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ABSTRACT

CHARACTERIZATION OF MICROWAVE DISCHARGE 
PLASMAS FOR SURFACE PROCESSING

Milka Nikolic 
Old Dominion University, 2013 

Director: Dr. Leposava Vuskovic

We have developed several diagnostic techniques to characterize two types of mi­
crowave (MW) discharge plasmas: a supersonic flowing argon MW discharge main­

tained in a cylindrical quartz cavity at frequency /  =  2.45 GHz and a pulse repetitive 
MW discharge in air at f  = 9.5 GHz. Low temperature MW discharges have been 
proven to posses attractive properties for plasma cleaning and etching of niobium 
surfaces of superconductive radio frequency (SRF) cavities. Plasma based surface 
modification technologies offer a promising alternative for etching and cleaning of 

SRF cavities. These technologies are low cost, environmentally friendly and eas­
ily controllable, and present a possible alternative to currently used acid based wet 
technologies, such as buffered chemical polishing (BCP), or electrochemical polishing 

(EP). In fact, weakly ionized, non-equilibrium, and low temperature gas discharges 
represent a powerful tool for surface processing due to the strong chemical reac­
tivity of plasma radicals. Therefore, characterizing these discharges by applying 
non-perturbing, in situ measurement techniques is of vital importance.

Optical emission spectroscopy has been employed to analyze the molecular struc­
ture and evaluate rotational and vibrational temperatures in these discharges. The 

internal plasma structure was studied by applying a tomographic numerical method 
based on the two-dimensional Radon formula. An automated optical measurement 

system has been developed for reconstruction of local plasma parameters. It was 
found that excited argon states are concentrated near the tube walls, thus confirm­

ing the assumption that the post discharge plasma is dominantly sustained by a 
travelling surface wave. Employing a laser induced fluorescence technique in com­

bination with the time synchronization device allowed us to obtain time-resolved 
population densities of some excited atomic levels in argon.

We have developed a technique for absolute measurements of electron density based



on the time-resolved absolute intensity of a Nitrogen spectral band belonging to the 
Second Positive System, the kinetic model and the detailed particle balance of the 
iV2 (C3IIU) state. Measured electron density waveforms are in fair agreement with 

electron densities obtained using the Stark broadening technique. In addition, time 
dependent population densities of Ar I metastable and resonant levels were obtained 

by employing a kinetic model developed based on analysis of population density rates 
of excited Ar I p levels. Both the experimental results and numerical models for both 
types of gas discharges indicate that multispecies chemistry of gases plays an impor­

tant role in understanding the dynamics and characterizing the properties of these 
discharges.
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1

C H A PTER  1 

INTRO DUCTIO N

Over the last decade, there has been a growing interest in low temperature, non­

equilibrium gas discharge plasmas for the processing of surfaces. Indeed, up until 

recent times much more attention has been directed toward thermonuclear fusion and 
space plasmas. This is understandable since space plasmas represent the dominant 
state in the whole visible universe (more than 99.99%). Our Sun, together with all 

the stars, plus interplanetary, interstellar, and intergalactic medium are in the plasma 
state. On the other hand, laboratory made fusion plasmas share a very important 
characteristics with space plasmas, both are hot plasmas in thermal equilibrium. 

This placed fusion plasmas to be a great candidate for a fusion fuel source on Earth. 
Most of the 20th century plasma research was dedicated to exploring a controlled 
thermo-nuclear fusion and new sources of energy [1].

However, the 21st century’s need for environmentally friendly “green” technolo­
gies has brought the attention back to non-equilibrium, cold plasmas. Moreover, with 
the development of the semiconductor industry, non-equilibrium plasma processing 

using gas discharges has become an essential part of modern technology. There are 

many important applications of non-equilibrium gas discharges in the processing of 
semiconductors [2-5]. These include various film deposition technologies, such as 
sputtering and plasma enhanced chemical vapor deposition and film removal tech­

nologies, such as etching and cleaning. The main advantage of gas discharges comes 
from the fact that non-equilibrium is a consequence of strong chemical reactivity of 

plasma particles, meaning that weakly ionized gas discharges represent a powerful 
tool for surface processing. In addition, the use of plasma processing avoids chemical 

disposal problems associated with the acid-based wet processing technologies, such 
as buffered chemical polishing (BCP), or electrochemical polishing (EP).

It has been confirmed tha t low pressure, high density plasma sources generated 

using radio-frequency (RF) or microwave (MW) powers show the most attractive 
properties for plasma etching and cleaning purposes [6,7]. Particularly, MW discharge 
plasmas allow work at higher pressures and give higher plasma densities. Often, in 
order to obtain optimal plasma etching and cleaning, gas discharges consisting of a
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combination of inert gases (argon) and reactive gases (chlorine) are used. Although, 
MW discharge plasmas are widely used, the knowledge of fundamental physical and 
chemical phenomena which determine the outcome of the plasma surface interactions 
is still mostly empirical. Therefore, research studies in the area of plasma surface 

interactions, plasma diagnostics and plasma modelling are greatly needed.
The first step in understanding surface modification processes is developing a ki­

netic model for all plasma particles (electrons, atoms/molecules, ions). This includes 
knowledge of the electron energy distribution function (EEDF) and reaction rates in 

various plasma reactions. There have been a number of approaches for plasma inter­
nal dynamics studies [6,8,9], especially in the case of Ar plasmas [10-13]. Neverthe­
less, this is still a widely researched field since there are still issues to be addressed.

Commonly used diagnostic methods, such as the Langmuir probe method, may 
not be applicable for the diagnostics of MW discharge plasmas because a metal object 
in the MW cavity affects field distribution and shifts resonant frequency. Therefore, 

most of the time it is necessary to apply non-intrusive, in situ spectroscopic tech­
niques. Optical emission spectroscopy (OES) represents a natural choice due to its 
simplicity. It allows direct and indirect measurements of fundamental plasma param­
eters, such as densities, temperatures, population densities, etc. However, population 

densities of some excited atomic levels can not be determined using OES, so laser di­
agnostics, such as laser induced fluorescence (LIF), can also be employed. Moreover, 

applying LIF increases the overall precision of data collection.
Typical optical diagnostics on plasma discharges provides time averaged mea­

surements at particular spatial points. While time averaged measurements of plasma 

parameters are adequate in determining the overall performance of these parameters, 
they can not resolve the full plasma dynamics. A time resolved plasma diagnostic 
is, therefore, desired for better understanding plasma properties. Furthermore, ex­

perimental, non intrusive, optical techniques available for plasma characterization 
allow us to measure only integrated effects of collective plasma behavior. In order 
to look into the internal dynamics of the discharge, the integrated data needs to be 

transformed into the spatial population distributions. A commonly used method for 

reconstructing an inner plasma structure is the Abel inversion, which requires the 
plasma to be axially symmetric [14]. As a rule, most plasmas of interest are non- 
stationary, inhomogeneous, and with strong radial and axial asymmetry. It follows 

that the discharge should be observed from at least two angles of observation. The
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plasma tomography technique based on an inverse Radon transform is an excellent 
way to acquire insight into the internal plasma structure [15]. In previous years, 
extensive studies were conducted on the simplified case, where only two mutually 
perpendicular directions were used for tomography measurements [16,17]. This ap­
proximation includes only the first two terms in the Fourier transform of the Radon 
integral, making it difficult to  depict the entire angular distribution of plasma pa­

rameters. Therefore, a two dimensional plasma tomography based on the numerical 
solution of the inverse Radon transform integral is necessary for the complete de­
scription of the internal plasma structure.

In this work we have focused on two types of low temperature, non-equilibrium 
MW gas discharge plasmas: a supersonic flowing argon MW discharge maintained 
in a cylindrical quartz cavity at frequency /  =  2.45 GHz and a pulse repetitive MW 
discharge in air at /  =  9.5 GHz. In order to fully characterize these discharges we 

have developed kinetic models for all particles in the discharge (electrons, atoms, 

molecules and ions) and obtained important plasma parameters. Plasma parameters 
obtained in this research that are crucial for plasma diagnostics are: gas densities 
and temperatures, electron densities and temperatures, excitation temperatures, ro­
tational and vibrational temperatures, and population densities of excited atoms 
and molecules. In addition, we have developed several diagnostic techniques (laser 
induced fluorescence and plasma tomography) to describe the desired parameters in 

both time and space.

This dissertation is organized as follows. Chapter 1 provides a brief introduction 
to the presented work, including the motivation for the project. Chapter 2 discusses 
theoretical principles of plasma physics, including characteristics of plasma param­
eters in gas discharges and fundamental plasma equations. An overview of existing 

models for electron energy distribution functions and associate electron transport 
coefficients is given along with mutual comparison of the models. Chapter 3 presents 

several experimental set-ups and measurement techniques used in the study. Two 
types of plasmas are described, atomic argon discharge and molecular air discharge. 
Chapter 4 describes diagnostic methods applied in the study required for time and 

space resolved measurements. Chapter 5 gives the results of the measurements of 
plasma parameters for both types of plasmas. Finally, chapter 6 provides conclu­
sions and suggestions for future work.
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CH APTER 2

BASIC CONCEPTS OF PLASM A PHYSICS

The concept of plasma was first introduced by Irvin Langmuir back in early 1900s. 

The word “plasma” was coined from a Greek word for “mold”, to depict the property 
of ionized gas (mostly positive column) to follow the shape of the vessel where it 
was generated. The term plasma was used to define the state of m atter containing a 

significant number of electrically charged particles, sufficient to affect its electromag­
netic properties. For that reason plasma has a reputation as a very complex system 
where collective effects between particles have a dominant role. Plasma particles 

interact with each other not only through collisions, but by long range electric and 
magnetic fields. This way the fields are modified by the plasma itself and plasma 
particles move to shield one another from imposed electric fields.

Although plasma is generally defined as an ionized gas, with the ionization degree 
ranging from 1 (fully ionized gas) to 10~4 — 10-6 (partially ionized gas), different 
groups of plasmas are distinguished depending on their origin and their properties. 
Based on their origin, we differentiate plasmas tha t can occur naturally in space 

from plasmas that are generated in laboratories. These laboratory plasmas can, 

further, divide into high-temperature or fusion plasmas, and low-temperature or gas 
discharges [6].

In addition, plasmas are classified as to whether they are in thermal equilibrium 
(TE) or not. Thermal equilibrium means tha t all plasma species (electrons, ions, and 
neutral particles) have the same temperature [18]. It is achieved by thermal heating 
of the plasma species, meaning that substantially high temperatures are required to 
form these equilibrium plasmas (more than 10000 K). Naturally, it follows that a 
large number of laboratory plasmas satisfy the TE condition.

Often, only localized regions of plasma satisfy the TE condition, and it is said 
that plasma is in local thermodynamic equilibrium (LTE). This means that the tem­
peratures of all plasma particles are the same only in confined plasma volumes. If 

temperatures of plasma species are different everywhere, we have non-equilibrium 

plasmas, also known as “non-LTE” plasmas. In these plasmas the electrons, having
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lower mass, accelerate easily and gain much higher kinetic energy than heavy, slow 
moving particles (ions and neutrals).

The classification, to LTE and non-LTE plasmas is also valid when describing low- 
temperature, gas discharges. Moreover, in the case of gas discharges, the equilibrium 

conditions are related to the working pressure of the plasma [19]. At high pressure, 
the number of collisions between particles increases, followed by the rise of their 
energy exchange. Efficient exchange of energy may lead to equilibrium states. At low 
pressure, there are fewer number of collisions and the energy transfer is less efficient. 

Consequently, the electron temperatures may reach several thousand Kelvins while 
heavy particles have temperatures similar to room temperature. There are “hot” 

electrons that collide with plasma species and are capable of exciting and ionizing 
atoms and molecules, generating in tha t way new electrons necessary to sustain 
plasma system and producing a chemically-rich environment. As a consequence, non­

equilibrium gas discharges have a particular use in the plasma processing industry 
for applications to plasma cleaning and etching, or to the deposition of thin film 

layers. Hence, characterizing these discharges (i.e. describing the conditions for their 

generation, estimating parameters for optimal use, etc.) is of vital importance.
Low pressure discharges are characterized by electron temperatures Te fa 1 — 

10 eV, ion temperatures 7) «  300 K -C Te, and electron densities n e fa 108 — 1013 

cm-3. The gas pressure ranges from p ~  1 mTorr to p fa 1 Torr. Note, tha t high 
pressure discharges, such as arc discharge, can also be applied for surface modification 

to deliver heat to the system or to increase the surface reaction rates. Their electron 
temperatures are Te ~  0.1 — 2 eV, ion temperatures 7) ^  Te, electron densities 

ne fa 1014 — 1019 cm-3, and operating pressure is usually near atmospheric pressure.
Based on this wide parameter range, a large variation of gas discharge plasmas 

can be employed as a tool for plasma processing. We will give a brief overview of the 

three commonly used types of plasmas, direct current glow discharges, capacitively 

coupled (CC) radio-frequency (RF), and microwave (MW) and RF induced plasmas.
The main objective of this study is to provide the complete analysis of the low 

temperature gas discharges. This includes determining conditions for sustaining these 

plasmas, providing theoretical background, and obtaining parameters, such as elec­
tron temperature and density, gas temperature and density, population densities of 

excited atoms and molecules, etc. which are all necessary in order to successfully 
apply these plasmas in the surface modification industry.
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2.1 PLASMA PARAMETERS IN GAS DISCHARGES

Various plasma processes are used for surface modification of low temperature 
gas discharges. We will look into three most commonly employed.

a) Deposition of thin films [5]

•  Sputter deposition consists of physical sputtering and chemical sputtering. 

In physical sputtering heavy plasma particles bombard a target and release 
atoms from the target material, which further, are deposited at a desired 

substrate. Chemical sputtering occurs when reactive gases are involved. In 
addition, physical sputtering atoms/molecules of the reactive gas also react 
with the target, meaning tha t the substrate will contain the material and 
the reactive gas substances.

•  Plasma enhanced chemical vapor deposition (PE-CVD) is a consequence of 
the chemical reactions involving reactive gas species in the gas discharge. 
New plasma species (ions, radicals,...) produced in these reactions diffuse 

toward the substrate and are deposited by surface chemical reactions.

b) Plasma etching is a process where material is removed from the surface [3,4], It is 
characterized with three properties: uniformity, anisotropy (material is removed 
only in vertical direction), and selectivity (only a specific type of material is re­

moved). Designing plasma th a t satisfies the desired properties represents a great 
challenge to researchers. In most cases, one quality needs to be sacrificed in order 
to achieve the optimal plasma etching. During the etching process we distin­
guish four mechanisms: sputter etching, chemical etching, ion-enhanced energetic 
etching, and ion-enhanced inhibitor etching.

•  Sputter etching mechanism is equivalent to the sputter deposition with the 

difference that material is removed from the surface instead deposited to it. 
This is a non-selective and anisotropic process that highly depends on an 
angle of incidence of the bombarding ions. Inert gases (Ar, He,...) are often 

used for sputter etching, which is often called “the physical etching.”

• Chemical etching happens in discharges containing reactive gases. Reactive 
species (atoms, ions, radicals) chemically react with the surface of the target 

producing new molecules in the gas phase that are volatile under plasma con­
ditions and free to leave the surface. The chemical etching is non-selective
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and mostly isotropic process because the etching atoms arrive at the target 
surface with a nearly uniform angular distribution. The exceptions are reac­
tions between etching atoms and crystals, where crystallographic orientation 
determines the etching rate.

•  Ion-enhanced energetic etching arises when the combination of inert and reac­

tive gases is used for etching purposes. Energetic ions determine the etching 

rate by bombarding the target surface, but reactive particles are probably 
responsible for etching chemically. In that way, the etching can be controlled 

by the inert gas properties (angle of incidence, pressure, temperature, ...) 
without an additional damage to the surface due to sputtering.

•  Ion-enhanced inhibitor etching provides not only an anisotropy and increased 
etching rate by mixing the energetic and reactive gases but also a great selec­
tivity by adding a protective layer of so-called inhibitor precursor molecules 
to the target material. Etching atoms will react only with the selected areas 
of the target which are not covered with the protective layer.

c) Plasma cleaning presents an alternative to conventional chemical (wet) cleaning 
where all the contaminants can be completely removed from the system. In the 
case of organic materials, plasma cleaning utilizes an oxidizing gas to  convert the 
surface contaminants into volatile oxides that can be removed from the system. 
The removal of metallic surface contaminants requires two steps. First, metal is 
converted into metal complex, which is then volatilized by increasing the substrate 
temperature and reducing the pressure. Often, chlorine-based plasmas are used 
for plasma cleaning of metallic surfaces because chlorine reacts with nearly all 
contaminating metals.

An ongoing experiment in the Atomic and Plasma Physics Lab at the Department 

of Physics, Old Dominion University is focused on sustaining the ion-enhanced etch­
ing and studying its consequences. For that reason, we will describe, in the following 

subsections, different gas discharges suitable for obtaining ion-enhanced energetic 

etching. Moreover, in this study we provide a detailed description of the applied gas 
discharges. In particular, we focus on internal plasma dynamics and discuss different 
spectroscopic methods to characterize these discharges.
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2.1.1 DIRECT CURRENT GLOW DISCHARGES

DC glow discharge provides a convenient example to describe the fundamental 
physics behind the gas discharges, due to its simplicity; it consists only of two elec­

trodes placed inside a low pressure gas. Due to the cosmic radiation, a small number 
of free electrons emitted from electrodes is always present in the gas. When suffi­

ciently high potential difference is applied between the electrodes, these free electrons 
are accelerated by the electric field and they start colliding with the heavy particles, 
elastically and inelastically. Inelastic collisions will lead to  excitation and ionization 
of the heavy particles and the gas will break down into positive ions and electrons, 
forming a gas discharge.

Excitation collisions are responsible for the name “glow.” Namely, excited species 
emit light when de-exciting making the discharge “glow.” New electrons and ions are 

created in ionization collisions. Ions are then accelerated toward the cathode where 

they release new electrons by ion-induced secondary electron emission (SEE). Now, 
these electrons collide with plasma species producing new particles, and the process 
is repeated. When there is always a sufficient number of charged particles in the 
system, gas discharge is called a self-sustained plasma [19].

Glow discharge can be sustained over a wide range of pressures, starting from 
several mTorr to atmospheric pressure. It is, however, the product of pressure (or 
density) and distance between electrodes tha t is a true parameter of the glow dis­
charge. Another true parameter is the reduced electric field, E / p  or E / N n. Dis­

charges at low pressures and greater electrode distance show similar properties as 
discharges at high pressures when electrodes are closer to each other. The operating 
voltage ranges from 300 V to 1500 V, but glow discharge could operate at several kV 

for some applications [6]. Rare gases (Ar, He,...) together with reactive gases (N2 , 
O2 ,.. ) are often used to sustain the glow discharge.

The most important process, where glow discharges are employed, is sputter de­

position of dielectric films. However, during the deposition process electrodes become 
covered with the insulating material, due to the accumulation of positive and nega­
tive charges, and the glow discharge vanishes. A solution to this problem is to apply 

alternating voltage between electrodes, so they change polarity in a half cycle turn. 
That way, a charge accumulated in the first half cycle will be neutralized with the 

charge of the opposite sign when polarity of the electrode is changed. When the volt­

age applied alternates in the radio-frequency range (1 KHz - 103 MHz) the discharge
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is called a radio-frequency (RF) discharge.

2.1.2 CAPACITIVELY COUPLED RF DISCHARGES

As it was already stated, RF discharges operate in RF frequency range, with the 

most common frequency of 13.56 MHz. The frequency should be high enough so that 
its half cycle time is less than the accumulation time of the insulation around the 

electrode. Otherwise the plasma will consist of series of short lived discharges instead 
of a quasi-continuous discharge. The name capacitively coupled (CC) comes from 
the way in which the input power is coupled into discharge by two parallel planar 
electrodes resembling a capacitor.

The capacitively coupled RF discharge operates in the following way. Fast elec­
trons, due to their low mass, are able to follow the instantaneous electric field pro­
duced by the RF applied voltage and oscillate back and forth between electrodes. 
Massive ions, on the other hand, can only follow time averaged electric fields. The 

oscillation of the electrons will create a sheath region of positive charges near each 
electrode. As a consequence, a strong electric field directed from plasma to the 
electrode will be generated. This electric field will accelerate positive ions toward 
electrodes giving them enough energy for ion-enhanced energetic bombardment of 
the electrode. On the other hand, due to the electric field in plasma sheath, a force 
directed into plasma will act on the electrons reflecting them back to the plasma. 
This will secure the electron confinement in the plasma system.

Electrons oscillate with the frequency called an electron plasma frequency, which 
is given as

f  _  _  J _  I N e ' e2
** 2ir 27T y m • e0

~  9000-\/Ae [Hz], (1)

where Ne is the electron density given in cm-3, e is the elementary charge, m  is the 
electron mass, and s0 is dielectric constant of vacuum. When plasma frequency is 

of the order of RF frequency, Eq. (1) leads to electron densities of the order of 109 
- 1010 cm"3. Capacitively coupled RF discharges typically operate in 10-100 mTorr 
pressure range by applying power densities of 0.1-1 W /cm3 [6].

The main disadvantage of CC RF discharges is that the ion-bombarding flux and 

bombarding energy cannot be controlled independently. In other words, in order to



10

obtain a reasonable (but low) ion flux, the sheath voltage at the electrode has to 

be high. High sheath voltage at the electrode could result in undesirable damage 

to the etching sample placed on the driven electrode. A number of attempts to 
achieve some control over ion-bombarding energy, such as dual frequency operation 

or adding magnetically enhanced diodes, have been conducted in the past years [6]. 
However, these solutions are either not very practical or can result in generating a 

highly non-uniform plasma. To overcome the limitations of the capacitively coupled 
RF discharges, a new generation of low pressure, high density plasma sources has 
been developed.

2.1.3 HIGH DENSITY RADIO-FREQUENCY AND MICROWAVE DIS­
CHARGES

The low pressure, high density plasma sources are characterized with higher 
plasma densities (1010 - 1013 cm-3) for lower pressures, which results in higher ion 

fluxes than in CC RF discharges of similar pressures. These plasmas can be gen­

erated using RF frequencies (1 to 100 MHz) or MW frequencies (300 MHz to 10 
GHz). The common feature for RF and MW plasmas is tha t instead of dumping the 
power directly to electrodes, the RF and MW power is coupled to the plasma across 
a dielectric window. In that way electrodes are not required any more and can be 
removed from the system. It should be noted tha t microwaves allow us to work at 
higher pressures and generate higher plasma densities.

For all these reasons we have chosen in the present work to employ both RF 

and MW high density plasmas at wide range of pressures (10 mTorr to 10 Torr) 
for plasma etching and cleaning processes. However, this is just the first step in 
optimizing the process of surface modification. The next step is to fully characterize 
desired plasmas. This includes obtaining important plasma parameters (electron 

densities and temperatures, gas densities and temperatures, population densities of 

excited atoms/molecules, etc.), describing their time and spatial distribution, and 
maintaining the full control over the plasma system.

In the course of developing methods for plasma characterization, we have concen­
trated on electrodeless MW induced plasmas that operate at two different frequencies, 
2.45 GHz and 9.5 GHz. Plasmas were sustained in argon and in air at pressure of 
1-10 Torr. Since the Ar plasma contains atomic gas and air plasma contains mostly 

molecules (N2 , O2 , CO 2 ), both atomic and molecular structure of MW discharges
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was analysed spectroscopically. In order to  describe these plasmas without disturb­

ing them we have applied only non intrusive optical techniques (optical emission 
spectroscopy and laser diagnostics).
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2.2 FUNDAMENTAL PLASMA EQUATIONS

Collective plasma properties such as temperature and electron density, are depen­
dent on the internal plasma dynamics. Plasma particles (electrons, atoms/molecules, 
and ions) collide under the action of the electromagnetic field and exchange energy 

and momentum in the process, thus changing plasma properties in time and space. 
Total energy and momentum are always conserved in the collision, i.e. total energy 
and total momentum of the colliding particles before collision are equal to tha t after 
collision.

Since electrons are the elementary particles they possess kinetic energy only, while 
atoms/molecules and ions have internal energy level structure (they can be excited 

or ionized and molecules can rotate and vibrate), which corresponds to potential 
energy change. The collision is called elastic when the total internal energy, and thus 

total kinetic energy remains unchanged. When total kinetic energy is not conserved, 

the collision is said to be inelastic. Inelastic collisions usually result in excitation
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FIG. 1. Momentum transfer cross-sections for electron scattering in Ar and N2 [20].

and ionization of atoms/molecules, but dissociation, recombination, attachment, etc.
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can also occur when molecules are involved. In this section we will consider the 

fundamental quantities that characterize particle collisions (collisional cross-sections 
and rate coefficients) and basic equations tha t govern plasma particle dynamics.

To exemplify the different behaviour of argon and air plasmas we have shown in 

Fig. 1 a comparison between the Ar and N2 momentum transfer cross-sections [20]. 
It could be seen from the figure that in the case of the atomic argon discharges 

the maximum probability for momentum transfer is shifted to the higher energies 
compared to the molecular N2 discharges.

2.2.1 COLLISIONAL CROSS-SECTIONS

Collisional cross-section is the fundamental quantity to describe a collision. It is 
the probability for a given process to happen and is defined as the area around a 
particle where the center of another particle must be in order for a collision to occur.

Therefore, the cross-section is given in the units of area [m2]. Conventionally, the
symbol for collisional cross-section is cr(vR, 9), where vR is the relative velocity be­

tween the particles before collision and 9 is the scattering angle between the particles 
after the collision [6].

We can calculate integrated cross-sections by integrating the collisional cross- 

sections over the solid angle [6,21]

7T

aj — 27t j  a(vR,6)smdd0.  (2)
o

It is often useful to define a momentum transfer or diffusion cross-section [6]

7T
= 2n J  a(vR,6)(l  — cos9)sin9 d9, (3)

o

where the factor (l-cos0) is the fraction of the initial momentum lost by the incident 

particle.

Depending on the type of collision outcome we distinguish cross-sections for elastic 
and inelastic collisions. Elastic collisions mostly happen between an electron and a 

heavy particle. An example of the elastic momentum transfer cross-section from 
Ref. [20], for electron scattering in Ar and N2 is given in Fig. 1.

Under the most common plasma conditions, inelastic collisions involve excitation 
of the neutral atom/molecule by an electron impact. In this study, we will consider
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FIG. 2. Electron impact excitation cross-sections from Ar I ground state to Ar I 
a) 4p [l/2]i, b) 4p [3/2]2, and c) 4p [3/2]i states. Dashed lines present theoretical 
predictions from Ref. [24], and dots present theoretical predictions from Ref. [25]. 

Experimental results from Ref. [22,23] are connected with straight lines for better 
visualisation.

only inelastic integrated cross-sections for electron impact collisions. In the case of 

atomic argon we will show electron impact excitation cross-sections from ground and 

lowest 4s[3/2]2, J  — 2 state at 11.55 eV to three p states:

• Ap [1/2]i , J  =  1 Ar state at 13.33 eV

• 4p [3/2]2, J  — 2 Ar state at 13.30 eV
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•  4p [3/2]j, J  — 1 Ar state at 13.28 eV,

Figure 2 shows comparison between measured [22,23] and calculated [24,25] elec­
tron impact excitation cross-sections from ground state to p states of argon. It can 
be seen from the figure tha t there is a disagreement by factor 2-4 between the results, 

implying tha t both measured and calculated cross-sections should be taken with cau­
tion. It should be noted tha t electron argon excitation presented in experimentally 

obtained results has also a threshold, but it was not measured.
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Available experimental and theoretical cross-sections from the Ar I metastable 

levels are very sparse. In Fig. 3 are presented calculated electron impact excitation 
cross-sections from metastable 4s[3/2]2 state [25]. As can be seen, the peak values 

of the excitation cross-sections from the metastable state are almost three orders of 
magnitude higher than peak values of the excitation-cross sections from the ground 

states implying that the distribution of the argon metastable levels plays more im­
portant role in understanding plasma kinetics than the distribution of the ground 

state.
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In addition, as an example of molecular plasma structure, experimentally obtained 
electron impact excitation cross-section from the ground state of nitrogen to the 
excited C3II„ state [20] is presented in Fig. 4.

2.2.2 BOLTZMANN EQUATION

Various collective effects of particle interactions, such as ionization and excita­

tion of atoms by electron impact, quenching of neutral atoms, for example, can be 
described only by knowing the particle distribution function. The form of the distri­

bution function can be obtained from the Boltzmann kinetic equation. The general 
kinetic Boltzmann equation for the distribution function of particles in gas gives the 
balancing of the number of particles in an elementary volume in phase space.

For a given species, we introduce a distribution function / ( r ,  v, t) in the six dimen­

sional phase space. Let us illustrate an elementary volume in three dimensional space 
coordinate system, shown in Fig. 5 [8]. The cubic volume d r  = dxdydzdvxdvydvz 
contains f d r  particles. The number of particles per second entering the area through 
xy surface at distance 2  is ( f v z)zdxdydvxdvydvz. The number of particles per second 

leaving through the opposite surface at distance z + dz is ( f v z)z+<izdxdydvxdvydvz.
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The difference is then,

[(fvz)z ~  (f v z)z+dz\dxdydvxdvydvz =  -  \ d ( f v z)/dz  dT, (4)

and it contributes to the rate of particle accumulation in the tube, ( d f  /dt)dT.  The 
similar procedure can be applied to the other five cube surfaces. After collecting all 

the terms, the balancing equation for the number of particles due to the collisions 
between particles becomes

%  +  l l L {fVx) + -  +  7x ifax)  +  - ]  =  ( f ) c ’ (5)

where a = dv/dt  and is the rate of change of the distribution function in time
and space due to collisions.

