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ABSTRACT

ANALYSIS OF MODELS FOR LONGITUDINAL AND

CLUSTERED BINARY DATA

Weiming Yang
Old Dominion University, 2010
Director: Dr. N. Rao Chaganty

This dissertation deals with modeling and statistical analysis of longitudinal and
clustered binary data. Such data consists of observations on a dichotomous response
variable generated from multiple time or cluster points, that exhibit either decaying
correlation or equi-correlated dependence. The current literature addresses modeling
the dependence using an appropriate correlation structure, but ignores the feasible
bounds on the correlation parameter imposed by the marginal means.

The first part of this dissertation deals with two multivariate probability models,
the first order Markov chain model and the multivariate probit model, that adhere
to the feasible bounds on the correlation. For both the models we obtain maximum

likelihood estimates for the regression and correlation parameters, and study both
asymptotic and small-sample properties of the estimates. Through simulations we
compare the efficiency of the two methods and demonstrate that neither is uniformly
superior over the other.

The second part of this dissertation deals with marginal models, an alternative to
multivariate probability models. We discuss the generalized estimating equations
and the quadratic inference function methods for estimating the regression param-
eter in marginal models. Relative efficiency calculations show these methods when
compared to the likelihood estimates could result in significant loss in efficiency for
highly correlated data. We also propose a modified quadratic inference function
method and demonstrate through efficiency calculations this is an improvement of
the original quadratic inference function approach. The final part of this dissertation
deals with methods for constructing higher order Markov chain models using copulas.
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CHAPTER I

INTRODUCTION

I.l Repeated measurements

Many practical research areas utilize regression analysis of correlated longitudinal
data. In particular, longitudinal data is frequently encountered in many subject-
matter areas such as biology, medicine and public health, and social sciences. Longi-
tudinal data is essentially data observed sequentially over time. It may be collected
either from a designed experiment or an observational study, where the outcome
variables are related to a sequence of events or responses recorded at certain time
points during a study period. In essence, longitudinal data may be regarded as a
collection of many short time series, one for each subject.

Some research areas are focused on correlated clustered data. Clustered data
refers to a set of measurements collected from subjects that are organized in groups,
where a group of related subjects constitutes a cluster. An example of cluster or
group is a genetically related members from a family pedigree. Obviously, situations
where clustered data arise can be independent of time. Longitudinal data may be
thought of as a special kind of clustered data by treating a subject as a cluster, so
each subject's time series forms a set of correlated observations. This perspective
is mainly for technical convenience, because similar tools can be applied to analyze
longitudinal data or clustered data with different modeling of dependence structures.
In longitudinal data analysis, serial correlation is common, whereas in clustered data
analysis exchangeable pairwise within-cluster correlation model is popular.

Although there are many approaches for the analysis of continuous longitudinal
data, the development of the methods for categorical longitudinal data has received
less attention, and the methodology is not nearly as well-developed as for continu-
ous data. In this dissertation, we will study likelihood and some other alternative
methods for analyzing longitudinal binary data.

Table 1.1 shows the general layout for longitudinal data that will be used in this
This dissertation follows the style of Journal of the American Statistical Association.
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dissertation. Let j/¿_, be the response at time point j on subject i, where j = 1, · · · , í¿
and i = 1, ¦ · · ,?. We assume that the ? subjects are independent. The data are
said to be balanced if í¿ = t for 1 < i < ?. Let k be the number of covariates,
and X1J = [XiJi1 ¦ ¦ ¦ ,Xijk)' be the corresponding covariate vector associated with y^.
In general, x^'s are time-dependent, the values of x¿J- vary at different time points.
Some real life binary longitudinal data examples are given in next section.

Table 1.1: General layout for longitudinal data

Subject Time Response Covariates
1 1

h

y?

vu

Vu1

Xiii

xm

-lili

Vn xm

Vij Xijl

ViU xitil

VnI XnIl

Vnj Xnjl

*n Vntn Xntn

XlIk

Xljk

Xltxk

xilk

Xijk

Xit, k

XnIk

Xnjk

Xntnk
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1.2 Data examples

To motivate both methodological and theoretical developments in the subsequent
chapters, a few real world data sets with binary outcomes will be used for illustration
in this dissertation.

1.2.1 Six city respiratory infection study

Table 1.2: Six-city data

No maternal smoking Maternal smoking
Age AgeCount Count

7 8 9 10 7 8 9 10

0 0 0 0 237 0 0 0 0 118

0001 10 0001 6

0010 15 0010 8

0 0 11 4 0 0 11 2

0 10 0 16 0 10 0 11

0 10 1 2 0 10 1 1

0 110 7 0 110 6

0 111 3 0 111 4

1000 24 1000 7

10 0 1 3 10 0 1 3

10 10 3 10 10 3

10 11 2 10 11 1

110 0 6 110 0 4

110 1 2 110 1 2

1110 5 1110 4

1111 11 1111 7

Table 1.2 shows a longitudinal data set from a Harvard University technical report
by N. M. Laird, G. J. Beck and J. H. Ware. These data are part of a study of the
respiratory health effects of indoor and outdoor air pollution in six U.S. cities.
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The main research interest is the effect of maternal smoking on children's respi-
ratory illness. The serial response variable for children from 7 to 10 is recorded as a
binary outcome denoting the absence (0) and presence (1) of respiratory illness. The
maternal smoking is also a dichotomous variable with 0 as an indicator of smoking
and 1 indicates non-smoker. This is a time-independent covariate, i.e. it does not
change during the time of the study for each subject. The data includes only those
children who had all four responses at ages 7, 8, 9 and 10, and therefore balanced.

1.2.2 Indonesian children's health study

Table 1.3: Indonesian children's health data

Age
Xerophthalmia RI 1 6 7

No No 90 236 330 176 143 65 5

Yes 8 36 39 9 7 10

Yes No 0 2 18 15 8 4 1

Yes 0 0 7 0 0 0 0

Sommer et al. (1984) reported a study in West Java, Indonesia to determine the
causes and effect of vitamin A deficiency in preschool children. More than 3000
children were medically examined quarterly for up to six visits to assess whether they
suffered from respiratory or diarrheal infection (RI) and xerophthalmia, an ocular
manifestation of vitamin A deficiency. Weight and height were also measured. The
data on 275 children are summarized in Table 1.3. This longitudinal data is recorded
at equally spaced time points where the binary response variable y^ is equal to 1 if
the child i had RI at time point j and 0 otherwise. The main covariate of interest is
Xerophthalmia which is represented as a binary variable with 1 for presence and 0
for the absence of the Xerophthalmia symptom.

The main objective of this study was to assess the increase in risk for RI among
kids who were vitamin A deficient, which was measured indirectly via Xerophthalmia.
It was also of interest to evaluate the degree of heterogeneity in the risk of disease
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among the kids.

1.2.3 Hamilton's depression study

The data for this example were taken from a double-blind, European, multi-center,
placebo and active treatment controlled, randomized, 5 arm parallel group, 7 week
dose-finding study to evaluate safety and efficacy for three fixed doses of a new drug
in patients with major depressive disorder. The dependent variable in this study is
a binary function of a patient's average score on the Hamilton's Depression Scale
(Ham-D), taking the value 1 if the Ham-D value at time i = 1, · · · , 8 is less than or
equal to 80% of the baseline value, and 0 otherwise. The baseline Ham-D values for
all subjects are greater than 18, implying that all subjects are initially diagnosed as
severely depressed with a dichotomous baseline value of 0. The assessment was made
each week on the patients, starting from the beginning of the first week (baseline)
and continuing for the next seven weeks, for a total of 8 measurements. The primary
objective is the change in Ham-D rating from baseline to the final visit (the subject
might left the study early). The main covariates we will use in our analysis are
the Treatment (active or placebo) and Time (in number of weeks from the baseline
measurement). Table 1.4 shows the observation of all 8 visits of the first patient.

Table 1.4: Hamilton's depression data

ID Time Ham-D COUNTRY Age Gender Treatment Baseline Y
1 1 24 BULGARIA 42 M 1 22 0

1 2 22 BULGARIA 42 M 1 22 0

1 3 21 BULGARIA 42 M 1 22 0

1 4 14 BULGARIA 42 M 1 22 1

1 5 12 BULGARIA 42 M 1 22 1

1 6 10 BULGARIA 42 M 1 22 1

1 7 7 BULGARIA 42 M 1 22 1

1 8 8 BULGARIA 42 M 1 22 1
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1.3 Overview of methods for the analysis of repeated measurements

Statistical researchers have developed several related types of extensions of gener-
alized linear models and quasi-likelihood methods for the analysis of repeated mea-
surements. These methods are useful for both discrete and continuous response vari-
ables, including normal, Poisson, binary, and gamma responses. Three general types
of extensions of generalized linear models methodology to the analysis of repeated
measurements are

• Marginal models;

• Random-effects models;

• Transition models.

We will discuss next these models briefly.

1.3.1 Marginal models

In marginal models, the marginal expectation µ^ = E(y¿j) is modeled as a function
of explanatory variables. The marginal expectation is the average response over the
subpopulation that shares a common value of the covariate vector. Associations
among repeated observations are modeled separately from the marginal mean and
variance of the response vector.

The assumptions can be outlined as follows:

1. The marginal expectation µ?} is related to the covariates through a known link
function h:

toi = Hxijß),
where ß is a k ? 1 vector of regression parameters.

2. The marginal variance of yi} is related to the marginal expectation µ13 via

Var(y¿J-) = f\{µ1]),
where V is a known variance function and f is a dispersion scale parameter.
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3. The covariance between y^ and y^ is a known function of µ^ and µ^ , and a
vector a of unknown parameters.

1.3.2 Random-effects models

In random-effects models, heterogeneity between individuals arising from unmea-
sured variables is accounted for by including subject-specific random effects in the
model. These random effects are assumed to account for all of the within-subject
correlation present in the data. Conditional on the values of the random effects, the
responses are assumed to be independent.

The assumptions in the random-effects models are as follows:

1. Given a vector bt of subject-specific effects for the ith. subject, the conditional
mean of ytj satisfies the model

ME(^1)) = 4 ß + ^jbi,

where h is a known link function and zi3 is a vector of covariates for subject i
at time j.

2. Outcomes ya,· ¦ ¦ , ya, are independent given o¿ for each i = 1, · · ¦ ,?.

3. Random effects ??, · · · , bn are independent and identically distributed.

1.3.3 Transition models

Transition models account for heterogeneity by tracing the development of a depen-
dent variable over time and they represent the distribution of its current value as
a function of its history. In transition models, for the analysis of repeated mea-
surements, the observations yti, ¦ ¦ ¦ ,ylti from subject i are correlated because y^ is
explicitly influenced by the past values y¿i, · · · , Vij-i- Suppose hj is the history of the
subject up to time point j. With this information, we can calculate the probability
of observing y¿ = (ya, ¦¦¦ , yit) as

t

3=2
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where p(yn) is the marginal probability of the first observation and p{yij\hj) is the
conditional probability of y^ given its history. Specifically, if the transition form
Vij-i to yij only depends on the values of y¿j_i, this transition model is known as
the first order Markov chain model.

1.4 Overview of thesis

This dissertation is organized as follows. In Chapter II, we introduce a conditional
linear family of multivariate binary distributions due to Qaqish (2003). We show that
this family results in a first order Markov chain model when the correlation structure
is the first-order autoregressive model. We derive the maximum likelihood estimates
and the Fisher information matrix for the regression and correlation parameters in
this model. We also develop test of hypothesis. Next, we study the multivariate pro-
bit probability model and show that these two models generate different probability
mass functions. Wc make large and small sample efficiency comparisons between
the two likelihood models and show that no one model is uniformly superior over
the other. Real life data examples are presented to contrast parameter estimates for
both the models.

In Chapter III, we discuss marginal models. As the name indicates these models
specify only the marginal distributions and correlation structure but not the joint
distribution. A popular method of estimation for the marginal regression parameter is
the generalized estimating equations. We briefly describe the GEE and outline some
theoretical drawbacks with the method. An alternative to the GEE is the quadratic
inference function (QIF) approach due to Qu et al. (2000). This method uses basis
matrices in lieu of the working correlation parameter and bypasses estimating the
correlation parameter. We give explicit expression for the asymptotic variance of the
QIF regression parameter estimator. Through large and small sample simulations we
show that the QIF method is inefficient for estimating the regression parameter for
highly correlated data when compared with the maximum likelihood estimator from
the Markov chain model. We also propose a modified QIF (mQIF) method using
a correlation estimator that pools information from all the subjects. We show that
mQIF is an improvement over the QIF method. We also study performance of the
MC and mQIF when the correlation model is misspecified.
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In Chapter IV, we give a short introduction and discuss possible methods of
constructing higher order Markov chain models using copulas. The dissertation ends
with a discussion in Chapter V and an appendix containing the SAS macro TMMLE
that we developed for fitting the first order Markov chain model for real data.
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CHAPTER II

TRANSISTION MODELS FOR BINARY DATA

11. 1 Introduction

Binary longitudinal data are often collected in clinical trials and genetic studies where
interest is on assessing the effect of a treatment over time. A canonical problem is
to determine a regression relationship between the measured responses and a set
of time dependent/independent covariates. The longitudinal binary data can be
viewed as a short discrete time series. Unlike Gaussian time series, modeling discrete
variate time series is very challenging and difficult. And the statistical methods are
not well developed for discrete variate time series. The fact that variate values are
integer renders most traditional representations of dependence either impossible or
impractical. There have been a number of efforts to develop a suitable class of time
series models for binary data. In this chapter we first briefly review the literature
and then introduce a fully specified transistion model for the analysis of longitudinal
binary data.

11. 2 Survey of transistion models for binary data

Longitudinal binary data consists of a sequence of binary variables, which can be
thought as a sequence of states of a two-state stochastic process. A natural way to
model the joint distribution of a two-state stochastic process is by a probability model
which describes the transition from one state to another. Several researchers have

developed transition models for the analysis of longitudinal binary data. Here we
will briefly survey some of these models. Muenz and Rubinstein (1985) introduced a
two-state Markov chain for a discrete-time binary sequence. Their motivation was a
study of the impact of mastectomy which measured the binary response of "distress"
or "no distress" for five groups of women who had surgery for different breast disease.
The transition matrix of the chain is given by

M=(m 1^,\p10 1 - pio J
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where p00 is the O —» O transition probability and p10 is the 1 —> 0 transition proba-
bility. It was assumed that the process is stationary and thus the transition matrix
M remains the same at different time points. Muenz and Rubinstein (1985) modeled
the transition probabilities poo and pio by logistic regressions with a covariate vector
? and two different regression parameters ß and 7 as follows

exp(x'ö) , . . expíx'7)Poo(ß) = ^ ? L and ?10(?)= yy / 2.2.11 + exp(x'p) 1 + exp(x'7j

The likelihood function corresponding to model (2.2.1) is then given by
?

m -y) = l[poo(ßpoo(i- PMr01PiOhT-10^-PiOh)P11
? ?

= 1[???(ß?00(1-???(ß)G01 l[pio(lP10(l -PiOh)P11, (2-2.2)
i=l i=l

where ?,??, nî0i, nao and n¿n are the number of 0 —» 0, 0 —> 1, 1 —> 0 and 1 —>
1 transitions observed on the ¿th subject. Clearly the likelihood function (2.2.2)
depends only on pooiß) and Pio (7); so we can get the maximum likelihood estimates
of ß and 7 by maximizing the following two log-likelihood functions separately

W) = X]{"¿oox¿ ß - hioo + nm) log[l + exp(x- ß)}},
1=1

?

¿ih) = X^Woxí 7- ("no + n¿n)log[l + exp(x- 7)]}.
î=1

Albert and Waclawiw (1998) proposed a quasi-likelihood transitional model.
They assume the transitional probabilities are random satisfying some moment con-
ditions. Their model can be thought of as a random-effects model. In their model
the transition matrix for the ith subject takes the form

/ 1 - Pm P101 \ 2
\ Pao 1 — -FW /

where P1Qi and PlW are random quantities satisfying the moment conditions

E[P1Qi] = µ??, E[Pm] = µ??
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and

var(Pm) = CTq1, var(Pm) = aw, and corr(Pl0i,P,io) = P-

If there are observed covariates, the means µ,?? and µ·?? could be modeled as a
function of the covariates and the regression parameter. Let Ti1 = (n¿oo, fi¿oi, ?a?)' be
a vector of the number of 0 — 0, 0 — 1 and 1—0 transitions over t time points for the
¿th subject. Note that the 1 — 1 transitions are determined by the sum of the other
transitions. Let s¿ be the vector which consists of the squares and cross-products of
Ti1 along with n¿u, that is,

/2 2 2 2 \/
st = (ni00'ni00^i0l· niooniiQinioi!niOinno, nil0, ninni00. n¿iin¿oi, ^n"¿io, ^m) ¦

Albert and Waclawiw (1998) proposed an estimating equation approach for estimat-
ing the means µ0?, Mio, variances s??, s?? and the correlation ? based on s¿'s for
1 < i < ?. They also provide methods of estimation for the regression parameter
in the situations where the means are functions of the covariates and the regression
parameter.

Azzalini (1994) introduced another model based on first order Markov chain to
analyze serial correlated binary observations. Instead of using correlation to mea-
sure the dependence, he used odds ratio to measure the dependence between two
consecutive binary variables. The odds ratio is defined as

f = ?????? (2.2.4)Po/(l -Po)

where pj = P(Yt — 1 1 V^_i = j) for j = 0,1. A technical reason in favor of using
this odds ratio as a measure of dependence as opposed to the correlation is given
by Fitzmaurice and Laird (1993). They observed when the association between
observations is modeled using f, the estimates of the mean are relatively insensitive
to changes of the association parameter. Moreover, the range of feasible values for f
is independent of the value of µ — E(Y1). In the stationary case, given the mean µ
and the odds ratio f, we can obtain ^0 and j>\ by solving the equations (2.2.4) and

µ = µ?? + (1 - µ)??- (2.2.5)

In the non-stationary case µ^(ß) = E{Yt) varies at different time points and it is
related to the covariates xt and the regression parameter ß via some link function.
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Then equation (2.2.5) is replaced by

µ?(ß) = ¿ut-i 08) pi + (1 - A/t_i(/3))po, (2.2.6)

where po and Pi now vary with t and /3 as well. Solving equations (2.2.4) and (2.2.6),
we obtain

P3
µ? for f = 1
¿-l+ (Vi-l)(/¿t-Mt-l) ? ¦1-d+(f-1)(µ?-µ?-?-2µ?µ?-?) ^QJ. ? I -?'J 2(?/)-1)µ?(1-µ?_?) ^'

(2.2.7)
______ LL _l_ I^ ¦ \r -'\r-- r-i-i -r—f-i-w tr,r ,/, _/_ |
2(V-l)(l-w-l)

where d2 = 1 + (f - l)[(//t - µ?~?)2f - (µ-t + µ*-?)2 + 2 (/^ + /x¿-i)]. In the above we
suppressed the dependence of pj on t, ß and i/>.

Given a sequence of observations y\,y2, - ¦ ¦ -,Vt, the log-likelihood function for ß
and f is

,VO = ¿4(0, VO = ¿bi IQgIt(P^1) +log(l -pw_J (2.2.8)

This can be summed over all the subjects and maximized to get the maximum like-
lihood estimates of ß and f. Even though this approach has desirable features but
there are some disadvantages. If the marginal means depend on time-varying covari-
ates, the assumption of odds ratio being fixed over all possible marginal probabilities
is unlikely to be so.

In the next section, we discuss a Markov chain model which generates binary
random vectors with correlation structure that is the first order autoregressive.

II. 3 First order autoregressive structure

A reasonable correlation model for a sequence of serially correlated binary measure-
ments 2/1 - 2/2 , · · · , IJt is the first order autoregressive (AR(I)) structure with parameter
? which is given by

R(p)

1

P

P

1 „i-1

?1 P1-1

(2.3.1)
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In the next two sections we derive the feasible range for the correlation parame-
ter ? and a method of constructing a joint probability distribution with correlation
structure (2.3.1).

