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CHAPTER 1

INTRODUCTION

Automatic human face recognition has received substantial attention from 

researchers in computer vision, pattern recognition, biometrics, machine learning and 

computer graphics. This common interest among researchers working in diverse fields is 

motivated by a human’s remarkable ability to recognize faces and also by the fact that 

this human activity is one of the primary concerns in everyday life. There are several 

commercial, security, and forensic applications that require the use of face recognition 

technologies. These applications include automated crowd surveillance, access control, 

mug shot identification, face reconstruction, design of human computer interface, 

multimedia communications and content based image database management. There are 

several commercial face recognition systems available, including, 2D systems from 

Cognitec Systems [1], Viisage [2] and 3D systems from A4Vision [3], Geometrix [4], 

and Genex technologies [5]. Most of these systems work under controlled lighting and 

environmental conditions.

A biometric system deals with automatic recognition of people based on their 

distinctive anatomical characteristics such as face, fingerprint, iris, retina, hand geometry, 

vein, voice, etc and behavioral characteristics such as signature and gait. Face is an 

effective biometric attribute. Different biometric indicators are suited for different kinds 

of identification applications due to their performance with regard to intrusiveness, 

accuracy, cost, and ease of sensing [6], The face biometric provides good non- 

intrusiveness although the current state of accuracy is low under operational scenarios.

The reference model for this work is IEEE Transactions on Pattern Analysis and Machine Intelligence.

1
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Global biometric revenues were $719 million in 2003. They are expected to reach $4.6 

billon by 2008, driven by large scale public sector biometric departments, the emergence 

of transactional revenue models, and the adoption of standardized biometric 

infrastructures and data formats [6]. Among the emerging biometric technologies, facial 

biometrics is projected to reach annual revenues of $802 million in 2008. Face 

recognition scenarios can be classified into two types: (i) face verification (or 

authentication) and (ii) face identification (or recognition).

1.1 Face Verification

Face verification is a one-to-one match that compares a query face image against 

a template face image whose identity is being claimed.

Index Stored images and (or) features Claimed identity =2 
Probe image

One to one 
comparison

I
Match / Not

Figure 1.1. Illustration of the face verification scenario.
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The block diagram in Figure 1.1 illustrates the scenario of face verification. To evaluate 

the verification performance, the verification rate (the rate at which legitimate users are 

granted access) and the false acceptance rate (the rate at which imposters are granted 

access) are computed. A good verification system should balance these two rates based 

on operational needs.

1.2 Face Identification

Face identification is a one-to-many matching process that compares a query face 

image against all the template images in a face database to determine the identity of the 

query face. Figure 1.2 illustrates the scenario of face identification.

Test Data Training data

Closest
match

Or

None

Figure 1.2. Illustration of a face recognition scenario.
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The identification of the test image is done by locating the image in the database that has 

the highest similarity with the test image. The identification process is a closed test, 

which means the sensor takes an observation of an individual that is known to be in the 

database. The test subject’s (normalized) features are compared with those in the 

system’s database, and a similarity score is obtained for comparison. These similarity 

scores are then numerically ranked in descending order, and the individual with the 

highest similarity score is chosen if it is within a predefined threshold.

1.3 Challenges in Face Recognition

A great deal of effort has been devoted to the task of face recognition and in the 

process it has achieved a certain level of maturity, but it still remains a challenging 

problem in a general setting. Frontal face recognition under controlled environments 

would give near to 100% accuracy for large databases. Successful 2D face recognition 

systems have been deployed only under constrained situations, but there are huge 

challenges that need to be addressed to make face recognition technology a reality. One 

major factor limiting the applications of 2D face recognition systems is that human face 

image appearance has the potential for very large intra-subject variations due to:

1. Illumination variations

2. Facial expression variations

3. Occlusions due to facial hair, face accessories and other objects

4. Aging and

5. Pose

4
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Figure 1.3. Facial appearance variations due to changes in pose illumination, expression, 
and facial accessories.

Figurel.3 gives examples of intra-class appearance variations. Inter-subject variations 

can be small due to the similarity of individual appearances. An illustration of 

comparison between the inter-personal and intra-personal variations is illustrated in 

Figure 1.4. It can be observed that, the images with larger intra-personal variations are 

farther from each other even though they are of the same subject, whereas images of 

different subjects look similar. Various techniques and methodologies have been 

developed over the past two decades targeting the above challenges.