A

z  +  d z

FIG. 5. A cube in three dimensional space illustrating the derivation of the Boltz­
mann equation.

If we compare this to the derivative d f  jdt ,

df d f  d f  dx d f  dvx
di = m + d i ~ d t + -  + d^x l t t + -  (6)

d f  d f  d f
— "57 +  h... +  ax^  h ...,dt dx dvx
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we obtain
dL + f \ ^ + 1 = ( dl \
dt J I d x  dvx " ‘J

The quantities x , v x,a x,... are independent coordinates in phase-space. Therefore, 

the term +  +  vanishes and

i O c  ( 7 )

dj_ = , i j \  
dt \ d t )

(8)

This means that in the absence of collisions, the particle number density does not

change with time even though particles are moving along the trajectory in the phase-
space.

Equation (5) can be rewritten as

d *  a .  9 f  m  9 f  x -  J -  9 f  a .  9 f  -l. -  ( d f \  <Q\Y t  +  vx^  + vy- ~  +  ... +  ax—  + ay—  + ... -  ( - ) c , (9)

or
| + S . v /  +  a . v , / =  ( | ) c . ( 1 0 )

where V„ is gradient in velocity space. This represents the general form of Boltzmann 
kinetic equation to be used for transport of charged particles in a plasma.

In this study we will mainly investigate electrons moving in electromagnetic field 

such tha t magnetic force is negligible comparing to the electric force. Hence, the
Lorentz force vanishes in the acceleration term. The Boltzmann equation (10) then

becomes
d f  ~ , eE  ,  ( d f \  , ,_ + „ . 7 / _ _ . v „/  =  ( _ ) c , ^ (11)

where e is the elementary charge, m  is the electron mass and E  is the electric field.
In order to solve Eq. (11) we consider only spatially uniform fields which is true 

either in case of constant or in case of high frequency electromagnetic fields because 

the amplitude of electronic oscillations is small compared to  the EM wavelength. The 
electron distribution function is then symmetric in velocity space around the electric 
field direction. Thus,

" s i (12)
where z  = rcos9.

If we assume electric field in 2  direction, E  = Eel,  in cylindrical coordinates in 
velocity space, ez =  evcos9 — egsind, we get

£ . V „ /  -  =  I 5 ( a ^  +  f ^  «  ) ,  (13)
OV V 36 \  o v  v o(cosd) J
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where we employed
d f  d f  d(cos9)
d9 d(cos6) dd

(14)

Boltzmann equation gets the form of

+ VCOS0
d f  s in20 d f  
dv ^  v d(cos9) ) -  ( ! ) c <“ >

Equation (15) can not be solved analytically without making some drastic simpli­
fications. In the following sections, we will discuss different approaches for obtaining 

the electron distribution function from Eq. (15).

It can be seen from Eq. (15) that Boltzmann equation strongly depends on electric 
field amplitude. Depending on the electric field strength two characteristic situations 

can be distinguished

• Moderate electric fields

• Strong electric fields

Moderate electric fields

The common approach to solve the Eq. (15) is by expanding electron distribution 
in terms of Legendre polynomials of cos9 (spherical harmonics expansion). For most 
applications it is enough to use only the first two expansion terms

where /o represents a symmetric, isotropic part of distribution function which de­
termines the electron energy spectrum, and f \  is a small anisotropic perturbation. 

Hence, the approximation is valid when the collisions are dominantly elastic and will 
fail for high values of electric field when most of the collisions are inelastic and the 

anisotropic part becomes dominant. However, a small inelastic contribution will be 
still present in the collision term on the right hand side

We then substitute Eq. (16) into Eq. (15), multiply by the respective Legendre 

polynomials (1 and cosd) and integrate over all angles J  2nsin9d9,

f ( v , c o s 9 ,z , t ) =  f 0(v,z , t )  + f i (v,z, t)cos9, (16)

dfo _  eE  1 d C ^ /i)
dt 3 dz m  3v2 dv

(17)

(18)
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where Co represents the change in /o due to collisions, Nn is population density of 
neutrals, and crm is total momentum-transfer cross-section consisting of contributions 
from all possible collisions processes k

am =  ^ x kak (19)
k

where k  is the mole fraction of the target species of the collision process. In the case 
of elastic collisions, ak represents the effective momentum-transfer cross-section, as 
described in previous subsection, while in the case of inelastic collisions, ak is the 

inelastic integrated cross-section where all momentum is lost in the collision. 
Collision term, C0, consists of two terms:

Elastic collisions [9]

=  m j __9 
el M  v2 dv

v3Nnamv(^f0 +  » (20)

where M  is the mass of target particle.

The first term on the right hand side of the equation is due to the elastic 
scattering energy losses, while the second term is due to energy diffusion from 

the non zero temperature. The second term is very small and can be neglected 
in most cases.

• Inelastic collision

yf
@ inel ^ n @ i n e l ^ f “1“  '■^’n & in e l 'V fo fo  )>

V

where va  =  v2 +  2eeinei /m  and £inei is the electron energy lost in an inelastic 
collision [9],

Equations (17) and (18) are further simplified by separating velocity dependence 
from space-time dependence of electron distribution function as

= F0ti{v)Ne(z,t),  (22)

where Ne is the electron number density. The electron distribution function is nor­
malized over velocity space as

oo oc

J  f ( v ,cos9 ,z , t )dv  =  47v J  N e(z, t)F0(v)v2dv = Ne(z,t),  (23)
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Before going to the general solution we will describe several simplified approaches. 

In the simple case of steady-state plasmas where only elastic collisions take place, 
equations (17) and (18) become

eE d(v2Fi(v)) _  m  d(v3Nnam(v)vF0(v))
3m dv M  dv

eE d(F0(v))

d(F0(v)) _  3m 3 _ 2
dv e2E 2M

Hence,

0
where A  is a normalization constant.

(24)

»r / ■> r. = Ft (v), (25)m N nam(v)v dv
Integrating Eq. (24) and equating it with Eq. (25) we obtain

«*s> 1 » »  » , w , m  (26)
3m2 Nncrm(v)v dv M

It is often useful to introduce a collision frequency defined as

vm(v) =  N nam(v)v, (27)

which transforms Eq. (26) into

li 3m3
- w m{y)F0{v). (28)

*̂ 777 f
F0(v) = Aexp[ -  j  v'vl {v ' )dv ' \ , (29)

Maxwell-Boltzmann distribution

At the thermodynamic equilibrium, where particles do not constantly interact 
with each other but move freely between short collisions, collision frequency um is 
velocity independent and Eq. (29) becomes

F{v) = ( ^ r J /2e~mv2/2T% (30)

where the electron temperature Te, is measured in energy units.

It is sometimes useful to express electron distribution function in terms of energy 

rather than velocity coordinates. Using the identity that the number of electrons 
with velocities between v and v + dv equals to the number of electrons with energies 
between e and e 4- de

F{e)de =  F(v)dv =  AirF(v)v2dv, (31)
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and ee = mu2/ 2 we observe

F(s ) =  4nF(v)v2^ -  = 2 n ( —^ £l 2̂F(v(e)). (32)
V 777 /

The function, /(e ) , is called the electron energy distribution function (EEDF) and 

has the units of eV~1. Energy normalization of the electron energy distribution 

function is deduced from Eq. (23)
OO

J  F(e)d£ = J  Fdv = Ne. (33)
o o

Beside EEDF we will also introduce another function named electron energy prob­
ability function (EEPF) that is related to the EEDF as

G{e) = £~1/2F{e). (34)

Electron energy probability function has the units of e V ~3/2 and normalized over all 

energies gives unity
OO OO

J  G(£)d£ = J  £-V 2F(£)d£ = 1. (35)
0 0 

Equation (30) in energy units has the form of

f m {£) = A r - 3 / 2 ^ - ^  (36)
n/ tt

At the end of the nineteenth century, Maxwell discovered this relation purely 
empirically. It was much later when Ludwig Boltzmann came out with the rigorous 

proof and the function, Fm is known as Maxwell-Boltzmann distribution.

Druyvesteyn distribution

Generally, the EEDF is assumed to be Maxwellian at very low pressures (less than

50 mTorr) where the electron-electron collisions dominate. For higher pressures the

energy distribution function of the electrons is often better approximated by another 
function which is nowadays well-known as the Druyvesteyn distribution function. 

Back in 1930, Druyvesteyn showed that this distribution may be considered an ade­
quate description of the EEDF when electrons satisfy following assumptions [26]:

•  only elastic collisions between electrons and heavy particles (ions and neutrals) 
are taken into account (inelastic processes, ionization and excitation, are ne­

glected)
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•  electron-electron collisions are neglected

•  total cross-sections for electron-neutral collisions do not depend on electron 
energy

•  electron temperature is much greater than the ion and neutral temperature

(Te »  Tg)

For an isotropic distribution, the Druyvesteyn distribution [26] may be written
as

FD(e) = 0.568-T - 3/2V ie -a243(£/r' )2 (37)

Physically, Maxwellian distribution function is applicable when the electron col­
lision frequency is velocity independent, while Druyvesteyn distribution dominates 
when the mean free path is velocity independent. Graphical comparison between 
Maxwellian and Druyvesteyn distribution function is given in Fig. 6.

0.5
T =1 eV  Maxwellian distribution

-  Druyvesteyn distribution
0.4-

u.
O  0 2 -UJ
LU

T =3 eV

T =5 eV0.1 -

0.0
0 5 10 15 20 25

Electron energy (eV)

FIG. 6. Comparison of Maxwellian and Druyvesteyn distribution functions.
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In comparison with Maxwellian distribution, Druveysteyn distribution contains 
much fewer high energy electrons and is characterized by a shift of the maximum 
towards a higher energy. Therefore, Druveysteyn electron energy distribution can be 

used as an approximation for the EEDF tha t is depleted at high energy.

Two-parameter distribution

Recently, studies were conducted on a global model that would cover the re­
gion of electron energy distribution as it is varied from being Maxwellian to become 

Druveysteyn like. Such a distribution is called a two-parameter distribution and its 
general form is [11]

temperature defined as 2/3 of the averaged electron energy. When x  = 1 with 
Ci = 2/yJn and C2 =  1 Eq. (38) becomes Maxwellian. Similarly, when x — 2 with 
Ci =  0.568 and C2 = 0.234 we get Druveysteyn energy distribution. The case of 

x  =  4 corresponds to Rutscher’s type distributions [13], and should be the best fit for 
Ar discharges according to [13]. Figure 7 shows electron energy distribution functions 
derived from the Eq. (38) for different x  with the same value of Tx = 3 eV (Fig. 7a) 

and Tx — 0.5 eV (Fig. 7b).

Solution of Boltzmann equation: BOLSIG-I- solver

All the approximations described above assume steady-state plasmas where only 
elastic collisions occur between particles. The real case scenario is more complex 
and can not be explained fully with these simplified models. In general, when the 

electron distribution function depends on time and distance we still can separate 

velocity-dependence from time-dependence

(38)

where

2\3/2 [r(5/2x)]3/2 
37 [r(3/2x)]5/2’

/ 2 \ x |T (5 /2 x )ix
V37 lr(3 /2x)J  ’

(39)

(40)

with r (ip) being a Gamma function of ip and Tx representing the effective electron

/o,i(v,-M) =  Fo,i{v)Ne(z,t), (41)
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x=1, Maxwellian distribution 
x=2, Druyvesteyn distribution 
x=1.2 
x=4

x=1, Maxwell Ian distribution 
x=2, Dnryvesteyn distribution 
x=1.2 
x=4

Electron energy (eV) Electron energy (eV)

FIG. 7. EEDF calculated for four different distributions: x  = 1 Maxwellian, x  =  2 

Druveysteyn, x  — 1.2, and x =  4 for sample electron temperatures a) Tx =  3 eV and 

b) Tx = 0.5 eV.

Also, we are assuming that, electric field either remains constant on the time scale 

of the collisions or is oscillating with high frequency cj, such that to um, and

f ( v ,  cosO, z, t ) =  f 0(v, z, t ) +  /i(v , z, t)cos6ewt. (42)

where the time variation of / 0 and / j  is slow comparing to the E  field oscillations. 
Equation (42) is applicable in microwave discharges where field oscillations are in the 

gigahertz range and beyond.

Our experiment was conducted in pure argon but some measurements of nitrogen 
molecular bands were performed in air discharge too. For that reason, in Figs. 8 
and 9 we are showing the examples of electron energy probability functions in both 

argon and air plasma at gas temperature T9=300 K using the two-term approach in 

free software BOLSIG+ [9]. As an input data we have employed gas temperature 
and reduced electric field together with the corresponding collision cross-sections. 

Note that EEPF in the two-term approach is calculated for given reduced electric 
field, E / N n, unlike the other approaches where EEPF (or corresponding EEDF) is 
shown for different electron temperatures. To be able to compare these approaches 

we need to express Te in terms of E / N n. By employing the properties of distribution
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FIG. 8. EEPF for Tg=300 K in argon discharge for three different values of reduced 
electric field, 0.5 Td, 5 Td, and 200 Td.

functions and the relation e =  |T e, average electron temperature can be expressed 
as

OO

Te = l j  eF(s)de,  (43)
o

or in terms of EEPF
OO

Te = ^ J  e ^ 2G{e)de. (44)
o

Figure 10a shows the electron temperature as a function of the reduced electric 
field in both Ar and air discharges a t Tg =  300 K. It turns out that the change in gas 

temperature influences only weakly the Te dependence on E /N n, as it is presented 

in Fig. 10b. The similar results were observed in air.
It can be seen from the Fig. 10 tha t in argon discharge Te — 3 eV corresponds

to E / N n — 5 Td and Te = 0.5 eV corresponds to E / N n — 0.1 Td. After scaling
electron distributions to the same electron temperatures we compared EEDFs using 

two parameter approach and BOLSIG+ solver for Ar discharge. Results for Te = 3 

eV and Te = 0.5 eV are shown in Fig. 11. It seems that the case x  =  4 in two
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FIG. 9. EEPF for Tg= 300 K in air discharge for three different values of reduced 
electric field, 5 Td, 100 Td, and 200 Td.

parameter approach is the best fit for Ar discharges, where there are more electrons 

with small energies but with high energy depletion in the tail of distribution.

In case of air discharge, it seems that electron temperature is smaller, due to the 
quenching processes for the same values of reduced electric field, compared to argon 
discharge. Moreover, at E / N n = 100 Td which corresponds to Te =  1.8 eV it is not 

even possible to compare different approaches. Figure 12a indicates tha t according 
to the two-term approach the electron energy distribution is much narrower than two 
parameter approach. When E / N n =  400 Td or Te =  5.7 eV the two approaches are 

comparable when x  =  1.2, close to Maxwellian distribution, shown in Fig. 12b.
In this study, we concentrate on the kinetics of supersonic flowing MW discharge 

in argon operating at electron temperature Te =  0.5 eV and gas temperature Tg — 
1500 K. Since the change of gas temperature influences very weakly Te = f ( E / N n) 
dependence (shown in Fig. 10b), we can estimate reduced electric field to E / N n =  0.1 

Td (shown in Fig. 10a). From Fig. l i b  can be concluded tha t either two parameter 

approach when x  =  4 or BOLSIG+ solver can be employed for obtaining kinetic 
plasma properties (collision frequencies and rate coefficients) in argon.
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FIG. 10. Electron temperature as a function of reduced electric field at a) Tg = 300 
K for Ar and air discharges and b) different gas temperatures, 300 K, 500 K, and 
700 K in argon discharge.

In addition, we will study the kinetics of the pulse repetitive MW discharge in air 

with average electron temperature Te =  1.8 eV and gas temperature ranging from 
Tg = 600 to 800 K. Similarly, as in the case of argon discharge, average reduced 
electric field was estimated to be E / N n = 100 Td (shown in Fig. 10a). As can be 
seen from Fig. 12a, electron energy distribution function evaluated by employing 
two parameter approach when x  =  1.2 differs in both shape and maximum intensity. 
Therefore, we have employed only BOLSIG+ solver based on two-term approach to 

characterize kinetic structure of the discharge.

Strong electric field

We were assuming previously that the EEDF was spherically symmetric. This 
assumption is valid only for electric field amplitudes that are not too large. As E  

increases, the energy of electrons oscillating in the field is increasing rapidly in time, 

and the ionization rate, is larger than the average electron collision rate. At very 
strong electric field amplitudes the electron energy distribution function is determined 

primarily by the ionization processes. As a consequence most of the electrons are
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FIG. 11. Electron energy distribution function calculated using the two-parameter 
approach and the BOLSIG+ solver in argon for sample electron temperatures a) 
Te — 3 eV and b) Te = 0.5 eV.

slow and are picked up by the electric field while moving in the field direction. The 
EEDF, then, takes form of delta function [27]

f G & t )  =  NeF(v) — N e5(v -  v0cosu)t), (45)

where u  the oscillation frequency of the field E(t) = E0(t)sinujt and

This approximation is valid in case of extremely high reduced electric fields 

(E / N n ^  1000 Td) when the form of electron energy distribution function is de­
termined primarily by the ionization processes. Hence, the ionization rate coefficient 
is the dominant quantity that describes these discharges. However, for the purpose 
of comparison with the moderate field approximation, we will apply this approach to 
obtain rate coefficients for excitation processes.
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FIG. 12. Electron energy distribution function calculated using two parameter ap­
proach and BOLSIG+ solver for sample electron temperatures a) Te =  1.8 eV and 
b) Te =  5.7 eV in air discharge.

2.2.3 RATE COEFFICIENTS

One of the fundamental properties that characterize plasma system is the collision 
frequency defined as the number of interactions per second between two colliding 
particles (electrons and heavy atoms/ions in most cases)

v = Nga(vR)vR (47)

where vR is the relative velocity and Ng is the gas density. In weakly ionized plasmas
gas density can be estimated with the density of the neutral particles, Ng =  Nn.
Collision frequency per unit density is called the rate coefficient and is defined as

k = a(vR)vR. (48)

We will determine rate coefficients for both moderate and strong electric fields 

using the distributions functions and cross-sections described in previous subsections.
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E lec tro n  im p ac t collision ra te s

a) M o d e ra te  fields

We start by defining rate coefficients for inelastic collisions between an electron 
and a heavy atom/ion which can result in excitation or ionization of heavy particle. 
To obtain rate coefficients we integrate over the velocity distribution functions of the 
colliding particles

OO

k  =  < a(v)v > = J  a(vR)vRFl {vl )F2{v2)dvldv2. (49)
o

Heavy atoms/ions are assumed to be stationary (v2 =  0 and F2(v2) =  0) and only 
electron motion is taken into account (vR = v \ = v  and Fi(vi) =  F(v)).

Using the identity that the number of electrons with speeds between v and v + dv 
equals to the number of electrons with energies between e and £ +  de

F(v)dv = F{e)de, (50)

and £ — m ev2/2  we observe

OO

/  Cl e \  1 /2  f

k =  t )  J  a (£) ^ £ F (£)d£- (51)
0

The rate coefficient expressed in terms of g(e) is

OO

/  2 p  \  1 /2  f
k = ( —  J I  a(£)eG{e)d£. (52)

\  TYle /  J
0

Based on electron impact cross-sections for excitations from ground state to ip  
levels of Ar I and electron energy distribution function, Eq. (51) gives the rate 

coefficients for electron impact excitation as functions of E / N n, as shown in Fig. 

14a. It should be noted that we have employed experimentally obtained cross-sections 

from Refs. [22,23]. These coefficients differed slightly (less than factor of 2) from the 
rate coefficients obtained by employing theoretically predicted cross-sections [24,25] 

that are not presented in this study.

Since experimentally obtained cross-sections for excitation from metastable 4s 
state to ip  states of Ar I were not available in literature, we have employed theoreti­
cally calculated cross-sections [25] together with EEDF in Eq. (51) to determine rate
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FIG. 13. Rate coefficient for electron impact excitation to  Ar I 4p [l/2]i, 4p [3/2]2, 
and 4p [3/2] j states from Ar I a) ground state and b) metastable 4s state dependence 
on reduced electric field using moderate field approximation.

coefficients for electron impact excitations from Ar I metastable state as functions 
of E / N n, as shown in Fig. 14b. It could be seen from the figure tha t peak values of 

the excitation rate coefficients from the metastable state are almost three orders of 

magnitude higher than peak values of the excitation rate coefficients from the ground 
state confirming our assumption of Ar I metastable level significance in plasma ki­

netics. Although, it appears in Fig. 14b that values of excitation rate coefficients 

to 4p [3/2]2 state are higher than values of rate coefficients to 4p [1/2]! state, this 

is probably due to the very poor accuracy in calculating required cross-sections and 
should be taken with caution.

We have also calculated rate coefficients for electron impact excitation from ni­
trogen ground state to excited N2(C3Uu) state, as shown in Fig. 14a. In

addition, an example of vibrational excitation from v — 0 N2 ground state to v =  1—3 
states is presented in 14b. It can be deduced that the values of rate coefficients for 
vibrational excitation are comparable to the values of excitation rate coefficients to 

N2{C'iU.u) state and should be included in defining nitrogen kinetic structure.
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N2(C*Ilu) state and b) vibrationally excited ground state v — 1 — 3 dependence on 
reduced electric field in air discharge using moderate field approximation.

b) Strong electric fields

We start by writing the rate coefficient defined in Eq. (48) as

OO
k(t) =  <  cr(v)v >  =  J  a(v)vF(v)dv. (53)

In the large electric field approximation, we apply Eq. (45) for EEDF and the 
rate coefficient becomes

k(t) =  J  a(v)v6(v — vocosu)t)dv. 
o

By applying the identity

J  f (x)S{x -  x 0)dx = f ( x 0),

k(t) =  v0cosu>t • a(vocosujt).

(54)

we get

(55)

(56)
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To find the mean rate coefficient we average Eq. (56) in time

< k > T
o

where T  = n/ui is a period of oscillation. Hence,

n/uj
u) f  vn cri^cosut)

< k >  — vmam— I  -  cosutdt, (58)
7T J Vm ®m 

0

where crm is the maximum collision cross section and vrn is the electron velocity 
corresponding to the maximum collision energy em. By substituting cosuit =  r  we 
derive

< * > = , « , „ 21  f   TdT (59)
l 7T J  Vm  <Jm  y / T = F '  ( M )

0
If we substitute =  x  and t x  — z =  Eq. (59) is transformed intoVm

X

2x f  cr(z) zdz , .
< k >  = vmam—  / ------------------- . (60)

K J a m y X l  — Z2 
0

Note that x
v0 1 eE0

x = —  = ---------  (61)
t ' m  V m  VflUl

depends linearly on electric field.

In order to estimate excitation rate coefficients as functions of reduced electric 
field by applying Eq. (60), oscillation frequency uj and gas density N n need to be 

known. To exemplify Ar discharge, we present in Fig. 15a rate coefficients for electron 

impact excitation from ground state to 4p states at frequency /  =  2.45 GHz and gas 
density N n = 2 • 1016 cm-3. Similarly, as an example of molecular N2 structure, Fig. 
15b shows rate coefficients for electron impact excitation from ground state of N2 to 

excited iV2(C3n u) state at /  =  9.5 GHz and Nn =  2 • 1017 cm-3. We have chosen 

these frequencies and gas densities to simulate conditions of experimental systems 
described in following chapters. Figure 15a shows that in the strong electric field 
approximation (E / N n > 1000 Td) values of excitation rate coefficients for Ar 4p 

states have increased in almost two orders of magnitude comparing to the values of 
the same coefficients in moderate electric fields (E / N n < 500 Td). On the other 

hand, rate coefficient for electron excitation to N2 (C3IIU) state varies very weakly 
when E / N n increases, as shown in Fig. 15b.
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Collisional deactivation rate coefficients

Although they are less probable, collisions between heavy particles (atoms/ions) 
play significant role in gas discharge kinetics. These processes are also called quench­

ing collisional deactivations. The general approach in obtaining quenching rate co­
efficients is to apply Eq. 49 which assumes the knowledge of distribution functions 

of colliding particles. I t’s proved to be fairly difficult to calculate heavy particles 
distribution functions so we applied the simple but effective methods for obtaining 
the collisional rate coefficients.

First, we describe method for obtaining collisional rate coefficients in argon dis­

charge. The dominant quenching collision process includes population transfer pro­

cesses between ground state Ar(Nn) and 4p states Ar(Npx) of argon [28-30]:

Ar (Nn) +  Av(Npx) —> Ar (Nn) +  A.r(Nsm), (62)

where Ar(Nsm) describes metastable 4s state state of argon. Detailed description of 

the notation system used in kinetic analysis is given in Section 4.3.
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Zhu and Pu [30] have combined available experimentally obtained and theoreti­
cally predicted rate coefficients for collisional quenching and presented them as func­

tions of gas temperature Tg (given in Kelvins), as presented in Table 1.

TABLE 1. Collisional quenching rate coefficients for Ar I 4p states 

Processes Rate coefficients (cm3/s)
1 A i (N n) +  Ar(Np2) -+ Ar(7V„) +  Ar(Nls) 1 x n r n (Tg/300)a5

2 Ar(Nn) +  Ar(Ap3 ) -> Ar(Nn) +  Ar(iVls) 3 x K r n (Tg/300)a5

3 Ar(Nn) +  Ar(Ap4 ) -> Ar(AQ +  Ar(iVls) 3 x 10-n (Ts/300)a5

Second, we employ the results of Brocklechurst and Downing [31] to obtain colli­
sional rate coefficients in molecular nitrogen. Brocklechurst and Downing [31] have 

measured the ratio between collisional rate coefficient, k * ^ ' c ^°\ for process

N2(C3n u) +  /V2(X 1E+) -> 2N2(X 1E+), (63)

and rate coefficient, k f '^ ’°^0\  for radiative decay of J'V2(6l3IItI) state to iV2( /i3II9). 

They have shown that this ratio depends on pressure and has a form

1 kx(o),c(o)

k =  ~ kc(o),B(o) ' (64)

The experimental values for k  taken from [31] are given in Table 2.

TABLE 2. Collisional quenching ratio for the second positive system of nitrogen by 

its ground state.______________________________________________________

^ ( C 3^ )

V 0 1 2 3
k  (mm Hg)-1 0.017T0.002 0.039±0.004 0.051±0.006 0.06±0.01

In the first approximation the rate coefficient for radiative decay is assumed to 

be inversely proportional to the radiative lifetime, tqb, of A2(C3IIU) level and gas
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population density
k C( 0),fl(0) =  _ J _  ( 6 5 )

^CB **71
By substituting Eq. (65) in the Eq. (64) we obtain rate coefficient for collisional 

deactivation
k X(fi),C(0) =  ( 6 6 )

TCB^n
Since pressure to gas density ratio depends linearly on gas temperature (ideal gas 

equation), it could be concluded tha t collisional rate coefficients in nitrogen are also 
functions of gas temperature similarly as collisional rate coefficients in argon.
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CH APTER 3 

EXPERIM ENTAL SYSTEM S

Our broader task is to fully characterize high density gas discharges required 

for plasma etching and cleaning purposes. Since these plasmas are non-equilibrium, 
non-stationary, fast moving, and chemically reactive it may be very challenging to 
obtain desired plasma parameters. One needs to verify some of the basic concepts 

outlined in Chapter 2 in well controlled experiments and develop plasma diagnostic 
techniques in generic geometries. We have conducted experiments in electrodeless 

microwave induced plasmas operating in the S-band (2.45 GHz, 200-400 W) and X- 

band (9.5 GHz, 210 kW) spectral range. Conventional diagnostic techniques, such as 
Langmuir probes, have the operating range up to 1011 - 1012 cm-3, at least an order 
of magnitude lower than found in gas discharges at high densities [32]. Moreover, this 

method is both expensive and obtrusive. Therefore, we have chosen to apply optical 
emission spectroscopy along with laser diagnostics as our diagnostics tools since they 
are non-intrusive, in situ, and can accurately determine plasma parameters.

This chapter consists of two parts organized in the following order. The first part 
describes a supersonic flowing MW discharge in pure Ar sustained in a cylindrical 

resonant cavity, while the second part focuses on the surface MW discharge generated 
at the aperture of a horn antenna in air.
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3.1 SUPERSONIC FLOWING MW DISCHARGE

3.1.1 EXPERIMENTAL SET-UP

The experiment was conducted in a supersonic flowing tube, radius R = 1.6 cm, 

combined with microwave cavity discharge, shown in Fig. 16. A commercial mi­

crowave generator, operating in the S-band at 2.45 GHz, was used to sustain a cylin­
drical cavity discharge at power density of up to 4 W /cm 3. The working pressure 
in the evacuated quartz tube was kept between 1 and 3 Torr. A Mach 2, cylindri­
cal convergent-divergent De Laval nozzle was used to sustain the supersonic flowing 
discharge downstream of the microwave cavity, which operated in the T E m  mode. 
The measurements were performed in pure argon that was fed into the stagnation 
chamber through a gas manifold. Gas flow was established by a roots blower (Pfeiffer 

Okta 500 A), which was supported by two roughing pumps (Varian SD-700). The 
capacity of the pumping system allowed for generation of supersonic flow at static 

pressures of 1 to 20 Torr.

