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Abstract

The potentially toxic element selenium is first concentrated from solution to a large but highly variable degree
by algae and bacteria before being passed on to consumers. The large loads of abiotic and detrital suspended
particles often present in rivers and estuaries may obscure spatial and temporal patterns in Se concentrations at the
base of the food web. We used radiotracers to estimate uptake of both selenite (Se(IV)) and C by intact plankton
communities at two sites in the Sacramento/San Joaquin River Delta. Our goals were to determine (1) whether C
and Se(IV) uptake were coupled, (2) the role of bacteria in Se(IV) uptake, and (3) the Se : C uptake ratio of newly
produced organic material. Se(IV) uptake, like C uptake, was strongly related to irradiance. The shapes of both
relationships were very similar except that at least 42–56% of Se(IV) uptake occurred in the dark, whereas C uptake
in the dark was negligible. Of this dark Se(IV) uptake, 34–67% occurred in the 0.2–1.0-mm size fraction, indicating
significant uptake by bacteria. In addition to dark uptake, total Se(IV) uptake consisted of a light-driven component
that was in fixed proportion to C uptake. Our estimates of daily areal Se(IV) : C uptake ratios agreed very well with
particulate Se : C measured at a site dominated by phytoplankton biomass. Estimates of bacterial Se : C were 2.4–
13 times higher than for the phytoplankton, suggesting that bacteriovores may be exposed to higher dietary Se
concentrations than herbivores.

Depending on its concentration, selenium (Se) can be ei-
ther a serious toxic contaminant or a limiting nutrient for
aquatic organisms (Brown and Shrift 1982; Harrison et al.
1988). Se toxicity is a potential problem in many ecosystems
where an arid climate and high Se soil concentrations com-
bine to concentrate Se in surface and ground waters (Lauchli
1993). Anthropogenic inputs in the form of industrial waste
(Bowie et al. 1996) and atmospheric deposition of airborne
Se-containing particles released from coal-burning power
plants (Cutter and Cutter 1998) are also important sources
to some aquatic environments. Understanding the spatial and
temporal variability in the selenium concentration in aquatic
organisms has been of particular concern in freshwater bod-
ies of central California and other western states, where a
combination of naturally high Se concentrations in the soil,
irrigation practices, and agricultural management strategies
has led to instances of catastrophic poisoning (Presser 1994;
Presser et al. 1994).

To understand and predict Se concentration in consumer
organisms, it is necessary to know the concentration of Se
in organisms that form the base of the food web (Fisher and
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Reinfelder 1995). Almost all of the Se in aquatic consumers
derives from dietary Se (Reinfelder and Fisher 1991; Luoma
et al. 1992; Wang et al. 1996). This dietary Se derives ul-
timately from phytoplankton and bacteria, which concentrate
Se from solution by up to 100,000-fold, although the degree
of concentration may vary several orders of magnitude
among algal species (Baines and Fisher 2001). Se in algae
and bacteria, primarily reduced Se(2II) contained in sele-
noaminoacids (methionine and cysteine) in free or combined
form (Wrench 1978; Foda et al. 1983; Bottino et al. 1984),
is readily assimilated from algae by herbivores and may even
be biomagnified 2–4 times with trophic transfer (Liu et al.
1987), although such biomagnification is not always ob-
served (Reinfelder et al. 1998; Baines et al. 2002). Bacteria
are also clearly involved in concentrating dissolved Se into
the particulate fraction (Foda et al. 1983; Riedel and Sanders
1996). We might expect that bacteria have higher Se con-
centrations than algae given that their lower C : N ratios im-
ply higher relative protein content (Sterner and Elser 2002).
Since bacteria : phytoplankton biomass ratios can vary sig-
nificantly spatially and temporally in aquatic ecosystems
(Cole et al. 1988; Findlay et al. 1991), such differences in
Se content could explain patterns in consumer Se burdens.

Because the net uptake of Se and C by algae is linked
through the primary production of organic matter and cell
growth (Baines and Fisher 2001), we hypothesize that Se
uptake, like inorganic C uptake, is related to irradiance.
Time- and depth-integrated C uptake is typically measured
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Fig. 1. Map of the sampling site. Gray areas represent dry land
or emergent vegetation; white areas, open water. Sampling sites are
indicated by the dark circles. Chl max site 5 site of maximum
chlorophyll.

by modeling the response of C fixation to light then inte-
grating the model predictions over the appropriate light and
time fields (Falkowski and Raven 1997). Depth-integrated
daily Se uptake may be estimated similarly based on mea-
surements of inorganic 75Se uptake at different light levels.
Alternatively, if Se and C uptake scale proportionately with
light levels, a measurement of the uptake ratio at one light
level combined with a measure of integrated C fixation may
be all that is needed to get a reasonable estimate of local
exposure of higher trophic levels to Se via algal food. By
coupling these measurements with bacterial production es-
timates, Se : C ratios for both algae and bacteria could be
determined. Such an approach would measure the Se : C ratio
of only the living cells that form the base of the food web
and not of the abiotic material and nonliving detritus. Non-
living particles can dominate the suspended particulate mat-
ter in rivers and estuaries, potentially causing chemical mea-
surements of the Se : C ratio in suspended particles to differ
from the Se : C of the material that is either ingested or read-
ily assimilated by bivalves and crustaceans.

As part of a large interdisciplinary study of C and Se
transformations and transport in the Sacramento/San Joaquin
River delta in California, we measured uptake of 14C-labeled
bicarbonate by phytoplankton and uptake of 75Se-labeled sel-
enite (Se(IV)) by phytoplankton and bacteria. These exper-
iments focused on uptake of selenite, since this form is gen-
erally considered most bioavailable (Riedel et al. 1991; Hu
et al. 1997). We addressed three specific questions: (1) What
fraction of the selenite uptake onto particles is the result of
bacterial activity? (2) How is selenite uptake related to in-
cident irradiance? (3) Does the Se(IV) : C uptake ratio vary
with irradiance or production? We also attempted to develop
a model that relates daily depth-integrated C uptake to Se
uptake in bacteria and phytoplankton. Model predictions are
then compared to measurements of Se : C in biogenic parti-
cles and the variability in dissolved and particulate Se con-
centrations at a eutrophic site in the Sacramento/San Joaquin
Delta.