II. 3.1 Conditional linear family

Recently, Qaqish (2003) introduced a conditional linear family of binary distributions.
The idea behind the construction of this family is that the expected value of the
current observation is taken as a linear function of the past observations. That is,

¿-1

?(?t\?0 =yj,l<j<i-l)=Pi + Yt bijiYj - Pj). (2.3.2)
j= l

To find the coefficients bi} we multiply both sides of the above equation by (Y0 —pj),
j = 1,- ¦ ¦ ,i — \. Then taking expectations we get

CoV(Y17 Y1) = OnVaT(Y1) + O12CoV(Y17Y2) + ¦ ¦ ¦ + bl{l.1)Cov(YllY^1)
CoV(Y17 Y2) = blX Cov(Y2l Y1) + O12 Var(Y2) + ¦¦¦ + 6i(i_1} Cov(Y2, Y1.,)

CoV(Y1, Y^1) = ba CoV(Y1^1Y1) + O12 CoV(Y^11Y2) + ¦¦¦ + 6i(i_1} VaT(Y1^1).
The above identities can be written in a matrix form as

CoV(Y11Y1)
CoV(Y11Y2) S1-Ib,

CoV(Y11Y1^1)
where b = (ba,bi2, · · · , 6¿(¿-i))' and

VaT(Y1) COv(Y11Y2)
COv(Y21Y1) VaT(Y2)

S?-?

CoV(Y1^1Y1) CoV(Y1^1Y2)
Thus

b = S"?

CoV(Y11Y1)
CoV(Y11Y2)

CoV(Y11Y^1)

COv(Y11Y^1)
CoV(Y21Y1.,)

VaT(Y^1)
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In the case the correlation matrix of (3/1, . . . , y¿_i) is R(p), we have

S2_?

CT1 0
0 s2

0 0

0

0

<7i-l

R(p)

s? 0
0 s2

0 0

0

0

Therefore

i 0
Cl

0 i
s2

0 0

ZL 0
s?

0 s·
CT2

0 0

0

0

1
s,-?

0

0

R-\p)

R-1 (?)

^ 0
s?

0 i
s?

0 0

„i-i

1

<?2<???1

(Tz-IO1P

¿-2

P

For the AR(I) correlation matrix ñ(p), the inverse is given by

R-\p) =
1

1-p2 (1 + p2)Mx-pM2-p2 M3

where M\ is the identity matrix, M2 is a tri-diagonal matrix with ones right above
and below the diagonal, zero everywhere else. The matrix M2 is a matrix of zeros
except the first and last diagonal elements which are equal to 1. Note that

/ P' ni+l \
P1 +P1'

R-\p) X-p1 [I + P¿
P^

P

P*

P

1-p2

0

0

p-p

0

0

0

P
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Therefore

s?

0

0 0

R-\p)

„?- 1

J.-1

P
P~

Thus for the AR(I) correlation structure the conditional linear family of binary
distributions satisfy the relation

E(Y1]Y0 =yj,l<j<i-l) = P(Y1 = l\Yj = y3)
= Pi + p^-(yi-i -Pi-i).

(2.3.3)

This shows that if the correlation structure is AR(I) then Y1 depends only y,:_i and
is independent of the past observations. Thus the resulting process is a first order
Markov chain.

II. 3. 2 Probability mass function of the conditional linear family

In the previous section we have seen that when the correlation structure is AR(I),
the resulting conditional linear family is a first order Markov chain. For this chain,
the transition probabilities of moving from 2/¿-i to i/¿ can be written explicitly as
follows.

PiOX

Pnx

PiOO

PiW

Gi , . Vi-i<y%P1 - P (0 - P1-I) ^p1- ?
Oi , , <Ji-\OiPi - P-— (1 - Pi-i) =Pi + p-

Oi-X Pi-X

1 - -P1Oi = Qi + P

1 - Pixx = Qi- P

Oi-X(J1
Qi-I

<*i-\Oj

Pi-X

We require that these four probabilities lie between 0 and 1 for all i. This leads to
the bounds on the correlation parameter ? as

max; L(Pi-I, Pi) <P< min U(Pi-^p1),2<i<t 2<i<t (2.3.4)



17

where

L(a,b)

U{a,b)

max

mm

l-o 1-6
1-a 1-6'

a 1-6) (l-a)b
a(1 - 6)

The correlation bounds (2.3.4) were given in Chaganty and Joe (2006). For fixed pi}
1 < i < t and ? satisfying the bounds (2.3.4), the joint probability distribution with
AR(I) structure can be obtained starting with an initial Bernoulli distribution with
mean p\ and by the first order Markov chain with transition matrix

Vi

H(i-i)

1

Qi - ?-?GG P* + PPi-I Pi-I

Vi-i (2.3.5)

where e/, = 1 — p¿, a¿ = (piq)1^2, ¿ = 1,2,··· , t. The transition matrix //(¿_?)/( gives us
the conditional distribution of F¿ given the previous state Y1-I- Note that ?^-?);? is
a function of marginal probabilities p% and ?.,_? as well as the correlation parameter
p. If the marginal distribution of Y.L-\ is Bernoulli with mean p¿_j then the marginal
distribution of Y¿ is again Bernoulli with mean p¿, since

(<7i_i, pi-{) #(¿-i),¿ = (<?¿, Pi)-

Further the transition probability matrix from state y¿_i to state y3 for j > i, is given
by

H1(i-l)j #,(i-1)- ;#¿ ('+I) //.0-i)j

(¡j + p1 Q1 — p1
Qi-i Pz-i

J+1Cj-ICj ni_i+1Cj-lCjP3 - p>- Pj + P1'
(2.3.6)

Q1-I Px-\

Thus the correlation between Yl-1 and Y3 for j > i is p3~l+l. When JD1 = p2 = ¦ ¦ ¦ =
Pt = p, that is, all the marginal probabilities are the same, the matrix i/(í_i).¿ does
not depend on i, and the Markov chain is a homogeneous, stationary chain.
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For the above first order Markov chain model, the joint probability mass function
for Y = (Yi, ¦ ¦ ¦ , Y1) is given by

n(y) = P(Y = y)

pfql^H Pi Hi ' \ 1J P s,-i i-Vi-i
Pi-i 9.-1

(2.3.7)

This joint distribution is such that the marginal of Y1 is Bernoulli with mean p¿
and Corr(Yi, Yj) = pl'~J' for 1 < i ^ j < t as shown above.

II. 3. 3 Generalization to Markov structures

The construction of the joint distribution for repeated binary observations with speci-
fied means and AR(I) correlation structure in the previous section can be generalized
readily as follows. Assume that the initial distribution of Y1 is Bernoulli with mean
P1, and for i > 2, let the transition from state ?t-? to Y1 follow a first order Markov
chain with transition matrix given by

H{i-i),i

Vi-\V% Vi-I1^i
Qi + Pi~i Qi - Pi-i-

Pi - Pi-v

Qi-i

Qi-i
Pi + Pi-v

Pi-I

Oi-\Oi

Pi-i J

(2.3.8)

Matrix (2.3.8) is a legitimate transition matrix if L(P^1), pt) < /9¿_i < [/(p(,-_i),pj).
As before, it is easy to see that from the above transition matrix the marginal dis-
tribution of Yj1 is Bernoulli with mean p¿ if the marginal distribution of Y{%-i) is
Bernoulli with mean p¿_i and the correlation between Y(^1) and Yz is p¿_i. For the
above transition matrices we have

H(i-i)j = H(.i-i),iHi,(i+i) ' ' " #(j-i),j
(J-I)

^k=(I-I)
0~1)

vfc=(«-i)

^- I TL ??'-t? ft+! ? HiSi*.fc=(i-l) I \k=(i-l)

. (2.3.9)
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This is the transition matrix for moving from state y¿_i to ?/,-, for j > i. Hence
Corr(Y(i_i), Y7) = (?^=(?-?) Pk )· In particular if the repeated binary observations
are taken at time points e\ < e2 < · · · < e¿, we could take pk = pek+1~Ck. Then
(7?G7·(?(?_?), Y,) equals peJ~ei-1, that is, the resulting correlation structure is the
Markov structure. The Markov structure is an appropriate model for longitudinal
data that is collected at different time points for different subjects. Similarly, we
could also construct multivariate binary distributions with specified marginals and
Generalized Markov structure. However note that for these structures the parameters
must satisfy stringent bounds which are lot more restrictive than positive definite-
ness. See Crowder and Hand (1990) and Nunez-Anton and Woodworth (1994) for a
description and use of the Markov and Generalized Markov structures in the analysis
of continuous longitudinal data.

II.3.4 Maximum likelihood estimation

Let Y1 = (yn, yi2, ¦ ¦ ¦ , y^)' be a vector of binary response with marginal means p¿ =
(p¿i,Pi2,··· ,Piti)' e (O,1)*' and let X[3 = (???,??2, ·· · ,?f) be the corresponding
fc-dimensional row vector of covariates measured at time j — 1,2,··· , í¿ for subject
i = 1,2, ··· ,?. Assume that the ? subjects are independent. Suppose that the
responses are related to the covariates as

E(yij)=Pij = h{X'ijß),
where h(-) is either the probit or the logit link function and ß is the /c-dimensional
regression parameter.

Let ? — {ß:?), then the likelihood for subject i is given by

L1[O) = n{yi;Xi,e)

= PS1^-"1 ?
3=2 L P¿(i-1) 9¿(i-l)

(2.3.10)

where yt — (y¿1, yi2, ¦·¦ , yiu)' and X¡ = [??,??2) ... , Xiti). The maximum likelihood
estimate 9MLE is obtained by maximizing the likelihood function

? ?

??) = 11^(6) = ll*(yi;Xi,9).
i=l j=l
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The log-likelihood function can be written as
?

= S t^1 loë(P>i) + i1 - Vn) loë(%i)]
1=1

? ti

+ SS lQg %<&* + (-i)^-1'-^ ?^r^î
? ?

= S??? + S?'2·
P1(J-I) 9,?-?)

(2.3.11)
¿=? ¿=?

From the results in Anderson and Goodman (1957) it follows that there exists a
consistent solution ? — (/3, ?) to the likelihood equation

¿=i

We will now derive a simplified expression for ^?(?) and the Hessian matrix that
can be used for computational purposes.

The Hessian matrix is the second derivative of likelihood function, and it is of the
form

02£(?)?{?) = TTTT'

? „<

S?' J-VHl V">O2M1, A O2M12

The first and second derivatives of Mn are as follows:

????' ' (2.3.12)

T?-a
dß

O2M11
?ß?ß'

OM11
Op

S
i-l L

n

S
2 = 1

Vn
1 dpa 1 Op1

PiI Oß - (i - Va) Qa Oß

_?_??^??^ 1 02Pzt
~mpl Oß Oß' +yaPll0ß0ß'

1 OpnOp,
Ú Oß 7 - (1 - Wi) 1 O2P1J

(2.3.13)

(2.3.14)

(2.3.15)
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To get the first and second derivative of Mi2 in (2.3.11), let P^ be the conditional
probability of Y^ = y¿j given that the previous state equals to y¿(j-i), that is,

pij = p {Yv = ya\Yiu-i) = yiü-i)}

P,(j_i) 9,:o-i)

The derivative of Ma is a sum of the derivatives of log(P¿*-) at each time points
j for each of the ? subjects. Let G¿J = p^q^ y,J, we then have

Od, vij-idPij
Vi]Pi3 C, ? ql~mj+p% (i - VxMl i ( 9PiJ

dß

VlJP:Tl%m - (i - vvW%Vij -Vij
ij Hij

dptJ
dß (2.3.16)

dßdßi yiAÌ)l3 )Pl3 % dß dß' y%lPx3 % dßdß'

-2^(1 - Va)P^ q%JViJ-In-Vi] vPij vPij
dß dß'

d2pl3-
13 ^ dß dß' ^ "%3""?1 ^ dßdß''-y«-(i - y^^r19U3B - (i - ??)?? --*"

(2.3.17)

Then

BMg
dß

U

- S?^) = S^
y,u -i)Vv

J=2

U

= S

dß

1

P*
j=2 «J

J=2 ^ W
dGa ..j. Jm Wj-I) - Vi(J-I)ViJ-W~
dß1A + (-lyiu-D+va p. dß

(G1(^1))2
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92Mî2

dßdßi

+
?*

92G,,-
dßdß'- + (-I)^U-I)+WiA- 3' ^ 3/3 1^(J-I) s?(]-1)°?] Qß

8G

+ (_i)y¿ü-i)+y.í2p (2.3.18)

dp
u 1

Z-i p*
3=1 V PiÜ-i) qiU-i)

(2.3.19)

O2M1,
dp2 S

j=2
p:. (_]_)!/i(j-l)+!/« y.ü-i) i-Viu-D

PiU-i) 9¿ü-i)
(2.3.20)

92M82
9/39p

t, 1
Z-/ p*
j=2 1J

(-1?3/??-?)+1/? E¿? G1Q-I) - a¿(j_i)CT:
SG, (j-i)

y a/3

(G,- -^2i(J-l)J

(2.3.21)
where

9 (?s^-^s., dG

dß' V dß GiU-i) - Vi[O-I)ViJ Qß
iÜ-l)

32Vi(J-I)ViJr, , 9s?0_?)s^ 9Gî(j_i) 9Gî(,_i) ?s^-^s^ d2G.i{j-i)
9,09/3' 9,0 00' 9,0 00' 9000' '

dv^j-i^ij 9

9/3 90 y/PijQijPiU-VQiU-i)

1

2oi^-i)0K
Op1U-I) dptj

,1 - 2pî0_1))pÎj%- +piü_1)giü_1)(l - 2p„)-^-j ,
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?2s.*0'-?)s^ 1 OCi(J-I)GiJ OGi(J-V1O^
dßdß' ^i(J-I)GiJ dß

+
2-Vi[J-I)Vv

92PiU-IdPi{3-i) O9^O-I) 9PiQ-I) ?„ u~Pi(J-i) \ r„ „2
dßdß' dß dß' 2Pl(3~l) dßdß' ? (ptj Plj)

+(1 - 2Pi(J-I))(I - 2??)—^5— -^r + (1 - 2PiU-I))C1 - 2pi^~dß~eßT-
+(P, 2 x( &Pij ndPijdPij 0n ^2PiJ- "\ü-i) Pm-D) ydßdß> ¿ dß dß' PlJdßdß'J

Using the above expressions we can write the derivative of the log-likelihood
function and the Hessian matrix as

y dß y dß
de i{9)

dMl2

\ tí 9PS
(2.3.22)

and

/ .A d2Mtl A d2 M12 .A d2Ml2 \
f^ dßdß' + J^x dßdß' J^1 dßdp

H

V S
?=1

d2Ml2
dßdp S d2Mj2

X dp2 J

(2.3.23)

We have used the above expressions (2.3.22) and (2.3.23) to develop a computer
program to find the maximum likelihood estimates for the first order Markov chain
model.

It is well known that the maximum likelihood estimator Tµ?e has an asymptotic
normal distribution:

(OMLiJ-O)-AA(O1X-1),
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where X is the Fisher information in ? subjects, and it can be calculated as
?

?=1

where the inner sum is taken over the 2'* possible vectors of y¿ . The diagonal elements
of X~l are the asymptotic variances of the parameter estimates. We compute the
Fisher information matrix in the software that we developed to estimate the standard
errors of the maximum likelihood estimates.

II.4 Hypothesis testing

In this section we develop hypothesis testing procedures for testing the significance of
the correlation parameter p. We develop hypothesis tests for general functions of the
correlation parameters, and then concentrate upon specific examples and compare
their performance through simulations.

II.4.1 Likelihood ratio test

Knowledge of the likelihood function allows us to utilize a likelihood ratio test for
hypothesis tests regarding the correlation parameters.

Generally, we would like to test a null hypothesis that the correlation param-
eter ? is equal to some constant, or H0 : ? = p0. To do this, we take the ratio
of the likelihood evaluated with the maximum likelihood estimates under H0 (the
restricted MLE 's) against the likelihood evaluated with the so-called unrestricted
maximum likelihood estimates. Let O0 = (A), Po) be the restricted and ? — (ß, ?) the

??(?) dl{ß)
~~dè W SS ^;^

« — 1

8£{?) ??(?)
~?? W (2.3.24)
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unrestricted MLE's, respectively. Then the likelihood ratio test statistic is

?G=?p*(?)A(O0, ?)
niLi^lö)
???^??j=2 ??G" + (-i)v,.(j-i)+y,j'J Po i(j-l)a'i

?Hi D J-'Mi- D
PtO-I) ^0-1)

^^+(-?^-^^?,^G^-?
Hi-D ^(j-i)

p
1=2

jî; "«'J ^1- ^ ^0 3(j-i) „!-«iti-i)
Pi(j-i) 9¿ü-i)

P¿0-i) ?¿ü-i)

For ease of notation we wrote p¿j and ^ in the above for the estimated probabilities
that depend on the estimated regression parameter ß. The most obvious special case
is the hypothesis H0 : ? = 0. Thus, the test statistic becomes

A(O0, T)
u

?
V, 1 1 — Vj-

PIjQ13

PiU-D ''U-D

Recall that that -2In(A(O0, T)) has an asymptotic chi-square distribution with d =
dur — dr degrees of freedom, where dur is the number of parameters in the unrestricted
model and dr is the number of parameters under the null hypothesis. Since the
difference in the number of parameters between O0 = (,O0. 0) and ? = (ß, µ) is 1, then
-2In(A(O0, ?)) is asymptotically chi-square with one degree of freedom.

II.4.2 Wald's test

Another hypothesis testing procedure based on the maximum likelihood estimates
is the Wald's test. Under this test procedure, the maximum likelihood estimate ?
of the correlation parameter ? is compared with the hypothesized value p0, with
the assumption that the difference between the two will be approximately normal.
Typically, the square of the difference is compared to a chi-squared distribution. In
the univariate case, the Wald's test statistic is

(P- Po)2
Var(p)
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Alternatively, we could use the test statistic

(P-A))
SE(p) '

where SE(p) is the standard error of the maximum likelihood estimate, and it is
estimated by the inverse of the Fisher information for the parameter p. This statistic
is approximately distributed as standard normal.

II.4. 3 Estimated power of the test statistics

To gauge the performance of the likelihood ratio test and the Wald's test, we make use
of simulations to estimate the power of these tests. We simulated ? = 30 observations
of size t — 4. For the likelihood ratio test, we calculated both the restricted and
unrestricted maximum likelihood estimates, which should be similar as the simulated
data reflect the conditions stated in the null hypothesis. For the Wald's test, we
calculated the maximum likelihood estimate and the Fisher information using the
simulated data. Since we are simulating data using nonzero value for ? and the null
hypothesis is H0 : ? = 0, we expect to reject the null hypothesis. Recall that for each
test we reject H0 if the test statistic is greater than a chi-square critical value ?\ for
a particular significance level. We chose the significance level to be a — 0.05. If we
repeat these simulations a large number times for a particular value of the non-zero
correlation parameter, then the estimated power of the test is the ratio of the number
of times we reject the null hypothesis to the total number of repeated simulations. If
we then repeat this procedure over a wide range of values for the non-zero correlation
parameter, we can get an idea of how the test performs in many scenarios.

The estimated power of the likelihood ratio test (LRT) and the Wald's test are
graphed in Figure 2.1. This shows that for testing H0 : ? = 0, the power functions
for both the tests are increasing with p, converging to one as ? moves far away from
zero. The graph of the power functions for both the tests are almost identical. Thus
for testing H0 : ? = 0, the two LRT and Wald's test perform similarly.
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Figure 2.1: Estimated power for LRT and Wald test

II.5 SAS macro TMMLE

To fit the first order Markov chain model for longitudinal binary data, we developed
a SAS MACRO called TMMLE. It uses the estimate of the generalized estimating
equation (GEE) method from PROC GENMOD as the initial value for nonlinear
optimization by Newton-Raphson ridge method. The main calculations concerning
the search of the maximum likelihood estimate and an output delivery system are
carried out by PROC IML. At each iteration, the macro calculates feasible range of
the correlation parameter ? based on the current estimate of the regression param-
eter and checks whether the estimated ? is within the range, if not, we replace the
estimated ? by the midpoint of the feasible range.