Inlet
pressure

©
Exit

pressure

De Laval

' T

Nozzle Plasmoid

1] e >
— -

Microwave
cavity m

\
Orifice

Magnetron

1
Output 

To detection <?=

U U u

Input
power To roots blower and 

roughing pump

FIG. 16. Scheme of the supersonic flowing microwave discharge.
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In the afterglow region of the pure Ar discharge, a plasmoid-like formation was 

observed as a secondary downstream phenomenon coupled to the microwave cavity. 
The plasmoid appears to be sustained by a low power surface wave, which propagates 
along its surface and the surface of the quartz tube. Our initial analysis led to the 

conclusion that plasmoid formation may be caused by aerodynamic effects in the 
supersonic flow. The full interpretation of the plasmoid discharge requires knowledge 

of all effects causing its formation. In addition, we have concluded that the plasmoid

FIG. 17. Picture of the plasmoid in the afterglow region of an Ar discharge.

is a convenient object to develop techniques for diagnostics of inhomogeneous plasmas 
with limited symmetry. This geometric configuration is a usual feature of plasmas 

generated in the curved-shaped resonant SEF cavities. Therefore, the plasmoid may 
serve as a useful test bed for diagnostic and validation study of asymmetric plasma 

object.
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Microwave resonant cavity

In this experiment a cylindrical resonant cavity was used to sustain a pulsed repet­

itive discharge. The main property of cylindrical resonant cavities is that Maxwell 
equations for electric (E ) and magnetic (B) field together with the boundary con­
ditions on E  and B  at the surface of the cylinder pose a constraint on the EM 

frequencies with respect to the cavity dimensions [33]. In other words, for a given 
cavity dimensions only a certain resonant frequencies will be allowed. Furthermore, 
resonant cavities with discrete frequencies of oscillation have a definite field configu­
ration for each resonant frequency. This implies that, in order to excite a particular 

mode of oscillation in a cavity, the exciting frequency has to be exactly equal to the 
resonant frequency. Otherwise, no EM fields could be built up.

For the cavity operating in TE mode this relationship is

1  X m n  . P 2* 2
y/JE V r 2 d2“ m nP =  +  ( 6 7 )

where m ,p  =  0 ,1 ,2 ,..., n  =  1 ,2 ,3 ,..., p is the permeability of the material, e is the 
permittivity of the material, r  is the inner radius of the cavity, d is the length of the 
cavity, x mn is the n th root of the equation ./m(.x) =  0, and Jm(x) is the m th order 
Bessel function that satisfies the boundary conditions for the cavity.

This cavity was designed to operate in the lowest TE mode, T E m  mode. This 
means that the first root of the first order Bessel function J\{x) =  0, is i n  =  1.84. 

The inner radius of the cavity was r — 0.037 m. The cavity length was about d =  0.25 
m with possibility for fine adjustments by using the detuning rods positioned at the 

end walls of the cavity. After placing these values into the right hand side of the Eq. 

(67) we get the resonant frequency wm =2 .45  GHz, the exact match with the MW 
S-band exciting frequency.

Since the cavity is an imperfect conductor, the microwave energy can be dissipated 
in the cavity walls in a number of ways, as discussed in [34]. The most common loss 

mechanism in the MW cavity is heat transfer. A measure of the rate at which a 
vibrating system dissipates its energy into heat is called a quality factor or a Q 
factor. In an optical resonance cavity, the Q factor is defined as the ratio of the 

energy stored in the cavity (U) to the power dissipated by the cavity (P ) times the 

resonance frequency,

Q =  kfiiip ■ (68)
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The complete derivation of the Q factor for the cylindrical resonant cavity is given 
in [33] and has the form of

n  -  fi° d 1
Q M 2 ( l  + e» g ) -  <6)

Here is the permeability of free space, pc is the permeability of the cavity walls, 
A is the cross sectional area of the cavity, C  is the circumference of the cavity, ( \  is 
a dimensionless number on the order of unity for TE modes, and <5 is the skin depth 
defined as

Q = i n-;; ; - ^  =  L 1  x 1q4- (71)

5 = . ----------  =  1 . 6  pm, (70)
V H e

where p is the resistivity of the cavity wall material. The cavity in our experiment 

was constructed from aluminium with resistivity p — 2.65 pfi-cm and permeability 

Pc = Mo =  4 7 t x 10- 7  H/m.
In the case of cylindrical cavity C — 2m ,  A =  r 2 7r, and Eq. (69) becomes

d  1_
<5 2 (1 + 6 A|: )

In the case of normal conducting microwave cavities, quality factor of Q ~  104  

provides good stability and high power range of the cavity.

Supersonic flow

Supersonic flow in this experiment was sustained by a cylindrical convergent- 

divergent De Laval nozzle, as shown in Fig. 18. This is an optimally shaped nozzle 
that produces a flow at the exit with a constant Mach number, providing in tha t way 

the constant gas density and temperature at all post-nozzle points [35].
The working mechanism of the De Laval nozzle is based on the continuity equation 

for fluids which connects the density p, the cross-sectional area A, and the velocity 
v of the flow at two different points,

p\A\V\ =  PiA'iV'i- (72)

In most cases gas density varies very slowly throughout the flow. As the area 
decreases in the first convergent part of the nozzle, the velocity must increase at a 
similar rate causing the flow to accelerate to a Mach speed at the nozzle throat. After 

leaving the throat of the nozzle, the diameter of the divergent section of the nozzle 
increases very rapidly causing the sufficient pressure drop across the nozzle making
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FIG. 18. Scheme of the cylindrical convergent-divergent nozzle.

a supersonic flow (M ach>l) possible. In order to maintain the acceleration in both 
parts of the nozzle, the flow at the nozzle throat needs to be equal to Mach 1.

The Mach number (M) is defined as

M  =  —, (73)
Vs

where v is the speed of the flow and vs is the speed of sound. By assuming tha t the
gas flow is close to an ideal gas with no heat exchange with the nozzle walls, the

speed of sound is defined as [36]

Vs =  = (?4)

where p is the pressure, R  is the specific gas constant, T  is the temperature, and
7  =  Cp/C v is the specific heat ratio given as the ratio between the specific heat at 

constant pressure (Cp) and specific heat at constant volume (Cv).
The convergent-divergent nozzle used in this study was manufactured from unfired 

Hydrous Aluminum Silicate (Grade “A” Lava) since Lava is MW transparent. The 
gas inside the nozzle was pure Ar with characteristics: R  = 208 J K_ 1mol_ 1  and 

7  =  1.67 and at temperature of approximatively T  =  300 K, thus leading to vs =  320 
m/s.
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Also, after combining Eq. (72), the ideal gas equation, and the energy equation 
with constant heat transfer a very useful relationship between the ratio of total to 
static pressure and a Mach number at a given point is obtained,

where static pressure (po) is the pressure of the stationary gas and total pressure (p) 
is the pressure a flowing gas exerts as it is brought to a stop.

The argon gas in our experiment is considered to be nearly stationary in the pre­
nozzle section, allowing us to assume that inlet pressure is equal to static pressure, 

P in  = Po- Hence, Eq. (75) can be rewritten as

where p ^ t  is total pressure measured at the exit pressure point in the experiment.
Figure 19 shows the Mach number dependance on the exit pressure in a pure argon 

flow. It seems that as the exit pressure increases, the Mach number also increases until

above 3.5 Torr is determined to be 2.30=fc0.07. The error reflects the uncertainty in 

measuring the inlet and exit pressures.

used to obtain the ratio of exit-to-nozzle throat cross-sectional area as a function of 
the Mach number

where ArnLt is the exit and A th is the nozzle throat cross-sectional area. The inner 

radius at the throat of our nozzle was rth = 3.5 mm and at the exit was rcmt =  14.05 
mm meaning that Ath = 27.1 mm2 and A ^ t  = 619.8 mm2. Based on this nozzle 

geometry and the Eq. (77) we have calculated Mach number to be M  =  6 . The 
difference between the theoretical prediction (77) and the experimentally obtained 
Mach number values (76) is most likely due to the fact tha t Eq. (77) is valid only 
in the case of laminar gas flow. It seems that the argon in our experiment exerts 

turbulent gas flow due to the surface imperfections of the nozzle. Moreover, there 
is a good possibility that the sonic flow of Mach 1 was achieved beyond the nozzle

(75)

(76)

it reaches a steady state at pressure values above 3.5 Torr. The average Mach number

The fact tha t the gas flow is Mach 1 a t the throat of the De Laval nozzle can be

A,out 1  2

M l j  + 1 ( ' + (77)
Ath
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FIG. 19. Mach number as a function of the exit pressure in the MW cavity in a pure 
Ar flow measured in this work.

throat, implying that the convergent-divergent nozzle used in our experiment differs 
from the De Laval nozzle. Thus, applying Eq. (77) for Mach number determination 
would introduce additional error.

3.1.2 MEASUREMENT METHODS

We have employed optical emission spectroscopy (OES) since it is simple, non- 
intrusive, and in situ. We have also employed laser induced fluorescence (LIF) in 

order to obtain information on the plasma system and to increase the overall mea­

surement precision.

Optical emission spectroscopy

We used OES as our primary diagnostic tool to  observe the spectra of the Ar 

excited states by measuring photons emitted from the plasma. D ata were collected
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in two regimes: time averaged, spatially resolved regime and time resolved, spatially 

averaged regime. Spatially resolved emission spectra were recorded using two dif­
ferent detection systems, an imaging spectrograph (Acton SpectraPro) connected to 
the charged-coupled device (CCD) camera (Apogee, Hamamatsu, Back-Illum) and 

a compact wide range spectrometer (Ocean Optics HR4000CG) with the in-built 
CCD array detector (Toshiba). All measurements were conducted over the 500 ms 
exposure time, making it very difficult to depict the effects of the turbulent gas flow.

As a consequence, we collected data in the time resolved regime by employing
an imaging spectrograph (Acton SP2750) in conjunction with the high precision

intensified CCD camera (Princeton Instruments, PI MAX3) which allowed us to 
resolve spectra from the plasma on the microsecond time scale.

The observed spectra were calibrated using a Newport/Oriel absolute black body 
irradiance source which has predefined relationship between the wavelength (A) and 
the spectral irradiance (I) given as,

r  > —5 A + B - / S - I  D E  F  GI  = X ^ > {C + j  + Y 2 + -  + - ) ,  (78)

where the coefficients are provided by the manufacturer

A =  41.485337541901 

B =  -4899.978599767823 

C =  0.821306420331086 

D =  428.610013779565 

E =  -317020.290823792 

F =  85820275.9042372 

G =  -8493841443.25663.

Spectral irradiance represents the power of electromagnetic radiation per unit 
area incident on a surface at a specific frequency, and has the units of [Wm~2 nm-1]. 

Irradiance per count of the black body radiation is estimated by dividing the irradi­
ance calculated using Eq. (78) with the number of counts measured with the CCD 

camera. We evaluated the calibration graphs of spectral irradiance per count versus 
wavelength in the spectral range between 200-1100 nm. Using these graphs we have
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determined the population of particular Ar excited state transitions in the following 
way.

First, we have obtained spectral irradiance of a desired spectral line by multiplying 
the intensity of the measured spectral line by the irradiance per count of the black 

body radiation for corresponding wavelength. Then, we have introduced the length 

of plasma region and expressed the spectral irradiance in the terms of radiometric 
quantities (P\) with units of [Wcm- 3 nm-1]. This was achieved by dividing the 
irradiance by the plasma length. The next step was to convert radiometric to photon 
quantities by calculating the number of photons in a joule of monochromatic light of 
wavelength A given as,

p h iN,p, x
1_
E

X_
he

A x 5.03 x 1015 (79)

where E  is the energy of one photon, h =  6.26 x 10“ 3 4  J  s is the Planck’s constant, 
and c =  3 x 108  m /s is the speed of light. Consequently, we have determined the NPt\  
photons per second which corresponded to one W att of radiation at A employing the 
general expression,

d N,
di

—  =  Pa • A • 5.03 x 1015
ph

LcmJ • sJ
(80)

Finally, the population density of the upper energy level (Nu) could be expressed
as

dNPix/dt 1

cm"
(81)

A-ul • Qu
where Aui is the transition probability expressed in s - 1  and gu is the statistical weight 
of the upper excited state.

SPECTROMETER

PLASMA IR
MIRROR

FIG. 20. Experimental setup for test of optical thickness.
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By using a standard back reflector procedure we have eliminated the possibility 

that the optical thickness of measured spectral line intensity was interfering with our 
measurements [37]. If the optical thickness is increased, a part of the spontaneously 
emitted radiation is likely to be reabsorbed inside the plasma region. The decrease in 
the effective radiative decay due to the repeated absorption and emission of photons 
is referred as radiation trapping. To confirm tha t there was no presence of self

( 0
®
'<0c
&c
I

s .

direct plasma observation 
flat mirror plasma observation

J .
U

W a v elen g th  (nm )

FIG. 21. Spectral line intensities measured using a direct plasma observation and 
using a flat reflective mirror.

absorption of spectral lines due to the radiation trapping, we have placed a flat 

mirror that reflects infra-red (IR) light at 180° in the spectrometer’s line of sight, see 

Fig. 20. The optical thickness of the spectral line could be measured by comparing 
line intensities with and without a mirror. If optical depth of plasma is small, emitted
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light from plasma reflects from the mirror and passes through plasma with negligible 

absorption on its way back. The spectrometer then detects twice the line intensity. It 
can be seen from Fig. 21 that in our case all spectral line intensities were higher by a 
factor of two in comparison to the direct plasma observation. Therefore, we declared 

that plasma was optically thin and the radiation trapping along the observation path 
could be neglected.

All spectral measurements were performed side-on with respect to the direction 
of the discharge flow. A detailed description on how a spatial and time resolution 

were obtained is given in the following sections.

a) Spatial resolution - Plasma tomography

We have employed plasma tomography method, described in the following chap­
ter, to obtain the spatial distributions of plasma parameters (population densities, 

excitation temperatures). In order to apply this technique, plasma needs to be ob­
served from every angle all around. The common approach to achieve this is to rotate 
the detecting system around plasma object and collect data  at different angles. The 
field of medical diagnostics adopted this approach and has been the driving force 

behind this research area for many decades now. However, in laboratory conditions 
it is more convenient to keep the detecting system (spectrometer with camera) fixed 

at one position, and to collect light emitted from plasma at different angles by using 
a rotating mirror instead.

This is achieved by applying simple rules of trigonometry, as shown in Fig. 22. 
It could be seen that in order to collect light emitted from plasma at an angle a , the 
mirror needs to be a distance d from plasma, such that

where mirror is at height h from the center of the plasma object and a < 90°, see

at an angle 6 = a /2  with respect to the observation axis of the detector. Thus,

tana
h h

(82)tana  =

Fig. 2 2 a. Also, it could be deduced from the figure tha t the mirror should be inclined

tan 2 0
(83)

In Fig. 22b is illustrated the case with a  > 90°. In this case mirror should be at
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a) a  <90° b )a> 9 0 °

DETECTOR DETECTOR

PLASMA PLASMA

FIG. 22. Scheme of a set-up used for spatial measurements: a) a  < 90° and b) 
a  > 90°.

distance
h

d =   r   = ------------------------------------------- (84)
tan(7r — a)  tan2 6

To achieve scanning of the plasma, we have built an automated measurement 
system (AMS). It consists of a flat mirror and a set of feedback sensors connected 

to two high-precision stepper motors driven by a microcontroller-based system, as 
shown in Fig. 23. The precision of the selected bi-polar stepper motors, with up 

to 400 steps per revolution, allowed for a position sub-millimeter and angular sub­
degree control of the mirror’s orientation with respect to the plasmoid. Each motor 

was connected to a rotational encoder wheel, which provided rotational-position feed­
back to the controller. Additionally, the distance of the mirror from the quartz tube 

was measured by a linear sliding potentiometer, and the absolute angle of the mirror 
was measured by a triple axis accelerometer (Analog Devices ADXL335). Once the 
motors and sensors were connected to the rotational and translational knobs of the 
mirror platform they were calibrated by visual inspection using a  laser set-up. The 

motors were driven by a Microstepping Driver with Translator (Allegro MicroSystems 
A3967SLB), connected to an 8 -bit microcontroller ( Atmel AVR ATmega328). The 
microcontroller was connected, as a master, to a host computer via a USB serially 

emulated interface. The host computer was programmed to manage the microcon­
troller, motors, and sensors, and to automate the measuring tasks.

By changing the angle and the position of the mirror we were able to reflect
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FIG. 23. Scheme of automated measurement system.

the emitted light perpendicular to the spectrometer, which allowed us to keep the 
detecting system at a fixed position. The measurements were taken at three different 

positions from the cylindrical cavity, which corresponded to both ends and the mid 

section of the plasmoid. This experimental set-up allowed us to record projections 
at 21 angles in the range from 48 to  168 degrees and 17 projections for each angle, 
with the sampling rate of 0 . 2  cm across the diameter of the quartz tube.

b) Time resolution

As it was already stated at the beginning of the chapter, the supersonic discharge 

in this experiment was sustained by using the commercial MW generator powered 
on the US power electrical grid. The power signal was a 120 volts RMS (root mean 

square) sine wave operating at u =  60 Hz frequency, shown in Fig. 24a. In order 

to obtain time-resolved Ar I spectra, it was necessary to synchronize the detecting
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FIG. 24. Power signal: a) at 120 V RMS (169.7 V peak value) and at frequency of 60 

Hz that is equivalent to period T  — -  — 16 ms and b) time synchronization between 

the input power signal and the detecting system.

system (CCD camera) with the sine power signal using a transistor-transistor logic 

(TTL) pulse wave, as shown in Fig. 24b. We have also synchronized the pulse of a 
tunable dye laser with this device to perform time-resolved laser induced fluorescence.

We observed the time change of the Ar I population densities by measuring the 
spectral line intensities at different times during the sine signal For tha t purpose, we 

have built a time synchronizing device, shown in Fig. 25, by following these steps. 
First, we reduced the signal voltage from V =  120 V to V2 — 5 V by using two 
resistors, R\  — 1 MQ and =  40 kf2 connected in series. Employing Ohm’s law for 
electrical circuits we derived

14 -  a  5V' (85)

Second, we have employed a signal inverter (74LS04) in parallel with a microcon­

troller (Arduino) to invert and rectify the sine signal. Finally, the Arduino micro- 

controler emitted a transistor-transistor logic (TTL) 15 /rs pulse wave to trigger the 
ICCD camera at a proper time, shown in Fig. 24b. The ICCD camera was then used 
to collect data during the 20 ps time frame. In order to reduce the signal-to-noise
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FIG. 25. Scheme of time synchronization device.

ratio we have recorded 2 0 0  spectra per each exposure time.

Laser diagnostics

Optical emission spectroscopy allowed us to determine a number of plasma pa­

rameters, most importantly population densities of Ar I 4p levels. However, obtaining 
population densities of the lowest energy excited Ar 14s levels requires a different op­
tical measurement technique based on laser photon spectroscopy. A good candidate 
is a laser induced fluorescence since the difference in spectral line intensities when 

the system is pumped by a laser and without a laser is directly proportional to the 
population densities of the 4s states.

The first step in the development of laser diagnostics is the laser itself. Therefore, 

we have built a tunable dye laser. Dye lasers were discovered independently by P. 

P. Sorokin and F. P. Schafer in 1966 [38,39], and they represented a dream come 
true in laser science: to have a laser easily tunable over the range of frequencies and 

wavelengths. A dye laser is a laser that consists of a dye mixed with a dye solvent, 
which may be circulated through a dye cell. The dye solution is usually circulated at 

high speeds to avoid the degradation of the dye. Besides the dye cell, the basic laser
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FIG. 26. 3D scheme of the tunable dye laser used in our experiment.

cavity often includes a diffraction grating, a tuning reflective mirror, and an output 

mirror. The laser system is generally radiation pumped either by a flash lamp or by 

another laser. We have chosen laser pumping since it provides better beam quality 

and spectral characteristics.
In Fig. 26 the schematics of optical components of the dye laser are presented. 

For better understanding of the laser design in Fig. 27 we show a top view diagram 

of the laser optical path. As can be seen, the dye laser is pumped by a pulsed NdYag 

laser (Continuum, Minilite Series) operating at 532 nm (green light). The laser light 
is vertically polarized with the beam diameter of 3 mm and 3-5 ns pulse width. 

Repetition rate of the laser is set to /  =  10 Hz and the average power is P  = 45 

mW, leading to single pulse energy of J  =  4.5 mJ.
The green light intensity is reduced by dividing the beam by a glass beam splitter.
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FIG. 27. 2 D scheme of the tunable dye laser used in our experiment.

One component of the beam is directed to the beam dump, while the other component 

is focused to a narrow strip by a 50 mm plano-convex cylindrical lens. A laser dye 
(LDS 722 also called a PYRIDINE 2) with molecular formula C 1 9H2 3 N2 CIO4  and 
molecular mass M  = 378.86 g/mol is used to tune the laser light in the wavelength 

range 686-795 nm with a center wavelength at A =  722 nm. Methanol is used as a 

solvent for the dye. The laser dye is placed in a dye cell (NSG Precision Cells) that 
is pumped by a Micropump motor combined with a TF series filter (Dibert Valve & 

Fitting Co).
The laser light is then fine-tuned by employing a wavelength-selective resonator. 

In this study we have used a diffraction grating at grazing incidence in combination 
with a maximum reflectivity mirror [38,40], as shown in Fig. 27. Grazing incidence is 

a simple and inexpensive optical configuration developed by Littman and Metcalf [40], 
where a diffraction grating is positioned so that laser radiation strikes the grating 

almost perpendicular to the grating normal. In this arrangement a relatively large 
area of the grating is illuminated by the laser beam, increasing angular dispersion 
and resolving laser power significantly. Furthermore, the damage of the grating by 

high power lasers is prevented without using additional beam expanding devices.
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The laser cavity is closed with a 8 % reflecting wedged output coupler combined 
with a i m  collimating lens tha t focuses the laser beam in front of the quartz tube 
containing MW discharge. The distance between output coupler and dye cell does 
not affect the laser efficiency significantly. On the other hand, the tuning mirror 

should be placed close to the cell (1-5 cm) for better laser operation [40].
In our experiment, the power output of the tunable dye laser was PiaSer — 300 

HW which implied the laser energy of J;aser =  30 /ij. The laser beam was 5 mm in 
diameter. Thus, the energy density was

j  =  =  1 . 5  . 1 (T 4 J/cm 2, (8 6 )
< s e r *

small enough not to disturb plasma and modify plasma properties while taking data.
It should be noted that the pump laser was synchronized with the power supply 

and the ICCD camera using the synchronization device described in the previous 
section. At a specific time the TTL signal from the synchronization device was sent 
to the pump laser. After laser shot was fired toward plasma, another TTL signal 
directed from laser ignited the ICCD camera which in turn  recorded spectral data in 
2 0  /is exposure time.
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3.2 PULSE-REPETITIVE MICROWAVE DISCHARGE IN AIR

Supersonic MW discharge in Ar, described above, provides information on atomic 
plasma structure. Separately, a pulse-repetitive microwave discharge in air was used 

to study the behaviour of molecular structures in MW plasmas. Experiment was 
conducted in a static plasma cell, shown in Fig. 28, evacuated to the background air 

pressure of the order of 100 mTorr. A surface plasma was generated at the aperture of 
a rectangular horn antenna with a pulsed microwave source operating in the X-band 

(9.5 GHz, 210 KW) spectral range. The microwave discharge was obtained in air at 
pressures above 10 Torr. A detailed description of the microwave plasma experiment 
is given in Ref. [41].

FIG. 28. Photography of laboratory cell showing the microwave horn with the ceramic 
aperture cover plate.

Spectral data were taken both end-on and side-on, as shown schematically in Fig.
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29. This approach was necessary due to the possible existence of self-absorption ef­
fects when discharge was observed only side-on. The surface discharge at the aperture 
of the horn antenna was patterned in bright and dark patches, reflecting the mode 
structure of the microwave beam at the aperture of the horn [41]. Due to the mode 
structure, the electric field distribution was undulatory, with four periods covering 
the £ ,-field side of the horn.

Emission spectra were recorded using a 0.5-m Acton Research Corporation imag­
ing spectrograph connected to  the Apogee spectral imaging cameras with Hamamatsu 

CCD and Tektronix CCD detectors. Another camera, from Stanford Computer Op­
tics, Inc., was used to observe the discharge in gated format with time resolution 
of 50 ns. Alternatively, transient signals at fixed wavelengths were recorded using a 
photomultiplier tube.

FIG. 29. Scheme of imaging spectrometer arrangement: a) side-on and b) end-on 
observations.

The observed spectra were calibrated using an absolute Edgerton, Germeshausen, 
and Grier, Inc. (EEG) black body irradiance source. Calibration graphs of spectral
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irradiance per count versus wavelength were evaluated for the wavelengths between 
250-1000 nm for three spectrometer gratings. We determined the populations of 

the upper level from particular excited state transitions by using these graphs. The 
statistical error was only 1 0 % due to  low temperature of the calibration source for

h
the spectral range used in present work.

Time-resolved emission from the microwave discharge plasma was recorded at a 
specific wavelength with a photomultiplier tube attached to the second exit slit of 
the spectrograph and connected to a digital oscilloscope. Waveforms from 1-3 pulses 
in a sequence could be recorded on a single oscilloscope data file. It allowed us to 

record the waveforms of population density of a particular N 2 (C3 IIU) state. We were 
also able to record the waveforms of forward and reflected power signal. To calculate 

the total input power we relied on the nominal peak power of Ppeak =  210 kW and 
assumed a homogeneous distribution over the horn aperture area. This decision 
was made because the actual variation of the electric field around the breakdown is 

relatively small and does not affect the amplitude of the reduced electric field. The 
X-band pyramidal horn (Z) aperture [42] was (5.9x 7.8) cm2. Averaged peak power 
density at the aperture was therefore

210 k W  t k W  , .
 2  =  4 - 6 " " S  '  8 75.9 x 7.8 cm1 cm1

The average power per unit area transported by microwave intensity could be 
used to evaluate the space-average reduced electric field. Assuming the transmission 
network impedance, Z  =  50 fi we have

E a v e  —  y j P a v e  X Z  ~  478---- . (8 8 )cm

To conclude, measuring average power per unit area allowed us to determine not
only actual reduced field but consequently electron temperature and rate coefficients

for various processes in plasma.
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CH APTER 4

DIAGNOSTIC M ETHODS

The overall objective of plasma diagnostics is to gather information about the na­
ture of the plasma derived from observations of physical processes and their effects. 
For this reason much effort has been devoted to devising, developing, and providing 

techniques for diagnosing the properties of plasma [6 , 8 ]. However, the diagnostics of 
non-stationary and chemically reactive MW plasmas have always presented a great 
challenge to researchers, mainly because the important plasma parameters vary over 
a wide range of conditions and their values affect observable quantities in complex 

ways. Additional problems arise from the time scale and spatial variations in most 

plasmas, which require sub-microsecond temporal and sub-millimeter space resolu­
tion. However, continuous development of novel instrumentation and techniques has 

an important impact on the diagnosing of these plasmas. In addition, due to their 
rich chemical activity, developing a kinetic model including all plasma particles (elec­
trons, atoms/molecules, ions) presents a vital step and major challenge for in plasma 
diagnostics.

This chapter is divided into three sections categorized by the type of diagnostic 
technique applied. In the first section we will discuss different approaches, based on 
plasma tomography methods, to obtain spatial distributions of plasma parameters 

(population densities, excitation temperatures). Then in the second part of this 
chapter we will describe laser induced fluorescence diagnostic technique necessary 
in obtaining population densities of specific metastable and resonant atomic levels. 
And finally, we will complete the last section of this chapter with the time dependent 

kinetics of the argon and air plasmas. Specifically, we will define the main processes 
tha t affect the population rates of several Ar and N 2 excited states.

4.1 PLASMA TOMOGRAPHY

Optical emission spectroscopy (OES) is a useful tool as a non intrusive, in situ 
optical technique. But OES allow only measurements of integrated effects. In order 

to look into the internal dynamics of the discharge, the integrated data  needs to be
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transformed into the spatial population distributions. A commonly used method for 
reconstructing an inner plasma structure is plasma tomography, which serves as a 

magnifying glass to look at the internal dynamics of discharge without disturbing 
it. We have used the emission tomography, since the plasma is a strongly radiating 

object and the emission spectra could be recorded easily. Thus, there was no need 
for perturbing the system for the purpose of taking measurements.

We have developed a plasma tomography technique to be employed in supersonic 
flowing MW discharge experiment, described in Section 3.1. Since the discharge is 

maintained in the cylindrical quartz tube, see Fig. 17, it was possible to simplify the 
numerical integration for the case of cylindrical symmetry. Cross-sectional scheme of 
the cylindrical experimental set-up is given in Fig. 30.

FIG. 30. Cross-sectional scheme of the experimental set-up for our cylindrical plasma 
tomography experiment.

Let us start by looking at light leaving plasma at an angle 8 with respect to the 
x-axis of the coordinate system outlined in Fig. 30. To better visualize the problem,



62

it is useful to transfer to new coordinates s and p tha t are rotated by given angle 6 

with respect to x and y  coordinates, as shown in Fig 30. Then,

s =  xcos 9 + ysind

p — —xsin# +  ycos0. (89)

From Fig. 30 can be seen tha t the total light intensity, I{p,6), emitted at an 
angle 6 and distance p from the center of the plasma represents the sum of light 
intensities from all emitters (excited atoms and ions) aligned along a line parallel to
•s-axis. This effect was first studied by Johann Radon [15] who did show tha t for a
large number of emitters the sum of line intensities becomes the line integral,

I(p,d) = SR[e(x,y)] =  J  e(x ,y )ds ,  (90)

where L is the line of integration, ds is the increment of the length along tha t line, 
and e(x,y)  is local emissivity from a small volume defined around the point (x, y). 
If I{p,0) is known for all p and 6, then e(x,y)  is in fact the two dimensional Radon 
transform. Equation (90) is, then, evaluated numerically by applying the Newton- 
Cotes quadrature numerical integration and with a good sampling technique of the 
input data.