Materials and methods

Study site—Measurements were conducted using water
collected in or near Mildred Island, a former agricultural
tract that because of subsidence lay below river level until
it flooded during intense El Niño rains in 1983 (Fig. 1).
Mildred Island is a 4.1-km2 body of water separated from
the river channels that surround it by the remnants of an
encircling levee. Hydrologic communication between the
body of Mildred Island and the channel is primarily as tidal
flux through a major gap (;170 m wide and ;18 m deep)
in the northeast section of the levee, and another smaller gap
in the south (;18 m wide and ;1 m deep), although many
smaller gaps exist elsewhere (Monsen et al. 2002). Average
flushing time within Mildred Island is 2.4–8.8 d, i.e., much
longer than in the surrounding channel but very short com-
pared to a typical lake. Retention is also spatially variable,
ranging from 1 to .160 h. The southeastern portion of the
water body is particularly isolated from the channel, result-
ing in diel thermal stratification and a large accumulation of

algal biomass every day (Lucas et al. 2002). While the chlo-
rophyll a concentration in the surrounding river channel
ranged between 2.3 and 3.1 mg L21, in the southeastern sec-
tion of Mildred Island concentrations ranged from 12.4 mg
L21 in the early morning to 30 mg L21 in the early evening
(Table 1) during the course of this experiment.

Sampling—Water for the uptake experiments was collect-
ed from two sites. One represented the high-chlorophyll,
long residence time conditions in the southeastern corner of
Mildred Island (Chl max) and the other the low-chlorophyll,
short residence time conditions of the adjacent channel
(Channel; Fig. 1). Water samples for use in the experiments
were collected using a trace-element clean Go Flo bottle
from a depth of 1 m. Three to five liters of water were then
drained into a darkened 20-liter collapsible plastic cubitainer
via a funnel fitted with an 100-mm mesh nitex netting to
remove large grazers. The cubitainer had been acid washed
three times with trace metal grade 10% HCl and with am-
bient water prior to sampling. These samples were imme-
diately transported to the onshore experimental site (transit
time ;20 min). The length and intensive nature of the ex-
periments limited us to four experimental incubations, two
each from the Chl max and Channel sites. To encompass the
range of diel variability, one set of samples from each site
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Table 1. Conditions at the time of the Se and C uptake experiments.

Period Site

Time of
sampling

(h)

Experiment
duration

(h)
Sampling
intervals

Ambient
DIC

(mmol L21)
Initial Chl

(mg (Chl a)21 L21)

Ambient
Se(IV)

(nmol L21)

Morning
Evening
Morning
Evening

Channel
Channel
Chl max
Chl max

0742
1644
1109
2044

7.6
6.1
8.2
6.9

4
5
4
5

1049
692
881
760

2.3
3.1

12.4
30.0

0.29
0.24
0.41
0.28

was collected in the morning and another in the late after-
noon/early evening (see Table 1 for exact time of collection).

These two sites and a third intermediate site near the
mouth of the main levee break were also sampled for deter-
mination of particulate and dissolved Se concentrations, dis-
solved Se speciation, chlorophyll a concentration, and par-
ticulate organic carbon and nitrogen. These results are
described more fully elsewhere (Martina Doblin pers.
comm.). Samples for determination of Se in dissolved and
particulate fractions were collected immediately after collec-
tion of samples for uptake experiments. Samples to deter-
mine Se variability were collected every 3 h over a 2-d pe-
riod. In addition, at five times over the first 24 h of the
experiment, 250-ml samples were collected from the Chl
max site in Mildred Island and preserved with Lugol’s so-
lution for microscopic determination of the phytoplankton
and protozoan species composition. One such sample was
also collected from the channel.

Chemical and phytoplankton characterization—Water
samples for total particulate selenium determinations were
directly pressure filtered (Go Flo bottle pressurized with 0.5
atm. N2 and .1.5 liters of water passed through filter ap-
paratus) onto preweighed 0.4-mm, 142-mm (outside diame-
ter) polycarbonate filters that were frozen immediately upon
completion of the filtration. Water passing through the filter
was placed in 1-liter borosilicate glass bottles with Teflon-
lined caps and acidified to pH 1.6 with HCl; these were
stored in the dark until analysis. Experience has shown that
storage in borosilicate glass bottles with Teflon-lined caps
and 1.0 M HCl acidification (used in preference to HNO3

because of potential nitrite interference during Se determi-
nations—see Cutter 1983) preserves the Se speciation and
results in good analytical accuracy and precision. Dissolved
selenite (Se(IV)), selenate (Se(VI)), and organic selenide
(org Se(2II)) were determined using the selective hydride
generation procedures described by Cutter (1978, 1982,
1983) and included triplicate analyses and the use of the
standard additions method of calibration.

After drying the filters at 408C and reweighing (to deter-
mine total suspended matter), suspended particles were sol-
ubilized using a multistep wet oxidation (Cutter 1985). Total
dissolved selenium was then determined in treated digest
solutions using the same dissolved selenium method as
above, with a detection limit of 1 pmol L21 and an average
coefficient of variation of 4.1% at a concentration of 0.1
nmol L21. The accuracy of these digestions was assured us-
ing the standard additions method of calibration and the par-
allel digestion/analysis of a standard reference material (Na-

tional Institute of Standards and Technology 1566b Oyster
Tissue). Suspended particulate organic carbon and nitrogen
were determined using a Carlo Erba ANA 1500 elemental
analyzer for water samples filtered onto solvent-cleaned
Whatman GF/F filters (13 mm outside diameter) (Cutter and
Radford-Knoery 1991).

Samples for chlorophyll determination were filtered onto
25-mm Gelman AE glass fiber filters under low pressure
(,125 mm Hg). Filters were kept frozen until analysis.
Chlorophyll and phaeophytin were measured using the fluo-
rometric methods of Arar and Collins (1997) with slight
modifications. Filters were extracted in 90% acetone at 48C
overnight. After removing particulates from the sample by
centrifugation, fluorescence was measured on room temper-
ature samples using a Turner Designs model 10 fluorometer.
The samples were acidified with 1 N HCl, and fluorescence
was measured again. Chlorophyll a and phaeophytin were
estimated from these two fluorescence measurements. In ad-
dition to chlorophyll, Dissolved inorganic carbon (DIC) was
measured using titration to a colorimetric end point (Furutani
et al. 1984). Phytoplankton and protozoan community com-
position were determined for the Lugol’s preserved samples
using the Utermöhl settling technique.