5
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Figure 1.4. Illustration of appearance variations of different subjects.

1.4 Focus of Research and Main Contributions

The main focus of this research is to make the face recognition process robust to 

the first four challenges mentioned above, that is to improve the classification accuracy of 

face images that are affected due to illumination, and/or facial expressionss and/or partial 

occlusions. It is also possible that the recognition technology developed in this research 

for a frontal face image can be extended to other views of a face if the training sets in 

different views are available.

The main contributions of this dissertation are as follows:

1. Development of an adaptive weighted modular approach for improved 

recognition in the presence of facial variations.

6
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2. Development of a new technique using phase congruency in feature extraction to 

overcome illumination variations.

3. Development of a novel modularization technique to deal with expression 

variations and partial occlusions.

4. Development of a feature selection strategy for improved face recognition

5. Development of a face authentication system using the above feature selection 

strategy in low resolution sensor images.

6. Development of a face recognition technique in thermal sensor images using the 

above feature extraction and selection strategies.

7. Development of a new information fusion based face recognition methodology in 

multi-sensor images.

1.4.1 Adaptive weighted modular approach

In this research, a methodology to determine the level of confidence of a sub- 

region in the overall classification of a given face image, affected due to varying 

expressions, illuminations and partial occlusions, is presented. The technique for 

obtaining the weights for each individual region of the test image is based on a measure 

of optical flow between that test image and a face model. Individual image regions or 

modules are assigned additional weights by arranging them in the order of their 

importance in classification. The proposed method is applicable mainly in scenarios 

where the samples in the training set are few in number. A K-nearest neighbor distance 

measure is used in classifying each module of the test image after dimensionality
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reduction. A total score is calculated for each training class based on the classification 

result of each module and its associated weights.

1.4.2 Phase congruency in feature extraction

Applying phase congruency features for the purpose of face recognition is one of 

the contributions of this research. Human facial variations are identified due to 

illumination changes in both indoor and outdoor environments. The feature selection 

process is very important to overcome the effect of these variations for accurate face 

recognition. Many feature selection strategies have been studied and evaluated. Recent 

studies accompanied by psychophysical evaluations helped to implement a face 

recognition procedure where phase based feature selection is employed. Features 

perceived by the human brain are at those locations where the phase information is highly 

in order. Since human beings can identify faces with tremendous accuracy, the features 

perceived by them would provide better accuracy when applied to machine vision. 

Boosted by this idea, the feature selection in the face images is made according to the 

congruency or order in the localized phase information.

1.4.3 Novel modularization technique

In reality, facial variations are confined mostly to local regions. Modularizing the 

images would help to localize these variations, provided the modules created are 

sufficiently small. But in this process, a large amount of dependencies among various 

neighboring pixels might be ignored. This can be countered by making the modules 

larger, but this would result in improper localization of the facial variations. In order to

8
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deal with this problem, a novel module creation strategy has been developed in this 

research. Considering additional pixel dependencies across various sub-regions would 

help in providing additional information, which in turn improves the classification 

accuracy. A feature selection policy based on the above technique is implemented in this 

dissertation. Modular spaces are created with pixels from across various local regions 

taking into account the locality of such regions.

1.4.4 Feature selection strategy for improved face recognition

Higher order dependencies can be obtained by projecting the data in the input 

space into a higher dimensional space. These dependencies could provide critical 

information which helps in boosting the recognition performance. The modular phase 

congmency features are vectorised and projected into higher dimensional spaces. The 

kernel trick method is used in achieving the transformation into the higher dimensional 

eigen spaces. Classification is carried out after this transformation. Observations indicate 

improvement in the recognition accuracy compared to the linear subspace based feature 

selection techniques.

1.4.5 Face authentication in low quality images

An application based on the new feature extraction and selection techniques is 

developed which can be used in a real life scenario. The objective of this research was to 

develop a face verification system, which could be useful for applications related with 

access control in a distributed environment. In this case, each subject is given a personal 

identification number (PIN) when enrolled. When the subject types his/her PIN, images

9
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are acquired and stored in a database of images. The facial verification process extracts 

the features and compares them to the stored features in the database to verify if the PIN 

belongs to the actual claimant or not. The main criterion is to provide a reliable, cost 

effective, fast and expandable system whose inputs are images from a low cost web 

camera.

