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A b s t r a c t - - I f  p is a prime, integer rmg Zp has  exactly ¢(¢(p))  genera t ing elements  w, each of 

whmh has  m a m m a l  index Ip(w) = ¢(p) p - 1. But ,  if m = ~ R  ~ j  = llJ=l Pj is composite,  it Is possible 
tha t  Zm does not  possess  a generat ing element,  and the  max imal  index of an  element  is not  easdy 
discernible Here, It is de termined when, m the  absence of a generat ing element,  one can still with 
confidence place bounds  on the  maximal  index. Such a bound  is usual ly less t han  ¢ (m) ,  and in some 
cases the  bound  is shown to be strict.  Moreover, general reformation about  emstence  or nonexistence 
of a generat ing element often can be predmted from the  bound  © 2005 Elsevier Ltd. All r ights 
reserved. 

1.  N U M B E R  T H E O R E T I C  P R E L I M I N A R I E S  

Some results from number theory which form a base for what  follows are now given. These results 
can be found in number theory texts such as [1,2]. 

M E R G E D  CONGRUENCE. The system of simultaneous congruences, X =- a, Mod(m, ) ,  z = 
1, 2 , . . .  R are equivalent to X - a, Mod (m), where m = l.c.m. (ml,  m2, . . . ,  mR). 

ELEMENT INDEX. If Z *  is the set of invertible elements of integer ring Zm, the order k = Ira(a) 
of element a E Z *  is the smallest integer k, such that  a k = 1, Mod(m).  Element a is invertible 

iff (a, m) = 1. 

E U L E R ' S  T H E O R E M .  If  (a, m) = 1, a ¢(m) = 1, Mod (m) = >  k = Ira(a) ] ¢(m).  

EULER TOTIENT FUNCTION. ¢(m) is the number of nonnegative integers, a, not  exceeding m, 

such tha t  (a, m) = 1. ¢(m) is always even, for m > 2. 

GENERATING ELEMENTS. If Im(a) = ¢(m),  element a is called a generator of Z* .  If  a is a 
generator, every element of Z ~  can be expressed as an integer power of a. 

For prime modulus ¢(¢(p))  = ¢ ( p -  1) generators exist [1,2]. But, rarely is it the case that  a 
generator exists when m is a composite modulus. 

2. M A X I M A L  I N D E X  F O R  R I N G S  
P O S S E S S I N G  D I V I S O R S  O F  Z E R O  

R a j  Suppose m = YIj=I Pj has factors determined by primes Pl < P2 < ' "  < PR, with ~ g  > 0. 

If  ¢(x) is the Euler Totient function, there are ¢(m) invertible elements in ring Zm. By Euler's 
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theorem, each invertible element a e Zm has index Ira(a) which divides ¢(m). Thus, ¢(m) 
emerges as an upper bound on the maximal index. This is a strict bound if and only if the 
set Z *  of invertible elements has a generating element, or exactly when Z~  is a cyclic group. 

The purpose of this research is to carefully consider integer rings Z,~, where Z *  may not be 
cyclic. We shall determine bounds on the order zm of the maximal cyclic subgroup possessed 
by Z* .  In some cases, the bound on Tm is strict. 

An additional benefit of such a bound is that  in many cases it can be used to declare the 
existence or nonexistence of a generating element. This is valuable information, as little is known 
about when integer rings Zm with composite modulus m have a generating element, although 
instances where this occurs are known [1,2]. 

A result of the present research shows one can be assured that  Z~  is not a cyclic group when 
integer m has at least two distinct, odd prime divisors, as then it has no generator. A necessary 
condition that Z m be cyclic is determined, as well as a concomitant set of sufficient conditions, 
which cut down the work required if a brute force approach to answering the question were 
employed. 

3. A C H A R A C T E R I Z A T I O N  O F  Tm 

THEOREM 2. Let  integer a and modulus m be relatively prime, i.e., (a, m) = 1. I f  L = 
1.c.m. { ¢ ( P y )  : P j  is a divisor of  m, olj times, integer a j  > 1}, then a L : 1, Mod (m). There- 

fore, 

(a) L is an upper bound on the index of  each a E Z m ,  and 

(b) i f  there is at least one integer J,  1 <_ J <_ R, such that L = ¢(P23),  then L is a strict 
upper bound on Ira(a); 

(c) always zm <_ L; this is a strict bound iff (b) holds; 

(d) thus, when L < ¢(m) a generating element for Z m does not exist. 

