Old Dominion University

ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 1997

Designing a High-Quality Network: An Application-Oriented
Approach

Sudheer Dharanikota
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

b Part of the OS and Networks Commons, Programming Languages and Compilers Commons, and the

Systems Architecture Commons

Recommended Citation

Dharanikota, Sudheer. "Designing a High-Quality Network: An Application-Oriented Approach” (1997).
Doctor of Philosophy (PhD), Dissertation, Computer Science, Old Dominion University, DOI: 10.25777/
mytt-ee43

https://digitalcommons.odu.edu/computerscience_etds/81

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It
has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/81?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

DESIGNING A HIGH QUALITY NETWORK:
AN APPLICATION-ORIENTED APPROACH

by

o

Sudheer Dharanikota
Indian Institute of Science, Bangalore, India,

Nagarjuna University, Vijayawada, India

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirements of the Degree of

DOCTOR OF PHILOSOPHY
COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
May 1997

Approved by:.

Kurt J. Maly (Diregtor)

C. Michael Overstreet (Member)

\Qayid E. Keyes (Nﬁamber)

Wayne @y&dt (MembeY)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9738122

Copyright 1997 by
Dharanikota, Sudheer

All rights reserved.

UMI Microform 9738122
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

DESIGNING A HIGH QUALITY NETWORK:
AN APPLICATION-ORIENTED APPROACH

Sudheer Dharanikota
Old Dominion University, 1996

Director: Dr. Kurt J. Maly

As new computer network technologies emerge, the application designers
and the application users expect an increasing level of quality of service from them.
Hence, it is a common practice in the newer technologies to provide more Quality of
Service (QoS) components. Until now, these QoS solutions have been both network-
technology specific and network-oriented solutions. In this thesis, we present an
application-oriented approach to design a high quality network which is indepen-
dent of the underlying communication technology. In this thesis, we propose a QoS
architecture to “provide predictable performance to the end-to-end application users
in a high quality networking environment.” Tn our architecture, QUANTA (Quality
of Service Architecture for Native TCP/TP over ATM networks), we integrate dif-
ferent application requirements and different existing native QoS architectures into
a single end-to-end architecture.

Through experimentation we identify the architectural issues and the differ-
ent QoS components required. We propose solutions which include isolation of the
applications and managing the knowledge of the applications. The issue of isolating
an application is subdivided into classification and identification of the applications.

In addressing these issues we propose a ripple-through classification mechanism and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a Generic Soft State (GSS) identification mechanism. To manage the knowledge of
the applications we propose different QoS components, such as a GSS negotiation
mechanism, a GSS communication mechanism and a GSS monitoring mechanism
(such as GSS Relays and GSS Agents).

QUANTA's overhead is measured by running applications with different life-
times and QoS requirements with and without QUANTA. For a transaction-oriented
applications, the overhead induced by using QUANTA is larger than the benefit of
using QUANTA. In high data rate applications and in long life time applications.
& prediciable performance to the applications is achieved with very low overhead
by QUANTA. We demonstrate that QUANTA can manage and maintain Quality of
Service for different classes of applications under varying host and network load con-
ditions transparent to the application user. Using QUANTA, we can reach nearly
80% of the channel utilization under loaded conditions, whereas without QUANTA.,
the load on the network can reduce the channel utilization to 40%. Quanta has
reduced a 350 msec delay under loaded conditions to less than a 10 msec delay.
With the exception of short transition periods, QUANTA can sustain throughput
to within the bounds of the specification of the user. We identify the limitations of
QUANTA as currently proposed and discuss possible enhancements to it and other

such architectures to remedy these limitations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright 1997

by

Sudheer Dharanikota

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v

To

Mother, Father, Kishore and Nadima

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

ACKNOWLEDGMENTS

My sincere acknowledgments to Prof. Maly for his encouragement, time,
training and suggestions in the capacity of an advisor; for his support and under-
standing of the needs of a graduate student in the capacity of the chairman of the
department: and most importantly for his patience, the leniency he has given to me,
and his coping with my idiosyncrasy like a friend. T have tried to inherit many of
his qualities, such as organizing my thoughts and time, handling tough situations,
and thinking quickly. T am lucky to have such an advisor.

[thank my committee members Dr. David Keyes, Dr. Mike Overstreet,
and Dr. Wayne Bryant for their interest in my work and their suggestions from my
candidacy until defense. My acknowledgments to Dr. Zubair for his to-the-point
questions which gave me more confidence in my work as I struggled to answer them.

One person in the department seemed very serious and reclusive when T first
Joined. But in reality, when I became close to him, I understood his grace, his helpful
nature and his friendliness. I am glad that T could recognize his personality at the
earlier stages of my stay at ()DU. He was with me when T needed any technical or
personnel suggestions. He provided me with all the equipment needed to complete
my work, and let me borrow his three little angels when [wanted to take my mind
off the work. Thank you Ajay.

Staying so far away from home — from the people I love and from the places
[adore — made me always think about the necessity of doing a Ph.D. Three people
in my life take credit not only for prompting and encouraging me to pursue my life
ambition but also being available to me when I became emotional. T love them for
being what they are, and am proud of what they are as they are proud of me. Thank

you Mom, Dad and Kishore for every good event happening in my life — you are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

the reason for it.

['am thankful to one person who made two state transitions in my life during
my stay at ODU - one from an enemy to a friend and the other from a friend to my
wife. She still plays the role of these three characters successfully. She is my chalk-
board of ideas, eternal sink of my emotions, and my soul (and of course my banker).
['am indebted to her for the endless walks we had as enemies (quarreling), as friends
(chatting over the past experiences), and as partners (planning evervthing). Tt is
impossible for me even to imagine finishing my Ph.D without her round-the-clock
attention. Thank you Naddo.

[want to acknowledge the host of friends [made at ODU and the quality
time we had together. Thank you Caleb and Loretta Cutherals for being my host
parents, introducing me to the American culture. and being with me all these four
years whenever I needed a break. I will always be in touch with you, the confused V
(Venkat) and the chaotic V (Vittal). Thank you Roy for being my first roomie, my
best friend, and of course for the endless cooking adventures we had (deep frying the
eggs!). T will always remember you Kumar for the fun times we had. the coast-to-
coast trip we made, and the emotional trauma you created when you tried to ignore
me. Rajesh, do you remember the long fight we had before becoming such close
friends? Thank you Basu Vasu for the unending discussions we had on spiritual
and philosophical topics. Rai Bhaskaram. it is impossible to get your organization
and determination: I will always admire you. Thank vou Pandyaji, Archita, Abhay
and Ditta for being my accomplices on the elaborate singing sessions had in Gandhi
Nagar (Bolling Square). Thank you Usha for all your birthday cakes, Hima for the

Pulihara, and Ranjita for the Mysorepaks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viil

TABLE OF CONTENTS

LIST OF TABLES xi
LIST OF FIGURES xii
I INTRODUCTION 1
1 Motivation 1

2 Outlineof theissues b)

3 Problem and objective definition 7

4 Survey of related work 10

4.1 Survey of QoS provision components 10

4.2 Summary of the related work 22

5 Outlineof thethesis 25

II EXPERIMENTAL BASIS FOR ARCHITECTURAL REQUIRE-

MENTS 26
1 Testbed and protocols 28
2 Application’s versus protocol’s view of QoS 31
3 Factorsinfluencing QoS 33
3.1 No-load condition experiments 36
3.2 Host behavior experiments 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1X

3.3 Network behavior 52

4 Casestudy 54
3 Discussion on QoS architecture 38
6 Summary 62
IIT ISSUES, APPROACH AND ARCHITECTURAL DESIGN 64
1 Revisiting the problem 67
2 Isolation of the application 71
2.1 Classification of applications 72

2.2 Identification of the application 7

3 Knowledge of the application 83
3.1 QoS specification and QoS translation 85

3.2 QoS communication 89

3.3 QoS negotiation 91

4 Summary 94
IV DESIGN AND EVALUATION METHODOLOGY 96
1 User-level implementation components 97
1.1 QoS user interface 99

1.2 Resource Management Daemon 106

2 Protocol-level components 109
2.1 GSS component 109

3 Evaluation of QUANTA 114
3.1 End-to-end QoS provision evaluation 115

3.2 Architectural evaluation 116

4 Summary 118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V RESULTS AND ANALYSIS

1 Outline of the experiments

o
w2
=
3
3
I

<

VI CONCLUSIONS AND OPEN PROBLEMS
BIBLIOGRAPHY

Appendix A STATE DIAGRAMS AND ALGORITHMS
Appendix B ACRONYMS

VITA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119
120
120
130
139

141

145

151

152

158

Xi

LIST OF TABLES

TABLE PAGE
[1.1 Comparison of direct and TCP applications under no load condition . 44
[1.2 Case analysis direct and TCP applications for different block sizes . . 47

I1.3 Comparison of direct and TCP application at different CPU-loads . . 51

V.1 Connection establishment overhead detection experiments 123
V.2 Per packet processing overhead experiments 126
V.3 Per packet data overhead measuring experiments 128

V.4 FOM measurements for the VC and rnodttcp applications at different

network load conditions 138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Xii

LIST OF FIGURES

FIGURE PAGE
[.1 Network technologies and their driving issues 2
[.2 Intensity of error handling versus emerging technology 4
[.3 Acceptable region of operation (ROP) for an application 8
[1.1 A detailed testbed used in thiswork. 28
1.2 End-to-end flow of data on an ATM network 29
[1.3 Interface translation from the application to the network 32

[1.4 An insight into the QoS parameter significance on an ATM network . 34
IL.5 Effect of TCP control parameters on end-to-end application throughput 37

1.6 UDP throughput and loss graphs with and without flow control, and

by increasing HWM 39
I1.7 UDP 5 Kbytes block size time domain delay measurement 11
[1.8 Proposed modification of the current protocol architecture 42
[1.9 Further modifications to the protocol architecture 49
[1.10 One TCP at 45 Mb/s, and two direct at 35 Mb/s 53
[I.11 Example for QoS improvement 56
I1.12 Continuation of the example for QoS improvement 57
[1.13 End-system QoS architecture 60
ITI.1 Different connections going through the teacher’s node in IRT. 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XIil

[I1.2 ATM Forum, IETF, and QUANTA’s approach to classification of

applications 73
[T1.3 Quality of Service Traversal Graph (QTG) 76
[T1.4 QoS internetworking - other’s approach and our approach 80
[T1.5 Generic Soft State and Current Generic Soft State packet formats . . 83

[TI.6 Relation between QoS Specification, Translation, Communication and
Negotiation 85
[T1.7 Comparison/salient features of different QoS flow specification mech-
anisms 87
IT1.8 Comparison of RFC 1363 and QUANTA flow specification packets . . 88
[TI.9 Our QoS architecture 90
IV.1 Implementation components in QUANTA 98
IV.2 Application and connection control block structures for the QoS user
interface oL 102

IV.3 GSS/CGSS message types and their origination in 1:1 communication 105

IV.4 Tasks of daemon component 107
IV.5 GSS/CGSS propagation in 1:M communication 111
IV.6 Kiviat diagram of QoS measurements 115
IV.7 Three phases of QUANTA's evaluation 117
V.1 Testbed used to measure QUANTA overhead 121
V.2 Testbed used to run the QUANTA conceptual experiments 131

V.3 Throughput and delay graphs for the VC and the MODTTCP appli-
cations under 10% network load condition, 10% host load condition,

and under no-load condition 136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Xiv

V.4 Loss graphs for the VC and the MODTTCP applications under 10%

network load condition 10% host load condition, and under no-load

condition. 137
A.1 State diagrams of QUANTA's application library. 153
A.2 State diagrams of QUANTA’s application library (continued). 154
A.3 QUANTA application library’s weights algorithm 155
A.4 QUANTA application library’s send-side algorithm 156
A.5 QUANTA application library’s receive-side algorithm 157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

INTRODUCTION

Prof. Fouad Tobagi quoted at High Performance Networking Conference 1995,
“The application is the King! ... Networking is today driven by the applica-

tions.”

As Prof. Tobagi states, the networking community*® understands that the
end-system application user needs to be satisfied. In this thesis, we propose an
architecture to better meet the user requirements with an existing set of resources.

In the following section, we will discuss the motivation for the problem at
hand, define the scope of the problem. outline of the issues involved in this problem,

and survey related-work.

1 Motivation

When ISDN (Integrated Services Digital Network) technology was initiated in the

early ‘80’s, the major issue was integration (Figure 1.1) of different services such

*This dissertation is prepared conforming to the journal paper submission guidelines of the
ACM SIGCOMM proceedings, 1993 and IEEE Transactions, 1996.
In this chapter, the terms we and us refer to the networking community, unless it is itnplicit that

it is the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Digutal Telephony Slow D“(“;s’;ﬁ“”‘-‘

~

High Data-rate
1SON Agplimt fons

\ Video Applications Other Applications

High Spead Networks
(Integrution + Protocol refinement + (HSN)

High Speed Media) \ /

High Quality Networks
s (HQNﬁy

(Integration)

(Integration + Protocol refinement + High Speed Media +
Quality of Sernar)

Figure [.1: Network technologies and their driving issues

as digital telephony, and slow data networks (using, e.g., X.25). With the devel-
opment of LAN and MAN technologies, and High Data-rate Applications (such as
LAN-interconnection), we moved into the era of High Speed Networks (HSNs). In
HSNs, the major issues are the development of high bandwidth media (e.g., fiber
optics), and the refinement of protocols to use the high bandwidth media (e.g..
Frame Relay). With abundant bandwidth newer applications such as World Wide
Web (WWW) were developed and also started integrating video applications, such
as video collaborative applications, onto the network. With such intelligent appli-
cations the user of the applications may now need to request a specific Quality of
Service (QoS) from the communication subsystem, which in this thesis means the
end-system protocol stack and the network connecting the end-systems. This led to
the design of the High Quality Networks (HQNs). Standards committees such as the
ATM forum and the TETF (Internet Engineering Task Force) are making progress in
providing QoS guarantees inside the network. To utilize the QoS facilities provided
by the network protocols and to interwork with the above native QoS architectures

we need an end-user-to-end-user QoS architecture. The emphasis in this thesis is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to discuss the issues addressed by such architectures and to design and develop a
prototype of one such QoS architecture.

It is noteworthy that fundamental issues are still the same irrespective of
the change in the technology. The common issues that are addressed in all these

technologies are:
e Addressing and binding;
e Routing;

e Controlling data flow, such as congestion schemes, and flow control schemes:

and
e Error handling, such as detection, correction, and retransmission.

Though fundamental issues did not change. the intensity with which these
issues are addressed have changed from one technology to the other. For example,
in Figure 1.2 we present a relationship between the emerging technology and the
degree to which the issue of error handling is addressed in that technology.

In slow data networks (SDNs), because of the low latency x bandwidth prod-
uct, the error handling can be done with the help of slow-reaction mechanisms such
as window-based retransmission. In digital telephony no loss of data should occur.
If the losses occur, recovering from losses will not help such applications. Hence,
when a technology is developed to support digital telephony, measures are taken
to prevent losses. When SDNs and digital telephony are integrated in ISDN, error
handling should be emphasized to cover slow-data networks. When ISDN is inte-
grated with high data-rate applications to develop HSN technology, the importance
given to error handling should be higher (because of the high latency x bandwidth

product of such technologies) than that in SDNs, as at any given time the amount

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Very High

High

Medium

Low

Intensity of the problem

Telephony |-

Emerging Technology

Figure 1.2: Intensity of error handling versus emerging technology

of data in transit is proportional to its bandwidth. Hence, in such technologies. er-
ror handling mechanisms such as window-based retransmissions are inadequate. By
integrating applications such as video collaborative applications with bounded error
requirements, the issue of errors should be handled meticulously to provide tighter
control on losses and errors. Therefore, when we propose an architecture for newer
technology (such as HQNs), we should revisit the fundamental issues and suggest
appropriate solutions to them.

Conventional network protocols cannot be used in HQNs because of the

following reasons:

i. In conventional connectionless network protocols (such as IP), there is no iden-
tity to an applicaticn in any form. In such a scenario, multiplexing applications
with different QoS requirements can encounter unpredictable QoS behavior.
For example, multiplexing a high data rate application with a time critical
application may lead to higher delays to the later application and may also

lead to unpredictable losses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ii. Also, in conventional network protocols, knowledge of the application is not
maintained. Hence the network cannot react as the application anticipated at

the time of resource quench.

Hence it is not possible to provide a QoS guarantee in the existing network
protocols. This will require us to define additional issues necessary for providing
QoS guarantees in addition to our earlier set of issues. We outline these additional

issues involved in attaining a QoS architecture in the next section.

2 Outline of the issues

As mentioned in the previous section, the fundamental issues an HQN should address
are related to the isolation of an application and manage and maintain the QoS
knowledge of that application. Apart from these fundamental questions, proposed
solutions should also satisfy some basic requirements in order to be scalable to larger
networks and a larger set of application’s QoS requirements. These issues can be

itemized into different groups as follows:
i. Tsolation of the application

a. Classification of applications: This helps in isolating an application or
a group of applications from each other. In combination with different
scheduling schemes, a classification mechanism can provide QoS guaran-

tees in a connectionless network protocol suite.

b. Identification of the application: An application in HQN is identified,
apart from the regular connection identifier used in the earlier network

protocols, by its QoS requirements. Thus, in future networks an ap-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plication should be identified by the tuple <Connection identifier, QoS

identifier>.
ii. Knowledge of the application QoS requirements

a. Specification and Translation of application QoS: Applications require
a simple and user-friendly QoS specification mechanism to specify their
QoS requirements in its own terminology. Then a QoS translating mech-
anism is invoked to translate these QoS requirements, without losing any
information, into the host and the network understandable QoS parame-

ters.

b. Communicating application characteristics: To propagate the application
requirements, to reserve required resources for this application and also
to relinquish them once the connection is terminated, in HQNs. a QoS

communication protocol needs to be devised.

c. Negotiation of QoS: To adjust the applications QoS to the dynamics of the
network, a negotiation mechanism is required between different resource

managers in the application communication path.

d. QoS provision: QoS provision algorithms are required to guarantee the
agreed upon QoS of an application. Furthermore, a QoS manager is
required to dynamically manage and monitor different applications QoS,
during the connection establishment phase in allocating the resources.
and during the data transfer phase to monitor the application (to check if
it is within the requested QoS) and the network resources (to dynamically
modify different resources allocated to the application to maintain the

promised QoS).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-

iii. Other issues related to the solution

a. Fairness in allocating resources is important when connections share a
pool of resources (such as in TCP/UDP) and when several connections

are multiplexed into a single connection (such as in IP).

b. Scalability of solutions to accommodate the expansion of the networks
and the increase in the range of the applications QoS requirements is a
major issue in HQNs.

c. Interoperability with the existing protocol suites and smooth transition to
the next generation of the protocols is an important issue for the success

of a solution.

d. Efficiency of the solution in terms of the other existing proposals and the
cost of the solution in terms of the amount of additional work a protocol

need to perform for this solution will decide the overhead of the solution.

Apart from these issues, the fundamental issues as mentioned in the section
1.1 are carried into HQNs. But in this thesis. we limit ourselves to address the QoS

architectural issues as outlined in this section.

3 Problem and objective definition

In this thesis, we propose a QoS architecture to “provide predictable per-
formance to the end-to-end application users in a high quality networking

environment.”

All applications, from complex distributed applications such as “Video Col-

laborative (VC),” to simple point-to-point applications such as “ftp,” expect pre-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dictable performance. The terms predictability and performance need explanation
in the context of this work. An application behaves predictably when the appli-
cation user observes the statistical behavior of the application and it is consistent
with the requested behavior. The term “performance” is a relative term, which is
a measure of the behavior of an application. Thus, an application is said to be
performing predictably when it is in the behavioral range as anticipated by the user.

The following paragraphs give an example to explain these concepts.

Parameter 1

For example:
Parameter 1 Frames/Second
Parameter 2 Delay
Parameter 3 Loss

Parameter 2

4Py Acceptable vanation in QoS parameter 2
Parameter3 IOP Interval of operation
Acceptable region of operation (ROP)

Figure [.3: Acceptable region of operation (ROP) for an application

Consider a Video Collaborative (VC). such as an TRI (Interactive Remote
Instruction) [1] application, in which audio and video are sent across the network
among a group of collaborative users (e.g. between a teacher and students of the
class). A user in such an environment requires a set of performance measures (Qual-
ity of Service parameters) to be met to use this application. For example, a user
may be interested in the number of frames received per second (FPS), latency, or
delay between the sender and the receiver, for a good on-line interaction, and less
loss and jitter in terms of user perception. These requirements define an Interval Of
Operation (IOP) for the application as shown using a Kiviat diagram in Figure 1.3.
Each axis in the Kiviat diagram represents a QoS parameter. The QoS marking on
these axis range from the best quality, being the innermost point. to the lowest qual-

ity. being the outermost point. As shown in Figure 1.3, these acceptable deviations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

create a Region Of Operation (ROP). In the diagram the innermost triangle repre-
sents the best quality the application would expect. This is limited by factors such
as the minimum delay, which is introduced by the protocol suite processing over-
head and the propagation delay of the signal. The outermost triangle represents the
worst performance an application would accept. We can say that the application is
performing predictably if its performance measures are within ROP, as defined by
the user. Deviations in IOP manifest therrselves differently in different applications:
in a VC application this may be reflected as a reduction in the number of frames
per second (FPS), and in an ftp application, this may be reflected as a reduction in
the throughput.

The degradation in the application performance is mainly due to three causes:
the host load condition, end-system protocol behavior in high speed networks (HSN),
and the network load condition [2]. Kernel-to-user copying, buffer availability in the
kernel, CPU occupancy, number of interrupts and speed of the user-network inter-
face are examples of host-related issues. The end-system protocol suite's dynamic
behavior is a major contributor to the variation in performance of an application
2. 3]. A clear understanding of the controlling parameters in the end-systems is nec-
essary to obtain predictable performance. The behavior of the network at different
load-conditions will influence the application’s statistical behavior.

Since QoS of an application is influenced by the end-user to the end-user
components, the QoS architecture also needs to address the issues mentioned in
section 1.3 from the end-user to the end-user perspective. This thesis provides one

such architecture to provide predictable performance to the applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

4 Survey of related work

This section provides the survey of work within the scope of this thesis. We first
discuss the research that is the precursor in the area of the QoS provision and then
summarize the other current related work. We defer the discussion on the above
discussed issues to the issues chapter (Chapter III), where we compare the existing

approaches with ours.

4.1 Survey of QoS provision components

As an initial attempt in transition from HSNs to HQNs, many researchers evaluated
the existing protocols with certain high speed extensions. They identified the pro-
tocol control parameters and their inter-relationships to obtain QoS. In the process.
basic resource negotiation protocols were developed, and the existing hooks in the
conventional protocols were used, to the limit. to upgrade them to support HQNs.
As a next setup towards HQNs. to accommodate the current and future dvnamics
of the network, resource allocation and feedback control algorithms were studied. In
the following paragraphs, we summarize the work performed in these areas. which

is relevant to this thesis.
High Speed extensions

RFC1323 [4] presents a set of TCP [5] extensions to improve performance
over large bandwidth x delay product paths and to provide reliable operation over
very high-speed paths. It defines new TCP options for scaled windows and time
stamps, which are designed to provide compatible interworking with TCP’s that do

not implement the extensions. The time stamps are used for two distinct mech-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

anisms: RTTM (Round Trip Time Measurement) and PAWS (Protect Against
Wrapped Sequences). Selective acknowledgments are not included in [4].