We will test the validity of our numerical integration on the examples of Gaussian 

distribution function, shown in Fig. 31

£a(x,y)  =  exp(—x2  — y2), (91)

and parabolic distribution function, shown in Fig. 32

£p(x,y)  =  x 2 + y2. (92)

We have chosen these two functions because they are integrable and have no 
singularities on L and their Radon transform gives an analytical solution. Moreover, 

the shape of the parabolic distribution function resembles the shape of plasma driven 
by surface electromagnetic wave, and provides a convenient comparison between the 
test function and the experimental data. In order visualise the resemblance with the 
experimental set-up, both functions were generated in the x and y  range - 1 . 6  to 1 . 6  

of arbitrary units (a.u.), which corresponds to the radius of the quartz tube (R = 1.6 
cm), given in Section 3.1. Furthermore, for better comparison with the quartz tube



63

0  0.1 0.3 0.4 0 5  0.6 0.8 0.9 1

FIG. 31. The two dimensional Gaussian distribution function given as £ o ( x , y )  =  

exp(—x2 -  y2).

cylindrical geometry, the function values were set to zero outside the circle of radius 
R  =  1.6 a.u.

Using the coordinate transformation, Eq. (89), we can easily show that x 2 +  y 2 =  

s 2 +  p 2. Radon transform of Gaussian distribution function then becomes

OO

I g (p , 6) =  J  exp(—p2 -  s2) ds  (93)
— OO

OO

=  exp(—p2) J  exp(—s 2) d s

— OC
= s/nexp(—p2).

The comparison between numerically obtained and analytically calculated val­
ues of the I{p,6) of the Gaussian distribution function by using the Eq. (90) is 

given in Fig. 33. The results show excellent agreement except for the minor noise 
discrepancies arisen from the numerical error.
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FIG. 32. The two dimensional parabolic distribution function given as ep(x,y) = 

x 2 +  y2.

Radon transform of parabolic distribution function Eq. (92), £p(x , y) = x 2 +  y2, 
has also an analytical solution,

OO S m a r

fp(p,0)  = J  (p2 + s2)ds = J  (p2 + s2)ds  (94)
“ OO S m i n

& m a x

— 2 J  (p2 +  s2) ds
o

« 2 2  1
2 p smax +  ^ s max,

where smax =  —smin = y jR 2 — p2 and R  is the radius of the quartz tube, as shown in 
Fig. 30. The use of limits smin and smax is justified by assuming that there aren’t any 
emitters outside the walls of the quartz tube. As in the case of Gaussian distribution 
function, we have obtained very good agreement between numerical values and their 

analytical solutions, as shown in Fig. 34.
With good confidence in the numerical integration of the direct Radon transform
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FIG. 33. The direct Radon transform of Gaussian distribution function: a) numerical 
solution using Newton-Cotes quadrature integration and b) analytical solution.

we can proceed to retrieve the spatial population distributions from this simulated 
spectral intensities by inverting the Radon integral,

e{x,y) = $t- l [I(p,e)\. (95)

Since our experiment was performed in the cylindrical geometry (both cavity and 
quartz tube were cylinders), as a first step in finding inverted Radon integral we 
have assumed that plasma was radially symmetric as the functions defined in Eqs. 

(91) and (92). In tha t case Radon integral transforms in its special case, the Abel 
integral.
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FIG. 34. The direct Radon transform of parabolic distribution function: a) numerical 

solution using Newton-Cotes quadrature integration and b) analytical solution.

4.1.1 ABEL INVERSION

The Abel transform is a special case of Radon transform when the distribution 
function e(x, y) is radially symmetric and depends only on r  =  y/x2 + y2, so e(x, y) =  
s(r). This means tha t the set of projections I(p, 9) are equivalent for any angle 9.
Let us, for simplicity, set 9 = 0, as shown in Fig. 35. Then I(p, 9) = I(y).  After these
simplifications the Radon transform given in Eq. (90) becomes the Abel transform

OO OO

/ ( , ) -  * / < « * -  2 /  « ± £ . ,  (96)
0 y  y

where x  = y / r 2 — y2 and xdx = rdr.
Since all emitters are located inside the quartz tube, we can set the limits of 

integration at its walls. Abel transform is then,

Imoi R
% )  _  2 j  t (r)dx -  2 /  J * * ,  (97)

o y

where x max = y / R 2 -  y2.
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FIG. 35. Scheme of the cylindrical symmetry geometry for Abel transform.

The inverse integral of Abel transform is widely used formula in the literature [15]

r

or, when the integration is limited to the walls of the quartz tube,

r

where I'(y)  is the first derivative of I(y)  with respect to y.
We have tested both direct and inverse Abel transforms on two test functions 

the Gaussian and parabolic distribution as test functions presented in Eq. (91) and 
Eq. (92), respectively. First, we calculated direct Abel transform of given functions
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using Eq. (97). Then, we used obtained data to calculate inverse Abel transform, 
Eq. (99), and return values of the original test functions.

a)
1.0

0 .8 -

0 .6 -
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0 .2 -

— original function
-  -  function retrieved using Abel Investor
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FIG. 36. The inverse Abel transform of Gaussian distribution function: a) compari­

son with analytical function for an arbitrary angle: full line represents the analytical 
function, dashed line represents numerically obtained function and b) expanded nu­

merically obtained e(r) on the whole 0° to 360° range for better visualisation.

Figure 36(a) shows comparison between original Gaussian distribution function 
and the values of the same function obtained after performing direct and inverse Abel 

transforms. It can be seen that for the most part the results stand in good agreement. 

The only divergence occurs at the very end of integration range which suggests that 
these results should be taken with caution. Although there is no angular dependence, 

for better visualisation, we have expanded numerically obtained s(r) dependence on 

whole 0° to 360° range and presented results in Fig. 36(b). Similar results were 
obtained after performing Abel inversion on parabolic distribution function, shown 
in Fig. 37. In this case, we see even stronger discrepancy at the end of the integration 
range between original function and Abel inverted data.
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function retrieved using Abel li

0.0 0.56 1.1 1.7 2.2 2.8

FIG. 37. The inverse Abel transform of parabolic distribution function: a) compari­
son with analytical function for an arbitrary angle: full line represents the analytical 
function, dashed line represents numerically obtained function and b) expanded nu­
merically obtained e(r) on whole 0° to 360° range for better visualisation.

The above discussion applies only in the case of ideal, smooth function. In order to 

make a stronger test, we introduced a random percentage error due to experimental 
uncertainties into calculation and tried to repeat the inversion process. Then the 
outcome starts to mimic the real experimental conditions. To test this effect we have 

added 1 %, 5%, and 10% error to data obtained after direct Abel transform and then 
carried out Abel inversion using new data with error.

It can be seen from Fig. 38 that we were able to reproduce the original data using 

Abel inversion with fair accuracy when the introduced error in the Gaussian function 
was less than 5%. When error exceeded 5%, the noise became so large tha t we were 
not able to reconstruct the original function. Similar results were obtained when the 
parabolic distribution function was tested, as shown in Fig. 39.

We expect the percentage error in our experiment within 5 and 10 %. For that
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FIG. 38. The inverse Abel transform of Gaussian distribution function: a) compari­
son with analytical function for an arbitrary angle: full line is the analytical function, 
and dashed, dotted, dash-dotted lines are calculated Gaussian profiles with 1%, 5%, 
10% errors, respectively, and b), c), and d) are expanded e(r) on whole 0° to 360° 

range for better visualisation with percentage error of 1%, 5%, 10% , respectively.

reason we have decided to apply both cubic spline and polynomial smoothing approx­
imation to smooth the noise in measured signal. Smooth polynomial approximation 
proved to be more stable and allowed us to reconstruct original function from Abel 

inverted integral, even in the case when the percentage error was 1 0 %.
Results obtained in this section have shown that Abel inversion represents a very 

useful tool for the case of radially symmetric discharges. In the real case, plasmas are
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original function 
1% error 
5% error 
10% error

FIG. 39. The inverse Abel transform of parabolic distribution function: a) compari­
son with analytical function for an arbitrary angle: full line is the analytical function, 
and dashed, dotted, dash-dotted lines are calculated parabolic profiles with 1%, 5%, 
10% errors, respectively, and b), c), and d) are expanded e(r) on whole 0° to 360° 
range for better visualisation with percentage error of 1%, 5%, 10% , respectively.

rarely radially symmetric. This is particularly the case with non-equilibrium, non- 
stationary, reactive plasmas explored in this work. These plasmas usually show more 

complicated, asymmetric properties, meaning that Abel inversion does not provide a 
complete insight in plasma internal structure.



72

4.1.2 ASYMMETRIC DISCHARGE - TWO PATH APPROACH

In the study of internal structure in asymmetric plasma, we have developed and 
applied a technique based on the measurement of spectral line intensities in two 
mutually perpendicular directions. Similarly, to the previous symmetric case, we 
choose 0 =  0 (parallel to x axis) and 9 — 90° (parallel to y axis) as directions in our 

measurement. Then /(p, 8 =  0) =  I(y)  and 7(p, 9 = 90°) =  7(x) and r  =  >/x2 +  y2, 
as shown in Fig. 40. In addition we assume that the spatial distribution is given by

max
mm m ax

dyi\

FIG. 40. Scheme of the cylindrical symmetry geometry for asymmetric discharge. 
7(x) is the Radon integral at x; and l(y)  is the Radon integral at y

leading three terms in its Fourier expansion [16,17]

s(x ,y)  = e(r,8) = H(r) +  K(r)cos9 +  L(r)sin0, (100)
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where H(r), K(r),  and L(r) are monotonous functions of radius.

Restricting the distribution to only three terms introduces greater probability 
for inhomogeneities and phantom images to appear, which presents difficulties for 
formulating the entire angular distribution of plasma parameters. Nevertheless, this 

approach still delivers additional information on the internal plasma structure. After 
applying above assumptions and combining Eq. (100) with Radon integral (90), we 
get

^mai X m a x

Kv) = I  £(r ,6)dx — f  (H(r) + K(r)cos6 + L(r)sin6) dx
X m i n  X m i n  /  -* q-i \

V m a x  U m a x

I ( x ) = I  e(r,0)dy = f  (H(r) + K(r)cosd + L(r)sin0)dy,
V m i n  V m i n

where x max xmin y j  ]p“ ■> Umax Vmin ~  n / xp" ? cos0 ~  x j v , and
sin# =  y/r.

Equation (101) can be transformed into

X m a x  X m a x  q i

I(y) = 2 f  H (r )dx  + 2 f  L(r)~ dx
vL* y L ,  rx  (102)

I(x)  =  2 /  H{r)dy + 2 f  K ( r ) - d y ,  
o o r

where we have applied the symmetry properties of the sine and cosine functions on 
symmetric interval within angle 6 interval (— ^) .

Zd Z
Antisymmetric parts of the observed distributions are

X m a x  X m a x  I  <*#\
I { —y)  = 2 f  H (r)dx  + 2 f  L(r) ------- dx

V m a x  V m a x  ( _  x \  (1 0 3 )
I ( - x )  = 2 f  H{r)dy + 2  f  K(r)±---- >-dy.

o o r

It follows tha t we can express / /  (r), K (r), and L(r) in terms of symmetric and 
antisymmetric parts of measured functions,

V m a x

( J (x )+  / ( - * ) )  =  2  /  H (r)dy
o

V m a x

± ( /(x ) - / ( - * ) )  =  2 /  K ( r ) - d y

\ { I {y)  + I ( - y ) )  = 2 f  H (r)dx  (104)
o

E m a x  y

W ( y )  - = 2 I  L {r ) -d x .n T
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Substituting y =  y/r2 — x 2 and x  =  \Jr2 — y2, the Eq. (104) becomes

} ( /( .)  +  / ( - « ) )  - 2
X — X2

i / , /  x ,/ xx ^ ? K(r) rdr± { i ( X) - n - x ) )  = 2  / - i - i —
x r  x/r2 -  X2 , .

i(/(y)+ /(-»)) = 2 f H{ r ) r dr
1 s j r1 -  y1

? L(r) rd r

2y v r  \A 2 -  V2

It can be seen that the above equations are similar to Eq. (97) for cylindrical 
symmetry. This means that we can evaluate I I (r), K (r), and L(r) by applying the 
Abel inverted integral, Eq. (99)

H (r) = + dx

K (r ) = _ I  r ( i  
r 7r „ V

and
1 R  fm  = - - / (

L(r) =  _ 1  ?  /  
r  7r . \

2 J i to

f l {x) - / ( - x ) y  dx
\ 2 .x I yjx2 — r2

Hv) +  / ( - -y) \ ' dy
2 J yjy2 — r2

m - / ( - -y) \ • dy
2  y ) y/y2 -  r2

(106)

(107)

Function /7(r) can be evaluated either from horizontal or vertical measurements 
and this can serve as a good test of the applied technique. Since Gaussian (91) and 

parabolic (92) distribution functions are both radially symmetric we have chosen 

an asymmetric, s(x,y) = x  +  y, function to test the two path method. We have 

simulated experimental measurements of spectral line intensities with direct Radon 
integral, which was proved to have sufficient accuracy. Then, we have employed the 

measurements at 0° and 90° to reconstruct e (x , y ) =  x  +  y.
Comparison between the original function and the function reconstructed from 

the two path method is shown in Fig. 41. Again, as in the case of Abel inverted 
integral, the largest variation between original and reconstructed data is at the outer
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FIG. 41. Emissivity reconstruction for asymmetric discharge, represented by 
*

e(x, y) = x  +  y: a) numerical solution using Newton-Cotes quadrature integration 
and b) analytical solution.

integration limits. It is evident from the Fig. 41 that applying this method will not 
reconstruct the initial function entirely but it will give us a qualitative insight into 
the sphere. We have determined th a t two-path method could reproduce a model for 
emissivity s(x, y) from an asymmetric discharge. Therefore, we should expect tha t 
it may confirm if the plasmoid, shown in Fig. 17, was sustained with surface wave 
or not.

4.1.3 TWO DIMENSIONAL INVERSE RADON INTEGRAL

In order to fully recover the desired information about the internal structure of 
the observed object, we need to go back to the Radon integral Eq. (90) and invert 
it, to solve for s(x,y)  in terms of its projections I(p,9)

e{x,y) = ^ l [I(p,d) + ??)], (108)

where rj is the noise that may be introduced by the measurements and is assumed
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with constant value.

We start by expressing the Fourier transform of the distribution function e(x, y) 
in the new coordinate system, given in Eq. (89)

OO

e{x,y)  =  e(s,p) =  f f  E ( i / a , i/p ) exp(i2 ?r(si'a +  pup)) duadup, (109)
— OO

where E(va,up) is the Fourier transform of e(x,y)  in frequency domain given as 
E{va,vp) = F[s(x,y)], and vt and up are corresponding coordinates in Fourier fre­
quency domain.

The expression for the spectral line intensities, shown in Eq. (90), can be rewritten

as
OO OO OO

I{p,9) =  J  e(s,p)ds  =  J J  E{va,vp)dvadvp J  exp(i2ir(sva + pvp)) ds (1 1 0 )
—OO ~ o o  —OO

OO OO

=  J J  exp(i2npi/p)E(i/a, vp) dvadvp J  exp(i2nsiss) ds.
— OO — OO

OO

After applying property of delta function that f  f (x)S(x)dx = /(0 ) we get
— OO

OO

l(p,0)  = J  exp(i2irpvp)E(Q, vp) dup . ( I l l )
— OO

Here we use the Fourier slice theorem [43], which relates the one dimensional

Fourier transform of a projection at an angle 0, F[I0(p)} to the central slice at an
angle 6, of its two dimensional Fourier transform E (0, vp), such that

F[Ie(p)] =  E(0,up). (112)

The spectral line intensities l (p ,0 ) may now be expressed as
OO

/(p,l9) =  J  exp(i2irpvp)F[I6{p)]dup. (113)

When we express the Eq. (109) in polar coordinates in frequency domain we get

27T OO

£( . . ]
0  0

where

ZTT OO

t[x,y)  =  e(s,p) = I  d$ J  exp[i2nv(rsin(<p — 9))}E(v, 0) udu,  (114)
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• (u, 0) are the polar coordinates of (us, vp) in frequency domain such that

dvs dup = udu d6 and 

us — v cos 6 

up = u sin 9

• (r, <p) are the polar coordinates of the pair (p, s) such that

p — r cos <p 

s =  rsin<p

hence su3 +  pup =  ur sin(<p — 8) = po-
The unknown distribution e(x, y) is then

7T OO 7T OO

e{x,y)  =  J  d8 j  exp(i2Trup0)E(u,8) udu  +  J  d6 J  exp(i2ixup0)E{u, 9 +  n) udu, 
o o  o o

(115)
and using the property E(u, 9 + ir) = E (—u, 9) [15], the above expression becomes

(116)

7T OO

e(x,y) = J  d9 J  exp(i2nup0)E(u,9) \u\du
0 —oo■n oo

=  f  d9 J  exp{i2-Kup0)F\Ig{p)] |i/| du.
0 —oo

7T OO

t(x,y)  =  j  d9 J  I{p,8)F~1[\u\]dp, (117)

The inverse Fourier transform of the Eq. (116) gives
7T OO

£[x,y) =
0 —oo

where the inverse Fourier transform of function \u\ [44] is

F-'M -  ~  ( 118)

Finally, the inverse Radon formula is expressed as
7T OO

0 “ OO

Integration by parts of the Eq. (119) gives an equivalent formula for Radon 
inverse formula,

7T OO

i r r !!m
e{z ' y) = - w h J  ( ^ j * -  <120)0 ~oo
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Finding numerical solutions of the Eq. (119) opens the new set of challenges in 

our study. The basic inversion formulas are rigorously valid if the function e(x, y ) is 
continuous with compact support (meaning tha t the function is different from zero 
on the defined region) and the projections I(p, 6) are given for all the angles. This 

means tha t we need an infinite set of projections while in reality it is possible to 

obtain only a discrete set. The theorem by Solomon et. al [45] states tha t a function 
of compact support in R2 is uniquely determined by any infinite set, but not by any 
finite set, of its projections. This implies tha t we need to sacrifice uniqueness for 

practical applications. Another important issue to consider is tha t stability of the 
solution is greatly influenced by noise tha t may be introduced during experimen­
tal measurements. Thus, we may need extremely precise measurements to achieve 

satisfactory accuracy and tha t may be physically impossible. These problems have 
been extensively studied in recent years resulting in numerous algorithms and nu­
merical approaches. In the following sections we will present a comparison between 

two different approaches that were successfully applied in plasma tomography.

Direct integration

One straightforward approach in solving Radon inversion Eq. (119) is to sim­

ply apply one of already developed mathematical codes for numerical integration. 
However, the integral in Eq. (119) approaches infinity when p approaches po- One 
possible solution for this singularity problem is to apply the Cauchy principal value 
method [46] defined as follows

°o

/  (121)
-oo 0 fc=1
OO OO m

/
/ \ p m 2k—I

-oo 0

In our case ip(x) corresponds to I(p,9), x  = p —p0, m  = 1, and Eq. (119) becomes

7T OO

£ { z ' y ) =  - ^ J d e I w ^ d p =  ( m )0 —oo
7r oo

 1_ [  dQ f I(x +  PO’ +  I(~x +  Poi6) ~  2 / (P0’ dx
2n2 J  J  x2

o o
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FIG. 42. The Inverse Radon transform of Gaussian distribution function obtained 
using the direct integration method on the 0° — 180° range of angles at a) 17 projec­
tions on 45 angles, b) 17 projections on 21 angles, c) 17 projections on 5 angles, and 
d) 5 projections on 21 angles.

7T OO

Equation (120) is then

e{x'y) = S ie S whW)dv = (123)0 —oo
i

 1_ J  dd J  I \ x  +  P o , ^ )  -  + P o , 0 )
rr oo

T'( nr -4- rtn f t\  — V  ( — nr -4- ti« ft
- dx ,

x
0  0

where
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To test this method we applied two distribution functions: Gaussian distribution 
function, given in Fig. 31 and parabolic distribution function given in Fig 32. The 

test functions were reconstructed in the following way. First, we generated a discrete 
set of projections, as was shown in Figs. 36 and 37, respectively. Then, we used a 

direct integration of Radon inverse integral to obtain the original distributions.

a) b)

cri 0.0-1
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-1.0 -0.5 0.0 0.5 1.0 1.5
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-1.0 -0.5 0.0 0 5  1.0 15

X (a.u.)
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-1.5 -1.0 -0.5 OO 0.5 1.0 1.5
X (a.u.)

  d)

i 0 0 1 
>

-0.5-1

I

-1.5 -1.0 -0 5 0.0 0.5 1.0 15

X (a.u.)
I

FIG. 43. The Inverse Radon transform of Gaussian distribution function obtained 
using the direct integration method at 21 different angles and 17 projections at each 
angle on the a) 10° — 170° interval, b) 10° — 150° interval, c) 48° — 168° interval, and 

d) 60° — 150° interval.

Figure 42 shows how the inverse Radon transform of Gaussian distribution func­
tion depends on number of measured angles and number of projections for each angle
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on the 0° — 180° interval. As seen in the Fig. 42, it is obvious tha t the number of 
projections does not change results significantly and that even with only five projec­
tions we were able to reconstruct the starting function quantitatively. On the other

a) b)

X (a.u.) X (a.u.)

FIG. 44. The Inverse Radon transform of the parabolic distribution function ob­
tained using the direct integration method on the 0 ° — 180° range of angles at a) 

17 projections on 45 angles, b) 17 projections on 21 angles, c) 17 projections on 5 
angles, and d) 5 projections on 21 angles.

hand, the quality of the Radon inverse integral of the test function depends highly on 

the number of angles. It means that in order to apply Radon inverted integral with 
satisfying accuracy, measurements on at least 15 different angles were needed. This 
requirement was fulfilled in our experiment where we have obtained measurements
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at 17 projections at 21 angles. However, it seems that some information is always 

lost in the reconstruction process which is shown as non physical, negative area at 
the rims of the circle, for example.

We have also addressed the problem of the limited range of measured angles. In 

our experiment it was not possible to approach plasma from every angle. We were 
able to collect data only on the 48° —168° interval. In Fig. 43 we have shown tha t the 

areas with missing data were reconstructed as dark spots, perturbing the cylindrical 
symmetry in that way. In addition, even though the shape of the Gaussian function

a) b)

X (a.u.) X (a.u.)

FIG. 45. The Inverse Radon transform of the parabolic distribution function obtained 
using the direct integration method at 21 different angles and 17 projections a t each 

angle on the a) 10° — 170° interval, b) 10° — 150° interval, c) 48° — 168° interval, and 

d) 60° — 150° interval.
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is conserved, the quantitative values of the function at each point were not. There is 

a 30% of intensity loss on the 48° — 168° angle range, which should not be neglected 
when reconstructing experimental data.

We repeated the same procedure on the parabolic distribution function and ob­
tained similar results, which are shown in Figs. 44 and 45. Figures 44 and 45 

show tha t the parabolic distribution function shows even stronger dependence on the 

number of measured angles and the range of angles. To conclude, the Radon direct 
integration is straightforward, easy to implement method, but it needs to be used 

with caution due to its high sensitivity to the noise introduced by measurements.

Filtered back projection

Filtered back projection (FBP) is a more accurate, easy to implement numerical 

technique that is widely used for solving reconstruction problems. Here we present 
the FBP approach for parallel projection data  with the r  sampling interval.

We start with the equation for the inverse Radon transform, Eq. (116)
n oo

£ (  ,

0

which can be rewritten as

7r oo
■(x,y) = J  d6 J  di/\i/\F[I(p,6)]exp(i2m>p0), (124)

£(x,y) = J  Qo(p)dO,  (125)
o

where Q e { p )  expressed in frequency domain is
OO

Qo{p)  =  J  dv\v\F[I{p, 0) \exp( i2n i>po).  (126)
— OO

In principle, the integration in filtered projection given by Eq. (125) has to be 
carried over all frequencies. However, in practice the energy contained in the Fourier 

transform components above a certain frequency is negligible and we may consider 
the projections bandlimited. When the highest frequency in the projections is finite, 

Eq. (126) becomes
OO

Qe(p) =  J  F[Ie(p)]H(i/)exp(i2nvp0)di/, (127)
— OO

where is a high frequency noise filter.
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The most common filters used in literature are the Ram-Lak filter [47]

z . I i/I, | v\ < W

-  < 0, otherwise, <128)

and the Shepp-Logan filter [48], shown in Fig. 46a

r |„| < w
H{u) =  1 1 '  ’ M -  (129)

( 0 , otherwise,

where W  represents any frequency greater than the smallest beyond which the spec­

tral energy in all the projections may be neglected.

a) frequency domain

H(v)  Ram-Lak
 Shepp-Logan

0.0
0 1/2t

V

b) spatial domain

■ Ram-Lak 
- *- Shepp-Logan

n r

FIG. 46. Ram-Lak and Shepp-Logan filters in a) frequency and b) spatial domain.

H(u) functions, actually, represent the Fourier transform of a projection process­
ing filter, and the impulse response h(p) of this filter is then given with the inverse 

Fourier transform of H(v)  [47]

OO

h(p) = I  H(v)eyLp(i2TT vp)di>. (130)
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Experimentally obtained line intensities are presented as a discrete set of projec­
tions, measured with the spatial sampling interval r . Thus, p =  n r  where n is an 
integer. Hence, in the spatial domain we have

/

h (nr) = < 0, n even (131)

- 7 m ,  n o d d ,

for Ram-Lak filter and

( _2_J 7T2 T 2 ’

v n 27r2

h(nr)  = { 2 ” ° (132)
t2(4i/2~1) ’ n '  U ’

for Shepp-Logan filter, see Fig. 46b.

By applying the inverse Fourier transformation and the convolution theorem for 
each projection I$(p)  we obtain

OO

Q e { p ) =  J  Ie {p ' )h{p  -  p')  d p ' . (133)
— OO

If we assume tha t each projection Ie(kx) is zero outside the index range k = 
0 ,1,..., K  — 1, where K  is the number of angles at which the projections are sampled, 
we may express the filtered projection as

K - 1

Qeinr) — t  ^  h { n T  — kr ) I6(kT) (134)
fc =  0

n =  0,1,..., K  — 1.

Finally, the reconstructed function t (x ,y)  may be obtained by the discrete ap­
proximation of Eq. (125),

K

s ( x , y ) =  j f ^ Q e i i - x  s inOi + y c o s ^ ) . (135)
1 = 1

This means that each filtered projection has to be back-projected. For every pair
(x , y ), there is a point p =  - x  sin +  y cos 0, for a given angle 9. The contribution

of each filtered projection Qgt to the reconstruction of e(x, y) at the particular point 

(x, y) depends on the value of p for a given 6t. Depending on a resolution of our 
reconstruction image it may happen that value of p = —x  sin 0 * +  y cos 6l does not
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FIG. 47. The inverse Radon transform of Gaussian distribution function obtained 
using the filtered back projection method with the Shepp-Logan filter on the 0° —180° 
range of angles at a) 17 projections on 45 angles, b) 17 projections on 21 angles, c) 
17 projections on 5 angles, and d) 5 projections on 21 angles.

correspond to the values at which Q e( p )  was sampled. The suitable interpolation of 
Qe  values at such p successfully deals with that problem.

The filtered back projection method was tested on two functions, Gaussian and 

parabolic distribution function. It turned out tha t data obtained using Ram-Lak 

filter did not show any significant difference compared to data from Shepp-Logan 
filter. However, numerical code for Shepp-Logan filter proved to be more stable and 

for tha t reason, we presented our results by employing Shepp-Logan filtering. Figure



87

0

a)

o

s.
>-

-1.5 -1.0 -0 5  OO 0.5 1.0 1 5

X (a.u.)
C)

i  o.°-|

-0.5-1

0

•1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

X (a.u.)

•1.5 -1.0 -0 3  0.0 0.5 1 3  1.5

X (a.u.)

d)

0

•1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

X (a.u.)

FIG. 48. The inverse Radon transform of Gaussian distribution function obtained 
using the filtered back projection method with the Shepp-Logan filter at 21 different 

angles and 17 projections at each angle on the a) 10° — 170° interval, b) 10° — 150° 

interval, c) 48° — 168° interval, and d) 60° — 150° interval.

47 shows the inverse Radon transform of Gaussian distribution function using the 

Shepp-Logan filter on number of measured angles and number of projections for each 

angle on the 0° — 180° interval. It could be seen that FBP method is sensitive to 
number of angles while number of projections does not change results significantly. It 

is, also, obvious, from the Fig. 47b that measurements at 17 projections at 21 angles 
obtained in our experiment would allow reconstruction of the original function (pop­

ulation densities in our case) with satisfying accuracy. We conclude FBP provides
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FIG. 49. Comparison between a) the original Gaussian distribution function and the 
inverse Radon transform of the Gaussian distribution function obtained using the 
filtered back projection method with the Shepp-Logan filter at 21 different angles 

and 17 projections at each angle on the 48° — 168° interval with the b) 1% error, c) 
5% error, and d) 10% error.

quantitative analysis of the reconstructed functions with satisfactory accuracy, that 
unlike direct integration of inverse Radon transform where the test functions were 

reconstructed only qualitatively (negative values at the rims of the circle).
The problem of the limited range of measured angles was also addressed. We 

observed similar behaviour as in case of direct integration; the areas with missing 
data were reconstructed as dark spots, perturbing the cylindrical symmetry in that 
way, as shown in Fig. 48. However, Fig. 48 shows tha t by employing FBP not only
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the shape of the Gaussian function is conserved, but also the quantitative values of 

the function are reproduced at each location.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0 5  0.0 0.5 1.0 1.5

X (a.u.) X (a.u.)