1.4.6 Face recognition in thermal images

Thermal images capture the shape of the object (face) under consideration; hence, 

feature based techniques could be better for classification tasks in this case. The phase 

congruency measure as explained earlier captures the local features based on the order in 

phase. It is independent of the contrast in the image. Hence the feature maps should 

provide better performance for thermal images. Also, the thermal images are opaque to 

glass; hence, it is common to have partially occluded regions in thermal face images. 

Other variations in thermal images are caused due to temperature inequalities in the face 

due to environmental conditions. Since these variations are confined to local regions, the 

proposed methodology based on modular regions could provide better performance in 

terms of recognition accuracy. Experimental observations indicate a significant 

improvement in thermal face recognition accuracy upon the use of the proposed feature 

selection techniques.

1.4.7 Multi-sensor image fusion for face recognition

A new multi-sensor decision level fusion based face recognition technique is 

developed in this research. The features obtained from the individual modalities (visible

10
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and thermal) when fused at the decision level provide complementary information for the 

face recognition system. It is observed that the technique outperforms all the individual 

modalities as well as the DWT based data level fusion technique in terms of recognition 

accuracy. The effect of image registration, with respect to data and decision level image 

fusion techniques is also discussed.

1.5 Thesis Outline

A general survey of various technologies and methods in face recognition that are 

developed in the literature is presented in chapter 2. Also, a thorough survey of the 

existing methods corresponding to the work done in this research is presented in this 

chapter. The affect and analysis of local regions on face recognition is discussed in 

chapter 3. The technique of face recognition which is based on the adaptive modular 

approach is also described in this chapter. The novel feature extraction and selection 

strategies for improved face recognition in the presence of facial variations caused due to 

illumination conditions, expression, and partial occlusions are presented in chapter 4. 

Detailed explanation about the need and effect of phase congruency in face recognition is 

presented in this chapter. The details of the development and analysis of the novel 

modularization technique are also presented in this chapter. Discussion regarding 

projection of data into modular linear subspaces as well as projections into high 

dimensional spaces is also provided. In chapter 5 a detailed explanation of the face 

recognition system developed for images captured by low quality sensors is presented. 

Details of the algorithms for facial authentication and facial search are provided in this 

chapter. Experimental results and comparisons with existing methods are also included in

11
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this chapter. Details of implementation of the developed feature selection techniques on 

multi-sensor image modalities for face recognition are presented in chapter 6. Analysis of 

the image capture modalities in various ranges of the infrared (IR) spectrum is provided. 

Details about the development and implementation of the data and decision level fusion 

techniques are also presented. Experimental results obtained from the Equinox face 

database, and comparisons with other methods and discussions are also presented in this 

chapter. Conclusions of the work performed in this dissertation and suggestions for future 

directions of this research are presented in chapter 7.
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CHAPTER 2

LITERATURE REVIEW

Automatic human face recognition [7-10], [34] has been of interest to a growing 

number of research groups for the past two decades. The goal of automatic face 

recognition is to achieve a high level of performance in matching a given face against a 

database of faces. Currently, the performance of face recognition is relatively poor 

compared to other biometric measures such as fingerprint and iris matching. A lot of 

research has been done for the improvement of face recognition. Many face recognition 

technologies based on different methodologies have been developed and documented in 

the literature. A tremendous amount of work is still in progress to make the automatic 

face recognition technology a reality. A general survey of various technologies and 

methods in face recognition that are developed in the literature is presented in this 

chapter. Also, a thorough survey of the existing methods corresponding to the work done 

in this research is presented. Face recognition techniques can be broadly divided into two 

methods: (i) appearance based and (ii) feature based. Appearance based techniques are 

those in which the classification is performed by considering the holistic intensity image 

as the input. In the second approach, features are extracted from the given intensity 

images and are classified with or without an intermediate step of dimensionality 

reduction. In addition to this, facial identification is a pattern recognition problem, hence 

it can also be classified based on the type of subspace analysis and classification 

techniques used. The recognition technique developed in this research is mainly a 2D 

technique, although this can be extended to 3D [42], [43], [45] using view based analysis.

13
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Hence, the literature review that is presented is mainly constrained to 2D face 

recognition.

2.1 Appearance Based Face Recognition

Some of the approaches to object recognition are based directly on the appearance 

of the images or the intensity of the images. These techniques depend on a representation 

of images that induces a vector space structure. Appearance based approaches represent 

an object in terms of several object views. Many view-based approaches use statistical 

techniques to analyze the distribution of the object image in the vector space and derive 

an efficient and effective representation (feature space) according to different 

applications. Given a test image, the similarity between the stored prototypes and the test 

view is then carried out in the feature space.