The current version of the macro implements two link functions: logit and probit.
The macro can be invoked using the command:

%tmmle(data=, yvar=, xvar=, id=, fun=, out-par=, outllf=) where
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data the SAS data set containing the data to be analyzed
yvar name of the dependent variable
xvar names of the independent variables
id group or cluster id, should be a vector of positive integers.
fun options of link functions
outpar output of the parameter estimator, standard error and p-values
outllf output of the value of log-likelihood function and AIC,BIC values

II. 6 Multivariate probit model

Another fully specified model for binary data is the multivariate probit model. Mul-
tivariate probit model belongs to the class of latent variable thresholds models for
analyzing binary dependent data. The model assumes that the binary response is
the indicator of an unobserved latent variable exceeding a given threshold. Estima-
tion of the regression and latent correlation parameters can be done in a likelihood
framework.

II. 6.1 Likelihood function

The multivariate probit model can be described as follows. Let Y = (y\, y2, · · · , Ut)'
be a vector of binary random variables. We assume that there exists a corresponding
latent continuous multivariate normal random variable Z = (z\, z-i, ¦ ¦ ¦ , zt)' such that

I 0 otherwise.

We assume that Z3 = µ3 -I- Ej, for j = 1. 2, · · · , t, and

[E1, e2, ¦¦-, Et)' -MVN(O, R),

where E. is a correlation matrix known as the latent correlation matrix. The marginal
mean of j/j is given by

E(yj) = P(yj = 1) = P] = ?(µ3 + Ej > 0) = 1 - F(-µ,) - F(^), (2.6.1)
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Di =

where F is the standard normal cumulative distribution function. Thus the proba-
bility mass function of Y can be expressed as

where y = (yi, ¦ ¦ ¦ , Vt)' is a binary vector, µ = (µ?, . . . , /¿t)' and

(-00, µ3) ii Vj = I
(/Xj, 00) ifyj = 0

for j = 1, 2, · · · , t. Let F4 be the t-variate normal cumulative distribution function,
then the equation (2.6.2) can also be written as

P(y; µ, R) = F^-?)1""^, · · · , (-I)1"*//*; 0, CRC], (2.6.3)
where C is a diagonal matrix with the jth. diagonal element is (— l)l~y' . Although
equation (2.6.2) defines a proper probability distribution function for any positive
definite matrix R, in order to retain likelihood identifiability R is restricted to be a
correlation matrix.

Suppose the correlation structure of Y — (y\, . . . , yt) is the first order autoregres-
sive (AR(I)) with parameter p, then

Corr (y yk) = pW = *>^W<) ~ W* (2 6 4)
Here F2 is the bivariate normal distribution function with density function

neitek,rik) = —=== exp j 2(1 _ r|fc) j ¦
For any ? satisfying the range restrictions (2.3.4), equation (2.6.4) can be solved

uniquely for r^k for j, k = 1, · · ¦ ,t (Emrich and Piedmonte (1991)), using the bisection
method. We can then construct a probability distribution with specified mean and
AR(I) correlation structure with specified ? using the multivariate probit model
(2.6.1) with correlation matrix R = (rjk)-

II. 7 Comparison of the transistion and multivariate probit models

In this section we shall compare the probability mass functions generated by the
transistion and multivariate probit models. Suppose Y = (yi, yi,... ,yt) is a binary
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Table 2.1: Mass function generated from tran-
sition model and multivariate probit model

Y Ptm [Y) PmPROBIt[Y)
0 0 0 0
0 0 0 1
0 0 10
0 0 11
0 10 0
0 10 1
0 110
0 111
10 0 0
10 0 1
10 10
10 11
110 0
110 1
1110
1111

0.0538321
0.1643539
0.0090897
0.3407123
0.0005554
0.0016957
0.0025923
0.0971685
0.0163028
0.0497737
0.0027528
0.1031828
0.0008602
0.0026262
0.0040148
0.1504868

0.0538567
0.1654672
0.0095023
0.3391005
0.0004391
0.0006700
0.0022505
0.0987233
0.0156603
0.0492761
0.0029030
0.1041499
0.0015572
0.0030677
0.0037775
0.1496076

NOTE: Parameters are ? = 0.35, ? =
(0.33,0.26,0.71,0.91). Latent correlations are
r12 = 0.549, r13 = 0.216, ru = 0.101, r23 -
0.746, r24 = 0.350 and r34 = 0.668.

vector with marginal mean ? = (??,??, . . . ,pi) and AR(I) correlation structure with
a parameter p. For given ? and feasible p, we can find a vector µ and a unique latent
correlation matrix R by solving equation (2.6.4). Then µ and R can be used to
generate a probability distribution for Y with mean vector ? and AR(I) correlation
structure with parameter p.

Table 2.1 shows the mass function generated by Markov chain model and mul-
tivariate probit model with marginal probability ? = (0.33,0.26,0.71,0.91) and cor-
relation parameter ? = 0.35, which is within the feasible range (—0.2010,0.3788).
We can see that the values of the two mass functions are very close, but are not
exactly the same. For example, when y = (0, 1, 0, 1) the corresponding probabilities
generated by two models are 0.00169 and 0.00067, respectively. It can be shown
theoretically that the mass functions generated by these two models are different.
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Here, we give the proof when d = 3, similar proof holds for higher dimensions.

First, it is clear that P(y» = 1) = p% = P(Z1 < Z1) = F(??), i = 1,2,3. Since the
latent correlation ri3 is obtained by solving equation (2.6.4), we have

P(yt = 1, y-j = 1) = P1Pj + pp~laiaJ = F(??, Z3; rl3) = P(Z1 < Z1, Zj < Z3),
for 1 < i < j < 3. For the first order Markov chain model, we have

P(yi = i,y2 = i,ï/3 = i) = P(y3 = i|y2 = i,yi = i)P(j/i = i,¡/2 = l)
= P(y3 = l|y2 = l)P(2/i = l,î/2 = l)

í>3 +
0"2C3

P2
P(yi = l,y2 = l)

And for the multivariate probit model, we have

P(yi = 1,3/2 = 1,2/3 = 1) = P(Zi < Z1, Z2 < z2, Z3 < Z3)
P(Z3 < z3\Z2 < z2, Z1 < Z1)P(Z1 < Z1, Z2 < z2

The two models will generate the same probability distribution if and only if
s2s3

P(Z3 < z3\Z2 < z2, Z1 < Z1) = p3 +
V'i

(2.7.1)

Let Ii = 1(Zi < zi), i = 1, 2, 3 be the indicator functions. Then

P(Z3 < z3|Z2 < z2, Z1 < Z1) = P(I3 = I]I2 = 1, Z1 = 1)
- E(/3 = l|/2 = l,/i = l). (2.7.2)

According to Drezner (1990) and Joe (1995), an approximation to (2.7.2) is given
by

where

Q21 = (CoV(I3, 11), CoV(I3, 12)),

(2.7.3)

Q11 = VaT(Z1) COV(Z15Z2)
COv(Z17Z2) Var(Z2)
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CoV(I1J3) = E(IJj)-E(I1)E(I0)
= P(Zi < Z11 Z3 < Zj) - P1P3
= PiP3 + /^ ?,s^ - P1P3
= pJ~"laiaj,

for 1 < % < j < 3. Thus, we have

O2? = (?2s±s3 ?s2s3) = ?s3(?s? s2),

(2.7.4)

?? =

^u

?s?s2

Pa1G2 s2

O s2

I- ?2

O2?O? ?s?(?s? s2) I s? ?
0 —

s2

P^AP 1) 1 -?
-? ?

/1 ? \
= ?s3(0 1- ?

= ?s3(0 1) s? ?

?s3 0

I -?2
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Thus, (2.7.3) is equal to

P3 + /?t3 I 0 Vz + P
V2

which is the right hand side of (2.7.1). Thus the first Markov chain model is approx-
imately equal to the multivariate probit model but they are not the same.

Even though equation (2.6.4) can be solved unique for rjk for any ? satisfying
the range restrictions, but the solution does not guarantee that the latent correlation
matrix will be a positive definite matrix. And multivariate probit model may fail to
generate a probability distribution of Y if latent correlation matrix is not a positive
definite matrix. For example if ? = (0.26, 0.36, 0.25, 0.24), the feasible range for ? is
(-0.3244,0.7698). For ? = 0.7, solving equation (2.6.4) we get

R

1 0.9378 0.7511 0.5869

0.9378 1 0.9460 0.7657

0.7511 0.9460 1 0.9157

0.5869 0.7657 0.9157 1

But this is not a positive definite matrix.

II. 7.1 Maximum likelihood estimate

For the multivariate probit model (2.6.1), suppose that pj = x'3ß where Xj is the co-
variate vector and ß is the regression parameter. In many application it is reasonable
to assume that the latent correlation matrix R is a structured matrix characterized

common parameter a. Then the unknown parameter ? — (/?, a) can be estimated us-
ing the maximum likelihood estimation. Note that if we have ? subjects Yi1- ¦ ¦ ,Yn,
and the correlation structures of F¿ are AR(I) with a common parameter p, then it
is unlikely to have a common latent correlation matrix R for all subjects Y1, since
the solution of equation (2.6.4) changes when the marginal means P¿ are different for
different subjects.

Let Yi be a ¿¿-dimensional vector of binary response with marginal means p¿ and
let X'tJ be the corresponding ^-dimensional row vector of covariates measured at



34

time j = 1.2, ·¦· ,ti for subject i = 1,2, ¦·¦ ,?. Assume that the ? subjects are
independent. Suppose that the responses are related to the covariates as

E(Vv)=Pv = Ot(X^ ß) = F(µ??),
where F(·) is standard normal distribution function and ß is the /c-dimensional re-
gression parameter.

Then the likelihood for subject i is given by the form of (2.6.2)

L1(O) = P(yt;0)

= ?(?;?) =
1

<Diti JDn (2p)'/2|?|?/2 — i 2
where y¿ = (y¿i, . . . , yiti)' is a binary vector, µ? = (µ?, . . . , µ??)' and

e'?_1e'. , ,exP S ñ— ) ?e, (2.7.5)

Dij (-??,µ13) Hy10 = 1
(Míj, ??) ify2J = 0

for j = 1,2,·-· ,¿¿,

The maximum likelihood estimate Öml_b is obtained by maximizing the log-
likelihood function

1(?) = S log L1(O) = ¿ log P(^; 0).
i=l i=l

The log-likelihood function can be written as

di
~d~0

1

where the jacobian matrix Ji(O) = J1 is independent of ? and it is given by

Jr
?t o
0 1

and

VP(yi-9) =

The j'-th element of 9P(j/,; ?)/?µ? is

dP(m;ß)

3P(V1-O) dP(yi;t
9µ? da

8µ? = (-I)1+-^ f(µ??)?(?^, ¦ µ%1.\? RiJ^),
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where j* is the vector of index that is complementary to j. Pi^-y and Rí¿*\j are the
conditional mean and conditional covariance matrix of Z13^ given Zij.

It is well known that ? is AMVN(O, ?~?{?)) where
?

?(?) = S J[E
?=1

II.8 Comparison of asymptotic performance

The two estimating procedures that we discussed yield consistent estimates of the
regression parameters. In this section we study their asymptotic performance via
calculating and comparing the asymptotic variance of the regression parameter for
both the methods. The asymptotic relative efficiency (ARE) is calculated using the
following formula:

Asymptotic variance of Markov chain model
Asymptotic variance of multivariate probit model

If the above quantity is less than one, we could conclude that the Markov chain
model is better than the multivariate probit model and vice versa if the quantity
is more than one. In the simulations we used the probit link function and a large
sample size ? — 500 so that the simulated variances will approximate the asymptotic
variances. We used the following mean function for the repeated binary variables in
our efficiency calculations

F_1(?«) = µa = ßo + ßix?t + fc¡%- (2-8.1)

To begin with we set the number of repeated measurements as three. The covari-
ates are chosen as follows: the first covariate xft is continuous and taken as uniform
on (0,1), the second covariate xft is discrete and takes values {—1.5,-0.5,0.5}. We
fixed the true regression coefficients as ß0 = 1.2, ß\ — 0.34, /32 = —0.15. With these
values we calculated the means and the bounds for the correlation parameter. For
different values ? within the bounds we calculated the Fisher information matrices
for the regression parameter for both the transition model and the probit model.
Table 2.2 shows the the results for the model that contains only the intercept and
the continuous covariate xft. The bound of ? is at the bottom of the table. For

P(Vi-, ?) VP(^; O)VP(^; ( J1- (2.7.6)
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Table 2.2: Asymptotic variance and ARE with one covariate, t = 3

___________MC MPROBIT ARE MC MPROBIT ARE
p = 0.0 3.7432 3.7432 1.000 12.7559 12.7559 1.000
/9 = 0.1 3.7832 3.8009 0.995 12.3962 12.5057 0.991
P = 0.2 3.7614 3.7883 0.993 11.7153 11.9092 0.984
? = 0.3 3.6967 3.7193 0.994 10.8064 11.0117 0.981
? = 0.4 3.5915 3.6050 0.996 9.6753 9.8466 0.983
? = 0.5 3.4444 3.4549 0.997 8.3081 8.4367 0.985
? = 0.6 3.2472 3.2752 0.991 6.6565 6.7823 0.981

NOTE: Range of ? is (-0.0661,0.7170). The parameter values are
ßo = 1.2, ß? = 0.34 and ? = 500.

different values of ? within the bounds, the asymptotic variances scaled by ? for
both the methods as well as the asymptotic relative efficiency (ARE) of the Markov
chain model with respect to the multivariate probit model are in Table 2.2. Since
the two models are identical when ? is zero the ARE is one. However, for all positive
values of ? the values of ARE are all less than 1 for both the regression coefficients.
Hence in this case for estimating ß. the Markov chain model is more efficient than
the multivariate probit model.

We considered next the model which includes the discrete covariate xft as well.
The simulation results are given in Table 2.3. When ? = 0, the situation is same
as before, the two method are identical and hence the AE is equal to 1. But for
nonzero values of p, the performance of Markov chain model is not uniformly better
than the multivariate probit model. Table 2.3 shows that the ARE for ßo, is less
than one at the beginning and is decreasing as ? increases from 0.1 to 0.3, and then
it increases to 1.013 as ? increases to 0.7. Thus when there is a high correlation the
multivariate probit model is better at estimating the slope. However, the Markov
chain model is uniformly better than the multivariate probit model for estimating
the slopes ß\ and ß2-

We carried out simulations increasing the number of repeated measurements to
four. In this case, we chose the first covariate xft to be the same as before; continuous
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Table 2.3: Asymptotic variance and ARE with two covariates, t = 3

nV(ßo) nViß,) nV(ß2)

? = 0.0 3.5750(1.000) 9.5811(1.000) 1.2192(1.000)
? = 0.1 3.6446(0.997) 9.4030(0.995) 1.2057 (0.996)
? = 0.2 3.6486(0.994) 8.9695(0.987) 1.1663 (0.992)
? = 0.3 3.5972(0.996) 8.3081(0.986) 1.1026 (0.991)
? = 0.4 3.4989(1.000) 7.4457(0.987) 1.0156 (0.991)
? = 0.5 3.3621 (1.007) 6.4089 (0.989) 0.9059 (0.993)
? = 0.6 3.1948 (1.013) 5.2226 (0.988) 0.7728 (0.994)
? = 0.7 3.0034 (1.013) 3.9060 (0.969) 0.6152 (0.990)

NOTE: Range of ? is (-0.1306,0.7941). The parameter values
/?o = 1.2, ß? = 0.34, ß2 = —0.15, and ? = 500; efficiencies are
given in parentheses.

uniform on (0,1). The second covariate x¡¡ to taken to be a discrete covariate taking
values { — 1.5,-0.5,0.5, 1.5}. We fixed the regression parameters as ßQ = 0.8, ß? =
—0.1, ß2 = 0.15. Two simulations were done excluding and including the second
covariate xft. Table 2.4 shows the results of simulation with regression parameter
are intercept and xft. The ARE is one when ? = 0 as before. In this case we can see
that multivariate probit model is more efficient for estimating ß0 while the first order
Markov chain model is more efficient when estimating ß? for all values of p. In the
second simulation, we added the discrete covariate x?t to the model. From Table 2.5,
we can see that the Markov chain model is more efficient for estimating both ß? and
ß2- Further the ARE is steadily decreasing as ? increases.

When we increase the repeated measurements to five, in both simulations exclud-
ing and including the discrete covariate, the first order Markov chain model seems
to be doing better than the multivariate probit model. The results are shown in
Table 2.6 and Table 2.7. Please note that the feasible range of ? becomes narrow as
the number of repeated measurements increases.

In conclusion the asymptotic relative efficiencies are in the range 0.90 and 1.02
and thus both the methods are good for modeling serially correlated repeated binary
measurements. But the first order Markov chain model seems to have a slight edge
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Table 2.4: Asymptotic variance and ARE with one covariate, t = 4

nV(ßo) IV(P1
MC MPROBIT ARE MC MPROBIT ARE

? = 0.0
? = 0.1
/9 = 0.2
p = 0.3
? = 0.4
? = 0.5
? = 0.6
? = 0.7
? = 0.8

0.5010
0.5792
0.6649
0.7560
0.8665
0.9873
1.1258
1.2870
1.1258

0.5010
0.5801
0.6679
0.7661
0.8766
1.0019
1.1454
1.3113
1.1454

1.000
1.001
1.004
1.008
1.011
1.015
1.017
1.019
1.017

0.4015
0.4176
0.4252
0.4233
0.4105
0.3853
0.3460
0.2900
0.3460

0.4015
0.4160
0.4213
0.4180
0.4053
0.3813
0.3438
0.2901
0.3438

1.000
0.996
0.991
0.988
0.987
0.990
0.994
0.994
0.994

NOTE: Range of ? is (-0.2255,0.9152).
ß0 = 0.8, ß? = -0.1 and ? = 500.

The parameter values are

over the multivariate probit model for estimating the regression slopes.

II.9 Comparison of small-sample performance

To evaluate the small-sample performance, we chose the continuous covariate xft
to be standard normal and the discrete covariate xft same as in the large sample
simulations. The sample size was fixed as ? = 30. For the number of repeated
measurements t we took 3,4 and 5. For each combination of the parameters we
simulated 1000 samples and for each sample we estimated the regression parameters.
We then calculated the average squared deviation of the estimated parameter value
from the true population values, i.e. the mean square error (MSE). The small sample
efficiencies arc calculated by taking the ratio of the MSE for the two estimating
procedures as

MSE of the Markov chain model estimator
RE

MSE of the multivariate probit model estimator

The relative efficiencies, when t = 3, for the three regression parameters are
plotted in Figure 2.2, Figure 2.3 and Figure 2.4. We can see from Figure 2.2, the
relative efficiency for the intercept is greater than 1 and is increasing as ? increases.
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Table 2.5: Asymptotic variance and ARE with two covariates, t = 4

nV(ß0) nV{fa nV(ß2)
? = 0.0
/9 = 0.1
? = 0.2
? = 0.3
? = 0.4
? = 0.5
? = 0.6
p = 0.7

0.5051
0.5837
0.6695
0.7647
0.8713

1.000
1.001
1.004
1.008
1.011

0.9920 (1.015
1.1303 (1.017
1.1412 (1.020

0.4013
0.4174
0.4249
0.4230
0.4101
0.3849
0.3455
0.3274

(1.000)
(0.996)
(0.991)
(0.987)
(0.986)
(0.985)
(0.980)
(0.980)

1.5253 (1.000)
1.4937 (0.997)
1.4173 (0.992)
1.3013 (0.990)
1.1513 (0.990)
0.9728 (0.990)
0.7693 (0.983)
0.5787 (0.981)

NOTE: Range of ? is (-0.1726, 0.7105). The parameter values
are ß0 = 0.8, ß? = -0.1, ß2 = 0.15, and ? = 500; ARE are
given in parentheses.