FIG. 50. The Inverse Radon transform of parabolic distribution function obtained 
using the filtered back projection method on the 0° — 180° range of angles at a) 17 

projections on 45 angles, b) 17 projections on 21 angles, c) 17 projections on 5 angles, 
and d) 5 projections on 21 angles.

As a final step, we tested the FBP method on the percentage error as introduced 
into test functions while performing inverse Radon transform. Similarly, as in case of 
Abel inversion, it could be seen that results with 5% or more percentage error should
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be taken with caution. Specifically, it seems tha t even though the test Gaussian 

function is radially symmetric, the results obtained after introducing percentage error 
and limited number of angles (close to the real experiment) were asymmetric.

•1.5 -1 .0  -0 .5  0.0 0.5 1.0 1.5

X (a.u.)
C)

m 0.0

X (a.u.)

CO 0.0

•1.5 -1 .0  -0 .5  0.0 0 .5  1.0 1.5

X (a.u.)
d)

2
>-

X (a.u.)

FIG. 51. The Inverse Radon transform of parabolic distribution function obtained 
using the filtered back projection method with the Shepp-Logan filter at 21 different 

angles and 17 projections at each angle on the a) 10° — 170° interval, b) 10° — 150° 
interval, c) 48° — 168° interval, and d) 60° — 150° interval.

We repeated the same procedure on the parabolic distribution function and ob­

tained similar results, as shown in Figs. 50, 51, and 52. It could be seen, from the
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Fig. 50 that parabolic distribution function is highly sensitive to both number of 
angles and number of projections. Specifically, in the case with only 5 projections, 

shown in Fig. 50d, we were not able to reconstruct the test function qualitatively 
nor quantitatively. However, it is obvious from the Fig. 50b that it was possible to 
reconstruct the parabolic distribution function with fair accuracy for the measure­

ments at 17 projections and 21 angle corresponding to our experimental conditions.

FIG. 52. Comparison between a) the original parabolic distribution function and the 
inverse Radon transform of the parabolic distribution function obtained using the 
filtered back projection method with the Shepp-Logan filter at 21 different angles 

and 17 projections at each angle on the 48° — 168° interval with the b) 1% error, c) 

5% error, and d) 10% error.
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Figure 51 shows how the limited range of angles affects the results. Similarly, as 

in the case of the Gaussian distribution function, cylindrical symmetry was distorted 
due to the missing data. In addition, it seems that that at the rims of the circle, the 
values of the reconstructed function were overestimated for approximatively 1 0 %.

The effects of percentage error on reconstructed parabolic distribution function 

are presented in Fig. 52. We have observed similar results as for the Gaussian 

distribution function, meaning that the measurements with 5% or more percentage 
error should be taken with caution.

4.2 LASER INDUCED FLUORESCENCE

Optical emission spectroscopy allowed us to determine a number of plasma pa­
rameters, most importantly population densities of Ar I 4p levels. However, obtaining 
population densities of the lowest-energy excited Ar I 4s levels requires a different 

optical measurement technique because the emission spectral lines from those levels 
are either forbidden or can be seen in the vacuum ultraviolet spectral region, only. 
Laser induced fluorescence (LIF) represents a good candidate since it is essentially 
the optical absorption spectroscopy (OAS) technique. The difference in spectral line 

intensities when the system is pumped by a laser and without a laser is directly pro­

portional to the population densities of the s states. This statement will be confirmed 
in the following section.

LIF is a sensitive and powerful spectroscopic technique based on an absorption 
of laser light that is followed with a spontaneous emission after a certain period of 
time [49]. A laser tuned to a particular wavelength is used to excite atomic/molecular 

species to a certain excited state. Excited atoms/molecules will decay back to the 
allowed lower energy state emitting a photon at specific wavelength. In general, 
the emitting wavelength is different than the exciting and usually occurs at longer 

wavelengths. If the fluorescence is at the same wavelength as the excitation, it is 

called the resonant fluorescence. In this study, we have concentrated only on the 
effects of resonant fluorescence.

To better understand the principles of LIF, we will begin by examining a simple 

two-energy level model for LIF detection [49], shown in Fig. 53. It can be seen, from 

the Fig. 53 that LIF is characterized by four processes: laser absorption, stimulated 
emission, spontaneous emission, and collisional quenching of the upper level. Laser 
absorption is proportional to the population density of the lower energy level and the



93

Upper energy level

Absorption

c

Spontaneous 
emission 

/  A,tNt

Stimulated
emission

^  XT

Collisional
quenching
^  Kc2 1 ^ 2

Lower energy level

FIG. 53. Two energy level diagram for fluorescence signals.

collision rate for absorption given as [49,50]

where is the Einstein coefficient for laser absorption, Iu is the spectral irradiance 

(incident laser energy density), and c is the speed of light. Stimulated emission is 
defined in the similar way by population density of the upper level and the collision 
rate for stimulated emission given as

where B 2 1 is the Einstein coefficient for stimulated emission. Spontaneous emission 
and collisional quenching are proportional to the product of upper state population 

density and Einstein coefficient (A) for spontaneous emission or collisional quenching 

frequency {vC2i) given respectively. The rate equation of the upper energy level is 
described by

In order to simplify Eq. (138), we will discuss two limits of laser operation. The

emission can be neglected. LIF is then said to be in the linear regime since it is

i t  = (~ir)Ni ~ (~v )̂N2 ~ AnN2 ~vc2lN2- (138)

A + uc2 i and stimulatedfirst limit is the case of weak laser excitation where
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linearly proportional to the laser input. In the second limit, laser absorption and 
stimulated emission become so large, due to the strong excitation, tha t the LIF 
signal becomes independent of laser energy density and collisional quenching. This 
regime is called saturation regime and it produces the highest fluorescence signal. 
However, it is very difficult to achieve saturation regime due to the energy spread of 
the focused laser beam. At the outer edges of the laser beam, the power decreases 

and saturation is not achieved. In addition, the temporal variation of laser intensity 
presents another challenge in obtaining saturation. LIF measurements in this study 
are made in linear regime, due to the weak laser irradiance.

After applying this simplification to the Eq. (138) it appears tha t the LIF con­

tribution to the rate populations of the upper energy level comes directly from laser 
absorption and spontaneous emission, and the collisional quenching. The rate coef­
ficients for collisional quenching are provided in Subsection 2.2.3. In order to  obtain 

rates for laser absorption and spontaneous emission we need to know the laser en­
ergy density, and the Einstein coefficients for absorption and spontaneous emission. 

Energy density is given in Subsection 3.1.2 and is equal to /w =  1.5 • 10~ 4  J /cm 2. 
Einstein coefficients are determined from the well known equations for blackbody 
radiation [49,50],

5i#i2 =  <?2 # 2 1  (139)

and
A 2 i 8nh

= 'Ar ’ 1̂4°̂
where 5 1  and g2 are statistical weights of the lower and upper level respectively, and 
A is the wavelength that corresponds to the energy transition between two levels.

Einstein A 2X coefficient is inversely proportional to the radiative lifetime (A ~  

1 / r )  of the upper level and its values for argon transitions are tabulated in litera­

ture. Since we neglected stimulated emission, the only unknown left is Einstein B 12 

coefficient for laser absorption. By combining Eqs. (139) and (140) we obtain

f t ,  =  (1 « )
5 1  m h

In the following section we will provide a detailed description on how laser induced 
fluorescence could be applied to obtain populations of Ar metastable and resonant

energy levels by setting the laser wavelength exactly to the desired transition.
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4.3 PLASMA KINETICS

4.3.1 KINETIC MODEL OF ARGON

To better understand complexity of argon kinetics it is necessary to first establish 

an understanding of the Ar atom structure. When in ground state, argon has an 
electron configuration l s 2 2s2 2p6 3s2 3p6  with shorthand notation 3p6  1 5 0  and total 

angular momentum J  — 0. From the ground state electrons in Ar atom can be 
excited to higher energy levels, when enough energy is added to the system. An 

electron transition between two energy levels is most likely to happen when the 
added energy is equal to the energy difference between the two levels [51]. The

TABLE 3. Configuration of energy levels of Ar I with comparison to Paschen nota­

tion. ____________________________________________
Paschen label Level J Energy (eV)

ground 3 p6  % 0 0 . 0

1«5 4s[3/2] 2  3P2 2 11.55
l.s4 4s[3/2]! 3Pi 1 11.62

l s3 4s '[l/2 ] 0  3 P0 0 11.72

1 ^ 2 4s'[l/2]x l Px 1 11.83

2 pio 4p[l/2]i 3 5 x 1 12.91

2 p9 4p[5/2] 3  3D3 3 13.08

2 ps 4p[5/2] 2  3D2 2 13.09

2 p7 4p[3/2]i 3D 1 1 13.15

2 Pe 4p[3/2] 2 3P2 2 13.17

2 ps 4p[l/2 ] 0  3P0 0 13.27

2 p4 4p/[3/2]j l P{ 1 13.28

2 p3 4p'[3/2] 2  lD2 2 13.30

2 p2 4p'[l/2]i 3PX 1 13.33

2 pi 4p '[l/2 ] 0 0 13.48

first excited configuration of argon, 3p5 4.s, contains 4 levels, while the second excited
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configuration, 3p5 4p, contains 10 levels. In this work we will use Paschen notation 
for Ar structure due also, to its simplicity. Table 3 presents configuration of neutral 
Ar atom (Ar I) for the first 15 energy levels together with the Paschen notation for 

each corresponding level. We have employed a LK coupling term symbol notation 
where the orbital angular momentum of the core electrons L\ (those tha t are not 
in an excited state) is coupled with the orbital angular momentum of the external 
electrons La to give total orbital angular momentum L. The total orbital angular 
momentum L is then coupled with the spin of the core electrons Si to obtain the 
resultant angular momentum K  of the final term. The spin of the core is coupled 
with the spin of the external electrons S2 to obtain the total spin S. The total angular 
momentum is formed by J  — L +  S. The resulting symbol is in the form:

nl2[K]j 2S+1Lj , (142)

where n / 2 are quantum numbers of external electrons.

The first excited, 4s, levels with J  =  1  ( ls 2 and IS4 ) satisfy the selection rules 
(A J =  ± 1 ) and decay very fast into the ground state ( J  =  0) with radiative life 
times of 1.96 nm and 8.4 ns, respectively [11]. These levels are called resonant levels. 
Optical transitions from the lowest levels with J  = 2 ( ls 5) and J  — 0 ( ls 3) are 
electric dipole forbidden, making these levels metastable levels.

Emissions from Ar plasma are mostly dominated by the transitions between the 
first two excited configurations [11], which are shown in Fig. 54. Optical emission 

transitions observed in our argon discharge are marked in red. For better charac­
terization of the discharge, population densities of both upper (4p) and lower (4s) 
energy levels should be determined. Population densities of the upper energy levels 
are obtained from the intensity of the light emitted during the transition (spectral 
line emission intensity) as it was described in previous chapter. The hardship in 
obtaining population densities of Ar 4s states lays in the premise that they can ra- 
diatively decay only to the ground state. Resonant levels decay to the ground state 

in nanosecond time scale emitting light in VUV region, meaning tha t ultra-fast, ex­
pensive detecting systems operating in VUV region are needed for their observation. 
Radiative decay of metastable levels is electric dipole forbidden and they decay back 

to the ground state mostly through collisional quenching processes. A variety of 
indirect and direct methods have been developed to obtain these population densi­
ties. Direct measurements of metastable population densities include laser induced
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FIG. 54. Partial energy level diagram for argon. Transitions from and to the ground 
state are not included in this figure.

fluorescence measurements [52] or absorbtion measurements [53]. Indirect measure­
ments include a detailed modelling of production and loss mechanisms of a specific 
Ar level [54,55].

A kinetic model of Ar represents a simpler and less expensive approach in deter­

mining population densities of its metastable and resonant states. This technique is 
based on calculating the population rates of metastable and resonant levels by in­
cluding contributions from all the processes that affect the populations of the desired 
states.

Before we start the kinetic analysis, we will first establish a notation system for the 

variables required (population densities and rate coefficients). Population densities 
of Ar energy levels will be marked with the capital letter N  with the specification to 

which level is referred to given in the letter subscript. For example, the notation of 
the population density of the Ar metastable lss (J  =  2) state will be N s5. We obtain
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the notation for rate coefficients required for the kinetic analysis in the similar way. 
Rate coefficients will be marked with the small letter k with the subscript carrying 

the information on which type of collision between particles is involved (electron 
impact or collisional quenching with neutral particles). Additional information on 
which two particles are colliding is contained in superscript of the notation letter. 
For example, the rate coefficients for collisional quenching of Ar 2 p4 (J  — 1 ) state 

with the Ar atom in ground state is given as fc®,p4. To avoid redundancy, the rate 
coefficients for electron collision from the ground state were written as /cf.

Since our goal is to obtain population densities of Ar s (metastable l s 5, J  =  2 and 
resonant l s 4, J  — 1) states, we will concentrate on population density rates of Ar p  

states that we already know. We start by assuming a  simplified model which does not 
include ionization and recombination processes due to their small coefficient rates and 
low ionization coefficient of the plasma (<10-4). Also, effects of radiation trapping 

can be neglected since plasma is optically thin and emission lines are little affected by 

reabsorbtion phenomena. According to the above assumptions, population rate of Ar 
2px (x  = 1 ,2,...) excited levels are mainly affected by these processes [11,12,56,57]:

1. Electron excitation from the ground state

e +  Ar(Nn) —> e +  Ar(A^,) (143)

~  k*NeN n

where fcf is the corresponding coefficient rate

2. Electron excitation from the mctastable and resonant levels

e 4 - Ar(Nsm) —>• e +  Av(Npx) (144)

~  K mN eN sm

where k*m is the corresponding coefficient rate

3. Radiative transition from higher energy levels (4d, 5s, 6 s,...)

Ar(Ahigher) -> Ar(Npx) +  hu (145)

~  iX/^higher)Nhigher

where Thigher is the corresponding radiative lifetime
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4. Radiative transition to metastable and resonant levels

Ar(A/px) Ar(Nsm) +  hu (146)

~  (1 / T s j J N p z

where rsm is the corresponding radiative lifetime

5. Quenching (collisional deactivations)

Ar(Nn) +  Ar(Npx) -> Ar(Nn) + Ar(Nsm), (147)

where k^,px is the corresponding coefficient rate.

It should be noted that due to the short radiative lifetimes (< 1 0  ns) of resonant 
states, l s 2  and ls 4. their populations are much lower than the population of the l s 3  

and IS5  metastable states. Therefore, electron impact excitation from resonant states 
was neglected in this approximation. Further, the contributions from higher excited 

states of Ar are excluded from the model since the emissions from these states are 
reduced due to the fewer number of high-energy electrons in the plasma tha t are able 
to excite them [56,57].

The net population rate of A t(Npx) state is, then, given with

in low pressure discharges (miliTorr pressure range) when radiative decay is the main 
depopulation process and quenching processes may be neglected [12,54,56,57]. The 
working pressure in our experiment was between 1-3 Torr suggesting that collisional 
quenching process involving neutrals becomes important and should be included in 

the model. Moreover, we will derive the equation for the steady state solution but 

also propose a new approach for the time-dependent calculations of Ar metastable 
( l . s 5 ) and resonant ( ls 4) states by applying laser induced fluorescence.

The steady state approximation states

dNpx
dt k°NeNn + k ? N eN s3 + k ? N eN s5 -  J 2  -  K:w N nNvx. (148)

Most of the work presented in literature is limited to steady state cases (

dNp
dt (149)
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and Eq. (148) becomes

As can be seen, there are two unknown Ar I Is  states in Eq. (150). A possible 
approach is to measure population densities of two different Ar I 2p levels and obtain 
kinetic equations for each of them. As a consequence we would have two kinetic 
equations with two unknowns. Coupling these two equations would allow us to obtain 

average population densities of metastable ( ls 5 and ls 3) levels. However, population 
densities of Ar I resonant (IS4  and IS2 ) levels can not be obtained by applying this 
approach.

In general case, when it is possible to observe the time dependence of Ar (2px) 
levels, a differential equation (148) could be solved numerically. When the observed 
level is pumped by a laser from the desired resonant or metastable level, the new 
balance equation would look similar to the Eq. (148) with the addition of an extra 
term due to the laser absorption (as described in previous section),

where B \2 is Einstein coefficient for laser absorption and Iu is laser spectral irradiance. 

It should be noted that Nsm corresponds to the lower level and Npx corresponds 
to the upper level N2 in the Eq. (138).

Since the laser pulse duration was 3-5 ns and measurements were taken in 20 /rs 
time intervals, we assumed that, due to the microsecond time averaging, populations 
of metastable and resonant levels remained the same. With this assumption in mind 

and after subtracting Eq. (148) from Eq. (151) we have obtained

k°NeN n +  k ? N eNs3 + k f N eN. 

5 1

- J 2 — N^ - kc,PXNnNP
« 'a m

(151)

~  AW  =  -  E  7 - ( n '~ ~  N f  ~  AWTam

f — N m . (152)c
Hence, the population of the resonant/metastable level is equal to

+  k9c,pxN,
am
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In steady state case, Eq. (153) becomes

C ' f  E m = 2 V r sm  +
W-m =  — -̂---------B -? ---------------- ( ^  -  %*). (154)

£>12

and can be solved analytically. It could be seen from the Eqs. (153) and (154) that 
the population densities of resonant/metastable argon levels are directly proportional 
to the difference between spectral line intensities (population densities of Npx levels) 

when the laser is on (N ^ )  and when there is no laser (Npx).

4.3.2 KINETIC MODEL OF NITROGEN

Nitrogen spectroscopy is often used as a diagnostic tool for characterization of air 

discharges, due to its abundance. Therefore, we have studied molecular structure of 
pulse repetitive discharge in air, described in Section 3.2, by analyzing vibrational 
spectra of certain nitrogen bands. In previous section we have described how the ki­
netic model of Ar I can be applied to calculate time dependent population densities 
of argon metastable/resonant 4s levels. In this section we will show a simple but 
accurate kinetic model of nitrogen molecular bands employed to obtain time resolved 
electron densities. In defining the time-dependent kinetics of nitrogen we start by as­
suming a simplified model based on the spectral intensities of certain nitrogen bands. 

In particular, we focuse on the Second Positive System band intensity C 3n u —» B 3Hg 
(0-0) at 337.1 nm. Energy level diagram of neutral N2 levels included in the kinetic 

model is shown in Fig. 55.
Again, as in the case of argon discharge, we did not include ionization and recom­

bination processes due to their small coefficient rates and low ionization coefficient of 
the plasma (<10~4). Further, resonant transitions from the excited states of the car­

rier gas to N2 (C 3 IIU) state that would increase its population density are excluded 
from this model. There are various examples in literature including the work of Kim 
et al. [58] and Zhu et al. [59] that support these assumptions. Acknowledging these 

restrictions we can state tha t nitrogen excited electronic state (C3nu) is affected 

mainly by three processes [60,61]:

1. Electron excitation from the ground state

e +  N2( X ' £+) e +  N2{C3Ilu) (155)

~  k ^ N eNn(0)
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FIG. 55. Energy level diagram for N2 levels included in the kinetic model.

where is the corresponding coefficient rate

2 . Radiative transition to B 3 IIff level

n 2( c 3u u) n 2( b 3 n g) +  hu  (156)

~ (l/rcs)̂ c(0) 

where Tcb is the corresponding radiative lifetime

3. Quenching (collisional deactivations)

N2(C3Uu) + N2( X ' E+) ->• 2N2( X 1E+). (157)

- e c(oiiv„(0)%

where is the corresponding coefficient rate.

Among these transitions, only transitions involving the vibrational ground state 
of each electronic state are considered. However, experimental data indicated that 

some transitions involving levels other than vibrational ground states are significant 
enough to be included in the kinetic model. They are:

A14-C
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(a) Vibrational excitation/deexcitation by electron impact (e-V) from the ground 

vibrational level (u=0) of iV2 (C 3 IIu)

e + V 2 ((73 n u)0) ^ e  +  iV2 (C3 n u,u), w =  1,2,... (158)

~  k ^ N eNc(o)

where k e ^  is the corresponding coefficient rate.

(b) Vibration-vibration collision processes (V-V)

iv2 ( c 3 n u,o) +  iv2 ( c 3 n U)t;) ^  

v 2 ( c 3 n ui i) +  iv2 ( c 3 n U)« - 1 )

v = 2 ,3 , ... (159)

~  k ? 0)'C^ N c m NC(v)

where k e ^ ' ° ^  is the corresponding coefficient rate.

When the above processes are included, the net population rate of the V2 (C 3 IIU) 

state is given with

^  = k™ N ,N „m  -  ^ 2 2  -  k?<°>™NnmNcm  
at tcb

~  Y  ke i0)XeNC(0) + Y  ke iV)N*NC(v)

-  Y  ko {0)'C{v)N c W N C{v) + Y  A;f(1)^ - 1)VC(i)VC(„_i), (160)
V  V

where we applied similar notation system as in the case of argon. Population den­
sities of N2 energy levels were labelled the same way as before with the additional 

information on vibrational structure given in apprentices. For example, population 
density of iV2 (C 3 IIu) (v  =  0) state was written as NC(o)• The same was applied to 
rate coefficients. Rate coefficient for collisional quenching of N2 (C'3 IIU) (v = 0) state 

with N2 in ground state V2 (V 1 S +) (v = 0) was given as k c ^ ' c ^°\
We have assumed Boltzmann distribution of vibrational state population which 

we will prove valid using our experimental data

Evo

Nc(v) =  Nc(o)e k° T v , (161)

where Ev0 is transition energy between N2(CV) state and [iV2 (C'„=o)] state, Tv is 
corresponding vibrational temperature and kB is Boltzmann constant. We will also
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demonstrate by using our experimental data that both e-V and V-V processes (the 
last three terms of Eq. (160)) are negligible comparing to the electronic transitions 
of 1V2 (C 3 IIU) state (the first four terms of Eq. (160)).

Pancheshnyi et al. [62] investigated a detailed kinetic model of nitrogen dis­

charges by including the quenching process between ground state oxygen molecules 

and A ^ C 3^ )  state

According to Ref. [62], the quenching rate of the C state in collisions with oxygen 
molecules is 2 .7 x 1 0 ~incm3 /s, and the quenching rates in the collisions with nitrogen 
molecules is (9 ±  3) x 1 0 " locm3 /s. In the extreme case that all oxygen molecules 
from the air remain in their ground state, unattached, and not dissociated, reaction 
(162) would contribute by less then 10% to the overall quenching of the C state. 
This contribution is within the error of nitrogen-induced quenching rate, and may 
be neglected without increasing the error of the final result. Therefore, the kinetic 

model for nitrogen was used in order to avoid complication with N 2 /O 2 mixture. The 
effect of oxygen was introduced as a small error of the analysis.

We will start with an analytic form of the kinetic model, using the approximation 
that the electron density and A2 (C 3 IIU) population are constant. Assuming that the 
population of the upper energy level [A ^C 3^ ) ]  does not change in time and that 

contributions from vibrational transitions are negligible, we derive the solution for 

the steady state from

After combining relations (160) and (163), neglecting the contribution of upper vibra­
tional levels (last four terms in Eq. (160)), we obtained the electron density relation 

to be

Generally, one can solve numerically Eq. (160) for any input power function 

provided that a waveform for ke(E / Nn(t)) is established. Hence,

-  k ^ W N ^ N c m i t ) .  (166)
at tcb

n 2(c 3n u) +  0 2 -+ N 2( X 1'£+) + O + O . (162)

Thus,

+  k ^ 0)’c ^ N n{0)N(n(0)-'vC(0)- (164)

(165)
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Substituting

NC{ o) =  x (167)

•/Vn(o) =  const = A  (168)

and

—-— Nn(o) =  const — to, (169)
tcb

we can express the Eq. (166) in a simplified form

^ + u x  = A k ^ ( t ) N e(t). (170)

From the Eq. (170) follows that the kinetics of iV2(C3n u) state, i.e. measured
population density waveform and its first derivative, can be used in determination of

time-resolved electron density of the plasma.
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CH APTER 5

RESULTS

Microwave discharges that operate at low pressures and high densities have proved 
to be an attractive choice for plasma etching and cleaning purposes. The extensive 

research necessary for characterization of these discharges requires a complete set 
of plasma parameters obtained under the different MW plasma regimes. For that 

reason, we have provided full parametric description of two types of MW discharges, 
a supersonic flowing Ar discharge and a pulse-repetitive air discharge.

The common property of these MW discharges is that they are far from ther­

modynamic equilibrium, meaning tha t all particles (atoms in ground state, excited 
atoms, and electrons) are described with different temperatures. Since these plasmas 

are weakly ionized (ionization coefficient less than 1 %) implying that particles in 
these discharges are mostly neutral in the ground state, it is reasonable to assume 
the gas density and gas kinetic temperature to be equal to density and temperature 
of neutral particles in the ground state. We will also assume tha t the gas kinetic 

temperature is equal to the rotational temperature of diatomic molecules in the dis­
charge. This assumption is valid if the molecular electronically excited states are 

produced by direct electron excitation from the ground state, whereby the rotational 
energy structure is conserved.

Employing different diagnostic techniques (plasma tomography, laser induced flu­

orescence) allowed us to resolve spatial and time characteristics of plasma parameters 
providing us, in tha t way, with full control and optimization of parameters required 
for plasma processing.

This section is organized as follows. Firstly, we define molecular (rotational and 

vibrational) structure of jV2 Second Positive System (SPS) C3Uu —>■ B 3Ug and deter­

mine the corresponding temperatures, since the structure of iV2 defines the plasma 
structure. Secondly, we derive gas temperatures and gas densities of both discharges 

described in this study. Thirdly, we evaluate population densities of excited parti­
cles. In the case of argon discharge we are providing both time and space resolved 
data, while in case of air discharge just the time resolved population waveforms will
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be presented. Finally, we will discuss electron temperature and density of both dis­
charges. In addition, time resolved Ar metastable/resonant population densities will 
be obtained by employing LIF.

5.1 ROTATIONAL TEMPERATURE

Molecular structure of MW plasmas was studied in pulse-repetitive air discharge 

by observing iV2  molecular bands, in particular Second Positive System band in­
tensity C 3Uu —> B 3Hg (0-0) at 337.1 nm. Since molecules are characterized with 
vibrational and rotational levels besides electronic configuration, we start by describ­

ing time averaged parameters that characterize vibrational and rotational nature of 
molecules (the vibrational temperature, of vibrationally excited A2 (C'3 IIU) states, 
and the rotational temperature).

The importance of rotational temperature lays in the premise that it could be 
a good indicator of the gas temperature, one of the key parameters in driving the 
reaction rates of many processes. There are examples in literature [63,64] confirming 

this assumption for the case of SPS C 3 IIU —> B 3Ug, A v  = 2 molecular band. In the 
Nitrogen Second Positive System the rotational spectrum consists of three branches: 
P, Q, and R. Both P and R branches are split into three sub-branches and the Q 
branch into two due to the triplet splitting of the rotational quantum number J . We 
have chosen to use Av=2  vibrational sequence from the R 2  branch of the G,3 IIU —> 

B 3Ug band, since there is minimal self absorption and there is no interference from 
other atomic lines or molecular bands. Furthermore, we have employed only lines 

with higher J  values, since they are less self absorbed than those at lower values.
We start by defining the rotational term values, F^ j  (SI — 0,1,2), for triplet (II) 

states of any vibrational level v. These rotational terms may be expressed by the 
semi-empirical formula [65] given as

F0,j =  Bv[J(J + l ) - ^ Z [ - 2 Z 2\ - D v( J - ~ ) 4

Fu  =  Bv[J(J + l ) + 4 Z 2] - D v( J + ± ) 4 (171)

F2}J = Bv[J{J + l) + y / z l - 2 Z 2] - D v{ J F ^ ) \

where B v and Dv are rotational constants, Yv is a spin-axis coupling constant listed



108

in Table 4 [66], and

Zt -  Yv{Yv - 4 )  + 1 + 4 J ( J  + 1) (172)

=  3 ^ [ W - 4 ) - ^ - 2 7 ( J  +  l)]. (173)

TABLE 4. Values of the constants for the evaluation of rotational terms of jV2  SPS

[63]- ________________________________________________
c 3n,I b 3 n 9

V Bv Yv Dv x 106 Bv Yv Dx, x 1 0 6

0 1.815 21.5 6.7 1.628 25.9 6.4
1 1.793 21.5 6 . 8 1.610 26.2 6.5
2 1.769 21.4 7.3 1.592 26.4 6.7
3 1.740 2 1 . 1 8.5 1.574 26.8 6 . 8

4 1.700 20.3 12.5 1.555 27.0 6.9

The difference between rotational terms of two vibration levels v' — v" (C3n u to 

B 3 IIS) is proportional to the wavenumber of the rotational lines as

v = vo +  F'j, — Fj„, (174)

where vq is the band origin (band head) of the system, F' and F" are the rotational 

terms for the upper and lower levels, respectively and J' and J" are corresponding 
rotational numbers. After applying selection rules (AJ  =  0, ±1) we obtain three 
rotational branches

• P branches (12 =  0,1,2)

un,j" — uo +  — Fq j „ (175)

•  Q branches (12 =  1,2)

=  U0 +  F q j „ — F q j „ (176)
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•  R branches (fl =  0,1,2)

vu j"  = ^0 + F(itj"+i ~  Fq j„ (177)

where J"  is the rotational quantum number of the lower level v".
We have converted these wavenumbers into wavelengths and calculated Fortrat 

diagrams, by employing above equations, for the N 2 (0-2) band with bandwidth at 
A =  380.47 nm, as shown in Fig. 56. Fortrat diagrams presented in Fig. 56 allowed 
us to identify the rotational bands associated with specific quantum number.