Coupled Se : C uptake experiments—Uptake of Se and C
was measured in incubators designed to provide a range of
irradiances under controlled temperature conditions. The ap-
paratus consisted of a rectangular opaque acrylic chamber
with a transparent face plate at one end. Each chamber held
12 disposable 250-ml clear sterile polyethylene cell culture
flasks with Teflon-lined caps aligned in a row facing the
transparent face plate. The last two flasks were made opaque
by painting them with multiple coats of flat black paint. All
of the flasks, none of which had been used prior to this
experiment, were rinsed with 10% trace metal grade HCl
followed by 18-mOhm Milli-Q deionized water. To prevent
atmospheric Se contamination and loss of radiolabel, flasks
were kept closed throughout the experiment except during
sampling. A 150 W flood lamp was directed toward the
transparent face of the chamber to provide the light source.
The photosynthetically active radiation (PAR) measured in
the center of the last clear flask was 8% of that in the flask
nearest the transparent face plate as measured with a spher-
ical quantum scalar irradiance meter (Biospherical Instru-
ments model QSL 2001). This chamber was connected via
polyvinyl chloride (PVC) pipe to a 20-liter reservoir of wa-
ter. The water was maintained at 258C 6 18C (the ambient
temperature) by recirculating it through a 1/5-hp aquarium
chiller. Cooling water was pumped at a rate of 10 L min21
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from the reservoir to the incubation apparatus near the clear
face plate. Return flow from the incubation chamber to the
reservoir was by gravity.

For each of two replicate incubation chambers, 125-ml
aliquots were taken from a mixed bulk sample cubitainer
and distributed to seven of the 250-ml cell culture flasks—
five clear flasks exposed to 100%, 54%, 30%, 15%, and 8%
of the radiation incident on the first flask, and the two opaque
flasks. To account for abiotic Se(IV) uptake, one of the dark
flasks was used as a killed control; the sample in this flask
was heated in a microwave oven for two 2.5-min intervals,
being careful not to allow boiling (Keller et al. 1988). The
chamber and flasks were allowed to equilibrate for 1 h. We
then added 555 Bq of 75Se-labeled sodium selenite (in 0.1
N HCl) followed by 46.25 kBq of 14C-labeled sodium bi-
carbonate to each flask, taking care to offset the HCl addi-
tions resulting from the isotope additions with equimolar ad-
ditions of NaOH before adding the radiolabeled bicarbonate.
The contents of each flask were mixed, and then 1-ml sam-
ples were immediately taken for analysis of initial isotope
additions. The concentration of added Se was 0.03 nmol L21,
which was ,15% of the ambient selenite concentration.

The dual and single radiotracer experiments were con-
ducted in the morning and evening to determine whether the
relationships between light and the uptake of Se(IV) and C
changed over the course of the day. The time course of in-
corporation of 14C and 75Se into the particulate fraction was
followed to determine whether uptake was linear over time.
Aliquots of 10 ml from each flask were collected at four
times over 7–8 h in the morning experiments and five times
over 6–7 h in the evening experiments. The aliquots were
filtered through 0.2-mm polycarbonate membrane filters (Po-
retics) and then rinsed with an equal volume of unlabeled
water from Mildred Island. For the morning incubations, we
also filtered samples through 1.0-mm pore size filters to al-
low estimates of the uptake into the predominantly bacterial
size fraction (0.2–1.0 mm) by difference. Simultaneously,
samples of 1 ml were collected to estimate total radioactivity
in solution. All samples were placed in scintillation vials;
those containing a filter received 1 ml of 1.2 N HCl to elim-
inate any residual inorganic carbon, while liquid samples
received 3 ml of 1 N NaOH to prevent loss of 14C.

There was also a parallel set of experiments measuring
only primary productivity, as indicated by uptake of 14C. In
these experiments primary production was measured with
short-term incubations of NaH14CO3-spiked water samples in
a commercially produced photosynthetron (Lewis and Smith
1983) that provided a range of irradiance from darkness to
full sunlight. A 740-kBq addition of NaH14CO3 was added
to a 50-ml water sample. Then, 2-ml aliquots of the radio-
actively labeled sample were dispensed into each of 17 liq-
uid scintillation vials. The 2-ml aliquots were incubated for
30 min, then acidified with 0.4 ml of 0.5 N HCl and agitated
in a hood for 1 h to stop carbon uptake and purge the un-
incorporated NaH14CO3 from the sample. Abiotic uptake of
NaH14CO3 was determined by acidifying triplicate samples
immediately after the NaH14CO3 addition. The measure of
abiotic 14C uptake was subtracted from the activity of each
incubated sample.

Dual isotope samples were prepared for gamma and beta

emission analysis within 24 to 48 h after collection in the
field. Vials with filters in them were swirled, opened, and
placed in a hood for 3 h to vent any residual 14CO2 produced
by acidification. Afterward, 3 ml of 1 N NaOH were added
to buffer the scintillant, thereby minimizing pH-related var-
iability in counting efficiency. Ten milliliters of scintillant
(Optima-Gold, Perkin Elmer) were then added and the con-
tents homogenized by vigorous shaking. The vials were an-
alyzed for 75Se by counting gamma emissions for 10 min at
278 keV on an autosampling Wallac 1480 Wizard 3 fitted
with a NaI(Tl) well detector. Uptake into particles was ex-
pressed as a percentage of the total radioactivity in suspen-
sion. Prior to analysis of beta emissions, the vials with scin-
tillant were allowed to sit in the dark for 1 d. Beta emissions
were analyzed by liquid scintillation counting for 10 min
using the external standards ratio method for quench correc-
tion. Beta emissions by 75Se were found to contribute a neg-
ligible amount (,5%) to estimates of 14C beta emissions.
From the assays of gamma and beta radioactivity in the dis-
solved and particulate phases, we determined the fraction of
added 75Se and 14C radiotracer taken up into particles at each
sampling point.

Data analysis—Se(IV) and C uptake in the dual isotope
experiments were corrected for abiotic uptake by subtracting
the amounts of particulate 75Se and 14C in the dark killed
flasks (assumed to reflect abiotic uptake) from the amounts
observed in each of the other flasks. Only the corrected data
from the live flasks are presented and used in statistical tests.
For the morning incubations, uptake into the bacterial size
fractions was estimated by subtracting 75Se and 14C observed
in the .1-mm fraction from that in the .0.2-mm fraction.
Initially we expressed uptake as a percentage of the initial
dissolved isotope pool taken up. To estimate the mean C
uptake rates (% h21) at a particular light level, we averaged
the rates measured over each interval of the time series. We
were not able to use a similar approach for all of the Se(IV)
uptake experiments because low counts in the initial phase
of some of the treatments resulted in poor analytical statistics
and high variability. Instead, we took the final value for per-
cent Se(IV) uptake into particles and divided by the length
of entire incubation, assuming uptake was linear with time.
Absolute uptake on a pmol L21 h21 basis was calculated by
multiplying the percentage of isotope taken up into particles
per hour by the total (ambient 1 added) Se(IV) or DIC con-
centrations in pmol L21 (Table 1).

