connectivity prediction on protein 153L A chain.

Table 20 Predicted bonding probability for potential disulfide bonds in 153L(A).

Potential Disulfide Bonds Predicted Bonding Probability
CYS(4)-CYS(18) 037
CYS(4)-CYS(29) 0.32
CYS(4)-CYS(60) 0.66
CYS(18)-CYS(29) 0.84
CYS(18)-CYS(60) 0.90
CYS(29)-CYS(60) 0.34
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Form Table 20, one can find that CYS(18) and CYS(60) are most likely to be
connected due to their highest predicted connectivity probability (0.90). However, if
CYS(18) and CYS(60) are connected, CYS(4) and CYS(29) are unlikely to be connected
due to their low predicted connectivity probability (0.32), which violates the predicted
results during bonding state prediction. Therefore, an alternative connectivity pattern is
selected with CYS(18)-CYS(29) and CYS(4)-CYS(60). This prediction result matches

the disulfide connectivity pattern in the native structure of 153L(A).
5.1.3 Discussions

The context-based scores are effective features to enhance the neural network
training process. When context-based scores are incorporated, the bonding state
prediction accuracies are improved on all three benchmarks compared to those using
PSSM data only. Table 21 compares the residue-level accuracies on the popularly used
public benchmarks, including Manesh215, Carugo338, and CASP9. Similar to the
computational results of 10-fold cross-validation, one can find that the Cull50 training set
yields better prediction performance than Culi25.

Moreover, incorporating the context-based scores as features in neural network
training enhances the connectivity prediction accuracy, where sensitivity (Sn), specificity
(Sp), and overall accuracy (Qc) are improved from 73.07%, 91.03%, and 86.91% to
73.42%, 91.61%, and 87.34%, respectively, compared to PSSM only encoding.

One important question for generating the context-based statistics is how faraway

the neighbors in sequence need to be involved.

Table 21 Comparison of residue-level accuracies (Qc) on benchmarks of
Manesh215, Carugo338, and CASP9 using Cull25 and Cull50 as training sets.

Cull25 Culi50

PSSM Only PSSM+Score PSSM Only PSSM+Score
Manesh215 0.830 0.848 0.879 0.900
Carugo338 0.808 0.821 0.872 0.884
CASP9 0.950 0.951 0.955 0.963
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Figure 30 compares the 10-fold cross validated accuracies when context-based
features with different window sizes are used for neural network training. One can find
that the context-based features with window sizes 3 and 5 slightly improve the prediction
accuracy compared to using PSSM only. However, the context-based features with
window size 7 yield the optimal performance. This is mainly due to the fact that the
context-based features with window size 7 take the important i - i+3 residue correlations
into account, where such correlations are often found in many motifs where cysteine is
involved, such as Cys-X-X-Cys, Cys-X-X-Ser, Cys-X-X-His, Cys-X-X-Pro, Cys-X-X-
Asp, etc. Another reason is, when the window size 7 is used, the residue-residue
correlations in secondary structures are implicitly estimated, because helices, strands, and
coils are strongly correlated at relative positions i-3 — i — i+3, i-2 =i - i+2, and i-1 — i -
i+1, respectively [28]. It is also interesting to find that the prediction accuracy drops
when the context-based features with window size 9 are employed. This is because the
context-based scores with window size 9 integrate almost twice as many mean-force
potential terms as scores with window size 7 — these additional terms measure the long
distance inter-residue correlations of i — i+4, which are not as important as the shorter

inter-residue correlations but accumulate the statistical sampling noise.

93.0%
920% :
91.0%

3 90.0% -

5 89.0%

88.0% -
87.0%

o .
85.0% -

84.0% - ‘
1 (PSSM Only) 3 M” 7 9

Figure 30 10-fold cross validated accuracies using context-based scores
generated with different window sizes.
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CHAPTER 6

SOLVENT ACCESSIBILITY

Correctly predicting the solvent accessibility of residues can not only reduce the
conformational space to aid modeling protein structures in three dimensions, but also
help predict important protein functions.

Our approach of generating context-based features and then combining them with
PSSM data is applied to develop our method for predicting solvent accessibility. The

prediction algorithm is implemented on a web server named “CASA” available at:

http://hpcr.cs.odu.edu/casa [107].

6.1 CASA

We use the context-based model to derive statistics for singlets, doublets, and
triplets in a sequence window from experimentally determined structures in PDB [10].
Then scores measuring the pseudo-energy of a residue adopting a certain accessibility
state are calculated using potentials of mean force approach. The fundamental idea is
based on the fact that the residue’s solvent accessibility exhibit strong local dependency.
These scores are then incorporated as features together with the multiple sequence
alignment data to train neural networks for solvent accessibility prediction. We apply our
approach to predict solvent accessibility in 2-state.

We test CASA on protein benchmarks, Manesh215 [16], Carugo338 [86], and
CASP9 [108] targets. Lastly, we compare CASA with a set of popular methods for
solvent accessibility prediction, including NETASA [58], Sable [59], Netsurf [60],
SPINE [56], ACCpro [61] and SANN [64].

6.1.1 Method Implementation

The solvent accessibility values are determined by the DSSP program [12].
Relative values for residues’ solvent accessibility are calulated as the ratio between the
absolute solvent accessibility value and that in an extended tripeptide (Ala-X-Ala)

conformation. Table 22 shows the extended state value of each amino acid reported by


http://hpcr.cs.odu.edu/casa
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Ahmad et al. [16] and used in many prediction methods. A threshold of 0.25 is used to
define the 2-state solvent accessibility (Buried when the relative solvent accessibility

value is less than 0.25, and Exposed otherwise).

» Context-based statistics

Presumably, the neighboring residues have strong influence to the chemical
property of a residue in its accessibility to solvent. Figure 31 shows the probability of
residue K at position i in buried accessibility state with the neighboring residues at i - 1|
andi+1,i-2andi+2,andi-3andi+ 3 positions, respectively. One can notice that the
residues separated by two residues in the middle still have strong influences on the state
of the center residue.

In this work, similar to the previous work in SCORPION and DINOSOLVE, we
extract statistics of singlets (R;), doublets (RjR;;x), and triplets (R;R;;k, Ri4k,) residues
at different relative positions in protein sequences, which is further used to generate
pseudo-potentials to be incorporated as new features in neural network training. The
statistics of singlets, doublets, and triplets represent estimations of the probabilities of
residues adopting a specific solvent accessibility state when none, one, or two of their

neighbors in context are taken into consideration, respectively.

Table 22 Extended state values of amino acids.

Extended State Extended State

AA (A) AA (A)
Ala 110.2 Met 200.1
Asp 144.1 Asn 146.4
Cys 140.4 Pro 1419
Glu 174.7 Gln 178.6
Phe 200.7 Arg 229.0
Gly 78.7 Ser 117.2
His 1819 Thr 138.7

lle 185.0 Val 153.7
Lys 205.7 Trp 240.5
Leu 183.1 Tyr 2137




=  Context-based potential

Similarly, the context-dependent pseudo-potentials are generated based on the
potentials of mean force method. We calculate the mean-force potentials Ugingjet (Ry, Cy),
Udoubtet (Ci» RiRi4x) and Utriplet(cirRiRi+k1Rl+kz) for a residue R; adopting solvent

accessibility state C;. Then, the context-dependent pseudo-potential for R; under its amino

acid environment is

U(C, . Ri-1RiRj4y ) =

Ustngtet(Ci, Ri) + Zk Ugoublet (Cis RiRi+k) + Xk k, Utriptet(Cir RiRi4k, Risk, )-

P(Buried [K) = 9.292
P(ExposediK) = 0.708

A CBEF GHITIT XKLNXNNPDORSTV WY
y

P(Suried|xKy)/P(Buried|K) P(Buried|x-K-y)/P(Buried|K)

A CDPEF GHT XLN®NPFPITRS TV UY

P(Buried|x--K--y)/P(Buried|K)

ﬁt](l’GlllKLNHFDISTVUV
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Figure 31 The probability of Lysine (K) as the middle residue of a triplet with
neighboring residues at 1~3 positions away when adopting buried accessibility
state. x, y, and - represent the left neighbor, right neighbor, and gap,
respectively. The neighboring residues are ordered alphabetically.
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® Neural network model

Our method for predicting protein solvent accessibility incorporates two phases of
neural network training. Similar to SCORPION and DINOSOLVE, we adopt the standard
feed-forward back-propagation neural network architecture. Figure 32 depicts the

encoding and neural network architecture for CASA.

6.1.2 Results of CASA

We use Q; to measure the quality of our prediction method. We also use Qg and
Qe to measure the quality of predicting the buried state and the exposed state,
respectively. Table 23 compares the prediction qualities of solvent accessibility with
PSSM-only encoding and PSSM with context-based scores encoding after 7-fold cross
validation. Compared to the one trained with PSSM data only, the neural network using
context-based scores as additional features results in improvements in the Q, accuracy,

which is higher than the reported accuracies, 72-79%.

Protein Chain

Residue i+7

Residue 1-7 -
\ -
g o S———— ~ Residue i ‘
“B——’
PSSM + SA scores + Boundary Indicator {’

1-714-614-5]3-4]4-3(4-2 1-1- de1 | 142 | 443 | 404 | 148 | 148 | 447

~ 15x(20+2+1) values
Level 1 panail fissen Owwet
I——D ‘=DI- ] p(Buried)

3‘5 e ’ P(Exposed)
Predicted SA ¢ Boundary Indicator
|n| u“-;“-cin[n]n Mjm]m“u;m“.u 147 §
J
15x(2+1) values
Level 2 Lae Ovome
L——b C] P O P(suried)
I 2 P(Exposed)

SA: Solvent Accessibility

Figure 32 Encoding and neural network architecture for 2-state solvent
accessibility prediction.
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Table 23 Comparison of prediction performance of Solvent Accessibility using
PSSM only and PSSM with context-based scores on Cull7987 using 7-fold cross

validation.
Qs Qe Q:
PSSM Only 78.44% 80.61% 79.50%
PSSM+Score 79.21% 82.00% 80.76%

Table 24 compares the Q2 accuracy between our method and the popularly used
solvent accessibility prediction servers including NETASA [58], Sable [59], Netsurf [60],
SPINE [56], and ACCpro [61] on benchmarks of CASP9, Manesh215, and Carugo338.
To guarantee fairness, we generate a new set of context-based scores by removing all
sequences with 25% or higher sequence identity to the sequences in benchmark from
Cull16633.