RFC1152 [6] reports on the gathering of a small renowned people in the area
of very-high-speed networking group in April 1990. David Clark (from MIT) claimed
that existing protocols would be sufficient to go at a Gigabit per second, if that were
the only goal. Van Jacobson (from LBL) reported results that suggest that existing
protocols can operate at high speeds without the need for outboard processors.
He also argued that resource reservation can be integrated into a connectionless
protocol such as IP without losing the essence of the connectionless architecture.
This is in contrast to a more commonly held belief that full connection setup will be
necessary in order to support resource reservation. Jacobson, during this meeting,
said that he has an experimental [P gateway that supports resource reservation for
specific packet sequences. Dave Borman, from Cray Research, described high-speed
execution of TCP on a Cray where the overhead is most probably the system and
[/O architecture rather than the protocol. He believes that protocols such as TCP
would be suitable for high-speed operation if the windows and sequence spaces were
large enough.

RFC1077 [7] is the report of the Gigabit Networking (GN) group workshop.
The critical question addressed in this RFC is how the fiber-optic provided raw
bandwidth can be used to satisfy the requirements identified in the workshop: (1)
provide bandwidth on the order of several Gbit/s to individual users, and (2) provide
modest bandwidth on the order of several Mbit/s to a large number of users in a cost-
effective manner through the aggregation of their traffic. The participants of this
workshop feel that the next-generation architecture has to be, first and foremost,

a management architecture. The directions in link speeds, processor speeds and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memory solve the performance problems for many communication situations so weill
that manageability becomes the predominant concern.

The gigabit networks will need to take advantage of a multitude of different
and heterogeneous networks, all of high speed. In addition to networks based on the
technology of the GN, there will be high-speed LANs. A key issue in the development
of the GN will be the development of a strategy for interconnecting such networks
to provide gigabit service on an end-to-end basis. This will involve techniques for
switching, interfacing, and management coupled with an architecture that
allows the GN to take full advantage of the performance of the various
high-speed networks [emphasis added].

They state that all of the information that an analyst would consider crucial
in diagnosing system performance is carefully hidden from adjacent layers. One “so-
lution™ often discussed, but rarely implemented, is to condense all of this information
into a few bits of “Type of Service™ or “Quality of Service” request flowing in one
direction only from application to network. It seems likely that this approach
cannot succeed, both because it applies too much compression to the knowledge
available and because it does not provide two-way flow, which is centrally consid-

ered in this thesis.
Research in control parameters

RFC1106 [8] discusses two extensions to the TCP protocol to provide a more
efficient operation over a network with a high bandwidth x delay product.

The two options implemented and discussed in this RFC are:

1. Negative acknowledgments (NAKs): This extension allows the receiver

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

of data to inform the sender that a packet of data was not received and needs
to be resent. This option proves to be useful over any network path (both high
and low bandwidth x delay type networks) that experiences periodic errors such
as lost packets, noisy links, or dropped packets due to congestion. The information
conveyed by this option is advisory and if ignored does not have any effect on TCP
whatsoever.

2. Big Windows: This option will give a method of expanding the currant
16-bit (64 Kbytes) TCP window to 32-bits of which 30 bits {over 1 Gigabytes)
are allowed for the receive window. No changes are required to the standard TCP
header. The 16 bit field in the TCP header that is used to convey the receive window
will remain unchanged. The 32 bit receive window is achieved through the use of
an option that contains the upper half of the window. This option is necessary to
fill large data pipes such as a satellite link.

RFC1110 [9] says that TCP Big Window option discussed in RFC 1106 will
not work properly in an Internet environment, which has both a high bandwidth x
delay product and the possibility of Dis ordering and duplicating packets. In such
networks, the window size must not be increased without a similar increase in the
sequence number space. Therefore, a different approach to big windows should be
taken in the Internet.

RFC1072 [10] says that recent work on TCP performance has shown that
TCP can work well over a variety of Internet paths. However, a fundamental TCP
performance bottleneck for one transmission regime still exists: paths with high
bandwidth and long round-trip delays. Clever algorithms alone will not give us
good TCP performance over these “long, fat pipes;” it will be necessary to actually

extend the protocol. This RFC proposes a set of TCP extensions for this purpose.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

They propose extension of window size, sending cumulative acknowledgments and

provide reliable RTT (Round Trip Time) measurement algorithms.

Control parameter inter-relationships

Sudheer et al., [2, 3] investigated the limitations of the normal implementa-
tion of TCP(UDP)/TP and described an application-oriented analysis in high-speed
Local Area Networks, such as ATMs.

They conducted tests to measure aberration in Quality of Service of an appli-
cation in terms of connection establishment time, throughput, and loss with respect
to block size. They report the effect of TCP window size and the Silly Window Syn-
drome (SWS). Suggestions are made to avoid the SWS and effectively control TCP
window size to increase throughput. Data losses of nearly 27% are observed with a
UDP application. Knowledge of the status of the network can be used effectively by
a host to reduce losses. They demonstrate this point with the help of a simple rate
control algorithm at the user level in the UDP/IP environment. Results obtained
from the above experiments are used to analyze a simulated Distributed Computing
application.

D. E. Comer [11] reported that TCP buffer sizes and the ATM interface max-
imum transmission unit have a dramatic impact on throughput. They observed a
throughput anomaly in which increase in the receiver’s buffer size decreases through-
put substantially. They explain the anomalous behavior and describe a solution that
prevents it from occurring, and they analyze the performance of TCP/IP with re-
spect to buffer sizes.

Jacobson [12] presented the reasons behind the congestion collapses and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

involvement of timers and the improvement. He discussed seven new timer algo-
rithms implemented in the 4BSD TCP, namely: (1) round-trip-time variance esti-
mation, (2) exponential retransmit timer backoff, (3) slow-start (4) more aggres-
sive receiver acknowledgment policy, (5) dynamic window sizing on congestion, (6)
Karn's clamped retransmit backoff, and (7) fast retransmit. He claims that mea-
surements and the reports of beta testers suggest that the final product is fairly
good at dealing with congested conditions on the Internet. Reference [12] is a brief
description of (1) - (5) and the rationale behind them. This will be the basic work

to understand the behavior of various timer algorithms.

QoS negotiation algorithms

Once a contract is agreed upon between the user and the provider. the
provider has to support this agreement in varying load conditions of the network and
multiple data connections on the same node. This needs a negotiation algorithm
between the end-system service provider and the network regarding the aggregate
characteristics of the traffic, a scheduling algorithm inside the provider and a feed-
back algorithm from the network about the network status which helps the QoS
management algorithm to decide the further course of action (feedback portion of
the survey is presented in the next section). Few people worked in this area of re-
source allocation and scheduling depending on the QoS contract with the user and
vary the QoS requirements depending on the network load conditions. Most of this
work did not get much attention because of its hard scheduling algorithms, which
cannot be met in real-life scenarios [13], and the others were developed on a custom

specific protocol suites [14].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

ST-TI: {15] ST has been developed to support efficient delivery of streams of
packets to either single or multiple destinations in applications requiring guaranteed
data rates and controlled delay characteristics. ST is an Internet protocol at the
same layer as [P. ST differs from IP in that IP, as originally envisioned, did not
require routers or intermediate systems to maintain state information describing the
streams of packets flowing through them. ST incorporates the concept of streams
across an internet. Every intervening ST entity maintains state information for
each stream that passes through it. The stream state includes forwarding informa-
tion, such as multicast support for efficiency and resource information. which allows
network or link bandwidth, and queues to be assigned to a specific stream.

Transport protocols above ST include the Packet Video Protocol and the
Network Voice Protocol, which are end-to-end protocols used directly by applica-
tions. ST provides applications with an end-to-end flow-oriented service across an
internet. This service is implemented using objects called ‘streams’. ST data pack-
ets are not considered to be totally independent as are [P data packets. They are
transmitted only as part of a point-to-point or point-to-multi-point stream. ST cre-

ates a stream during a setup phase before data is transmitted.

Problems with ST-II:

e Once the bandwidth for a stream has been agreed upon, it is not sufficient to

rely on the originator transmit traffic at that rate.

o The interface between the agent and the network is very limited (our feedback

mechanism is useful here).

e The simplex tree model of a stream does not easily allow for using multiple

paths to support a greater bandwidth (group management is helpful).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

e In case a stream cannot be completed. ST does not report to the application
the nature of the trouble in any great detail (error reporting is simple with

negotiation protocol).

RFC1046 [16] was intended to explore how Type-of-Service (TOS) might be
implemented in the Internet. The proposal describes a method of queuing which
can provide the different classes of service. The Type-of-Service (TOS) field in IP
headers allows one to chose from none to all of the following service types: low
delay, high throughput, and high reliability. Tt also has a portion allowing a priority
selection from 0-7. Priority service should allow data that has a higher priority to
be queued ahead of other lower priority data. It is important to limit the amount
of priority data. The amount of preemption a lower priority datagram suffers must
also be limited.

RFC1349 [17] changes and clarifies some aspects of the semantics of the Type
of Service octet in the Internet Protocol (IP) header. The handling of IP Type of
Service by both hosts and routers is specified in some detail. This memo defines
a new TOS value for requesting that the network minimize the monetary cost of
transmitting a datagram. A number of additional new TOS values are reserved for
future experimentation and standardization. The ability to request that transmis-
sion be optimized along multiple axes (previously accomplished by setting multiple
TOS bits simultaneously) is removed. Thus. for example, a single datagram can
no longer request that the network simultaneously minimize delay and maximize
throughput. This memo again divides the TOS octet of the IP into three fields to
represent precedence (bits 0-2), TOS (bits 3-6) and future expansion (7th bit). Even

this RFC suffers the same disadvantages of RFC1046.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Resource allocation algorithms

Bandwidth allocation schemes [18] operating at the connection level allocate
(reserve) network resources when the connection is being established on the basis
of the bit rates requested by the source. Peak bit rate reservation, the simplest one
can think of, is relatively inefficient for burst-type data traffic. Over booking (i.e.
bandwidth sharing between variable bit rate connections) can be used for source
types which are able to specify the variability of the bit rate at connection setup.
The bit rate variability of a source can be specified using peak cell rate, sustainable
cell rate, and burst tolerance [19]. The sustainable cell rate provides an upper bound
on the conforming average rate of a connection: the burst tolerance limits the time
a source is allowed to send at its peak cell rate. The connection admission control
(CAC) algorithm decides on accepting an incoming connection on the basis of the
peak cell rates and the sustainable cell rates of all existing and the new connection.

Bandwidth allocation at connection level for a link with small buffer: Sta-
tistical multiplexing with small buffers can function with satisfactory efficiency for
connections with low-peak bit rates and small variation in the bit rate. However.
the link utilization decreases strongly for data traffic with high levels of burstiness
and high-peak bit rates. Significant increases in the utilization can be obtained if
the fact can be exploited that many data applications function satisfactorily with a
low QoS (i.e. with high cell loss probabilities).

Peak bit rate reservation at the burst level (the Fast Reservation Protocol):
The Fast Reservation Protocol [20] is a procedure that allows users to negotiate

temporary changes to the bit rate with the networking during a connection. Before

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

a burst is transmitted, a resource management cell, which contains a bit rate request
on the affected connection along the path taken by the connection, is sent. After
receiving this “reservation cell,” an attempt is made in every node to reserve the bit
rate required for the transmission of the subsequent burst. If the bit rate cannot be
reserved on some link, a negative response is returned immediately and the source
can retry later. If all nodes are able to provide the requested bit rate, a positive
acknowledgment is sent by the target node to the source, upon which the source can
then begin its transmission. Many of the data applications are relatively tolerant
against delays. The fast reservation protocols avoids traffic separation (i.e. the
reservation to carry only traffic belonging to the same QoS class over a particular
link) between bursty data applications of this type and applications with real time
requirements. The efficiency of this method deteriorates drastically for large round-
trip delays of the reservation and acknowledgment cells.

Resource allocation at connection level for a link with large buffers: The
resource “link bit rate” can be utilized optimally only when the node is equipped
with large buffers that can store excess data in large queues during periods of burst
level congestion. With large buffers, the effect of burst-level congestion is no longer
catastrophic cell loss but an added delay due to the buffering of the excess traffic.
With the implementation of the large buffers. we can trade off increased cell delay
against improved link utilization. For systems with large buffers, additional param-
eters which influence burst level fluctuations (e.g. mean burst length, distribution
of burst length, auto correlation) have a significant impact on delays and cell loss
and can no longer be neglected. Another problem with large buffers concerns cell
delay variation: the traffic profile of a connection may be significantly altered after

passing through a large multiplex buffer so that the connection’s traffic parameters

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(e.g. peak cell rate or maximum burst size) are no longer valid.

Window or buffer allocation: Another approach to control cell loss in systems
with large buffers has been investigated in [21]. This approach uses the fact that
most transport protocols have some type of window mechanisms (i.e. only a limited
amount of data can be present in the network at any given time). In the worst
case, all this data is contained in a single buffer. This gives rise to a simple rule for
dimensioning: allocate as much buffer memory to a connection as determined by the
window for the application or allow each connection only a window size in keeping
with available memory. If, however, an attempt is made to allocate the buffer only
at the connection level, it can happen that memory sizes are required that cannot

be technically realized, and that would, in any case, cause unacceptably large delays.

Closed loop reactive load controls (or feedback control algorithms)

Two types of closed-loop reactive load controls are currently under discussion
for ATM networks in the ATM Forum: link-by-link, per connection credit-based flow
control mechanisms and end-to-end rate-based load control mechanisms. Credit-
based mechanisms are similar to flow control mechanism in existing data networks.
With rate-based mechanisms the maximum rate at which a source may send can
be dynamically adapted depending on network load conditions. ITU in recommen-
dation 1.371 provided the possibility to support a rate-based reactive load control
mechanism by means of forward explicit congestion notification {FECN). Resource
management cells indicating congestion could also be sent directly from congested
nodes to the sending terminal, thus providing backward explicit congestion notifica-

tion (BECN). Refer to [22] for the comparison between rate-based and credit-based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

schemes and in turn between FECN and BECN.

FECN(18, 23] is an end-to-end scheme in which most of the control complex-
ity resides in the end systems. When a path through a switch becomes congested,
the switch marks a bit in the header of all cells on that path in the forward direction
to indicate congestion. The destination end systems monitor the congestion status
of each active virtual connection and sends congestion notification cells in the re-
served direction on each active virtual connection to inform about the congestion
status.

In BECN congestion information is returned directly from the point of con-
gestion back to the source for each virtual channel. The source adjusts its cell
transmission rate on each virtual connection in a similar manner to FECN. BECN
requires more hardware in the switch to detect and filter the congestion state, and
to insert cells indicating congestion into the return path, but it is capable of reacting
to congestion faster than FECN. Also, since network itself generates the congestion
feedback information, it is more robust against end systems that do not comply with
the requirements of the scheme.

The Credit-based approach [24] is a link-by-link window flow control scheme.
Each link in the network runs the flow control mechanism. A certain number of cell
buffers are reserved for each virtual cornection at the receiving end of each link.
One round-trip’s worth of cell buffers must be reserved for each connection, so the
amount of buffering required per connection depends upon the propagation delay of

the link and the maximum required transmission rate of the virtual connection.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(8]
[AV]

The group resource management algorithm

One can perceive any application starting from a file-transfer protocol to a
video collaborative application as a collaborative application sharing resources. By
managing the resources in a collaborative manner in the network and on the host.
the resources can be used efficiently. We would like to demonstrate this idea with

the help of a video collaborative application.

4.2 Summary of the related work

In this section we summarize the QoS architectural work. Research groups have
taken different approaches to address the fundamental questions in QoS architec-
tures. Two such approaches are from [ETF and ATM forums. These approaches are
service-class-specific (a service class is a group of applications with like-behavior).
It is difficult to represent the orthogonal and competing requirements of an applica-
tion into a service-class: sometimes an application might fall into several incomplete
different service-classes leaving the ambiguity of choosing the closest service-class
to the application user. Also, it is difficult to accommodate the dynamic nature
of the applications, such as the behavior of WWW application. in a static service
class. In both of these approaches, it is not possible to use feedback from the current
status of the network and the hosts to dynamically modify the application require-
ments. Even if where a weak feedback mechanism is available, the integration is
solution-specific. Hence, they are not inter-operable with other solutions. Exist-
ing solutions do not provide a clear mechanism to characterize the requirements
of a distributed application. For example, in existing approaches it is difficult to

specify the synchronization between two different connections in a distributed appli-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cation. Inter-operability, handling of different networks, and scalability to multiple,
different, and concurrent applications is considered an unsolved problem in existing
solutions to QOS guarantees.

The ATM Forum proposes a flat classification of applications' depending on
the type of traffic the applications generate, timing recovery requirements in the
applications, and the type of connections required (connection-oriented or connec-
tion less). The ambiguity involved in matching a service class to an application [25]
shows that this classification is not complete. One such example is the transfer of an
MPEG-2 stream over ATM [26], where the application has multiple choices of AALs
to use, but no single one can provide a solution to all the requirements involved in
supporting this application.

The IETF also uses flat classification scheme for the services it can support
[27]. Two examples where this model fails are [RI and a multiple-priority-connection
application (as mentioned in [25]). In IRI two different streams exist for audio
and video. These two fall into different classes namely guaranteed (for audio) and
predictive (for video). These two streams need to be synchronized at the receiving
end. In the current TETF model, it is not possible to specify and provide such a
request. The second example is related to mixing connections with different priorities
into the same class. It is again not possible to specify such requirements in the
application-flow [28] specification.

Other groups such as Tenet [29], TIP [30] proposed a QoS architecture for
carrying real-time traffic. Their protocol suite does not provide a solution to the
classification of other applications or provide a clear definition of the merge of these

other applications into their architecture. We assume that they intend to use differ-

'The existing QoS architectures do not distinguish between an application and a connection.

In our architecture we make a clear distinction between these two.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ent protocol architectures for different classes of applications. The method of using
different protocol suites for different classes of applications aggravates the problem
of maintaining a relation between connections, which is common in collaborative
environments.

All the above QoS architectures have their own QoS communication protocol
suites, which are meant to support the 1:1, 1:M and M:N application communication
between the source(s) and the destination(s). Many QoS communication protocols
are proposed for 1:1 communication, such as Tenet’s RCAP [31], ATM's Q.2931 [32].
The main disadvantage of these protocols is that they are not scalable to the other
two-communication architectures. The scope of some of these protocols are limited
by the architectural support from their data communication counterparts (for ex-
ample, Q.2931 over ATM). ST-II, which was developed to manage the resources [13]
in the early ages of Internet (before consolidating the idea of multicasting), makes a
point-to-point, source invoked, reservation between the 1:M communicating parties.
The disadvantages of ST-IT are that it assumes that the source has complete knowl-
edge of its M destinations, which translates into interrupting the source whenever
a new connection is added or deleted, and the reservation available to all the desti-
nations is the minimum of all the supported connections. The above two problems
are rectified in RSVP by invoking the reservations from the receiver side and by
maintaining a soft state of a connection, and by using filters to scale the source
emitted stream of data depending on the receiver capabilities. Because of such
scalable concepts introduced in RSVP, it can support M:N communication archi-
tectures. Though RSVP provides a good QoS communication support. it does not
address the issues of QoS inter-networking, group reservation, dynamic reservation

for the applications, and the end-user to end-user QoS guarantee.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[RV]
w

5 QOutline of the thesis

In the next chapter, we present the preliminary experiments conducted which iden-
tifies the missing QoS components in the existing high speed networks. In chapter
ITI, we study the issues involved in developing a high quality network and propose
our solutions to these issues. In chapter IV, we discuss the design methodology for
the QoS architecture presented in the previous chapter. In chapter V, we present
the experiments conducted on this preliminary implementation of QUANTA. In the
last chapter, we present the conclusions, the limitations of QUANTA and the future

enhancements that can be added to QUANTA-like architectures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER II

EXPERIMENTAL BASIS FOR

ARCHITECTURAL REQUIREMENTS

Beginning: A journey of thousand miles must begin with a single step.

— Lao-Tzu

An application’s performance can degrade mainly for three reasons: end-
system protocol behavior in high speed networks, the host load condition, and the
network load condition. In this chapter. we investigate the effects of these factors
on an end-to-end application. From the observations made from the experiments
conducted in this chapter we define the missing components in the current protocol
architectures to provide tighter control on the QoS guarantees. The proposed QoS
architecture is independent of the testbed machine architectures, excepting the val-
ues of the bounds imposed on the QoS by the end-system machine architecture’s
limitations.

In the first experiment, we run a test application between two SUNSparc
10s under no CPU and network load condition (no-load condition); these results

are used to identify the behavior of the end-system protocols for different control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(§V]
=1

parameters and host-machine limitations. In the second set of experiments. we
load the receiver side CPU to test its effect on the application behavior. In the
third set of experiments, we observe the effect of network-load on the end-system
application behavior. We show how the resultant degradation ends with Quality
of Service (QoS) perturbations in the application. From the results obtained in
the above experiments, we identify the components in the current protocol-suites
missing to obtain end-system QoS guarantees. Some of the experiments we present
in this chapter are conducted on both Synoptics LattisCell 10104 and Fore Systems
ASX 100 switches. The observations using either switch conform to the results we
present in this chapter, excepting for the maximum throughput observed at the
application-level due to the differences in the design of the end-system ATM cards.
We adopt to Fore Systems solution because of the API they provide to develop our
own application code.

As the representative High Speed network. we use an ATM LAN with TCP/TP
as the end-system protocol-suite. For the no-load condition experiments, we use
TCP(UDP)/TP over AAL5/ATM and direct AAL5/ATM. We use UDP/IP over
AALS5/ATM only for the first set of experiments, and for the remaining experi-
ments, use only AAL5/ATM directly, as it is equivalent to the above but with lesser
protocol overhead. We experiment with TCP/TP/AAL5/ATM (referred to as TCP).
and AAL5/ATM (referred to as direct) protocols under no-load, various CPU. and
network load conditions.

The organization of the chapter is as follows: in section 2 we present the
testbed used for this work and discuss the relevant background to understand the
protocol behavior in different experiments. We discuss in section 3 the translator

which will transform the requirements of an M : N application to network QoS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parameters. Section 4 relates the effects of protocol behavior, host CPU load, and
network load conditions on the application QoS. We use these results to deduce the
modifications needed in the new generation of end-system protocols. We recapitulate
the necessity of the proposed QoS components with a case-study in section 5. A
summary of the QoS components is in section 6. Conclusions are presented in the

last section.

1 Testbed and protocols

JTTTTTTTTTTT AT * SPARC10 SPARC10

: Application
s User r__._f—:APl APl User

FORE's SBA-200 T :
Tupp et

emel e : :
; — 5 FORE ASX-100 :
: y 16X16 port, 2 Ghps sgatch N

untur ol A
: =T ‘=== L] ATM ATM | =g .
RERELERLFELE SEETTY SESE L switch I switch | =----czszccsepeceeeseeaonn
| R S ———
SPARC2]—/Muxlmumofl()o Mbpsc-m SPARC2
SPARC? [SPARC2

Figure I1.1: A detailed testbed used in this work

Figure II.1 presents the testbed used in this work. We have two 16 x 16 port Fore
Systems ASX-100 switches connected in tandem. A SUNSparc 10, two SUNSparc
2 workstations are connected to each of the switches. These workstations use Fore
Systems SBA-200 ATM cards. The maximum bandwidth between the workstation
and the switch and between the switches is 100 Mb/s. We ran the application
both through TCP(UDP)/IP running over AAL5/ATM and through AAL5/ATM
[33, 34]. When the application runs over TCP(UDP), it uses an end-to-end ABR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Available Bit Rate) [35] connection, whereas when it uses direct AAL35, it has the

option of selecting either a CBR (Constant Bit Rate) or an ABR connection.