Table 2.6: Asymptotic variance and ARE with one covariate, t = 5

nV(ß0) TiV(P1)
MC MPROBIT ARE MC MPROBIT ARE

P = 0.0
P = Ol
? = 0.2
? = 0.3
? = 0.4

1.3162
1.5272
1.7506
1.9969
2.2754

1.3162
1.5054
1.7037
1.9264
2.1613

1.000
0.986
0.973
0.965
0.950

0.6217
0.6674
0.7004
0.7205
0.7258

0.6217
0.6541
0.6729
0.6802
0.6584

1.000
0.980
0.961
0.944
0.907

NOTE: Range of ? is (-0.0080,0.4373).
ßQ = 1.5 ßx = -0.6 and ? = 500.

The parameter values are,
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Table 2.7: Asymptotic variance and ARE with two covariates, t = 5

nV(ßo) TiV(P1) nV(ß2)

? = 0.0 3.1740(1.000) 0.5861(1.000) 7.6772(1.000)
? = 0.1 3.3390 (0.989) 0.6296 (0.981) 7.5164 (0.992)
? = 0.2 3.4568(0.975) 0.6612(0.962) 7.1167 (0.979)
? = 0.3 3.5437 (0.953) 0.6806 (0.945) 6.5038 (0.947)

NOTE: Range of ? is (-0.0080, 0.3890). The parameter values
are ß0 = 1.5, ß? = -0.6, ß2 = -0.1, and ? = 500; ARE are
given in parentheses.

This shows that the multivariate probit model is estimating the intercept better than
the Markov chain model in small samples, especially when there is a high correlation.
Figure 2.3 shows the relative efficiency for the slope /31 of the continuous covariate.
The plot is above one except in an small interval of p, indicating that even in this
case the multivariate probit estimator is outperforming the Markov chain model
estimator. Note that the figure shows a roughly decreasing trend in the efficiencies.
Unlike the previous two coefficients, the relative efficiency for ß2 is less than 1 and
is decreasing as the correlation increases, indicating that the Markov chain model is
better at estimating the slope for the discrete covariate than the multivariate probit
model. The simulated MSE values and the relative efficiencies for different values of

? are presented in Table 2.8.

We now consider the case t = 4. Figure 2.5 has the plot of the relative efficiency
for the intercept /?o· The efficiency is more than for almost every value of ? and is
increasing as ? increases, which shows the multivariate probit model is better than
the Markov chain model for estimating /3q. The efficiency plots for ß\ and p\ are in
Figures 2.6, 2.7 respectively. These two plots show that for highly correlated data
the Markov chain model is better than multivariate probit model for estimating the
slopes. Table 2.9 contains the MSE's and the efficiencies for the three regression
coefficients in the case t = 4.

Lastly, Figures 2.8, 2.9 and 2.10, contains the plots of the efficiencies for the three
regression coefficients when t = 5. For all the three regression coefficients the relative
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Figure 2.2: Plot of efficiency of ßQ

efficiency is flat at one for small and moderate values of p. However, for the intercept
ßo and slope ß\ the relative efficiency is more than one for values close to the upper
boundary value of p, whereas it is less than one for ß2. Thus for moderate correlation
both methods perform equally well and first order multivariate probit model is more
efficient for estimating ßo and ß\ for highly correlated data, whereas the Markov
chain outperforms estimating ß2 for highly correlated data. Table 2.10 contains the
MSE ;s and the efficiencies for the three regression coefficients in the case t = 5.

To summarize, in the small sample case we see that both the models are equally
good for small and moderately correlated data especially if the number of repeated
measurements is about five. For highly correlated data, the multivariate probit model
is a good choice if the covariates are continuous and the Markov chain model is better
for discrete covariates.
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Figure 2.3: Plot of efficiency of ß\
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Figure 2.4: Plot of efficiency of ßi
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Table 2.8: MSE and efficiencies of MC and MP estimate, t = 3

nV(ßQ) TiV(P1) nV{ß2)
? = 0.00
? = 0.05
? = 0.10
? = 0.15
? = 0.20
? = 0.25
? = 0.30
? = 0.35
? = 0.40
? = 0.45

0.0247
0.0285
0.0274
0.0310
0.0358
0.0360
0.0334
0.0375
0.0418
0.0478

1.015
1.019
1.009
1.011
1.025
1.008
1.017
1.030
1.059
1.062

0.0357
0.0323
0.0352
0.0342
0.0343
0.0308
0.0325
0.0301
0.0324
0.0283

1.027
1.014
1.013
1.010
1.012
?.985
?.997
1.010
1.008
1.010

0.0348
0.0357
0.0349
0.0294
0.0320
0.0280
0.0280
0.0279
0.0276
0.0250

(0.986)
(1.007)
(0.992)
(1.005)
(0.986)
(0.986)
(1.000)
(0.984)
(0.974)
(0.975)

NOTE: Range of ? is (-0.207,0.4849). The parameter values
are /30 = 0.8, ß? = -0.1.
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Figure 2.5: Plot of efficiency of ß0
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Table 2.9: MSE and efficiencies of MC and MP estimate, t = 4

Method nV(ßo) TiV(P1) nV(ß2)

p = 0.00
? = 0.05
¿> = 0.10
/9 = 0.15
? = 0.20
? = 0.25
? = 0.30
? = 0.35
? = 0.40
? = 0.45

0.0180(1.023
0.0193(1.025
0.0210(1.014
0.0217(1.004
0.0257(1.018
0.0224(1.007
0.0281(1.025
0.0299(1.021
0.0320(1.038
0.0416(1.085

0.0147(1.023
0.0152(1.020
0.0151(0.999
0.0161(1.000
0.0172(1.002
0.0153(1.004
0.0157(0.996
0.0140(0.978
0.0150(0.996
0.0148(0.992

0.0206(0.998)
0.0203(0.998)
0.0191(1.002)
0.0200(0.998)
0.0199(0.994)
0.0173(0.989)
0.0188(0.990)
0.0177(0.985)
0.0162(0.980)
0.0147(0.968)

NOTE: Range of ? is (-0.121,0.498). The parameter val-
ues are ß0 = 0.8, ß\ = —0.1.

1.25

1.15

1.05

0.95

Figure 2.8: Plot of efficiency of /3q
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1.12

1.08

1.06

1.04
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0.98

Figure 2.9: Plot of efficiency of ß\

1.04

Figure 2.10: Plot of efficiency of ß2
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Table 2.10: MSE and efficiencies of MC and MP estimate. L = 5

Method nV(ß0) UV(P1 nV(ß2)
p = 0.00
? = 0.05
p = 0.10
/0 = 0.15
? = 0.20
? = 0.25
? = 0.30
? = 0.35
? = 0.40
? = 0.45
? = 0.50

0.0119(1.008
0.0122(1.002
0.0135(0.999
0.0149(0.994
0.0158(1.000
0.0179(1.012
0.0186(1.007
0.0198(1.007
0.0226(1.065
0.0230(1.064
0.0302(1.218

0.0056(1.004
0.0065(1.006
0.0061(1.005
0.0064(0.999
0.0068(0.995
0.0070(1.008
0.0065(0.989
0.0070(1.016
0.0067(0.990
0.0074(1.042
0.0072(1.096

0.0106(1.006)
0.1201(1.004)
0.0109(1.004)
0.0113(0.990)
0.0103(1.005)
0.0111(1.022)
0.0098(1.001)
0.0093(0.989)
0.0084(0.990)
0.0079(0.980)
0.0080(0.974)

NOTE: Range of ? is (-0.313,0.532). The parameter val-
ues is ß0 = 0.8, ßx = -0.1.

?.9.1 Analysis of real data

To illustrate the application of the two likelihood estimation methods, in this section
we present the analysis of the three binary longitudinal data that we discussed in Sec-
tion 1.2.

Example 2.1. Six city data.

For this data the main issue of interest is the effect of maternal smoking on
children's respiratory illness. We fit the following regression model to the data:

f-1^) = /Mt =ß0+ßi xtr + /?2 ?? + & 4ge *!f,

where i = 1,2, ·¦ · ,537 and í = 1,2,3,4. The covariates are the age of the child
(xitge), the maternal smoking habit indicator (x^fs) and their interaction.
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Table 2.11: Parameter estimates for the Six-city data

MC

PARAMETER EST SE PVALUE

MPROBIT

EST SE PVALUE

Intercept -1.1366 0.0585 0.0000
Age -0.0829 0.0699 0.0281
Smoking 0.1599 0.1708 0.0859
Age ? Smoking 0.0453 0.0620 0.4650
? 0.3836 0.0313 0.0000

-1.1368 0.0601

-0.0816 0.0362

0.1598 0.0972

0.0438 0.7061

0.6842* 0.0387*

0.0000

0.0282

0.0968

0.4801

0.0000

NOTE: Range of ? is (-0.1357, 0.9267).

Table 2.11 provides point estimates, standard errors and p-values for both the
first order Markov chain and the multivariate probit model. The estimates of the
regression parameters are very similar for the two models. Note that in the table, the
value 0.6842 for multivariate probit model is not the correlation parameter for the
binary repeated measurements, it is the value of latent correlation parameter. The p-
values indicate that the child's age is a significant factor and the regression coefficient
is negative, which means that older children are less likely to get respiratory disease.
The main covariate of interest, maternal smoking, is not significant in both the
models, even though estimate of the regression coefficient in both models is positive,
which indicates that the children are more likely to develop respiratory disease if
their mother was a smoker as opposed to a nonsmoker.

The values of model selection criteria, AIC and BIC, based on Markov chain
model with various combinations of the covariates are given in Table 2.12. The model
with only age as the covariate and the one with both age and smoke as covariates
have similar AIC values, but the former model has the smallest BIC value, so it is
the best model for this data set.
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Table 2.12: Model selection based on AIC and BIC

Covariates LF df AIC BIC

Intercept, Age -815.49 2 1632.97 1637.26
Intercept, Smoke -816.70 2 1635.39 1639.68
Intercept, Age, Smoke -814.31 1 1632.62 1641.19
Intercept, Age, Smoke, Interaction -814.01 0 1634.02 1646.88

Example 2.2. Indonesian children's health study

The second longitudinal binary data that we analyzed is the Indonesian chil-
dren's health study data. Table 1.3 displays a subset of this data originally studied
by Sommer et al. (1984). In this study preschool children were examined up to six
consecutive quarters for the presence of respiratory infection. There were 1,200 ob-
servations in total. The covariates of interest include: (1) age in months (centered
at 36); (2) presence/absence of xerophthalmia, an ocular manifestation of chronic
vitamin A deficiency; (3) cosine and sine terms for the annual cycle; (4) gender; (5)
height for age, as a percent of the National Center for Health Statistics (NCHS)
standard (centered at 90%); and (6) presence of stunting, defined as being below
85% in height for age. The key covariate of interest is the indicator of xerophthalmia
symptom. The primary objective of this study was to assess the increase in risk
of respiratory infection for kids who were vitamin A deficient, which was measured
indirectly via xerophthalmia.

The parameter estimates, standard errors and p-values for the two likelihood
methods, Markov chain and multivariate probit, are given in Table 2.13. The esti-
mates and standard errors are very similar for both the methods. The results indicate
that respiratory infection is strongly related to age and season. Further, the risk of
infection decreases approximately 4% per month for children between one and five
years. The xerophthalmia coefficient is about 0.33, but the p-value is approximately
0.2, hence xerophthalmia is not statistically significant factor.
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Table 2.13: Parameter estimates for Indonesian children data

MC MPROBIT

PARAMETER EST SE PVALUE EST SE PVALUE

Intercept
Age
Xerophthalmi
Seasonal cosine

Seasonal sine

Sex

Height
Stunted

P

-1.3877 0.0870 0.0000 -1.3914 0.0892 0.0000

-0.0159 0.0032 0.0000 -0.0167 0.0034 0.0000

0.3280 0.2411 0.1736 0.3087 0.0972 0.1997

-0.2720 0.0808 0.0007 -0.2740 0.0807 0.0007

-0.0827 0.0843 0.3266 -0.0873 0.0828 0.2920

-0.1897 0.1143 0.0970 -0.1899 0.1178 0.1068

-0.0190 0.0122 0.1184 -0.0200 0.0126 0.1120

0.1016 0.2040 0.6186 0.1203 0.2094 0.5657

0.0583 0.0446 0.1915 0.2029* 0.1066* 0.0570*

NOTE: Range of ? is (-0.1357, 0.9267).

Example 2.3. Hamilton's depression study

The third longitudinal binary data we analyze is the Hamilton's depression study
data. This data were taken from a randomized double-blind, placebo and active
treatment, 7 week study in Europe to evaluate safety and efficacy for three fixed doses
of a new drug in patients with major depressive disorder. For our analysis, we will
study the active treatment and the placebo groups. The dependent variable in this
study is a binary function of a patient's average score on the Hamilton's Depression
Scale (Ham-D), taking the value 1 if the Ham-D value at time i — 1, · · · , 8 is less
than or equal to 80% of the baseline value, and 0 otherwise. The covariates used in
this study are the treatment, time, gender, age, and baseline measurement and the
country where the patient resides.

The results indicate that Treatment, Time, Country and Baseline are significant
covariates to predict effectiveness of the treatment. The coefficient of Treatment is
positive, which means that the drug is effective at reducing depression levels. The
results are shown in Table 2.14.



51

Table 2.14: Parameter estimates for Ham-D data

MC

PARAMETER EST SE PVALUE

Intercept -3.1459 0.2691 <0.0001
Treatment 0.3309 0.1048 0.0016

Time 0.5610 0.0257 <0.0001

Age -0.0322 0.0512 0.5293
Gender -0.1654 0.1116 0.1386

Country 0.0663 0.0239 0.0055
Baseline 0.1296 0.0438 0.0030

? 0.3923 0.0304 <0.0001

NOTE: Range of ? is (-0.0093, 0.3923).

11.10 Other models for correlated binary variables

In this section, we discuss other methods for generating dependent binary variables.

II. 10.1 Generating dependent binary variables using circle plus opera-
tion

Let O = {0. 1}. Suppose x, y € O. Define the circle plus operation as

( x + y if 0 < ? + y < 1x®y={ y - y- (2.10.1)I x + y — 1 iî ? + y > 1.

Note ? ® y G O.

Lemma 2.1. Suppose Xi's are independent and distributed as Binomial(l,p¿), 1 <
? < t. Let Y1 = X1 and Yj = Y3^1 ® X3, for 2 < j < t. Then

P(Yk = 1\Y3 = 1) - P(Yk = 1|?_: = 1) = 1.
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Proof. By definition of the circle plus operation, we have

?= f 0 if (Y^15Xi) = (O1O)
[ 1 otherwise.

It is clear that P(Y1 = l|Y¿_i = 1) = 1. Therefore

p(Yk = \\Yj = i) = p(Yk = i, >s+i = i\Yj = i) + p(n = i, yj+i = ?|?,- = i)
= P(Yk = l,Yj+1 = l\Yj = 1)
= P(Yk = l\Yj+l = l,Yj = l)P(YJ+i = 1\Y3 = 1)
= P(Yk = l\YJ+1 = l,Y3 = l)
= P(Yk = 1,Y3+2 = l|Yj+1, Y, = 1) + P(Yk = 1,Yj+2 = 0|Yj+ll Y, = 1)

= P(Y, = l|Yfe_: = 1,...,YJ = 1)
= P(Y, = l|Yfc_! = 1)
= 1.

This completes the proof of the lemma. D

Theorem 2.1. Suppose X¿ 's are independent and distributed as Binomial(l,/j¿), 1 <
? < t. Let Y1 = X1 and Y3 = Y3^1 T X3, for 2<j<t. Then

1. P(Y3 = 1) = p* = 1 - ??=? *; w/iere & = 1 - pt-

2. P(Y3 = l,Yk = l)=p*.

3. CoTv(Y3, Yk) = p3k = J^ forl<j<k<t.

Proof. The first assertion is proved by induction.

For i = 1, we have P(Y1 = 1) = P(X1 = 1) = Pl = 1 - ?1.

Assume that for i = j: — 1

P(Y^1 = I) = I-II*-
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Note that

P(Y3 = I) = 1-P(Y3 = O)
= 1-P(Y^1=O1X3=O).

Since Xi's are independent and Yj-i depends on X3-\, we have Yj-i is independent
of Xj . Therefore

P[Yj = I) = 1 - P(X3 = ^)P[Y3-I = 0)
= 1-C3-P(Y^1=O).

By the induction hypothesis we get

P(Y3 = I) = I-JJ91.
i=l

This proves the first part of the theorem.

To prove the second part, let j < k. By Lemma 2.1, we have
3

P(Yk = 1, Y3-.= 1) = P[Yk = l\Yj = I)P(Y3 = 1) = P(Y3 = 1) = V3 = ? - ? Ii-
¿=1

Since P(Yj = 1) = p* we have

P(Yk = 1,Y3 = 1) - P(Y, = I)P(Y, = 1)Corr(Y3, Yk) = pjk = VVar(Y3)Var(Y,)
,* „*„

= J^. (2.10.2)
This completes the proof of the theorem. D

Note that in Theorem 2.1, the correlation between Y3 and Yk is the maximum possible
correlation with marginals fixed as p* and p*k . Thus given P\,- ¦ ¦ ,pt,we can generate a
dependent binary random vector Y = (Y1, ... , Yk) such that the correlation between
Y3 and Y, is the maximum possible with marginals fixed as p* — 1 — ??=? & an(^
Pit = 1 - ?*=? Qi- Since Pl = 1~ (IkQt-I, we have Ql = QkQl-i and therefore q*k < q*k_v
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i.e. p*k > p*k_v Thus the circle plus operation generates binary variables with the
ordering P(Y\ = 1) < · · · < P(Yt = 1), and the maximum possible correlation
between any pair.

A special case of this model is when we have Pi = ¦ ¦ ¦ = Pt = P- In this case,

P(Y3 = 1) = 1 - q>

and

This is similar to the autoregressive structure of order one.

II. 10.2 Quadratic exponential family

An alternative model for correlated binary variables is the quadratic exponential
family of distributions. The probability mass function for this family is of the form

7r(y; ?) = expOxyi H h Xtyt + Xi2Vi1Ui H l· Xt-Uyt-iyt)/k(X), (2.10.3)

with y E {0, 1}', ? = (??, · · · , Xt, Xn, · ¦ - , Xt-i,t) and ?;(?) is the normalizing con-
stant. This probability mass function maximizes the entropy function

-Sp(?) log(n(y))
y

in the class of multivariate binary distributions i\(y) which satisfy the moment con-
straints J2yyiTr(y) = P1, for i = 1, ¦ · · ,t, and YJyyiy3Tr(y) = pl3, for 1 < ? < j < t
(see Kapur and Kesavan (1992), Chaganty and Joe (2006)).

Given a vector µ = (???- ¦ ¦ ,Pt,Pn, · · · ,Pt-i,t)' that specifies the univariate and
bivariate marginals, if there is a multivariate binary distribution then the distribution
that maximizes the entropy, can be obtained solving the equation

5>(2/;?)5 = µ, (2.10.4)
y

where s — (y?, ¦ ¦ - , yt, yn, ¦ ¦ ¦ , yt-i,t)', and ? is a vector of Lagrange multipliers. The
above summation is taken over 2* possible binary vectors y.
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For a given ? — (??,- ¦ ¦ -Pt)', we have checked numerically the quadratic expo-
nential model generates the same binary distribution as the Markov chain model if
the correlation structure is AR(I) with parameter ? satisfying the constraints

maxL(p¿_i,p¿) < ? < min ?(?^?,?t). (2.10.5)2<i<t 2<i<t
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CHAPTER III

MARGINAL MODELS

III.l Introduction

In Chapter II we have studied multivariate likelihoods for modeling and analysing
longitudinal and clustered data. We should use likelihood methods whenever pos-
sible, because they have strong theoretical underpinnings and maximum likelihood
estimation is the optimal estimation procedure. The marginal models are an alter-
native in situations where the likelihood methods are difficult to construct and pro-
hibitively difficult to implement. Motivated by quasi-likelihood methods, Liang and
Zeger (1986) have introduced marginal models and generalized estimating equations
(GEE) for estimating the regression coefficients primarily for non-normal repeated
observations. The marginal models avoid specification of the joint distribution but
model the dependence between the repeated measurements using a working corre-
lation structure, that may not be the true correlation structure. However, under
misspecification of the correlation structure the estimator of the regression parame-
ter can be inefficient. Qu et al. (2000) introduced a new method, known as quadratic
inference functions (QIF), that does not involve direct estimation of the correlation
parameter but produces highly efficient estimate of the regression parameter even if
the working correlation structure is misspecified. Instead of estimating the nuisance
parameter a in the working correlation matrix, their method models the inverse of
the working correlation matrix as a linear combination of a class of basis matrices.
This gives a sufficiently rich class that accommodates or at least approximates the
correlation structures most commonly used. Qu et al. (2000) showed that even if the
correlation is misspecified, their method remains optimal within the assumed family,
and hence more efficient than Liang and Zeger's GEE regression estimator under
misspecification .