Table 24 Comparison of the accuracy between our method (CASA) and other
popularly used solvent accessibility prediction servers including NETASA, Sable,
Netsurf, SPINE, and ACCpro on benchmarks of CASP9, Manesh215, and
Carugo338.

CASP9 Manesh215 Carugo338

Q. 69.32 71.09 69.7

NETASA Qs 70.86 721 72.04
Qe 67.59 69.9 67.22

Q; 78.47 79.83 78.68

?:3'; Qs 78.27 30.2 78.48
) Qe 78.69 79.4 78.91
Sable Q; 75.13 77.04 75.94
=03 Qs 89.55 91.08 90.29
=0 Qe 59.58 60.35 60.33
Q, 79.15 80.83 80.04

Netsurf Qs 80.04 83.35 81.27
Qe 78.19 78.49 78.13

Q. 77.86 80.5 79.68

SPINE Qs 83.22 85.3 85.33
Qe 72.08 74.8 73.53

Q 76.18 78.87 77.99

ACCpro Qs 81.15 83.19 83.12
Qe 70.81 73.76 72.41

Qx 80.82 81.93 81.14

CASA [ Qs 81.46 84.27 83.65
Qg 80.13 79.14 78.39
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The predictions of the benchmark sets are performed in 2-state for each method.
Sable method provides 10-state predictions, with 10% difference among the states of
solvent accessibility. Hence the results reported in Table 24, for sable method, are using
0.2 and 0.3 thresholds. We also compare our method with SANN [64] on benchmark of
CASP9. The Q; accuracy of SANN on CASP9 is 77.86% such that the Qg and Qg are
69.68% and 86.66%, respectively.

We observe that CASA outperforms the other methods, where the Q, performance
is higher in these benchmarks. However, when considering the predictions of the
accessibility states individually, SPINE predictions of the buried state (Qp) is better than
CASA, with an average of 1.49% improvement. On the other hand, CASA provides a
much higher exposed state prediction (Qg) with an average of 5.75% difference compared
to SPINE. Similarly, SANN predictions of the exposed state (Qg) is also higher than
CASA with 6.53% difference, but CASA provides a much higher buried state prediction
(Qg) with 11.78% difference and the overall Q; predictions with ~3% improvement over
SANN.

6.1.3 Discussions

The context-based scores are effective features to enhance the neural network
training process. When context-based scores are incorporated, the solvent accessibility
prediction accuracy is improved on all three benchmarks compared to those using PSSM
data only.

Figure 33 depicts an example of solvent accessibility prediction on protein 3NRF,
chain *A’ listed in CASP9 targets. The first row, underneath the native structure in Figure
33, is the amino acid sequence, the second row is the DSSP assignments of each residue,
the third row is the predicted solvent accessibility state when using PSSM information for
encoding, and the last row is the prediction when incorporating context based scores with
PSSM information. An improvement of 6.61% is achieved in this prediction example

upon the incorporation of context based scores with PSSM information.
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Figure 33 Solvent Accessibility Prediction on protein 3NRF(A).

Although the overall improvement of our method is relatively small, from tertiary
structure prediction point of view, reducing inaccuracy, even just a few percent, would be
very helpful in modeling efficiency, because the search space for finding a tertiary
structure goes up superlinearly with the fraction of inaccuracy. Furthermore, our method
of generating context-based statistics relies on the number of known protein structures in
PDB. As the number of protein structures available in PDB continues to increase rapidly,
we will be able to obtain more accurate context-based statistics for solvent accessibility.

Hence, our method has potential to achieve further accuracy improvement in the future.
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CHAPTER 7

GPU-ACCELERATION OF MANY-BODY POTENTIALS

In this chapter, we present approaches to accelerate the calculations of pairwise
and high-order interactions by taking advantage of the emerging high performance
computing architectures in GPU. In section 7.1, we use a 2-body knowledge-based
energy function, DFIRE, as an example to illustrate our GPU implementation and to
show the efficiency of the proposed approach in accelerating pairwise interaction
calculations. In section 7.2, we use two potential energy functions with 3-body terms,
including the Axillord-Teller Potential and the Context-based Secondary Structure
Potential (CSSP) as examples to demonstrate the effectiveness of our approach in
accelerating 3-body interactions.

The main contribution in this work is the design of workload distribution schemes
to achieve perfect or nearly perfect load balancing among GPU threads in the symmetric
2-body and 3-body problems. Moreover, the evaluation of DFIRE, in particular, exhibits
a few floating-point operations but intensive memory accesses instead. Accordingly, we
reorder the protein atom sequence by types to improve cache efficiency in latest NVIDIA
Fermi GPU architecture.

Other standard CUDA programming techniques are implemented in order to fully
take advantage of the power of the GPU architecture. Examples include coalesced
memory access, fine-grain threads, parallel sum reduction, loop unrolling, and taking

advantage of GPU memory hierarchy.
7.1 Accelerating 2-body Potentials

Reducing the energy evaluation time is the key to accelerate many modeling and
simulation programs. The major part of most energy evaluation involves estimating
interactions between pair-wise atoms, which is typically an N-body problem. For a
system involving N particles, conventional evaluation of the potential energy function by

estimating every pair-wise interactions requires O(N®) operations. As a result, for
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relatively large systems, calculation of all pairs of interactions requires substantial
computational time.

In this section, we present an approach to accelerate the calculations of
knowledge-based energy functions popularly used in computational protein structure
modeling by taking advantage of the GPU architecture. We use an all-atom knowledge-
based energy function, DFIRE [26], as an example to illustrate our GPU implementation.
Our key contribution is the design of a workload distribution scheme to achieve perfect or
nearly perfect load balancing among GPU threads in the symmetric N-body problem.
Moreover, unlike many N-body simulations [80-82, 84] where a large number of floating
point operations are involved, the evaluation of knowledge-based energy functions
exhibits a different computing pattern with few floating-point operations but intensive
memory accesses instead. Accordingly, we reorder the protein atom sequence by types to
improve cache efficiency in latest NVIDIA Fermi GPU architecture. We name the GPU
implementation of DFIRE energy function ‘‘GPU-DFIRE"’ while the original serial CPU
version is referred to as “CPU-DFIRE’’. GPU-DFIRE is implemented on the recent
Fermi architecture using CUDA programming environment [109]. A Monte Carlo
sampling program and a local optimization program are used to demonstrate the

efficiency of GPU-DFIRE in all-atom protein structure modeling.

7.1.1 GPU-DFIRE Implementation Details

We use DFIRE [110] potential energy function as an example to illustrate our
GPU implementation of memory intensive knowledge-based energy functions. The GPU
implementation of DFIRE (GPU-DFIRE) can be adopted into a variety of protein
modeling algorithms, such as Monte Carlo (MC) methods [111], Local Energy
Minimization [112], Molecular Dynamics [113], Genetic Algorithms (GA) [96],
Evolutionary Computing (EC) {114], etc., where repeatedly assessing the potential

energy of protein conformations is required.

7.1.1.1 DFIRE Potential
DFIRE is an all-atom potential energy function derived from *‘the structures of
single-chain proteins by using a physical state of uniformly distributed points in finite

spheres as the zero interaction reference state’’ [26]. A large three-dimensional DFIRE
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array (first atom type, second atom type, and distance bin) is used to store the statistical
potential energy values of each possible atom pair based on their Euclidean distance. In
this work, we consider the symmetric version of DFIRE, which has demonstrated better
accuracy than the asymmetric one [26]. In symmetric DFIRE, for a protein sequence
starting from N-terminal to C-terminal, DFIRE(ATOMSJ[i], ATOMS[j}, d) =
DFIRE(ATOMS[j}, ATOMS]i], d), for atom pair i and j in distance d and ATOMS]i]
denotes the atom information of the /™ atom in the protein. The DFIRE program takes the
protein PDB file as input and parses it into the ATOMS array, including atom type in
DFIRE, sequence number, and spatial coordinate values (XYZ).

The computation of DFIRE energy is a near N-body calculation. Starting from the
first atom in the ATOMS array, for every atom in the protein, the DFIRE program
retrieves the energy terms between the current atom and the rest of the atoms not in the
same residue. The energy term is obtained by calculating the pair-wise atom distance,
converting it into a distance bin, and then looking up the large DFIRE array for the
appropriate energy term value. DFIRE calculation has a distance cutoff; if the distance
between two atoms is bigger than the cutoff, the interaction between these two atoms is
deemed to be small enough to be ignored. Figure 34 shows the pseudocode of DFIRE
subroutine (calcDFIRE) for pair-wise atom interaction calculation. Finally, all energy
terms are accumulated to generate the overall DFIRE potential energy value. The major
operations in calculating DFIRE energy are memory accesses, i.e., looking up the large

DFIRE array for every atom pair.

calcDFIRE(atomi, atomj, d)
{
if (d < CUTOFF)
return (DFIRE[atomi.DFIREtype, atomj.DFIREtype, d] );
else
return 11.11;

}

Figure 34 DFIRE subroutine for pair-wise atom interaction calculation.
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The serial calculation of symmetric N-body interaction in DFIRE is

straightforward, whose pseudo code is shown in Figure 35.