SENDER Application RECEIVER
| icp
TCP g E E upp O
Control E r:
puarameters — L%_’
v
Buffer overflow overfl
from [P output queue ip E ﬁo?f P mpuotn;ueue
P ? \ «‘ [}
Application buffers ~<<I777""%

or TCPAIP buffers F\

" O
Q‘i CSPDUSs

< T b

-11O0O— ———

ATM lls dd

G ATM cells

Figure [1.2: End-to-end flow of data on an ATM network

Figure T1.2 shows the interaction between different protocols and their in-
dividual behavior. Every protocol has some control parameters which can be used
to adjust the dynamic behavior of the application. In TCP these control param-
eters include end-to-end variables such as send, receive and congestion windows,
retransmission timers, etc., and they also contain algorithms such as slow start and
Nagle's algorithm. These control parameters are maintained on a per-connection
basis. They can be used to make an end-to-end connection react to congestion in
the host and the network environments. Unlike TCP, UDP does not have elabo-
rate control parameters to make its connections lossless. Hence. it depends on the
underlying protocols to behave as lossless as possible. Operating System (QOS) re-

lated parameters such as STREAMS parameters effect the protocol behavior and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

hence the dynamics of the end-user application Quality of Service. In a STREAMS
protocol implementation, such as in Solaris OS, the protocol modules are linked to
each other by a set of incoming and outgoing queues. These queues have lower (Low
Water Mark [LWM]) and higher (High Water Mark [HWM]) limits on the amount
of data they can store at any time. Once HWM of data are present at the interface
queue, STREAMS back pressure algorithms prevents data from entering the queue
until the accepting module drains data in the queue to reach LWM. Refer to [36] for
more details.

Both TCP and UDP send their data to TP where no distinction is made
between the connections from the two protocols. As a result, TP might generate
varying delay to different connections and provides unpredictable losses. IP does
not inform the user of loss of data. Therefore. these losses in case of UDP result
in loss of application packets. In TCP [4, 10| losses are observed at the end of one
or more round-trip times (RTTs), which will result in retransmission and hence the
reduction in throughput. The congestion control algorithms in TCP may not be
as helpful as the congestion avoidance algorithms such as slow start [12]. This is
because of the high latency x bandwidth on ATM networks. The ATM community
is looking at rate-based [37] and credit-based [38] congestion avoidance algorithms
[39]. Commingling a high data rate UDP application and a TCP application, as we
will observe in the following sections, spoils the QoS of both the connections on the
sending end-system because of the erratic loss of data in IP.

In our environment TP feeds these data to the ATM Adaptation Layer 3
(AALS). A representation of the data flow through the end-to-end AALS3s is given
in Figure IT.2. A user data block submitted to AALS5 (either through TCP/IP, or
directly to AALS3) is segmented into 9148-byte (most of the time) AAL5 CSPDUs (33]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

before queuing in @, as shown in the figure. If the user data is not rate controlled,
the @, might overflow resulting in the loss of data on the sender side itself. These
CSPDUs are segmented into 48-byte cells and are queued in the ATM layer (@Q2)
to be sent across the network. If no per ATM connection queues exist, Q, might
overflow if the combined data rates of the applications are high compared to the
number of buffers allocated to Q,. Loss of cells might occur on the network if the
application exceeds the requested bandwidth or if the network is congested. On the
receive side, the cells are reassembled into a CSPDU by ATM and given to AAL5.
AALS then assembles these CSPDUs to form a user packet. CSPDUs are dropped in
ATM (at @Q3) if one or more cells belonging to a CSPDU is lost: this loss of CSPDUs
results in dropping the user packet (at Q,).

Loss of data anywhere in the queues will reflect as an QoS degradation to
the end-system application user. With so many queues and dependencies, the newer
generation of the protocols needs to provide a tighter control to be able to guarantee

application QoS, which is the major consideration in this work.

2 Application’s versus protocol’s view of QoS

An application defines the region of operation in terms of its user-level QoS pa-
rameters. The application expects the service provider (both the sending and re-
ceiving end-systems and the network) to provide QoS within this region during its
service. The protocol control parameters, the host-system and the network traf-
fic pose limitations on the application performance. As a first step towards the
application-oriented QoS architecture, we propose a component which incorporates
the knowledge of the protocol control parameters and translates the application QoS

into a set of protocol control parameter values. The translator sets the end-to-end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appixaton 1 (eg Vile) Applacatwn 2 (eg Audw) Applicitun M (ex fip)

L ATranslator 1 I L ATransustor 2] . i ATranslator M]

@ M:N Translition

L EPTrunslator 1] L EPTrunslator 2 j -[EPTrunslator N j

Netuwrk 1 (e.q TCP) Netuurk 2 (e.¢ UDP) Neaunvrk N (eg. AALS)

ATrunstator Appi to gotenc 4 stub
EPTrunslatar Cemenc to end ~ystem Network protocol transiaton stub

{a) Two -level application to network QoS translation component

Appixcaton 1 (eg Viden)
¢ Applicutiont 2 (e.q. Auda)

LAwlullm stub_J - [Applicatun sxubj ,Applxulnu stub] . [Aypbumn stab]
\ /

Class 1 Transiator oes Cles M Trunstator

MN Trunstutwon

r EPTranslator 1] L EPTrunslator 2]L EPTranslator N j

Netavrk 1 (e.¢ TCP) Network 2 (e.q. L1DP) Netwark N (2g. AALS)

(b) Two-level class to network QoS translation component

Figure T1.3: Interface translation from the application to the network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

protocol control parameters and OS dependent parameters and hides the relation
between these parameters from the application user.

If we have M different applications and N different protocol suites, the trans-
lation component should contain MxN translation stubs, to achieve the complete
translation set. We propose a two-step translator, which translates the applica-
tion QoS into a set of generic QoS parameters, such as throughput, loss, delay.
RTT [ATranslator] and translates these generic QoS parameters into end-system
protocol-dependent control parameter values (EPTranslator). This method calls for
M+N translation components, as shown in Figure [1.3.a. The translation between
the application to generic is dependent on the application characteristics. Hence.
M increases linearly with the increase in the number of applications. To control M,
we classify applications into different classes as shown in Figure I1.3.b. We group
protocols into connection-oriented protocols (e.g. TCP, TP4), and connectionless
protocols (e.g. TP, IPX). But the subtle differences between the protocols (such as
TCP is stream-lined protocol, where as TP4 maintains the integrity of the protocol
data unit) need to be treated differently as far as it concerns mapping the QoS onto

control parameters.

3 Factors influencing QoS

In this section we quantitatively demonstrate the effect of protocol control param-
eters on the application QoS. In the process we also identify the host machine lim-
itations such as the maximum throughput one can obtain from the testing host
machine. We identify the user-submitted block size as a control parameter and
present how it plays a major role in the application’s QoS. From these observations

we identify missing components in the current protocol suite and present them as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

part of our new architecture. We then incorporate one of the components (Rate
component) in our test application to observe the improvements and to identify
other missing components.

The application running in these experiments is thoroughly modified version
of the ttcp program*. The command-line options to this application are the size
of the user data block, the number of user data blocks to be sent. and the rate at
which these blocks are sent (in the direct case. the last parameter will be the peak
bandwidth reserved for this application). When it is running on AAL3 directly. it
can reserve the requested bandwidth in the case of CBR. We set the TCP and UDP
control parameters using ndd command, which is available on Solaris OS. These
protocol control parameters include, in case of direct, the application requested
bandwidth (or data rate), and the application submitted data-block size. In the
case of TCP, these control parameters include MSS (Maximum Segment Size), the
receive and the send window sizes, and the user block size. In this work we fix MSS

to 9148 bytes to obtain maximum throughput.

1. N ... Delrered load
Oﬂ%mllwlﬁn‘nn SENDER 1 t] RECEIVER

!zme\ O O
Reverse connection ‘E—E'

AALS/ATM
e or TCPIUDP)IP/AALS/ATM

Lost puckets

Host dynamics
Foruund connection

ee-e- RTT Puckets
Network dynamics Control loop

ATM backbone (LAN/WAN)

Figure I1.4: An insight into the QoS parameter significance on an ATM network

A Solaris version of this program can be obtained from ftp.cs.odu.edu:

/pub/sudheer/inodttep.c.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

On the receiver side of this application, we measure throughput, delay, and
loss (number of retransmissions in case of TCP or the amount of data lost in case
of UDP), and on the sender side. we measure RTT. These parameters capture the
dynamic behavior of the host and the network (refer to Figure I1.4). Throughput
is the amount of data received per second, which is measured on every N** packet
(as shown in Figure 11.4) and averaged over the total communication time. The
throughput requirement of an application reflects the amount of host, and network
buffers occupied by the application at any given instant of time. In ATM-like net-
works, this parameter is also a measure of the amount of bandwidth to be reserved
for this application. A low maximum observed throughput on a host machine im-
plies system deficiencies such as a lesser number of system buffers and host-network
interface problems. A counterpart to throughput is loss. Loss in our work is defined
as the percentage of data lost during the total communication time. We identify
data lost on the receive side as shown in Figure I1.4 to calculate the loss percentage.
Loss, in case of TCP, is observed as more number of retransmissions which shrinks
the TCP congestion window and in turn reduces the end-to-end throughput. This
parameter in case of UDP or AAL5/ATM connection reflects reduced throughput
due to unpredictable loss of data. Delay is the average delay incurred for N packets,
which is averaged over the total communication time. Delay parameter is a measure
of the queuing delays in the end-system protocol suite, delay at the host-network
interface, and delay on the network. This parameter relates to the dynamic behavior
of the end-system protocol suite such as the TCP-retransmission algorithm. RTT is
the amount of time taken for the Nt packet to reach the receiver and back to the
sender: the average RTT is calculated over the total communication period. RTT

gives the size of the control loop of the application as shown in Figure IT.4. In ATM-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

like networks, RTT tells the network element what sort of trade-offs it can make
between responsiveness, buffer size requirements, available bandwidth, and number
of connections it can support [35].

In our experimental set-up we use uniform loading because our intention is
not to provide an analysis of a particular application, but to provide a base-line.
We measured throughput as the average over a set of every 50 packets and observed
the delay for the 50 packet. We ran this experiment for 200,000 packets to obtain
enough knowledge about the statistical behavior of the protocol suites at high data
rates and determine the average values. In the case of UDP, we calculated loss of
data after every 50% packet and present loss percentages over the lifetime of the

connection. Every 50* packet is sent back to the sender to measure RTT.

3.1 No-load condition experiments

We divide the no-load experiments into two sets. In the first set, we observe the
interaction between the user and the end-system protocol suite. We run the test ap-
plication on TCP/TP and on UDP/IP protocol suites. We present only the through-
put and the loss (in case of UDP/IP) graphs, because the delay and RTT graphs
are not statistically significant due to the unpredictable behavior of these protocols
(as demonstrated below). In the second set of experiments, we measure the interac-
tion between the application and the network. This is achieved by running the test
application on AAL5/ATM. In the process, we also compare these results with that

of TCP/IP running on top of AAL5/ATM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Throughput in Mbps

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¥ T

100 T T T
: : With SWS -o- -
‘Without SWS ——
With 32k window -&--:
8o - - - - .
60
40
20 |- - -
o i_.0" N i : ‘e
[o] 2000 4000 6000 8000 10000
Block size In bytes
Figure I1.5: Effect of TCP control parameters on end-to-end application throughput

37

38

Throughput

Figure IL.5 gives the average throughput observed on the receive side by varying
block size. We recorded a maximum throughput of 30 Mb/s at block size of 8192
bytes. Note the dip in throughput for the block sizes of 3072 and 4096. A phe-
nomenon called “silly window syndrome™ (SWS)[40] is the reason for this dip. It
should be noted that by eliminating the SWS and increasing the TCP window size
(from 8 Kbytes to 32 Kbytes) we can obtain an almost twofold improvement in
throughput. As the block size is increased, the processing time per block increases,
and hence the throughput decreases. These graphs show that protocol control pa-
rameters such as window size, user-submitted block size and algorithms such as SWS
will control the behavior of the end-system application. Hence, this experiment sug-
gests that one of the tasks of the generic to network translation component is to set
these control parameters to appropriate values.

Throughput observed with UDP is high because of the smaller processing
overhead of the protocol. The UDP experiment is also a good test for identifyving
buffer limitations and other overheads caused by the system. Maximum throughput
observed on the receiving side is 70 Mb/s (Figure I1.6), but on the sending side, it
is almost 120 Mb/s. This difference is due to heavy loss of data in the transit when
there are uneven surges in data transfer rates on the sending side (analysis of these
losses are presented below). Figure IT.6 shows that by incorporating a rate control
algorithm that submits data at regular intervals and by increasing the HWM and
LWM at UDP-IP interface, data loss in UDP is drastically reduced while there is
no change in the obtained throughput.

A steady increase in UDP throughput is shown in Figure 1.6 until a block

size of 8192 bytes. This is due to the no-processing nature of UDP. UDP submits

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 — T Y T Y
: No Flow Control -o---
With Flow Control ———
With FC & 32k High water mark -a--:
80 - - - -
w
2 60
=
[=3
=)
=4
g
= 40
fe=s
20 |-
o L A L i I
o 2000 4000 6000 8000 10000
Block si1ze in bytes
40 T T T T
No Flow Control o
With Flow Control ——
as With £C & 32k High water mark &
30
14
25 i
a®
[
=
3 o O U OUU GO SOOI
k-3 a 3
“8’ @ a.. @,
= 15 —— < .
/ \ -
10 /
5
o —i i
o 2000 8000 10000

60
Block size in bytes

39

Figure I1.6: UDP throughput and loss graphs with and without flow control. and

by increasing HWM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

packets as they are to [P, which in turn segments them as necessary. On the receiving
side these segments are reassembled by IP and are submitted to UDP. As the block
size increases, the buffers in the system deplete very quickly and UDP blocks until
a fresh quota of buffers is available [36]. Hence, there are higher delays at the

sender-network interface.

Loss

Loss of data at high data rates using UDP is due to resource demands on the
participating systems and host-network interface rather than any network limitation.
Figure I1.6 presents the loss percentage versus block size. Loss rates as high as 27%
are observed.

Since, loss occurs inside IP. it is left unnoticed by UDP, and hence UDP
cannot inform the user about the reason for the loss of data. The loss in IP is due
to the overflow of the output data queue, as shown in Figure I1.2. This is seen
by calculating the number of TP packets dropped during this connection (we used
Solaris ndd command to get these details.). The loss of data in the IP queue allows
UDP to accept data at a faster rate from the user. Such a combination of queue
up and dropping of packets in UDP-IP produces erratic time-domain delay patterns
(such as in Figure I1.7) on the receive side. We can observe from Figure I1.7 that the
delay builds up and suddenly drops (the effect of HWM and LWM) on the receiving
side as well.

To investigate the impact that aspect of UDP-IP interaction has on QoS. we
incorporated a rate control algorithm inside the UDP user program in order to send

data at a fixed rate depending on the type of the underlying network:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Delay - Block size in bytes
€% = Adllotted Bandwidth in Mb/s

Run forever:
SendData(data)

SendData(data)
SubmitDataToUDP(data)

wait(Delay - Timetaken to submit data -

Other Processing time in the runforever loop)

Clock Drift = -8200msec
-6400 T T T - T T

-6600

-6800

-7000

-7200

-7400 -

UOF delay in msec

-7600 |-

-7800

-8000 |-

A I 1 A

-8200 . =
(o] 20000 40000 60000 80000 100000 120000 140000
Run time in msec

Figure I1.7: UDP 5 Kbytes block size time domain delay measurement

This simple algorithm reduced the loss percentage to almost 15% from 27%.
The method clearly is not user transparent and is not very accurate. However, were

this algorithm incorporated inside the UDP protocol itself on a per connection basis,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we predict that the loss percentage can be minimized. When other connections are
on the same host sharing the output queue of IP, it is difficult to maintain the
application QoS even with the rate-control.

From the data in the throughput and loss experiments, we conclude that a
proper QoS architecture needs to include a resource manager and a local feedback
component to isolate the connection, as shown in Figure I1.8. Although we could set
the initial IOP of an application in TCP using the control parameters, it is difficult
to maintain it with interfering connections on the host machine. Hence, even for
TCP we need to use the combination of the rate-control, the resource manager and

the local feedback to provide QoS guarantees.

Applicatuns
[EP'Dwuldlnr 1 j [EPTranslator 2]
End-system
Protocol control purameters G;‘ q;‘
@2 UDP) (Rue cuntron)
/q fex. TCP)
Rewurce
Munager
(Locul featbuck)

Figure I1.8: Proposed modification of the current protocol architecture

No-load case studies with direct and TCP connections

In this section we use different values of target offered load and observe how QoS
measures are affected by varying protocol control parameters: in particular, we
experiment how different classes of applications behave over direct ATM versus

TCP/ATM. The protocol control parameters for the direct case are the application

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

block size and the requested bandwidth. The bandwidth reserved and requested for
an application in direct case is equal to the data rate it attempts to offer (target
offered load) using rate control. In case of TCP, the TCP window size is set to 32
Kbytes and MSS is assigned 9148 bytes.

The no-load tests provide a set of baseline results in selecting the control
parameters to obtain a specific application level QoS. For both the TCP and direct
cases, we measure throughput and delay; for the direct case, we also measure loss,
and for selected cases of TCP, we measure retransmissions. In all of these tests, we
use a user-level rate control mechanism to control the amount of data submitted per
second to match the user-requested bandwidth.

Table TI.1 presents the experimental results obtained under no-load condi-
tions for different requested bandwidths and user data block sizes. In this set of
experiments, our target is to offer the same amount of lcad as the requested band-
width. We present the receiver side throughput, delay, and RTT (on the sender side)
for both TCP and direct cases and loss in case of direct connection. The fourth and
the fifth columns in the table represent the statistics of the sending and the receiving
AALS. The first portion of the sender side statistics represents the number of CSP-
DUs given to @, after segmenting (if necessary) the user packet. The second portiou
of the column represents the actual number of CSPDUs that left Q;, and the last
one represents the percentage of loss in Q,. Similarly, the first portion in the last
column represents the number of CSPDUs assembled by AAL5 before placing the
data into Q4. The second portion represents the actual number of CSPDUs passed
onto the user, and the last represents the percentage of CSPDUs lost in Q4. An in-
telligent QoS architecture can use this data to select appropriate control parameters.

We selected the requested bandwidth to represent different classes of applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

uorppuon proj ou

fopun suopeaydde o g, pur poup jo uosteduio)y :-jg olqel,

GL'8¢ 99 £6°0 00°0 0/0091/0091 0/0091/0091 1829)
6eet &l 09°0 00°0 0/0091/0091 0/0091/0091 91°29 8
0¢°g1 00°¢ FE'S | QT8 | 01'€8/F12/98921 | 0/00821/008Z1 pe'g | 69
£8°tC) 9¢'c | 00"t 0/19¢1/19¢1 €6'+1/19€1/0091 901z Y
12°22 28'C 91°1 00°L 0/88t1/88t1 00°L/88%1/0091 68'12 8
LV'El Py £9°¢ | 22°29 | 92'99/ze1r/ereel | ver/Stezl/008gl zeL | ez
60°01 9 H 042 0/08r1/08+1 04°2/08%1/0091 816 9
66 ¢9 F9T {3 4 0/19¢1/1991 PEE/1991/0091 ££°6 8
Q6 PG FO'E 1L | 0/us1v/usi | 1ze/18i/ooszl 9Z'6 [01
191 9'er FEIF 05°¢ 0/rre1/rrer 05°¢/++41/0091 Pl 9
6t'1 99°¢t bhLl 9g°0 0/1681/1681 99°0/1641/0091 eF1 8
6’1 ag' 1 9¢°¢1 Leg | oo/seret/seizt | Les/eeizi/ooszl 0F'1 | ¢
15°0 0'1€l Z'8gL | 00°¢ 0/9281/9z81 29'+/9281/0091 60 9
g0 01et 6'8V zrt 0/z8¢1/z881 eI 1/2881/0091 8t°() 8
640 L2l 9P 0r'e | o/6otei/eotzt | or'e/601z1/008z1 L0 1 ¢0
s/qu | oosmup | oosm SINSNLIS sousuels s/ai w | osodgy w | s/q
mdydnonp | gog, vo | epyy o | o w 1A 100 Japuas mdydnoayy | ozs yoorg | Ipispueg
po.aatjop potaatjop
dOl. Lepg Lepg | ssor) NLV/eTVY WLV/9TVV LV uotreoyddy | posanbay

PRl (D1,

—:vuﬂ_v._ 3 th_—v

uoin o))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, 0.5 - 1.5 Mb/s represents MPEG-1 compressed video stream, and 10
- 65 Mb/s represents high data rate applications. Certain data are bold-faced in
the table to draw the reader’s attention to those values (explained in the next two
subsections).
Case (i): 0.5 - 1.5 Mb/s applications

For both TCP/ATM and direct ATM cases, providing the requested through-
put for low bandwidth cases is never a problem. Delay increases as user block size
increases in the case of direct ATM connection because of the processing overhead.
This end-to-end delay is much less in case of 1 Kbyte and 8 Kbyte block sizes (41.6
msec and 48.9 msec) compared to that of 64 Kbyte block size (128.2 msec) because
no segmentation and reassembly is done in ALL5. Because of the segmentation and
reassembly in AALS for 64 Kbyte block size. delay increases by almost threefold.
Delay in case of TCP is high compared to that of direct ATM connections, because
TCP tries to accumulate MSS worth of data before sending it to AAL5. TCP delay
can be reduced by reducing the window size and MSS (if possible). The loss of data
in the direct ATM case occurs at @, due to our user-level rate control which may
not supply data at the exact requested rate. Loss can be made zero by increasing
the requested bandwidth marginally more than the offered load (refer to Table I1.2).
Case (ii): 10 - 65 Mb/s applications

For high data-rate applications, the number of interrupts generated on the
receive side of the application by the ATM card are high in the case of using a 1
Kbyte block size. This phenomenon leads to dropping packets in Q4 if the host
is not fast enough. Hence, the user-level throughput goes down (5.34 Mb/s for 65
Mb/s case) and losses are high (83.25% for 65 Mb/s case). Delay will also increase

because of higher queuing delays at Q. We also noticed that using our testbed we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

could not observe throughput more than 65 Mb/s, which is the host limitation. By
increasing the block size to 8 Kbytes, we are reducing the number of CSPDUs, and
hence, the number of interrupts on the receiver side, which will reduce the losses to
zero.

In Table I1.2 we present the relation between RTT, delay, and losses at
different level of target offered load, and requested bandwidth. For 0.5 Mb/s case,
high RTT values are observed when the requested bandwidth is the same as the
target offered load; this is due to all the resources being allocated for the duplex
connection are used by the forward connection (refer to Figure I1.4) itself. When
the requested bandwidth is more than the target offered load, the RTT becomes
decreases less because of the resources available in the reverse direction. Average
delays have increased as more bandwidth is reserved, because of the increase in
queue sizes allocated for this connection. As observed in case of 8 Kbyte block size,
average delays reach saturation for example 130.10 msec: this is because the leaky
bucket rate-control algorithm in ATM is becoming affective.

At 65 Mb/s. the target offered load and the requested bandwidth does not
effect the delay, and RTT for 1 Kbyte block size, due to losses at Q, (buffer overflow).
At 8 Kbyte block size, because of the zero data losses, the delay and RTT are
comparable. These parameters cannot be improved by increasing the requested
bandwidth.