PROOF. Since (a, m) = 1 implies ( K  j ,  m) = 1, where K j  = (pj)~J,  by Euler's theorem a ¢(KJ) = 
1, M o d K j .  Therefore, a L = 1, M o d K j ,  since ¢ ( K j )  I L. Since a ¢(KJ) = 1, M o d K j  is true 
for each integer 1 _< J _< R, the theory of merged congruences assures that  a L = 1, Modm. 
Clearly, ~'m ~ L, and equality holds iff ¢ ( K j )  = L, for some integer J in the range 1 < J < R. If 
L < ¢(m), a generating element for Z *  cannot exist, as ~-,~ = ¢(m) is a necessary and sufficient 
for the existence of a generator. 

COROLLARY 1. I f  integer m has at least two distinct odd prime divisors, then Z *  is not a cyclic 
group, as ~,~ < ¢(m)/2.  

PROOF. If m has at least two distinct odd prime divisors, the 1.c.m. calculated in determining 
the bound L of Theorem 1 will satisfy ~-,~ _< ¢(m)/2,  since ¢(m) will be divisible at least by 4, 
with two 2s occurring distributed between two distinct divisors of ¢(m), causing at least one 2 
divisor of ¢(m) to be dropped when forming the least common multiple, L. | 

The chief remaining question is: for integer m = 2 K p  ~, when is Z *  a cyclic group, and 
when does it fail to be such? Further research may be required. However, the following can be 
established. 

THEOREM 2. I f  m = 2 K p  ~ is an integer and (a, m) = 1, a necessary condition that a be a 

generator of  Z m is that a ¢(m)/2 = -1 ,  Mod (m). This necessary condition, in conjunction with 
a J ¢ ±1, Mod (m) for 1 _< J < ¢(m)/2,  is also sufficient to guarantee that  a is a generator. 

PROOF OF NECESSITY. Suppose a is a generator of Z~,  and m -= 2 K p %  By definition of 
a generator, there must be some integer J < ¢(m), such that  a J = - 1 , M o d ( m ) ,  as - 1  is 
invertible. If J = ¢(m) /2  ± K is true for any nonzero integer K which satisfies 0 < K < ¢(m)/2,  
one arrives at a contradiction to a being a generator: a 2 J  = 1 ,  Mod (m) is impossible, since 
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2 J  = ¢(m) - 2K  < ¢(m),  and a 2J = a ¢(m)+2K = a 2K : 1, Mod (m), with 2 K  < ¢(m)  is likewise 

impossible. 

PROOF OF SUFFICIENCY. Suppose that  conditions 

(i) a ¢(m)/2 = - 1 ,  Mod (m) and 

(ii) a J # -4-1, Mod (m), for 1 < J < ¢ ( m ) / 2  

are satisfied by element a C Z* .  If  integer K = ¢ ( m ) / 2  + J with 1 < J < ¢ (m) /2 ,  then 
a K -= a~ (m) /2a  d = - a  J ,  Mod (m). Clearly, if ±1 are excluded values for a J,  likewise these 
are excluded values for a K. Hence, a J ~ 1, Mod(m) ,  for 1 < J < ¢(m),  but  a ¢(m) = 1, 
Mod (m) = >  a is primitive. 

COMMENT. For large composite m, the use of brute force to decide whether or not a E Z *  is a 
primitive element becomes computat ional ly intensive. However, Theorem 2 significantly reduces 
the computat ion required. 

4 .  N U M E R I C A L  E X A M P L E S  

EXAMPLE 1. Consider the ring Zm where m = 32760 = 23325(7)13, with ¢(m)  = 4(6)4(6)12. 

Since L = ¢(13) = 1.c.m. {¢ (Kj )  : J = 1, 2, 3, 4, 5} = 12, T m =  12 = ¢(13) is a strict bound on 
element index for Z3276o. No generating element exists, as Tm < ¢(m).  

EXAMPLE 2. For m = 71(31), ¢ (m)  = 70(30), so T m _  L = 7(3)10 < ¢(m).  Here, Theorem 2 

does not guarantee a strict bound. It  does establish tha t  Z{1.31 has no generating element, as 
also does Corollary 1. 

EXAMPLE 3. I t  is well known tha t  Z~s possesses a generating element. In this case, 

L = ¢ (m) = 7-m. 

Moreover, 3 l° = - 1 ,  Mod (20), whereas 3 J ~ 4-1, Mod (20), for 1 < J < 10. 
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