Se(IV) uptake and C uptake were normalized to chloro-
phyll to remove the effects of variations in algal biomass.
Chlorophyll-specific primary production, Pb, and Se(IV) up-
take, uSe(IV)b, were related to irradiance (I, mmol quanta
m22 s21) by nonlinear least-squares regression using the Lev-
enberg–Marquardt iterative search algorithm within Sigma-
plot 7.1 (SPSS). The model used was a hyperbolic tangent,
Ub 5 y 1 U tanh(I 3 I ), where U stands for eitherb 21

max k

primary production or Se(IV) uptake, Ub is the biomass spe-
cific uptake, U is the maximum chlorophyll-specific up-b

max

take, and Ik is the shape parameter for the curve (Jassby and
Platt 1976). Dark uptake was presumed to equal the y-inter-
cepts of these regressions. The uptake of Se(IV) in the live
dark flasks was always within 10% of these y-intercepts.
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Table 2. Fraction of the phytoplankton biovolume contributed by the dominant phytoplankton species during the experiments. Only
species contributing more than 5% of the community biovolume at one or more sites are included.

Group Major species

Chl max

Morning Evening
Channel
(both)

Bacillariophyceae

Cryptophyceae

Cyanophyceae

Cyclotella atomus
Skeletonema potamus
Teleaulax amphioxiea
Plagioselmis sp.
Cyanobium sp.

39.7
7.5

10.5
22.3
12.3

50.2
19.4

15.8
7.7

86.3

2.7
1.2
5.0

Absolute uptake of C and Se(IV) at a specific depth and
time was estimated by substituting the equation relating I to
depth (z), Iz 5 I0e2az, into the hyperbolic tangent model and
multiplying the result by the chlorophyll concentration.

Ut,z 5 {y 1 U tanh[(2I0te2atzI )]}Chlt
b 21
max t k (1)

where Chlt, I0t, at, and z are the chlorophyll a concentration
(mg Chl a m23), the surface irradiance (mmol photons m22

s21), the light extinction coefficient at time t (% m21), and
the depth (m) below the surface, respectively. Depth-inte-
grated primary production was estimated for 0.1-h intervals
over the course of the day by taking the definite integral of
Eq. 1 between the surface and the depth of the water column
(5 m). Because chlorophyll concentrations varied 2–3 fold
over the diel cycle, we linearly interpolated chlorophyll a
concentrations at each point, t, between the trihourly chlo-
rophyll measurements. The light extinction coefficient at the
Chl max site, where phytoplankton dominated turbidity, was
estimated from chlorophyll concentration by using Carls-
son’s regression (Carlson 1977) to predict Secchi depth from
chlorophyll concentration and assuming that irradiance at
Secchi depth was 15% of surface irradiance. In the channel,
where suspended sediments dominated turbidity, we instead
used the average attenuation coefficient of 1.5 observed on
sampling dates 2 weeks prior to and after this study. I0t was
estimated by interpolating irradiance estimates from hourly
measurements from the California Irrigation Management
Information System station at Twitchell Island, California
(140) available at http://www.cimis.water.ca.gov/ using a
sine curve (r2 of predicted vs. observed .0.99). We used a
conversion ratio of 2.07 to convert these data on full solar
irradiance in units of Watts m22 to PAR in mmol quanta m22

s21 (Ting and Giacomelli 1987). U and Ik for time pointsb
max

before the morning experiments and after the evening ex-
periments were assumed to equal the values calculated from
the corresponding experiments. We linearly interpolated be-
tween the morning and evening parameter values for the
intervening time points. Integration over depth was accom-
plished numerically in Matlab (v. 5.3, MathSoft) using the
quadrature method. Integration under the 24-h time series of
depth-integrated uptake for each 0.1-h step was by the sim-
ple trapezoidal method. Shorter intervals between steps re-
sulted in insignificant changes in integrated estimates.

We also made maximum and minimum estimates of daily
areal phytoplankton and bacterial Se(IV) uptake. For the
high-end estimate of phytoplankton Se(IV) uptake we sub-
tracted the fraction of dark Se(IV) accounted for by particles
,1.0 mm from the dark Se(IV) uptake, y, before integrating

Eq. 1. This estimate assumes that all uptake .1.0 m was
due to phytoplankton and that bacterial uptake was not re-
lated to light. The low end phytoplankton estimate was de-
termined by setting y 5 0 in Eq. 1. This estimate assumes
that all dark uptake is due to bacteria. Maximum and mini-
mum estimates of bacterial Se(IV) uptake were determined
by subtracting, respectively, the minimum and maximum
phytoplankton Se(IV) uptake from total Se(IV) uptake.

To determine the uncertainty around our model estimates,
1000 sets of y, U , and Ik for Se(IV) and C uptake wereb

max t

produced by randomly sampling from normal distributions
with means and standard deviations determined from the re-
gressions of uptake on light. We then calculated the inte-
grated primary production using each of these data sets and
used the resulting distribution to estimate 5th and 95th per-
centiles for the estimates of daily areal production.

Results

Phytoplankton biomass and community composition—The
composition of the phytoplankton community differed be-
tween the Channel and Chl max sites, and over the course
of the day at the Chl max site (Table 2). In the channel the
biomass was dominated (.85%) by a small centric diatom,
Cyclotella atomus, with smaller contributions by cryptophy-
tes and cyanobacteria. At the Chl max site within Mildred
Island, the cryptophytes were more important than in the
channel, with the two genera Plagioselmis and Teleaulax
comprising from 12% to 32% of the standing biovolume
depending on the time of day. The cyanobacterium, Cy-
anobium sp. (1–2 mm 3 4 mm; Komárek 2003) also was
more important at the Chl max site, comprising between 7%
and 23% of the algal biovolume over 24 h. While the phy-
toplankton community composition varied significantly over
the diel cycle, the composition between the two sampling
times differed only modestly (Table 2).

Se(IV) uptake—Uptake of Se(IV) was approximately lin-
ear over the course of the incubations for all size fractions
(Fig. 2). Because of this linearity we could calculate uptake
rates simply based on 75Se in the particles at the end of the
incubation. For the samples from the channel, less than 4%
of the radiolabel was removed from solution over the entire
course of the experiments and less than 12% was removed
in the experiments using water from the Chl max site. The
uptake rates of Se(IV) in the .0.2-mm fractions were sig-
nificantly related to light (Fig. 3, Table 3). The hyperbolic
tangent model provided an excellent fit to the data from the
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Fig. 2. Time series of 75Se(IV) uptake for all experiments. Percentages given in legend are with
reference to the irradiance in the chamber with the highest value. Side by side panels for each
combination of time, site, and size fraction represent results for each replicate.

