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Abstract

Background: Adding additional bicycle and pedestrian paths to an area can lead to improved health outcomes for residents
over time. However, quantitatively determining which areas benefit more from bicycle and pedestrian paths, how many miles of
bicycle and pedestrian paths are needed, and the health outcomes that may be most improved remain open questions.

Objective: Our work provides and evaluates a methodology that offers actionable insight for city-level planners, public health
officials, and decision makers tasked with the question “To what extent will adding specified bicycle and pedestrian path mileage
to a census tract improve residents’ health outcomes over time?”

Methods: We conducted a factor analysis of data from the American Community Survey, Center for Disease Control 500 Cities
project, Strava, and bicycle and pedestrian path location and use data from two different cities (Norfolk, Virginia, and San
Francisco, California). We constructed 2 city-specific factor models and used an algorithm to predict the expected mean
improvement that a specified number of bicycle and pedestrian path miles contributes to the identified health outcomes.

Results: We show that given a factor model constructed from data from 2011 to 2015, the number of additional bicycle and
pedestrian path miles in 2016, and a specific census tract, our models forecast health outcome improvements in 2020 more
accurately than 2 alternative approaches for both Norfolk, Virginia, and San Francisco, California. Furthermore, for each city,
we show that the additional accuracy is a statistically significant improvement (P<.001 in every case) when compared with the
alternate approaches. For Norfolk, Virginia (n=31 census tracts), our approach estimated, on average, the percentage of individuals
with high blood pressure in the census tract within 1.49% (SD 0.85%), the percentage of individuals with diabetes in the census
tract within 1.63% (SD 0.59%), and the percentage of individuals who had >2 weeks of poor physical health days in the census
tract within 1.83% (SD 0.57%). For San Francisco (n=49 census tracts), our approach estimates, on average, that the percentage
of individuals who had a stroke in the census tract is within 1.81% (SD 0.52%), and the percentage of individuals with diabetes
in the census tract is within 1.26% (SD 0.91%).

Conclusions: We propose and evaluate a methodology to enable decision makers to weigh the extent to which 2 bicycle and
pedestrian paths of equal cost, which were proposed in different census tracts, improve residents’ health outcomes; identify areas
where bicycle and pedestrian paths are unlikely to be effective interventions and other strategies should be used; and quantify
the minimum amount of additional bicycle path miles needed to maximize health outcome improvements. Our methodology
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shows statistically significant improvements, compared with alternative approaches, in historical accuracy for 2 large cities (for
2016) within different geographic areas and with different demographics.

(JMIR Public Health Surveill 2022;8(8):e37379) doi: 10.2196/37379

KEYWORDS

bicycle paths; pedestrian paths; bicycling; walking; diabetes; high blood pressure; physical health; factor analysis; digital
neighborhoods; data analysis

Introduction

The addition of bicycle and pedestrian paths to an area is a
theoretically valuable resource for city-level planners, public
health officials, and decision makers to increase physical activity
and improve health outcomes. Most existing research has found
a negative association between the prevalence of bicycle and
pedestrian paths and poor health outcomes (ie, diabetes, stroke,
obesity, heart disease, high blood pressure, and ailments to
physical and mental health) [1-10].

Objectives
Our objective is to provide and evaluate a methodology for
officials addressing the question “To what extent will adding
specified bicycle and pedestrian path mileage to a census tract
improve residents’ health outcomes over time?” The
methodology we propose uses factor analysis to filter and
organize variables from publicly available data sets at the census
tract level within a given city. The data sets included (1) the US
Census [11], (2) the American Communities Survey (ACS)
[12], (3) Centers for Disease Control and Prevention (CDC)
500 Cities project data [13], (4) municipality data [14,15], and
(5) the GPS walking, running, and cycling tracking social
network app, Strava [16,17].

The result of this analysis is a city-specific factor model
describing the relationship among variables related to
individuals, bicycling and walking behaviors, and health
outcomes. Then, the factor model, built using past data, is used
in an algorithm to predict the extent to which adding a future
specified number of bicycle and pedestrian path miles to a
certain location in the city quantitatively impacts certain health
outcomes.

Background
We are not aware of any other applications of factor analysis
to develop predictive algorithms related to the placement and
efficacy of bicycle and pedestrian paths with respect to health
outcomes. However, there are researchers who approach bicycle
and pedestrian path planning from a similar perspective. Smith
and Haghani [18] proposed an approach that adds bicycle and
pedestrian paths within a city such that the length of the average
trip within the bicycle and pedestrian path network is minimized,
and the level of service of the bicycle and pedestrian paths is
maximized. Mesbah et al [19] explored the addition of bicycle
and pedestrian paths within a city by identifying locations that
minimized the total travel time of automobiles within the city.
Researchers assume that bicycle and pedestrian paths take road
space from cars. Although this assumption may occasionally
be true, in most instances, bicycle and pedestrian paths narrow
car lanes but do not reduce the total number available. Duthie

and Unnikrishnan [20] identified instances within a city where
the addition of bicycle and pedestrian paths maximized the
connectivity of the existing bicycle and pedestrian path network.
This approach ignores the use of the current bicycle and
pedestrian path network and aims to “open up” as many new
routes as possible regardless of current demand [21].