In case of TCP, at low data rates TCP will not encounter losses and hence
no retransmissions. We use this information to calculate the percentage of retrans-
missions in the lossy case of 65 Mb/s with 1 Kbyte block size. We observe 13%
retransmissions, which is less compared to 83.25% losses in its counterpart in the

direct case. At the same time, TCP adjusts itself to a lower throughput to avoid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

SOZIS Oojq Watagip 10) suopesijdde 5, pue obap sisjeue ose)y g oiqeL

00°0 00°'1 STV 6429 8 6L/69
00°0 0091 000 | 0091 0091 66'0 9zt 9129 8 99/49
29°LL 988 | 29192 802 ! 98/¢9
v LL 79Le 1022 0g'L | gL/¢9
00°€T | BPIG ez'e€8 | (10821 00821 0g'g TLsng beg I ©9/¢9
00°0 OT°0%1 | 0169 6+'0 8 01/e0
00°0 0T°62T | GE41I 6+'0 8 2°0/s0
00°0 0091 UL | 0091 0091 '8t 64'TLYY 080 8 80/¢0
00°0 88°0€1 | 19°ST 60 I 2°0/¢°0
00°0 4472 ore | Gotal 00821 9¢'6¢ | s 0901 LY0 1 S°0/¢°0
dOoL W | (dOd) | % w (W.LY) dasur ag dsuuy | (INLY) S/qN ut | s;kqyy
% XwY | snadsd | ssom | snadso | swoid # | Lepa | Loy prof posoatoq | wais spojg | [EEEEC feird
—uvuﬁ_v._ A—U'F _uveﬁ_vh euv.-_—v :C_:_=OU —5.22@.. .,_UU.:C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

losses. This shows the self-healing nature of TCP because of its claborate flow
control mechanism.

From the above observations, we conclude that the application block size
and the requested bandwidth play major roles as control parameters in satisfying an
application’s requested QoS. An application using direct connection should clearly
balance the control parameters to obtain the desired QoS. Whereas, an application
using TCP need not balance the control parameters at the cost of not obtaining
tight bounds on the application QoS. We notice that the maximum data rate a
TCP connection supports is around 45 Mb/s. whereas a direct connection supports
up to 65 Mb/s on a SUNSparc 10 workstation. Hence, with the given configuration,
the combined data rate of all TCP applications should not exceed 45 Mb/s, similarly
for direct it should not exceed 65 Mb/s.

These observations lead us to further modify the proposed QoS architecture.

as shown in Figure T1.9.

The maximum observable QoS parameters on a system are bounded by the
kernel-resources, such as buffers and the host machine’s architectural limi-
tations. These values will define upper bounds on the QoS which can be
requested from that host. Therefore, the resource manager component should
consider these host limitations while allocating resources to multiple connec-

tions.

The direct connection analysis shows the sensitivity of QoS to network con-
trol parameters. For example, we demonstrated this in Table 1.2 by showing
that zero loss can be obtained by reserving higher bandwidth than requested.
Hence, to translate the application QoS into different backbone network pro-

tocol QoS parameters, we need an end-system protocol to network translator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

EPTrunslator 1 j . EPTramstator 2 J

End-system
protocol control perameters

Oy

‘e.q UDP) (Rute-control)
/Q(e.g rce;
7

> Rewurce
) Mo
Claxs | xcheduler Class M scheduler
P
=
L\ g
. / \ =
' NTranslator 1 _] L\ﬂ'mmmurl J _.::
Netuork protocot control @‘ E;‘
prameters

Netuork deroces
(AALS. AAL3. FDOI)

NTrmnsltor Fnd-system protacol tp network transiator

Figure I11.9: Further modifications to the protocol architecture

(NTranslator). If the application QoS is sent in generic format, we can avoid

two-level translation at the protocol to network interface.

From the loss analysis on the receive side (due to higher number of interrupts),
we can conclude that we need to provide feedback from the network device to
the resource manager. This information should be communicated to the other-

side of the end-system protocol.

As the number of connections through IP increases, the feedback becomes
complex and even simple rate-control becomes complicated. This suggests
that the control in TP should be performed on a class-basis rather than on a
per-connection basis. By selecting the classes which can be recognized at the
user-level itself, we can reduce the complexity of mapping between classes at

different layers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Host behavior experiments

The next set of experiments is to determine the range of impact the end-system load
has on the ability to maintain predictable QoS performance. We study the behavior
of TCP and direct protocol stacks using host-load condition. Guru Purulkar et al.
[41] reported a study on a SunOS 4.1 in which one of their conclusions was: in a
UNIX-like Operating System a communication-intensive job receives higher priority
over a computation-intensive job because of Unix’s dispatcher algorithm. In our
host-experiments, we obtained similar results but relate them to QoS performance.

The computation-intensive job is a software decompression program of an
MPEG-1 stream, and the communication-intensive job is the modified ttep appli-
cation. We use 8 Kbyte user data blocks with TCP control parameters set to 32
Kbytes for the window size and 9148 bytes for MSS. For direct connection, we use a
user data block size of 8 Kbytes and allocate bandwidth equal to the target offered
load. The experiment is run under different receive side CPU-load conditions. From
Table T1.3, we make the following observations: In the 0.5 - 25 Mb/s range (irre-
spective of the percentage of the CPU load) the losses are mainly at QQ; because of
the inaccurate user-level rate control at the sender. Delay using TCP is still higher
compared to that using a direct ATM connection. The throughput is comparable in
both the cases.

For the 65 Mb/s case losses shift from the send side to the receive side because
the application is working in the maximum throughput range for that machine, and
even a slight CPU load leads to loss of data in Q4. TCP on the other hand adjusts
itself to lower throughput in the process of reducing the number of retransmissions
because of the losses on the receive side. AAL5 throughput is still higher than

TCP but this might be a bad option in such cases because of random losses. TCP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SPROL-(}) asptp 1e uonesdde gy 1, pue woup jo wosuedwmo)y ¢ aqer

£2'6¢ 01 FO'l gz'ge | sz ee/szci/0091 | 0/0091/0001 L6798 08
g8'ce 181 Loe GI'2€ | 06°L£/S601/0091 | 0/0091/0091 86'Gt 09
19°9¢ Lyl L8T | 0STr | 08°ZK/076/0091 | 0/0091/009] LLGh OF
1. 61 F6'T 1€°6¢ | 1€68/1L6/0091 | 0/0091/0091 0% er 07 9
L9 £9°C e 90°'9 0/€081/8081 90°'9/£0¢1/0091 269 08
+6'22 oLt 0z'1 £9'9 0/t6+1/+6¥1 29°9/+6+1/0001 £0'zT 09
1962 69°2 0z’ 18°¢ 0/2081/L0g1 18°6/L051/0091 0812 0
9622 8LC FI°l 619 0/1081/10%1 61°9/1051/0091 2812 0z 6T
86'6 16°9 L9°% 09°Z 0/0951/0941 05°2/09%1/0091 96 08 01
09’1 tLg eLLl 80 0/t6¢1/t681 8€°0/+6¢1/0091 P 08 ¢l
080 66°081 $6°6 90'1 0/£821/¢841 90°1/¢8¢1/0091 8t 08 g0
s/qIN w odsut g | dasu SONSNvIS SDUSINIS S/qW w % | s/ u
ndydnoay) dD.L o | ¢yy uo | 9 wm 10A10081 Japuas mdyfnoay) projg proj|
paALRp 4D | Lepagy Lepog | ssorg WLV/¢TVVY WLV/STVY | posoalap ¢1vy | NdD | porsonbay
poea (10, pojeplL woap uouuo))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O
o

has a better delay characteristics because it dynamically adjusts itself to the lossy
behavior of the communication path.

The conclusion from these results is that the resource manager needs to
reserve resources on the end-system host machines and should accept feedback from

the network interface component.

3.3 Network behavior

The final component we analyze to determine what is needed in a QoS architecture
to provide predictable performance is the one which relates to network behavior. The
following experiment is set to determine the deficiencies in TCP and the interaction
of TCP with direct connections under network-load conditions. We present time
domain plots of throughput and delay of the end-to-end applications. For a detailed
analysis of the network-load experiments, refer to our extended version of this work
in [42].

We use ABR connections for the direct case in this experiment: the results
of which are shown in Figure I1.10. We set up a TCP connection between the two
SUNSparc 10 workstations and two direct connections between the SUNSparc 2
workstations. The TCP connection is rate-controlled to produce 45 Mb/s, whereas
the direct connections are tuned for 35 Mb/s each. Figure IT.10 gives the throughput
and delay values for the three connections over a period of time. We intentionally
overload the link between the ATM switches to observe behavior of the end-system
protocols in adverse conditions and its effect on the application QoS.

As can be observed from the throughput graph in Figure I1.10, TCP behaves
poorly in combination with the other direct connections even though almost 30 Mb/s

bandwidth is available. This is because TCP does not obtain the information on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

100 — T -7 v T T T v
:) : Sparc 2 ditect -o--
:Sparc 2 ditect -8--
Sparc 10 ditect ~—
80
=
(=3
3
®
2 .
-
) .LA i " i J 1 |. ' l
[o] 20000 40Q00 60000 80000 100000 120000 140000 160000 180000
Time (msec)
350 T T — L
-Sparc 2 ditect o
‘Sparc 2 difect -8---
Sparc 10 TCP —+—
300 . - .
250 - E
2 200 ; : 4
=
g
a 150 - -
100 H : . o
50 - -
o L : +
(o] 20000 40000 60000 80000 100000 120000 140000 160000 180000

Time (msec)

Figure I1.10: One TCP at 45 Mb/s. and two direct at 35 Mb/s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the residual bandwidth. As a consequence of low throughput, the average delay
for this connection is high until the direct connections are active. As soon as the
direct connections are closed, TCP picks up at a high-data rate, and hence lower
average delays are also seen. Even at lower data rates for the direct connection,
TCP performs the same way. The direct connection on the other hand, works at
higher data rates, because it does not have elaborate error-recovery. The penalty
paid for the higher data rate in the direct connection is the bursty losses.

This leads us to the conclusion that resource allocation has to be done on a
per-TCP connection basis to obtain maximum utilization of the network resources.
And the allocation should be adjusted dynamically according to the feedback from
the network. These components are incorporated in the complete architecture shown

in Figure I1.13.

4 Case study

In this section we consider a medical demonstration classroom application!. where
an on-going operation is captured live from the medical theater and is sent to an-
other room for a large group of audience. The application sends large amounts of
uncompressed data, expects low latency and small losses. In the following discussion
we trace how these requirements can be met assuming we have an architecture such
as we proposed in the previous sections. Let us assume that this operation takes 10
minutes and imposes the following requirements on the video quality: the picture
should be high quality (24 bits/pixel), frame size should be 320 x 240 with 20-30

Frames/sec (FPS), and the loss should not exceed 15 blocks/sec (each block is 16

tWe use this application because our group at ODU is involved in one such project (which is a

collaboration between ODU, NASA, and a local medical institute).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S]]
(S]]

pixel x 16 pixel) in the case of 20 FPS and 20 blocks/sec in the case of 30 FPS.

The ATranslator translates the above requirements to the generic QoS re-
quirements as follows: the frame size and the frame quality translates into through-
put rates of 45+10Mb/s; the loss encountered should not exceed 2-5% during the
connection; and the latency requirements are translated to 10msec+2msec (refer to
Figure I.11.a). The ATranslator should be intelligent enough to select the appro-
priate protocol such as TCP or UDP.

From the selected end-system protocol and from the application QoS require-
ments, we select appropriate protocol control parameter values using the EPTrans-
lator. In Figure IT.11.b, we depict the effect of the default control parameters values
on the application QoS in both TCP and UDP cases. As we can see, it is impossible
to achieve the requested QoS without the knowledge of the underlying protocol. By
properly selecting and setting the control parameters alone, shown in Figure [1.11.c,
bounds on throughput could be achieved in both TCP and UDP. However, in TCP
we can not bound delay characteristics, and in UDP we cannot bound both delay
and losses.

At this point since, we cannot deduce much information on the interaction
between the end-system protocol suite and the network protocol suite, we use direct
connection, which is equivalent to UDP/IP running over AAL5/ATM with less pro-
tocol overhead. The delay will be more by approximately 10msec with the addition
of UDP. By providing a simple rate-control at the user-level, we can bound the losses
and the delay in direct connection and the delay in TCP as shown in Figure [1.12.d.
In the previous section, we have shown the relation between control parameters of
the end-system protocol suite and the network protocols. These control parameters

provide tighter bound on the QoS parameters and also provide tradeoff between the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Delay
QS requmrements atler AT ramslatwon
Throughput
Throughput {5 +/ 10 Mbps
35

Delry 10,2 msa

5

‘K Lows 2< 3% uter the connectwn period
Loss

(a) Medical Demonstration Classroom Application

Delay Delay

Throughput Throughput

rce upp
MSS 9 KBytes MS35 9 Kiytes
Wuordow 8 KBytes No Rute Control
Blockstze 4 KBytes Loss Blockszze 4 KBytes

Loss
(b} Measured QoS parameters with default end-system protocol control parameters

Delay Delay

Throughput

1pp
MSS 9 KBytes MSS 9 Kbytes
Windon: 32 KBytes No Rate Control
Blockce 8 KBytes Loss Blxckseee d KBytes Loss

(¢) Mensured QoS parameters with modified control parameters

Diagrams are NOT drawn to scale

Figure I.11: Example for QoS improvement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(S]]

Delay Delay

MSS 9 KBytes Bucksze § Kbytes
Wodow 8 KBytes Rute controlled
Biocksrze 4 KBytes [Loss

(d) Mensured QoS parameters with rate-controlling the application

Delay

Throughput Throughput

147

rce
direct
MSS 9 Kbytes ©
Window 32 KBytes Bixcisce 8 Kiytes
Blocksce 8 KBytes Loss Rate controlledt Loss
fe¢) Receiver side CPU load condition
Delay

Delay

Throughput Throughput

Ice
direct
MSS 9 KBytes
Window 32 KBytes Blocksze 8 Kbytes
Blxckize 8 KBytes Loss Rute controllat Loss

(f) Network lvad condition experiment
Diagrams are NOT drawn to scale

Figure I1.12: Continuation of the example for QoS improvement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

QoS parameters such as delay and RTT.

As shown in Figure I1.12.e, by incorporating the CPU-load on the receiver
side, we can justify the necessity of the feedback component. Though this will cause
less impact on the TCP connection, it is very apparent in the direct case in terms of
the percentage of total loss of data. The net-load experiments measured the interac-
tion between different end-system protocol suites and the bounds they can provide
in a congested network condition. We have seen in Figure I1.12.f that TCP provides
abysmal QoS performance compared to the behavior of a direct connection, which
accommodates itself with a slight increase in loss. This observation consolidates the
idea of the feedback cornponent and the resource manager who can translate the

feedback into controlling the source stream into the network.

5 Discussion on QoS architecture

In this section, we present a summary of the high-level design of the end-system
QoS architecture we propose (refer to Figure I1.13). Tt is based on the conclusions
we have drawn from the experiments described in the previous sections. A complete
specification and the status of its implementation can be found in [43]. The ar-
chitecture has three main components: application-level, protocol-level. and global

components, as shown in Figure I1.13.

Application-level components
We divide applications into different classes depending on their QoS require-

ments. Each class of the applications talks to its corresponding module in the class-

specific interface module in the application-level component. The QoS requirements

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

are translated into a generic set of QoS requirements by the generic interface. These
generic requirements are translated into a set of protocol-related control parameters
using data we presented in the previous section and in [44]. These control param-
eters are sent to the service-providing protocol to set the appropriate values for
this connection. The interface will also interact with an application to dynamically
adjust its QoS requirements depending on the network, and the host status using

feedback from the service-provider.

Protocol-level components

Based mostly on the host, and network behavior experiments, the architec-

ture provides the following modifications to the end-system protocol architecture:

e Rate-control algorithm: Both TCP and UDP require a connection-based rate-
control algorithm to limit the user to behave in its requested QoS. In TCP, this
algorithm works below the window-based retransmission scheme to retain the
flavor of the existing TCP. In UDP, rate-control prevents a user from sending at
a higher data rate than the agreed-upon data rate by blocking the application.
This scheme reduces the losses in UDP due to uncontrolled transmission of

data which leads to buffer overflows.

e Local feedback algorithms: Feedback from the service-provider, such as from
IP to TCP(UDP) or from TCP(UDP) to the application user, serves to change
the control parameters, and in turn, retains the user requested QoS. For ex-
ample, IP feedback information could be used in UDP to reduce the data rate

of an application to avoid further losses in IP.

e Connection-based monitoring: All the applications with specified QoS require-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

Agplication 1 (e.q. Vulew)
¢ Applcaton l (eq. Audwo)

[Appbatwnsr[- @mniw] L‘,,' stub_] . l;,' stub]
N N

Claxs I Translator Class M Translator
@ MN Translation
[EPTrarstator 1 j [EPTrunslator 2] L EPTranslator N]

End-system

protocol control puremeters EQ‘ EQ‘

(et UDP) (Rute comtrony
/q{gg. TCh)

?ﬁ Rexwource
Clew 1 wchatuler Class M scheduler
wp § %

Manager
AR N
£

S
l.\.'r runsbitor 1 1 Mmsmur zﬁr

(Loval feadback)
(yeanpd agg wa o)

Netuork protweoi control G E
urameters _/\l

Netuork detoces

(AALS AAL3 FDDI)

NETWORK

Figure I1.13: End-system QoS architecture

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

ments should conform to the initial negotiation. A deviation from the negoti-
ation will effect the other connections using a common resource pool. Hence,
to retain the isolation between the applications, we need to monitor the ap-
plication to check if it is within its allocated resources. This monitoring is
effective if it is done closest to the user application. Hence, we propose to do

the monitoring on per-connection basis at TCP or UDP.

* Resource allocation: To avoid the complexity of handling resources on per-
connection basis, we provide class-based resource allocation. For example,
we have real-time and time-shared classes inside IP. In a real-time class, we
schedule the data to meet dead-lines, whereas in a time-shared class, we are

interested to obtain a given throughput.

e Class-based monitoring and scheduling: We provide class-based monitoring to
avoid overflowing the resources, which affects the QoS of all the applications
in that class. The scheduling algorithms we use in each class of applications
are different. A scheduling algorithm is dependent on the combined knowledge

of all the applications in its class.

Global components

When the status of resources changes, we need to maintain information about
all these resources to be able to degrade the performance of an application gracefully.
This has to be done on a global basis. These global components include network
feedback, resource control, and global monitoring. The network feedback informa-
tion is used to monitor the status of the network and react to it in order to reduce

loss or control delay for an application. Global resource control is used to allocate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resources dynamically to different classes of applications. Finally, global monitoring
is used to predict the degradation in the performance of the applications and inform

their class schedulers about modifying the scheduling parameters of the algorithms.

This QoS architecture is generic enough to work with a simple link-level
protocol like Ethernet protocol, to a complicated protocol such as ATM in a LAN
environment. The algorithms we are developing in this architecture are generic
enough to be incorporated in any transport-level protocols such as TCP or UDP

and network protocols such as TP.

6 Summary

In this chapter we used the application-oriented approach to propose a QoS architec-
ture for a TCP /TP-like end-system protocol-suite. We conducted no-load, host-load.
and network-load condition experiments to identify the missing components in the
current architecture of TCP/IP. These missing components include a two-level ap-
plication to network QoS translator, protocol tuning components, local feedback
component, and class-based scheduling.

We presented the base-line QoS that can be achieved by an application in a
LAN environment. We compared the behavior of an application using TCP(UDP)/IP
over AAL5/ATM transport mechanism and direct AAL5/ATM with respect to their
control parameters. We identified bottlenecks an unwary user might encounter, such
as high delay at higher block size, heavy losses for 1 Kbyte block sizes at high
data rates, relation between the requested bandwidth and target offered load. We
demonstrated the trade-offs between the QoS parameters with the help of the con-

trol parameters, such as obtaining zero loss, reducing the RTT etc. The proposed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

QoS system can refer to the tables presented in this chapter to select appropriate
protocol control parameters to provide an application specified throughput, loss and
bounded delay requirements.

In the next chapter, we use this knowledge in better understanding the issues
in developing a QoS architecture. This outline design of QUANTA is expanded in

the design chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

CHAPTER III

ISSUES, APPROACH AND ARCHITECTURAL
DESIGN

Imagination: Raise new questions, explore new possibilities,
regard old problems from a new angle.

— Albert Einstein

Glossary of the terms used in this chapter

A service user is one who expects certain services from a service provider.
For example, this user-provider pair could be between the application and the

TCP/IP protocol-suite or between the TCP/TP protocol suite and the ATM
network.

A connection is the path of communication between two end-system entities,
which are engaged in some type of communication. A connection will have a

forward data path in which it sends data from the transmitter to the receiver

and a backward data path in which responses and acknowledgments are sent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

An application is a set of service components (programs or tools) which provide
certain services to the application user. A distributed application has one
or more nodes involved in communication and will have distributed service
components co-operating with each other. This distributed application could
be between one-to-one, one-to-many, or many-to-many nodes, also it could
contain multiple connections between the service components. In this paper
we use the term (unless otherwise specified) application to address a one-to-
one distributed application, and a distributed application is a one-to-many
or many-to-many distributed application. A connection subtree in a network
represents the tree of connections formed through the intermediate nodes with
a router (as a root node) and the end-systems (as the leaf nodes) which are

participating in a distributed application.

Every connection in an application generates data traffic, which can be charac-
terized by its traffic parameters. Each connection requests certain qualities for
its data stream, which can be represented by the QoS parameters. Connections

with a similar set of QoS requirements are grouped into service classes.

A QoS architecture defines different QoS components (such as QoS classifica-
tion mechanism and QoS specification mechanism) to provide support for the
QoS guarantees to applications. We use the term architecture synonymously
with QoS architecture, unless otherwise mentioned. QoS algorithms or QoS
mechanisms implement the services specified by the architecture. A QoS com-
ponent can be implemented or recognized by many QoS mechanisms. QoS
architecture and QoS mechanisms decide the range of different applications
they can support. An implementation architecture consists of implementation

components which support one or more QoS components. Tn our discussion, a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

component means an implementation component, unless otherwise specified.

We use the term scalability of an architecture or an algorithm to imply their

flexibility in accommodating applications with different service requirements.

A connection identifier (CID) is an identifier which uniquely identifies a con-
nection and its parent application in the network and on the host system. A
flow identifier (FID) of a connection represents its QoS requirements. A QoS
traversal graph (QTG) map of a connection characterizes the connection be-
havior (in one byte). We use the term QoS identifier (QID) as a combination

of FID and QTG.

QoS guarantees are required to provide a fair share of allocation of the net-
work and the host resources to multiple connections. In seeing the same problem
from an application’s point-of-view, once the host and the network agree to the ap-
plication’s QoS contract, it should be maintained throughout the connection period.
QoS could be degraded. for example, due to a misbehaving application which is
sharing the resources with the above application or because of the statistical mul-
tiplexing of a group of applications. Because of high latency X bandwidth in the
current technologies, the solutions provided for QoS control should be preventive
rather than reactive. Since it is virtually impossible to provide complete preventive
solutions in HSNs, the prime goal of new QoS solutions should be reacting quickly
to QoS degradation. The two components that dictate the usability of the solution
are the architecture and the algorithms used to address these issues. OQur goal in
this work is to provide one such architecture for the QoS grantee.

As we will observe in this chapter, although there are many studies per-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

formed in providing QoS guarantees, none were conducted from the architectural
point-of-view (most of them are from the algorithmic point-of-view). Also, the QoS
solutions provided are either specific to service classes (such as the ATM approach)
or specific to a single class of applications (such as the Tenet, RTP approaches).
These approaches do not encapsulate all the applications and their behavior. The
issue of scalability of these solutions to a higher number of connections or to a higher
number of nodes is also not considered by many of these solutions.