The outline of this chapter is as follows. In Section III. 2 we briefly describe
the generalized estimating equations method. In the next Section III. 3 we intro-
duce quadratic inference functions method, establish asymptotic variances for the
estimates, then study their asymptotic relative efficiency. In Section III. 6 we derive
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a new estimation for the covariance matrix of the score function and Section III. 5

contains the small-sample efficiency comparisons.

III. 2 Generalized estimating equation

In this section, we give a brief introduction to the commonly used estimation method
to analyze longitudinal and clustered data, known as the generalized estimating equa-
tions (GEE) proposed by Liang and Zeger (1986). The method can be regarded as
an extension to the multivariate case the quasi-likelihood methods described in the
book McCullagh and Neider (1989).

The framework of the generalized estimating equations is as follows. Let Y1 =
(y,i, . . . , yit) be a vector of correlated observations on the ¿th subject. Assume that
E(yij) = µ^ = h{x'^ß) and Var(yij) — v^ = ?(µ^), where ß is a A:-dimensional
regression parameter. The mean and variance functions h(·) and v(-) are assumed
to be known. Suppose that Cov(y,) = f\?t(ß. a), where a is an nuisance parameter.
The GEE framework assumes that W¿(/3, a) = A1 R(a)At , where A1 = diag(vtj) is
the diagonal matrix of variances that depends on /3, and R(a) is a working correlation
matrix determined by a. The generalized estimating equation is given by

¿(I^Vto-*) = 0, (3.2.1)
where Wi = Wi(ß, a). Equation (3.2.1) is an unbiased estimating equation for fixed
a. Under some regularity conditions, the estimate of ß obtained solving equation
(3.2.1) is consistent with mean equal to ß and covariance matrix

Cov(ßGEE) = (JZd[W^dA If^D[Wr1E1W-1D1 j (Y^D[W-1DA (3.2.2)
where Di = d µt/3 ß. Clearly, if the working correlation matrix R(a) equals the true
correlation structure, then W¿ — E¿ and equation (3.2.1) is the optimal unbiased
estimating equation. In this case (3.2.2) reduces to

Cov(ßopt) = (¿ D^-1A) - (3.2.3)
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GEE method has been very popular for analyzing longitudinal data because it is
computational less demanding than the fully specified model. However, GEE method
has several theoretical shortcomings due to some critical underlying assumptions.
The working correlation, when misspecified, lacks a proper definition and thus causes
a breakdown of the asymptotic properties of the estimator. Further, for binary
random variables there is no guarantee that the working correlation parameter a will
fall within the feasible bounds, that is the value of a may not compatible with the
marginal means, that is, a multivariate binary distribution with specified means and
correlation structure may not exist. This could course a series problem because the
resulting standard errors and p-values could lead to misleading conclusions. Sabo
and Chaganty (2010) gave examples where an infeasible correlation estimate leads to
wrong conclusions. To rectify the problem Sabo and Chaganty (2010) suggested to
run GEE with working independent structure, compute the correlation bounds using
the estimated marginal means, and then rerun GEE with a correlation value selected
within those bounds using some objective criteria. Alternatively, they suggest use of
likelihood methods, such as the multivariate probit model, to avoid these infeasibility
problems altogether. In the next section we study efficiency of GEE as compared to
the Markov chain likelihood procedure.

III. 2.1 Comparison of asymptotic performance

The asymptotic relative efficiency comparisons between the multivariate probit model
and GEE were done by Chaganty and Joe (2004), where they showed that the mul-
tivariate probit model is uniformly superior to the GEE method. In this section, we
will study the efficiency of GEE estimates with respect to the maximum likelihood
estimator based on the first order Markov chain likelihood model.

For comparisons of efficiency, we used the marginal mean model for the binary
observations:

logit(pit) = A) + ßxxft + ß2xclt, (3.2.4)

where xft is a discrete covariate taking values 1,2, ¦· · , ? and xft is continuous dis-
tributed as standard normal. We fixed the values of regression coefficients as ßo = 1,
ß? = 0.3 and ß2 = —0.1. We chose a large value for ? (=1000), so that the calculated
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efficiencies will not depend much on the simulated covariates and they approximate
the true asymptotic relative efficiency. To cover most practical situations, we consider
four cases: (1) small number of repeated measurements with low value of correlation,
(2) small number of repeated measurements with high value of correlation, (3) large
number of repeated measurements with low value of correlation, and (4) large num-
ber of repeated measurements with high value of correlation. Specifically, we choose
t = 4 and 8 and correlation parameter ? = 0.2 and 0.7 respectively. These values are
within the AR(I) correlation bounds (-0.118, 0.780).

Table 3.1 shows the simulation results for the first case t = 4 and ? = 0.2.
The values of the first row are the diagonal elements of the inverse of the Fisher
Information matrix given by (2.3.24). These values are the asymptotic variances of
the maximum likelihood estimates of the first order Markov chain model. The second

row of the table gives the asymptotic variances of the estimates using the optimal
GEE. These values are the diagonal elements of the matrix (3.2.3). The asymptotic
relative efficiencies are in parenthesis. We can see that even the optimal GEE is less
efficient than the maximum likelihood estimator for the Markov chain model. In the

case where GEE uses a working AR(I) structure we present the asymptotic variances
computed taking the diagonal elements of the asymptotic covariance matrix (3.2.2)
for various parameter values of a in the working correlation matrix. We can see
that the relative efficiencies decreases when the value of a gets far from the true
value 0.2 of the correlation. The worst case efficiency is when a = 0.9, for example,
the efficiency of the regression coefficient ß? is only about 70% of that of maximum
likelihood estimator.

Next, we took ? = 0.7 but kept t = 4 same as before. The results are displayed
in Table 3.2. The GEE estimator with optimal choice of the working covariance
matrix, is still less efficient than the estimator of the Markov chain model. The table
also has the asymptotic variances and the relative efficiencies for different values of
the working correlation a. Interestingly, the GEE with identity correlation (a = 0)
matrix has the worst efficiency (0.376) for the regression coefficient ß2- Recall that the
true correlation is 0.7 which is far from zero. Thus we see that for highly correlated
data, GEE with identity structure is very inefficient.

We now consider the third case where t = 8 and ? = 0.2. The results of the
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Table 3.1: Asymptotic variance and ARE of GEE, t = 4

Method nV(ßo) TiV[P1) nV{ß2)
Maximum likelihood 10.111 (1.000) 1.366 (1.000) 4.564 (1.000)
Optimal 10.220 (0.989) 1.386 (0.986) 4.6202 (0.988)
a = 0.0 10.293 (0.982) 1.395 (0.979) 4.914 (0.929)
a = 0.1 10.238 (0.988) 1.388 (0.984) 4.692 (0.973)
a = 0.2 10.220 (0.989) 1.386 (0.986) 4.620 (0.988)
a = 0.3 10.238 (0.988) 1.388 (0.984) 4.685 (0.974)
a = 0.4 10.295 (0.982) 1.394 (0.980) 4.859 (0.939)
a = 0.5 10.390 (0.973) 1.402 (0.974) 5.113 (0.892)
a = 0.6 10.528 (0.960) 1.412 (0.968) 5.416 (0.843)
a = 0.7 10.712 (0.944) 1.422 (0.961) 5.740 (0.795)
a = 0.8 10.952 (0.923) 1.432 (0.954) 6.064 (0.753)
a = 0.9 11.245 (0.899) 1.439 (0.949) 6.373 (0.716)

NOTE: The true correlation parameter is ? = 0.2. ARE are given in
parentheses.
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Table 3.2: Asymptotic variance and ARE of GEE, t = 4

Method iV(ß0 IV(P1 nV(ß2)
Maximum likelihood

Optimal
a = 0.0

a = 0.1

a = 0.2

a = 0.3
a = 0.4
a = 0.5

« = 0.6

a = 0.7
a = 0.8

a = 0.9

9.136 (1.000
9.332 (0.979
9.646 (0.947
9.570 (0.955
9.503 (0.961
9.446 (0.967
9.340 (0.972
9.364 (0.976
9.341 (0.978
9.332 (0.979
9.342 (0.978
9.375 (0.974

0.918 (1.000
0.955 (0.962
0.979 (0.938
0.971 (0.946
0.965 (0.951
0.961 (0.956
0.958 (0.959
0.956 (0.961
0.955 (0.962
0.955 (0.962
0.955 (0.962
0.955 (0.961

1.862 (1.000)
2.014 (0.924)
4.957 (0.376)
4.010 (0.464)
3.171 (0.569)
2.733 (0.681)
2.370 (0.785)
2.152 (0.865)
2.044 (0.985)
2.014 (0.924)
2.036 (0.914)
2.090 (0.891)

NOTE: The true correlation parameter is ? — 0.7. ARE are given in
parentheses.

simulations are presented in Table 3.3. The results are similar to the case where
t = 4. The GEE estimator is less efficient than the maximum likelihood estimator

for all values of working correlation a. Table 3.4 shows the simulation results with
t = 8 with ? = 0.7. The GEE estimator is extremely inefficient especially when
working correlation is far from the true correlation or even out of bounds.

In summary, the simulation results show the GEE estimator even with the optimal
choice of the working covariance is less efficient than the maximum likelihood estimate
obtained from the Markov chain model. Furthermore, the efficiency is very low when
the working correlation parameter is far from the true correlation. The worse choices
for a near 0 for strong dependence, and large a near 1 for weak dependence. In
particular, the choice of a — 0 is can lead to very low efficiency if there is strong
dependence. The results are similar for t = 4 and t = 8.
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Table 3.3: Asymptotic variance and ARE of GEE, t = 8

Method nV(ßo) TiV(P1 nV(ß2)
Maximum likelihood

Optimal
a = 0.0
a = 0.1

a = 0.2
a = 0.3
a = 0.4
a = 0.5

a = 0.6

a = 0.7
a = 0.8

a = 0.9

4.979 (1.000
5.096 (0.977
5.168 (0.964
5.116 (0.973
5.096 (0.977
5.120 (0.972
5.205 (0.957
5.370 (0.927
5.646 (0.882
6.066 (0.821
6.675 (0.746
7.480 Í0.665

0.216 (1.000
0.224 (0.966
0.227 (0.952
0.225 (0.962
0.224 (0.966
0.225 (0.961
0.229 (0.945
0.236 (0.917
0.247 (0.875
0.263 (0.822
0.284 (0.762
0.308 (0.701

.542 (1.000)

.585 (0.983)

.773 (0.917)

.630 (0.967)

.585 (0.983)

.623 (0.969)

.719 (0.935)

.847 (0.893)

.984 (0.852)
115 (0.816)
.230 (0.787)
325 (0.765)

NOTE: The true correlation parameter is ? = 0.2. ARE are given in
parentheses.

III. 2. 2 An example

Through simulations, we have seen in the previous section that if the correlation es-
timate used to compute the regression parameter and their standard errors is outside
of the feasible range of the correlation determined by the marginal means, the GEE
estimator is very inefficient. In this section we are going to present a real data exam-
ple where violation of the bounds changes the conclusions of the analysis. The data
for this example is a subset of the data from Hamilton's depression study discussed
example 2.3. For our analysis, we focus on the differences between only two of the
arms: the active treatment and placebo. The covariates are the treatment and time.

Since the response is binary, we use GEE with a logit link function and an AR(I)
dependence structure. Performing the GEE analysis on this data, ignoring the cor-
relation bounds, we get the results listed in Part (i) of Table 3.5. Here we see that
the time effect is significant, but the p-value for treatment is 0.071, suggests that
the treatment is not effective for reducing depression levels. Note that the working
correlation estimate is 0.404, which is outside the feasible range (-0.030,0.361). The
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Table 3.4: Asymptotic variance and ARE of GEE, ? = 8

Method nV(ß0 TiV(P1 iV(ß2)
Maximum likelihood

Optimal
a = 0.0
a = 0.1

a = 0.2
a = 0.3

a = 0.4

a = 0.5
a = 0.6
a = 0.7

a = 0.8
a = 0.9

7.160 (1.000
7.394 (0.968
8.211 (0.872
8.060 (0.888
7.909 (0.905
7.764 (0.922
7.629 (0.939
7.513 (0.953
7.428 (0.963
7.394 (0.968
7.441 (0.962
7.614 (0.940

0.260 (1.000)
0.278 (0.935)
0.309 (0.842)
0.303 (0.859)
0.297 (0.876)
0.291 (0.893)
0.286 (0.909)
0.282 (0.922)
0.279 (0.931)
0.278 (0.935)
0.280 (0.931)
0.283 (0.920)

.959 (1.000)

.042 (0.920)

.766 (0.347)

.161 (0.444)

.707 (0.562)

.397 (0.687)

.204 (0.796)

.100 (0.872)

.053 (0.912)

.042 (0.920)

.049 (0.914)

.064 (0.901)
NOTE: The true correlation parameter is ?
parentheses.

0.7. ARE are given in

results of the analysis of the data using the first order Markov chain model which
adheres to the correlation bounds is in Part (ii) of Table 3.5. We now see that the
treatment effect has a small j9-value, providing evidence that the treatment does
reduce depression.

Figure 3.1 shows the plot of regression coefficient for treatment (ßt) obtained by
GEE with different values of working correlation parameter. We can see that the
regression coefficient remains mostly constant within the correlation bounds, but it
changes dramatically when the working correlation a is outside the bounds. Further,
we can see that when a is larger than 0.7, the sign of the regression coefficient could
change as well. The behavior of the standard errors and p-values is similar as seen
in Figures 3.2 and 3.3, respectively.
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Table 3.5: Analysis of parameter estimates for Ham-D data

(i) Parameter Est. SE p-value (ii) Parameter Est. SE p-value

Intercept
Treatment
Time

Est.corr
0.404

-4.49 0.237 <0.001
0.38 0.211 0.071
1.01 0.058 <0.001

Correlation bounds
[-0.030,0.361]

Intercept
Treatment
Time

Est.corr
0.361

-4.49 0.270 <0.001
0.38 0.188 0.043
1.02 0.055 <0.001

Correlation bounds
[-0.030,0.361]

NOTE: (i) Analysis using GEE (ii) Analysis using Markov chain model.

0.2 0.4
a

0.6 0.8

Figure 3.1: Plot of estimate of ßt
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UJ 0.28

Figure 3.2: Plot of standard error of ßq

Figure 3.3: Plot of p-value of ßt
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III. 3 Quadratic inference functions

The generalized estimating equations has been a popular method of estimation for
marginal models. However, it has several shortcomings when applied to discrete data.
First, the GEE treats dependence as a nuisance and estimates the working correla-
tion parameter with moment estimators constructed using sums of squared Pearson
residuals. There is no guarantee that these estimates of the working correlation will
lie within the admissible range restricted by the marginal means. There could be
considerable loss in efficiency for the regression parameter when the correlation esti-
mate violates the correlation bounds. Another practical shortcoming of GEE is the
lack of an objective function which could be used for covariate and model selection
purposes. Several authors have suggested modifications and improvements of the
GEE to overcome these difficulties. Among these improvements, noteworthy to men-
tion is the quadratic inference function (QIF) method proposed by Qu et al. (2000).
This method eliminates estimating the working correlation parameter altogether and
borrows ideas from the generalized method of moments estimation procedure due
to Hansen (1982). The QIF method also introduces an objective function which is
minimized to get the regression parameter estimate. In the next three sections we
will present details of the QIF method and study it's efficiency as compared to the
likelihood procedures using simulations.

The quadratic inference function is derived by observing that the inverse of the
working correlation matrix R(a) can be written as a linear combination of some basis
matrices Mi, · ¦ · , Mn, , that is,

R-1 {a) = a? M1 + o,2 M2 + · · · + am Mm, (3.3.1)

where M¿ are known symmetric matrices and a\, O2, · · ¦ ,am are unknown constants,
which depend on a. In the next section we give examples of the basis matrices.
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III. 3.1 Choice of basis matrices

Equicorrelated. Suppose the correlation matrix R(a) of dimension t has an equicor-
related structure, that is, all the off-diagonals are equal to a.

R(a) =

1 Q · ¦ · Q

a 1 · · · a

a a 1

(l-a)I + 6J,

where I is the identity matrix and J is a matrix of ones. The inverse of R(a) is given
by

1
R-\a) = 1 — a

a
Ci1M^a2M2, (3.3.2)1 + (?-1)a J

where a\ = -^- , a-i — t,—w7?u ^ \, M\ = I, M2 = J. The choice of the M matrices1 1 — a> d (1—q)(1+(í-1)q) ' * ' *¦
is not unique. For example, we could also take a\
M1 = I, and

l+(fc-2)a nI-a ' °2 (l-a)(l+(i-l)a)'

M2

0 1 ··· 1

10···!

1 1 0

First-order autoregressive. Suppose R(a) — {a'1 J') is the first-order autoregres-
sive correlation matrix. The inverse of R(a) equals

R-\a) = l~ p2

1 -? 0
-P i+p2 -p
0 -p 1 + p2

0 0

0 0

0 0

0 0

0

l + p2 -p
-? ?

(3.3.3)



68

This can be written as a linear combination of three basis matrices,

R-1Ia) = ax M1 + a2 M2 + a3 M3

1 0 0

0 1 0

0 0 1

0 0 0

0

0

where

I + a2

a2

0 1 0

1 0 1

0 1 0

0 0 0

-a
a\ Í, a2 as

+ «3

-a"

1-a2'

1 0 0

0 0 0

0 0 0

0 0 0

1 — a2 ' 1 — a2 '

The third term in the above expression captures the edge effect of the auto-regressive
process. And the third basis matrix M3, which has only two nonzero values, is a minor
boundary correction and can be omitted, that is, we can approximate the inverse by
a? Mi + a2M2.

We will mainly consider these two correlation structures for comparisons of effi-
ciency between QIF and likelihood methods.

III. 3. 2 Extended score function

Using the representation (3.3.1) for ?_1(a), we can rewrite the generalized estimating
equation (3.2.1) as

'9µ?' „-?S (t?) ^1/2(°lMl + a2Ä/2 + ¦ · · + arnMm)A-yl\yt - µ?{ß)) = 0.
(3.3.4)

This is equivalent to

S "> S (-Ê) A"/2 Mj A-^1 - M) = 0.7 = 1 i=l ^ P '
(3.3.5)

Thus we see that this is a linear combination of GEE type of estimating equations
that involve the basis matrices Mj in place of the inverse of the working correlation
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matrix. The QIF method bypasses estimating the coefficients O7- and considers the
"extended score' function ~gn(ß) given by

1 (d§) A-ViM1A-^y1 ~µ?)\
Uß) = -£<?,(/?) = -¿?

î=l
?