Although they are not prevalent in identifying bicycle and
pedestrian path placement, optimization techniques have also
been explored for choosing existing routes rather than
developing new ones. Allen-Munley et al [22] developed a
model that rates bicycle routes based on predictions of injury
severity [18]. Other researchers have proposed allowing users
to select multiple criteria and then eliminate certain routes (ie,
steep slopes and heavy traffic) before providing a set of
suggestions [23,24]. More recently, researchers have explored
the use of multiobjective optimization as a means of retrofitting
the existing cycling infrastructure for commuter cyclists. The
objective of the formulation is to maximize the network for a
number of different criteria, including accessibility,
minimization of the number of intersections, maximization of
bicycle level of service, and minimization of total construction
cost subject to space-time constraints and monetary budget
[25-27].

Ospina et al [28] addressed a similar problem but framed it as
a maximal covering bicycle network design problem. The
maximal covering bicycle network design problem involves
making investment decisions to build a cycling network aimed
at maximizing the coverage of cyclists while maintaining a
minimum total network cost. The derived network is subject to
budget and accounts for the entire connectivity and directness
as fundamental bicycle network design criteria. This approach
focuses only on the network and not on the health outcomes.
There is no consideration of the extent to which each path in
the network improves any health outcome within an area.

It is important to note that there are arguments against defining
the placement of bicycle and pedestrian paths as a systems
engineering problem. Szimba and Rothengatter [29]
demonstrated that interdependencies between infrastructure
projects can create cost incentives to place bicycle and
pedestrian paths in certain areas, even if the payoff of the
addition is not optimal with respect to the use, connectivity, or
health benefits of the bicycle and pedestrian path. In addition,
in areas where congestion and the propagation of congestion
along bicycle and pedestrian paths occur, researchers have
demonstrated that optimizing the use and distance of bicycle
and pedestrian paths would only exacerbate traffic within the
network and not produce effective results [30-32].
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Furthermore, significant work has been conducted to estimate
demand [33,34] and understand why people choose to use
bicycle and pedestrian paths [35-40]. Our work also considers
motivation related to bicycle and pedestrian path use but does
not directly attempt to optimize bicycle and pedestrian path use.
We made this design choice because adding bicycle and
pedestrian paths based only on the existing demand can lead to
a chicken-and-egg problem. Here, areas with advanced bicycle
and pedestrian path infrastructure improve, and areas without
bicycle and pedestrian path infrastructure are neglected. These
dynamics can create inequitable living conditions and produce
enormous health and environmental disparities within a city
[41].

In summary, the algorithm used in this study is unique from
previous approaches used for estimating demand, evaluating
network efficacy, and optimizing the placement of bicycle and
pedestrian paths. The problem examined here focuses on
understanding what health outcomes can be improved by adding
bicycle and pedestrian paths, in which census tracts will adding
bicycle and pedestrian paths improve health outcomes the most,
and finally, how many miles of bicycle and pedestrian paths
within a given census tract need to be added to have an impact
on the residents’ health outcomes.

The remainder of this paper is organized as follows. First, we
review the data and methods used in our approach to construct
city-specific models. Next, we apply the approach to two
different cities: Norfolk, Virginia, and San Francisco, California.
We then evaluate our approach for the 2 different cities. In the
evaluation, our approach was tested against 2 alternate
approaches for predicting improvements in health outcomes by
adding bicycle and pedestrian paths. The evaluation shows that
our approach offers more accurate predictions than both

alternatives and that the superior difference in accuracy is
statistically significant (P<.001 in all cases). Finally, we identify
several limitations to our work and threats to its validity and
review other avenues of related research.

Methods

Ethical Considerations
Our work uses publicly-available data related to urban
infrastructure and resident demographics and health outcomes.
The data sets reflect aggregate variables measured at the census
tract level of a city and do not contain any personally identifiable
information. Therefore, they do not involve human subjects as
defined by federal regulations and their use does not require
ethics board review or approval [42].

Data Sets

Overview
Our approach to modeling the health effects of adding bicycle
and pedestrian paths at the census tract level uses data from (1)
census tract boundaries used in the US Census [11]; (2)
demographic variables from the ACS [12]; (3) census tract–level
estimates for health outcomes, health statuses, healthy behaviors,
and disease prevention from the CDC [13]; (4) bicycle and
pedestrian path location and use data from Norfolk, Virginia,
and San Francisco, California [14,15]; and (5) bicycle and
pedestrian path use data from the GPS walking, running, and
cycling tracking social network app, Strava. Combining these
data sets resulted in >400 variables for each census tract in
Norfolk, Virginia, and San Francisco, California [16,17]. An
overview of all the data sets and other supplementary materials
supplied in the multimedia appendices of this paper is shown
in Figure 1.

JMIR Public Health Surveill 2022 | vol. 8 | iss. 8 | e37379 | p. 3https://publichealth.jmir.org/2022/8/e37379
(page number not for citation purposes)

Gore et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. An overview of the data sets and other supplementary materials supplied in the multimedia appendices. ACS: American Communities Survey;
BPP: bicycle and pedestrian path; CDC: Centers for Disease Control and Prevention; NOR: Norfolk; SF: San Francisco; SME: subject matter expert.