In section 1 we revisit the QoS problem from an application’s point-of-view
to better understand the issues. In sections 2 and 3 we discuss the issues of isolation
of an application and knowledge of application issues respectively in the perspective
of the existing solutions, point the disadvantages of these solutions when analyzed
from the application’s point-of-view. and then provide our solution to address these

issues. Section 4 summarizes our major contributions in this chapter.

1 Revisiting the problem

In this section, we present a typical distributed application and provide motivation
to the fundamental issues in providing QoS guarantees.

IRT (Interactive Remote Instruction) [1] is a distributed collaborative multi-
media classroom, which is designed to support distance learning. TRI can facilitate
both teacher/student and student/student interaction through two-way audio and
video, and tool sharing. In Figure ITI.1, we present a teacher's workstation with the
emphasis on the communication activity that goes on his end-system.

The out-going connections from the host machine through IP* are the teacher's

"We consider IP because this is the place where we commingle all the connections using end-

systern transport protocols.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

video, the teacher’s audio, the collaborative tool generated data, and the global
pointer movements. The incoming connections into IP include the student’s video,

classroom video, the incoming audio, and the data generated from the student con-

trolled tools.

Global pointer movements
Teacher audio stream
Data transfer
applucation Teacher mdeo stream

Delay-sensitive applications

f Teacher video stream Moderate loss-sensitimty
p \t # é Student vudeo Low loss-sensstivsty
3 U E’ Classroom tideo Low loxs-sensitoity
f:‘ é‘ Teacher audwn streaam High loss-sensitmwity
::_ ’] Incommg audio High loss-sensitivity

Throughput-sensitive applications

Data transfer applications High loxs-sensitrosty
Glubal pointer movements Moderate loss-sensitroity
Student video Student controlled tools Moderate loss-sensitmoity

Classroom tideo

Inconung audio

Student controlled
tools

Figure ITL.1: Different connections going through the teacher's node in IRI

IRI integrates connections with different QoS requirements into a single
stream as shown in Figure IIT1.1. The following are typical QoS requirements of

each of these connections.

Delay-sensitive connections:

Teacher’s video: This requires 640 pixel x 480 pixel, 15 FPS video, which

can afford moderate loss of data.
Teacher’s audio: This generates 128 Kbps data and is highly sensitive to

loss.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Student’s or Classroom video: This connection requires 320 pixel x240

pixel, 10 FPS video which can afford heavy loss.

Student’s audio: This is again a 128 Kbps connection which is highly

sensitive to loss.
Throughput-sensitive connections:

Data-transfer applications or student-controlled tools: These are typical

data transfer applications which cannot afford to lose data.

Global pointer movements: When the teacher moves the pointer on the
screen, the same should be visible un the other participant’s screens. But
this application has no stringent requirements on loss. Even if we lose

some of these packets, the application QoS will not be hindered.

In such a scenario of varying QoS requirements, it is not possible to group all
the applications into a single class and attempt to provide QoS guarantee. This leads
to the two fundamental questions that we defined in Chapter I, namely isolation of
the application and managing maintaining QoS of the application. Such knowledge
of the applications is not available in the traditional communication networks. The
fundamental point one should realize in designing a QoS architecture is that QoS
has end user-to-end user significance, and it is quite a different view point from
what is considered in designing the communication architectures. The communi-
cation architectures address the basic data transportation components between the
end-systems, whereas the QoS architecture address the components needed to retain
the end-user to end-user agreed upon QoS for an application. The two fundamental
questions to be answered by a QoS architecture are: What is the range of applica-

tions needs it can support? and How to overcome the fundamental communication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

architectural limitations to support such applications?

Supporting an application implies meeting the demands (by its nature) of
the application. Let us consider a distributed collaborative application (such as IRI)
and a WWW (World Wide Web) application. A collaborative application may de-
mand for the group management of the resources across multiple connections in the
application and synchronization between different connections in an application. A
WW1W-like application needs an architectural support for dvnamically varying traf-
fic patterns. Such demands from the applications expect certain services from the
QoS architecture. For example, the collaborative applications requirements demand
group resource management capabilities, and synchronization demand group alloca-
tion and group management capabilities for such applications. The requirements of
WWW ask for a dynamic QoS specification and resource management. Hence. the
QoS architectural solution should be scalable to different applications. Also. since
the QoS is end-to-end and the traffic of these applications are carried via many net-
working technologies, the solution should also be flexible to accommodate multiple
networks.

The QoS guarantee is a global issue and will be defeated if any one of the
intermediate networking component fails to guarantee QoS. The QoS architecture
used in different communication architectures are different due to their fundamental
service specifications. For example, ATM is designed to be a connection-oriented
protocol suite, and hence the QoS architecture developed in such an environment is
also designed to accommodate individual connections, whereas IETF’s TP networks
do not have a concept of an end-to-end connection. As a result, the individual
packets can traverse any existing route between the end-systems. When an appli-

cation’s communication path is traversing through such varying service-providers,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it is essential to separate the service-provider dependent solutions from the end-to-
end requested solutions. In our proposal, QUANTA, we have developed one such
architecture to address the QoS guarantees.

Many solutions addressed these two fundamental issues. It is known to the
research community that to make use of these QoS solutions in the real-world they
should satisfy the following properties — scalability of the solutions to accommodate
new applications, interoperability between solutions, fairness of the solution across
different service classes and among the connections in the same class. efficiency of
the solution as compared to the other existing solutions, and the cost of the solution
in terms of the protocol overhead. In the following discussion, we consider each of
the issues, briefly outline the solutions provided to them, highlight the properties
to be addressed in these issues. analyze the existing solutions from the property’s

point-of-view, and present how our solution addresses these issues.

2 Isolation of the application

QoS definition and provision is individual to an application. To manage and monitor
its requested QoS (apart from other reasons such as connection management), an
application needs to be isolated, in the network and on the host. The effort to
isolate an application turns out to be a larger problem as we integrate applications
with different QoS requirements, as the number of connections increase. and if there
exists an inter-relation between connections (one such example is TRI).

To subdivide the isolation problem, it has become a common practice to
classify the applications into different service classes and manage them as a single
entity. Even after classification of the applications, it is necessary to maintain the

identity of an application (with one or more connections) to monitor the QoS and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~1
o

to penalize the misbehaving applications. Hence, we divide the isolation issue into
two major sub-issues, namely, classification of the applications and identification of

the applications.

2.1 Classification of applications

The basic idea behind classification is to group like-applications and attempt to
provide their requested QoS. The fundamental question that needs to be answered
by any classification scheme is: Does this classification encapsulate the present and
the future applications? The same necessity can be viewed from two different angles,
namely, s this classification scalable to all the applications? and Can it completely
specify an application’s requirements? Some other questions are: Is it easy to find
the appropriate class from the application specification? and (since the QoS need
to be maintained end-to-end) Is it possible to find an equivalent class when there
is a transition between the QoS architectures? We try to see the exiting solutions
from the above questions point-of-view.

The two well-known classifications of applications are the ATM Forum ap-
proach and the IETF approach. Other implementations such as Tenet suite-2 (29]
and QOS-A [45] fall into one of these classifications. Figure IT.2 depicts the classi-
fications provided by the three approaches we discuss in this section.

The ATM Forum proposes a flat classification (refer to Figure 111.2.a) of the
service classes it supports depending on the type of traffic the applications generate,
timing recovery requirements in the applications, and the type of connections re-
quired (connection-oriented or connection less). The ambiguity involved in matching
a service class to an application [25] shows that this classification is not complete.

One such example is transferring MPEG-2 stream over ATM [26] where the appli-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

suonenipdde jo uoneoyissep

Hoty,

RUE k]

[ropys |

HONIAMRW WPIA
wogmy o o

stionudididy fo uonworfissv)d 4131 ()

sty

0y Prosdde s vINYAD pue ‘L LH] ‘wniod WLV (2111 aandiyg

stot ot (ddv any fo uorarfissvgo ySnoayy-apdds s,y N vno ()

FUPISUKN AMPSHIS-UE AMPSWIE X
ssrp o]

SUX-UE XY JUISUIS-HE AMJISHIS ANpstOs-us
sso] ssof suar] o]

HUPSHIG AMISHIY

indy¥nong | ralySnosrgy

wonzinonpuAs-oN
-

SNOLVYOUTIJIY

suonvatddn fo uotpatfissop Wiy (v)

suonrmddn sy ppas-uon suotnpdide nury-ray

|

SNOUYII IV

SNOLLY N Tdd VY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cation has multiple choices of AALs to use, but none can provide a solution to all
the issues involved in supporting this application. We feel that much work needs to
be done to make this technology scalable to different applications.

The IETF tries to provide another flat classification scheme (refer to Figure
[I1.2.b) for the services it can support [27]. Let us consider two examples where
this model fails: one is IRI and the other example is (as mentioned in [25]) where
in one service class we have priorities among multiple connections. In IRI, let us
say that there are two different streams for audio and video. These two fall into
different classes namely guaranteed (for audio) and predictive (for video). Let us say
we need to synchronize these two streams at the receiving end. which is a necessary
requirement. In the current TETF model, it is not possible to specify and provide
such a request. The second example is related to mixing connections with different
priorities into the same class. It is again not possible to specify such requirements
in the application flow [28] specification.

Other groups such as Tenet, TIP [30] proposed a QoS architecture for car-
rying real-time traffic. These suites do not provide solutions to classify other ap-
plications or provide a clear definition of the merge of these applications into their
architecture. Because of this, we assume that they intend to use different protocol
architectures to different class of applications. This method of using different proto-
col suites for different classes of applications aggravates the problem of maintaining
a relation between related-connections, which is very common in collaborative envi-
ronments.

We in this work propose a new classification mechanism called ripple-through
classification in which we approach this problem from the application’s point-of-

view. The criteria used in our classification is to uniquely represent an application

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(with one or more connections), whereas the other approaches only identify a con-
nection. Any application has certain requirements of the QoS parameters, such as
loss, throughput, and delay; and when we consider collaborative applications, the
other requirements such as synchronization will come into picture. As shown in the
Figure TI.2.a or IT1.2.b, instead of the data related to a connection falling into a
container called a service class, in our classification the data ripples through different
QoS parameter containers (refer to Figure IT1.2.c). The main difference between our
approach and the other above mentioned approaches is that we use QoS parameters
to classify applications rather than service classes (where a set of QoS parameters
are grouped). This approach provides high flexibility and a stream-lined approach
to providing QoS guarantees as we discuss below.

We use the following terms to explain the ripple-through classification and

an implementation mechanism shown in Figure [11.3.

A graph is an organization of different QoS parameter links.

A QoS parameter link (link) is a container (or a scheduler) where necessary
action (related to that QoS parameter) is taken on the packet entering into

that container.
Head-end is the point where the data packet enters the graph.
Tail-end is the place where the packet leaves the graph.

A path is the set of links a packet takes between the head-end and the tail-end.

To demonstrate our classification we consider the two applications from [RI,
the teacher's video and the teacher’s audio (refer to Figure IT1.1). The video con-

nection can afford losses, whereas the audio connection cannot afford losses. Also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Head-end
=
i S
Loss - 3
=
3
E
Thmughput -~ £ = = = Audio connection
= Video connection
' 1
Synchronization - - - No-synchronszation

; Tail-end

Figure T11.3: Quality of Service Traversal Graph (QTG)

these two connections should be synchronized. We traced the requirements of these
two connections in Figure ITT.2.c. If our classification is implemented as shown in
the figure, these two connections take different paths in the QoS graph before reach-
ing the tail-end. Hence, they may not be synchronized when they are transmitted.
To compensate for such scenarios we should carefully consider organization of these
QoS traversals through the classification graph. One such example is given in Fig-
ure IT1.3. Here we invert the classification graph and insert decision points after
considering each connection for a specific QoS parameter. We call this inverted
classification graph a QoS traversal graph (QTG).

In the loss link, data can be dropped depending on the status of the route
the current packet is going to take!. This technique provides a clear methodology to
drop packets from different connections, unlike the ambiguity in the other approaches

such as the IETF approach [25]. Because of the clear definition of dropping packets

tSince dropping of packet takes place depending on the path the packet is going to take. the

QTG needs to be implemented after the routing decision is made in IP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

=1
~1

and since it is done at the head-end of the QTG, the overhead of scheduling the
packets which might be dropped at the tail-end will reduce. Here we make the
scheduling of the data, which are well-understood in the studies of [46] and [29)]. If
we need synchronization between multiple connections they can be group scheduled
by synchronization link of the QTG; otherwise the data can be sent directly to
the network interface. For the connections that need to be synchronized, we can
use some techniques like minor-major synchronization points (similar to that which
are used in the OSI session protocol). To explain this with the previous example.
the video connection goes through loss link of the graph and continues to the next
decision point: and the audio goes through the non-loss link of the graph before
reaching the decision point. Both the connections take delay-sensitive link of the
graph. as they both belong to this class. Once they are scheduled, they are sent
to the synchronization-link of the graph to synchronize the two streams before sent

out onto the network.

2.2 Identification of the application

In the traditional networks, a connection is identified by the source destination ad-
dress pairt. By introducing QoS of an application, it is essential to identifv the
same application not only from the connection point-of-view but also from its QoS
point-of-view. Hence, in the future QoS guaranteed networks an application is iden-
tified by the <Connection identifier, QoS identifier> tuple. In our discussion we
only concentrate on the QoS identification. This identification helps the end-system
protocols and the network in maintaining and managing the application and its QoS.

The main task of a QoS architecture is to retain the QoS identity of an application

YAn address in [P networks is the IP address + the application port number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end-to-end. As we will see in the following discussion, this is not an trivial task
when an application traverses through different networks with incompatible QoS
architectures. Also, this identification needs to be flexible enough to accommodate
varying application behaviors.

The ATM Forum approach to the problem of identification is using static
establishment of a connection before the data transfer takes place [47] using the ap-
plication requested QoS. They use the Q.2931 signaling protocol to establish a QoS
guaranteed connection between the source and the destination(s). A connection is
accepted depending on the traffic characteristics of the application$, the requested
values of QoS parametersY, the requested QoS class!! and the current state of the
network resources. Algorithms are developed for connection admission (CAC - Con-
nection Admission Control) and for connection monitoring (GCRA - Generic Cell
Rate Algorithm). The connection is retained until it is deleted by the communi-
cating parties. Once the connection is established, it is very involved to change
the characteristics of a connection. This suggests that it is either difficult to adjust
the resources to the dynamics of an application or (if we reserve more resources)
we may be wasting resources. The database maintained at every switch is on a

per-connection basis, and it grows as the number of connections increase. Also, the

SATM Forum represents an application traffic characteristics with the help of Peak Cell Rate
(PCR), Sustainable Cell Rate (SCR), Maximum Burst Size (MBS), Minimum Cell Rate (MCR),

and Cell Delay Variation Tolerance (CDVT) [48].
YATM Forum defines the following QoS parameters to represent the QoS requirements of a

connection: Peak-to-Peak Cell Delay Variation (CDV), Maximurn Cell Transfer Delay (Max CTD).

Mean Cell Transfer Delay (Mean CTD), and Cell Loss Ratio (CLR) (48].
IATM Forum has the following QoS classes: Constant Bit Rate (CBR), Real-Time Variable

Bit Rate (RT-VBR), Non-Real-Time Variable Bit Rate (NRT-VB R), Unspecified Bit Rate (UBR).
and Available Bit Rate (ABR) [48].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

connection establishment time is more.

Other connection-oriented reservation protocols include ST-II [15] developed
for Internet and Real-Time Channel Administration Protocol (RCAP) [49] developed
for Tenet protocol suite. Both these protocols use the same philosophy of specifying
the traffic parameters and establishing a connection with the specified QoS param-
eters. Since these protocols are developed for point-to-point connections, they have
well understood the problem of maintaining a database for a multicast connection.
Also, since Tenet protocol suite was developed for real-time applications in mind.
only real-time related traffic and QoS parameters** are used in RCAP [49]. These
specifications do not extend for other non-real-time applications.

IETF takes a slightly different approach to the issue of identification to
provide backward compatibility with the existing versions. In IPv6 [50], new fields
are provided to identify a connection (and its characteristics) with the help of a field
id and priority fields. The field id in association with the source IP address uniquely
identifies a connection. The difference between the ATM Forum approach and the
IETF approach is that in [Pv6 a cache entry is maintained for everv connection, and
it is deleted if the connection is idle for 6 seconds. This is to provide dynamism to the
application characteristics and with the assumption that the Internet connections
lifetime is very less. The priority field in the IPv6 packet is used to group connections
into different service classes. Though this classification is not complete. [50] provides

typical classification methodology by grouping well-known applications into different

*"Tenet’s traffic parameters are Minimum inter-message time (Xmin). Minimum average inter-
message time (Xqve), Average interval (/). and Maximum message size (Spmaqz). Their QoS pararri-
eters are upper bound on end-to-end message delay (D2). lower bound on probability of timely
delivery (Zm;n), upper bound on delay jitter (.J,naz). lower bound on probability of no loss due to

buffer overflow (W).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

yoroadde mo pue yoroadde s oo - Juppoaoutoyu SUS RS IIEIN

WSInpau uonesurd] soQy Avm-om v - f

uon U0 S00) 03 avosdde anQ (q)

uonpoyfioxds sof) + noporfionds affvsg
(otfoxls myprr2081v 10 vuonvywnuaydug)

uotwofaxds so0) + notpotfionls sffvs |
(otfoands urgpsoNy 10 vonvpmnagdig)

-3

£

£

-

HOREX I UIP] HOYIMNUO)

f

(S]paUdgUL 2OINS2L [V PAPUSULLL) (SS) NIVIS HOS D) uoyvonddy

(uonzasrp aysoddo yy wt sppasnur soinSas 1o paINUSUDL [) SSO) fuaLND S, uoyTddYy

Y
(pr moyg + ssappy 4j)

£ 4

uOYIIIPI SO0) + HonELi] wondmue)

sydompaN

10

W.LV

HOHYIUNUINIOD GO 0] 1ov0AddY JUa1IN7) (1)

o
.

uonrafioxds so) + noorfioads s ffis g
(afrands wagrao8pe 10 uonvpaadiug)

£

SYOMIN
A1)

A

HoEILfiIIp! SO0Y + nonwtuap) oD Y IV

(PApms 1K [ON st uonesuesg sy)

uonvsuv) SoQ) ~ < .
~

HONYISUDL | 211G

£
uosLy ysuaprangd offvry \\\\

\

N

uonmfioxds sof) + nowrfioads affa g

(atfroxls wurgpraoSyp 40 wonyvunaspdig)

A

s

%

(Pt moy | + ssuppo)

!

dl HoIIUaP! SY) + uonaYUIP] HOHIMILOY di

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

priority groups. As mentioned in the classification subsection, this method is not
complete to characterize applications. Also a clear specification and communication
of the QoS parameters still is not decided in this model. [50] mentions that this
specification of TP version needs extension to include QoS support. It also refrains
from commenting on whether the QoS reservations are done by a separate reservation
protocol (such as ST-IT, RSVP) or they are maintained as part of the IP protocol
itself. This opens avenues to suggest ideas to manage and maintain the fields in
[Pv6.

In Figure II1.4.a, we recapitulate the current approach taken to identify a
connection and compare this approach with our proposed approach. Here we con-
sider the teacher’s video application multicasting data and assume that it is using
[Pv6 running on an ATM backbone network. This connection is identified by the
end-system protocol-suites and the network by the connection identifier. and the
QoS identifier. The connection identifier in case of an [Pv6 network is its source ad-
dress and the flow identifier. The QoS identification is maintained in the IP network
in the form of soft state, which is the combination of the application’s traffic speci-
fication and the QoS specification. Hence, in IP, the QoS identification of the video
application is translated into a set of traffic and QoS parameters. These parameters
are specific to the QoS reservation protocol (such as ST-II, RSVP) and are also de-
pendent on the control parameters of the algorithms used to provide the requested
QoS. When this connection uses ATM network as the back-bone transportation me-
dia, the QoS identification needs to be mapped onto the respective parameters in
the ATM network as shown in Figure IT1.4.a. This mapping (or translation) involves
determining the equivalent traffic characteristics, QoS characteristics, and the ser-

vice class. This translation is performed on already translated IP soft state. These

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two translations need to be reversed at the destination end-system. It may not be
possible to map the exact requirements of an application, as specified by the user, at
different network interfaces. As we mentioned before, the ambiguity in selecting a
service class to a video application in ATM itself is huge task to be handled, let alone
the exact mapping of different QoS and traffic parameters from IP. It is essential to
avoid this additive translation loss from the user specified QoS, as the application
traverse in the network.

To alleviate the above problem of QoS translation loss, we propose separating
the QoS identification from QoS managing and QoS monitoring tasks as shown in
Figure TIT.4.b. In our approach we send the originally specified QoS (Generic Soft
State [GSS]) identification end-user to end-user and let the end-system protocol
suite and the networking paradigms extract their protocol specific QoS and traffic
parameters. The advantages of this architecture are the end-to-end retention of the
user specified QoS identification and reduction in the complexity of QoS translation
from architecture to architecture. The elegance of this approach is that one can still
maintain the capabilities of the QoS provision algorithms and the protocols in their
domain. The GSS serves two purposes, one to specify and dynamically change the
application characteristics, and the other is as a probe to monitor the current status
of the network and the application behavior. In the later use, the generic soft state
is sent in the opposite direction to the data transfer path of the application. This
packet addressed as current generic soft state (CGSS) can help as a feedback packet
to control the resources in the forward direction to maintain QoS.

Figure ITL.5 represents the preliminary format of a GSS packet. This packet
has two parts, one to represent the connection identification and the other to repre-

sent the QoS identification. The connection identification, which uniquely identifies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

Connection identification QoS ldentsfication

lSoun:e Id [Flow Id QTG map J Prionty QUANTA'’s Flow specification (requested)
QUANTA's Flow specification (provided.)

[Groupta] [Application 1d

(a) Generic Soft State packet format

Connection identification Qo ldentification

LSourcz Id r Flow id QUANTA's Flow specification (requested)
Currently provided QUANTA's Flow specification (feedback)

lGrowptd | [Application 1d

(b) Current Generic Soft State packet format

Figure IT1.5: Generic Soft State and Current Generic Soft State packet formats

a connection in an application, is divided into source identifier and the flow identi-
fier. The source identifier is the typical end-system address, such as the TP address,
where as the flow identifier is the application identifier on the given end-system. The
flow identifier can represent a connection or a group of connections. This notion of
group can be extended to maintain and manage a group of connections, such as
the connection opened by IRI. Group identifier also enables to allocate resources on
group basis and reduces the data-base overhead at the routers. The QoS identifica-
tion of the GSS packet represents the QoS and traffic requirements of the connection.
This contains the QoS Traversal Graph (QTG) map for this connection, priority of
the connection amongst like-connections, and the flow specification (which we will

elaborate in the forthcoming discussion).

3 Knowledge of the application

The next important issue in a QoS architectures is to provide necessary components

to manage and maintain the knowledge of the applications on the end-systems and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

in the network. The components required for the management of the application
knowledge are: a QoS and a traffic specification mechanism, a QoS translation mech-
anism between different communicating elements in the application’s communication
path, a resource reservation protocol to propagate the QoS and traffic requirements
of the application, and a dynamic negotiation mechanism to change the current re-
source allocation to an application depending on the current status of the elements
in the communication path. The maintenance of the application knowledge involves
the following components: an admission control component to limit the applications
from sharing the resources, a mechanism to guarantee the QoS requirements of the
admitted connections, and a mechanism to monitor the behavior of the applica-
tions and the status of different resources. The application knowledge management
tasks contribute to the architectural components, whereas the application knowledge
maintaining tasks contribute to the algorithms to provide QoS guarantees. Since we
are interested in providing an architectural solution, we concentrate on the manage-
ment components. The solutions provided to the management components need to
meet the application service requirements.