7.1.1.2 Workload Distribution

Unlike the asymmetric N-body problem, where exactly (N-1) 2-body interactions
are calculated for each particle, in the symmetric N-body problem the number of 2-body
interaction calculations in the inner loop varies gradually from N-1 to 1. Consequently,
directly mapping the calculations in the inner loops to GPU threads will lead to
unbalanced workload distribution.

To balance workload distribution among GPU threads, we design the following
novel load assignment scheme. The pseudocode of workload assignment for a thread in

GPU-DFIRE is shown in Figure 36.

. score = 0.0} /7 initialization '
‘for isl to N-1 { /7 euter loop ]
: for j=i+l to N { // innar loop i

d = dist (ATOMS[i], ATOMS[3]1); //distance bin btw. atoms i, j |
score = score + calcDFIRE (ATOMS[i}, ATOMS[j], d): i
}
i}

Figure 35 Pseudocode of symmetric N-body calculation in serial DFIRE.

. Thread (i) ‘
| !
: score = 1.0} /7 initialization I
f 1€(N mod . == i AND i > N/.) ;
count = N/ - [; // sven number and second hal

else i
count = N/ ; // odd number or even number/first half |

!

for k=1 to count { // atom-atom calcualtion loop ‘

i = (i 4+ k) mod N; // naxt atom number i

d = dist(ATOMS[i], ATOMS[31):  // distance bin btw. atoms i, j ?

score = score + calcDFIRE(ATOMS([il, ATOMS([jl, d): i

. }
} :

Figure 36 Pseudocode of workload assignment in GPU-DFIRE.
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For simplicity in illustration, we assume the one-thread-per-atom assignment.
Each thread i carries out M atom-atom interaction calculations between atom / and atom
(+1)ymod L, ((+2) mod L, . . ., (i+M) mod L. If L is an odd number, M is (L-1)/2 and
perfect load balancing in doublets calculations can be obtained. On the other hand, when
L is an even number, for the first L/2 threads, M is L/2 and for the second L/2 threads, M
is L/2-1. Figure 37 shows the thread load distribution in 2-body calculations for an odd N,
where perfect load balancing can be achieved. Whereas, Figure 38 shows the thread load
distribution for an even N, where nearly perfect load balancing can be achieved-the first
half of the threads carry out one more atom-atom interaction calculation each than the

second half of the threads.

7.1.1.3 Cache Efficiency

In the latest NVIDIA GPU Fermi architecture, the device memory is cached with
L1/L2 cache. L1 cache is shared in one multiprocessor while L2 cache is shared among
all multiprocessors. Correctly organizing data can take advantage of the cache coherence

in GPU. Generally, atoms in a PDB file are grouped by their residues in the protein.

Thread 1 Thread 2 Thread 3 Thread N-1 Thread N
Atom Atom Atom Atom Atom
1 2 3 N1 N
) A i
/ , il M
Atormn M4 Atom " MY Atom 4
> 3 } FN Y i
i \
f Pt N
Atom Atom : ' 4§ Atom
a 4 ! ‘\ 1
|
Atom Atom . 4 Atom
4 5 } 2
, . | LN 12
VY I | finteractions
i i L
VY b VY
Atom Ly Atom Y'Y Atom VAL aem
N 12 | AN 1201 '\* N2 2 VYN 2
‘ S e
\ A\
Atam Atom \i Atom \ Atom
N-1)/2+ 1 N-1)/2+2 (N-1)y2-1 (N-1y2

Figure 37 Perfect balancing when N is an odd number. Each thread carries out
(N - 1)/2 atom-atom iterations.
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Figure 39 shows the sorting of a 6-residue fragment of protein, where atoms of

the same types are clustered after reordering. Clustering atoms of the same types together

can potentially improve the cache hit rate. Another advantage of reordering the atom

sequence by atom types is, in case of cache misses, the requested global memory

addresses will have a good chance to fall within fewer cache-lines compared to unsorted

atom sequence, which can lead to better bus utilization.
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Figure 39 Reordering atoms in a 6-residue protein fragment according to atom
types. Atoms of the same type are clustered after sorting.
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Table 25 compares the GPU-DFIRE performance using sorted and unsorted atom
sequences. The performance data is obtained by NVIDIA Compute Visual Profiler 3.2
[115] on an NVIDIA M2050 (Fermi architecture). One can find that when the atom
sequences are sorted by the atom types, the number of L1 hits increases while that of L1
misses decreases, which indicates L1 cache efficiency improvement. However,
surprisingly, we only observe GPU time decreasing in relatively small proteins with less
than 500 residues; for proteins over 500 residues, the GPU times with sorted atom
sequence are even higher than those without sorting.

Our further analysis finds that this is mainly caused by the divergent branches in
the GPU-DFIRE program. The DFIRE energy evaluation requires testing the atom-atom
distance against the DFIRE cutoff—if the atom—atom distance is higher than the DFIRE
cutoff, the atom-atom interaction will be ignored. When the threads handling atom-atom
interactions within the DFIRE cutoff as well as those exceeding cutoff co-reside in the
same warp, divergent branches may occur in runtime. As shown in table 25, the number
of divergent branches in GPU-DFIRE with sorted atom sequence grows significantly as

the protein size increases.

Table 25 Performance between sorted and unsorted atom sequences in proteins
of various sizes. Performance data are obtained by NVIDIA Compute Visual

Profiler 3.2 [115].
PDB #ofres  Bof doms  GPU time L1 hits L1 misses Divergent
s e TS O S M“K‘m SR "
Sorted 1 d Sorted| d Sorted Unsorted Sorted Unsorted  Sorted Umorted
(us) (ns)
iPRE 53 410 L. 16 065 45687 3.069 2,305 3,493 160 107
166U 96 718 56 85 066 8289 6.007 2833 4575 €623 291
IDFR 162 1,294 158 242 0565 17.306 14,581 9451 12,285 1,962 977
WK 210 1631 220 360 061 36,743 24,340 15980 22.859 1,982 1.018
Qs 345 2654 479 729 066 111,469 56,012 20477 27621 5,226 3,058
WWH 455 1619 893 ton 0ss 139518 118.291 35,787 55,947 15,247 5.322
ey 597 4.669 1429 1416 10t 220512 184,191 28,154 48382) 24,133 3.603
yag 4 696 5.505 1851 17 101 IISAGH 301,084 63,379 67121 24,579 2,147
INY (1] 6642 3,056 2506 113 563,190 422,003 8713 99,743 8 5432
WOG 1068 7.992 3.729 3534 1.06 710899 613.904 85466 248,178 42,726 7.6508
IHKY 1124 8.788 3.985 3548 1.12 7588135 691,194 79.113 96515 59,320 8377
MHR 1156 9284 5737 4387 L7 826776 726634 76225 127422 67.655 8.110
INUK 1314 10787 7.529 7.3 106 1.174630 1033720 66588 234,798 74,960 15.650
IMBC 1.470 16,222 7.901 7438 1.06 1,197 540 1.071.820 71483 184837 72870 16,131
wmQy 1.796 13633 9504 9.317 1.02 1.563810 1.650.320 120925 272,308 79,668 11.929
IWPF 1.955 14588 12.980 11.799 105 2.115280 1.892.400 108,928 277929 90.850 14.063
W0 3258 25407 34819 33.116 105 7 464650 3849770 354802 381078 188,759 21997
WAQ 334 26454 36.419 34502 105 6.885,780 3.839.500 364,048 666,217 179,784 33,541
300 4596 14623 51778 50,158 103 11,196,500 9.431.000 588,343 1076800 278,080 38,483
1GYT 6036 46,152 93,800 91580 102 19.160200 17.412200 523.193 1.382620 364695 62972
2PM7 6058 48008 96,554 94,9613 104 21747500 18818900 594047 13708570 400250  S0N9
383N 6482 52.706 114301 111,298 1.03 25535300 21516200 564874 1275850 367,785 69.46)
1UF2 7434 58.1%0 150,318 146,181 104 31772400 27670000 743424 1647330 531273 78.664
IHOC 7004 62852 170,996 166,339 103 6,193800 32,331.200 830885 1261420 485525 74027
IMQT 9063  71.547 204,509 200529 102 45718400 41279800 989423 2702,170 642562 99,490
IKIE 10400 81080 283510 751197 103 63210500 57.158800 1529580 2757380 744937 107584

IHFD 11907 90054 342,698 332235 103 72799100 70,040.100  1,100.350 2448980 636493 102,063
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In small proteins with less than 500 residues, the numbers of divergent branches
in GPU-DFIRE with sorted atom sequences are 1.5-3 times of those without sorting. In
contrast, in larger proteins with more than 500 residues, the ratio of divergent branches
with sorted and unsorted atom sequences increases to 4-8.

This is due to the fact that sorting atom sequences according to atom types
increases the chance of divergent branches occurrences, because the clustered together
atoms of the same type may be from nearby or faraway residues. In larger protein
molecules, the occurrence chance of divergent branch becomes higher after sorting.
Consequently, in large proteins, the GPU time gains of the cache efficiency by sorting are
counteracted by the increasing number of divergent branches. Nevertheless, in practice,
the DFIRE energy function is often used in protein modeling applications on small
proteins typically with less than 300 residues. Sorting atom sequences according to atom
types are effective in GPU-DFIRE evaluation in small proteins with less than 500
residues due to improved cache efficiency, where the overall GPU times are reduced
11%-45%.