US Census and ACS
Census tracts are small, contiguous, and relatively permanent
statistical subdivisions of a county or an equivalent entity. The
populations in census tracts vary from 1200 to 8000. Census
tracts provide a stable geographic unit for statistical analysis in
the US Census and ACS [43].

The ACS is an ongoing national survey that samples a subset
of individuals within the same geographic areas in the US
Census. Using the same questions, data were collected each
month throughout the year. In contrast, the US Census provides
a more comprehensive sample of individuals in the United
States, collecting data from more individuals during a particular
period (March to August) but administered only once every 10
years. A metaphor helps elucidate the differences between the
2 surveys. The US Census serves as a high-resolution

photograph of the US population once every 10 years, whereas
the ACS serves as many low-resolution continually updated
videos over the same period [43]. Multimedia Appendix 1
provides the data included in the ACS for this study.

CDC 500 Cities Project
The census tract–level estimates and methodology for estimating
health outcomes, health statuses, healthy behaviors, and disease
prevention are provided by the CDC 500 Cities project. The
500 Cities project is a collaboration between the CDC and the
Robert Wood Johnson Foundation. The small area estimates
provided by the project allow policymakers and local health
departments to better understand the burden and geographic
distribution of health-related variables in their jurisdictions and
assist them in planning public health interventions [13]. The
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data included in the CDC 500 Cities project for this study are
provided in Multimedia Appendix 2.

City-Supplied Bicycle and Pedestrian Path Data
The bicycle and pedestrian path data for Norfolk, Virginia, and
San Francisco, California include the latitude and longitude
location of bicycle lanes, routes, and paths built and maintained
in each city. Bicycle use data were taken from bicycle counters
used in each city [14,15]. The data included from Norfolk,
Virginia, and San Francisco, California, for this study are
provided in Multimedia Appendix 3.

Strava Data
We used the Strava Metro rollup data set for Norfolk, Virginia,
and San Francisco, California. This data set contains walking,
running, and bicycling activity counts per road segment for a
given year. These counts can then be aggregated at the census
tract level. The road count segment is referred to as edge within
Strava. Each edge is associated with a latitude and longitude
bounding box using the Strava application programming
interface [16,17]. The Strava data for Norfolk, Virginia, and

San Francisco, California for this study are provided in
Multimedia Appendix 4. There are limitations to using the
Strava data, which we describe in the Discussion section.

Data Selection
Our data set included a wide range of variables collected from
multiple sources. From this data set, we selected a subset of the
variables that individuals with domain expertise identified as
possibly contributing to the use of bicycle and pedestrian paths
and the impact of bicycle and pedestrian paths on health
outcomes when additional mileage was added to a geographic
area (ie, census tract). The expertise of these individuals spanned
social work, health science and nutrition, community health,
public health, and transportation. Textbox 1 shows the categories
of variables identified by domain experts for each census tract
in Norfolk, Virginia, and San Francisco, California. Multimedia
Appendix 5 provides the list of observed variables for each
category. These variables can be combined using common
Geographical Information System attributes to align data at the
census tract level. The approach for joining these data together
at the census travel level is shown in Figure 2.

Textbox 1. The categories of variables from our data sets that are included in our factor analysis for Norfolk, Virginia, and San Francisco, California.

Data set and variable category

• American Communities Survey

• Race

• Educational attainment

• Employment status

• Income and benefits

• Marital status

• Sex and age

• Commuting to work

• Citizenship

• Health insurance

• Occupation

• Household by type

• Relationship

• Centers for Disease Control and Prevention 500 Cities project

• Health outcomes

• Health risk behaviors

• Prevention

• Health status

• City Bicycle and Pedestrian Path data

• Bicycle and Pedestrian Path use data

• Bicycle and Pedestrian Path mileage data

• Strava Bicycle and Pedestrian Path data

• Bicycle and Pedestrian Path use data
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Figure 2. The approach to joining together the data sets at the census tract level. ACS: American Communities Survey; BPP: bicycle and pedestrian
path; CDC: Centers for Disease Control and Prevention; GIS: Geographical Information System.

Factor Analysis

Overview
Next, we applied factor analysis to reduce these observed
variables into latent variables (ie, factors). Factor analysis
generates a model that measures how changes in one factor
predict changes in another by reducing a large number of
observed variables to a handful of comprehensible underlying
factors. The result is an interpretable and actionable model of
concepts that are otherwise difficult to measure [44].

The Honesty-Humility (H), Emotionality (E), Extraversion (X),
Agreeableness (A), Conscientiousness (C), and Openness to
Experience (O) 6D model of the human personality structure is
a widely known result of the application of factor analysis. The
ability of factor analysis to reduce the many observed variables
related to personality into 6 distinct factors has pushed the state
of the art in psychological research [45]. Our goal of applying
factor analysis was similar.

We applied exploratory factor analysis (EFA) to filter the
observed variables from the data described in Textbox 1 and
reduced them into a model composed of factors that include
residents’ (1) demographics and background characteristics
(DBC), (2) health, and (3) bicycling and pedestrian habits
(BPH). Using this model, we can understand how changes in
one factor predict changes in others.