=1

^)V2M2Ar1/2(y^)
vv^)'A"1/2Mm4"1/2(yi"Mî)

(3.3.6)

The dimension of ~gn{ß) is mk x 1, where A; is the dimension of the regression
parameter ß. Therefore (3.3.6) contains more than k equations and hence we cannot
obtain a unique estimate of ß solving ~gn{ß) = O directly. The approach of QIF is
to estimate ß by minimizing the quadratic function g~'n(ß) C~l~gn(ß) where C is the
covariance matrix of (?,;(/3). A consistent estimate of C is Cn = (1/n) SG=? 9i(ß)9i(ß)·
The objective function

Uß) n-g'n{ß)C-n'-gn(ß) (3.3.7)

is known as the quadratic inference function (Qu et al. (2000)). Thus QIF estimate
of ß is

ß = arg min Qn (ß). (3.3,

Surface plots of quadratic inference function Qn(ß) with different parameters are
shown in Figure 3.4. To generate these plots we generated binary responses from the
model

logit(i>it) = ßo + Xüßi, (3.3.9)

where i = 1, · · · , 10; t = 1, 2,3,4. We took ß0 = 0.9 and ßx = -0.3. The covariates
?it' s are generated from standard normal distribution. Correlated binary responses
yi are simulated using the entropy maximization method described in Chaganty and
Joe (2006).

First, we simulated responses j/¿ where the correlation structure among repeated
measurements is equicorrelated, and we calculated the QIF defined in (3.3.7) using
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the basis matrices M1 and M2 designed for equicorrelated structure discussed in
Section III. 3.1. Next, we simulated data where the correlation structure among
repeated measurements is AR(I), and calculated (3.3.7) using the three basis matrices
for AR(I) structure. Figure 3.4 shows the plots for these two cases. It is clear that
the surface has multiple ridges as well as local minima, but Qn(ß) does have a global
minimum in both cases which ensures the a unique solution ß for the minimum
(3.3.8).

However, there are situations where Qn(ß) does not have a global minimum. For
example, we generated binary response variables from the same mean model (3.3.9)
given above. But instead of generating xlt from standard normal distribution, we
chose ?it as a fixed categorical covariate. The reason we chose a categorical covariate
is they appear frequently in longitudinal data analysis, such as the times when the
measurements are taken on subjects. For the data generation we considered both
equicorrelated and AR(I) structures. Figure 3.5 shows two examples where the
surface of QIF is almost flat and thus does not have a global minimum and therefore
a unique solution ß that minimizes Qn(ß) does not exist. This happens because often
the matrix Cn is almost singular, and its inverse plays a dominant role in the value
0iQn(ß).

III. 3. 3 Parameter estimation

As we noted before, a unique estimate of ß cannot be obtained solving ~gn{ß) = 0,
since the dimension of ~gn{ß) is greater than the number of regression coefficients.
So instead, we minimize the quadratic inference function (3.3.7). It is equivalent to
setting the partial derivatives of (3.3.7) with respect to ß to zero. This leads to the
estimating equation

VQn(/î) = 0, (3.3.10)

where

rClVQn{ß) = 2Von C^gn + g'n VC? gn
= 2V^'nC?gn -^nC? VCnC? gn. (3.3.11)
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-5 5

(a) Equicorrelated with ? = 0.2

-5 5

(b) AR(I) with ? = 0.8

Figure 3.4: The surface plot of Qn(ß) where a global minimum exists.
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(a) Equicorrelated with ? = 0.05

(b) AR(I) with ? = 0.28

Figure 3.5: The surface plot of Qn(ß) where no global minimum exists.
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Note that Vgn is a mk ? k matrix and VCn is a three-dimensional array

(BCn dcn dcn\\dß1 ' dß2 ' " ' ' dßJ ¦
We can solve equation (3.3.10) numerically using the Newton-Raphson algorithm,
which requires the following second order partial derivatives of Qn{ß).

?"1 V2Qn(Z?) = 2V^nC':1 Vgn + 2VX C-Jgn
-4Vsn Cn"1 VCn C~nl gn + 2^nC'1 VCnCn1 VCnC^gn
-g-nC-nV2C~lCnla:n. (3.3.12)

Here, V2Cn is a four-dimensional array

The Newton-Raphson method iterates the equation

ßU+D = ßU) _ (V2QnOS(^)-1VQnCoW), (3.3.13)

until convergence. To further simplify the iterative algorithm we note that under
regularity conditions Vc/n and VCn have finite limits as ? —> oo. Hence they are
On(I), but ~gn is Op(n-1/2), so the first term in (3.3.11) is Op(?}-1/2), whereas the
second term is Op(Ti-1) and thus it can be asymptotically negligible. Therefore
minimizing Qn is asymptotically equivalent to solving

VsnCl1Sn = 0. (3.3.14)

When ß = /3, all the terms in \/2Qn(ß) involving gn are equal to zero except the
first term. Therefore we can take

y2Qn(ß) = 2nS7 9'nC~n\g'n. (3.3.15)
We can use the above expression in the iterative algorithm (3.3.13) to obtain the
estimate ß. In the next section we will derive an expression for the asymptotic
variance of the QIF regression parameter estimate.
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III.3.4 Asymptotic variance

The extended score function (3.3.6) can be written in the form of a weighted esti-
mating equation. Let

F (/3) = ngn{ß) = YjV^W'l(yl-ßl), (3.3.16)
i=l

where

?µ.

(d¡M
and W' =

-J mkxmt

1Z2AyT. A-V2AS''M1A

ATV2M7nA;1'2

The estimating equation (3.3.16) is clearly an unbiased estimating equation since
E(Tj1- µ? = 0. By the result stated in Chaganty and Joe (2004), if ß is the solution of
equation (3.3.16) then ß is asymptotically normal with mean ß and covariance matrix
equal to inverse of Godambe information matrix Q~l(ß) = [(-D3,)' V^1 (-D4,)]
Here

-O9 = -\{d*<ß)/dff) = ¿V/4 W4(I^,2 — 1 ^ /

?F = Cov(*(/3)) S
î=1

V^W&WiV/V

-IN '
Using the matrix Cauchy-Schwarz inequality (Chaganty and Joe (2004)) we can show
that the optimal choice for W1 in (3.3.16) is W10 = ( -|-, -|-, . .
the asymptotic covariance matrix Q'1 (ß) of ß reduces to

In this case

??^0µ?13µ?\
V¿í dß l dß'J '

Note that optimal choice W° depends on the unknown ß and on the dependence
parameters. But since QIF uses the basis matrices instead of the true covariance
matrix, it is not expected to produce the most efficient estimator for the regression
parameter.
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III.4 Comparison of asymptotic performance

In this section we compare asymptotic performance of QIF regression estimator and
the maximum likelihood estimator of Markov chain (MC) model discussed in Chap-
ter II, by computing the asymptotic relative efficiency (ARE) of QIF method with
respect to the first order Markov chain procedure. In our simulations we chose the
number of repeated measurements as ¿ = 4,6 and 8, and a sample size of ? = 1000.
The asymptotic relative efficiency (ARE) is calculated as follows

asymptotic variance of MC
asymptotic variance of QIF

By varying the correlation parameter ? over its admissible range, we can see how the
efficiency changes when the correlation estimate is far from the true correlation.

In our simulations we generated binary responses from the model

logit(p«) = A) + ßi^ü + fox%,

where i = 1, - · ¦ , ? = 1000; xft is a discrete covariate taking values 1,2,
is generated from uniform distribution on (0, 1).

We start with the case t = 4. The true value of the regression coefficients are
taken as ß0 = 0.8, ß? = -0.1 and ß2 = 0.15. The ARE plots of QIF with respect to
the MC procedure for the three regression coefficients are in Figure 3.6. When ? = 0
the ARE is 1, that is, when the repeated measurements are independent QIF is as
efficient as the Markov chain model. But the ARE is less than 1 and decreases as ?
increases. However, as seen in Figure 3.6(b), the ARE remains high even when ? is
close to 0.7, which indicates that QIF is comparable to the Markov chain model when
estimating the coefficient of the discrete covariate. But the ARE for the regression
coefficient corresponding to the continuous drops to less than 0.5 as ? approaches
its upper bound of 0.883 as shown in Figure 3.6(c). This shows QIF estimates the
regression coefficient corresponding to the continuous covariate very poorly for highly
correlated data. Table 3.6 contains the numerical values of the asymptotic relative
efficiencies in the case.

We now consider the case t = 6. The ARE plots for the three regression co-
efficients are shown in Figure 3.7. The plots clearly show the QIF estimates are

, t and x((t
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Table 3.6: Asymptotic variance and ARE of QIF, t = 4

TiV(A)) nVfa) nV(ß2)

? = 0.0 10.005(1.000) 0.885(1.000) 13.280(1.000)
? = 0.1 10.363 (0.999) 0.922 (0.999) 13.070 (0.999)
? = 0.2 10.539 (0.997) 0.940 (0.997) 12.479 (0.997)
? = 0.3 10.527 (0.995) 0.938 (0.995) 11.552 (0.994)
? = 0.4 10.326 (0.994) 0.912 (0.994) 10.355 (0.989)
? = 0.5 9.935 (0.992) 0.857 (0.994) 8.960 (0.977)
? = 0.6 9.353 (0.988) 0.770 (0.994) 7.440 (0.952)
? = 0.7 8.573 (0.983) 0.647 (0.993) 5.861 (0.902)
? = 0.8 7.587 (0.974) 0.481 (0.986) 4.276 (0.787)

NOTE: Range of ? is (-0.450, 0.883). The parameter val-
ues are ß0 = 0.8, ß? = -0.1, ß2 = 0.15, and ? = 1000;
AREs are given in parentheses.

uniformly less efficient as compared to the MC estimates for correlated data. In Fig-
ures 3.7(a) and (c) the ARE decreases as ? approaches to its upper bound. But in
Figure 3.7(b) we can see the plot of ARE is not monotone, it decreases to 0.935 and
increases back to 0.98. This is different from the case when the number of repeated
measurements is t = 4. Table 3.7 contains the numerical values of the AREs for the

three regression coefficients.

Figure 3.8 and Table 3.8 shows the ARE plots and numerical values, respectively,
in the case t = 8. The pattern is the same as in the previous two cases. Based on
these results, we can conclude that for highly correlated binary data with autoregres-
sive structure, QIF is very inefficient for estimating the regression coefficient for the
continuous covariates but reasonably efficient for discrete covariates. However if the
correlation is small it is respectable efficiency compared to the maximum likelihood
estimator from the Markov chain model.
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Figure 3.6: ARE of QIF and MC methods with binary data
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Table 3.7: Asymptotic variance of QIF and ARE, t = 6

nV(ß0 UV(P1 nV(ß2
? = 0.0 10.905 (1.000
p = 0.1 11.485(0.990
? = 0.2 11.885 (0.978
? = 0.3 12.097 (0.969
? = 0.4 12.112(0.965
? = 0.5 11.909(0.964
? = 0.6 11.447(0.965
? = 0.7 10.664 (0.962
? = 0.8 9.473 (0.943)

0.540 (1.000)
0.593 (0.985)
0.641 (0.963)
0.681 (0.947)
0.708 (0.938)
0.717 (0.936)
0.670 (0.943)
0.644 (0.956)
0.533 (0.973)

18.080 (1.000)
17.772 (0.990)
16.893 (0.979)
15.522 (0.972)
13.770 (0.966)
11.761 (0.956)
9.615 (0.933)
7.432 (0.874)
5.293 (0.705)

NOTE: Range of ? is (-0.091, 0.862). The parameter val-
ues are ß0 = 1.2, ß? = 0.6, ß2 = 0.1, and ? = 1000; AREs
are given in parentheses.

Table 3.8: Asymptotic variance of QIF and ARE, t — 8

nV(ßo) nV{ßi) nV(ß2

? = 0.0 6.509(1.000
? = 0.1 6.905 (0.993
? = 0.2 7.034 (0.985
? = 0.3 7.398 (0.977
? = 0.4 7.480 (0.969
? = 0.5 7.428 (0.958
? = 0.6 7.193 (0.935
? = 0.7 6.703 (0.862

0.293 (1.000)
0.333 (0.983)
0.375 (0.961)
0.416 (0.943)
0.455 (0.931)
0.487 (0.929)
0.505 (0.940)
0.497 (0.972)

11.200 (1.000)
10.984 (0.995)
10.400 (0.987)
9.505 (0.976)
8.377 (0.953)
7.097 (0.899)
5.744 (0.760)
4.381 (0.300)

NOTE: Range of ? is (-0.027, 0.706). The parameter val-
ues are ß0 = 1.0, ß? = -0.6, ß2 = -0.1, and ? = 1000;
AREs are given in parentheses.
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Figure 3.7: ARE of QIF and MC methods with binary data
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Figure 3.8: ARE for QIF and MC methods with binary data
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III. 5 Comparison of small-sample performance

In this section we compare the small-sample performance of QIF estimator with the
maximum likelihood estimate from the first order Markov chain (MC) model using
simulated data. We fixed the sample size as ? = 30. Correlated binary random
vectors with AR(I) structure are simulated separately from two models. The first
model is

logit(Pii) = ßo + ßxx%, (3.5.1)

where xft are generated from standard normal distribution. The second model is

logit(Pit) = ßo + ßixFt + ß2X?t, (3-5.2)

where xft take values 1,2....,*. We fixed the true values of the regression coefficients
as ßo = 0.5 and ß? = -0.5. We considered two cases t = 4 and t = 8. Fixing a value
of ? within the correlation bounds we simulated binary data and calculated QIF
and MC estimators for the regression coefficients. Wc then repeated the procedure
1,000 times for each combination of the parameter choices. The mean square errors
(MSE) are calculated averaging the squared deviations of the estimate from the true
regression parameter values. The relative efficiencies (RE) are calculated taking
ratios as follows:

MSE of MC estimate

~~ MSE of QIF estimate'

Table 3.9 and Table 3.10 shows results from the simulations with ? = 4 and t = 8

respectively. We can see that the values of RE are less than 1 for all values of ? within
the feasible range (-0.250, 0.465), indicating that QIF estimator has larger MSE than
the MC estimator. Further the RE of ß\ is becoming smaller when ? increases to
the upper bound, more specifically, the efficiency is 0.531 when ? — 0.45. For t = 8,
the efficiencies of QIF are better than those when t = 4. The conclusion that we
can make from these simulations is that QIF estimates the regression parameter
poorly for small samples when there is a high correlation. However, its performance
improves when the number of repeated measurements increases.

Next, we did similar simulations using model (3.5.2), fixing ß0 = 0.1, ß\ = 0.2
and /S2 = —0.5. Note that there is a discrete covariate xft in this model. The MSEs
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Table 3.9: MSE and RE of QIF and MC with one covariate, t = 4

MSE(A)) MSE(A
? QIF MC RE QIF MC RE

0.00 0.0464 0.0373 0.805 0.0588 0.0436 0.741
0.05 0.0457 0.0359 0.786 0.0690 0.0522 0.757
0.10 0.0631 0.0515 0.817 0.0494 0.0418 0.846
0.15 0.0652 0.0466 0.715 0.0624 0.0436 0.699
0.20 0.0656 0.0485 0.740 0.0534 0.0417 0.780
0.25 0.0687 0.0541 0.788 0.0464 0.0332 0.715
0.30 0.0678 0.0541 0.798 0.0500 0.0355 0.711
0.35 0.0851 0.0623 0.732 0.0409 0.0284 0.694
0.40 0.0918 0.0637 0.693 0.0466 0.0276 0.591
0.45 0.1019 0.0768 0.753 0.0419 0.0222 0.531

NOTE: Range of ? is (-0.250, 0.465) and ß = (0.5, -0.5)'.

Table 3.10: MSE and RE of QIF and MC with one covariate, t

MSE(A)) MSE(A
? QIF MC RE QIF MC RE
0 0.0202 0.0180 0.891 0.0255 0.0218 0.853

0.05 0.0231 0.0204 0.883 0.0236 0.0203 0.859
0.10 0.0290 0.0250 0.862 0.0255 0.0218 0.853
0.15 0.0261 0.0231 0.885 0.0255 0.0223 0.872
0.20 0.0303 0.0269 0.888 0.0251 0.0210 0.837
0.25 0.0366 0.0300 0.819 0.0201 0.0165 0.823
0.30 0.0399 0.0332 0.833 0.0222 0.0153 0.691
0.35 0.0435 0.0343 0.790 0.0195 0.0114 0.585

NOTE: Range of ? is (-0.283,0.385) and ß = (0.5, -0.5)'.
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Table 3.11: MSE and RE of QIF with both covariates, t = 4

a MSE(/30) MSE(A) MSE(A)
0.00 0.328 (0.743) 0.048 (0.730) 0.080 (0.573)
0.05 0.363 (0.687) 0.055 (0.639) 0.086 (0.556)
0.10 0.324 (0.788) 0.043 (0.765) 0.075 (0.645)
0.15 0.296 (0.774) 0.044 (0.756) 0.070 (0.623)
0.20 0.388 (0.654) 0.064 (0.580) 0.094 (0.472)
0.25 0.374 (0.687) 0.045 (0.699) 0.079 (0.487)
0.30 0.410 (0.666) 0.055 (0.637) 0.078 (0.494)
0.35 0.388 (0.679) 0.055 (0.593) 0.070 (0.374)

NOTE: Range of ? is (-0.162,0.358) and ß =
(0.1, 0.2, —0.5)'. REs are given in the parentheses.

and the AREs are displayed for t = 4 and t = 8 in Tables 3.11 and 3.12, respectively.
We can see that in the second model QIF performance is much worse than in the
first model, the relative efficiency fell below 0.35 in some cases.

Changing the true values of the regression coefficients and performing small sam-
ple simulations, we found cases where QIF did really a poor job in estimating the
regression coefficients. The simulations results from one of those cases are shown in
Table 3.13. Here we fixed ßo = 0.5 ß\ — 0.5 and ß2 = —0.5. The true marginal
probabilities in this case do not vary much and are in the range 0.7 to 0.8. In this
case the efficiency of QIF has dropped to as low as 0.168.



Table 3.12: MSE and RE of QIF with both covariates, t = 8

a MSE(A)) MSE(A) MSE(/?2)
0.00 0.121 (0.797) 0.006 (0.739) 0.039 (0.743)
0.05 0.147 (0.819) 0.007 (0.734) 0.041 (0.694)
0.10 0.155 (0.752) 0.001 (0.714) 0.041 (0.712)
0.15 0.157 (0.734) 0.009 (0.614) 0.042 (0.658)
0.20 0.146 (0.812) 0.008 (0.693) 0.032 (0.717)
0.25 0.165 (0.804) 0.008 (0.691) 0.037 (0.571)
0.30 0.183 (0.646) 0.009 (0.635) 0.035 (0.481)
0.35 0.201 (0.749) 0.010 (0.685) 0.037 (0.333)

NOTE: Range of ? is (-0.104,0.351) and ß =
(0.1,0.2, —0.5)'. REs are given in parentheses.

Table 3.13: MSE and RE of QIF with both covariates, t = 8

a MSE(A)) MSE(A) MSE(/32
0.00 0.334 (0.455) 0.067 (0.273) 0.122 (0.448)
0.05 0.392 (0.440) 0.109 (0.184) 0.131 (0.416)
0.10 0.442 (0.510) 0.109 (0.228) 0.127 (0.448)
0.15 0.519 (0.411) 0.135 (0.179) 0.141 (0.385)
0.20 0.505 (0.411) 0.117 (0.180) 0.156 (0.377)
0.25 0.548 (0.378) 0.113 (0.234) 0.146 (0.323)
0.30 0.500 (0.425) 0.159 (0.152) 0.133 (0.286)
0.35 0.477 (0.349) 0.119 (0.168) 0.152 (0.287)

NOTE: Range of ? is (-0.1034,0.351) and ß =
(0.5,0.5, —0.5)'. REs are given in parentheses.
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III.6 A robust variance estimator in QIF

As stated in Section III. 3. 2, Qu, et al. (2000) estimated the covariance matrix C by

Cn = -¿.9î(/3M/3)
2=1

1 n
i=l

9*(ß)&(ß) 9*{ß)4? ··· 9Aß)gL(ß)
gMg'M gMg'M ··¦ ga(ß)am(ß)

where

9iAß) =

9iAßHkiß) =

9rm(ß)9a(ß) 9im(ß)9'a(ß) ··· 9im(ß)9L(ß)

9µ?'
dß) -
9µt\' ?-?/
dß

(3.6.1)

A;1'2MjA-Wfa - µ,) = D't]{ß)(yi - µt)?