In Figure ITT.6 we identify the relation between different QoS management
components. The QoS translator as shown in Figure I11.6 lies between the service
user and the service provider, translates the user-related QoS specification, traffic
specification, and service specification into their corresponding language understand-
able by the provider. In this work we refer to the QoS specification, the traffic spec-
ification, and the service specification as QoS specification. On the receiving side of
the application, the tasks of the user and the provider reverse, and hence the QoS
translation is also reversed leading to inverse translation between the service user

and the service provider. Since the current QoS solutions are not inter-operating,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the QoS communication and the QoS negotiation is between the like-protocol-suite
such as between two TCP/IP protocol-suites or between two ATM switches. In the
following subsections, we consider each of these components relevant to the QoS

architecture and discuss them in detail.

QoS communication and
negotiaton

ex. TCPAIP
QoS specification

QoS Translation

ex. AALXY/ATM Service Provuder \/— .]' Service User l ex. AALx/ATM

¥ Forward QoS translation
iy Reverse QoS transiation

Figure [11.6: Relation between QoS Specification, Translation, Communication and

Negotiation

3.1 QoS specification and QoS translation

The following are the typical properties expected of a QoS specification and a QoS

translation mechanism:

The specification and the translation between the user and the provider should
be complete. QoS Specification,,,, = r QoS Speci fication,, .4, Map-
ping should be one-to-one and onto. This requirement also implies that the
specification needs to encompass all the current and future applications and

all types of QoS specifications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

Also, the QoS specification should be service user friendly and service provider
friendly, which means that the specification should be simple (i.e. easy to
specify and represent) and the translation between the user and the provider

should be less complex.
It is difficult to achieve the above two properties for the following reasons.

First, different organizations are involved in the QoS specification for their
native network protocol-suites. These specifications differ from each other
fundamentally because of the design aspects considered while developing the

standards for these protocol-suites as discussed before.

Second, the most important task of inverse translation becomes ambiguous
for the following reasons. Let us consider the example of teacher’s video from
IRI. Let us assume that the bandwidth available for this application over the
network has reduced. The ambiguity comes in deciding whether this current
status needs to be translated into reducing the throughput or increasing the
loss. And, how does this situation translates at the application-level? Does

this situation reduce the FPS. or decrease the quantization?

The first reason translates into QoS internetworking between different ap-
proaches. In QUANTA we solve this problem with the help of end-to-end GSS
packets and a translation mechanism between GSS and the native protocol-suite
QoS mechanism as shown in Figure IT1.4. The second reason implies that in addi-
tion to the triplet of <Traffic Specification, QoS Specification, Service Class>. we
need to add QoS translation rules (QoS Rules) component. This has to be part of
the GSS/CGSS packet as one of the QoS identification components. Figure ITL.7
compares the Tenet, the ATM Forum, the IRTF (Internet Research Task Force),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

GENERIC QoS Specification < Traffic Specification, QuS Specification, Service Class >

TENET's QoS Specification < Limited by one class, Limited to one class, RT-class >

ATM's QoS Specification < Limited by 5 classes, Is not generic enough, (CBR, VBR, ABR, UBR, nrt-VBR)>

IRTF'’s QoS Specification < Limited by 4 classes, Have many limitations, (Guranteed, Predicted, Fair-Share, Best-effort) >

QUANTA’s QoS Specification < Unlimited, Range-of-QoS parameters, not dependent on classes, QoS Rules >

Figure IIL.7: Comparison/salient features of different QoS flow specification mecha-

nisms

and the QUANTA's approach to flow specification mechanisms. In the following
text, we compare our approach with that of the IRTF's flow specification in RFC
1363 [51].

RFC 1363 is referred to by many Internet QoS-related documents, such as
[52]. This RFC presents a flow specification packet as shown in Figure I11.8.a and
comments on why this set of fields are thought to be both necessary and sufficient by
the IRTF. In this packet the traffic flow is characterized by token bucket rate, token
bucket size, and maximum transmission rate. Delay is characterized by minimum
delay noticed and maximum delay variation; loss is represented as loss sensitivity,
burst loss sensitivity and loss interval: and finally quality of guarantee field is used
to indicate the type of service guarantees that an application desires. The last field
of guarantee specifies different service classes to classify applications. The three

limitations mentioned in this REC are:

The loss model is imperfect. Tt is difficult and a crude way to classify an

application’s loss sensitivity by loss and burst loss parameters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

The minimum delay sensitivity field limits a flow to stating that there is one
point on a performance sensitivity curve below which the flow is no longer

interested in improved performance.

The service models are clearly not a complete set.

Version Maximum Transmssion Unit Version \User-Submitted Packet Size
Token Bucket Rate Token Bucket Size R Token Bucket Rate R-Token Bucket Size
Maximum Transmission Rate | Minimum Delay Noticed R-Max. Transmission Rate R-Minimum Delay Noticed
Maximum Delay Variation Loss Sensitivity R-Maximum Delay Variation R-Cell Loss Ratio
Burst Loss Sensitivity Loss I[nterval R-Loss Interval R-Affordable Cost
Quality of Guarantee

Figure II1.8: Comparison of RFC 1363 and QUANTA flow specification packets

As shown in Figure IT1.8.b, QUANTA flow specification packet (which is part
of the GSS/CGSS packet as shown in Figure TT1.5) utilizes some of the arguments

made by RFC1363 but with the following fundamental differences:

RFC 1363 uses hard guarantee to represent the QoS parameters and uses the
Quality of guarantee to specify the requirement of soft guarantees. Since the
service models are not clearly defined by IETF (as discussed in the classifica-
tion section), this model will not complete the flow specification. Hence, we

use range of QoS parameters instead of single values as shown in the figure.

Instead of Maximum Transmission Unit, as specified by the RFC 1363 flow
specification, we use user-submitted block size as a single unit of data. The
user submitted block size is the data unit submitted by the application to
its immediate service provider (for example, an FTP application sending 8

Kbyte data units to the immediate protocol - TCP). This block size has more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

significance in the sense of controlling different QoS control parameters as

discussed in [53].

We represent loss with the help of loss ratio and loss interval instead of the
three parameters used by RFC 1363. This is because these values can be

controlled with the help of GSS/CGSS packet transmission.

We do not use the Quality of Service guarantee field, as the classification is

provided by the QTG field in the GSS/CGSS packet.

As we mentioned before, we provide a new QoS parameter to the list, the
affordable cost by the user. This could be translated into different parameters:

one such cost translation is into resource cost.

We also introduce a new QoS component called the QoS Rules component.
as shown in Figure IT1.7. We use the following mechanism to represent the
rules of the application into QoS Specification packet. The user along with
the requirements of the primary QoS components, Throughput, Delay, Jitter.
Loss, Synchronization and Cost, provides set of rules defining the importance
of different QoS components. A QoS Rule Translator is used to translate
these requirements into weights corresponding to each of these primary QoS
components as shown in QUANTA's packet format in Figure II1.8.b. These
values can be forward and inverse translated at the QoS translator between

different protocol-suites.

3.2 QoS communication

QoS communication protocol (also referred to as Resource Reservation mechanisms)

depend on the application communication architectures, such as 1:1, or 1:M, or M:N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

communication between the source and the destination.

Generic QoS
Translator

QoS Communication

GSS Packet path ﬁ

CGSS Packet path

ﬂ Translator Functions @ Momtoring Functions

Resource Manager Functions
Rexgurces

Figure IT1.9: Our QoS architecture

There are many QoS communication protocols proposed for 1:1 communica-
tion, such as Tenet’'s RCAP [31], ATM’s Q.2931 [32]. The main disadvantage of such
protocols is that they are not scalable to the other two-communication architectures.
The scope of some of these protocols are limited by the architectural support from
their data communication counterparts (for example, Q.2931 over ATM). ST-II,
which was developed to manage the resources {15] in the early ages of Internet (be-
fore consolidating the idea of multicasting), makes a point-to-point source invoked
reservation between the 1:M communicating parties. The disadvantages of ST-1I

are that it assumes that the source has complete knowledge of its M destinations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

(which translates into interrupting the source when ever a new connection is added
or deleted), and the reservation available to all the destinations is the minimum of
all the supported connections. The above two problems are rectified in RSVP by
invoking the reservations from the receiver side and by maintaining a soft state of a
connection, and by using filters to scale the source emitted stream of data depending
on the receiver capabilities. Because of such scalable concepts introduced in RSVP,
it can support M:N communication architectures.

In QUANTA, we use the QoS communication support provided by the un-
derlying communication architecture to make the reservations, as shown in Figure
IT1.9. But the difference is that the GSS (and CGSS) packets are sent in-band to
the data path. Whenever there is an architectural support for in-band resource
communication, such as the RM cells in ATM networks, we propose to duplicate
these packets into such data structures. When there is no in-band architectural
support as in [P, we propose to communicate with the resource manager (RM). In
networks where there is no support for resource reservation, we tunnel-through the
GSS (or the CGSS) packets as they are in-band packets. To reduce the overhead
per connection due to GSS packets and to allocate resources on group basis, we can
extend the GSS concept to a group of connections (rather than for individual con-
nections), as shown in Figure IT1.9. This opens up the area of group management

and maintenance of connections.

3.3 QoS negotiation

QoS negotiation is the deliberation between the application and the resource man-
agers and between the resource managers in allocating resources to the application.

A QoS negotiation component is an important task in deciding the support for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different applications.
Different architectures considered in QoS negotiation are uni-directional, bi-

directional or triangular architectures depending on the application requirements.

A uni-directional architecture include applications which mostly use broadcast
and multicasting. In such architectures there need not be any comprehensive
QoS agreement between the source and the destinations. These applications
can also be called take it or leave it type of applications. because there is no
commitment between the applications. Until now, to the knowledge of the

author, only RSVP is capable of supporting such architectures.

A bi-directional architecture includes an agreement between either peer-to-
peer or between service user-to-service provider (refer to Figure I11.6 for the
definitions of these terms). In such applications, when peer-to-peer agreement
is supported the service provider is not allowed to change the requested QoS.
Vice versa is also true for service user-to-service provider. Such applications
include the multicasting or broadcasting with resource reservations only with
the network, where both the source and the destination come into some QoS

agreement with the resource managers on the communication path.

In a triangular architecture, both the peers and the service provider come
to a QoS agreement. There are many QoS communication protocols in lit-
erature which support such architectures. For example, source negotiation
initiated ST-IT and receiver negotiation initiated RSVP are well known in the
Internet community ([52]). ATM's Q.2931 is another example for the trian-
gular negotiation architecture. Since in QUANTA we use the underlying QoS

communication architecture, the proposed solution is independent of the ne-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

gotiation mechanism, as long as the GSS and CGSS packets can be generated

from both the peers and the service provider (Resource Manager).

The negotiation mechanisms between the peers and the service provider in-
clude: one-time negotiation, complete renegotiation, best-effort negotiation, and

semi-automatizated negotiation.

The one-time negotiation mechanism is used by ATM Forum (for CBR, nrt-
VBR, and VBR type of traffic), which expects the application to characterize
its traffic pattern and the QoS requirements before the connection is estab-
lished and confirm to it until the the application is closed. When the appli-
cation needs to change its QoS requirements, it needs to re-establish a new

connection with the network.

A complete renegotiation involves interrupting the end-to-end components
whenever a change of state occurred in the network. This calls for more
elaborate procedures for negotiation. No existing solutions provide complete

renegotiation mechanisms.

The best-effort service provided by both the IETF and the ATM Forum do
not involve the application in the case of highly deviated QoS parameters.
The ATM Forum approach, though it is in the developmental stage, tries to
guarantee only loss for the best-effort class (ABR class) application [54], which

may not a primary criteria for an application using ABR class.

In the semi-automatization mechanism used for QUANTA, we use a combi-
nation of the range of QoS parameters, weights (to identify the importance of
different QoS parameters), and feedback from any of the resource managers

to degrade a stream. We try to adjust the QoS values inside the network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

within the specified range of QoS parameters, when it is impossible to provide
such guarantees a CGSS is sent to the user application for QoS modifications.
Since, dynamic nature of the applications are supported by QUANTA, an ap-
plication can react to the current state of the communication components and

send a new GSS packet requesting for the change of QoS.

As observed in the negotiation mechanisms discussion. feedback is an impor-
tant issue to change the current state of the application requests to accommodate
the congestion on the network. Current feedback mechanisms are loosely controlled
in the sense that the reaction time is in the order of round-trip-time between the
communicating nodes. For example, ATM Forum uses RM (Resource Management)
cells end-to-end to control the data rate generated by the best-effort applications.
This could lead to complicated algorithms for the dynamic negotiation and can cre-
ate oscillations in the network traffic if the algorithms are not properly devised. To
alleviate this problem we let the intermediate resource managers exchange CGSS

packets among themselves to react quickly to the changing state of the network.

4 Summary

In this chapter we identified the issues involved in a QoS architecture, discussed the
existing solutions to these issues. and provided our approach and solutions to these
issues.

These issues include isolation of the applications and managing the knowl-
edge of the applications. The issue of isolating an application is sub-divided into
classification of the applications and identification of the applications. Addressing

these issues we propose a ripple-through classification mechanism and a Generic Soft

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

State (GSS) identification mechanism. To manage the knowledge of the applications
we propose different QoS components, such as a GSS negotiation mechanism, GSS
communication mechanism and GSS monitoring mechanism (such as GSS Relays
and GSS Agents). In the next chapter, we present the design methodology for the

proposed architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

CHAPTER IV

DESIGN AND EVALUATION

METHODOLOGY

Details: We think in generalities: we live in details.

— Alfred North Whitehead

In the previous chapter, we discussed the fundamental QoS architectural
components needed and our proposed solutions to the issues raised. These QoS
components cover the entire path from end-user to end-user. We group these QoS
components into implementation components: the user-level implementation com-
ponents and the protocol-level implementation components. Figure IV.1 describes
the relation between different QoS components and the implementation components.
In the following sections, we will consider each of these components, identify their
subcomponents, describe the tasks of each of the subcomponents, and provide design
details.

The application-level components, which are presented in section 1, include
a TLI-like QoS interface to the application (which apart from managing the connec-

tions, maintain, manage and renegotiate QoS of different connections in an applica-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

tion) and a resource reservation daemon to manage the resources of the end-system.
In section 2 we present the protocol-level components. which include a Generic Soft
State (GSS) component, a resource management component, and a QoS provision
component. Portion of QUANTA is implemented under Solaris, that is, both host
and remote workstations running a distributed application must use Solaris: the
methodology for evaluating the effectiveness and cost of running applications under

QUANTA is given in section 3. The design is summarized in section 4.

1 User-level implementation components

The user-level components include a User-level QoS Library to provide a QoS in-
terface to the end-user applications and a Resource Management Daemon which
is an interface between the host and the network resources. It keeps track of the
current status of the end-systems” resources and reserve and allocate these resources
to different applications.

The functionality of these components is grouped into subcomponents to
reflect {.X'}-dependent and {X'}-independent modules. The ‘X" could be an ap-
plication, a communication protocol, the host-operating system or the underlying
network. For example, in Figure TV.1 the QUANTA user library is independent of
the application or the underlying communication protocol. Similarly, the core stub
in the daemon is independent of the host operating system, the user library, or the
underlying communication protocol. The access between these subcomponents is
through the message specifications in the header files mentioned at the respective

interfaces in Figure TV.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

Connection Connection [Connection [Connection
1 3 3 N
Application APP. TO GENERIC SPECIFICATION
and APP. QoS LANGUAGE .
TRANSLATION sTUB [~ * SrecTransh
AppLibh <= <I- o Resource management daemon
Libh <-rt-- % S
e R o LibDaemon h i ~.| CORE & HostDaemon.h
t = =
! NEGOTIATION COMMUNICATION STUB i = g STUB = Q
-— | = L 5| m——r——
| e — |E 25—
QUANTA's, Z '
User ibrary ' 1~~~ ~~~=~~-" - =
MONITORING STUB NETWORK STUB

LibCommh <—l-'

COMMUNICATION LIBRARY (TLI)

==t =-> NetDaemonh

SNMP AGENT

L] USER ARFA

i
ying oo} pannyong

QDS Promision Algs

7Y
la ~
S

- 1”1
M”"GSSJ"" B
v
o 4 = - =

=| FEIzzzgmoooooootom-

3

s

2

g/ NI time
=

miD [cip | QD

M
QID

o GSS translation lable

QoS Momitoring

v Per connection GSS interval
Q Per application GSS mterval

Figure TV.1: Implementation components in QUANTA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

1.1 QoS user interface

The QoS interface provides a TLI-like communication interface with QoS negotia-
tion capabilities to an application. The major tasks of this interface are: application
dependent tasks, application independent and protocol independent tasks, and pro-

tocol dependent tasks.

The application-dependent tasks are:

QoS Specification: Using this interface an application can specify QoS param-
eters which are relevant to its behavior. For example, a video connection can
specify the number of frames per second. the quantization. etc.: an audio con-
nection can specify the precision, the number of channels, etc. We also specify

the relationship between connections within an application.

QoS Translation: The application-dependent QoS specification is translated
into a generic QoS format [55] using this translator. It also provides an inverse

translation from the generic to the application QoS.

QoS Language Translation: We provide an interface to the application to
specify the importance of different QoS parameters and translate them into

QoS weights.

QoS renegotiation primitives: Some primitives are provided to renegotiate the

initially allocated QoS to an application and to a connection.

The QUANTA's user library supports the application independent and protocol

independent tasks. They are:

QoS Reservation: An application can request to reserve its expected generic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

QoS with its local resource reservation daemon. It sends a GenericQoS.Req

message and expects a response in a GenericQoS.Res message.

QoS Maintenance of an application and a connection: Once the reservation is
made, the interface needs to maintain the reservation during modification of
the QoS requests or while adding a new connection to an already existing set

of connections.

QoS Communication: The locally agreed upon QoS needs to be communicated
end-user to end-user. We use GSS.Init and GSS.Mod to communicate the
application and its connection’s QoS requirements, when they are initialized

and modified respectively.

QoS Monitoring: The receiving data is passed through a monitoring stub to

verify that the connections are within the requested QoS.

QoS Semi-automatized renegotiation: With the help of GSS.Reg, we inform
the end users of the current state of the network and the end-system com-
ponents to allow for dynamically adjusting a connection’s behavior. The ap-
plication is involved in this dynamic negotiation only when the QoS reaches

outside the range of the negotiated request.

QoS Relinquish: When a connection or an application is closed, the resources
occupied by them are relinquished. Local resources are relinquished with the
help of the daemon and the network resources are relinquished by timing
out the allocation for a connection. In response to a relinquish, a Generic-
QoS.Rel message is sent to the daemon and the daemon sends back a Gener-

icQoS.Rel.Res message to acknowledge the relinquish message.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

The protocol dependent tasks, which are part of the communication library as shown

in Figure IV.1, include:

Registration of the connection: In this phase we register a connection with
the requested protocol-suite, bind the local end-point and the destination end-
point to an address, and set appropriate protocol-dependent control parame-
ters such as sender and receiver window sizes depending on the connection’s

QoS request. For the relation between the QoS and the TCP. UDP or AAL3

protocol control parameters refer to [53].

Connection establishment, data transfer. and disconnection: Here we establish
protocol dependent connections between the end-points, transfer data between

(among) them and disconnect (orderly release, abort or close) them.

The core of the QoS management of an application lies in the QUANTAs
user library. We divide the tasks in this library into six different design phases. They
are the registration phase, the passive connection phase, the active connection phase,
the data transfer phase, the dynamic renegotiation phase, and the GSS management
phase. The last three phases occur during the data transfer phase of a connection.
For the sake of easy specification and tractability of the interface code. we divide
the data transfer phase into the three mentioned phases. Also note that there is no
specific disconnect phase mentioned in the above phase specification. A connection
may be closed for many reasons from any of these phases and therefore this task is
part of all the above specified phases. Whenever a connection is closed, its resources
are relinquished. We outline these phases below: for extensive details please refer to
[56].

In the registration phase an application and a connection registers itself

with its local end system. Here, we verify the requested QoS with the local re-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘Application ID, Source ID

/ Application State

‘' Application’s QID Forward
ACB (Application) . DaemonConnld Buckward
Control Block) =~ - _ _
e S

)
f ~
'
L

« ID
! Source ID
! Gmup ID = Application [D

] Connection State
CCB (Connectwon |1 CCB (Connection || CCB (Connection .
Control Block) Control Block) Control Block) Connect Info (TLI library mformation)
', Forward Path's QID (o
"\ Backward Path's QID_ _ . -E=]
Qp=<---"""""" FID
th -7
Path pronty . User Packet Size
Path QTG map =1 o Connection’s QoS Specification (Ranges)
Static FID st
“ i Token Bucket Rate
Dyraruc FID request 3 Token Bucket Siz
Dvmamuc FID provide (] orem Bucket Size

D ldentdfication

QID QoS ldentsfication

CID Connection Identsfication
FID Flow Identification

QTG Qos Trmr_.w'l Graph

Maximum Tx. Rate
Mirmumum Delay Notsced
Maxrmum Delay Vanance
Loss Rato

Loss Interral

Affordable Cost

an

Conneclion's Language Specfication

Throughput weight
Delay Weight
[itter Weight

Loss Wesght

Svnchronization Weight

Cost Weaght

102

Figure TV.2: Application and connection control block structures for the QoS user

interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

source daemon. We also bind the connections with their local addresses. When an
application is registered, as shown in the Figure TV.2, for every application an Ap-
plication Control Block (ACB) is maintained at the interface. Each ACB contains
the application’s connection identifier, which is <Application ID, Source ID>*, the
application state and an applications QID which determines the QoS requirements
of the application. This QID is specified for the outgoing connections (Forward),
and for the incoming connections (Backward) into the application. The application
can reserve resources for its connections a priori or update the resources as and when
a new connection is added in the application. The daemon connID field contains
the application-daemon connection related information to contact the local resource
management daemon. Similar to ACB, each connection is allocated a Connection
Control Block (CCB) when it is registered. When a connection is accepted its CCB
is linked with the ACB as shown in the Figure IV.2 and if the application did not re-
serve resources the QID in ACB is updated. Again, every connection is represented
by a <CID, QID> tuple. A CID contains <ID, Source ID, Group ID> to uniquely
identify the connection and its parent application (Group ID = Application D),
connection state, and connection information which contains the protocol-related
connection information. A QID contains the priority of the connection among the
other connections in the application, the path QTG and the set of flow identifiers
(FIDs). A static FID request is used to store the initial QoS specification of the
connection, a dynamic FID request is used to maintain the current QoS request due

to the dynamics of the network, and a dynamic FTD provider is used to maintain

*The application ID is a unique ID (on a given host) provided by the resource daemon at the
time of registration. The source ID is the local host address (could be an IP address or an E.164
address). Hence, the tuple <Application 1D, Source ID> uniquely identifies an application in the

network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

the current QoS provided to the connection. An FID is a combination of user’s
packet size, connection’s QoS specification, and connection’s language specification.
For more details on these parameters. please refer to [55]. An application or a con-
nection has to perform registration before invoking any other connection-oriented
tasks.

In the passive connect phase an application waits for an incoming connec-
tion request. When a connect request is received, it verifies if the requested QID can
be allocated: if yes, the connection is registered, the local resource status is updated
and then a connection accept is sent: or else, the interface responds with the best
it can provide and keeps the required resources on hold. These resources on hold
are timed out if they are not allocated after certain time. In the active connec-
tion phase, a connection establishes a physical connection between the end-systems
and then sends a GSS.Init (refer to Figure IV.3). The GSS.Init packet request re-
sources for the forward or the backward connection depending on the direction of
the data flow. The response, CGSS.Init packet. is analyzed against the request, and
if the response is agreeable, the connection is registered or else it is disconnected. A
summary of the direction of different GSS messages is shown in Figure IV.1.