EFA Summary
In our approach, EFA was used to fit a factor model. Before the
EFA began, data corresponding to half of a given city’s census
tracts were selected at random. In the application of our
approach, data from 2011 to 2015 were used. Then, using these
data, an EFA model was fitted.

Figure 3 shows the fitting of the model using EFA. The process
is iterative, and each iteration comprises 3 stages. Figure 3A
shows the observed variables that underwent analysis for a given
iteration. These observed variables are organized into a number
of factors that optimize the fit of the model in Figure 3B. The
optimization constructs a model with the minimum number of
factors such that the observed variables associated with each
factor have maximum commonality with one another and
minimal commonality with the observed variables in all other
factors. Commonality reflects the amount of variance an
observed variable shares with other variables in a factor [44,46].

Finally, the model was assessed. The assessment tests if all
factors are composed of variables with high communality (>0.5)
with respect to the factor they are associated with and low
communality (<0.5) with all other factors. If this is true, the
process terminates. Otherwise, variables that do not meet the
communality requirement are discarded and the process is
repeated for another iteration. Figure 3C shows the assessment
stage of the iteration. The requirements imposed in this stage
are consistent with the established factor analysis guidelines
[46].
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Figure 3. The process of generating a factor model for a city and verifying that it meets our defined restrictions. BPH: bicycling and pedestrian habits;
BPP: bicycle and pedestrian path; CFA: confirmatory factor analysis; DBC: demographics and background characteristics; EFA: exploratory factor
analysis.

Confirmatory Factor Analysis Summary
Next, the fit of the hypothesized model was confirmed or
rejected by applying confirmatory factor analysis (CFA) using
the other half of the data from 2011 to 2015. The goal of CFA
is to confirm or reject the hypothesized model. As a result, (1)
only observed variables were included, (2) the variables were
loaded onto the same factors as in the CFA, and (3) the
communality of the variables in the model was assessed. The
model was confirmed if it satisfied the same requirements as
specified for EFA [46].

Factor Restrictions and Limitations
The application of factor analysis imposes several limitations
on our approach for estimating the health effects of adding
bicycle and pedestrian paths to the city-specific factor model.
First, a model that meets our requirements must be generated
using EFA and confirmed using CFA. Furthermore, to apply
our algorithm, the model must consist of at least three factors
reflecting residents’ (1) DBC, (2) health, and (3) BPH. Finally,
the health factor must include at least one observed variable

related to a health outcome, and the BPH must include an
observed variable related to the amount of bicycle and pedestrian
path mileage in the census tract. The process of generating a
factor model and determining whether it meets these restrictions
is illustrated in Figure 4.

We imposed these restrictions because our health outcome
prediction algorithm computes the factor scores for each census
tract in a city based on these factors. Factor scores are
continuous numbers reflecting the extent to which each census
tract manifests each factor. For each factor, the scores were
distributed normally, with a mean of 0 and an SD of 1. Large
positive values reflect census tracts where the factor is heavily
present, and large negative values reflect census tracts where
the factor is not present at all [47].

Without these factors, the proposed algorithm could not be
applied. It does not have sufficient data or structure to produce
estimates of the health effects of adding bicycle and pedestrian
paths. This is a limitation of the proposed approach. This
limitation is discussed in more detail in the Discussion section.

Figure 4. The three stages of an EFA iteration—(A) observed variable identification, (B) organization of variables into factors, and (C) assessment of
the communality of variables within and between each of the identified factors. EFA: exploratory factor analysis.

Estimating the Health Effects of Adding Bicycle Paths
at the Census Tract Level

Overview
Given a factor model hypothesized by EFA and confirmed by
CFA, we proposed an algorithm to predict the health effects of
adding bicycle and pedestrian paths at the census tract level.
For this purpose, we defined the input as an observed variable
identified from the factor model. The variable then progressed
through a sequence of steps that were applied to each census

track and resulted in a predicted health outcome change for each
identified health factor. The steps of this algorithm are
enumerated in the following sections. Finally, the output from
the algorithm was a list of hypothesized health improvement
outcomes.

Input
In our problem statement, there was only one observed variable
in the model that could be changed directly by a city-level
planner, public health official, or decision maker. This variable
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represented the additional bicycle and pedestrian path mileage
for a census tract within a city. This was the input to our
algorithm, along with the factor model generated for the city.

Algorithm
The algorithm proceeded as follows, as conveyed visually in
Figure 5.

1. The algorithm adds the bicycle and pedestrian path mileage
to the specified census tract in the data set for the city.

2. Factor scores are computed for the following three factors:
DBC, health, and BPH.

3. Given the DBC factor score for the input census tract, the
algorithm identifies all other census tracts in the city with
a DBC factor score within the threshold value—x. This list
of census tracts reflects those that are similar to the input
census tract with respect to the DBC factor. Recall that the
factor scores are normally distributed, with an SD of 1.
Thus, a census tract within a factor score x of the tract being

analyzed reflects a census tract within SDs of the input tract
[47].