A-112M3A-W(V1 - ßl)(yi - µ??;1/2??:?-1/2 ( dß

D^m(Vi- ^)(Vi- ^'Dikiß).

The estimate Cn is also called an unstructured estimator since it is obtained without
any parametric specification. Recall that the framework of GEE and QIF has the
assumption that there is a common correlation structure across all subjects, but they
both estimate the covariance for the rth subject using (Vi~ µ?)(?? — µ?)\ that is, using
only the ith observation. This is not an optimal estimator for Cov(yj), because it
is neither consistent nor efficient since it ignores the basic assumption that there is
a common correlation for all subjects. Pan (2001) proposed a robust estimator for
Cov(y¿) in the context of GEE. It is obtained by pooling observations across different
subjects and it is given by

^ = a1/2 S?-^-^1/2 a1/2 (3.6.2)
>î=1

This estimator could also be used to estimate the covariance for the repeated mea-
surements on the ¿th subject in QIF as well. Thus our modified estimate of the
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covariance matrix of g¿ (P) is

?

Ti ¿ ^n · 11=1

Z4(/3)^Ai(/3) Dl1(P)V1D12(P) ··· ^1Oo)KLU/?)
Di2(^)KA1(Z?) ^2(/3)??2(/3) ··· Dl2(P)V1DUP)

D[JP)V1D11(P) D[JP)V1D12(P) ¦¦¦ D[JP)V1D1JP)
(3.6.3)

Pan (2001) provided a partial justification showing that asymptotically,
Cov(vec(iy„)) < Cov(vec(C„)). Thus, our proposed modification of QIF is

Ql(P) = TiVn(PWn1UP)-
In the next section we study the performance of this modified QIF with respect to
the original QIF in small samples.

III. 7 Performance of modified QIF

Here we compare the performance of the modified QIF (mQIF) method discussed in
Section III. 6 with respect to the maximum likelihood estimate of the Markov chain
model using small-sample simulations. We used models (3.5.1) and (3.5.2) and AR(I)
and equicorrelated correlation structures. The MSEs were calculated generating 1000
samples of size ? = 30 for both the mQIF and MC estimators. The relative efficiency
is calculated by the ratio

MSE of MC estimate

~ MSE of mQIF estimate '

III. 7.1 Small-sample performance with AR(I) structure

Tables 3.14 and 3.15 shows the MSEs and relative efficiency of mQIF from
model (3.5.1) with t = 4 and t = 8. respectively. Comparing these efficiency values
with Tables 3.9 and 3.10, we can see that the mQIF estimator is an improvement
over QIF estimator. For small values of p, mQIF is comparable with MC, specially
the RE of P2 is close to one when ? is near zero. However, for large values of rho,
even the mQIF is less efficient than MC, though it performs better than the QIF
estimator.
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Table 3.14: MSE and RE of mQIF and MC with one covariate, t = 4

MSE(A)) MSE(A)
? mQIF MC RE mQIF MC RE

0.00 0.041 0.037 0.913 0.044 0.044 0.995
0.05 0.040 0.036 0.906 0.052 0.052 0.996
0.10 0.057 0.052 0.908 0.042 0.042 0.993
0.15 0.053 0.047 0.887 0.044 0.044 0.989
0.20 0.056 0.049 0.875 0.043 0.042 0.976
0.25 0.060 0.054 0.899 0.035 0.033 0.937
0.30 0.059 0.054 0.918 0.039 0.036 0.919
0.35 0.072 0.062 0.862 0.034 0.028 0.839
0.40 0.079 0.064 0.808 0.037 0.028 0.755
0.45 0.088 0.077 0.869 0.034 0.022 0.651

NOTE: Range of ? is (-0.250, 0.465) and ß = (0.5, -0.5)'.

Table 3.15: MSE and RE of mQIF and MC with one covariate, t = 8

MSE(A)) MSE(A)
? mQIF MC RE mQIF MC RE

0.00 0.019 0.018 0.934 0.022 0.022 1.002
0.05 0.021 0.020 0.964 0.020 0.020 1.010
0.10 0.027 0.025 0.915 0.022 0.022 1.001
0.15 0.024 0.023 0.962 0.023 0.022 0.986
0.20 0.029 0.027 0.925 0.021 0.021 0.989
0.25 0.033 0.030 0.909 0.018 0.017 0.922
0.30 0.037 0.033 0.909 0.019 0.015 0.803
0.35 0.040 0.034 0.849 0.017 0.011 0.685

NOTE: Range of ? is (-0.283, 0.385) and ß = (0.5, -0.5)'.
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Table 3.16: MSE and RE of mQIF with both covariates, L = 4

a MSE(A)) MSE(A) MSE(/32)
0.00 0.284 (0.861) 0.042 (0.835) 0.049 (0.938)
0.05 0.305 (0.816) 0.044 (0.799) 0.048 (0.983)
0.10 0.302 (0.846) 0.041 (0.792) 0.050 (0.961)
0.15 0.275 (0.834) 0.040 (0.828) 0.047 (0.937)
0.20 0.324 (0.785) 0.048 (0.775) 0.050 (0.898)
0.25 0.327 (0.784) 0.041 (0.770) 0.048 (0.807)
0.30 0.346 (0.788) 0.044 (0.787) 0.050 (0.779)
0.35 0.333 (0.792) 0.046 (0.712) 0.044 (0.593)

NOTE: Range of ? is (-0.162,0.358) and ß =
(0.1,0.2, —0.5)'. RE are given in parentheses.

Next, we compare mQIF estimator with simulating observations from model 3.5.2
that includes a discrete covariate. The results of the simulations are in Tables 3.16

and 3.17. When we compare these numbers with the ones in Tables 3.11 and 3.12,
we can see that even in this case mQIF does better than the QIF estimator. So the
mQIF estimator out performs QIF estimator in all cases.

Finally, we reexamined the cases where QIF did very poorly and checked the
efficiency of mQIF in those cases. The results are in Table 3.18. Although mQIF
is much less efficient compared to the MC estimator, but it performs better than
QIF. We can see that the efficiency of fa is twice as high as the corresponding QIF
estimator.

III.7.2 Small-sample performance with equicorrelated structure

Now, we compare the performance of mQIF estimator with QIF estimator through
simulated small sample data with equicorrelated structure. We kept the two covari-
ates the same in models 3.5.1 and 3.5.2. The observations are generated from the
multivariate model with equicorrelated structure, and MSEs are calculated for mQIF
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Table 3.17: MSE and RE of QIF with both covariates, t = 8

a MSE(A) MSE(A) MSE(A2)
0.00 0.114 (0.852) 0.006 (0.821) 0.030 (0.966)
0.05 0.134 (0.894) 0.007 (0.833) 0.030 (0.952)
0.10 0.137 (0.854) 0.007 (0.792) 0.030 (0.968)
0.15 0.141 (0.818) 0.008 (0.704) 0.030 (0.915)
0.20 0.139 (0.853) 0.007 (0.794) 0.025 (0.909)
0.25 0.159 (0.836) 0.008 (0.771) 0.030 (0.704)
0.30 0.157 (0.756) 0.008 (0.715) 0.023 (0.723)
0.35 0.192 (0.784) 0.010 (0.709) 0.024 (0.514)

NOTE: Range of ? is (-0.104,0.351) and ß =
(0.1,0.2, —0.5)'. RE are given in parentheses.

Table 3.18: MSE and RE of QIF with both covariates, t = 8

a MSE(A)) MSE(A) MSE(A)
0.00 0.253 (0.600) 0.041 (0.445) 0.067 (0.816)
0.05 0.267 (0.646) 0.042 (0.481) 0.060 (0.903)
0.10 0.317 (0.711) 0.040 (0.617) 0.071 (0.800)
0.15 0.330 (0.647) 0.045 (0.537) 0.070 (0.774)
0.20 0.307 (0.677) 0.051 (0.409) 0.075 (0.782)
0.25 0.317 (0.652) 0.062 (0.429) 0.074 (0.641)
0.30 0.342 (0.621) 0.065 (0.374) 0.067 (0.571)
0.35 0.314 (0.530) 0.059 (0.341) 0.074 (0.593)

NOTE: Range of ? is (-0.008,0.359) and ß =
(0.5,0.5, —0.5)'. RE are given in parentheses.
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Table 3.19: MSE and RE of QIF and mQIF with one covariate, t = 4

MSE(A)) MSE(A)
? QIF mQIF RE QIF mQIF RE

0.00 0.046 0.039 0.848 0.176 0.159 0.905
0.05 0.056 0.044 0.779 0.204 0.176 0.863
0.10 0.072 0.050 0.700 0.188 0.174 0.925
0.15 0.068 0.053 0.782 0.217 0.188 0.865
0.20 0.078 0.062 0.790 0.217 0.202 0.931
0.25 0.084 0.066 0.783 0.228 0.206 0.901
0.30 0.092 0.066 0.721 0.230 0.215 0.933
0.35 0.100 0.074 0.733 0.240 0.221 0.921
0.40 0.111 0.084 0.761 0.263 0.249 0.946

NOTE: Upper bound of ? is 0.428 and ß = (0.5, -0.5)'.

and QIF estimators. The efficiency is calculated as
MSE of mQIF estimateRE
MSE of QIF estimate

The simulation results can be found in the following tables 3.19, 3.20, 3.21 and
3.22. The message is clear, mQIF is a better estimator than QIF estimator.

III.8 Misspecification of correlation structure

Qu at el. (2000) showed that if the repeated measurements are continuous and nor-
mally distributed, under the correct assumption of working correlation structure, QIF
performs as good as GEE. And if the working correlation structure is misspecified,
the QIF approach is more efficient than GEE. In this section we examine the perfor-
mance of the MC method under misspecification as opposed to the mQIF estimator
under correct specification of the correlation structure for binary data.

We generated binary samples of size ? = 30 with repeated measurements equal to
eight (t = 8), and equicorrelated structure, from models 3.5.1 and 3.5.2. Here modi-
fied QIF estimates are obtained using the basic matrix for equicorrelated structure,



Table 3.20: MSE and RE of QIF and niQIF with one covariate, t

MSE(Ai) MSE(A
? QIF mQIF RE QIF mQIF RE
0 0.025 0.022 0.84 0.026 0.021 0.806

0.05 0.033 0.029 0.86 0.029 0.023 0.802
0.10 0.039 0.032 0.84 0.028 0.022 0.774
0.15 0.053 0.044 0.83 0.023 0.019 0.837
0.20 0.068 0.051 0.74 0.026 0.020 0.777
0.25 0.071 0.051 0.73 0.022 0.017 0.779
0.30 0.083 0.065 0.78 0.021 0.017 0.819

NOTE: Upper bound of ? is 0.327 and ß = (0.5, -0.5)'.

Table 3.21: MSE and RE of mQIF with both covariates, t = 4

a MSE(Ao) MSE(A) MSE(/32)
0.00 0.608 (0.822) 0.106 (0.733) 0.140 (0.910)
0.05 0.512 (0.830) 0.098 (0.713) 0.152 (0.896)
0.10 0.518 (0.802) 0.093 (0.668) 0.154 (0.968)
0.15 0.511 (0.840) 0.097 (0.700) 0.166 (0.960)
0.20 0.525 (0.844) 0.101 (0.708) 0.162 (0.945)
0.25 0.453 (0.859) 0.089 (0.665) 0.181 (0.894)
0.30 0.491 (0.890) 0.094 (0.738) 0.167 (0.935)
0.35 0.473 (0.843) 0.099 (0.615) 0.169 (0.963)

NOTE: Upper bound of ? is 0.365 and ß = (0.1, 0.2, -0.5)'.
RE are given in parentheses.
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Table 3.22: MSE and RE of mQIF with both covariates, t

a MSE(A)) MSE(A) MSE(/32
0.00 0.100 (0.757) 0.005 (0.764) 0.025 (0.(
0.05 0.111 (0.764) 0.005 (0.715) 0.029 (0.691)
0.10 0.111 (0.762) 0.005 (0.759) 0.025 (0.667)
0.15 0.109 (0.811) 0.005 (0.744) 0.027 (0.680)
0.20 0.110 (0.751) 0.005 (0.672) 0.024 (0.653)

NOTE: Upper bound of ? is 0.232 and ß = (0.1, 0.2, -0.5)'.
RE are given in parentheses.

which means that there is no model misspecification for mQIF estimator. Since the
correlation structure under first order Markov chain model is AR(I), it is a misspeci-
fied model for these simulated data. The mean square errors are calculated repeating
the process 1000 times. The relative efficiency is calculated as

MSE of MC estimate
RE

MSE of mQIF estimate'

The results are displayed in Tables 3.23 and 3.24. We can see from the tables
the relative efficiencies are close to 1, which indicates that the two approaches arc
almost equivalent for different value of p. The results show that MC estimator is
quite robust and efficient as the mQIF estimator.

III.9 Real data examples

In this section, we apply QIF, mQIF, Markov chain and GEE methods of estimation
on real data given in Chapter I.

Example 3.1. Six city data.

We applied the MC method first to the six city data and calculated the feasible
bounds on the correlation, and found the range to be (-0.136, 0.927), which is pretty
wide. For this data the GEE estimate of the correlation is 0.40 which is within the

feasible range. Recall that QIF and mQIF methods do not give an estimate of the
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Table 3.23: MSE and RE of QIF and mQIF with one covariate, t = 8

MSE(JO0) MSE(/3i)
? MC mQIF RE MC mQIF RE
0 0.021 0.021 0.979 0.022 0.022 0.993

0.05 0.023 0.024 0.955 0.021 0.020 1.003
0.10 0.035 0.036 0.986 0.022 0.022 1.007
0.15 0.040 0.041 0.969 0.021 0.022 0.956
0.20 0.047 0.048 0.983 0.019 0.019 0.975
0.25 0.058 0.059 0.985 0.018 0.021 0.860
0.30 0.066 0.065 1.016 0.015 0.017 0.863

NOTE: Upper bound of ? is 0.313 and ß = (0.5, -0.5)'.

Table 3.24: MSE and RE of mQIF with both covariates, t = 8

a MSE(A)) MSE(A) MSE(AO
0.00 0.094 (0.951) 0.004 (0.943) 0.033 (0.894)
0.05 0.096 (0.951) 0.004 (0.923) 0.030 (0.814)
0.10 0.111 (0.948) 0.004 (0.918) 0.033 (0.879)
0.15 0.101 (0.985) 0.004 (0.953) 0.031 (0.884)
0.20 0.104 (0.946) 0.004 (0.953) 0.031 (0.830)

NOTE: Upper bound of ? is 0.216 and ß = (0.1, 0.2, -0.5)'.
RE are given in parentheses.
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correlation parameter. The results for the six city data using the four methods of
estimation are shown in Table 3.25. The estimates and standard errors are very
similar for the four methods. They all show that the maternal smoking habit is not
a significant factor for children's respiratory illness.

Table 3.25: Analysis of parameter estimates for Six-city data

(i) Parameter Est. SE p-value (ii) Parameter Est. SE p-value

Intercept
Age
Smoking
Age ? Smoking

(iii) Parameter
Intercept
Age
Smoking
Age ? Smoking
Est. corr

0.384

-1.917 0.120 <0.001 Intercept -1.918 0.116
-0.147 0.059 0.0122 Age -0.147 0.056
0.287 0.190 0.1316* Smoking 0.300 0.196
0.078 0.090 0.3840 AgexSmoking 0.076 0.094

Est. SE p-value (iv)Parameter Est. SE

-1.921 0.110 <0.001 Intercept -1.920 0.120
-0.152 0.070 0.0292 Age -0.147 0.059
0.295 0.171 0.0849* Smoking 0.295 0.190
0.112 0.058 0.4394 AgexSmoking 0.082 0.091

Feasible range Est.corr
[-0.136,0.927] 0.400

<0.001

0.0084

0.1262*

0.4176

p-value
<0.001

0.0134

0.1201*

0.3688

NOTE: (i) QIF (ii) mQIF (iii) MC and (iv) GEE

Example 3.2. Hamilton's depression study

We consider next the analysis of the Ham-D data. In the analysis we included only
those patients with all 8 measurements so that the data is balanced. The analysis
using the four methods is displayed in Table 3.26. For this data, the range of the
correlation parameter calculated fitting the MC method is (-0.043, 0.632). It is also
wide but the interval is not as broad as the six-city data. We can see from the table
that the estimates of correlation parameter fall within the range for both MC and
GEE methods, and both the methods show that treatment is significant. But for
QIF and mQIF, the p-values are larger than 0.05 indicating that treatment is not a
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ignificant factor, which we believe is an erroneous conclusion.

Table 3.26: Analysis of parameter estimates for Ham-D data

(i) Parameter Est. SE p-value (ii) Parameter Est. SE p-value

Intercept -6.919 0.382 <0.001
Treatment 0.276 0.262 0.2839*
Time 1.781 0.096 <0.001

(iii) Parameter Est. SE p-value

Intercept -4.164 0.276 <0.001
Treatment 0.432 0.204 0.0343*
Time 0.917 0.054 <0.001

Est.corr Fréchet bounds

0.499 [-0.043,0.632]

Intercept -6.789 0.376 <0.001
Treatment 0.280 0.261 0.2839*

Time 1.732 0.097 <0.001

(iv) Parameter Est. SE p-value
Intercept -4.298 0.232 <0.001
Treatment 0.487 0.213 0.0222*
Time 0.949 0.057 <0.001

Est.corr

0.441

NOTE: (i) QIF, (ii) mQIF, (iii) MC and (iv) GEE
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CHAPTER IV

HIGH ORDER MARKOV CHAIN MODELS

IV. 1 Introduction

We have discussed in Chapter II, a first order Markov chain model for dependent
binary observations. A potential approach for constructing higher order Markov
chain models is through the use of copulas, which are multivariate distributions
with uniform margins. In this chapter we give an introduction to copulas and show
how can they be used to construct multivariate binary distributions with specified
marginal means and dependence structure.

IV. 2 Introduction of copulas

Constructing multivariate distributions using copulas has become popular in recent
years. The motivation for the development of copula methods is rooted in the attempt
of constructing multivariate distributions with given non-normal marginal distribu-
tions. The copula method is based on the idea that the distribution function could be
used to convert the marginal distribution to a uniform distribution, and then a joint
distribution with specified marginal distribution can be obtained using a multivariate
distribution with uniform marginals. There are many families of copulas that differ
in the type of dependence they exhibit. In this section we give a brief description of
copulas.

Definition 4.1. A t- dimensional copula is a function C from [0, 1]' —> [0, 1] with the
following properties:

1. (7(1,1,-·· ,l,Ui,l,··· ,1) = ?t for all ? = 1,2, ··· ,t.

2. C(Ui1 ¦ ¦ ¦ ,ut) = 0 if at least one u, = 0 for ? = 1, 2, · · · , t.

3. For all uix < ui2, where i = 1, 2, · · · ?,

S S - ¦ ¦ S(-?+?+-+^(?1?^2]2, · · · ,ut]t) > 0.
Ji = I J2 = l Ji=I
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The following theorem due to Sklar (1959) is fundamental to the development
of copulas. Sklar's theorem elucidates the role that copulas play in the relationship
between multivariate distribution functions and their univariate margins.

Theorem 4.1. Sklar's Theorem. Let H be a joint cumulative distribution function
with margins F1, F2, ¦ ¦ ¦ , Ft. Then there exists a t- dimensional copula C such for all
2/1-2/2,··· ,2/i £ 9t ,

H(y1,y2,--· ,Vt) = C(F1(y1),F2(y2),--- ,Ft(yt)).

If F11F2,- ¦ ¦ ,Ft are continuous distribution functions, then C is unique; otherwise
C is uniquely determined on range(Fi) ? range(Fi) ? ¦ · · ? range(Ft).