7.1.1.4 Additional Improvements

In addition to asymmetric N-body load balancing and reordering atom sequence
according to atom types in GPU-DFIRE we also use the following ‘‘standard’” CUDA
programming techniques in our GPU implementations to fully take advantage of the
power of the GPU architecture.
(1) Coalesced global memory access

In GPU architecture, global memory access by all threads in the half-warp (non-
Fermi) or full-warp (Fermi) of a block can be coalesced into efficient memory
transactions [109]. In GPU-DFIRE, we reorganize the data arrays used in the DFIRE
program to facilitate coalesced memory access.
For example, instead of viewing atoms information as an array of structures, we
reconstruct the ATOMS array from ‘‘array of structure’” to “‘structure of array’’. The
array reconstruction posts a one-time cost at startup, which has trivial impact to the
overall application performance, particularly when the DFIRE potential energy is
evaluated many times for different protein conformations. Moreover, threads per block

are chosen to be a multiple of warp size in our GPU implementation.
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(2) Fine-grained threads

For an N-body problem with small N, achieving good performance on GPU is
difficult, as shown in the literature [80]. In GPU-DFIRE, similar to the technique used in
[80], we adopt fine grained threads by increasing the number of active threads by
assigning multiple threads to compute interactions of an atom in a small protein. We
firstly calculate the number of threads (7}) that can be assigned to handle interactions
computation of an atom by dividing the maximum number of threads (7 .) that a GPU
device can launch over the total number of atoms N. (T}, = Tra/N.)
Then, we distribute the workload of interaction computation to 7, threads. As a result,
large number of threads whose total number is near the maximum number of threads that
the GPU hardware can launch are created. With sufficient number of threads, the memory
access latency can be effectively masked. Figure 40 show the effectiveness of fine-
grained threads in GPU-DFIRE in small proteins.

Our computational results of GPU-DFIRE on Tesla M2050 show that the turning
point between linear increasing speedup and constant speedup is when N = 2000, as
shown in Figure 40. Fine-grained threads are particularly effective in proteins with less

than 2000 atoms.
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Figure 40 Effectiveness of GPU-DFIRE with fine-grained threads in small
proteins (Tesla M2050).
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It is important to notice that particularly more significant performance
improvements are found in the small proteins, whose speedups are promoted to be close
to those of the large proteins. This is due to the fact that sufficiently large number of
threads is produced to use the GPU hardware to its fullest. As the number of particles
increases, the speedup curves of fine-grain threads and one-thread-per-particle start to
merge because the increasing number of threads in one-thread-per-particle strategy makes
more efficient use of the GPU architecture.

(3) Parallel sum reduction

We adopt the parallel sum reduction algorithm [116], a tree based approach, to
compute the overall energy from the partial energy sums generated by the GPU threads in
GPU-DFIRE. The algorithm involves a local sum reduction step and a global sum
reduction step. In the local sum reduction step, the tree based approach [116] is used to
accumulate the partial sums from threads within each block. Then, an additional kernel is
launched to add up the partial sums from each block in the previous kernel using the tree-
based approach again.

Since fined-grained threads are used for small proteins, the computation time of
parallel sum reduction is nearly constant for proteins of various sizes, which is
approximately 0.1 ms on Tesla M2050. This is less than the computation time of simply
using CPU to sum up the partial sums, which ranges from 0.14 ms (proteins with ~300
atoms) to 3.0 ms (proteins with ~10,000 atoms). After all, compare to the overall GPU-
DFIRE energy evaluation time, even for the small proteins which typically takes 1.0-3.0
ms, the parallel sum reduction time is relatively small.

(4) Take advantage of GPU memory hierarchy

Our GPU-DFIRE implementation requires transferring the DFIRE table and atom
information arrays (ATOMS) including atom type array, residue number array, and atom
coordinates arrays, from the host memory to the GPU device memory and retrieving the
calculated overall energy from the device memory.

We reorganize the data arrays in DFIRE program to different memory locations in
the GPU. First of all, we take advantage of the shared memory to reduce the number of
accesses to the global memory. In GPU-DFIRE, all threads in a block shares the ATOMS
array; hence, the data in the ATOMS array for a thread block can be loaded in the shared
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memory. Unfortunately, for proteins with large number of atoms, the high-speed shared
memory has limited size, which may not be able to accommodate all data in the input
array. We have to break the input array data into tiles, where a tile represents a fixed
dimension of the atom information data. Then, the tile is loaded into the shared memory
and used by all threads in a block. Once all threads are done with one tile, the next tile
will be loaded into the shared memory and override the previous one. This process is
repeated until all computations in the thread block are completed. Moreover, the latest
NVIDIA Fermi architecture introduces a cache hierarchy for caching local and global
memory accesses. For example, Tesla 2050M GPUs have 64 kB of RAM per streaming
multiprocessor, which can be partitioned into shared memory and L1 cache. A CUDA
programmer can select combinations of ‘48 kB shared memory +16 kB L1 cache’’ or
*“16 kB shared memory +48 kB L1 cache’’ according to his/her program needs. Our
GPU-DFIRE implementation on Tesla M2050 uses the ‘‘48 kB shared memory +16 kB
L1 cache’”” combination, which yields slightly better performance than the other
combination. Figure 41 shows the overall implementation of GPU-DFIRE on GPU

memory hierarchy (Fermi).

HOST DEVICE
ATOMS
DFIRE TABLE
"W
partial energy-sums_ ay
total energy &1

Figure 41 Implementation of GPU-DFIRE on GPU memory hierarchy (Fermi
architecture).
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(5) Loops unrolling

Loop unrolling is an optimization technique that can be applied to GPU
programming by replacing the body of a loop with multiple copies of itself [80]. For
example, in GPU-DFIRE we unroll the atom-atom calculation loop in the pseudocode
shown in Figure 36. Figure 42 compares the GPU-DFIRE performance of 2 times loop
unrolling and 4 times loop unrolling by showing their average percentages relative to the
computation time of GPU-DFIRE without loop unrolling. One can find that replicating
the loop body for 2 times yields best performance in GPU-DFIRE. Loop unrolling is
more effective in large proteins with averagely ~4% computation time reduction because

they contain more loop iterations.

7.1.2  Computational Results

The GPU-DFIRE programs are tested on a server with Quadro FX3800M as well
as a server with Tesla M2050 GPU. The Tesla M2050 GPU (Fermi architecture) has 14
multiprocessors with 32 cores each, 3 G of global memory, 64 kB of RAM which can be
configured between Shared Memory and L1 cache and 32 kB of registers per

multiprocessor.

82 times unrolling L4 times unroling

.
(| il o 0o

020K 20K-40K 40K~60K 60K~80K 20K-100K
# of Atoms

Figure 42 Effect of loop unrolling in GPU-DFIRE performance (Tesla M2050) on a
set of 84 proteins ranges from 318 atoms to 99,595 atoms. The computation time
measures are based on the average of 10 runs.
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The Quadro FX3800M GPU (non-Fermi architecture) has 16 multiprocessors
with 8 cores each, 1 G of global memory and 16 K of RAM. The CPU version of DFIRE
(CPU-DFIRE) runs on a server with an Intel i7 CPU 920 @ 2.67 GHz, 8 MB cache, and
6 G memory. We firstly benchmark GPU-DFIRE on a set of proteins of various sizes.
The GPU time we measured includes the time of transferring the protein information
(ATOMS) arrays to GPU device memories, GPU execution time, and the time of
retrieving the calculated overall DFIRE energy from GPU. Then, we apply GPU-DIRE
to a Monte Carlo program for protein conformation sampling and a program for protein
energy local minimization. We use the gcc compiler with the default *“-03’’ optimization
flag specified in DFIRE package for CPU-DFIRE. For GPU-DFIRE, nvcc compiler in
CUDA 2.0 is used with ‘*-03"’ flag.

7.1.2.1 Overall Speedup

Figure 43 shows the overall speedup of GPU-DFIRE using pairwise interaction
on NVIDIA Tesla M2050 and Quadro FX3800M on proteins of various sizes with
respect to CPU-DFIRE.

* Tesla M2050
« Quadro FX3800M

0 10,600 20,600 30,600 40,600 50,600 eo,boo 70,'000 80,600 90,600 100,000
Number of Atoms

Figure 43 Overall speedup of GPU-DFIRE on Tesla M2050 and Quadro FX3800M

on a set of proteins with various sizes with respect to CPU-DFIRE. The

computation time measures are based on the average of 10 runs for each
protein.
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Due to not having enough computations in each thread, there are certain inefficiencies in
GPU-DFIRE for proteins with less than 20,000 atoms. However, the performance is
consistently high for proteins with more than 20,000 atoms. For very large proteins with
more than 50,000 atoms, the maximum speedups of GPU-DFIRE can converge to ~150
and ~250 using Quadro FX3800M and Tesla M2050, respectively. Moreover, it is
important to notice that Tesla M2050 yields significant higher speedups than Quadro
FX3800M in small proteins with less than 5000 atoms. This is due to the fact that Quadro
FX3800M is non-Fermi architecture without L 1cache, where the strategy of sorting atom

sequence by atom types to achieve cache efficiency cannot take effect.

7.1.2.2  Applications of GPU-DFIRE in Protein Structure Modeling

GPU-DFIRE can be adapted to a variety of protein structure modeling algorithms
requiring assessing protein molecule energy or feasibility. We use GPU-DFIRE in a
Monte Carlo protein conformation sampling program and a local structure optimization
program (MINIROT) where DFIRE is the target energy function. The measured
computation time is the application execution time, which includes CPU time, GPU time,
and the data transferring time between host memory and device memory.

In this work, we only consider how the acceleration in energy function evaluation
using DFIRE can affect the overall performance of the protein structure modeling
program. However, it is important to notice that if more parallel computations, e.g.,
randomly proposing new atom positions in Monte Carlo algorithm and the matrix
operations in MINIROT, are moved to the GPU, more aggressive performance
improvements may be obtained. After all, the key advantage of using GPU-DFIRE is that
almost no programming modification of the original protein structure modeling program
is necessary since GPU-DFIRE can provide the same programming interface as CPU-
DFIRE.

o Monte Carlo sampling

We use GPU-DFIRE in a Monte Carlo sampling program provided by the
TINKER package [I17]. DFIRE is used as the target potential energy function. The
protein conformational search is carried out by using Cartesian all atoms move where the

position of every atom in the protein molecule is changed by a small random perturbation
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during every Monte Carlo trial. The Monte Carlo sampling program uses the Metropolis
algorithm [112] and the DFIRE energy is evaluated in every iteration step to determine
the acceptance of the proposed new conformation.