4. Given the BPH factor score for the input census tract (which
includes the newly added bicycle and pedestrian path
mileage), the algorithm identifies all other census tracts in
the city with BPH factor scores within x. This list of census
tracts reflects those that are similar to the input census tract
with respect to the BPH factor.

5. For each observed health outcome within the health factor,
the algorithm creates a list that stores the difference between
the value of the health outcome for each census tract
identified in steps 3 and 4 and the value of the health
outcome for the input census tract. This list of differences
is a distribution of hypothesized improvements in a health
outcome by adding a specified amount of bicycle and
pedestrian path mileage to a census tract. Any differences
that are <0 are discarded because these differences indicate
that adding bicycle and pedestrian path mileage to the
census tract will degrade health outcomes.

Figure 5. Instantiation of the algorithm for predicting how much additional BPP mileage in a census tract will improve health outcomes. BPH: bicycling
and pedestrian habits; BPP: bicycle and pedestrian path; DBC: demographics and background characteristics.

Output
For each list of hypothesized improvements for health outcomes
generated in step 5, the algorithm output the minimum, mean,
median, and maximum values of the improvements to the user.
The algorithm could also report the entire distribution of possible
improvements and SD of the distribution for each health
outcome.

Results

Overview
The accuracy of our algorithm was elucidated through an
empirical evaluation of alternative approaches for two different
cities (Norfolk, Virginia, and San Francisco, California). In our
evaluation, we computed how accurately each approach
predicted the health outcome improvements of the bicycle and
pedestrian paths added in each city in 2016. Specifically, for a
given census tract, in each city that added bicycle and pedestrian
paths miles in 2016, we evaluated how accurately our algorithm
estimated an improvement in health outcomes in 2020. We
chose to use a 5-year time-lapse period for our evaluation
because research has shown that is the expected amount of time
for a fully realized change in health outcomes given outdoor
exercise infrastructure interventions [48,49].

Factor Analyses
Applying the process described in the Methods section and
shown in Figures 3 and 4 with the data from half the census

tracts in each city for each year from 2011 to 2015 yields the
EFA models shown in Figure 6A (n=195) and Figure 7A
(n=490). Confirmation of these models using the remaining half
of the census in each city for each year from 2011 to 2015 is
shown in Figure 6B (n=190) and Figure 7B (n=485). Within
the figures, the numbers labeled with single-headed arrows
reflect the commonality of an observed variable with the
associated factor. The double-headed arrows reflect the shared
variance between factors [44,46]. The goodness-of-fit statistics
corresponding to the CFA for each model are provided in
Multimedia Appendix 6 (Norfolk, Virginia) and Multimedia
Appendix 6 (San Francisco, California) along with guidelines
on how to interpret the goodness-of-fit statistics.

Figures 6 and 7 show that the factor models for each city met
our requirements. These models served as inputs for our
estimation algorithm in the evaluation. It is important to note
that although each model had the three required factors (DBC,
health, and BPH), there were differences in the observed
variables that form the factors. The factor analysis showed that
changes in high blood pressure, diabetes, and poor physical
health were predicted by changes in DBC and BPH in Norfolk,
Virginia, whereas changes in stroke and diabetes were predicted
by changes in DBC and BPH in San Francisco, California. This
was not unexpected or a violation of the requirements of our
approach. Although we required the 3 factors to be present, we
anticipated that different observed variables would form these
3 factors for different cities.
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Figure 6. Exploratory factor analysis and confirmation factor analysis models for Norfolk, Virginia, using data sets from 2011 to 2015. Single-headed
arrows reflect the commonality of an observed variable with a factor. Double-headed arrows reflect the value of the shared variance between factors.
BPH: bicycling/pedestrian habits; BPP: bicycle and pedestrian path; DBC: demographics and background characteristics.

Figure 7. Exploratory factor analysis and confirmation factor analysis models for San Francisco, CA, using data sets from 2011 to 2015. Single-headed
arrows reflect the commonality of an observed variable with a factor. Double-headed arrows reflect the value of the shared variance between factors.
BPH: bicycling and pedestrian habits; BPP: bicycle and pedestrian path; DBC: demographics and background characteristics.

Evaluation
Recall that our algorithm took an input: (1) the factor model for
a given city and (2) the census tract and amount of bicycle and
pedestrian path mileage to be added. It then output the minimum,
mean, median, and maximum estimated improvements by adding
the bicycle and pedestrian path mileage to the input census tract.
In the evaluation, we only used the median improvement
estimate from the algorithm.

In our evaluation, we used our factor model constructed using
data from 2011 to 2015 to estimate the accuracy of our approach
and 2 alternative approaches with respect to the improvements
in health outcomes provided by bicycle and pedestrian paths
installed in 2016. The evaluation included 31.58 miles (50.81
km) of bicycle and pedestrian paths added in Norfolk, Virginia,
across 31 census tracts and 52.36 miles (84.25 km) of bicycle
and pedestrian paths added tracts in San Francisco, California,
across 49 census tracts. Table 1 provides additional details
regarding the setup of the evaluation.

Table 1. Evaluation setup metadata for Norfolk, Virginia, and San Francisco, California, in 2016.