Lemma 4.1. Fréchet-Hoeffding Bounds. If C is a t-dimensional copula, then for all
U1 e [0,1], ¿ = 1,2,··· ,*,

CL{ui,u2,--- ,Ut) < C(U11U2,- ¦¦ ,ut) < C'u(ui,u2,- ¦¦ ,ut),

where C^ and Cu are defined as

CL(u\, u2, ¦ ¦ ¦ ,ut) = max(0,ui + u2H \-ut-{l-l)),
Cu{ui,u2,- ·· ,ut) = IRm(U17U2,- ¦¦ ,ut).

Cu is a copula for any t, but C¿ is a copula only when t = 2.

IV. 3 Examples of Divariate copulas

In this section, we present some well known bivariate copulas.

Example 4.1. (Independence Copula). The function given by

C(u,v) = uv

is the bivariate Independence copula. Its density is simply c(u,v) = 1.
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Figure 4.1: Density function of bivariate Gaussian copula

Example 4.2. (Bivariate Gaussian copula). For 0 < d < 1, C(u.v;ô) =
F^(F~1{?),F~1(?)), where F is the standard normal distribution function, and
Fa is the bivariate standard normal distribution function with correlation d. Let
x = F~1('??) and y = F_1(?>); the density function is given by

c(u,v;ö) = (1 - 52r1/2exp{-^l - d2)~?[?2 + y2- 2d??}} exp[±(x2 + y2)}.
Example 4.3. (Frank Copula). For 0<(5<oo;r/ = l — e~n ,

C(u, ?- d) = -?-1 log([r? - (1 - ^)(I - e"5'")]/^).
The density is

c(u,v; d) = d?e-&{?+?) /[? - (1 - er5u){l - e~&v)}2 .

Example 4.4. (Gumbel Copula). Let U = — log(u), ? = — log(u), for 0 < d < oc,

C(u, ?; d) = exp{-(üá + ??)1/d}.
The density is

c(u, v; d) = C(u, ?; Wuv)-\J™?? [(ü< + ?d)^d + d - I].



99

0.8 H
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Figure 4.3: Density function of Gumbel copula
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In a multivariate copula model, the cumulative distribution function of a random
vector Y = (Yi, ¦ ¦ · , Yt) is given by

F(y) = C[F1 (yO, · ¦ -,Ft(Vt)), (4.3.1)

where C is a i-dimensional copula and F1 is marginal cumulative distribution function
of Y1. If Y is continuous, then its probability density function is

f{y) ^Wm)C[F1(V1),- ¦¦ ,F1(Vt)), (4.3.2)
2 = 1

where /¿ is marginal probability density function of Y, and

is the density of copula C.

For discrete margins the multivariate probability mass function is given by
2 2 2

^ = ?) = SS- S?"1)^=1 ^K1 (^), · · · ,«!¿(î/O), (4-3.4)
Ji = I ¿2=1 Jt-I

where ua(yi) = F^y1-) and uí2(y¿) = -F,(y,)- Here F1(Vi-) is the left-hand limit of F1
at y», which is equal to í¿(y¿ — 1) when the support of Fx is the set of integers.

In particular, suppose Y, is a binary variable with P(Y = 1) = P1. The distribu-
tion function of Y- is

^Hy1) = <
0 V1 <o

1 îfc > ?

If £ = 3, according to (4.3.4), the joint probability function is of the form

P(y\ = V\,^2 = 2/2,^3 = 2/3 ) = C(ui2, U22, U32) - C1^1W22, «32 ) ~C(ui2, U22, U32)
-C(u12, U22, «32) + C(u12, U22, U32) + C(Mi21-U221U32)
+C(ui2, U22, «32) - C(Ui2, U22, U32). (4.3.5)

The eight probabilities can be written in a table form.
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Table 4.1: Trivariate joint probability using copula

Vi Vi Va P(Yi = Vi,Y2 = V2,Y3 = y3)
1 1 1 Pi + V2 + Ps - 2 + C(I, I -P2A- p3) + C(I - pi, 1, 1 - p3)

+C(I - pi, 1 - p2, 1) - C(I - pi, 1 - p2, 1 - Fs)
1 1 0 1 - P3 - C(1, 1 - P2, 1 - P3) - C(I - P1, 1,

+C(l-Pi,l-P2,l-P3)
i-p3)

1 0 1 1 - p2 - C(1, 1 - p2, 1 - p3) - C(I - pi, 1 - p2, 1)
+C(l-pi,l-p2,l-p3)

0 1 1 1-P1 -C(I -pi, 1,1 -p3)
+C(l-pi,l- P2, l-p3)

C(I - pi,l- P2, 1)

1 0 0 C(1, 1 - P2, 1 - p3) - C(I - pi, 1 - p2, 1 - p3)
0 1 0 C(I - pi, 1, 1 - p3) - C(I - pi, 1 - p2, 1 - p3)
0 0 1 C(I - pi, 1 - p2, 1) - C(I - pi, 1 - p2, 1 - P3)
0 0 0 C(I -pi,l -P2,l -P3)

IV.4 Markov chain based on copulas

A first order Markov chain with given univariate binary margins can be constructed
from a bivariate copula. This is a generalization of the normal AR(I) time series,
since the normal AR(I) time series can be obtained using the bivariate normal copula
and univariate normal margins. A Markov chain of second order, can be constructed
from a trivariate copula which has the property that the (1,2) and (2,3) bivariate
margins are the same. This generalizes the normal AR(2) time series. Extensions to
Markov chains of higher order require multivariate copulas with constraints on the
lower dimensional margins.

The description of a stationary Markov chain with discrete state space based on
a bivariate copula C(u,v) is as follows. Suppose that {Yt,t — 1,2,...} takes non-
negative integers values. Let F(yt) and f{yt) be the cdf and pmf of Yt, respectively.
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The transition distribution function from Yt_i to Y1 is given by

tf(yt|yt-i) = P(Yt < yt\Y^i = yt-i)
= [C(F(^1), F(yt)) - C(F(^1 - 1), F(yt))}/Ky^1).

Escarela at el. (2009) have discussed a fully parametric first order autoregressive
model for longitudinal binary data using bivariate Gaussian copula.

More generally, stationary Markov chains of order m — 1 can be constructed
from an m-variate copula C that satisfies the following conditions: (i) the bivariate
margins Ci3 are such that Chi+i = Ci1I+/, / = 1, · · ¦ , m - 2,i = 2, · · · ,m-l; (ii) the
higher-dimensional margins are such that Cj1,...^ = Ci^2-I1+I1... ,**=— ¿i-t-i f°r 1 < ¿i <
¦ · ' < h < rn> 3 < A: < m - 1; and (iii) C is differentiable in its first m-l arguments.
For second order Markov chains, these conditions simply become Ci2 = C23-

If Fi.... ,m = C(F, · · - .F) is an rn-variate cdf, such that C is a copula with the
above properties, then the transition cdf of the stationary Markov chain is

uf ? ^ a(F(yt-m+i),--- ,FJVt)) (aa?\H(yt\yt.m+1,--- >Ift-i) = 6(F(lfc_m+l))... )F(yt))' ^
where

and

Om-I(J
<4F<*~»),-,FM)- M, («.2)

6(F(yt_m+1),·-- ,F(yt)) = ^ ^K- ,«?,-?), (4-4.3)(/?/? OU7n-I

with Ci...m_i be an (m — l)-dimensional marginal of C.

IV.4.1 A feasible family of copula

Here, we discuss a family of copula that can be used to construct higher order Markov
chain. Let f be a Laplace transformation and I1 = (u¿ + t — I)-1, where f¿'s are
constants. Consider the copula

C(u) = ? (-Y1IOgKiJ(C-M-1^Ke-W-1M) + ¿ vM'-Hui) J , (4.4.4)
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where Kih 1 < i < j < t are bivariate copulas. An interpretation is that the Laplace
transformation f leads to a minimal level of pairwise dependence, the copulas K,L3
add some individual pairwise dependence beyond the global dependence, and the
parameters v¿ lead to bivariate and multivariate asymmetry.

A useful special case of (4.4.4) is the following. Let t = 3, KltS(u,v) — uv,
Vi = V3 = -1, V2 = 0, K12(u, v) = K23(u, v) = K(u, v). Then (4.4.4) becomes

C(u) = ^(-\ogK(e-^lM,e-°-^~1^)
- log K(e-^~1{u*\ e-O-s^teM ^^

Here the (1,2) and (3,2) bivariate margins of (4.4.5) are the same and are more con-
cordant than the (1,3) margin. Hence this model would be appropriate for generating
a second order Markov chain. With j = 1, 3, the bivariate margins of (1,2) and (3,2)
are

f ^-ìogK(e-~^1^le-°-5^1^) + 0.5i>~1(u2)^ . (4.4.6)
We can choose K as the bivariate Gumbel copula with parameter d > 1, and f be

V>(s) = exp(-s1/ö) with parameter ? > 1. For this f, we have ^-1 (s) = (-log(s))e.
Then (4.4.5) can be written as

C*(u) = exp H(Z1Y + (0.5??2)?? ~ UY + (0.5??2)?d}1/? , (4.4.7)
where z¿ = - log(u¿), i = 1, 2, 3. The bivariate margins are

C12(U^u2) = exp {-[(zif + (0.5??2)?d + 0.5??2}1/? . (4.4.8)
Further research along these lines will be pursued in the future.
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CHAPTER V

DISCUSSION

There is a vast literature on the analysis of longitudinal and clustered binary data.
Much of it is focused on marginal models, due to the difficulty in constructing proper
likelihood models. Our first goal in this dissertation is to study multivariate binary
distributions namely the first order Markov chain model and the multivariate pro-
bit model. The first order Markov chain model results in first order autoregressive
correlation structure and is appropriate for analyzing longitudinal data. The mul-
tivariate probit model is useful to analyze both longitudinal and clustered binary
data. For both models we studied maximum likelihood estimates and their asymp-
totic variances computed via Fisher information matrices. Large and small sample
simulations show that the estimates are comparable in terms of efficiency and no one
model is uniformly superior over the other model. Other multivariate binary models
include the quadratic exponential model. We checked numerically that the quadratic
exponential family generates the same probability distribution as the Markov chain
model for the autoregressive correlation structure.

As mentioned earlier marginal models do not specify the complete distribution
and are motivated by quasi-likelihood ideas. A popular parameter estimation pro-
cedure in marginal models is the generalized estimation equations method. Though
popular this method has several drawbacks. We have used simulations to show that
the generalized estimation equations method is less efficient when compared to the
maximum likelihood estimates for the Markov chain model. The efficiency is poor
when there is a high correlation in the data. An alternative to the generalized esti-
mating equations is the quadratic inference function (QIF) approach due to Qu et
al. (2000). This method bypasses estimating the correlation parameter. We have
shown that this method is also less efficient than the maximum likelihood estimates

for the Markov chain model. We also introduced a modified quadratic inference
method (mQIF) and showed using simulations this method has better efficiency when
compared to the original QIF method.

Finally, we discussed copula models. These models are potential pathways for
constructing high order Markov chain models.
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APPENDIX

SAS PROGRAMS

A.l SAS Macro TMMLE

% let ROOT = % STR(file location);
FILENAME Hession "&ROOT \ Hession.sas" ;
options Is = 84 nodate;
% macro tmmle(data=, yvar=, xvar=, id=, fun=logit, outpar=,outmle=);
%macro con(x,y,id,func);

%global yl;
%global xl;
%global idi;
%global lfun;
%let yl=y;
%let xl=x;
%let idl=id;
%let lfun=func;

%mend con;

ods listing;
proc genmod data=&data descend;

class &id;
model &yvar=&xvar / link=&fun dist=BIN;
repeated subject = &id / type=ar covb corrw;
ods output GEEEmpPEst = GEEEmpPEst GEEWCorr^GEEWCorr;

run;

ods listing close;

ods listing;
proc imi;
%include Hession;
use GEEEmpPEst;



read all varestimate into ibeta;
use GEEWCorr;
read all varCol2 into cor;
use fcdata;
read all var&xvar into x;
read all var&yvar into y;
read all var&id into id;
k = ncol(x)+l;
%if &fun=logit %then func='logit';
%else fune = 'probit';
%con(x,y,id,func);

Start U(u, v);
temp = sqrt((l-u)*v/ii/(i-v)) || sqrt(u*(l-v)/v/(l-u));
return(min(temp));

Finish;

Start L(u, v);
temp = (-sqrt((l-u)*(l-v)/u/v)) || (- sqrt(u*v/(l-v)/(l-u)));
return(max(temp));

Finish;

start arbound(p);
t = max(ncol(p), nrow(p));
if t=l thenbdi=-l 1;
else do;

temp = j(t-l,2,0);
do i=l to (t-1);

temp[i,l]=L(p[i],p[i+l]);
temp[i,2]=U(p[i],p[i+l]);

end;
bdi = max(temp[,l])|| min(temp[,2]);

end;
return(bdi);
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finish arbound;

start irhobound(x,beta,nrep) global(&lfun);
XX= j(nrow(x),l)|| x;
u = xx*beta;
fun = &lfun;
if fun = 'logit' then ? = exp(u)/(l+exp(u));
else ? = probnorm(u);
index = 0;
? = max(nrow(nrep),ncol(nrep));
bd = j(n,2,0);
do i =1 to n;

ti = nrepfi];
if ti=l then pi = p[index+ti];
else pi = p[(index+l):(index+ti)];
bd[i,]=arbound(pi);
index =index+ti;

end;
L=max(bd[,l]);
U=min(bd[,2]);
irb = L//U;
return(irb);

finish irhobound;

start betacond(m);
temp = j(l,m,.)//j(l,m,.);
return(temp);

finish betacond:

start Lhf(theta) global(&xl,&yl,&idl,Mfun);
k = max(ncol(theta),nrow(theta));
beta = theta[l:(k-l)];
rho = theta[k];
? = &xl;
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y = &yi;
id = fcidl;
fun = Mfun;
xi = j(nrow(x),l) x;
? = nrow(y);
u = xi*beta;
if fun = 'logit' then ? = exp(u)/(l+exp(u));
else ? = probnorm(u);
q=l-p;
s = sqrt(p#(l-p));
nrep=l;
nsub=l;
do i = 2 to n;

if id[i]=id[i-l] then nrep[nsub]=nrep[nsub]+l;
else do;

nrep=nrep//l;
nsub=nsub+l;

end;
end;

nnn = max(nrow(nrep),ncol(nrep));
bd = j(nnn,2,0);
indexi = 0;
do i =1 to nnn;

ti = nrep[i];
if ti=l then pi = p[indexi+ti];
else pi = p[(indexi+l):(indexi+ti)];
bd[i,]=arbound(pi);
indexi =indexi+ti;

end;
L=max(bd[,l]);
U=min(bd[,2]);
rhobd = L//U;
if(rhobd[l]<=rho & rho<=rhobd[2]) then rho=rho;
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else rho=(rhobd[2]+rhobd[l])/2;

mie = O;
index =0;
do i = 1 to nsub;

fi = 0;
ti = nrep[i];
yi = y[(index+l):(index+ti)];
pi = p[(index+l):(index+ti)];
qi = q[(index+l):(index+ti)];
si = s[(index+l):(index+ti)];
fi = yi[l]*log(pi[l]) + (l-yi[l])*log(l-pi[l]);
if tiA=l then

do;
do j = 2 to ti;

Pij = Pi[j]**yi[j]*qi[j]**(i-yi[j])+
(-i)**(yi[J]+yi[J-i])^ho*si[j]*si[j-i]/(pi[j-i]**yiÜ-i]*qi[j-i]**(i-yi[J-i]));
fi = fi + log(pij);

end;
end;
else fi=fi;
mie = mie + fi;
index = index + ti;

end;
return(mle);

finish Lhf;

start getname;
parameter = j(k+l,l,char(20));
parameter [1,1] = "intercept";
do i=l to k;

parameter [i+ 1,1] = scan("&xvar", i);
end;
parameter [k+ 1,1] = "rho";
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finish;

start outdata;
Test = "MLE";
DF = df;
Statistic = stat;
AIC = -2*stat+2*(k-l);
BIC = -2*stat+(k-l)*log(nsub);

%if %length(&outmle)>0 %then %do;
create «feoutmle var Test Statistic DF AIC BIC;
append;

%end;

%if %length(&outpar)>0 %then %do;
estimate = ntheta;
stderr = stderror;
create feoutpar var parameter estimate stderr Z pvalue;
append;

%end;
finish;

start main;
? = nrow(y);
nrep=l;
nsub=l;
df=k-l;
do i = 2 to ?;

if id[i]=id[i-l] then nrep[nsub]=nrep[nsub]+l;
else do;

nrep=nrep//l;
nsub=nsub+l;

end;
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end;

optn = {1,0};
rhobd = irhobound(x,ibeta,nrep);
irho=(rhobd[2]-rhobd[l])/2;
cond = betacond(k) rhobd;
itheta=ibeta//irho;
do until(rhobd[l]¡=irho & irho¡=rhobd[2]);

call NLPNRR(rc, ntheta, "LhP, itheta, optn,cond);
ibeta — ntheta[l:k];
rhobd = irhobound(x,ibeta,nrep);
irho = ntheta[k+l];
itheta = ibeta//irho;
cond = betacond(k) rhobd;

end;
beta = ntheta[l:k];
rho = ntheta[k+l];
xx = j(nrow(x),l) x;
u=xx*beta;
if func='logit' then do;

? = exp(u)/(l+exp(u));
F = p#(1-p);
d2p = (exp(u)-exp(2*u))/(l+exp(u))##3;

end;
else do;

? = probnorm(u);
dp = normpdf(u);
d2p = devnormpdf(u);

end;
scnddev=0;
scnddevj=0;
index = 0;
do i = 1 to nsub;

ti = nrep[i];
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yi = y[index+l:index+ti];
xi = xx[index+l:index+ti,];
pi = p[index+l:index+ti];
dpi = dp[index+l:index+ti];
d2pi = d2p [index+ l:index+ti];
scnddev = scnddev + devP2nd(yi,xi,pi,dpi,d2pi,rho,k);
index = index + ti;

end;
hess = scnddev;
var = -ginv (scnddev);
print hess [label= 'Hession Matrix'];
print var[label='Covariance Matrix'];
stderror = sqrt(vecdiag(var));
par = t(ntheta);
Z = par/stderror;
pvalue = 2*(l-probnorm(abs(Z)));
print par stderror Z pvalue;
stat = Lhf(ntheta);
rangeofrho=irhobound(x,beta,nrep);
print rangeofrho;

finish main;
run main;
run getname;
run outdata;
quit;
ods listing close;
%mend armle;



116

VITA

Weiming Yang
Department of Mathematics and Statistics
Old Dominion University
Norfolk, VA 23529

Education

Ph.D. Old Dominion University, Norfolk, VA. (December 2010)
Major: Computational and Applied Mathematics (Statistics)

MS Old Dominion University, Norfolk, VA. (Summer 2009)
Major: Computational and Applied Mathematics (Statistics)

MS University of Toledo, Toledo, OH. (Summer 2005)
Major: Applied Mathematics

BS Chengdu University of Technology, China. (Summer 2003)
Major: Applied Mathematics

Experience
Research Assistant, ISTART Lab (08/2007 - 08/2008)
Old Dominion University, Norfolk, VA

Teaching Assistant (08/2006 - 08/2007 & 08/2008 - 12/2010)
Old Dominion University, Norfolk, VA

Publications

Yang, W. and Chaganty, N. R. , "Maximum likelihood estimation of a transition
model for binary longitudinal data", under preparation.
Yang, W. and Chaganty, N. R. , "On the use of Quadratic Inference Function for
binary longitudinal data", under preparation.
Case, R. and Yang, W., "A Study to Examine Differences Between In Person and
Online Survey Data Collection Methodologies" , Sport Management International
Journal, Vol. 6, No. 2, 2009, pp. 5-20.
Yan. G, Yang, W., Shaner, E. F. and Rawat, D. ,"Intrusion-Tolerant Location
Information Services inintelligent Vehicular Networks", Communications in
Computer and Information Science, accepted.



117

Typeset using WTçfî..


	Analysis of Models for Longitudinal and Clustered Binary Data
	Recommended Citation

	ProQuest Dissertations