Image data can be represented as vectors, that is, as points in a high dimensional 

vector space. For example, a p x q  image can be mapped to a vector x E  Rpq by 

concatenating each row or column of the image. Each image, now a vector, corresponds 

to a point in this space. Out of the total ( p x q )  possible instances in this image space, 

human face images only reside in a very small portion. The distribution of all face images 

accounts for variations in facial appearance. Subspace approaches have been modeled 

with a view that the projection of the original image vectors into the subspaces would 

provide a better opportunity to perform face recognition in the reduced spaces. Three 

classical techniques that can be named in the category of linear subspace methods are 

Principal Component Analysis (PCA) [12] [35], Linear Discriminant Analysis 

(LDA)[11][23], and Independent Component Analysis (ICA) [33].

14
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2.1.1 Principal component analysis

PCA is used to reduce the dimensionality of a data set while retaining as much 

information as possible. PCA efficiently represents the data by finding orthonormal axes 

which maximally decorrelate the data. The directions of these basis vectors are the ones 

in which the data is maximally varying as shown in Figure 2.1.

PC2
PCI

Dimension 1

Figure 2.1. Illustration of the directions of maximum variance of the data.

The vectors onto which the data is projected are called Principal Components (PC). If 

X={xj,X2,X3 ....xm} are the data vectors of dimension n, x ^ e  Rn, the eigen vectors 

corresponding to the non-zero eigen values of the covariance matrix St form the principal 

components.

1 M  y
St = —  Z (x- -  »Iq)(x- -  mQ) (2.1)

M  »=1

1 M
where t«q = —  Z x;- is the mean of the vectors X.

M  *=1

Hence the data can now be projected onto a space spanned by the eigen vectors of St as 

shown in Figure 2.2. The data can be represented in terms of only a few significant eigen

15
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vectors with very low loss of information as shown in Figure 2.3. Different classification 

techniques such as nearest neighborhood, k-means and neural networks can be used in 

this reduced linear subspace. By projecting the data into this kind of linear subspace, it is 

possible to reduce the ill effects of the curse of dimensionality while at the same time 

improving the computational efficiency.

Figure 2.2. Illustration of data transformed onto the space spanned by the eigen vectors.

PC1

Figure 2.3. Data represented in terms of only the first principal component vector.

fSi, -Sff*
i . • : ■ . K  ■ v ^ fi?  , «s*l%

:c. ■>:
'  E' 'if § | l f  \> ' 1 ' " t  *

Figure 2.4. Sample face images in ORL face database.

16
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Some of the sample face images in the ORL face database are shown in Figure 2.4, and 

the average of all the images is shown in Figure 2.5.

Figure 2.5. Average face image of all the faces in the ORL database.

The first seven eigen vectors (eigen faces) are shown in Figure 2.6. As explained earlier, 

the data ( image d a ta ) is expressed in terms of linear combinations of the eigen faces.

Figure 2.6. First seven significant eigen faces.

2.1.2 Linear discriminant analysis

PCA finds directions that are useful for representing the data, which may not be good for 

discriminating the data, whereas LDA finds directions that are efficient for discrimination 

as shown in Figure 2.7. To show how to obtain the direction of the maximally 

discriminating vector, two classes of data are considered. X={xi,X2 ,X3 ....xm} are the data 

vectors of dimension n, Rn ■ A subset of X  belonging to class 1 is labeled as D l. A 

subset of X belonging to class 2 is labeled as D2, and w  is the unit vector in the direction 

of maximum seperability.

17
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Class 1 Class 2

Figure 2.7. Illustration of data projection using PCA and LDA.

In this projection the examples from the same class are projected very close to each other 

and at the same time, the projected means are as apart as possible. Hence, a projection 

vector w  needs to be calculated that maximizes the criterion function

2

7(w) =
- m r

~2 ~2 
S1 + s 2

(2 .2)

where mj and are the projected means, is called the within class scatter of

projected samples.
t ,

~  ™2

11 w  (m^ -  m2 ) , where m/ and m2 are the class means

and J(w) is called the Fisher criterion. The Fisher criterion can also be extended for 

multiple class discrimination. The criterion is given by:

J(W)=
W  SB W

W
(2.3)
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