San Francisco, CaliforniaNorfolk, Virginia

52.36 (84.25)31.58 (50.81)BPPa miles (km) added

4931Census tracts with paths added, n

19577Census tracts in city, n

Diabetes %; stroke %Diabetes %; poor physical health %; high
blood pressure %

Health outcomes evaluated

aBPP: bicycle and pedestrian path.

Alternative Approaches
We evaluated our algorithm using 2 alternative approaches. The
first alternative assumed that each health outcome within a

census tract in the future would be same as the average value
for that health outcome for the census tract from 2011 to 2015.
This approach mirrored the prediction that the temperature
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tomorrow would be the same as the average temperature of the
previous 5 days.

The second alternative used linear regression modeling [50].
This approach used regression to predict future changes in each
health outcome using a weighted linear combination of the (1)
DBC factor and (2) BPH factor scores of the census tract based
on the constructed factor model using data from 2011 to 2015,
after the specified increase in mileage.

Approach
We evaluated our approach by using x=0.50. Recall that x is
the threshold used to identify similar census tracts in terms of
the (1) DBC factor and (2) BPH factor scores. In addition, our

evaluation approach is an extension of the algorithm described
in the Methods section. For our evaluation, given a specified
number of bicycle and pedestrian path miles to be added and a
census tract, we ran the algorithm for every 0.10-mile increment
of bicycle and pedestrian paths up to the specified number of
miles.

Each time the algorithm was executed, the median improvement
from the algorithm was collected. The largest improvement
over all the runs was reported. A version of our approach is
shown in Figure 8. It implemented the assumption that adding
more bicycle and pedestrian path mileage (ie, 1.0 miles as
opposed to 0.5 miles) to a given census tract would not be
detrimental to the expected improvement in a health outcome.

Figure 8. The specific version of our algorithm included in the applied evaluation. BPP: bicycle and pedestrian path; BPH: bicycling and pedestrian
habits; DBC: demographics and background characteristics.

Measures of Effectiveness
For a given city and a given approach to estimating the
improvement in a health outcome for bicycle and pedestrian
paths added in 2016, we computed the following two measures
of effectiveness (MOEs): (1) the root mean squared error
(RMSE) and (2) the mean absolute error (MAE). These are 2
established metrics used to measure the accuracy of continuous
variables. MAE measures the average magnitude of the errors
in a set of predictions without considering their direction. It
reflects the average over the evaluation of the absolute
differences between the prediction and actual observation where
all individual differences have equal weight. RMSE also
measures the average magnitude of the error. However, it
reflects the square root of the average squared differences
between the predicted and actual observations. Within the
RMSE, the errors were squared before they were averaged. As
a result, the RMSE gives a relatively high weight to large errors
[51]. By using both metrics as MOEs, we could capture the
accuracy of each approach for decision makers who (1) view
all errors equally (MAE) and (2) view large errors as particularly
undesirable (RMSE).

Measures of Success
We deem our approach successful if, for each city included in
our evaluation, our approach is more accurate across every MOE
than the best alternative approach, and these differences are all
statistically significant at P<.01, when a 1-tailed paired sample
t test is applied. We used a 1-tailed paired sample t test to
determine whether the mean paired difference between the
MOEs of our approach and an alternate approach was <0 (ie,

our approach was more accurate). In this procedure, paired
observations reflected the MOEs for a given census tract. Within
the pair, one observation corresponded to our approach, and the
other corresponded to an alternative approach [52].

Discussion

Principal Findings
In our evaluation, we compare the accuracy of our factor model
approach, a linear regression approach, and predict no change
approach. Each approach estimates the improvements in health
outcomes provided by bicycle and pedestrian paths installed in
2016 in 31 census tracts in Norfolk, Virginia and 49 census
tracts in San Francisco, California. The results of the evaluation
are shown in Table 2.

Table 3 shows that our approach is more accurate than the
alternatives, and Table 4 shows that those improvements in
accuracy over the best alternative are statistically significant
because P<.001 for every health outcome in each city when the
1-tailed paired t test is applied.

We expected our approach to outperform the “predict no change
approach” because the CDC 500 Cities project and bicycle and
pedestrian path data for both cities show that most of the time
when a bicycle path of any length is added, the health outcomes
identified by the factor analysis improve within 5 years.
However, we did not know whether our approach outperformed
the linear regression approach.

The results of the evaluation showed that our approach
outperformed the linear regression models because it assumed
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that critical thresholds within the DBC and BPH factors existed
(parameter x in steps 3 and 4 of the algorithm). The linear
regression approach did not make this assumption [50]. By
accounting for this threshold, our approach ensured that it did
not overpredict the improvement offered by additional bicycle
path miles when the DBC or BPH factor for the census tract
indicated that the additional path miles would be ineffective.

By not accounting for this threshold, the linear regression
approach could overpredict the expected improvement in health
outcomes within a census tract. This was because the linear
regression approach assumed that some amount of bicycle and
pedestrian paths in each census tract would yield a population
without any negative health outcomes. This is unrealistic. Our
evaluation results in Tables 3 and 4 demonstrate that linear
regression yields statistically significant inferior accuracy, as
measured by our 1-tailed paired t test.