Fig. 3. Se(IV) uptake versus irradiance for the .0.2-mm fraction. Lines represent regression
predictions based on hyperbolic tangent model. Broken lines are predictions for morning data, and
solid lines for evening data. See Table 3 for parameter estimates and statistics.
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Table 3. Parameters for regressions predicting Se(IV) uptake from irradiance for raw and chlorophyll normalized data. y0 is the intercept
of the nonlinear regression and represents the regression estimate of dark Se(IV) uptake, uSemax represents the estimate of maximum Se(IV)
uptake minus the Se(IV) uptake in the dark, and Ik is the irradiance at which uptake is 76% of the maximum. uSe is uSemax normalizedb

max

to chlorophyll concentration. Values for Ik, r2, and p are the same for raw and chlorophyll normalized data. Values in parentheses are
standard errors. Asterisks denote p values: * 0.1.p.0.01; ** 0.01.p.0.001; *** p,0.001.

Site Time
Size

fraction Ik

% Se(IV) h21

y0 uSemax

pmol Se(IV)
mg (Chl a)21 h21

y0 uSeb
max Adj r2 p

Channel Morning Total

.1.0

68
(49)
129*
(46)

0.12*
(0.05)
0.05**

(0.01)

0.14*
(0.05)
0.10***

(0.02)

0.15*
(0.06)
0.06**

(0.02)

0.18*
(0.07)
0.13***

(0.02)

0.34

0.80

0.06

0.0015

Evening

0.2–1.0

Total

43
(71)
65*

(30)

0.7*
(0.02)
0.24**

(0.05)

0.04
(0.03)
0.28**

(0.06)

0.09*
(0.03)
0.18**

(0.04)

0.05
(0.04)
0.21**

(0.05)

0.00

0.63

0.44

0.008

Chlorophyll
maximum

Morning Total

.1.0

116*
(36)
101*
(35)

0.47***
(0.06)
0.28***

(0.06)

0.62***
(0.09)
0.47***

(0.07)

0.16***
(0.014)
0.09**

(0.02)

0.21**
(0.03)
0.15***

(0.02)

0.85

0.81

0.0005

0.0013

Evening

0.2–1.0

Total

277
(226)
109***
(25)

0.20***
(0.02)
0.99***

(0.06)

0.20*
(0.09)
0.73***

(0.08)

0.07***
(0.01)
0.08***

(0.005)

0.07
(0.03)
0.07***

(0.007)

0.64

0.89

0.012

,0.0001

Chl max site (p , 0.01, Table 3). Data from the channel site
did not fit the data as well, in large part because the rela-
tively low counts in these samples increased our analytical
error significantly. The analytical coefficient of variation
(CV) after subtraction of the killed dark controls ranged for
the channel samples from 5.4% to 16.5%, whereas the CVs
for counts from the Chl max site were always ,5%.

The spatial and temporal patterns of Se(IV) uptake were
complex. Relative Se(IV) uptake rates (% h21) were 3.3- to
3.9-fold higher at the Chl max site than in the channel (Fig.
3). The relative uptake rates were also about twofold higher
on average in the evening than in the morning at both sites.
However, when absolute Se(IV) uptake rates calculated
based on ambient Se(IV) concentrations were normalized to
chlorophyll a, they varied much less. The chlorophyll-spe-
cific Se(IV) uptake (pmol Se(IV) (mg Chl a)21 h21) was the
same for both channel samples and the morning sample from
the Chl max site, but threefold lower than the other samples
in the evening sample from the Chl max site (Fig. 3).

For both sites and times a significant amount of the Se(IV)
uptake occurred in the absence of light. Dark uptake repre-
sented from 42% to 56% of the maximal Se(IV) uptake, with
the highest fraction being at the Chl max site during the
evening (Table 3, Fig. 3). Dark relative Se(IV) uptake rates
(% h21) were approximately 4 times higher at the Chl max
site than in the channel. At both sites, dark relative uptake
rate approximately doubled between morning and evening,
although this difference was only significant for the Chl max
site (p , 0.001, two-tailed t-test). This increase mirrored the
increase in chlorophyll from morning to evening at both sites
(Table 1). Consequently, chlorophyll-normalized dark uptake
was relatively uniform among sites and times (Table 3).
Once again, only the evening sample from the Chl max site

exhibited a significant (twofold) difference from the other
samples.

Much of the Se(IV) uptake occurred into the bacterial
fraction (Fig. 4, Table 3). When averaged over all light lev-
els, the bacterial size fraction accounted for 49 6 11% and
34 6 6% of the Se(IV) uptake in the channel and Chl max
sites, respectively. Of the dark uptake, the bacterial size frac-
tion accounted for 67% and 42%, respectively, at the two
sites. Uptake into this size fraction was at best weakly re-
lated to light; no discernible relationship could be found at
the channel site, whereas a slight but significant positive re-
lationship was noted at the Chl max site. The large fraction
of Se(IV) taken up into the bacterial size fraction probably
contributed to the relatively weak relationships between light
and total Se(IV) uptake in the channel. When bacterial up-
take was removed and only the .1-mm fraction considered,
the dependence of Se(IV) uptake on light was much stronger
than for Se(IV) uptake into all particles .0.2 mm (Fig. 4).

The median daily areal Se(IV) uptake rates (5th–95th per-
centile) in the channel and the Chl max sites were 5.8 (4.1–
7.4) mg m22 d21 and 26.0 (22.0–29.7) mg m22 d21, respec-
tively. Half or more of this uptake was associated with dark
uptake or uptake into the bacterial size fraction. The same
values for the .1.0-mm size class were 2.8 (1.9–3.5) mg
m22 d21 and 13.7 (11.8–15.8) mg m22 d21, or 45% and 53%
of the total uptake. When all dark Se(IV) uptake was sub-
tracted from total uptake, the daily integrated rates were 1.3
(0.7–1.9) and 2.4 (1.7–3.2) in the channel and the Chl max
sites, or only 22% and 18% of total Se(IV) uptake.

Carbon fixation—The fixation of C into the .0.2-mm
fraction exhibited the typical relationship to light (Fig. 5,
Table 4). Except for the evening experiment in the channel,
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Fig. 4. Se(IV) uptake versus irradiance for the 0.2–1.0-mm and .1.0-mm size fractions. Lines
represent regression predictions. Solid lines are predictions for the .1.0-mm fraction and broken
lines are predictions for the bacterial size fraction. Fitted parameters, standard deviations, and re-
gression statistics are presented in Table 3.