Adopting GPU-DFIRE, the Monte Carlo sampling algorithm is implemented as a
heterogeneous CPU-GPU program. The evaluation of the DFIRE energy is carried out on
the GPU while the rest of the Monte Carlo computations are executed on the CPU. We
carry out the Monte Carlo optimization program using GPU-DFIRE on Tesla M2050 on a
protein 3GDG with 7992 atoms. Our computational results show that the number of
Monte Carlo steps per second is increased from 2.57 in CPU-DFIRE to 212.67 in GPU-
DFIRE. The acceleration in the energy function evaluation significantly improve the
performance of the Monte Carlo computation with an average speedup of 82.67, where
the original computation time for 105 iterations is reduced from more than an hour to less
than one minute.

The Cartesian all atom move in this Monte Carlo example requires evaluation of
interactions between every atom pair. However, for Monte Carlo methods employing
local conformational moves by changing a few torsion angles or positions of small
number of atoms in a Monte Carlo trial, energy re-evaluations are only necessary for the
atom pairs with relative position changes and thereby the computation times of both
CPU-DFIRE and GPU-DFIRE may be further reduced.

o Local structure optimization

We adopt GPU-DFIRE in the MINIROT program [118] provided by the TINKER
package [117] where DFIRE is the target energy function. The MINIROT program
performs local energy minimization of an initial protein structure over dihedral angle
space using a limited memory Broyden-Fletcher-Goldfarb—Shanno (BFGS) algorithm.
DFIRE energy is evaluated at every iteration step to determine the descending gradient
until convergence is reached. Similar to the implementation of the Monte Carlo program,
the evaluation of the DFIRE energy is on the GPU and the rest computations are on CPU.
Because evaluation of the descending gradient on each atom is needed in MINIROT, we

use the asymmetric scheme instead of the symmetric scheme in GPU-DFIRE.
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Table 26 compares the percentages of energy function evaluation times in the
Monte Carlo sampling program and the MINIROT program using the CPU-only
implementation and the heterogeneous CPU-GPU implementation with energy
calculations on GPU. Compared to the Monte Carlo program where 99.9% of its
computation time is in energy evaluation, the MINIROT program has significant more
computations on CPU due to its matrix operations in linear search. Therefore, the energy
evaluation occupies 75.8% of the overall computation time in the MINIROT program,
which is still in majority but is much less than that of the Monte Carlo sampling program.

Table 27 shows the performance of the MINIROT program on 6 initial structures
of protein 2ERL using GPU-DFIRE and CPU-DFIRE. Using GPU-DFIRE by migrating
the energy evaluation computation to the GPU, the percentage of computational time
spent in energy evaluation in the overall MINIROT program is reduced from 75.8% to
24.1%. As a result, although not as significant as that of the Monte Carlo program using
GPU-DFIRE, MINIROT with GPU-DFIRE can achieve an average speedup of ~4.5.

Table 26 Percentages of energy evaluation times in Monte Carlo sampling
program and MINIROT using the CPU-only implementations and the
heterogeneous CPU-GPU implementations with energy function evaluation on
GPU. The energy evaluation times in heterogeneous CPU.

Percentage of energy evaluation time (CPU-only implementation) (%) Percentage of energy evaluation time (heterogeneous CPU-GRU
implementation with energy evaluation on GRU) (%)
MC %9 892
MINIROT 758 A1

Table 27 Performance comparison of MINIROT program on 6 initial structures of
2ERL (319 atoms) using GPU-DFIRE and CPU-DFIRE. GPU-DFIRE is carried out
on Tesla M2050 server.

RMSD (A) Num. of steps Execution time (5)
CPU-DRRE GPU-DRRE (Testa M2050)
Initial | 118 338 6476 419
Initial 2 206 225 4139 973
Initial 3 224 480 9120 1989
Initial 4 319 2 4823 10.02
Initial 5 285 692 13035 2681

Initial 6 362 L3 8221 na
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7.2 Accelerating 3-body Potential

Three-body effects play an important role for obtaining quantitatively high
accuracy in a variety of molecular simulation applications. However, evaluation of three-
body potentials is computationally costly, generally of O(N?) where N is the number of
particles in a system. Although the N-body interactions can be carried out in a
straightforward way on a serial processor, efficient parallel implementation to fully take
advantage of GPU architectures requires deliberate considerations.

In this section, we extend our previous GPU-based 2-body load-balancing
workload distribution scheme, presented in section 7.1, to explicitly calculating 3-body
terms. A load-balancing workload distribution scheme is presented for calculating 3-body
interactions by taking advantage of the GPU architectures. Perfect load-balancing is
achieved if N is not divisible by 3 and nearly perfect load-balancing is obtained if N is
divisible by 3. The workload distribution scheme is particularly suitable for the GPU’s
Single Instruction Multiple Threads (SIMT) architecture, where particles data access by
threads can be coalesced into efficient memory transactions. We use two potential energy
functions with 3-body terms, including the Axillord-Teller Potential [119] and the
Context-based Secondary Structure Potential (CSSP) [94] as examples to demonstrate the

effectiveness of our workload distribution scheme.

7.2.1 3-body Effects

Although many molecular simulations are typically confined to evaluating
interactions between molecular pairs, recent studies show that three-body or even higher
order effects play an important role for quantitatively accurate computation in a variety of
molecular simulation applications [120-123]. For example, the three-body effects
strongly influence solid-liquid and vapor-liquid equilibria of fluids [124-127]. The
context-based secondary structure potential taking three-body statistical terms into
account leads to significant accuracy enhancement in evaluating protein secondary
structures [94]. A three-body potential incorporating interaction between a DNA base and
a protein residue with regard to the effect of a neighboring DNA base outperforms two-

body potentials in specific protein-DNA site recognition [128]. A four-body residue-
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residue contact potential has demonstrated its effectiveness compared with pairwise
potentials in discriminating native protein conformations [129]. Inclusion of three-body
effects in the additive CHARMM protein CMAP potential also results in enhanced
cooperativity of a-helix and B-hairpin formation [130].

Despite the advantages of calculating three-body interactions explicitly in
molecular simulations, the main obstacle of a potential energy involving three-body or
higher order terms is its high computational cost. In general, when external influences are
not presented, the potential energy of a system with N particles can be evaluated as

E= Z U(pup) + Z U(ps pj, Pr) + Z U(pi, Pj P P + -+,

i%] i#j2k izjzksl
where U(p;, pj) is the two-body term involving two particles p; and p;, U(p;, pj, px) is the
three-body term, and U(p;, p;, P, ) is the four-body term, and so on. Computing time
increases largely when higher order terms are included. Generally, two-body terms
require ON?) operations, while O(N?) for three-body terms, O(N*) for four-body terms,
and so forth. Computation reduction approaches such as Barnes-Hut method, fast
multipole, and particle-mesh [131-134] can significantly reduce the overall computation
complexity by simplifying interactions between far apart particles. Nevertheless,
simulation using computation involving three- or higher-body terms is still unrealistic for
a system with relatively large number of interacting molecules until recent improvements
in computer systems.

In this section, we extend our GPU-based two-body load-balancing workload
distribution scheme to explicitly calculating three-body terms. The effectiveness of our
approach is demonstrated in the computation of the Axillord-Teller potential [119], a
physics-based three-body potential function, and the Context-based Secondary Structure
Potential (CSSP), a knowledge-based three-body potential energy function to evaluate

protein conformation adopting certain secondary structure pattern [94].

7.2.2 GPU-based Load-balancing Scheme for Computing 3-body Interactions

Our load-balancing scheme assumes that the three-body interaction terms are
independent of the order of the three particles. In other words, the order permutation of

the three particles does not change the potential value. Moreover, for simplicity in
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illustration, we assume one-thread-per-particle assignment, i.e., each thread keeps one
particle information unchanged and then shift the second or the third particles
information at each iteration to obtain all combinations of triplets. A fine-grained
assignment other than the one-thread-per-particle assignment to enhance GPU

performance on systems with small number of particles is presented in the next section.

7.2.2.1 Serial Implementation

The general implementation of three-body interaction computation in serial is
straightforward. All one needs to do is to enumerate all triplet combinations of three
different particles and then calculate the three-body energy of the triplet. The
corresponding pseudo code is illustrated in Figure 44. For a molecular system with N
particles and assuming that each pair of particles are interacting, there are totally N*(V ~
1)*(N - 2)/6 triplet computations and each particle is involved in exactly (N — 1)*(N -
2)/2 interaction computations. However, for each particle in the outer loop in Figure 44,
its number of three-body interaction calculations in the middle and inner loops varies
gradually from (N - 1)*(N - 2)/2 to 1. Consequently, directly mapping the calculations in
the middle and inner loops to GPU threads will lead to a highly unbalanced workload

distribution.

// initialization

; sumkE ~ 0.0; E
. for i ~ 1 to N-2 { // first particle, outer loop
l particlel = i; 3
for j ~ i+l to N~1 { // second particle, middle loop :
particle2 = j;
for k « j+1 to N { // third particle, inner loop

§
particle3 = k; ;
sumE ~ sumE + TripleE(particlel, particle2, particle3): i
i
!
|
!

)

Figure 44 Pseudocode of calculating three-body terms in a system with N
particles.
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7.2.2.2 Rotational Symmetry

Our implementation of load-balancing workload distribution scheme for three-
body interaction computation on GPU is based on the concept of rotational symmetry.
Assuming that the N particles in the system are stored in a cyclic array, we use 7, j, and k

to denote the indices of the three particles in clockwise order and d;;, dji, and dy; to

denote the position separations between particles 7 and j, j and &, and k and i, respectively.

d__g—i, i<j
U=j—i+N, i>]j

and dj, and dy; are calculated in a similar way. Clearly, we can have the following two

Here d,; is calculated as

properties
1).i#j+k,and
2) dij + djk + dki = N.
d:

Then, we study the position separation pattern of %0k of a triplet (P;, P;, Py).