Table 2. Evaluation of approaches for bicycle and pedestrian paths added in Norfolk, Virginia, in 2016.

Our approach (census tract:
n=31), mean (SD)

Linear regression (census
tract: n=31), mean (SD)

Predict no change (census
tract: n=31), mean (SD)

Health outcome and MOEa (% of individuals who experi-
ence a negative health outcome)

Diabetes

1.63 (0.59)2.14 (0.67)2.33 (0.66)MAEb

1.67 (0.55)2.29 (0.61)2.41 (0.62)RMSEc

Poor physical health

1.83 (0.57)2.21 (0.69)2.69 (0.72)MAE

1.94 (0.56)2.27 (0.66)2.64 (0.69)RMSE

High blood pressure

1.49 (0.85)2.27 (1.07)2.95 (1.17)MAE

1.55 (0.82)2.38 (0.92)3.18 (1.13)RMSE

aMOE: measure of effectiveness.
bMAE: mean absolute error.
cRMSE: root mean squared error.

Table 3. Evaluation of approaches for bicycle and pedestrian paths added in San Francisco, California, in 2016.

Our approach (census tract:
n=49), mean (SD)

Linear regression (census
tract: n=49), mean (SD)

Predict no change (census
tract: n=49), mean (SD)

Health outcome and MOEa (% of individuals who experi-
ence a negative health outcome)

Diabetes

1.24 (0.91)2.18 (1.18)2.32 (1.19)MAEb

1.35 (0.90)2.41 (1.11)2.44 (1.11)RMSEc

Stroke

1.81 (0.52)2.78 (0.68)2.68 (0.58)MAE

1.88 (0.49)2.97 (0.64)3.19 (0.52)RMSE

aMOE: measure of effectiveness.
bMAE: mean absolute error.
cRMSE: root mean squared error.
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Table 4. Assessment of whether the improved accuracy of bicycle and pedestrian paths added in 2016 is statistically significant.

Statistical significance of our approach MOE versus best alternative MOE, P valueCity, health outcome, and MOEa

Norfolk, Virginia (census tract: n=31)

Diabetes

<.001MAEb

<.001RMSEc

Poor physical health

<.001MAE

<.001RMSE

High blood pressure

<.001MAE

<.001RMSE

San Francisco, California (census tract: n=49)

Diabetes

<.001MAE

<.001RMSE

Stroke

<.001MAE

<.001RMSE

aMOE: measure of effectiveness.
bMAE: mean absolute error.
cRMSE: root mean squared error.

Comparison With Prior Work
Our study builds on a significant amount of previous research.
Numerous researchers have used statistical analyses to (1)
explore the health effects of commuting via bicycle or by foot
[4,53-62] and (2) assess the health benefits of bicycling and
bicycle and pedestrian paths versus the risk of injury or death
[63-67]. This study captured data related to walking and
bicycling using telephone and web-based surveys [53,54,68],
GPS, accelerometers, heart rate monitors [6,58,69-77], bicycling
shares [78-80], and social media [17,81].

Predicting which bicycle and pedestrian paths residents will
choose is also related to our work. Within this arena, researchers
have found different results with respect to the extent to which
bicycle and pedestrian path users prefer to take paths that
minimize the total travel distance. For example, Broach et al
[71,82] used data from Portland, Oregon, to formulate a model
that estimated that preferred routes were <10% longer than the
shortest path distance. Similarly, Winters et al [39] found that
75% of trips in Vancouver, British Columbia, Canada, were
within 10% of the shortest path distance. However,
Aultman-Hall et al [83] found no clear relationship between the
shortest path distance and percent route deviation in Ontario,
Canada, and Krizek et al [84] looked at data in Minneapolis,
Minnesota, and found that the average path traveled was roughly
twice as long as the shortest path available.

There is also significant research focused on understanding the
rate at which future use of bicycle and pedestrian paths will

change, as commuters who currently do not use bicycle and
pedestrian paths start to transition into commuting by foot or
bicycle. Waldykowski et al [85] developed a simulation that
explored the conditions under which motor vehicle commuters
switch over to commute by bicycle and pedestrian path [85].
Similarly, Mahfouz et al [86] combined distance decay, route
calculation, and network analysis methods to examine (1) where
future bicycle and pedestrian path commuter demand is within
a city, (2) if it is likely to rise, and (3) how such demand could
be accommodated within existing bicycle and pedestrian path
networks. Finally, Liu et al [87] proposed a connectivity measure
that captures the importance of a link in connecting the origins
of cyclists and nearby subway stations and incorporated it into
a statistical model.

In addition, researchers have attempted to better understand the
impact of bicycle and pedestrian paths on health outcomes. This
work includes (1) cost-benefit analysis of bicycle and pedestrian
paths with respect to health improvements [10,88]; (2) lessons
learned from cities with especially enthusiastic cycling culture
such as Amsterdam, the Netherlands; Barcelona, Spain; and
Chicago, Illinois [49,89,90]; and (3) understanding what type
of bicycle and pedestrian paths cyclists and pedestrians prefer
[69].