376 377 378 379 380
Wavelength (nm)

FIG. 56. Fortrat diagram of N2C3llu —> B 3Ug second positive system.

As we have already mentioned in Subsection 4.3.2, the electronically excited 
states, A^C^IIu), are mostly produced by direct electron excitation from the ground, 
iV2 (X 1£+), state. This implies tha t the rotational population distribution of the ex­
cited (C 3 IIU) level corresponds to the population distribution of the ground state at
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particular rotational temperature Tr. Ground state population distribution, and thus 
(C 3 IIU) level population distribution fj> satisfies Boltzmann distribution law, given 

as

fj> = (2J' + l)exp^ -  J '(J '  +  l ) ^ j r ) ,  (178)

where J' is the rotational quantum number of the excited state v', h is Plank’s 

constant, c is the speed of light, Bx is the rotational constant for the ground state 
(1.9898 c m 1), and k is the Boltzmann constant. Dividing fj> by the partition 

function

<? =  £ >  (179)
r

leads to the normalized population, Pj>,

Pj> =  f j ' /Q -  (180)

Normalized population, Pj>, is distributed between the P, Q and R branches
through the Honl-London factors (line strengths). For the N2  SPS [65] they are

given with

q P

oQ  
J n,j'

q R
Dn,j'

and they obey the sum rule

V !  {Sq,j ' +  8%^, + Sq j ,) =  2 J ' + 1 . (184)
n

Combining the above equations, normalized intensity of any line for the branch i 
(i — P, Q, R) is determined to be

Ia,j> = S h j ^ e x p (  -  J V  +  1 ) ^ ) -  (185)

While Eq. (185) gives the theoretical prediction of the normalized line intensity,
the observed spectral lines are always broadened due to  the different broadening
mechanisms in the gas discharge. The main contribution to spectral broadening in 

gas discharges at low pressures comes from Doppler broadening, which is due to the 

thermal motion of absorbing and emitting particles [67].

(J' + 1  + fi ) (J ' +  1 — fi) 
J' + 1

(2 J '  +  1)0 2 

J'{J' +  1)
(j '  +  n ) ( j '  -  ft)

j '

(181)

(182)

(183)
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For particles moving with a velocity v, transition frequencies will differ from those 

of particles at rest as

v = uo ( l ± ^ ) ,  (186)

where are transition frequencies for particles at rest. The broadened spectral line 
distribution Wq(v ) around the center frequency, is given by Gaussian distribution 
function

 ̂ r, /  rru^iv — i/n)2\
“ '-(■') =  V “ p (  2W X “ ) '  (187)

where m  is the mass of the particle. The function full width at the half maximum 
(FWHM) of Gaussian distribution function is given by

or in terms of wavelengths

SXD =  \ 0\ / 8 l n ( 2 ) ^ .  (189)

In addition to  Doppler broadening, instrumental broadening due to the limited 

resolution of the experimental apparatus was also present. The result of instrumental 
broadening is again Gaussian lineshape. Therefore, the total FWHM of the spectral 
line is

SXq = SXd T SX/, (196)

where SX/ comes from instrumental broadening.
Normalized intensity, Eq. (187), can be expressed in terms of SXq and has the 

form of

W" (A> =  (191)

Normalized rotational spectrum intensity is given as the sum of all normalized 
intensities

W(A) =  (192>
i, n

We have employed Eq. (192) to numerically obtain synthetic rotational spectra. 

As it can be seen, the only unknown in the equation is the rotational temperature
Tr, which is used as a free parameter. By comparing experimentally obtained spectra

with theoretically simulated synthetic spectra we were able to estimate Tr when the 
discrepancies between spectra were minimal.
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As an additional test of the applied method we have used Eq. (178) to obtain an 
exponential fit of the experimentally observed normalized line intensities / j>/{2 J '+ 1) 
versus J'{J' + 1) to obtain rotational temperature from the slope of the fit. Further­
more, this allowed us to  confirm whether rotational population distributions satisfy 
Boltzmann distribution by falling on the line of the fit.
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FIG. 57. Comparison between the experimental and synthetic spectra of Nitrogen 

Second Positive System at 11.8 Torr in air discharge.

Figure 57 shows comparison between the experimental and synthetic spectra of 

Nitrogen Second Positive System Av=2  vibrational sequence from the R2 branch at 

pressure p =  11.8 Torr in air discharge. The discrepancies between the two spectra 
were estimated to be less than 5%. Instrumental spectral line broadening was S \ { =  

0.01 nm and obtained rotational temperature was Tr =  720 ±  70 K. Experimental 
errors were evaluated from the measurement errors combined with the error due to 

discrepancies between two spectra. We have compared this temperature to rotational
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temperature Tr = 750 ± 70  determined from the slope of the Boltzmann distribution, 

as shown in Fig. 58. As can be seen, the results stand in good agreement within 
the evaluated error. Furthermore, Fig. 58 shows that semi-logarithmic character of 
Boltzmann plot is satisfied by all line intensities with higher J' values (J '>15).

3.0-

Tr = 730  K2 .8 -
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400 500 600 800700

FIG. 58. Rotational temperature obtained from the linear fit (full line) of the nat­

ural logarithm of normalized line intensities versus J'{J' +  1 ) of the R2 branch of 

Nitrogen Second Positive System at 11.8 Torr in air discharge. Experimental errors 
are indicated with error bars.

Similarly, we have obtained rotational temperatures a t different pressures and 

presented them in Table 5. It seems that the rotational temperature decreases with 
the pressure increase.

Since supersonic flowing MW discharge was sustained in pure argon, we were 

not able to study molecular structure of this discharge. However, previous work [6 8 ] 
on this experiment included measurements in argon with the addition of 5% air.
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TABLE 5. Rotational temperatures obtained from the Nitrogen Second Positive 
System at different pressures in air discharge, generated with the same MW power.

Pressure (Torr) Rotational temperature (K)

1 0 . 0 740±70
1 1 . 8 720±70

13.0 690±70

2 0 . 0 600±60

Even though, introducing a small amount of air would change the dynamics of the 
discharge, the results obtained in this way could still serve as good indicators of 
rotational and thus gas kinetic temperature in our study. According to Ref. [6 8 ] 
estimated rotational temperature at pressure p — 2.3 Torr was Tr = 1550 ±  50 K.

5.2 VIBRATIONAL TEMPERATURE

Knowledge of the vibrational temperature is fundamental for understanding the 
physical and chemical processes in the N2 and A^-mixture discharges because vibra­
tional temperature provides an insight in to the vibration-vibration and vibration- 

translation energy exchange processes. Moreover, the time scale of the microwave 
pulses in the case presented in Section 3.2 is long enough for the distribution of vi­

brational state populations of the N2(C3Ylu) states to be expressed by the vibrational 
temperature Tv as a single statistical parameter by using the Eq. (161) for Boltz­
mann distribution. Thus, it was necessary for further analysis to determine the value 
of the vibrational temperature.

In order to minimize the error due to the self-absorption, we have chosen to use 

iV2 SPS (C3n u —> B 3Hg), A v  = 2 transition for determination of the vibrational 
temperature. By assuming tha t a Boltzmann factor is applicable to the limited 

number of the observed vibrational states we have introduced the proportionality 

equation
G0(v')hc

l y 'v "  / I  j/fi" j;" C , (193)

where IV’V” is the spectral line intensity, / l„ v  is the Frank-Condon factor for the 

transition between the upper (v ' ) and lower (v" ) state [6 6 ], 1v„» is the transition
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frequency, G0(v')hc is the energy of the vibrational level. It is defined as [65]

G0(v') = u)e(v' +  i )  -  LJex e(v' + ^ ) 2

+weye(u; +  i ) 3 +  weZc(v' +  ^ )4, (194)

where Tv is the vibrational temperature. Using the Boltzmann plot, similar to the 
determination of rotational temperature, the vibrational temperature was found to 

be Tv =  (3300 ±200) K at pressure p =  11.8 Torr. Experimental error was evaluated 
from the measurement errors.
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FIG. 59. Comparison between the vibrational population distribution of N 2 (C 3 IIU) 

states measured from emission spectrum and the values of the population distribu­

tions calculated from Boltzmann distribution, Eq. (81), a t T„=3300 K.

By applying the relationship between spectral line intensity and the population 
density of the upper level given by Eq. (81) we have obtained population densities
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for the first three vibrational levels of the C 3Ilu state. Figure 59 shows vibrational 
distribution of C'3 I1 U state for the first three vibrational levels obtained from absolute 

intensities of the bands belonging to A v — 2 sequences. It fits very well with the 
Boltzmann distribution justifying the assumption of the V-V equilibrium.

5.3 GROUND-STATE POPULATIONS

In weakly ionized plasmas (degree of ionization less than 1 %), ground state pop­
ulation Nn can be approximated with the neutral particle density and is determined 

from the ideal gas equation

Nn =  (195)

where p is the pressure in the static cell, N n is the ground-state number density (in 

cm-3) and Tg is the gas kinetic temperature. We have assumed that gas kinetic 
temperature is equal to the rotational temperature of molecules in the discharge 
since the molecular excited states are produced by direct electron excitation from 
the ground state.

Using the measured gas temperature and knowing the pressure in chamber, we 
employ Eq. (195) and calculate ground-state number density in pulse repetitive 
discharge in air, described in Section 3.2. The results are shown in Table 6 .

TABLE 6 . Ground-state populations obtained from the Nitrogen Second Positive 
System at different pressures in air discharge.______________________

Pressure (Torr) Ground-state populations (1017 cm 3)

1 0 . 0 1.3±0.2

1 1 . 8 1 .6 T 0 . 2

13.0 1 .8 ± 0 . 2

2 0 . 0 3.2±0.4

It can be seen from the table that ground-state population densities increase 
with the pressure increase. This is understandable since rotational temperature and, 

correspondingly, gas kinetic temperature decrease when the pressure increases.
In the case of supersonic flowing discharge in argon, described in Section 3.1,
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we were able to estimate the gas density by adding a small amount of nitrogen 

and assuming the rotational temperature (i.e. gas kinetic temperature) from the 
above section. After employing Eq. (195) for given temperature, we determined gas 
density Nn =  (1.4 ±  0.2) x 1016 cm ” 3  at pressure p =  2.3 Torr. Note, tha t errors 
in obtaining ground state populations are evaluated from experimental errors due to 

gas temperature and pressure measurements.

5.4 POPULATION DENSITIES OF EXCITED LEVELS

The kinetics of excited particles is one of the key characteristics in low- 
temperature gas discharges. Detailed investigation of these excited particles can 
lead to better understanding of radiative and chemical properties of discharges and 

improve the applications of optical diagnostic methods [12,69]. In this section, we 
employ Eq. (81) and the method described in Chapter 3 to obtain the population 
densities of the atom/molecule upper energy levels from the measured spectral line 
intensities.

5.4.1 PULSE-REPETITIVE AIR DISCHARGE

We have observed time-resolved emission spectra from the N2 (C3Ylu —> B 3IIg) 

(0-0) transition in pulse-repetitive air discharge. Employing Eq. (81) tha t relates 

population density of the upper energy level to the measured spectral line intensity, 
described in Subsection 3.1.2, allowed us to determine the population densities of the 
upper C 3 n u level at different pressures, as shown in Fig. 60.

It can be seen in Fig. 60 that the discharge breakdown occurred in the initial 
0.5 /us, which was indicated with peak values of the population densities. Also, 
it appears that the peak values of population densities increase when the pressure 

increases, while the average values for N2 (C'3 IIU) level tha t is Nc  «  7 x 1012 cm-3, 
vary little with the pressure change.
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FIG. 60. Time-resolved population densities of the Second Positive System of Nitro­
gen (0-0) band at pressures: a) 10 Torr, b) 11.8 Torr, c) 13 Torr, and d) 20 Torr.

5.4.2 SUPERSONIC FLOWING ARGON DISCHARGE

In the case of supersonic flowing argon discharge, shown in Section 3.1, we were 
able to obtain not only time resolved spectra of excited Ar I states by employing time 
synchronization device, but also spatially resolved spectra of Ar I levels by applying 

plasma tomography approach. All measurements were taken in the plasma afterglow 
region, see Fig. 17, in order to characterize plasmoid-like formation. Similarly, as in
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the above subsection, we used Eq. (81) to determine population densities of the Ar 
I upper energy levels.

a) Time-resolved data

Time resolved measurements were taken 5 cm downstream of the cavity in the 
experiment, see Fig. 17, which corresponds to the middle area of the plasmoid. The 

working pressure was p = 2.3 Torr. We obtained population distributions of three 
Ar I excited p states

• 2p2  or 4p'[l/2]i 3 Pi J  = 1 state from the spectral line intensity at 696.54 nm

• 2p3  or 4//[3/2]2  *P2 J = 2 state from the spectral line intensity at 706.72 nm

• 2 ^ 4  or 4p'[3/2]i 1 Pi J  = 1 state from the spectral line intensity at 714.70 nm.

Spectral line intensities were measured with ICCD camera in 20 ps time intervals
during the power signal.

Figure 61 shows the time dependent population distributions compared to the 
power sine signal. It can be deduced from the figure tha t during and immediately af­
ter the breakdown (the first two milliseconds), population distributions peak in their 

values. This is followed by the decrease in intensities during the plasma stabilization. 

Finally, when the discharge becomes quasi-stationary, the population density distri­

butions show weak time dependence and can be approximated with their average 
values. The variation of the average values is probably due to additional changes of 
plasma conditions tha t are not included in the error estimation. Peak population 

densities are determined to be N ^ ak — 4.8 ±  0.5 x 105 cm-3, N ^ ak = 5.0 ±  0.4 x 105 

cm-3, and N ^ ak =  7.8 ± 0 .6  x 105  cm-3, while average values of population densities 

are estimated to =  1-0 x 105  cm-3, N ° 3 =  1.1 x 105 cm-3, and Nj% =  1.6 x 105 

cm" 3  for Ar I excited states 2p2, 2p3, and 2p3, respectively.
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FIG. 61. Time dependence of the population densities inside the power sine signal 
at 2.3 Torr of the Ar I: a) 2p2 state, b) 2 p3  state, and c) 2pj state. The experimental 
results are connected with the smoothed fitted line.

b) Spatially resolved data - Plasma tomography

As a first step in obtaining time-averaged, spatially resolved population densities 

in argon, we have employed Abel inversion integration valid in the case of radially 
symmetric discharges. Three Ar I excited states

•  2p3 or 4p'[3/2]2  1 F>2 J  = 2 state from the spectral line intensity at 706.72 nm
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•  2Pi or 4p'[3/2]i 1 Pi J  — 1 state from the spectral line intensity at 714.70 nm

• 3s or 6 s [3/2]2  3 P2  J  = 2 state from the spectral line intensity at 710.75 nm

were used for determining the spatial population density distributions.
Spectral line intensities were collected at 10 different locations downstream the 

microwave cavity (from 1.5 cm to 10.5 cm) and a t 11 positions across the quartz 
tube (from the top to the bottom), see Fig. 17. Measurements were taken only at 

one angle due to the assumed radial symmetry. Therefore, there was no need to 
present data at each cross-sectional area of the quartz tube. Even though it was 
enough to take measurements only from the center to the one end of the quartz tube, 

we have scanned the whole area inside the tube to verify the assumption of plasma 
symmetry. If plasma is radially symmetric, the results from the upper side would 

be equivalent to the ones from the bottom. Measured spectral line intensities are 
shown in Fig. 62. It can be seen the presence of larger population densities at the 
lower side of the quartz tube which indicates the lack of radial symmetry. In other 

words, Abel inversion technique is not the best choice for reconstructing the internal 
plasma structure. However, it may happen that the upper and the lower sides are 
each radially symmetric independently. For that reason, as a first approximation, 

we estimated spatial distributions of Ar I 4p and 6 s states using the Abel inverted 
integral given by Eq. (99) and results are presented in Fig 63.

It is evident from the Fig. 63 tha t the excited argon atoms are mostly located 
close to the inner surface of the quartz tube implying that the discharge is partially 

sustained with the surface wave, which is in a good agreement with our theoretical 
predictions stated in Section 3.1. However, spatial distributions of the Ar I population 

densities obtained using Abel inversion do not contain information whether discharge 

is symmetric or not. For that reason, we have applied the technique based on the 

measurements of spectral line intensities in two mutually perpendicular directions, 
described in Section 4.1.
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FIG. 62. Spatial distributions of the Ar I spectral line intensities of: a) 2p3 state

b) 2 p4 state, and c) 3 « 3  state. Measurements were taken along the quartz tube at 
pressure p =  2.4 Torr.
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a) Population of the Ar I a t 706.72 nm
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FIG. 63. Spatial distributions of the Ar I population densities obtained by applying 
Abel inversion integral: a) 2p3 state b) 2 p4 state, and c) 3 « 3  state. Measurements 
were taken along the quartz tube at pressure p = 2.4 Torr, see Fig. 17.
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Two excited Ar I states

•  2p3 or 4p'[3/2]2 1P2 J  ~  2 state from the spectral line intensity at 706.72 nm

• 2p4 or 4p'[3/2]i 1 Pi J  — 1 state from the spectral line intensity at 714.70 nm

were used for determining the spatial population density distributions. Data ob­
tained with Abel inversion method served as measurements at one angle (i.e. 0 =  0). 
Additional measurements at 0 =  90° were performed at four different distances from 

the MW cavity(1.5 cm to 4.5 cm). These positions correspond to the beginning up to 
the centra] plasmoid region. The reconstructed populations of Ar I atoms are plotted 
in Figs. 64 and 65. The figures indicate turbulent behaviour of the discharge, which 

can be described only when time-resolved diagnostic methods are applied. It can 
be deduced from the figures tha t maximum population density of the Ar I 2p3 level 

iVp3 =  4.5 x 105 cm-3 , which is in good agreement with the population densities 
obtained using the time-resolved diagnostic method. Maximum population density 
of the Ar I 2p4 level is Npi =  1.3 x 106 cm-3, which is a factor of two larger than 
time-resolved population densities. This is probably due to the lower accuracy of the 
method itself. However, the same conclusion remains that Ar atoms tend to populate 
outer parts of the quartz tube.

To summarize, Abel inversion, Eq. (99), and two path model, Eqs. (106) and 
(107), represent useful tools in understanding the internal plasma structure, especially 
when plasma is radially symmetric or at least close to the radial symmetry. But for 
complete analysis of plasma parameters it is necessary to conduct a full 2D plasma 
tomography based on the inverse Radon integral.
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FIG. 64. Spatial distributions of the Ar I 2p3 population density at 706.72 nm 
measured at a) 1.5 cm, b) 2.5 cm, c) 3.5 cm, and d) 4.5 cm distance from the MW 
cavity, see Fig. 17. Measurements were obtained by applying two path method, 

based on measurements of spectral line intensities in two mutually perpendicular 
directions, at pressure p — 2.4 Torr.
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FIG. 65. Spatial distributions of the Ar I 2pA population density at 714.70 nm 

measured at a) 1.5 cm, b) 2.5 cm, c) 3.5 cm, and d) 4.5 cm distance from the MW 
cavity, see Fig. 17. Measurements were obtained by applying two path method, 

based on measurements of spectral line intensities in two mutually perpendicular 
directions, at pressure p = 2.4 Torr.
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We have employed a full 2D plasma tomography based on the filtered back pro­
jection method with Shepp-Logan filter on the same two Ar I excited states

•  2p3 or 4p'[3/2]2 1P2 J  = 2 state from the spectral line intensity at 706.72 nm

•  2p4 or 4//[3/2]! 1P1 ./ =  1 state from the spectral line intensity at 714.70 nm

to obtain spatial population density distributions.

The populations were evaluated at three different positions across the plasmoid 
relative to the cavity, see Fig. 17. The first measurements were taken 3 cm from the 
cavity corresponding to the beginning of the plasmoid. The next position measured 

was at 4.5 cm from the cavity that corresponds to the middle range of the plasmoid. 

Finally, we observed the end of the plasmoid by taking measurements 8 cm from the 
cavity.

Figure 66 shows how the spatial distribution of Ar I excited states at 706.72 nm 
is changing along the plasmoid. It could be seen that the argon atoms are mainly 

populated close to the inner surface of the quartz tube. At distances 3 cm and 8 cm 
from the cavity (two ends of the plasmoid) argon atoms are concentrated close to 
one side of the quartz tube, while in the middle (4.5 cm from the cavity) we observe 

almost symmetrical population distributions. The maximal value population density 
that is iVp3  =  1.3 x 105 cm-3, is reached at the surface of the tube in the middle of 
the plasmoid.

Similar results are observed for population distributions of Ar I excited states at 

714.70 nm, see Fig 67. Argon atoms are distributed mostly at the surface of the tube 
with the maximal population density N ^  =  1.6 x 105 cm-3. It should be noted, 

that population densities obtained using this method are in good agreement with 
the values of the population densities obtained using the time-resolved diagnostic 
method implying that 2D inverse Radon integration technique Eq. (135) provides 

not only qualitative but also a quantitative description of the plasmoid object.
The lack of cylindrical symmetry in the population distributions emerges from our 

ability to measure at a limited range of angles (48° to 168°), as shown in Section 4.1. 
The missing parts correspond to the area that was not covered in the experiment. It 

is, however, obvious from the Figs. 66 and 67 that the excited species are dominantly
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populated a t the rim of the plasmoid. This observation indicates that the plasmoid 
is sustained by a surface wave.
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FIG. 66. Spatial distributions of the Ar I 2p3 population density at 706.72 nm 
measured at different distances from the MW cavity: a) 3 cm, b) 4.5, and c) 8 

cm. Measurements were obtained by applying filtered back projection method with 
Shepp-Logan filter (Section 4.1) at pressure p — 2.4 Torr.
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FIG. 67. Spatial distributions of the Ar I 2p3 population density at 714.70 nm 
measured at different distances from the MW cavity: a) 3 cm, b) 4.5, and c) 8 

cm. Measurements were obtained by applying filtered back projection method with 
Shepp-Logan filter (Section 4.1) at pressure p = 2.4 Torr.
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5.5 ELECTRON EXCITATION TEMPERATURE

The electron excitation temperature is an important parameter for the charac­
terization of plasma since it describes the energy distribution of the excited atomic 

states. We have obtained spatial distributions of the electron excitation temperatures 
in the supersonic flowing argon discharge, described in Section 3.1, by employing the 

Boltzmann plot method. This method assumes tha t the spectral irradiances ( I ki) of 
different Ar excited state spectral lines having the same lower energy and different 

threshold excitation energies ( E k) follow a Botzmann distribution [70]

h i  = e ~ E k / k B T (196)
Afci

where g k is the statistical weight of the upper level k,  A kl is the transition probability, 

Aki is the wavelength, and Texc is the excitation temperature. The electron excitation 
temperature relates to the slope of the l o g ( I ki ^ u / 9k A ki) versus E k plot. We were 
looking into transitions to the Ar I 3s23p5(2P3°̂ 2)4s, J  — 2 lower level. The upper 
energy levels, wavelengths and corresponding constants used for determining the 

excitation temperature are presented in the Table 7.

TABLE 7. Ar I spectral lines used for Texc determination.

Upper level J A (nm) 9k A ki (106 s - 1) E k (eV)
5p[3/2]2 l P2 2 415.9 5 1.400 14.53

5p[5/2]3 ^ 3 3 420.1 7 0.967 14.50
4p'[3/2]2 l P2 2 706.8 5 3.860 13.30
4p,[3/2]1 iP j 1 714.7 3 0.625 13.28

4p'[5/2]3 1P3 3 811.5 7 33.10 13.07

Equation (196) incorporates a premise that discharge satisfies the local thermo­

dynamic equilibrium (LTE) or, at least, is close to it. The validity criteria for LTE
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was established by Griem [18]

W. > 7 x lO '8^ ( | | - ) Cm -s (197)

where Ne is electron density, 2 = 1  for neutral emitters, n  is a principal quantum 
number of the upper level (n=4 for argon), EH is ionization energy of hydrogen, and 

Te is electron temperature.

Based on the previous work on the same experiment [68] electron temperature was 
determined to be Te «  6000 K which corresponds to kTe «  0.5 eV. Employing Eq. 
(197) leads to the conclusion that an electron density of Ne >1013 cm-3 is required to 
fulfil LTE. According to Ref. [68] this condition is satisfied in the supersonic flowing 

argon discharge which justifies the Boltzmann plot approach in calculating Texc.
We obtained the distributions of excitation temperatures at two positions along 

the plasmoid, 3 cm and 8 cm from the cavity corresponding to the beginning and 

ending of the plasmoid, respectively, see Fig. 17. Results are presented in Fig. 

68. The maximal excitation temperature obtained was Texc =  2820 K at 3 cm 
downstream the cavity and Texc = 3030 K at 8 cm from downstream cavity. This is 
in good agreement with previously published data [68].

Note that the excitation temperature maximum tends to be in contrast to the 
population distribution. Furthermore, the temperature distributions exhibit rota­
tional behavior. Both effects reflect the influence of the supersonic flow. Relative 

populations of the two excited levels tend to follow the dynamics and structure of 
the flow, which in turn is affected by the surface wave discharge. The phenomenon is 
nonlinear and more detailed spectroscopy is needed to clarify fully the flow dynamics.
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FIG. 68. Spatial distributions of argon excitation temperatures obtained at distances 
a) 3 cm from the cavity and b) 8 cm from the cavity.
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5.6 ELECTRON TEMPERATURE

One of the most informative parameters in plasma physics is electron temperature 
because electrons are involved in almost all collision processes in the plasma (exci­
tation, ionization, dissociation) defining in that way physical and chemical plasma 

properties. Time-resolved electron temperature was obtained in pulse repetitive MW 
discharge in air that is described in Section 3.2, from the values of the time depen­
dent reduced electric field by applying the correlation graph given in Fig. 10 which 

is given in Chapter 2. Space-average peak electric field was determined from the 
average peak power density, Pave by employing Eq. (88).

At the chamber pressure p=11.8 Torr and room temperature the averaged peak 
reduced field was therefore

This means that the peak power of 210 kW at the waveform plateau corresponds to 
the average reduced electric field of 126 Td.

The actual time-dependent reduced electric field at the plasma can be calculated 

from the average power per unit area transported by microwave intensity,

126 Td.
a ve

(198)

(199)

taking into account

I  = If -  Ir , (200)

where Ip  is the intensity of the forward (travelling) wave and Ip  is the intensity of 

the reflected wave. Thus,

(201)

where reduced electric field associated with the forward wave and

(~ rr) (t) is the reduced electric field associated with reflected wave. Reduced elec 
\ N J r k
trie field is related to the total power as
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If we introduce the reflection coefficient

( £ ) « «r(,) = V m i =  ( J ) V  (203)
where Pf(£) and Pr (1) are the forward and reflected power respectively, we derive

( £ ) «  -  <2o4>

Forward and reflected power waveforms were recorded a t the front and rear end

of a bidirectional coupler with the attenuations of 23 and 13 dB, respectively (shown
in Fig. 28). Further, in the case of reflected power waveform, pyramidal horn acted
as the receiving antenna at the aperture, whereby the reflected beam passed through

a ceramic power attenuation factor of (e2)-1/2 «  -  tha t has to be taken into account
o

[41].
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FIG. 69. Forward, reflected and transm itted into plasma power waveforms.
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The actual power waveforms are evaluated from the detector voltage waveforms 
according to

PF(t) =  Ppeak X (205)
* F P m a x

P*(<) =  X , n ^ (t) ( t , T i n  (206)
1U X V flP m a x

PT(t) =  PF(t) -  PR(t), (207)

where PF(t), Pii(t), and Pr(t) are the forward, reflected and transm itted power, 
respectively, VFp(t) and VRp(t) are measured forward and reflected voltage waveforms 
respectively, and VFpmax and VRPmax are their maximum values.

Figure 69 shows the waveforms for the forward, reflected and transm itted power 

evaluated from the detector signals. From the figure it can be seen tha t the reflected 

power signal was measured at <  20% of forward power signal. Still, the reflected 
power waveform quantifies the contribution of the reflected wave in the total field 
amplitude at the aperture and in the sustaining the standing wave discharge between 
the dielectric cover of the aperture and the plasma itself, in analogy to the cylindrical 
surface wave discharges.

Knowing the time-resolved waveforms of the forward and reflected power allowed 
us to apply Eq. (204) and determine the time variation of the reduced electric field. 

Figure 70 shows pressure dependence of the reduced electric field E /N n. It appears 
that E /N n is almost constant for most of the pulse duration except for the first 0.5 //s

during the discharge build-up when it peaks in its value. Also, as it can be seen from
the figure, at lowest pressure at 10 Torr, E /N n is the largest with the peak values 

(E /N n)peak ~  160 Td and average values (E /N n)ave ~  145 Td. At 11.8 and 13 Torr 
pressure, E /N n is at its minimum with (E /N n)peak «  115 Td and (E /N n)ave «  105 

Td, and at 13 Torr E /N n increases and has the peak value (E / Nn)peak ~  130 Td and 
average value (E /N n)ave ss 120 Td.

Figure 71 shows time-resolved electron temperatures obtained from the reduced 

electric as a function of pressure. It is obvious tha t electron temperature depends 
on pressure in similar way as reduced electric field. This is expected since electron 

temperature is almost linearly proportional to E /N n , see Fig. 10. Peak values of 
electron temperature vary from 2-3 eV, while average values range from 1.7-2.7 eV.