/”\ /\ AN

Considering two position separation patterns d&— ik and dv—di' du—dik apd

dv'—di' are rotational symmetric if di; =d;;' and dj = dj' and di; = dy' or

dij = jk, and d]k = dkil and dki = dij’ or dU = dki, and dlk = d,‘j' and dki = jkl. Or

VAN AN

equivalently, if 9 i can turn into 9% 9K via cyclic rotations, then ki~ di
dy'

d

and 96— di' are rotational symmetric. Given an example of a system where N = 6,
1 2 1

3/—\ 2 2/~\1 , and 1/“33 are rotational symmetric but 3/\2 and 2/’“\‘3 are

not. In our GPU implementation, assuming one-thread-per-particle and all threads share

the same computation pattern due to GPU’s SIMT architecture, rotational symmetric

position separation patterns indicate that some threads will calculate certain triplets in

overlap, which will lead to waste of computational power and, more seriously, erroneous
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results if not handling correctly. Figure 45 illustrates an example where N = 6. Thread |
1

/N

starts from particle P1 and triplet (P1, P2, P3) has position separation pattern 4 — 1 _If
1

1
/ N\

a rotational symmetric position separation pattern of 4~ 1 for instance, 1 — 4 s
adopted, then thread 1 will carry out three-body interaction calculation on triplet (P1, P2,

P6), which is the same as the three-body interaction calculation on triplet (P6, P1, P2) in

thread 6 starting at P6 with position separation pattern 4~ 1. In summary, the
fundamental idea of our GPU-based algorithm is to uniquely enumerate all position

separation patterns that neither pair is rotational symmetry.

Thread 1 Thread 6

Figure 45 An example with N = 6 with thread 1 starting from P1 and thread 6 from
P8. The highlighted particle is the first particle that a thread handles. For
1

/' \
separation pattern 4 — 1, threads 1 and 6 will calculate three-body interactions
of triplets (P1, P2, P3) and (P6, P1, P2), respectively. If thread 1 adopts a position
1

/N
separation pattern 1 — 4, which is rotational symmetric to 4/—\1 , will compute
three-body interaction of triplet (P1, P2, P6), which overiaps the computation of

/N
thread 6 with position separation pattern 4 — 1,
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To balance workload distribution among GPU threads, we design a novel
workload distribution scheme by enumerating all position separation patterns without
sharing rotational symmetry. The workload distribution scheme is shown in Figure 46.
For thread i/, the index of the first particle is always i/ specified by the passed parameter
and the second and third particles are selected according to the enumerated position
separation patterns. The algorithm enumerates all position separation patterns satisfying

dij <dgandd;; <dy. (1)

It is easy to show that any position separation patterns that do not satisfy the above
condition are rotational symmetric to one of the position separation patterns satisfying
this condition, because we can always rotate the smallest position separation to dj;. The
above condition also indicates that dj; is bounded by |(N — 1)/3]. Hence, our algorithm
iterates the second particle index from (i + 1) mod Nto (i + [(N — 1)/3}) mod N. Then,
the third particle is iterated to satisfy (1).

. Thread(i, N)
A

i
© localE « 0.0; // initialization :
; particlel « i; // particle 1 i
| range ~ [(N-1)/3}; // range of particle 2 i
| . i
; for dij « 1 to range { !
g dik ~ dij;

dki ~ N - djk - dij;

particle2 ~ (i + dij) mod N; // particle 2

while (dki > dij) { // range of particle 3
particle3 « (i + dij + djk) mod N; // particle 3
localE ~ localE + TripleE(particlel, particle2, particle3);
djk « djk + 1;
dki e dki - 1;

}
}

local_sum reduce(localE); // sum partial scores in local block

)

' Figure 46 Pseudocode of enumerating all non-rotational symmetric position
separation patterns except for the order three symmetric one and calculating
three-body interaction of the corresponding triplet particles in a GPU thread.
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Figure 47 illustrates an example of enumerating triplets by the first thread (thread
1) in a system with 10 particles, using the algorithm shown in Figure 46. For thread 1, the
first particle is always P1. The second particle iterates from P2 to P4. When the second
particle is P2 (d; = 1), three-body interactions of triplets (P1, P2, P3), (P1, P2, P4), (P1,
P2, PS), (P1, P2, P6), (P1, P2, P7), (P1, P2, P8), and (P1, P2, P9) with position separation

1
patterns /\ /\ /\3 5/_\4 4/‘}5 3/‘\5 and 24>7 are
calculated, respectlvely. When the second particle is P3 (d; = 2), the three-body
interactions of triplets (P1, P3, PS), (P1, P3, P6), (P1, P3, P7), (P1, P3, P8) with
2 2 2

respective separation patterns GL 2, 5/*>3 , 4{\ 4, and 3/\"\'5 are accumulated.

When the second particle is iterated to P4 (dj; = 3), only one triplet triplets (P1, P4, P7)
3

with separation pattern 4 3 can satisfy (1). The completion of the algorithm allows
thread 1 to carry out three-body interactions of 12 triplets with different position
separation patterns that are not rotational symmetric. Assuming that one particle per
thread, the total number of three-body interactions is 12*10 = 120 = 10*9*8/6.

Figure 47 (a) d; = 1, the second particle is P2 and three-body interactions of triplets (P1,
P2, P3), (P1, P2, P4), (P1 P2, PS), (P1, P2, P6), (P1 P2, P7), (P1 P2, P8), (P1, P2, P9) with

A, /\ /\ /\ /\ A A,

patterns & — 5,3-—6 and 27 are
calculated, respectlvely
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Figure 47 (b) dij = 2, the second particle is P3 and three-body interactions of triplets (P1,
2 2
7\
P3, PS), (P1, P3, P8), (P1, P3, P7), (P1, P3, P8) with separation patterng 6 — 2, 5— 3|
2
7\

4——4 'and 3 — 5 are calculated, respectively.

g

Figure 47 (c) dy = 3, the second particle and only one three-body interaction of triplet
3

(P1, P4, P7) with separation pattern 4 — 3 s calculated.

Figure 47 An example of enumerating triplets without sharing rotational
symmetry in position separation patterns by the first thread (thread 1) in a
system with 10 particles.
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The only position separation patterns that the algorithm shown in Figure 46
cannot iterate are order three rotational symmetric patterns in case of d; = dj, = dy;,
when N is divisible by 3. The order three rotational symmetric pattern will cause the
triplets with equal separation distances to be calculated repeatedly by different threads.

Figure 48 shows an example of a system with 6 particles, where an order three rotational

symmetric pattern 2~ 2 exists. As a result, threads 1, 3, 5 over calculates triplet (P1,
P3, PS) while threads 2, 4, 6 over calculates triplet (P2, P4, P6). The deeper reason is, if
N is divisible by 3, (N - 1)*(N - 2) is no longer divisible by 6 and thus the total number of
N*(N - 1)*(N - 2)/6 interaction computations cannot be equally distributed to N threads.

Consequently, order three rotational symmetric patterns require special handling.

® =
O/q O, Q ’ D/ 6

@{ \OO\/Q

Thread 1 Thread 2 Thread 3
()

@’ @/)OC\/
Ve

Thread 4 Thread 5 Thread 6

Figure 48 Order three rotational symmetry in a system with 6 particles. The
highlighted particie is the first particle a thread handles. Threads 1, 3, 5 over
calculate triplet (P1, P3, P5) while threads 2, 4, 6 over calculate triplet (P2, P4, P6).




102

7.2.2.3 Load-balancing Workload Distribution Scheme

Figure 49 shows the complete workload distribution algorithm with special
handling of N divisible by 3 based on the pseudocode provided in Figure 46. Only the
first N/3 threads will carry out the three-body interaction computation of triplets with
order three rotational symmetric position separation pattern to avoid over calculation.
When N is not divisible by 3, each thread carries out exactly (N — 1)*(N - 2)/6 three-body
interaction operations, where perfect load-balancing is achieved. When N is divisible by
3, the first N/3 threads carry out an additional iteration of three-body interaction
computation for triplets with order three rotational symmetric pattern. When N is
relatively big and thereby a lot of iterations are needed, this additional iteration has little
impact to the overall system performance and hence we can claim that nearly perfect

load-balancing is obtained.

é Thread(i, N) :
L |

localEk « 0.0; // initialization
particlel «~ i; // particle 1 !
| range « [(N-1)/3); // range of particle 2 :
; for dij « 1 to range { {
| djk -~ dij; 5
: dki « N - djk - dij; :
particle2 ~ (i + dij) mod N; // particle 2 :
while (dki > dij) { // range of particle 3 f

particled ~ (i + dij + djk) mod N; // particle 3

localE ~ localE + TripleE(particlel, particle2, particle3l);
dik ~ djk + 1;

dki ~ dki - 1; j
} i
} i
: //Special handling 3-way rotational symmetric !
| if (N mod 3 == 0) { // N divisible by 3 |
; if (i <= N/3) | :
; dij = djk = N/3; ‘
: particle2 « (i + dij) mod N; // particle 2 |
i particle3 ~ (i + dij + djk) mod N; // particle 3 §
localE « localE + TripleE(particlel, particle2, particle3): :
} ;
} i
local sum reduce (localk); // sum partial scores in local block :
) :

Figure 49 Pseudocode of load-balancing workload distribution scheme. Perfect
load-balancing is achieved when N is not divisible by 3. When N is divisible by 3,
an additional iteration is needed for the first N/3 threads.
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Figure 50(a), (b), and (c) show the workload distribution when N = 7, 8, and 9,
respectively, with perfect load-balancing when N = 7 and 8 and nearly perfect load-
balancing when N = 9. In addition to load balancing, the workload distribution scheme is
particularly suitable for the GPU’s SIMT architecture [109]. This is due to the fact that, at
each iteration step, each thread reads data from different particles with the same stride,

which can be coalesced into efficient memory transactions.