These studies demonstrate the need for granular analysis with
actionable outcomes with respect to bicycle and pedestrian
paths. Furthermore, although the studies have had a significant
impact on the research community, none of them constructed
a city-specific model to advise decision makers about the extent
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to which adding bicycle and pedestrian paths to a census tract
would improve residents’health outcomes. Our study addresses
this problem within a larger bicycle and pedestrian path research
area.

Limitations

Data Limitations
Strava has emerged as a tool of interest for collecting data on
bicycling, running, and walking, understanding the effects of
new interventions for users, and promoting safety among riders.
However, this crowdsourced data are biased toward recreational
riders, who are frequent users of GPS-enabled fitness apps.
Thus, there is a need to quantify and correct the inherent bias
in crowdsourced data to better represent all residents across
various demographics. Strava users tend to be more frequently
identified as male, be older, and have more income than the
general population [17]. In addition, there are limitations to how
well the data counted by municipalities reflect the actual volume
of bicycle and pedestrian traffic on bicycle and pedestrian paths
[91,92]. Research has shown that accounting for biases in
placement, time, and day of the week needs to be performed to
address these issues [93,94].

Controlling for these biases in the Strava and municipal count
data is beyond the scope of our work. However, it is important
to note that there were biases in the data. Ultimately, these
limitations mean that the Strava data sets that informed our
study are nonuniform subsamples of the traffic of cyclists,
walkers, and runners in Norfolk, Virginia, and San Francisco,
California.

It is also important to note that the use of e-bikes has changed
significantly during the period of our study [6]. e-Bikes present
a potential opportunity to encourage active transportation while
reducing personal barriers to active transportation [95,96].
Survey results suggest that e-bikes may reduce some personal
barriers to traditional cycling and allow riders to travel greater
distances [97,98]. In addition, e-bikes may have the added
benefit of promoting health among individuals who are
otherwise reluctant to engage in physical activity [99] and
improve metabolic fitness [100] and enjoyment [101]. Exploring
how the increased use of e-bikes affects our approach is an
opportunity for future work.

Approach Limitations
Recall that our approach uses 5 years of past data to fit a factor
model and requires the factor model to consist of at least three
factors where unique factors reflect residents’ (1) DBC, (2)
health, and (3) BPH. In addition, the health factor must include
at least one observed variable related to a health outcome, and
the BPH factor must include an observed variable related to the
amount of bicycle and pedestrian path mileage in the census
tract. For cities in which these requirements cannot be met, our
approach cannot be applied. This limits its utility and geographic
area of applicability. However, related research has shown that
these factors are important to account for and often present when
understanding who chooses to use bicycle and pedestrian path
and how effective bicycle and pedestrian paths are in improving
health outcomes [2,56,78,102-104]. Furthermore, these factors

provide a structure that enables our approach to predict
improvements in health outcomes more accurately than the
alternative approaches.

Validity Threats
Threats to internal and external validity affected our study.
Threats to internal validity arose when factors affected the
dependent variables without evaluators’ knowledge. It is
possible that some flaws in the implementation of our model
could have affected the evaluation results. However, our
approach used established libraries to conduct factor analysis,
and the source code passed internal reviews [105,106].

Threats to external validity occur when evaluation results cannot
be generalized. Although the evaluation was performed using
more than 83 miles of added bicycle paths in 80 census tracts
across the 2 cities, the factor models and accuracy results cannot
necessarily be generalized to other areas. In addition, the factor
analysis that generates our models assumes that each pair of
variables follows a bivariate normal distribution. Although we
verified that this assumption was true in our data, it may not be
generalizable to other data sets and other cities where the
approach is applied. However, it is very important to note that
our approach, which yielded models producing these results,
can be applied to other cities assuming that factor models that
meet our requirements exist [105,106].

Conclusions
Our work is directly actionable for policy makers, public health
professionals, and urban planners in Norfolk, Virginia, and San
Francisco, California, by providing concrete insight into the
question “To what extent will adding specified bicycle and
pedestrian path mileage to a census tract improve residents’
health outcomes over time?” Specifically, it enables them to
(1) weigh the extent to which 2 bicycle and pedestrian paths of
equal cost proposed in 2 different census tracts improve the
health outcomes of the residents, (2) identify areas where bicycle
and pedestrian paths are unlikely to be effective public health
interventions and other strategies should be used to help
residents, and (3) quantify the minimum amount of bicycle path
miles that need to be added in a given census tract to maximize
the improvement in health outcomes for residents. Our results
demonstrate that for 2 different cities, our approach estimates
improvements in health outcomes more accurately than alternate
approaches, and these improvements are statistically significant.

A web application that implements our algorithm and
summarizes its findings in an actionable manner is available
[107]. Multimedia Appendix 7 provides the source code for the
web application. This application was used to identify a
recommended set of bicycle and pedestrian paths across census
tracts in Norfolk, Virginia. A time series forecast of the expected
improvements in health outcomes for these recommendations
was also conducted. These artifacts, which are examples of the
types of analyses enabled by our approach, are available in
Multimedia Appendix 8. A similar web application that
implements our algorithm for San Francisco, California, is
available [108]. The source code for it is provided in Multimedia
Appendix 9.
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