Note tha t for simplicity, the effect of the relaxation of electron energy distribu­

tion function (EEDF) was neglected. In the initial 0.5 microseconds the EEDF is 
dominated by inelastic collisions, mostly by ionization, and differs substantially from
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FIG. 70. Time-resolved reduced electric field evaluated from the power waveform at 
pressures of: a) 10 Torr, b) 11.8 Torr, c) 13 Torr, and d) 20 Torr.

the EEDF applied in the rest of the pulse, which is based on the full set of electron- 

molecule collisions. Small values of Ne in the time interval of discharge build-up will 
make the effect of time dependent EEDF small. Still, evaluation of EEDF at the 

inception of the microwave discharge is certainly an important task for future work.
Similarly, as in the case of rotational temperature evaluation we were not able 

to obtain electron temperatures in argon discharge described in Section 3.1. In the 
first approximation we will employ previous work on the same experiment [68] to 

estimate electron temperatures. According to [68] a t pressure p =  2.3 Torr, electron 
temperature was Te = 6000 K which corresponds to kTe =  0.5 eV.
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FIG. 71. Time-resolved electron temperatures evaluated from power waveform at 
pressures of: a) 10 Torr, b) 11.8 Torr, c) 13 Torr, and d) 20 Torr.

5.7 RATE COEFFICIENTS

We proceed by calculating rate coefficients required for kinetic model in pulse 

repetitive air discharge described in Section 3.2. As it has already been pointed out, 
the rate coefficient for the electron impact excitation, k ^ ° \  depends on the reduced 
electric field (given in Fig. 14a) and can be obtained from reduced electric field (or 

electron temperature) values by employing Eq. (51).
In the Fig. 72 time-resolved k* ^  is presented at four different pressures. It could 

be deduced from the figure that k * ^  behaves similarly as E /N n or Te in terms of both 
pressure and time dependence. Peak values of the rate coefficient are in the (4-15) 

xlO -11 cm3/s  range and average values vary from 2 x l0 ~ n  to 10 x 10“ u  cm3/s.

Figure 70 showed that the reduced electric field is almost constant for most of the 
pulse duration allowing us to apply the rate coefficients for vibrational excitation by 
electron impact, k ^ ^  and ke^v\  with a constant value. In the first approximation, 

all rate coefficients for vibrational excitation by electron impact were determined by
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FIG. 72. Time-resolved rate coefficient for electron impact excitation of the (0-0) 
band in the Second Positive System of Nitrogen at pressures of: a) 10 Torr, b) 11.8 

Torr, c) 13 Torr, and d) 20 Torr.

employing Eq. (51), assuming that for this particular case the EEDF was constant 
during the pulse and dependent solely on the self-consistent electrical field.

There are still no measured nor calculated total cross-sections for vibrational 
excitation of the A ^ C 3!^ )  state available. In order to estimate these rate coefficients, 

we have taken the advantage of the fact that the vibrational excitation rates of 
the nitrogen ground state have been reported in the literature [20]. Therefore, we 
estimate ke ^  and by scaling the values of rate coefficients for the vibrational 
levels in A^A ^E*) state. Results for the rate coefficients in the ground state are 

given in the Table 8. The same concern arises in evaluation of rate coefficients for 

V-V processes, k c ^ ’C^  and k c ^ ’C v̂~^- By applying the results of Capitelli and 
Dilonardo [71], we have estimated these coefficients to be about 10~18 cm3/s, which 

implies they could be neglected in the first approximation.

The next step was to evaluate the rate constant for collisional deactivation.
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TABLE 8 . Rate coefficients for the electron-impact vibrational excitation of the
ground-state nitrogen.__________________________________________

v 1 2  3 4

Rate coefficients ( 1 0 10 aai) 41.6 23.8 16.2 9.37

Quenching rate constant, k c ^ 'C^°\ is a function of density and vibrational quantum 
number [31], as shown in Eq. (6 6 ). Rate coefficients for the collisional quenching at 

different pressures are presented in Table 9 where we used the radiative life time of 

N2{C3Tlu) state tcb = 45 ns.

TABLE 9. Rate coefficients for the collisional quenching from the Nitrogen Second 
Positive System at different pressures in air discharge.__________

Pressure (Torr) Rate coefficients (10 11 gsf-)

1 0 . 0 2.9
1 1 . 8 2.7
13.0 2.7
2 0 . 0 2.3

We should mention tha t in discharges containing air, the nitric oxide, NO, which is 

highly reactive, could be produced in observable quantities. In this work we evaluated 
the presence of nitric oxide by comparing the radiation from nitrogen and nitric oxide 

bands. We found tha t NO7  bands could be barely observed. Thus, we conclude that 
NO presence is negligible.

Separately, for the purpose of the study of supersonic flowing argon discharge 
described in Section 3.1 we have calculated rate coefficients for electron impact ex­

citation from its dependence on the reduced electric field or electron temperature 
values by employing Eq. (51) (given in Fig. 13). By assuming electron temperature 
Te =  0.5 eV, we have evaluated excitation rate coefficients from Ar I ground state to 

be k f p2 =  0.5 x 10- 1 1  cm3/s  for Ar I 2p2 excited state, fc®,p3 =  0.24 x 10~n  cm3/s  
for Ar I 2p3 excited state, and A;f,p4 =  0.13 x 10~u  cm3/s  for Ar I 2 p4 excited state. 
Excitation rate coefficients from Ar I metastable ls5 state are k f p2 = 1.8 x 10- 1 1
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cm3/s  for Ar I 2p2 excited state, k9,p3 =  10.0 x 10~n  cm3/s  for Ar I 2p3 excited state, 
and fcf,p 4 =  1.4 x 10“ u  cm3/s  for Ar I 2p4  excited state.

We have also calculated the quenching rate coefficients in supersonic flowing argon 
discharge by employing the results of Zhu and Pu [30], see Table 1. They are equal 
to k9,p2 = 2.3 x 10“ 11 cm3/s  for Ar I 2p2  excited state and k9,p3 =  k9,pi — 6 . 8  x 1 0 “n  
cm3/s  for Ar I 2p3  and 2p4  excited states respectively, at pressures of 2.3 Torr. In 
addition, radiative life times for Ar I 2p —> Is  transitions are given in Table 10.

TABLE 10. Radiative life times for 2p —> Is transitions in argon discharge. 

l s 2  l s 3  l s 4  IS5

2p2  21.7 ns 28.0 ns 182 ns 52.0 ns
2p3  7.80 ns 23.5 ns 52.6 ns
2p4  24.0 ns 17.9 ns 1.52xl04 ns 532 ns
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5.8 ELECTRON DENSITY

Electron density is one of the most fundamental plasma parameters since it affects 

the energy balance and heat transfer, kinetics, and global properties of the plasma, 
such as wave transmission reflectivity, absorption, and scattering [8]. It is, therefore, 
of vital importance to determine the time-resolved electron density distributions in 

the case of non-equilibrium, non-stationary, fast moving, and chemically reactive 
gas discharges. Time-resolved electron density was obtained in pulse repetitive air 
discharge, described in Section 3.2, by applying kinetic model based on the analysis 
of molecular bands of nitrogen C3n„ —> B 3Ug second positive system.

Both electronic and vibrational states were included in the study. Vibrational 
population of the Y2(C3IIU) state depends on two main terms, vibrational excitation 
by electron impact within the Ar2 (C3n u) state, and vibration-vibration collisions 

within the same state, described in Subsection 4.3.2. We have estimated the contri­
butions from both e-V and V-V collisional processes by using rate coefficients for the 
nitrogen ground state in the absence of the proper coefficient rates for the Af2(C3n u) 
state. The terms due to the e-V processes are nine orders of magnitude smaller than 

any other term in the Eq. (160) and the terms due to the V-V processes contribute 
even less to Eq. (160). Rates for the vibrational excitation of the Y2(C3IIU) state 
are even smaller than the ones for the ground state which justifies neglecting them. 

Thus the last four terms in Eq. (160) are neglected in the numerical solution, as well 
as for the analytical approximation.

Electron density was first estimated by employing Eq. (165) for the steady state 
analytic method. Results for the steady state case are given in Table 11.

TABLE 11. Time-averaged electron density obtained in the Nitrogen Second Positive
System at different pressures in air discharge.__________________

Pressure (Torr) Electron density (1013 cm-3)

10.0 6.5
11.8 5.0

13.0 4.6

20.0 1.3
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We have assumed that the relative errors in pressure and ke measurements were 
no more than 5%. The electron density waveform was then obtained numerically in 
two steps. First, we calculated the first derivative of the measured AT2(C3I1U) state 

and then we used this value to determine electron density waveform from Eq. (160). 
The time-resolved electron density distribution for the pressure at p =  11.8 Torr is 
presented in Fig. 73. The average value of the electron density from the numerical 
method was calculated to be (5 .0±0.5)xl013 cm-3 over the interval 0.1-4.0 ps, and 
is indicated in Fig. 73 with a dashed horizontal line.
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FIG. 73. Electron density waveform evaluated numerically using band intensity wave­
form and Eq. (160).

As seen in Fig. 73, these values are lower than the results obtained using Stark 
broadening data from Ref. [41]. There are two reasons for such a discrepancy. First, 

for the plasma conditions at hand, the deconvolution of the Stark width from the 
measured Voigt profile was limited by the instrumental resolution of the spectrometer.
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Second, the intensity-to-noise ratio of the Hg line was rather low. Those uncertainties 

led the authors [41] to estimate the spread of the electron density value obtained 
from Stark broadening of Hg line of (8 ± 3 )x l0 13 cm-3 which is in fair agreement 
with electron densities obtained in this work.
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Using the described method, we have performed measurements of electron density 

at three additional pressure points: at 10, 13 and 20 Torr. The average and peak 
values of the electron density at four different pressures are given in Fig. 74. It shows 

that the electron density decreased by a factor of 6, approximately. This sharp drop 
is explained by the drop of the reduced electric field because the number density of 

ground state increases by more than a factor of two and the electric field remains the 

same. Additional contribution to the electron density drop comes from the nonlinear 
variation of the rate coefficients with the reduced electric field.
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5.9 POPULATION DENSITIES OF ARGON METASTABLE AND
RESONANT LEVELS

Here we provide information about time-resolved population densities of Ar I 

metastable and resonant levels, in addition to time-resolved population densities of 
Ar I p levels described in Section 5.4. Metastable atoms play an important role in 

characterization of gas discharges. Due to their high energy and long life time they 
are considered an important energy reservoir, which could be transm itted to the rest 

of plasma particles by collisional processes.
We have obtained population densities of two Ar I levels:

• Metastable l s 3 or 4s [3/2] 2 3 P2 J  =  2 state from the spectral line intensity at 
706.72 nm

• Resonant l s 4 or 4s [3/2] 1 3 Pi J  = 1 state from the spectral line intensity at 

727.29 nm.

Argon metastable/resonant level population densities were obtained by applying 

Ar kinetic model, described in Subsection 4.3.1, in the following way. First, we have 
calculated the difference in intensities of measured Ar I 2p states with and without 
presence of dye laser light beam. Further, we have determined the first derivative 
of the calculated difference. These results have been used to evaluate time-resolved 

population densities of metastable/resonant states by employing Eq. (153) stated in 

Subsection 4.3.1.
Time-resolved population densities of Ar I metastable l s 5 level were determined 

from the kinetic equation of the Ar I 2p3 level, derived from Eq. (153)

— n 35 =  £ ( n ;3 - n p3) + ( - L  + ± -  + ± -  + k ^ 3Nn)  (yv;3 -  n p3), (2 0 s)
C d t  V Ts2 Ts 4

where r s2, rs4, and rs5 are radiative life times of the Ar I 2p3 level to l s 2, ls 4, and lss 
levels, respectively, shown in Table 10, and B \2 is the Einstein coefficient for laser 
absorption given with the Eq. (141). For the statistical weight of the lss metastable

level of gs5 =  5 and the transition wavelength A =  706 nm, Einstein absorption
coefficient is equal to P 12 =  8.5 x 1019 J -1m3s-2.

Similarly, we have obtained time-resolved population densities of Ar I resonant 

l s 4 level by employing the kinetic equation of the Ar I 2p2 level

— Ns4 = ^ (iV ;2 - Np2) + ( —  + —  + —  + —  + k9*2Nn){N'p2 -  Np2).(209)
C d t  ^ T s 2 Ts3 Ts4 Ts5
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Einstein £?12 coefficient for laser absorption was equal to B l2 = 4.5 x 1019 J -1m3s-2 
where statistical weight of the ls 4 metastable level was <7s4 = 3 and the transition 
wavelength was A =  727 nm.
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FIG. 75. Time dependence of the population densities inside the power sine signal 

at 2.3 Torr of the Ar I: a) metastable l s 5 state and b) resonant l s 4 state. The values 
obtained from the experimental results are connected with the smoothed fitted line. 

Experimental errors are indicated with error bars.

Time variation of population densities of these two levels are presented in Fig. 
75. Experimental errors presented in the figure were estimated from the experimental 

errors in obtaining population densities of Ar I 2p2 and 2p3 levels and corresponding 
first derivatives. They are determined to be within 10%. It could be seen from the 
figure tha t both metastable and resonant states have two peaks within the power 

signal. It seems as if the population densities oscillate at the twice the frequency of 
the power signal ( /  =  120 Hz). Similar effect has already been observed in literature 
in the work of Macdonald et al [72] in the case of xenon discharge lamp.

It should be noted that the first derivatives of the Ar I 2p2 and 2p3 levels showed 

similar time behaviosr with and without the laser signal. This implies tha t their
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difference can be approximated to zero as the first approximation, and the simplified 

case given by Eq. (154) can be applied within the 20 % approximation error.
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CH APTER 6 

CONCLUSION

In this work, we have developed several methods to explain a low temperature, 
non-equilibrium gas discharge plasmas used to investigate surface modification pro­
cesses. The discharge has been generated using microwave (MW) power. Specifically, 

we have obtained plasma parameters important for a complete characterization of 
these plasmas. Plasma processing using radio-frequency (RF) and MW power has 
become an essential part of surface modification processes (plasma etching and clean­
ing) due to the strong chemical reactivity of plasma particles and the possibility to 
avoid chemical disposal problems characteristic for the acid-based wet processing 

technologies. MW discharge plasmas represent a good candidate for environmentally 
friendly “green” sources for plasma etching and cleaning purposes since they allow 

work at higher pressures and provide higher plasma densities. Therefore, understand­
ing physical and chemical phenomena that describe these plasmas is required. This 

includes developing kinetic models for all particles in the discharge (electrons, atoms, 
molecules, and ions) and obtaining important plasma parameters (gas densities and 
temperatures, electron densities and temperatures, population densities of excited 

atoms/molecules, etc).
Plasma parameters were obtained in two different gas discharges operating at 

pressure range of 1-20 Torr: supersonic flowing MW discharge in argon at frequency 

/  =  2.45 GHz and pulse repetitive MW discharge in air at /  =  9.5 GHz. Optical 
emission spectroscopy was used to analyze the molecular structure of these plasmas 
by observing molecular bands of N 2 (C3IIU —» B :illg) Second Positive System (SPS) 
at 337.1 nm. We have evaluated rotational temperature by comparison between nu­

merically generated synthetic and experimentally obtained rotational spectra of N 2 
(C3n„ —> B 3Hg) vibrational sequence A v  =  2 from the R 2 branch in pulse repeti­
tive air discharge. The results stood in good agreement with rotational temperature 

determined from the slope of the Boltzmann distribution. We have revealed that 
rotational temperature decreases with the pressure increase. Similarly, by observing 

vibrational spectrum of A v — 2 sequence of N 2 (C3n„ —> B3n s), we have determined 
vibrational temperature and confirmed the Boltzmann distribution of the vibrational
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levels. By assuming that the rotational temperature is equal to the gas kinetic tem­
perature, we have been able to calculate ground state populations from the ideal 

gas equation in pulse repetitive discharge in air. We have found that ground state 
population densities increased by more than a factor of two when the pressure in­
creased from 10 to 20 Torr, which was expected almost intuitively, even though the 

gas temperature could perturb this trend.

Time-resolved population densities of the N2 (C'3IIti) state in pulse repetitive air 
discharge and Ar I Ap levels in supersonic flowing argon discharge have been obtained 

by employing time synchronization device. Population densities of both N2 (C3I1U) 
and Ar I Ap states vary in time in a similar way. During the discharge breakdown, 
these population densities peak in their values. After the breakdown, both supersonic 

argon and pulse repetitive air discharge become quasi-stationary characterized with 
nearly constant population densities.

In the case of supersonic flowing discharge, time-averaged, spatially-resolved di­

agnostics was possible by applying two dimensional plasma tomography methods. 
Several different approaches (Abel inversion, two path method based on measure­
ments at two mutually perpendicular angles, 2D Radon inverse integration) based 
on plasma tomography methods have been developed and tested in this work. It was 
found that 2D inverse Radon integration employing filtered back projection technique 

with Shepp-Logan filter provides the best reconstruction of the internal plasma struc­
ture in both cases, qualitatively and quantitatively. Optical emission spectroscopy 

measurements have been performed by employing an automated measurement sys­
tem (AMS). The AMS was built to streamline the measurements and to increase the 
overall precision. The system controls the angle and distance within sub-degree and 
sub-milimeter angle and distance precision, respectively. Spatially resolved popula­

tion densities of Ar I Ap levels were evaluated at several positions in the afterglow 

region of the Ar discharge. It was found that the excited species are mainly con­
centrated close to the inner surface of the quartz tube implying that the discharge 

is partially sustained with the surface wave. We have also determined spatial distri­
butions of the electron excitation temperatures in the discharge afterglow region by 
assuming Boltzmann distribution of the Ar I spectra. The excitation temperatures 
were obtained from the exponential fit of the spectral line intensities versus threshold 

excitation energies. It appeared that electron excitation temperature values were in 
contrast to the population distributions. This contrast reflects the complex dynamics
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and the structure of the surface wave discharge.

Measuring the time-resolved waveforms of the forward and reflected power signal 
in the pulse repetitive air discharge allowed us to determine the time variation of 
the reduced electric field and, consequently, the electron temperature. Both, reduced 
electric field and electron temperature changed with time in a similar way as popu­

lation distributions of the N2 (C3n u) and Ar I 4p levels. They peaked in their values 
during and immediately after the discharge breakdown and were characterized with 
almost constant values for the rest of the discharge duration.

We have developed a simple but accurate kinetic model based on the analysis 
of molecular bands of N2 (C3n u —> B 3Ylg) Second Positive System to obtain time- 
resolved electron densities in pulse repetitive air discharge. It was found tha t electron 

density decreased sharply with pressure increase. This increase was expected since 
the number density of ground state has increased by more than a factor of two while 
the electric field remained the same when the pressure increased. These electron 

densities were compared with the electron densities obtained using Stark broadening 
approach in previous experiments performed under same conditions. It has been 
found tha t they were in fair agreement.

By employing the laser induced fluorescence (LIF) technique and the kinetic 

model based on the analysis of population density rates of Ar I p states, we were 
able to obtain time-resolved population densities of Ar I metastable 1«5 and reso­
nant l s 4 levels. For the purpose of LIF measurements, we have built a tunable dye 

laser tha t operates in infrared region and is pumped by a pulsed NdYag laser oper­
ating at 532 nm. The pump laser was synchronized with the power supply and the 
detection system using the synchronization device providing the time-resolved mea­
surements on a microsecond time scale. It was determined that population densities 

of Ar I metastable l s 5 and resonant l s 4 levels oscillate with the doubled frequency of 

the power signal, which was indicated with two peak values within the power signal.

We have also described various approaches for obtaining electron energy distri­
bution functions (EEDF) and electron energy probability functions (EEPF) in mod­
erate (Maxwell-Boltzmann, Druyvesteyn, two parameter, and two term approach) 
and strong electric fields. Comparison between these approaches in moderate elec­

tric fields showed that the two term approach provides the most general solution of 
Boltzmann equation. However, two term approach is not valid for high values of 
reduced electric field when most collisions are inelastic and EEDF becomes strongly
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anisotropic. These conditions are characteristic for the breakdown of the microwave 

discharge, implying tha t during this time, the EEDF can not be determined by em­
ploying the two term approach. Therefore, evaluation of EEDF at the inception of the 
MW discharge is an important task for future work. In addition, we have determined 
rate coefficients for electrical impact collisions by solving numerically the integral 

based on the product of the cross-sections and distribution functions of colliding par­
ticles. Also, we have discussed different methods developed in literature for obtaining 
collisional deactivation rate coefficients based on rate coefficients’ dependence on gas 
kinetic temperature.

To conclude, we have provided a full characterization of low temperature, non­
equilibrium MW discharge plasmas by developing detailed kinetic models of plasma 

particles, developing and applying non-intrusive, in situ diagnostic techniques (laser 
induced fluorescence and plasma tomography) for obtaining crucial plasma parame­

ters (gas densities and temperatures, electron densities and temperatures, excitation 

temperatures, rotational and vibrational temperatures, and population densities of 
excited atoms and molecules) and describing their time and spatial distributions. 
These promising results allow us to introduce the developed models and diagnostic 
techniques (plasma tomography, LIF) to investigate RF and MW discharges sus­

tained inside the SRF niobium cavities currently employed for plasma etching and 
cleaning purposes in our lab.
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A PPE N D IX  A

CONVERSION OF PHYSICAL UNITS

Every quantity with the physical dimension is defined by the physical unit that 
describes it. Values of dimensionless quantities are expressed by pure numbers. Al­

though there exists an internationally recommended unit data base called Interna­
tional System of Units, it is often useful to employ different physical units convenient 
for specific research area.

In atomic and plasma physics, for example, it is more convenient to express energy 

in units of electron volts (eV) than Joules (J) with the conversion factor

1 eV -  1.6 x 1(T19 J, (210)

which represents the amount of energy gained (or lost) by the charge of a single 
electron moved across an electric potential difference of one volt. Furthermore, since 

the energy is related to the wavelength of the photon, it can be expressed in the units 
of wavelength (nm)

r. . h e  .
E  =  (211 )

where h =  4.1 • 10-15 eV-s is the Planck constant and c =  3 • 108 m /s is the speed of 
light. Hence,

=  1239(eV • nm)
A(nm)

This implies tha t energy of 1 eV corresponds to wavelength of ~1240 nm,

E  =  1 eV =► A 3* 1240 nm. (213)

When describing transitions between energy levels in atoms/molecules it is common 

to use units of cm- 1 instead of eV described as

E = 1 eV =► \  = 8065.43 cm-1 . (214)
A

It should be noted that, in plasma physics, temperature, T,  is also often given 
in electron volts not in kelvin (K). The conversion to kelvin is defined by using the 

Boltzmann constant k =  1.38 • 10~23 J /K  =  8.6 • 10~5 eV/K as

E = kT.  (215)
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Thus
E(eV) = 8.6 • 10~5(eV/K) • T(K),  (216)

implying that energy of 1 eV corresponds to 11604 K,

E = 1 eV =► T =  11604 K. (217)

Conversion units discussed above are summarized in Table 12.

TABLE 12. Conversion table for energy units.

Physical units

eV J nm cm 1 K

1 1.6-10-19 1240 8065.43 11604

In this work we also expressed pressure in units of Torr rather than Pascals (Pa). 

Torr is related to Pascal as
1 Torr =  133.3 Pa. (218)

In addition, reduced electric field E / N n is given in units of Townsend (Td) with 

conversion factor
1 Td =  10"17 Vcm2. (219)
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A PPE N D IX  B

NUM ERICAL CODES

B .l PLASMA TOMOGRAPHY

Numerical codes for calculating direct and inverse Abel transform and direct 
and inverse Radon transform described in Section 4.1 are presented bellow. In the 
case of inverse Radon transform, we have shown both direct integration and filtered 

back projection method. We have employed previously developed subroutines for 
numerical integration and derivation together with the subroutines for the data fitting 
(Lagrange interpolation and spline fitting) and these codes are excluded from the 

presented work.

B.1.1 ABEL TRANSFORM CODES
; * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

module physics
integer, parameter :: nint-21 ! number of abel in tegrals  
double precision  x v a l(n in t+ l), f(n in t+ l)  
double precision  y in t(n in t+ l) , x in t(n in t+ l)  
double precision  a 

end module physics
i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

program integal

Direct Abel Integral 

Milka Nikolic June 2013 

input
D istribution function Er(r) 
output
In ten sitie s  on d ifferen t radial p o sitio n s, I(r)

use physics 

im plic it none 

integer k, nofun
double precision  rmin, rmax, r , gauss16 
double precision  step , e 
double precision  Erl
double precision  abserr, r e lerr , errest, fla g

double precision , parameter :: p i « 3.1415926 
parameter (abserr^O.O, relerr*!.O e-16) 
external e
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!reads data from f i l e

open (unit*7, f i le *  ’x inverse.dat’) 
open (unit*8, f i le *  'yinverse.dat*) 
open (unit*10, f i le *  ’xvalues.dat’) 
open (u n it* ll ,  f i le *  lyvalues.dat>)

do k * lfnint
read (7,100) xval(k) 
read (8,100) f(k )

end do

do k * l,n in t ‘w rites data in to  f i l e
w rite(* ,* ) xva l(k ), f(k)

end do

evaluate integral

rmin * 0 .0  
rmax * 1.6

step * (rmax-rm in)/dfloat(nint“l)

do k * l,n in t
a=rmin+step*dfloat(k-1) 
r * a

!Erl * gaussl6(e, r , rmax+0.00001) 
c a ll  quanc8(e,r+0.00000000000001,rmax+0.000000000000001,a b serr ,re lerr ,E rl,errest,n o fu n ,flag )

y int(k) = 2.0*Erl 
xint(k) * r

end do 

do k * l,n in t
w rite(10,100) x int(k) I in te n s it ie s  for  the integral

w rite(11,100) yint(k) 
end do

100 form at(f15.4)
end program in tega l

function e(x)

em issiv ity

use physics 
im p lic it none
double precision  x, e ,  lagin t

e * la g in t(x , xval, f ,  n in t, 3 )*x/(sqrt(x-a)*sqrt(x+ a)) 
end function e

! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

module physics
in teger, parameter:: n*22

is iz e  of an array, number of data points 
in teger, parameter :: nd*200 ! number of points where derivatives to be calc, 
in teger, parameter :: ni*21 ! number of abel inverted in tegrals
double precision  y(n ), xval(n), dy(nd), dx(nd), y in t(n i) ,  x in t(n i) ,  y r (n i), xr(ni) 
double precision  a 

end module physics 
; * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *



program integal

Inverse Abel Integral

Milka Nikolic June 2013 

input
In ten sit ie s  on d ifferen t radial p o sitio n s, I(r )  
output
D istribution function Er(r)

use physics 

im plic it none

integer k,nsimp, j ,  nofun 
double precision  rmin, rmax, r , g, gaussl6 
double precision  step , x, deriv4, deriv3 
double precision  Erl
double precision  abserr, re lerr , errest, f la g

double precision , parameter :: pi * 3.1415926 
parameter (abserr*0.0, relerr*1.0e-16) 
external g

reads data from f i l e

open (unit=7, file -*xva lu es.d at* ) 
open (unit*8, f i le *  *yvalues.dat*) 
open (unit*9, f i le *  *derivative.dat*) 
open (unit*10, f i le *  ’in teg ra l.d a t’)

do k = i,n -l
read (7,100) xval(k) 
read (8,100) y(k)

end do

do k * l,n - l  !writes data into f i l e
w rite(*,*) xval(k), y(k)

end do

100 format(f15.4)

rmin * x v a l(l)  
rmax * xval(n-1)

ca lcu la tes the f i r s t  derivatives

step  * (rm ax-rm in)/dfloat(nd-l)

do k=l,nd
x * rmin + step * flo a t(k -l)
!dy(k) * deriv4(x, xval, y, n-1, 5, 1) 

dy(k) * deriv3(x, xval, y, n-1, 1) (perfect for te s t  functions 
dx(k) * x 

w rite(* ,*) dy(k) 
end do

do k * l, nd
w rite(9,200) dx(k), dy(k) ! in te n s it ie s  for the f i r s t  derivative

end do

200 format(2f15.4)
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rmin = x v a l( l)  !to  avoid divergency
rmax = xval(n-1)

step * (rm ax-rm in)/dfloat(ni-l)

do k » l,n i
as rmin+step*dfloat(k-1) 
r * a 

nsimp ” 2
!Erl * gaussl6(g, r , rmax+0.001)