Fig. 5. Photosynthesis irradiance curves. Solid lines are the predictions of the hyperbolic tangent
model fit to the data for particles .0.2 mm in size, and broken lines are the predictions for the 0.2–
1.0-mm fraction. Fitted parameters, standard deviations, and regression statistics are presented in
Table 4.
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Table 4. Parameters for models predicting chlorophyll-specific primary production from irradiance. Parameters are as described in Table
3 except that P is the chlorophyll-specific maximum production minus dark production. Values in parentheses are standard errors. Asterisksb

max

denote parameters with p values ,0.001; p values for all other parameter estimates are .0.1.

Site Time
Fraction

(mm) n y0 Pb
max I95 Adj r2 p

Channel Morning

Evening

Total

0.2–1.0

Total

31

12

29

0.23
(0.18)
0.29

(0.27)
0.27

(0.14)

3.79***
(0.19)
0.15

(0.03)
1.59***

(0.18)

259***
(27)
26

(324)
165***
(33)

0.93

0.00

0.76

,0.0001

0.88

,0.0001

Chlorophyll maximum Morning

Evening

Total

0.2–1.0

Total

30

6

30

0.17
(0.12)
0.13

(0.28)
0.0

(0.08)

5.19***
(0.14)
0.28

(0.33)
1.38***

(0.09)

488***
(31)
270

(487)
263***
(31)

0.98

0.00

0.91

,0.0001

0.73

,0.0001

Fig. 6. Dependence of Se(IV) : C uptake ratios on C uptake
based on the dual isotope experiments. Panels A–C depict the re-
lationship between Se(IV) uptake and primary production, and pan-
els D–F show the relationship between the Se(IV) : C uptake ratio
and chlorophyll-specific primary productivity. Panels A and D re-
late to total Se(IV) uptake, panels B and E to the Se(IV) uptake
exclusive of uptake into the 0.2–1.0-mm fraction, and panels C and
F to Se(IV) uptake exclusive of dark uptake.

the data from the dual isotope and the single isotope exper-
iments agreed well. As expected based on the 5.4- to 9.7-
fold difference in chlorophyll concentrations between the
sites, maximum C fixation rates were 7.3- to 8.4- fold higher
at the Chl max site than in the channel. However, C fixation
at saturating light intensity in the evening at both sites was
56–64% of that in the morning, even though chlorophyll
concentrations were higher in the evening. Consequently, the
maximum chlorophyll-specific primary production (P ) de-b

max

clined from morning to evening by 2.4-fold in the channel

and over 3.8-fold at the Chl max site (Fig. 5; p , 0.0001
for both comparisons; two-tailed t-test).

The median (5th–95th percentiles) daily areal primary
production was 1.25 (0.89–1.62) g C m22 d21 at the Chl max
site and 0.26 (0.19–0.33) g C m22 d21 in the channel. C
fixation into the 0.2–1.0-mm fraction did not vary signifi-
cantly with light (Table 4, Fig. 5). Chlorophyll-specific pri-
mary production in this fraction in the channel averaged 0.48
mg C (mg Chl a)21 h21 (standard error [SE] 5 0.11, n 5 12),
or 13% of P ; the same parameter for the Chl max siteb

max

was 0.33 mg C (mg Chl a)21 h21 (SE 5 0.10, n 5 6), or 6%
of P .b

max

Relationships between C and Se(IV) uptake—Se(IV) up-
take is more tightly coupled with C uptake than with irra-
diance when all the data are pooled. While Se(IV) and in-
organic C uptake displayed similar relationships to
irradiance within a sample, the slopes and intercepts of the
nonlinear relations between Se(IV) and C uptake and irra-
diance vary significantly among sites and sampling times.
Consequently, when all data are pooled, the relation between
Se(IV) uptake and irradiance is insignificant (r2 5 0.02, p
5 0.31, n 5 55), whereas Se(IV) uptake is significantly re-
lated to C fixation (Fig. 6A; r2 5 0.61, p , 0.0001, n 5
55). The fit of the linear relationship between C uptake and
Se(IV) uptake improved when Se(IV) uptake into the 0.2–
1.0-mm fraction (Fig. 6B; r2 5 0.82) or dark uptake (Fig.
6C; r2 5 0.79) was subtracted from total Se(IV) uptake. The
same corrections improve the r2 of the relationship between
irradiance and Se(IV) uptake to only 0.07 and 0.10, respec-
tively.

Bacterial and dark uptake account for nearly all of the
spatial and temporal variability in the Se(IV) : C uptake ratio.
Analysis of covariance (ANCOVA) indicates significant dif-
ferences in Se(IV) uptake between the sites and sampling
times that are not accounted for by the regression of total
Se(IV) uptake on C uptake (Table 5). However, if uptake of
Se(IV) into the bacterial fraction is subtracted from total
Se(IV) uptake, these differences are reduced. When dark
Se(IV) uptake is subtracted from total Se(IV) uptake, all dif-
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Table 5. Results of the analysis of covariance that characterizes the regression of Se(IV) uptake on primary production and estimates
the fixed residual differences in Se(IV) uptake between sites and sampling times. A and y0 are the slope and intercept, respectively, of the
linear regression. The class terms site and time are the mean residual differences between the sites (Channel 2 Chl max) and sampling
times (evening 2 morning). Interaction effects were never significant. RMSE 5 root mean square error of the ANCOVA. The results under
Seston are based on Se(IV) uptake for all particles .0.2 mm. The results for the Phytoplankton are based either on Se(IV) uptake into the
.1.0 mm fraction, or Se(IV) uptake into the .0.2 mm fraction corrected for dark uptake.

Seston (al Se(IV) uptake)

Estimate SE p

Phytoplankton

.1.0 mm Se(IV) uptake

Estimate SE p

No dark Se(IV) uptake

Estimate SE p

y0

A
Site
Time

113
4.07

267
14

6.0
0.37
4.7
3.6

,0.0001
,0.0001
,0.0001

0.0004

62.7
4.07

242
8.8

6.02
0.37
4.7
3.6

,0.0001
,0.0001

0.02
0.33

10.4
4.6
2.1
1.5

7.9
0.31
5.8
4.2

0.20
,0.0001

0.27
0.72

n
Adj r2

RMSE
Model p

41
0.96

22.7
,0.0001

41
0.93
1.71

,0.0001

35
0.79

24.4
,0.0001

ferences between sites and times become insignificant (p .
0.2). Moreover, the intercept of the regression becomes in-
distinguishable from 0, which indicates (based on the re-
gression slope) a proportional uptake of Se(IV) and C of 4.6
6 0.31 mg Se g C21 that is consistent between sites and
times. This is made clearer by inspecting the relationship
between the Se(IV) : C uptake ratio and primary production.
Because some Se(IV) uptake occurs in the dark when C
uptake is negligible, the relationship between C fixation and
the Se(IV) : C uptake ratio is negative and nonlinear (Fig.
6D). The nonlinear relationship between the Se(IV) : C up-
take ratio and C fixation is much reduced when Se(IV) up-
take into the 0.1–1.0-mm fraction is subtracted from total
Se(IV) uptake (Fig. 6E). The nonlinearity is eliminated en-
tirely by subtracting dark Se(IV) uptake from total Se(IV)
uptake, indicating that the nonlinearity is entirely due to dark
uptake (Fig. 6F).