7.2.2.4 Additional Performance Improvement Implementations on GPU

The above load-balancing workload distribution scheme assumes the one-thread-
per-particle on GPU architecture. Nevertheless, for molecular systems with small N
value, the one-thread-per-particle scheme with N threads may not produce enough threads
to fully utilize all resources in GPU. To address this issue, we implement fine-grained
threads by dividing the workload originally assigned to one thread to multiple threads so
that sufficient threads are produced when N is small. In addition to fine-grained treads,
other standard CUDA programming techniques, including parallel sum reduction, loop
unrolling, and coalesce memory access are implemented in order to fully take advantage

of the GPU architecture [109].
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Thread 1
Thread 2
Thread 3
Thread4
Thread 5
Thread 6
Thread 7

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6

Thread 7

Iteration 1 Iteration 2 iteration 3 Iteration4 Iteration 5

P1} P2| P3 P1| P2 PA P1| P2| PS P1| P3| P4 P1| P3| PS

P2} P3| P4 P2| P3| PS P2| P3| P6 P2| P4l PS5 P2| P4| P6

P3| P4| PS5 P3; P4| P6 P3| P4} P7 P3| P5| P6 P3| PS| P7

Pa| P5| P6 P4| P5| P7 P4| P5| P1 pal p6| P7| | Pal Ps| P1

P5| P6} P7 P5] P6| P1 PS5} P6| P2 P5] P7{ P1 P5| P7{ P2

P6| P7| P1 P6| P7| P2 P6| P7| P3 P6| P1| P2 P6| P1| P3
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Figure 50 (a) Perfect Balancing (N=7).

lteration 1 Iteration 2 lteration 3 Iteration 4 lteration 5 Iteration 6 iteration 7
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Thread 8

Figure 50 (b) Perfect Balancing (N = 8).
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iteration 1 iteration 2 iteration 3 Iteration 4 iteration 5 iteration 6 Iteration 7 lteration 8 fteration 9 Iteration 10
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Figure 50 (c) N = 9, due to order three rotational symmetry, only the first three threads handles triplets (1, 4, 7), (2, 5, 8),

and (3, 6, 9), respectively, at iteration 10.

Figure 50. Workload Distribution Scheme when N = 7, 8, 9. Perfect load balancing is achieved when N = 7 and 8.

Near-perfect load balancing is obtained when N= 9.
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7.2.3 Computational Results

Two potentials involving three-body terms, including the Axillord-Teller potential
and the CSSP potential are used to demonstrate the effectiveness of our load-balancing
workload distribution scheme on GPU. We name the GPU implementation of Axillord-
Teller and CSSP potential energy functions “GPU-AXT” and “GPU-CSSP,” respectively.
The original serial CPU versions are referred to as “CPU-AXT” and “CPU-CSSP.” The
load-balancing workload distribution scheme for three-body interactions is adopted in
GPU-AXT and GPU-CSSP. As for the two-body interactions in GPU-CSSP, we used our
approach, described in section 7.1, to balance the workload [135]. Furthermore, the
standard CUDA programming techniques for performance improvement are implemented
in both potentials.

The GPU-AXT and GPU-CSSP programs are tested on a server with Tesla C2070
GPU. The Tesla C2070 GPU (Fermi architecture) has 14 multiprocessors with 32 cores
each, 6 GB of global memory, 64 KB of RAM which can be configured between Shared
Memory and L1 cache and 32 KB of registers per multiprocessor. We also tested GPU-
CSSP program on two other servers with NVIDIA Tesla C1060 on one server and Tesla
C870 on the other server. Tesla C1060 has 30 multiprocessors with 8 cores each, 4 GB of
global memory, and 16 KB of registers per multiprocessor. Tesla C870 has 16
multiprocessors with 8 cores each, 2 GB of global memory, and 16 KB of registers per
multiprocessor. Both Tesla C1060 and Tesla C870 are non-Fermi architecture with no L1
cache.

CPU-AXT and CPU-CSSP run on a server with an Intel(R) Xeon(R) CPU @ 2.40
GHz, 1.6 GB cache, and 70 GB memory. We benchmark GPU-AXT and GPU-CSSP on a
set of systems of various sizes. The GPU time we measured includes the time of
transferring the system information (particles) arrays to GPU device memories, GPU
execution time, and the time of retrieving the calculated overall potential energy from

GPU. We use the gcc compiler with *“-O3’° optimization flag for the CPU
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implementations and nvcc compiler in CUDA 2.0 with **-0O3” flag for GPU

implementations.

7.2.3.1 Computational Results of Axillord-Teller Potential

o Axillord-Teller Potential
The Axillord-Teller potential is an intermolecular potential for the interaction of
the van der Waals type between three particles [119]. Considering particles i, j, and &, the

Axillord-Teller potential u; ik is calculated as,

2 4 02 40202 2 42V rE 4 2 g2

Ui = V] 3(—rf + rig+rp) (i — vt (G + i)

ik — 3,3..3 5..5..5
TiTikTk 8(rjTikTjk

where v is a non-additive coefficient and r;;, 7j, and ry are Euclidean distances between

particles / and j, j and k, and k and i, respectively.

e  GPU-AxT Speedup over CPU-AxT

We employed the Axillord-Teller potential in a molecular dynamics simulation
for Argon gas. A simulation box of length L is initialized with N number of argon
particles (atoms). In order to demonstrate the effectiveness of Axillord-Teller potential
implementation on the GPU (GPU-AXT), we run the simulation for 10 steps in boxes of
various sizes (L ranges from 10 for 125 particles to 58 for 24389 particles). The execution
time of Axillord-Teller potential evaluation is averaged over the number of simulation
steps.

Figure 51 shows the overall speedup of GPU-AXT on NVIDIA Tesla C2070 on
systems of various sizes with respect to CPU--AXT. For very large systems with more
than 3,000 particles, the maximum speedups of GPU-AXT can reach ~340. Figure 51
also shows that there are certain inefficiencies in GPU-AXT for systems with less than
2,500 particles, due to insufficient number of threads to fully take advantage of the GPU
architecture. To improve the performance of systems with small number of particles, we
adopt a fine-grained implementation by evenly splitting the workload of three-body
interaction computations belonging to one thread to multiple threads so that nearly the

maximum number of threads that a GPU device can launch is created.
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Figure 51 Overall speedup of GPU-AXT on Tesla C2070 on a set of systems with
various sizes with respect to CPU-AxT.

Significant performance improvements are found in systems with small number of
particles when fine-grained threads are employed, whose speedups are promoted to be
closer to those with a lot of particles. For systems with small number of particles,
sufficiently large number of threads is produced to use the GPU hardware to its fullest.
As the number of particles increases, the speedup curves of fine-grain threads and one-
thread-per-particle start to merge because the increasing number of threads in one-thread-
per-particle strategy makes more and more efficient use of the GPU architecture. After
all, with sufficient number of threads, the memory access latency can be effectively

masked.

e Load Balancing Scheme vs. Direct Mapping Scheme

Theoretically, assuming every three particles are interacting with each other, if the
serial algorithm is directly mapped to GPU implementation, the longest thread needs to
carry out (N — 1)*(N - 2)/2 three-body interaction calculations. When the load-balancing
scheme is used, each thread handles at most (N - 1)*(N - 2)/6 + 1 three-body

interactions. Therefore, the theoretical speedup of the load-balancing scheme over direct
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mapping scheme is approximately 3. Figure 52 shows that, when no distance cutoff is
applied, the GPU-AXT implementation using the load-balancing scheme is around 3
times faster than that of direct mapping. This agrees well with our theoretical analysis.
Nevertheless, in practice, interactions between particles separated over a certain distance
are weak enough to be ignored in computation. Using the distance cutoff can significantly
reduce the overall three-body interaction computation. Figure 52 also shows that the
speedup of the GPU-AXT implementation using the load-balancing scheme when half of
box width is used as cutoff distance over that of direct mapping is reduced to
approximately 1.8.

The performance reduction of the balanced GPU-AXT with distance cutoff is
mainly caused by the divergent branches in the program. Evaluation of the Axillord-
Teller potential with distance cutoff requires testing pairwise particle distances — if any
one of the pairwise particle distances is higher than the cutoff distance, the three-body

interaction computation will not be carried out.
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Figure 52 Speedup of GPU-AXT implementation using load-balancing scheme
over that of direct mapping. When no cutoff distance is applied, speedup is
approximately 3, agreeing well with the theoretical analysis. When half box width
cutoff is adopted, speedup is reduced to ~1.8.
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When the threads handling three-body interactions within the distance cutoff as
well as those exceeding cutoff co-reside in the same GPU warp, divergent branches will
occur in runtime. Table 28 compares the number of divergent branches of GPU-AXT with
half box width cutoff with GPU-AXT without distance cutoff. The performance data is
obtained by NVIDIA Compute Visual Profiler 3.2 [115]. When no distance cutoff is
adopted, GPU-AXT does not suffer from branch divergence because pairwise particle
distances are not necessarily checked against cutoff distance. In contrast, when distance
cutoff is applied, branch instructions (if statements) are inserted to compare the pairwise
particle distances with the cutoff distance, which potentially leads to divergent branches.
When half box width cutoff is used, the divergent branches in GPU-AXT is
approximately 15% of the total number off branch instructions, which results in speedup

reduction.

Tabile 28 Comparison of the Number of divergent branches in GPU-AxT with haif
box cutoff distance and GPU-AXT without cutoff.