During the data transfer phase, both on the transmitting side and on the
receiving side, data is monitored to check if it is within the negotiated limits. If a
connection exceeds the limits, it is penalized immediately by dropping the packets.

A dynamic renegotiation phase! is invoked from a transmitter of data, which

"The dynamic renegotiation has two different connotations, one when a connection itself wants
to change the QID and the other when a connection needs to react to dynarmically to the state
of the network. We provide solutions to both of them. In the dynamic renegotiation phase we
provide a solution to the first concern and in the GSS management phase we address the second

concerr.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

Applications with 1:1 Communication

GSS.Init GSSMod
(FP) GSS.Init (FP) GSSMod
—_— de j —— dala : :
AL.k “ -~ ‘»‘d e
(BP) ‘. CGSS.Init (BP) CGSSMod

\

A GSS Relay or GSS Agent

ke Init Initialize
(FP) CGSS.reg Mod Modify
—— data Reg Regular
Tx Rx
FP Forwurd Path
Adk BP Backward Path
(8P) Gss.reg

Figure TV.3: GSS/CGSS message types and their origination in 1:1 communication

submits a modification of the earlier requested QID. This new QID is verified on the
local system and then is sent in the forward data path to the receiver in the GSS.Mod
packet as shown in Figure IV.3. The response to the GSS.Mod, the CGSS.Mod. is
analyzed at the transmitter which registers the new QID of the connection if the
response is acceptable. In the GSS management phase, a receiver receives a
GSS.Init and a GSS.Mod packet in the incoming data connection and the receiver
generates CGSS.Init and CGSS.Mod in response to them. Also, during this phase
a receiver sends GSS.Reg packets at regular intervals (w. as shown in Figure V.1)
summarizing its status on the backward connection (each connection also carries the
QID summary of the application at regular interval of £, as shown in Figure TV.1):
the transmitter sends a response to the GSS.Reg packet in a CGSS.Reg packet. A
detailed handling of the GSS.Reg and CGSS.Reg for a point-to-point and point-to-

multipoint connections is discussed in the protocol components section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

We test the correctness of this QoS Interface with the standard protocol
verification methodology. We will have this interface between an upper tester and a
lower tester. An upper tester generates an end-system connection-oriented primitives
which will pass through the interface to the lower tester. The lower tester emulates
the responses of the other end-system connection. The test cases are chosen such
that the interface goes through all the internal states. We note the responses of the

interfaces and manually verify them if they are correct.

1.2 Resource Management Daemon

The resource management daemon keeps track of the current status of the resources
on the host machine and the resources allocated to the application. The daemon
has four different threads (or stubs) as shown in Figure I'V.4. which can be divided
into generic QoS-dependent stubs, an operating system dependent stub. and the
network management-dependent stub. The application stub and the core stub fall
into generic QoS-dependent stubs, because they view QoS in terms of generic QoS
parameters. The resource stub is dependent on the Operating System of the host
machine!. The network stub collects the statistics (or Management Information
Blocks [MIBs]) from network management elements such as an SNMP agent and
provide this information to the core stub. We present the tasks of these four stubs

below.

Application Stub: An application negotiates with this part of the daemon to

check if the requested QoS is supported on the host machine. This is one user-

*Since we do not provide a solution to reserve process-dependent resources on the host machine.
this stub can only supply the current status of the host resources. However, if a reservation
mechanisin such as [57] is available. then this stub can be instantiated to reserve resources to an

application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

S. Core stub
GenericQoS. Req ore stu " Resource.Stat.Reg
GenencQoS.Res |& J—

S.Rel. Resource.Slat. Res
GemerieQoS. ReLReg
GenericQoS. Rel. Res = 3

Netuork Stub

} Networkinfo.stat

Figure [V.4: Tasks of daemon component

level thread or a process which can take the GenericQoS.Req and responds to it
with GenericQoS.Res. The scheduler in the stub will take the request message
and place it in a queue which is served by the “Core Stub” which has global
knowledge of the resources (as shown in Figure IV.4). The response to the
request is sent back to the scheduler, which relays it to the application. When
an application relinquishes certain resources, it sends a GenericQoS.Rel.Req
to the stub. This message is passed to the "Core Stub™ and a response to the

relinquish is sent in the GenericQoS.Rel.Res message.

Resource Stub: This stub talks with the system resources to obtain the
current state of the machine and passes this information to the “Core Stub.”
This stub keeps track of the level of utilization of the designated resources and
sends the information to the “Core Stub” to update the records of the corre-
sponding resource. The messages sent to the “Core Stub” are in the <resource,

occupancy> format. It invokes a query status request to a particular resource

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

at regular designated intervals’.

Feedback Stub: This stub talks with the QoS manager in the kernel to get
the current state of the network and the protocol resources to provide the
applications with the most recent information. It submits the information of
the network resources at regular intervals. It can also emulate the utilization of
different kernel resources such as buffers. This gives the QoS resource manager

the flexibility to constrain the availability of the resources at its discretion.

Core Stub: This stub maintains the current status of the resources. A sched-
uler is used to poll the three queues from the above three stubs (as shown in
the Figure IV .4). Depending on the queue from which a message is extracted.

we choose the message format. Its responsibilities include:

Maintaining the resource status. The resource status is translated into
generic QoS parameters and is maintained in a table. The table contains
an entry in <Resource name, details, limit, occupancy, QoS Equivalent>

format for each of the kernel resources.

Sending a poll message to the resource and the feedback stubs to update

the current state of the resources.

Translating the resource requests into supported generic QoS parameter

values.

Responding to QoS requests from the application stub.

$The resource stub is Operating System dependent, we provide a resource stub written for
Solaris 2.4. Currently, this stub communicates with che rpc.stat daemon, which keep the status of

the kernel resources.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

2 Protocol-level components

The protocol-level components include: a GSS component which is categorized as
(depending on the nature of processing the component does on the GSS packet) the
transmitter, the GSS relay, the GSS agent and the GSS receiver; a QoS Provision
Algorithms Component which will provide the requested QoS to a connection looking
at the GSS packet and registering that information in the local data structures: and a
Resource Manager Component which has the current status of the protocol resources

and assists the GSS Component in modifying an existing or a new connection’s QoS.

2.1 GSS component

The GSS component extends from the end-user to the end-user. In Section 1.1, we
defined different GSS message types and their use during the communication. Here,
we identify the tasks of GSS messages and the involvement of different implementa-
tion subcomponents on these messages.

A GSS message is used to accomplish the following tasks:

QoS specification: It specifies the generic end-to-end QID of an application or
a connection within the application. This GSS message retains its basic data

structure as it traverses through networks with their native QoS architectures.

QoS translation: When the GSS packet travels through different QoS archi-
tectures, the Generic QID used by the GSS packet needs to be translated into
the QoS architecture’s native format: the same needs to be done from the
QoS architecture QID format to the Generic QID. As shown in Figure IV.1, a
GSS component talks to the resource manager or to the resource daemon (in

the case of the application-level component) to inform the connection of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

current status of the resources.

QoS communication: A QoS communication methodology is required to carry
the QID end-to-end. In 1:1 applications, as shown in Figure IV.3, the flow of
GSS messages is fairly simple. Whereas in 1:M applications, the QoS archi-
tecture needs to treat different end-systems and different connection subtrees

separately. We will discuss these two types of communication in detail below.

QoS negotiation and renegotiation: This task is performed when an application
end-user changes its QID characteristics dynamically and when the resource
state of the network changes. The major property of a QoS architecture is to
react quickly to such changes. Hence, the transmitter needs to be informed

about this change as soon as possible.

The last two tasks imply that a GSS message should also be generated from
the GSS components in the network. If every element in the QoS architecture can
generate a GSS message the overhead of the protocol increases. Hence, apart from
the transmitter and the receiver, we designate some components in the communi-
cation data path as GSS agents, as shown in Figure I'V.5, who can act as a sink or
a source of GSS packets. In contrast to a GSS agent, a GSS relay can only relay a
GSS message. So, a transmitter and a receiver can specify, negotiate, and renegoti-
ate QID; a GSS agent can translate, communicate, negotiate, and renegotiate QID;
and a GSS relay can translate and communicate QID.

The GSS component interacts with the other two protocol-level components
(the resource manager and the QoS provision components) through a GSS trans-
lation table (see Figure IV.1) and interface messages. At the arrival of a GSS.Init

message, the GSS element checks the current state of the resources in the table

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

and modifies the GSS.Init message to the best value provided by the local resource
manager. These resources are kept on hold for certain duration before they time
out if there is no CGSS.Init, and they are allocated with the reception of CGSS.Init.
The same procedure is used with the reception of GSS.Mod message. For 1:M ap-
plications the GSS agent will duplicate the request and send it in all the outgoing
connections for that application. Processing of GSS.Reg is more involved, because
it is receiver invoked. In the following paragraphs, we explain the processing of a

typical GSS.Reg message at a GSS component.
Basic GSS algorithm

Applications with 1:M Communication
GSS.Init GSS.Mod

GSS.Init GSS.Mod
—

—
-—

-
CGSs.Mod

GSS5.Reg
CGS5.Reg
Init Instialize
-
Mod Modify
GSS.Reg Reg Regular

FP Forward Path
BP Backward Path

Figure IV.5: GSS/CGSS propagation in 1:M communication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RECEIVED GSS.Dynamic. Request (1:1 communication)
GSS.Dynamic. Request = SEND_GSS_REQUEST (GSS.Dynamic. Request)
if(Position == GSS_AGENT OR GSS.RELAY)
Forward GSS
else if (Position == TRANSMITTER)

RESPOND.GSS (GSS.Dynamic. Request)

In 1:1 applications (as shown above), when a GSS.Reg message is received
at a GSS component, the current state of the resources that can be allocated are
obtained from the algorithm SEND_GSS_REQUEST. If the GSS component is a
GSS agent or a GSS relay, the message is forwarded to the next GSS component. or
else if the GSS component is the transmitter it responds back to the GSS.Reg with

a CGSS.Reg in the forward data path.

RECEIVED GSS.Dynamic. Request (1:M communication)

if(Position == GSS_AGENT)
RESPOND_GSS (Local.Dynamic. Provide)
Wait for X-units of time to accumulate the other requests from the subtree
GSS.Dynamic. Request = Summary of all GSS. Dynamic. Requests

GSS. Dynamic. Request = SEND_.GSS_.REQUEST (GSS.Dynamic. Request)

if(Position == TRANSMITTER)
RESPOND_GSS (GSS.Dynamic. Request)

else if(Position == GSS_AGENT OR GSS_RELAY)

Forward GSS.Dynamic. Request

In 1:M applications (as shown above), when a GSS.Reg message arrives at a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

GSS component and if the component is a GSS agent, a response is sent back with
the QID agreed in the previous GSS cycle. Also at the GSS agent, the GSS.Reg
messages are accumulated until all the requests are received from the connection
subtree or wait for ‘X" units of time. The summary of all the requests is submitted
to the SEND_GSS_REQUEST to find the best possible QID that can be supported
from this GSS component. This GSS.Reg is forwarded to the next component if
the current position is a GSS agent or a relay, or else if the GSS component is the
transmitter, it responds back to the GSS.Reg with a CGSS.Reg in the forward data

path.

SEND.GSS_-REQUEST (GSS. Dynamic. Request)
tf(GSS.Dynamic. Request < Local.Static. Request)
tf(Local. Dynamic. Provide < GSS.Dynamic.Request)
if CHECK(GSS.Dynamic.Request, Local status) == OK
Local. Dynamic. Request = GSS. Dynamic. Request
else
GSS.Dynamic. Request = BEST PROVIDED
Local. Dynamic. Request = BEST PROVIDED
else
Local. Dynamic. Request = GSS.Dynamic. Request
else

GSS.Dynamic. Request = BEST PROVIDED

In the above algorithm, we note that every GSS component keeps three
different measures of GSS, a GSS.Static.Request, a GSS.Dynamic.Request, and a

GSS.Dynamic.Provide as defined in Section 1.1 (in the registration phase). The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

resources promised for this connection is kept on hold till a CGSS.Reg is received.
The GSS.Dynamic.Request is used to decide the allocation of the resources for the
connections going through this local node.

When receiving a CGSS.Reg, in response to the previous GSS.Reg, the GSS
component will allocate the dynamic reservation specified in the CGSS.Reg packet

and copy this value into the local GSS component.

The QoS provision algorithm component contains the algorithms required
to schedule the data of a connection over the network interfaces. It checks the
GSS translation table to arrive at the scheduling parameters to a connection. It
will update the transfer statistics of a connection in the GSS table, which can be
used by the resource manager and GSS components to allocate resources to a new
connection and to the existing connection. The resource manager is a native QoS
architecture resource manager, which will access the table through a translator. The
resource manager also responds to the GSS component through a standard interface.
The specification of the QoS provision component and the resource manager is out

of the scope of this chapter.

3 Evaluation of QUANTA

Evaluation of QUANTA is divided into end-to-end QoS provision evaluation, and
architectural evaluation. In the first evaluation with the help of Kiviat diagrams.
we identify if the application is getting the requested QoS. In the architectural
evaluation, we address the evaluation of each of the QoS components. It is also
necessary to evaluate the QoS mechanisms for different native QoS architectures.

But, this is out of the scope of this chapter, as we are providing the end-to-end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

architectural solution.

3.1

Parameter

Parameter 3
Acceptable region of operation (ROP)

End-to-end QoS provision evaluation

For example:
Parameter 1 Frames/Second
Purameter 2 Delay
Parameter 3 Loss
U, Upper bound on QoS
L 5 Lower bound on Qos
My Measured QoS parameter at this QoS agent
8Py Acceptable vanation m QoS parameter 2
10D [nterval of operation

Figure IV.6: Kiviat diagram of QoS measurements

We use the following method to evaluate if an application is obtaining the requested

QID. Let (L;, U;, W) be the end-to-end lower, upper bounds and weight (respec-

tively) of the i QoS parameter as shown in Figure TV.6. At every e GSS com-

ponent we measure the provided QoS

parameter (M,;), determine the deviation d,,

from the requested QoS, and calculate Figure Of Merit (FOM,;) as shown below

against the (L., U, W}) assigned to the e!* GSS component.

V e € { End-to-end GSS comnponents }

Vi € { QoS Parameters }

N[m‘ — Lei Zf 1"[.;;;' < Le!'
dei =4 0 Ly <M, <U,
Mg —=Uy tf Uy < M,

if {My < Lo }or { Mo > Uy }

FOM,; = |d;*W;|

FOM, sum = FOM, gy + FOM,;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

FOM; = [(FOM,, FOM.,)

FOMym = FOM; + FOA/[e,sum

The sum of the FOM,;s is calculated in FOM, g, for every GSS component,
and they are accumulated in the end-to-end FOM; and FOM,,,. The f() operator
is dependent on the ** QoS parameter. For example, if i represents loss or delay,
then this is a simple addition operation: if i represents throughput then it will
represent a minimum operation. At the transmitting end-system, we will know the
sum of the obtained QID in FOM parameters, which will be compared with the
provided QID by the transmitter. The FOM,; and the FOM,,,, are calculated for

every GSS.Reg packet interval and are used to compute different statistics.

3.2 Architectural evaluation

We devised a three phase evaluation methodology to perform the architectural eval-
uation of QUANTA. We run a set of base-line experiments with a mix of applications
with varied QoS-requirements on a test-bed without QUANTA and use these results
to compare the outcome of different phases of QUANTA.

In the first phase of the implementation, as shown in Figure TV.7, we are
demonstrating “maintenance of QoS of a connection in the face of competing requests
on the end-system.” This phase completes the base-line requirements for QUANTA
such as providing a QoS communication methodology, QoS translation methodology,
QoS allocation and QoS negotiation. We are evaluating this phase using multiple
delay-sensitive (video) and throughput-sensitive (data-transfer) connections going
through the test-node and disturbing these connections with other traffic (ftp) on

the test-node.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLICATION APPLICATION
Qo$ INTERFACE ‘ i QoS INTERFACE
upe upr
GSS Agent GSS Agent
+ QoS provider % + QoS pronuder x
-—-—. 3
all | z
e I =<
GSS Agent GSS Agent]
+ QoS provider + QoS provder [\'J
Non-confirmng
Truffic
Local

RM —l

(Phase three addition)

PHASE 1 PHASE 2 PHASE 3

Figure IV.7: Three phases of QUANTAs evaluation

The second phase will provide a “reasonable set of resource choices to en-
able maximum diversification in QoS requirements.” In this phase we will provide
the feedback across the end-system protocol layers, multi-service support, and QoS
manager. We will evaluate the resource sharing capabilities among multiple classes
in this phase by multiplexing applications with varying QoS requirements. For ex-
ample, through TP we multiplex an audio stream (loss-sensitive) and a video stream
(which can accommodate bounded losses) as delay-sensitive applications and data-
transfer applications as throughput-sensitive applications.

In the third phase. we will demonstrate “the QoS adjustments upon changes
in the host and network conditions.” Here we will demonstrate the feedback from the
network and use it to dynamically alter the QoS requirements of the applications.
We will evaluate this phase by reducing the resources on the host and on the network
(through interfering traffic) and verify if the application stays within the requested
ROP.

For each of these phases, we will use the figure of merit to compare QUANTA s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

performance against the baseline case of running the same applications over currently
existing, standard protocol suites. Although the figure of merit will allow us to pro-
vide a simple, single number, we shall provide the detailed statistics as well to probe

the reasons of better(or lack of) performance by QUANTA.

4 Summary

In this chapter we provided an application-oriented approach to design an end-to-
end QoS architecture (QUANTA). We identified the potential QoS issues in such an
architecture and proposed a solution to these issues. We proposed ripple-through
classification mechanism to classify connections in an application and introduced
a Generic Soft State (GSS) and current GSS (CGSS) concepts to accommodate
group management of applications and provide dynamic renegotiation of QID. We
identified different implementation components to complete QUANTA. These com-
ponents include application-level components such as a TLI-like QoS interface to
the applications, a resource management daemon to maintain and manage the local
host system resources; and the protocol-level components include a GSS component,
a resource management component, and a QoS provision component. We provided
a design of these components and provided an evaluation mechanism to evaluate the
end-to-end, user-level QoS provision and a three phase architectural evaluation of

QUANTA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

CHAPTER V

RESULTS AND ANALYSIS

Determination: Let us, then, be up and doing
With a heart for any fate:
Still achieving, still pursuing,
Learn to labor and to wait.

— Henry Wadsworth Longfellow

This chapter presents the experiments conducted on the QUANTA test-bed
to evaluate the concept we have proposed in this thesis. We use two applications to
test QUANTA, the first application being the modttcp program (which has been used
in the preliminary test chapter) and the second application is the video collaborative
application.

The testbed used for these experiments is shown in Figure V'.1. This testbed
contains two host machines which act as the primary QoS measuring stations and
two hosts acting as the load generating machines. As the components developed to
demonstrate QUANTA are user-level components, the experiments are independent

of the underlying backbone technology. The testbed we use to demonstrate the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

concepts of QUANTA is a 10Mb/s Ethernet. We are only interested in demonstrat-
ing QUANTA’s conceptual correctness rather than providing extensive experimental
proof, and it is easy to demonstrate the behavior of QUANTA on a low-bandwidth
backbone networks such as Ethernet.

In the next section, we present different sets of experiments conducted to

evaluate our work and the rationale behind them.

1 Outline of the experiments
We classify our experiments under two categories. They are:

e Interface overhead experiments: In this set of experiments, we estimate the

overhead presented by QUANTA on a communication intensive-application.

e QUANTA concept test experiments: With the help of these experiments we

intend to prove the concepts proposed by QUANTA.

In the following sections, we consider each of these set of experiments, elab-
orate on the experimental procedure, the rationale behind the experiment, the mea-
surements performed and the performance metrics used to evaluate the experimental

outcome.

1.1 Interface overhead experiments

These initial sets of experiments measure the overhead incorporated by QUANTA.

These experiments are grouped into:
e connection establishment time overhead

e per packet processing overhead and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e per packet data overhead

QUANTA
premcore e nae
Y
Measuring,Station |) Loading Station | '
) . .
. .
'
SparcSuanan, 5 SparcSkation I+ 1
N
R R !
- . Eth,
' .
H .
[y
o ‘
prmeeede e r e ~—
’ Loading Statson 2 Meaninng Stanon ?
' v
v
SparcStation 2 Sp‘"‘:‘mm 5

QUANTA

<>

Figure V.1: Testbed used to measure QUANTA overhead

Figure V.1 presents the details of the testbed with respect to the experiments
conducted to measure overhead induced by QUANTA. Since these experiments are
related to the QUANTA interface to the application, we assume a fixed testbed
for all these experiments. The testbed for this set of experiments is an Ethernet

backbone with two SUNSparc 5 workstations as the end-svstem host machines.

Connection establishment time overhead

A communication user application (such as modttcp or video collaborative applica-
tion) using QUANTA will have to perform certain additional tasks before starting
to transmit data. These additional tasks include registering the application and
the connections with the resource reservation daemon and negotiating the QoS end-
to-end with the GSS agents. The processing of these tasks reflects in the perfor-

mance of the application in terms of an increase in the connection establishment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time. For short-lifetime applications, such as a global timer accessing application®,
QUANTA poses an unacceptable overhead. In a moderate-lifetime applications,
such as an ftp application, this overhead is debatable. Whereas for a long-lifetime
applications, such as a pre-scheduled video collaborative application, QUANTA can
provide predictable performance throughout the lifetime of the application without
unduly influencing the performance of the application. In the following experiment,
we develop a metric which can be used by an application to decide on whether or
not to use QUANTA.

We propose that QUANTA can be beneficial to the application if:

_ E[nijeJimeJ f
CEb_far:tor - E[TCwilh_TCwithout] Z 10

where
Tiifetime is the active lifetime of the application.
Ef...] is the expected value of the quantity inside the braces.
TCyun is the time taken to establish a connection with QUANTA.
T'Cyithout is the time taken to establish a connection without QUANTA.
CEy_factor is the QUANTA connection establishment benefit factor.
Table V.1 presents the measurements made on modttcp application, which

behave as the typical applications mentioned in the table. The values presented in

the table are averaged over five runs.

"An application using which a host periodically synchronize its system clock with the universal

clock.
'We use the Raj .Jain's rule of thumb factor [58] as a measure to identify the overhead of

QUANTA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T.,:_c:—_._m:—?d aorawep PeILIBA0 e:v::_.n__a_wamc :CS&:::CU T'A aqe],

s1aqoed so1dg Mg

uopeoyddy

000rS6 296 100°0 SN 66 ut (snfqy 0g) waep s | aanvioquio)) ¥
s1oyoud smfqy g nopwvoddy

00zl 29§ 10070 D08 '] u (MAQINE) vaep s dy t
siooed sa38qy | uonwiddy

01t 298 100°0 Q08 1170 ut (s03£qM001) waep s dy ¢
Joyoud 014 guz wy uonenddy

09 298 100°0 298 90)°0) (1£q0¢g) Lionb v yuos X901 1

pauLIo}Ia | aueu gy
oRnfTag o | [reunmy ~ urmn s [P gy uoty uoneoyddy | uoneoyddy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

From Table V.1 it can be seen that in application 1 and 2 the benefit factor

is marginal, and in applications 3 and 4 the benefit factor is considerable.