Discussion

Coupling of C and Se(IV) uptake—The correlations be-
tween C and Se(IV) uptake suggest that Se accumulation by
algae is closely tied to the fixation of organic matter and cell
growth. Similar observations have been made for cultured
algae where uptake of Se(IV) and cell growth is also cor-
related as long as Se(IV) is not depleted (Baines and Fisher
2001). Regulation of Se(IV) uptake is also clearly indicated
by measurements of Se : C in the seston during our experi-
ments (M. Doblin pers comm.). Since selenium within the
cell is primarily covalently bound in proteins and amino ac-
ids (Wrench 1978; Bottino et al. 1984; Vandermeulen and
Foda 1988; Fisher and Reinfelder 1991), and these mole-
cules are fundamental to cell function, it is likely that their
synthesis is regulated, resulting in the strong relationship
between Se(IV) and C.

While the overall correlation between Se(IV) and C up-
take suggests a strong linkage between the two processes,
the existence of significant Se(IV) uptake in the dark par-
tially decouples the two processes in time and space, thereby
adding noise to the correlation between Se(IV) and C uptake.

In fact, 75–85% of the daily areal Se(IV) uptake is not re-
lated to light, since the dark uptake occurs throughout the
day and throughout the water column, whereas the light-
associated uptake occurs mostly near the surface and only
during the day. If Se(IV) uptake and Se(IV) : C uptake ratios
are to be modeled properly, this dark Se(IV) uptake must be
accounted for. Dark Se(IV) uptake could result from either
phytoplankton or bacterial activity. Temporal uncoupling of
protein synthesis and sulfur uptake from photosynthesis has
been previously observed in situ (Cuhel et al. 1982). Thus,
algal cells may be producing Se-containing proteins in the
dark using energy and C fixed into carbohydrates in the light.
However, heterotrophic bacteria may also contribute signif-
icantly to in situ dark Se(IV) uptake (Foda et al. 1983; Riedel
et al. 1996). (Note that the dominant cyanobacterium, Cy-
anobium sp., is 1–2 3 4 mm and, thus, likely captured in
the .1-mm algal fraction.) We have direct support for this
hypothesis, since about half of the dark Se(IV) uptake in the
morning experiments occurred in the 0.2–1.0-mm size frac-
tion (Fig. 4). Moreover, up to half of the heterotrophic bac-
terial activity in eutrophic freshwater ecosystems can be
found in the .1-mm fraction (Riemann et al. 1982), so a
great deal more dark Se(IV) uptake by heterotrophic bacteria
may have occurred in larger size classes. Thus, while a frac-
tion of the Se(IV) uptake may reflect dark uptake by phy-
toplankton, most of the dark Se(IV) uptake may be attrib-
utable to bacteria.

The two to fourfold decline in photosynthetic efficiency
from morning to evening caused Se(IV) : C uptake ratios to
increase over the course of the day (see Time effect in Table
5). It is very unlikely that the modest changes in algal spe-
cies composition between sampling times could cause such
a large change in themselves (Table 2). Moreover, the onset
of P or N limitation is unlikely because ambient levels of
these nutrients were never low enough to be limiting
([NO ] 5 20–22 mmol L21; [PO ] 5 1.7–2.1 mmol L21;2 32

3 4

[SiO ] 5 240–260 mmol L21). Instead, the decrease in pho-5
4

tosynthetic efficiency may have resulted from temporary C
limitation. The strong C demand by algae is indicated by the
DIC decline from 1 mmol L21 to 0.6 mmol L21 over the
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Fig. 7. Box plots of Se(IV) : C uptake ratios for all seston, phy-
toplankton, and bacteria at the Chl max site. The lines represent the
median value. The boxes span the 25th and 75th percentiles, the
whiskers the 10th and 90th percentiles, and the round symbols the
5th and 95th percentiles. The thick gray line is the mean of Se : C
estimates for the .0.45-mm seston at the Chl max site, and the
broken lines are the maximum and minimum for the diel series.

course of the day (Table 1). In similarly productive fresh-
water environments, high rates of C fixation can temporarily
deplete the aqueous CO2 and outstrip the rate of dissociation
of CO2 from HCO and influx from the atmosphere with the2

3

result being reduced photosynthesis (Hein 1997; Ibelings and
Maberly 1998). In any case, the effect of lower evening pho-
tosynthetic efficiency on Se(IV) : C uptake ratios at our sites
is modest and is not evident at all after Se(IV) uptake is
corrected for bacterial and dark uptake.

Comparisons to particulate Se : C—A direct comparison
of the Se(IV) : C uptake ratios with the Se : C ratio in sus-
pended particles at the Chl max site, where algal biomass
dominated the seston, would indicate to what degree our
Se(IV)-based radiotracer method quantified the major path-
ways of Se uptake. The residence time at the Chl max site
is very long compared to most other sites in the delta, al-
lowing phytoplankton biomass to accumulate (Lucas et al.
2002). Also in contrast to other sites in the delta, there is
little evidence of sediment resuspension in this part of Mil-
dred Island (G. Cutter and L. Cutter pers. comm.). Based on
our measurements of particulate organic carbon (POC) and
chlorophyll a concentrations and assuming a C : Chl value
of 27.8 (Cloern et al. 1995), we estimate that algal biomass
amounted to 53% (611%) of the total POC. At the channel
site the same value was 21% (65%). Assuming that bacterial
biomass is approximately 32.5% of algal biomass in delta
shallow water habitats (Sobczak et al. 2002), ;70% the POC
at the Chl max was comprised of living bacterial and algal
cells.