!do j-1 ,1 6
!c a ll  simpsonCg, r+0.001,rmax+0.001,E rl,n)
?write(*,*) nsimp, Erl 
!nsimp * nsimp*2 
!end do

c a ll  quanc8(g,r+0.l,rm ax+0.l,abserr,relerr,E rl»errest,n ofun ,flag)  
yint(k) = (-1 .0 )* E rl/p i  

xint(k) -  r
end do 

do k= l,n i
vriteC lO ,100) y int(k) f in te n s it ie s  for the integral

end do

end program in tega l 

function g(x)

em issiv ity

use physics 
im plic it none
double precision  x, g , lag in t

g * la g in t(x , dx, dy, nd-1, 3 )/(sqrt(x -a )*sq rt(x+ a))  
end function g

B.1.2 DIRECT RADON TRANSFORM CODE
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

module physics
integer, parameter:: ng*161 fs ize  of an matrix, number of em isiv ity  data points
integer, parameter:: ntheta=21 !number of angles to  be produced
integer, parameter:: np»17 Inumber of measured distance points * number of p points
integer, parameter:: ns=601

double precision  g(ng,ng), theta(100), p(np), s (n s ) , s i (n s ) ,  g i(n s ) , Em is(ns,ns), E m istest(ns,n s), s t  
double precision  b (n s), c (n s), d(ns) 
integer tmax

double precision , parameter :: pi * 3.1415926 

end module physics
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

program directradon

Direct Radon Integral for  2D Plasma Tomography



Milka N ikolic June 2013

input
D istribution function Emis(x,y) 
output
In ten sitie s  on d ifferen t p o sitio n s and under d ifferen t angles, I(p ,th eta )  

use physics

im p lic it none

integer i , j , k
integer m, 1, t ,  nofun
integer m test, l t e s t ,  swap
double precision thetamin, thetamax, dtheta
double precision R, xmin, xmax, dp
double precision smin, smax, ds
double precision x i ,  y i ,  dx
double precision  value
double precision abserr, r e ler r , e rr est , f la g , Erl 
double precision  s i t e s t ,  g i te s t  
integer t e s t

double precision e 
external e

parameter (abserr=0.0, relerr*!.O e-16)

f i l e  names

open (unit*7, f i le *  ’radoninverse.dat*) 
open (unit=8, f i le *  ’te s tg .d a t’) 
open (unit=9, f i le *  ’v ar ia b les .d a t’) 
open (unit*10, f i le *  *directradon.dat*) 
open (u n it* ll ,  f i le *  *sampling.dat*) 
open (unit*12, f i le *  ’theta.dat*) 
open (unit*13, f i le *  *variablescheck.dat’) 
open (unit*14, f i le *  *in te g r a lte s t .d a t’ ) 
open (unit*15, f i le *  ’d ifferen ces .d a t’ )

reads data from f i l e

do i* l,n g
read(7 ,* ) ( g ( i , j ) ,  j* l,n g ) ! em is iv itie s  for  the integral

end do

do i* l,n g  ! t e s t  w rites data in to  f i l e
vrite(8 ,101) ( g ( i , j ) ,  j* l,n g )

end do

100 format(161(f8.4>)
101 format(161( f8 .4 ))

variable dimensions

R * 1.6 
xmin * -1 .6  
xmax * 1 .6
dx = (xmax-xmin)/real(ng-l) 
dx * int(dx*1000.0)/1000.0
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thetamin * 60*pi/180.0
thetamax * 150*pi/180.0
dtheta -  (thetam ax-thetam in)/(ntheta-l)

dp * (xmax-xmin)/real(np-l)

evaluate d irect radon integral

do i* l,n th eta
th e ta (i)  « thetamin + d th eta * rea l(i-l)  
write(*,300) th eta (i)* 1 8 0 .0 /p i
w r ite (ll,3 0 0 ) theta(i)*180.Q /p i

do j* l,n p
if (th e ta ( i)* * 0 .0  .or. th eta (i)**p i) then 

pCj) * (-l)*(xm in + d p * rea l(j-l))  
smin * -R 
smax = R 

e lse
p (j)  * (-l)*(xm in + d p * rea l(j-l))  
smin = -(R**2.0-p(j)**2)**0.5  
smax * (R**2.0-p(j)**2)**0.5 

end i f

w rite(9,310) p (j)  

ds = (sm ax-sm in)/real(ns-l)

t  * 0 
mtest = 0 
I te s t  = 0

w r ite (ll,3 1 0 ) p (j)

do ks l,n g

x i * xmin ♦ dx*(k-l)

if(th e ta (i)-= 9 0 .0 * p i/1 8 0 .0 ) then 
y i = p (j)  

e lse
y i * x i* ta n (th e ta (i)) -  p ( j ) /c o s ( th e ta ( i) )  

end i f

vr ite (9 ,3 2 0 ) x i ,  y i ,  n in t(x i/d x)*1 .0 , - ( in t(x i/d x )* d x -x i) ,
x i/d x ,n in t(y i/d x )*1 .0 , y i/d x , in t(y i/d x)*dx-y i

if(Cnint(yi/dx)*dx-yi)**2<0.0005 .and. yi.le.xm ax .and. yi.ge.xm in)then
1 * k
m * nint((yi-xm in)/dx) + 1

if(m .eq.m test .and. l .e q .I t e s t )  then 
w rite(* ,*) m, 1, th e ta (i)* 1 8 0 .0 /p i, p (j)

e lse
if( th e ta (i)« -9 0 .0 * p i/1 8 0 .0 ) then 
s t  = xi 

value -  g(m ,l) 
e lse

s t  * x i* co s (th e ta (i)) + y i* s in (th e ta ( i) )  
value * g(l,m ) 

end i f
if (s t .le .sm a x  .and. st.ge.sm in) then
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t  *  t + i  
s i ( t )  -  s t  !s(k) 

g i ( t )  * value 
tmax * t

w r ite ( l l ,* )  l ,m ,t ,  x i ,  y i ,  g ( l ,a )

end i f  
end i f

vrite (9 ,330) x i ,  y i 
a te st * a 
I te s t  = 1 

end i f  
taax * t  

end do !ends s loop

!checks the sampling of the points

do k=l,ng
x i = xmin + dx*(k-l)
y i * x i* ta n (th e ta (i))  + p (j ) /c o s ( th e ta ( i) )

i f ( (nint(yi/dx)*dx-yi)**2<0.00001) then 
write(13,330) x i ,  y i 

end i f  
end do

(sorts s i ( t )  in  r is in g  order

swap = 1
do while (swapsasl)  

swap = 0 
do k*l,tm ax-l

i f ( s i ( k ) .g t . s i ( k + l ) )  then 
s i t e s t  * s i(k + l)  
s i(k + l) -  s i(k )  
s i(k )  = s i t e s t

g ite s t  -  g i(k + l)  
gi(k+ l) = g i(k) 
gi(k ) = g ite s t

swap = 1 
end i f

end do 
end do

if(ta a x  .g t .  2) then (checks i f  there i s  enugh points to  calculate in tegra l

c a lls  sp line to  calcu late  sp lin e co efic ien ts  

c a ll  sp lin e  ( s i ,  g i ,  b, c, d, taax)

(c a lls  quancS in tegra l
I  a a a B s s s s s s m s s s B K s a s a

c a ll  quanc8(e, smin, smax, abserr, r e ler r , Er1 ,e rr es t , nofun, flag) 
E m is(j,i) * Erl

do t=l,tmax
s i ( t )  -  0 .0  
g i ( t )  * 0 .0
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end do 
e lse

E m is(j,i) * 0.0  
v r ite (* ,* )  tmax 

end i f

‘te s t s  in tegra l for g * x*x+y*y

EmistestCj, i )  * (2*smax**3)/3 + 2*smax*p(j)**2
!E m iste st(j,i)  « sqrt(p i)*exp(-p(j)**2)

end do Sends p loop
end do Sends theta loop

do j* l,n p
vrite(10 ,400) (E m is(j,i) , i* l,n th eta ) ! l in e  in te n s it ie s  to  use in  inverse radon

v r ite (1 4 f400) (E m istestC j,i), i* l,n th eta ) S t e s t  of integral
lw rite(15,400) (((E m istest(j, i)-E m is(j, i))*100)/E m istest(j , i ) , i* l,n th eta )  

end do

do j* l,n th e ta
vrite(12 ,500) th e ta (j) S theta  values to  use in  inverse radon

end do

200 form at(4(f10.4))
300 form at('theta = ', f l0 .6 )
310 formatC'p = ' ,f l0 .4 )
320 format(8( f 10.6))
330 formatC'xi f l0 .4 ,  'y i =*, flO .4) 
400 format(100(f10.4))
500 formatCf10.4)

end program directradon

function e(x)

function for e(x) integral

use physics 
im p lic it none
double precision  x , e , la g in t, isp lin e

e = isp lin e (x , s i ,  g i ,  b, c , d, tmax) 
!e -  la g in t(x , s i ,  g i ,  tmax, 3) 

end function e

B.1.3 INVERSE RADON TRANSFORM CODE 
- DIRECT INTEGRATION
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

module physics
in teger, parameter:: ntheta=21 Snumber of angles
in teger, parameter:: np=17 !number of measured distance points s  number of p points
in teger, parameter:: nx=51 !number of x and y points produced in  the integral

double precision  fs(n p ,n th eta ), th e ta (n th eta ), g i(n p ), p(np), Er(ntheta), m(nx,nx), mtest(nx.nx) 
double precision g ite s t(n p ) , ptest(np) 
double precision  b(100), c(100), d(100) 
double precision pO

double precision , parameter :: pi = 3.1415926 
end module physics
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! * * * ’

program radon

Inverse Radon Integral for 2D Plasma Tomography -d irec t integration

Milka N ikolic June 2013

input
In ten sitie s  on d ifferen t p osition s and under d ifferen t angles, I(p ,th eta)  
output
D istribution function g(x ,y) 

use physics

im p lic it none

integer i ,  j ,  k, 1 
integer nofun, swap

double precision  xmin, xmax, dp
double precision  dx, x i ,  y i
double precision  rea l, thetamin, thetamax
double precision  abserr, re lerr , e rr est , f la g , Em, Erl, Er2, Er3, deriv3 
double precision  p te s t l ,  g i t e s t i ,  deriv4 
double precision  min, proba

double precision  g, e 
external e 
external g

parameter (abserr®0.0, relerr®!.Oe-16)

f i l e  names

open (unit®7, file®  ’directradon.dat’) 
open (unit*8, f i le *  ’theta.dat*) 
open (unit*9, f i le *  ’test.d a t* )  
open (unit*10, f i le *  *nversecalc.dat’) 
open Cunit*ll, f i le *  ’nversecalctest.dat*)

reads data from f i l e

do i* l,n p
read(7,*) < f s ( i , j ) ,  j* l,n th e ta ) * d irect radon in te n s it ie s  for the in tegra l

end do

do i* l,n th eta
read(8,200) th e ta (i)

end do

do i* l,n p  Iv r ites data into f i l e
write(9,300) < f s ( i , j ) ,  j “ l,n th eta )

end do

do i* l,n th eta
v r ite (* ,* )  th e ta (i)

end do

100 f  ormat(50(f 8 .4 ))
200 form at(f15.4)
300 form at(50(f10.4))
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! variable dimensions

xmin * -1 .6  
xmax 9 1.6
dx * (xmax-xmin)/real(nx-l) 
dp * (xmax-xmin)/real(np-l)

thetamin 9 th e ta (l)  
thetamax 9 thetaCntheta)

proba 9 0.00001

evaluate inverse radon in tegral 

do i 9l,n x
x i 9 xmin+dx*(i-l) 

do j 9l ,  nx
y i 9 xmin+dx*(j-l) 

do k=l,ntheta
do l 9l,np

g i ( l )  * f s ( l ,k )  
p (l)  -  (-l)*(xm in + d p * re a l(l- l))!* s in (th eta (k ))  

end do !ends p loop (in  1)

‘puts p (j)  in  reverse order 

•do l 9i,np
! g i t e s t (1) = g i(n p + l-l)

! p te s t ( l)  = p(np+l-l)
!w rite(*f*> p (l)  

fend do

fdo 1*1,np
! g i ( l )  9 g i t e s t (1)

! p (l)  9 p te s t ( l)
fwriteC*,*) pCl) 

fend do

fsorts p (j) in  r is in g  order
j s s s s a s a s a a s s a s » > M n n > « > * s

swap 9 1
do while (swap99!)

swap 9 0
do 1=1,np-l

i f  (p (l)  .g t .p ( l+ l) )  then 
p te s t l  9 p (l+ l)  
p (l+ l)  9 p ( l)  
p (l)  9 p te s t l

g i t e s t l  9 g i ( l+ l)  
g i ( l+ l)  9 g i ( l )  
g i ( l )  -  g i t e s t l

swap
end i f  

end do
end do

!c a lls  sp line to  calculate sp line co efic ien ts  

c a ll  sp line (p, g i ,  b, c , d , np) 

pO 9 (-1 .0 )*x i*sin (th eta (k ))+  yi*cos(theta(k>)
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rea l * sq rt(x i*x i+yi*y i)

min “ 0 . 0

if(rcal**2.1e.xm ax**2) than 
c a ll  quanc8(g,proba, xmax, abserr, ra la rr ,Er2, erra st,nofun, flag)
!c a ll  quanc8(g, xmin, xmax, abserr, ra la rr ,Er2, e rr es t ,nofun , flag)

Er(k) * Er2 ! + deriv4(p0, p, g i ,  np, 5 , l)*log(abs((xm ax-p0)/(p0-xm in))) 
e lsa

Er(k) -  0 .0
end i f

and do lends theta loop (in  k)

c a ll  sp lin e (theta , Er, b, c , d, ntheta)

c a ll  quanc8(e,thetamin,thetamax,abserr,r e le r r , Em,errest,nofun,flag)

m (j,i)  * ( - 1 .0)*Em/(2*pi**2)
!m tes t(j ,i)  * exp(-(xi*^2+yi**2))

end do lends y loop (in  j )  
w rite(* ,*) i ,  x i 

end do lends x loop (in  i )

do i= l,n x
vrite(10 ,400) (m (j ,i) ,  j» l,n x ) I in te n s it ie s  for the integral

! v r i t e ( l l ,400) (a b s (m (i,j ) -m te s t ( i ,j ) )» j= l,n x )  
end do

400 format(161( f 8 .4 ))

end program radon

function g(x)

function for g(x ,y) integral

use physics 
im p lic it none
double precision  x , g , la g in t, isp lin e , deriv4, deriv3, g test  

Iprincipal value integral

Igtest “ deriv4(x, p, g i ,  np, 5, 1) -  deriv4(p0, p, g i ,  np, 5 , 1)
!g * g test/(x -p 0)

lalex formula
j -------------------------------------------- -----------------------------------------------------------------------------------------------
g te st  » isp lin e(p 0-x , p, g i ,  b, c , d, np) + ispline(p0+x, p, g i ,  b, c, d, np) 

-2* isp lin e(p 0 , p, g i ,  b, c , d, np) 
g * gtest/x**2

Igtest * -deriv4(p0-x, p, g i ,  np, 5, 1) + deriv4(p0+x, p, g i, np, 5, 1)
!g “ g te s t /x

Ig * deriv3(x, p, g i ,  np, l) /(x -p 0 )
Ig * (x+p0)**2*ispline(x, p, g i ,  b, c , d, np)/((x-p0)*(x+p0)*(x-p0)*(x+p0)) 
!g * la g in t(x , p, g i ,  np, 3 )/((x-p0)**2)  

end function g

function e(x)

{function for e (x ,y ) integral in theta

use physics
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im plic it none
double precision x , e , la g in t, isp lin e

e * isp lin e (x , theta , Er, b, c , d, ntheta) 
!e » la g in t(x , theta , Er, ntheta, 3) 

end function e

B.1.4 INVERSE RADON TRANSFORM CODE 
- FILTERED BACK PROJECTION
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

module physics
in teger, parameter:: ntheta*21 {number of angles
in teger, parameter:: np*17 {number of measured distance poin ts 9 number of p points
in teger, parameter:: nx*161 {number of x and y points produced in  the in tegra l

double precision  fs(n p ,n th eta ), th eta (n th eta ), Ptheta(np), Qtheta(np), p(np), g i(n x ,n x), mi(nx,nx) 
double precision  b(800), c(800), d(800) 
double precision  pO

double precision , parameter :: p i = 3.1415926 
end module physics
i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

program f i l t e r

Inverse Radon Integral for 2D Plasma Tomography - f i lt e r e d  back projection (Ram-Lak and Shepp-Logan)

Milka N ikolic June 2013 

input
In ten sit ie s  on d ifferen t p osition s and under d ifferen t angles, I(p ,th eta)  
output
D istribution function g(x ,y)

use physics

im plic it none

integer i ,  j ,  k, 1, mx 
integer svap{, nofun

double precision  xmin, xmax, dp 
double precision  dx, x i ,  y i
double precision  r ea l, tau ! , thetamin, thetamax 
double precision  p te s t l ,  g i t e s t l ,  Sum, Er 
double precision  m, h(2*np+2) 
double precision  isp lin e , lagint

f i l e  names

open (unit*7, f i le *  ’ in te g ra lte s t .d a t’ ) 
open (unit*8, f i le *  *theta.dat*) 
open (unit®9, f i le *  ’te s t .d a t ')  
open (unit*10, file®  ’706SheppLogan.dat’) 
open (u n it* ll ,  file®  ’analytica l inverse’)

reads data from f i l e

do i* l,n p
read(7,*) ( f s ( i , j ) ,  j* l,n th eta ) ! d irect radon in te n s it ie s  for the integral
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end do

do i= l,n th eta
read(8,200) th e ta (i)

end do

do i=l»np Iwrites data into  f i l e
v r ite (9 ,3 0 0 ) ( f s ( i , j ) »  j* l,n th eta )

end do

200 fo m a t(f  15.4)
300 format(200( f 15.4))

variable dimensions

xmin * -1 .6  
xmax * 1.6
dx * (xmax-xmin)/real(nx“l)  
dp = (xmax-xmin)/real(np“l)

!thetamin = th e ta (l)
!thetamax = theta(ntheta)

I evaluate inverse radon integral using f i lt e r e d  back projection  

do i= l,n x
xi = xmin+dx*(i-l) 

w rite(* ,*) i  
do j = l , nx

y i = xmin+dx*(j-l) 
rea l * xi**2+yi**2

g i ( i , j >  = 0.0  
m i( i,j )  = 0.0

if(rca l.le .xm ax**2.0) then

do k=l,ntheta Hoop in  theta  
tau -  dp !*sin(theta(k )) 
do 1=1,np

P theta(l) = f s ( l ,k )  
p (l)  = (~l)*(xmin + d p *rea l(l~ l))!* sin (th eta (k ))  

end do lends p loop (in  1)

!sorts p (j) in  r is in g  order

swap = 1
do while (swap==l) 

swap = 0 
do l= l,n p -l

i f  (p (l)  .g t .p ( l+ D )  then 
p te s t l  * p (l+ l)  
p (l+ l)  = p ( l)  
p ( l)  = p te s t l

g i t e s t l  = Ptheta(l+1)
Ptheta(l+1) = P theta(l) 
P theta(l) = g it e s t l

swap
end i f  

end do
end do
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!calcu lates projection h

!Ram Lak f i l t e r

• do 1*1,np
• m*2*l-np

! h(2*l)«-l/(m**2*pi**2*tau**2)
! h (2 * l-l)* 0 .0

lend do
!h(np)“ i/(4.0+tau**2)

!Shepp Logan f i l t e r
j---------------------
do l» l,2*n p -l 

m*l-np
h (l)  s  -2.0/(pi**2*tau**2*(4*m**2-l)) 

end do
hCnp) * 2.0/(p i*tau)**2

calcu lates Q

do l*np,2*np-l 
Sum*0.0

do mx=0,np-l 
Qtheta(r-np+l)=Sum+Ptheta(mx+i)*h(l-mx) 

Sum-Qt het a (1 -np+1) 
end do
Qtheta(1-np+l)=tau*Qtheta(1-np+l) !Qtheta(l-np+l) 

end do

pO »xi*sin(theta(k))-yi*cos(theta(k)) 
c a ll  sp line (p, Qtheta, b, c , d, np)

Er * ispline(pO , p, Qtheta, b, c , d, np)
!Er * lagint(pO, p, Qtheta, np, 3)

g i ( i ,  j)=*gi(i, j)+Er 
end do !ends theta loop

g i< i ,j )  * p i* g i( i,j ) /r e a l(n th e ta )  
m i( i,j )  * exp(-(xi**2+yi**2))

end i f

end do !ends y loop

end do fends x loop

do j * l ,  2*np-i
w rite(* ,* ) j ,  h (j)  

end do

do i= i,n x
w rite(10,400) ( g i ( i , j ) ,  j* l,n x )  

v r ite ( il ,4 0 0 )  (m i( i ,j ) ,  j - l ,n x )  
end do

400 form at(16i(e!5.4))

end program f i l t e r
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B.2 SYNTHETIC MOLECULAR SPECTRA

Numerical code for generating synthetic molecular spectra of N2 (C3n u —> B 3Hg) 
Second Positive System at 337.1 nm described in Section 5.1 is presented here.
I*******************************************************************************************************
module constants

double precision , parameter :: Bx * 1.9898 !in  cm-1
double precision , parameter :: h -  6.625*10.0**027)
double precision , parameter :: c * 3.0*10.0**10
double precision , parameter :: k -  1.38*10.0**(-16)
double precision , parameter :: dopp * 7.16*10.0 * * (-7 ) /(2 .0*0.83255)
double precision , parameter :: amu -  14
integer, parameter :: n * 101 's ize  of an array, number of data points
in teger, parameter :: npoint = 8000 inumber of points

end module constants

i * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

module rotational
double precision  bv(2), yv(2), dv(2) ! rotation al constants
double precision , parameter :: Lhead -  380.47 inm
double precision , parameter :: Trot a 1000 (rotational temp
double precision , parameter :: a * 375.68085 ( in i t ia l  and f in a l wavelength
double precision , parameter :: b * 380.68085
double precision , parameter :: l in s t  * 0.02 iintrumental broadening 

end module rotational
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

program main

Program for generating syn tetic  molecular spectra for  a PI sta te  of nitrogen 

Nilka N ikolic June 2013

use constants 
use rotational 
im plic it none

integer i , j
double precision  F0(2,105), F l(2 ,105), F2(2,105) 
double precision z l(1 0 5 ), z2(105)
double precision  P0C105), P l(105), P2(105), R0(105), R l(105), R2(105) 
double precision  Ql(105), Q2(105)
double precision  LP0(105), LP1(105), LP2C105), LR0(105), LR1(105), LR2(106) 
double precision  LQ1C105), LQ2(105)
double precision  FP0C105), FP1(105), FP2C105), FR0(105), FR1(105), FR2<105) 
double precision  FQ1C105), FQ2(105)
double precision  dopP0(105), dopPl(105), dopP2(105), dopR0(105), dopRl(105), dopR2(105) 
double precision  dopQl(105), dopQ2(105)

double precision  Pmin, Q, QS, f ,  f t e s t (105), 1(8005)
double precision  intPO, in tP l, intP2, intRO, intR l, intR2, intQ l, intQ2, I te s t ,  Int(80005), Imax

(reads data into  f i l e
open (un it-7 , f i le *  ’fo r tr a t.d a t’) (reads the values of rotational consts
open (un it-8 , f i l e -  * spectra.dat1)

(defines rotational constants

bv(l) -  1.8149 
yv(l) = 21.5



174

d v ( l )  » 6 .7 * 1 0 .0 * * C -6 )

bv(2) = 1.59218
yv(2) = 26.4
dv(2) = 6 .7*10 .0**(-6)

! other constants

Pmin * 100.0 
QS -  0 .0

ca lcu la tes the terns

do i-1 ,2  
do j= l,n

z l ( j )  = yvCi)*CyvCi)-4.0)+4.0/3.0+4.0*j*Cj+l)
z2Cj) » (y v ( i )* (y v ( i ) - l ) -4 .0 /9 .0 -2 .0 * j* ( j+ l) ) /(3 .0 * z l( j ) )

FOCI,j) = bvCi)*Cj*Cj+l)-sqrtCzlCj))-2.0*z2Cj))-dvCi)*CrealCj)-0.5)**4.0  
F l ( i , j )  = bvCi)*Cj*Cj+l)+4.0*z2Cj))-dvCi)*CrealCj)+0.5)**4.0 
F 2 ( i,j )  = bvCi)*Cj*Cj+l)+sqrtCzlCj))-2.0*z2Cj))-dvCi)*CrealCj)+1.5)**4.0 

end do 
end do

do j = i ,n - l
P0Cj+l) = FOCI,j)-F0C2,j+1)
PlCj+1) = F lC l,j)-F lC 2,j+ l)
P2Cj+l) = F2Cl,j)-F2C2,j+l)

ROCj) -  FOCI,j+1)-F0C2,j)
RICj) -  F lC l,j+ l)-F lC 2,j)
R2Cj) -  F2Cl,j+l)-F2C2,j)

QlCj) = F1C1,j)~FlC2,j)
Q2Cj) -  F2C1,j)~F2C2,j)

ifCP2Cj+l)<Pmin) then !finds minimum
Pmin-P2Cj+l) 

end i f  
end do
P0C1) -  0 .0  
P1C1) = 0 .0  
P2C1) = 0 .0

fortrat diagram

writeC7,101) 
do j = l ,n - l

LPOCj) = -Lhead**2*10.0**C-7)*CP0Cj)-Pmin) + Lhead
LPlCj) = -Lhead**2*10.0**C-7)*CPlCj)-Pmin) + Lhead
LP2Cj) = -Lhead**2*10.0**C-7)*CP2Cj)-Pmin) + Lhead

LROCj) -  -Lhead**2*10.0** C-7)* CROCj) -Pmin) + Lhead
LRlCj) = -Lhead**2*10.0**C-7)*CRlCj)-Pmin) + Lhead
LR2Cj) = -Lhead**2*10.0**C-7)*CR2Cj)-Pmin) + Lhead

LQICj) = -Lhead**2*10.0**C-7)*CQlCj)-Pmin) + Lhead
LQ2Cj) = -Lhead**2*10.0**C-7)*CQ2Cj)-Pmin) + Lhead

writeC7,100) LPOCj), LPlCj), LP2Cj), LROCj), LRlCj), LR2Cj), LQICj), LQ2(j), realCj) 
end do

100 formatC9f10.3)
101 formatC5x, ’LP0’ , 7x, ’LP1’ , 7x, ’LP2’ , 7x, ’LRO’ , 7x, ’LR1’ , 7x, ’LR2\ 7x, ’LQ1’ , 7x, ’LQ2’ , 7x, ’j ’ )
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In ten sity  d istr ibu tion

Q = k*Trot/(h*c*Bx)

do j * l ,n - l
f « (2*j+ l)*exp(-j*(j+ l)/Q )
QS -  QS+f 

end do

do j * l ,n - l
f t e s t ( j )  * exp(-j*(j+l)/Q )/Q S  

end do

do j * l ,n - l
FPO(j) = ( j+ l)* * 2 * fte s t ( j ) /( j+ l)
FPl(j) * ( j+ 2 )* j* fte s t ( j ) /( j+ l)
FP2(j) = ( j+ 3 )* ( j - l ) * f t e s t ( j ) / ( j + l)

FROCJ> = j* * 2 * fte s t ( j ) /j  
FRl(j) = ( j + l ) * ( j - l ) * f t e s t ( j ) / j  
FR2(j) = ( j+ 2 )* ( j -2 )* f te s t ( j ) /j

FQl(j) = (2 .0 * j+ i)* fte s t ( j ) / ( j* ( j+ l) )  
FQ2(j) -  (2.0*j+ i)* 4 .0 * fte s t ( j ) /( j* ( j+ 1 ))

end do

Doppler e ffe c t

Imax * 0 . 0

do j» i,n poin t
l ( j )  * a + j* (b -a)/rea l(np oin t) 

end do

do j= i ,n - l
dopPO(j) * l in s t  + dopp*LPO(j)*sqrt(Trot/amu)
dopPl(j) * l in s t  + dopp*LPl(j)*sqrt(Trot/amu)
dopP2(j) * l in s t  + dopp*LP2(j)*sqrt(Trot/aam)

dopRO(j) * l in s t  + dopp*LRO(j)*sqrt(Trot/amu)
dopRl(j) = l in s t  + dopp*LRl(j)*sqrt(Trot/amu)
dopR2(j) = l in s t  + dopp*LR2(j)*sqrt(Trot/amu)

dopQl(j) = l in s t  + dopp*LQl(j)*sqrt(Trot/amu)
dopQ2(j) * l in s t  + dopp*LQ2(j)*sqrt(Trot/amu)

end do 
!I te s t  = 0.0  
do j* l,n poin t 

I te s t  * 0 .0  
do i® l,n -l

intPO * F P 0(i)*exp(-(l(j)-L P 0(i))**2/(dopP0(i))**2)/dopP 0(i) 
in tP l = F P l(i)* ex p (-(l(j)-L P l(i))* * 2 /(d o p P l(i))* * 2 )/d o p P l(i)  
intP2 -  F P 2(i)*exp(-(l(j)-L P 2(i))**2/(dopP2(i))**2)/dopP 2(i)

intRO = FR0(i)*exp(-(l(j)-LRO (i))**2/(dopR0(i))**2)/dopR0(i) 
intRl « F R l(i)*exp(-(l(j)-L R l(i))**2/(dop R l(i))**2)/dop R l(i) 
intR2 = FR2(i)*exp(“(l(j)~L R2(i))**2/(dopR2(i))**2)/dopR 2(i)

intQl = F Q l(i)*exp(-(l(j)-L Q l(i))**2/(dopQ l(i))**2)/dopR l(i) 
intQ2 * FQ2(i)*exp(-(l(j)-LQ 2(i))**2/(dopQ 2(i))**2)/dopR2(i)

I te s t  * I te s t  + (intP0+ intPl+ intP2+ intR0+ intRl+ intR2+ intQl+ intQ 2)!*(n-i)



176

end do
In t(j)  ■ I te s t  
if(Int(j)>Im ax) then 

IiDSJc * In t(j)  
end i f  

end do

do j® l,npoint
In t(j)  = Int(j)/Im ax  
write (8,200) l ( j ) ,  In t(j)  

end do

Comparison method -  Sum of a l l  peaks

!fo r(in t j= l; j<=8000; j=j+ l)
! {
! In t[j] = Int[j]/Intm ax;
! l in e f  i l e « l  [j] « se tw (1 2 )« In t  [j] <<endl
! >

! fo r (in t  j= l; j<=8000; j* j+ l)
! {
! i f ( I n t[ j ]> In t[ j+ ll  kk In t [ j ]> In t [ j - l] )
* {
! Sum = Sum+Int[j];
! p ea k ca lc« l [j] « se tw (1 2 )« In t  [j] « e n d l
! >
! >
! co u t« S u m « setw (1 2 )« tro t« en d l

! sigma = abs(Sum-Sumint)
! if(sigma<=error)
! {
! error s sigma
! >
200 format(2f10.4) 

end program main
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