# of Branch Instruction # of Divergent Branch
Box Width no Cutoff w. Cutoff no Cutoff w. Cutoff
10 2,628 6,722 0 1,319
12 7,817 16,954 0 1,338
14 39,338 91,987 0 11,766
16 87,558 207,909 0 27,614
18 266,098 640,687 0 89,429
20 500,511 1,182,504 0 152,506
22 1,181,940 2,858,410 0 435,072
24 2,489,780 5,809,260 0 730,359
26 4,829,030 11,573,100 0 1,635,830
28 8,787,680 20,750,600 0 2,717,490
30 15,192,000 36,138,900 0 5,058,260
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7.2.3.2 Computational Results of Context-based Secondary Structure Potential (CSSP)

o Context-based Secondary Structure Potential (CSSP)

CSSP is a statistical potential integrating inter-residue interaction potentials for
assessing predicted protein secondary structures [94]. Consider a protein chain with L
amino acid residues and fragment size of § (S < L), the CSSP potential of a protein
molecule is calculated as,

L-S+1 N S N
Uprotein = . (ZU(Ri)+ZU(Ri.R,-)+ D U(Ri.R,-,Rk))
im0 \'1

i Y] 22k

- Lil (E U(R;) + szl U(R, R;) + SZ—I U(RuRka))v

i=1 i) iz f#k

where R; denotes residue i in the protein chain and U(R;), U (R,-,R]-), and U(R;, R;, Ry)
are singlet, doublet, and triplet potential terms, respectively.
e Performance of Load-balancing Scheme

Unlike the Axillord-Teller potential, which is a pure three-body potential, the
CSSP potential includes three-body terms together with two- and single-body terms. In
GPU-CSSP implementation, the single-body terms are calculated using direct mapping
and the two-body terms are calculated using the pairwise load-balancing scheme
described in [135], which has a theoretical speedup of ~2.0 over direct mapping scheme.
The three-body terms are calculated using the load-balancing workload distribution
scheme described in this paper with theoretical speedup of ~3.0 over direct mapping.
Figure 53 shows the speedup of the load-balancing GPU-CSSP over that of direct-
mapping on a set of proteins ranged from tens to hundreds of residues, where an average
speedup of 2.6 is obtained. This speedup is consistent for small and large proteins.

Figure 54 shows the overall speedup of the final GPU-CSSP implementation with
fine-grained threads on NVIDIA Tesla C2070, Tesla C1060, and Tesla C870 on proteins
of size ranging from tens to thousand residues with respect to CPU-CSSP. The
computation time measures are based on the average of the times on proteins of sizes

within the ranges specified in the figure. For large proteins, the maximum speedups of
GPU-CSSP can reach up to ~480, ~190 and ~55 using Tesla C2070, Tesla C1060 and
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Tesla C870, respectively. It is important to notice that Tesla C2070 yields significantly
higher speedups than Tesla C1060 and Tesla C870. This is due to the fact that Tesla
C2070 has 448 CUDA cores whereas Tesla C1060 and Tesla C870 have 240 and 128
CUDA cores, respectively. Moreover, Tesla C1060 and Tesla C870 are non-Fermi

architecture without L1 cache.
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Figure 53 Performance of the balanced GPU-CSSP with respect to the
unbalanced GPU-CSSP on Tesla C2070.
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Figure 54 Overall speedup of GPU-CSSP on Tesla C2070, Tesla C1060 and Tesla
C870 on a set of proteins with various sizes with respect to CPU-CSSP.
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CHAPTER 8

SUMMARY AND POSTDISSERTATION REASEARCH

An approach of deriving context-based scores based on the potentials of mean
force method for characterizing the favorability of residues in adopting a structural state
according to their amino acid environment is developed in this work. These context-
based scores are incorporated as features together with other sequence and evolutionary
information in neural network training for different structural features predictions,
including secondary structure in 3-state and 8-state, disulfide bonds, and solvent
accessibility. Furthermore, efficient load balancing schemes to accelerate the calculations
of many-body potentials by taking advantage of the GPU architecture are also developed
in this work.

The effectiveness of using context-based scores has been demonstrated in our
computational results in N-fold cross validation as well as on protein benchmarks, where
enhancements of prediction accuracies are observed. A comparison of our methods with a
set of popular structural features prediction methods was made such that our methods
demonstrate higher accuracies. Furthermore, the efficiency of our proposed load-
balancing approach in accelerating many-body potentials has been demonstrated in the

corresponding results as well.

Web servers implementing our prediction methods are currently available:

e DINOSOLVE, available at http://hpcr.cs.odu.edu/dinosolve.

e C3-SCORPION, available at http://hper.cs.odu.edu/c3scorpion.
e (C8-SCORPION, available at http://hpcr.cs.odu.edu/c8scorpion.
¢ CASA, available at http://hpcr.cs.odu.edu/casa.

This dissertation raises many interesting opportunities for us to continue our study
in our future post-dissertation research. The following is a list of some of these possible

research directions:


http://hpcr.cs.odu.edu/dinosolve
http://hpcr.cs.odu.edu/c3scorpion
http://hpcr.cs.odu.edu/c8scorpion
http://hpcr.cs.odu.edu/casa
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¢ Toward the theoretical upper bound

In order to close the gaps between the theoretical upper bounds and our current
prediction accuracies of secondary structures, disulfide bonds and solvent accessibility,
our future efforts will include:

1) Deriving better context-based scores for calculating high-order interactions.

The context-based scores estimate the favorability of a residue adopting certain
structural conformation within its amino acid environment. The contribution of the
context-based scores in structural features prediction depends on their accuracy.

In order to show the sensitivity to context-based scores accuracy, we hereby use
our SCORPION method for predicting secondary structures in 3-state as an example.
Figure 55 shows the distribution of the context-based scores accuracy and the
corresponding accuracy improvements over the PSSM-only predictions for 3-state
secondary structure in CB513, CASP9, Manesh215, and Carugo338 benchmarks. When
the accuracies are lower than 40%, the context-based scores are close to random and thus
their contributions to secondary structure prediction are marginal. The more accurate in
the scores, the higher accuracy improvement over the PSSM-only predictions is achieved.
When the accuracy of the context-based scores exceeds 80%, the average accuracy
improvement over PSSM-only predictions reaches 2.5%. Unfortunately, the quality of the
context-based scores is limited by number of samples existing in the PDB, particularly
when calculating the high-order interactions. Therefore, it is not often that the context-
based scores are highly accurate and the average of the context-based scores accuracy in
SCORPION training and prediction is around 60%. Hence, more samples from the PDB
will be collected in order to calculate the residues’ high-order interactions.

2) Obtaining more precise PSSM substitution matrices

The evolutionary information revealed by multiple sequence alignments is a
major component of almost all modern prediction methods. The quality of this
information depends on the alignment algorithm used. Hence, our research direction
involves investigating better sequence alignment algorithms on increasingly large

sequence databases.
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Figure 55 Distribution of context-based scores accuracy and its correlation with
accuracy improvement over PSSM only prediction in CB513, CASP9,
Manesh215, and Carugo338 benchmarks. The accuracy of context-based
scores is measured by calculating the percentage of residues whose lowest
score secondary structure conformations (H, E, or C) agree with the DSSP.

3) Developing advanced machine learning algorithms

More machine learning algorithms will be explored; specifically, algorithms that
can capture residue-residue interactions in longer range and handle increasingly large
number of known protein structures.
¢ Secondary structure prediction and intrinsically disordered protein regions

An important application of secondary structure prediction is to predict
intrinsically disordered protein regions. Disordered proteins typically have a low content
of secondary structures. In fact, the predicted secondary structures are often incorporated
as important information in disorder region predictors such as DISOPRED [136] and
SPINE-D [137]. Figure 56 shows an example of the secondary structures predicted by
SCORPION on Thylakoid soluble phosphoprotein TSP9 [138], an intrinsic disordered
protein reacting to light condition changes from the photosynthetic membrane. The

majority of the N-terminal a-helix is predicted correctly with high confidence (8+) except
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for two residues at the end. For the unstructured coils, 85.3% of the 75 residues are
correctly identified while the rest 14.7% are misclassified as helices or strands but with
low prediction confidence (6-). Coupled with other residue feature predictors such as
solvent accessibility, B-factor, and disulfide bonding state, the accuracy improvement in
secondary structure prediction using context-based scores has the potential to enhance
determination of intrinsically disordered regions.
e More protein structural features to predict.

Features including contact-map, torsion angles, disordered regions, and B-factor
will be considered as part of our future research.
e A Framework for tertiary structure prediction

Prediction methods, once available, will serve as a framework by which important
information can be generated in order to be used in tertiary structure predictions. Even
though this dissertation focuses specifically on protein structural features prediction, we
are planning to work on protein tertiary structure prediction, where the tools and
techniques developed in this work can be efficiently applied in order to enhance protein
3D prediction.
o General GPU-accelerator

Our future research directions regarding GPU-accelerations of many-body
potentials will include investigating the development of a general GPU-accelerated
framework that can be easily employed to accelerate complicated energy potential

functions.

1 SARKGTAETK QEKSKVIWI.I, «;F ! TKEDQFY ETDPILRGGD VKSSGSTSGK Sequence
CCCCCCCCCC CCCCHMtiHNE HHHCCCCCCC CCCCCCCCCC cecceeeeeeee DSSP Assignment
CCCCCCCCCH HHCCHHHHITH HCCCCCCCCE CCCCCCCCCC CCCCCCCCCe SCORPION Prediction
9987887646 6579899997 5667766444 4897667986 5688888888 Prediction Confidence
51 KGGTTSGKKG TVSIPSKKKN GNGGVFGGLF AKKD
CCCCCCCCCC CCCCCCCCCC CcCeeeceeee ceec
CCCCCCCCCC CECCCCCCCC CCCCEEECEE ECCC
8898898888 5647887668 9997654445 4789

Figure 56 Secondary Structures Predicted by SCORPION on Thylakoid soluble
phosphoprotein TSP9.
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