To make an appropriate comparison between the Se : C
ratios measured using chemical and radiotracer methods, we
must first account for the contribution of bacteria to partic-
ulate organic carbon production. Past work has shown that
bacterial production in Mildred Island and another flooded
island, Frank’s Tract, averaged 29.3% 6 5.7% of primary
production (n 5 18; Sobczak et al. 2002). Two independent
lines of reasoning suggest that this value is reasonable. First,
it is very similar to the median percentage of primary pro-
duction represented by bacterial production of 26.5% ob-
served by Cole et al. (1988) when comparing a wide range
of aquatic ecosystems. Second, it conforms to energetic con-
straints. If one assumes a bacterial growth efficiency of 50%
in this system, this estimate of bacterial production implies
a bacterial carbon requirement equivalent to ;60% of pri-
mary production. Since a bacterial growth efficiency of 50%
is at the high end of the observed range (del Giorgio and
Cole 1998), the real bacterial carbon requirement may be an
even greater proportion of primary production, leaving less
than 40% of the primary production for grazing, sinking,
and advective losses. Consequently, at least for the Chl max
site where local biological production easily outpaces ad-
vective loss, higher bacterial production would cause the C
budget to be unbalanced.

After accounting for bacterial uptake, the total plankton
Se(IV) : C average uptake ratio for the Chl max site was 15.9
mg Se g C21, which is about 30% higher than the average
Se : C ratio of 12.05 mg Se g C21 measured in particulate
matter .0.45 mm (Fig. 7). However, the uptake ratio falls
within the range of measured particulate Se : C and the av-

erage Se : C ratio is between the 5th and the 95th percentiles
of the uptake ratio estimates. The relatively close agreement
between the measurements of Se(IV) : C uptake ratios and
measured Se : C is intriguing given that significant uptake of
dissolved organic Se(2II) by phytoplankton and bacteria in
this system is suggested both by direct uptake of dissolved
Se(2II) in cultured algae (Baines et al. 2001) and by strong
diel fluctuations in dissolved and particulate Se pools at the
Chl max site (M. Doblin pers. comm.). The agreement be-
tween the Se(IV) : C uptake ratios estimated from our radio-
isotope experiments and suspended measurements of partic-
ulate Se : C may be explained if exchanging extracellular and
intracellular Se pools were turned over quickly relative to
the 6–8-h experimental period. Such turnover would allow
the intracellular and extracellular Se(2II) pools to reach iso-
topic equilibration with the dissolved Se(IV) pool. As a con-
sequence, the radioisotope experiments would measure net
uptake of both dissolved Se(IV) and Se(2II) rather than the
net uptake of Se(IV) alone. This issue is dealt with more
completely in a separate paper (M. Doblin pers. comm.).

Our results suggest that a simpler method for measuring
Se(IV) uptake using radiotracers may be possible. Separately
modeling the response of Se(IV) uptake to light is a difficult
process because of the number of points required to ade-
quately fit a nonlinear equation and because the low radio-
activity in these experiments (necessitated by the need to
add label at tracer levels) results in larger volumes of sample
to filter, longer incubation periods, and longer analysis times.
The process may be simplified by recognizing that Se(IV)
uptake at a particular site consists of two basic components,
one that is related to light and characterized by a relatively
fixed ratio to primary production and another that occurs in
the dark and is therefore independent of primary production.
To derive the relationship between Se(IV) uptake and irra-
diance, we need only estimate the dark Se(IV) uptake at a
site, the dark corrected Se(IV) : C uptake ratio at a saturating
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irradiance value (to maximize the signal) and the photosyn-
thesis : irradiance curve. The product of the latter two ele-
ments yields the light-dependent portion of the Se(IV) to
irradiance curve, while the dark uptake provides the y-inter-
cept of that relationship. This equation can then be integrated
over time and depth. By focusing effort on only two points
in the Se(IV) uptake : irradiance curve, it should be possible
to more efficiently determine the Se(IV) : C uptake ratio. The
contribution of bacteria to C fixation can be assessed by
measuring bacterial production directly.

Se : C in phytoplankton and bacteria—Given that bacterial
production at the Chl max site is likely to amount to only a
fraction of primary production, the observed predominance
of Se(IV) uptake into small particles and in the dark suggests
that bacteria may have a higher Se(IV) : C uptake ratio than
do phytoplankton. By assuming (1) that Se(IV) uptake into
particles ,1.0 mm is a minimum estimate of bacterial Se(IV)
uptake, (2) that dark Se(IV) uptake is a maximum estimate
of bacterial Se(IV) uptake, and (3) that daily areal bacterial
production is 29.3% 6 5.7% of primary production, we can
bracket the range of possible bacterial Se(IV) : C uptake ra-
tios (Sobczak et al. 2002). These estimates can then be com-
pared to maximum and minimum phytoplankton Se(IV) : C
uptake ratios based on the same assumptions.

In all cases and for all scenarios, the bacterial Se(IV) : C
uptake ratios were significantly larger than those for phyto-
plankton (Fig. 7). Under the assumption that only uptake
,1.0 mm was due to bacteria, the bacterial Se(IV) : C uptake
ratio was 2.4-fold larger than the phytoplankton Se(IV) : C
estimate. Only 32 of the 1000 random sets of parameters
produced the bacterial Se(IV) : C ratios that were larger than
the phytoplankton Se(IV) : C ratio. If we assume that all dark
Se(IV) uptake is due to bacteria, the Se(IV) : C uptake ratio
for bacteria becomes more than an order of magnitude larger
than the phytoplankton value. Bacteria do not typically con-
stitute a large proportion of the POC in the water column of
this ecosystem, and they are even less important as a source
of energy to higher trophic levels (Sobczak et al. 2002).
However, by virtue of their high Se(IV) : C uptake ratios,
bacteria may contribute significantly to Se trophic transfer
to consumers. Consumers that directly or indirectly depend
more upon bacteria for carbon and energy may thus be ex-
posed to more Se through their diet. Moreover, spatial or
temporal variability in the relative importance of bacteria
and phytoplankton as carbon sources could generate corre-
sponding patterns in consumer Se tissue concentrations.

Dual radiotracer uptake experiments can provide valuable
information that, in combination with direct measurements
of dissolved and particulate Se and C, allows us to elucidate
mechanisms and rates of Se transformation in natural eco-
systems. We used such experiments to study coupled Se and
C dynamics in a riverine channel environment and a site with
a longer hydraulic residence time. We showed that Se(IV)
and C uptake into suspended particles exhibits very similar
relationships to light, although a significant amount of
Se(IV) uptake occurred in the dark. Moreover, bacteria are
responsible for much of the Se(IV) uptake into particles in
this system. Measurements of Se : C ratios in newly produced
organic material that were based on the Se(IV) and C uptake

experiments agreed well with direct observations of Se : C
at a site where the suspended organic matter was dominated
by phytoplankton biomass. These measurements also indi-
cated that bacteria appear to possess much higher Se : C ra-
tios than do phytoplankton in this ecosystem. Consequently,
the diet of consumers and local or temporal variations in the
relative contribution of algae and bacteria to seston may
have a large impact on Se concentrations in consumers.
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