Per packet processing overhead

In QUANTA, during the data transfer phase, the applications will exchange GSS
packets to monitor the application and react accordingly. In the current imple-
mentation of QUANTA on a Solaris OS. this processing is moved form the main
application to different GSS threads. Hence the GSS processing overhead and GSS
communication processing will not impede the application QoS per se. However,
since the GSS packets are sent in-band with the regular data, the application will
encounter some per-packet processing overhead. This overhead, similar to the con-
nection establishment overhead, will decrease exponentially as the lifetime of the
application increases.

We use the same overhead measuring mechanism, presented in the previous

section, in determining the QUANTA per packet processing benefit factor, as follows:

_ E[Tiife_time]
PPPb_faCtOT - E[TPw“h—TPuvilhout] Z 10

where
Tlife_time is the active lifetime of the application.
E[..] is the expected value of the quantity inside the braces.

T Pyt is the time taken to transfer data with QUANTA, not including the

connection establishment phase.

T Pyithout is the time taken to transfer data without QUANTA, not including

the connection establishment phase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PPPy_factor 1s the QUANTA per packet processing benefit factor.

In Table V.2, we present the measurements made on the modttcp application,
which is used to emulate typical applications. The values presented in the table are
averaged over five runs.

From Table V.2, we observe that in all the applications the benefit factor
is acceptable. This is because in short-lifetime applications (such as application 1)
the GSS interval will be higher than the lifetime of the application. Hence, the
per-packet processing overhead is negligible. In application 2 the benefit factor is
marginal because we accommodated two GSS packet transactions in its lifetime.
In applications 3 and 4 the benefit factor is high throughout because of the longer

lifetime of the applications.

Per packet data overhead

The data sent by the application using QUANTA will be encapsulated by QUANTA's
headers. The packet size, negotiated before the data transfer phase, is fixed and
there might be bytes added to the application data packet to obtain this fixed size
end-to-end QUANTA packet. Apart from this, without the knowledge of the ap-
plication, we include the initial exchange of the GSS.init packets to agree to an
end-to-end QoS, and the exchange of the GSS.reg packets at regular intervals to
monitor the end-to-end QoS and to modify the application QoS*. In the following

set of experiments we measure this overhead.

!Note that these overhead measurements will not include the underlying communication pro-
tocol (such as TCP/IP) overhead. Also in these experiments we will not consider the exchange
of data across the QUANTA and the resource reservation daemon, because it will not add to the

traffic on the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

spupwLpdxa pratoao Fuissaoord yoyoed 10 iz A dqRL

s1ooud sa18q g nonrenyddy

Fe'e6e RUNTAS S-1N 64 ur (smAq 0g) waep s | aanetoqejor) ¥
s1oxqored soalqy ¢ uoreoyddyy

0g 26 F0'0 PRCE AR w (M8qy 1) wep uos dy ¢
s1oqoud s0180y nontddy

1 298 100 NSO | (8GN 001) eep wmos dy ré
oyoud 014q gez m nonvoddy

O G 1100°0 298 9(y'() (sm4q gz) L1onb v nos ¥010) 1

POULIOLID | amen Byumy
ORI Ao | [N - g e | [P HondYy nonwiddy | nonwoyddy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The per packet data overhead benefit factor is defined as follows:

_ E[Diife_time]
PPDb_factm‘ - E[O[{static'*'OHdll"ﬂ"'"C] > 10

where

Diife_time is application data submitted to QUANTA during the active lifetime

of the application.
E[...] is the expected value of the quantity inside the braces.

O Hatic is the static per packet overhead incorporated in to the application

data stream. This overhead include GSS.init exchange overhead.

O Hgynamc is the dynamic per packet overhead incorporated in to the appli-
cation data stream. This measurement includes the per packet QUANTA
header overhead, per packet extra data padding overhead, and the GSS.reg

data packets overhead.

PPDy_gactor is the QUANTA per packet data benefit factor.

In Table V.3, we present the measurements made on the modttcp application,
which is used to mimic typical applications as mentioned in the table. The values
presented in the table are averaged over five runs.

From Table V.3, we observe that the benefit factor is low for short-lifetime
applications. For example, application 1, is reasonable for medium-lifetime applica-

tions and is high for the long-lifetime applications.

Analysis of the overhead benefit factors

Applications with different QoS requirements view the above three overheads in a

different perspective. By assigning importance to these overheads, we can identify

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

spuawpodxe Juumseaur proyiano wiep Jped 0 0 A JqRL

s1oqord sa1dq Vg

uopeoddy

60'89¢ 918901 so1£qy (¢ m eep s aAlIRIoqR[[0D) [
syopud so18qy z uoneoyddy
L1'861 9r0Q LGN 1 UL wep juas ty ¢
s1opud smalqy | uopeoyddy
96'1¢ 6TI¢ sa1dqyM (01 ul vvp juas dy Z
1oed 91fq ggg w | uonwayddy
9z0°0 8F. s14q g Lronb v Juos o) 1
POULIOND] auen Joquinu
R dd | PPHO + g ola | P g ooy wonwayddy | wonvayddy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the overall overhead impact of QUANTA on an application.

Let < Icg,Ippp, Ippp > be the application-dependent importance factor
vector. Note that the values given to these parameters are arbitrary and the pur-
pose of these values is only to obtain a quantitative view of the overhead posed by

QUANTA.

We assign <0.5, 0.25, 0.25> as the importance factor for the application 1.
The rationale behind selecting these fractions is that, in a short-lifetime appli-
cations, the connection establishment time is more important than the other

two parameters.

For the medium-lifetime applications such as application 2 and 3. we assign
<0.25, 0.5 , 0.25> importance factor vector. This is because, in such ap-
plications, the PPP overhead is more prominent compared to the other two

overheads.

For the long-lifetime application such as application 4, we assign <0.1, 0.5,
0.4> as the importance factor vector. This is because in such applications
the amount of data sent on the network and the per-packet processing will

contribute more to the QoS degradation of the application.
Let the effective benefit factor to an application be calculated by
Tb-factor = [CE X CEb_factm‘ + [PPP X PPPb.factor + [PPD X PPDb-factar
Hence, for

application 1 Ty_sactor = 43.644.

application 2 Ty_fqce0r = 40.99.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

application 3 Ty_so010r = 364.543.
application 4 Ty_gactor = 95734.006.

From the above calculation, we can conclude that the total overhead imposed
by QUANTA on different applications is reasonable for short and medium-lifetime

applications and is negligible in long-lifetime applications.

1.2 QUANTA concept test experiments

In this set of experiments, we observe and attempt to measure the advantage of
using QUANTA. The testbed used in all these experiments is given in Figure V.2.

These experiments are grouped into
Sharing resources across applications (multiplexing of applications).
Curbing resources for new applications (a simple admission control).

Preventing application/connection from exceeding the resource allocation (mon-

itoring).
Deviation from predictable performance (provision tests).

In all the following experiments, we use the following set of default parame-

ters globally.

A token is a representative of 256 bytes of data. That is, if an application
has 5 tokens at hand. it can send 5x256 = 1280 bytes of data, without being

flow-controlled by QUANTA.

A host machine such as M1 in Figure V.2 can supply up to 31250 tokens

per second. This number is computed by considering the bandwidth of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

Application 2
=

- QUANTA
g "’:, Mm;om.\'la"wnl ~¢ﬁ"‘
ST~ . ' -~
] oo NN Lo R
M s N . u
.

T N Ethernet

AL
? 2 2
Loading Stanon 2 Muq.nr‘n‘ Station 2
.
Vo

2 M2

* ~
’ ‘ ‘
QUANTA I QUANTA

—

Figure V.2: Testbed used to run the QUANTA conceptual experiments

underlying communication medium. In our case this communication medium
is Ethernet. We allocated only 80% of the Ethernet capacity to avoid running

into heavy load conditions on the medium.

It is important to observe that the tokens on an end-system are shared by
both the incoming and the outgoing applications. We use UDP/IP as the end-system
communication protocol, because it is a more predictable protocol compared to
TCP/IP and also poses less overhead to the application stream. By using UDP/IP,
we can observe the behavior of QUANTA easily. Also note that FOM calculated
in this section represents only the receiving side as we do not have the GSS relays

or GSS agents in the communication protocols in the current implementation of

QUANTA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Applications multiplexing, admission control, monitoring tests

By using three modttcp applications with different QID requests, we check the ap-
plication notification, termination and resource reservation for these applications in
the resource reservation daemon during the connection establishment phase. This
would test the multiplexing capability of QUANTA across many applications. Dur-
ing the admission control phase, we attempt to overload the host M1 with more QID
requests than the amount of available resources on M1. This will test the admission
control of QUANTA during the connection establishment phase. We also monitor
the behavior of the applications during the data transfer phase to measure FOM.
For all these three experiments, we use three applications with the following charac-
teristics. The weights given to different QoS parameters for the applications are 0.5

for throughput, 0.45 for loss, 0.05 for delay, and zero for the other QID parameters.

Application 1: This application requests for (4.5 Mb/s, 1 Mb/s) of maximum
and minimum bounds on the throughput with (0 Mb/s, 0.5 Mb/s) of maximum

and minimum bounds on the loss.

Application 2: This application requests for (3.5 Mb/s. 1 Mb/s) of maximum
and minimum bounds on the throughput with (0 Mb/s, 0.5 Mb/s) of maximum

and minimum bounds on the loss

Application 3: This application requests for (1 Mb/s, 0.5 Mb/s) of maximum
and minimum bounds on the throughput with (0 Mb/s, 0.2 Mb/s) of maximum

and minimum bounds on the loss.

These application requests are sent to the resource manager in the order of
application 1, 2, and 3. We observed that the first two application are accommo-

dated by QUANTA. whereas the last application, application 3. is rejected because

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

of lack of tokens in the possession of the resource reservation daemon. This test
has confirmed the multiplexing capabilities and the admission control of QUANTA
during the connection establishment phase. Also by invoking an application, Appli-
cation 4 from the host M2 to the host M1, we identified that this request is rejected,
because the resources (tokens) on M1 are shared by both the incoming and the
outgoing applications.

The throughput-time and the loss-time graphs are flat and are less infor-
mative in this set of experiments. Hence we present only the FOM calculated on
these data. The FOM in case of application 1 and 2 is 0.0124 and 0.0091 respec-
tively. Though, we have expected 0, because of the inaccuracy of the timer routine,
QUANTA will sometimes queue data which could lead to buffer overflow. We also
observed that the losses due to UDP/IP are nearly zero during these experiments
because the applications are rate-controlled in QUANTA and also they do not ex-
ceed the host protocol data processing capability (which is approximately 70 Mb/s
for a SUNSparc 3).

By increasing the data rate to 5 Mb/s in application 1, we notice that its
FOM has increased to 0.37 due to the increase in delay in QUANTA. The FOM
of application 2 is still comparable to its FOM in the previous experiment. This
experiment shows the penalty an application faces by changing its characteristics.

In conclusion, QUANTA can provide predictable performance under no-load
conditions as long as the user application is within its requested bounds. If the
application deviates from these bounds, it is penalized by changing the output traffic

pattern of the application depending on the weights provided by the application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

QID control tests

In this chapter we present the QoS control tests on the modttcp and VC applications.
We conduct these experiments under no-load. host-load and network-load conditions.

The three applications used in these tests have the following characteristics:

modticp: This application requests for (4.5 Mb/s, 1 Mb/s) of maximum and
minimum bounds on the throughput with (0 Mb/s, 0.5 Mb/s) of maximum and
minimum bounds on the loss. The weights given to different QoS parameters
for this application are 0.5 for throughput, 0.45 for loss, 0.05 for delay, and

zero for the other QID parameters.

VC: A Video Collaborative (VC) application is a delay-sensitive application
with bounds on losses. The throughput request of this application is 3.5 Mb/s
upper bound and 1 Mb/s lower bound. The delay bound on this application is
0 msec upper bound and 10 msec lower bound, and the loss bounds are 0 Mb/s
to 1 Mb/s. The weights given to different QoS parameters for the application
are 0.5 for delay, 0.25 for loss. 0.25 for throughput and zero for the other QID

parameters.

ftp: An emulated file transfer application (ftp) is used to generate background
load on the Ethernet. This application is rate-controlled to send data at

different data rates on the Ethernet.

In Figures V.3 and V.4, we present a case study of the experiments con-

ducted under the network-load, the host-load, and the no-load conditions. Under
no-load condition, the host and the networks are not loaded. During the host-load
conditions, the host machine is loaded with a 40% CPU intensive job and an 1Mb/s

ftp application is used as an incoming data transfer application. In the network load

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

condition, an ftp application is used to send data across the Ethernet between L1
and L2.

These graphs contain the network-load, host-load and no-load experiments
in that order. The first dip in the throughput graph is due to the network-load
condition. We can observe that during this transition the application throughput
recovers to a stable state less than the maximum negotiated throughput. This is
because of the back-off algorithm we have implemented in the QUANTA application
library. Also observe that the delay is also bounded because of the reaction to the
changing state on the network. The loss graph shows that the VC application
encounters more loss than the loss characteristics of the modttcp application. The
similar characteristics can also be observed from the host-load conditions.

The application’s behavior under different network conditions are presented
in Table V.4. Tt can be seen from the table and the case study that the QID of
different application characteristics are maintained by QUANTA. Here again we
assume that as long as the application maintains FOM less than 1 throughout the
application data transfer phase, we assume that it is meeting tits QoS bounds.

We observed FOM of a VCand a modtécp application by changing the load on
the network using a modttcp application running between L1 and L2. We collected
the throughput, delay, and jitter measurements as the time progress under different
network load conditions. Under low network load conditions such as 10% and 20%
as shown in Table V.4, the FOM of both the applications are within their specified
QID bounds (as shown in Figure V.3, V.4 for 10% network load conditions). As the
load on the network is increased, in a modttcp application, the throughput glitches
caused increase in FOM, in a VC application the change in delay characteristics

and the increase in loss caused the increase in FOM. By making QUANTA sensitive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

10 ¥ 13 L 1
vC -o--
MODTTCP a-
8
g s f]
=
(=]
2
=
3
= 4 A
£
2 - :
~ “ ‘ -2
o
o ; o) ;
[o] 50 100 150 200 250
Time (sec)
10 T T T Lo
vC o -
MODTTCP -&-
8 ™ =
g 6 fr
(7]
£ A i
° 4 TT 3 ®
H ®3 2o
l i1 ‘& o
H > H Pt 3
i ?!fo"oaf’ : :" LS TN ?
21?999 92 #&w 3 : @?f‘? “?f%& -
%e -?:@ w@’mq\,%,ﬁ%ﬁ é& A osgvéé»
i e S %
of Feindlads %m i
100

150 250
Time (sec)

Figure V.3: Throughput and delay graphs for the VC and the MODTTCP applica-
tions under 10% network load condition, 10% host load condition, and under no-load

condition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

10 T T
vC o -
MODTTCP -8---
8 - -
6
2
2
c
v
b4 h¢
- 4 £ @.
‘f’? 7
L- t:
2 F i’! . B irhi. B . -
4
il : I8
° ij . B X é-:a A -

Q 50 100 . 150 200 250
Time (sec)

Figure V.4: Loss graphs for the VC and the MODTTCP applications under 10%

network load condition 10% host load condition, and under no-load condition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

SUONIpuod prop y1ompu yudIdhip Y suoneandde doppour pur 94 oY) 10j sWBMENSEOW [y () A IGRL

¢80 0 1£°0 120 doygpors %O0r
LSO 61°0 10 82°() DA %0%
92'0 0 1o ¢1'o dayypou %0¢
420 g1 0 10 OA %08
¢L0°0 0 20°0 6200 daggpou %02
SL0'0 80°0 0 A OA %02
0 0 0 0 doggpor %01
0 0 0 0 DA %01
WO | “vod | "PPivod | MMy od | equny pro7]
J9A1900 ~— JoA _uovm_ 19A1009 z 19A1309 Y uoujey tj¢ {d \Y HIOMION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

to jitter measurements rather than throughput, we predict that tighter control on
FOM can be achieved.

The penalty paid to keep the applications within its QID bounds are the
applications itself, because of the current mechanisms included in QUANTA are re-
active rather than preventive. To make these mechanisms preventive, it is necessary
to modify the scheduling algorithms in the communication protocols as discussed in
the issues chapter (Chapter 3) and to prompt the standards committees to incorpo-
rate these changes in currently not in the scope of the author. But the prediction
of the author is that by making the changes in the protocol suites such as IP and
ATM (as it is in progress) and by using QUANTA, it is the author’s prediction that

the achievement of predictable performance is a reachable goal.

2 Summary

In this chapter, we have analyzed the overhead imposed by QUANTA and the advan-
tages of QUANTA under different load conditions. We observed that the QUANTA
overhead is minimal for the long-life time applications. For short and medium-
lifetime applications, the overhead is reasonably small. In terms of benefit, the
experiments in this chapter show that, transparent to the user. QUANTA will au-
tomatically adjust the QoS parameters and weights for an application to meet the
changing network and host environment.

Specifically, by comparing the graphs in the preliminary results chapter in
sections 2.3 and 2.4 with the results in section 5.1.2, we can observe that the appli-
cation is within the QoS bounds throughout the data transfer phase although it is
penalized according to the weights specified by it. In VC and modttcp applications,

the throughput and the delay characteristics are altered to accommodate the load

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

on the network. In Figure [1.10 without QUANTA, the throughput of a connection
degrades almost to 1 Mb/s though the available capacity on the physical medium is
nearly 40 Mb/s. The delay characteristics of a connection can suffer (the maximum
delay observed is 350 msec), as shown in Figure I1.10, without QUANTA. In con-
trast, Figure V.3 shows that the delay characteristics are within the user specified
bounds when using QUANTA. The maximum delay observed by using QCANTA is
less than 10 msec. The reaction time to a change in the status of the load condi-
tion is nearly two GSS time periods, which in our case is 40 msec. We can make
QUANTA more sensitive to load changes by reducing the GSS/CGSS period, but
this increases the overhead by QUANTA as the GSS/CGSS packets are sent in-
band with the application data. The changes in the throughput are the result of
the monitoring mechanism using the GSS/CGSS packets, which flow between the
participating applications. Under high network load conditions, during the transi-
tion between two stable throughputs, the application is crossing the requested QID
boundaries. This can further be controlled by making QUANTA more sensitive to
jitter bounds rather than depending only on the throughput measurements. We
can also observe that as discussed earlier the effective throughput of the medium
can also be increased by reacting to the changing conditions of the network. This
can be demonstrated by considering the aggregate throughput as shown in Figure
I1.10 (which is without QUANTA and by considering the same in Figure V.3). We
have noticed near 80% utilization of the channel with QUANTA, whereas the same

without QUANTA under loaded conditions is only 40%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

CHAPTER VI

CONCLUSIONS AND OPEN PROBLEMS

Facts: I often wish ... that I could rid the world of the tyranny of facts.
What are facts but compromises? A fact merely marks the point where we

have agreed to let investigation cease.

— Bliss Carman

In this thesis we provided an application-oriented approach to designing an
end-to-end QoS architecture (QUANTA). We identified the potential QoS issues in
such an architecture and proposed a solution to these issues. We proposed a ripple-
through classification mechanism to classify connections in an application and intro-
duced Generic Soft State (GSS) and current GSS (CGSS) concepts to accommodate
group management of applications and provide dynamic re-negotiation of QID. To
realize these concepts we have designed and proto-typed components such as a TLI-
like QoS interface to the applications, a resource management daemon to maintain
and manage the local host system resources, and at the protocol-level, a GSS com-
ponent. a resource management component, and a QoS provision component. We
developed a mechanism to evaluate the end-to-end, user-level QoS provisions and a

three-phase architectural evaluation of QUANTA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We have analyzed the overhead imposed by QUANTA and the advantages
of using QUANTA under different load conditions. We observed that the QUANTA
overhead is minimal for the long-life time applications. For short and medium-life
time applications the overhead is reasonably small. We noticed the seamless control
of QUANTA in negotiating, managing and maintaining QID of different classes of
applications under different host and network load conditions. We also observed the
effect of weights on the application characteristics.

By comparing the graphs in the preliminary results chapter in sections 2.3
and 2.4 with the results in section 5.1.2, we can observe that the application is within
the QoS bounds throughout the data transfer phase although it is penalized accord-
ing to the weights specified by it. In VC and modttcp applications. the throughput
and the delay characteristics are altered to accommodate the load on the network.
It is also observed that it takes two GSS/CGSS time periods to accommodate a
change. We can make QUANTA more sensitive to load changes by reducing the
GSS/CGSS period, but this increases the overhead by QUANTA as the GSS/CGSS
packets are sent in-band with the application data. The changes in the throughput
are the result of the monitoring mechanism using the GSS/CGSS packets, which
flow between the participating applications. Under high network load conditions.
during the transition between two stable throughputs, the application is crossing
the requested QID boundaries. This can further be controlled by making QUANTA
more sensitive to jitter bounds rather than depending only on the throughput mea-
surements. Another observation that can be made in this chapter is the effective
throughput on the network can also be increased by reacting to it. At the same
time, we can observe from the UDP throughput versus time graph in Figure 1.7

if the application is not controlled, it can change the characteristics of the other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

applications using the same network medium.

As described in this thesis, QUANTA still has some limitations which need
to be resolved. How do we integrate different application requirements into a QID
specification? Currently, we have demonstrated a simple mechanism to integrate
common applications into the QUANTA realm. In the specification of QID of an
application we have included synchronization and cost as two parameters. How to
incorporate such application knowledge into QID negotiations and to the commu-
nication and the QoS architecture is an open question. We have provided some
hooks to support re-negotiation using QUANTA: we have left open how to integrate
this concept into the QUANTAs interface. The weights algorithm, which is used
to react to network and host-load condition algorithms, could be improved to react
more effectively to the changing state of the application traffic characteristics. The
protocol-level components of QUANTA need to be implemented to guarantee the
end-to-end application-level QoS guarantee, which includes the scheduling portion
in the protocols using QID. The implementation of lateral translation of QID needs
support from different protocol-suites and their QoS supporting protocols.

To keep the applications within its QID bounds currently only the applica-
tions itself is penalized, because of the mechanisms included in QUANTA are reac-
tive rather than preventive. To make these mechanisms preventive, it is necessary
to modify the scheduling algorithms in the communication protocols as discussed
in the issues chapter (Chapter TIT). QUANTA by itself is a QoS interface between
the applications and the network protocol suites. Any application could take ad-
vantage of QUANTA in registering itself with the network protocols, negotiating
it’s QID with the network and react to the changing QoS conditions in the network

and on the host. However, to guarantee QID and prevent other non-QoS confor-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

mant applications from interfering with the QoS-conformant application (such as
the applications using QUANTA) it is essential to have a QoS scheduler inside the
communication protocol suite. The standards committees for protocol suites such
as [P and ATM are investigating into different QoS schedulers. Although QUANTA
is developing different QoS schedulers proposed in chapter III, it can work with any
other scheduler adopted by the standards committee. Hence, QUANTA in conjunc-
tion with the QoS schedulers in the protocols can provide predictable performance

to a wide spectrum of applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

BIBLIOGRAPHY

(1] “IRI Home Page,” http://www.cs.odu.edu/~tele/iri.

(2] S. Dharanikota, K. Maly, and C. M. Overstreet, “Performance evaluation of
TCP(UDP) /TP over ATM networks,” tech. rep., Department of Computer Sci-

ence, Old Domirion University, # TR_94.23, September 1994.

[3] S. Dharanikota, K. Maly, D. E. Keyes, and C. M. Overstreet, “An application-
oriented analysis of TCP/IP in high speed LANs,” ATNAC-94, December 1994.

Melbourne.

(4] D. Borman, R. Braden, and V. Jacobson, “TCP Extensions for High Perfor-

mance,” Request for comments 1923, May 1992.

(3] J. Postel, “Transmission Control Protocol,” Request for comments 799, Novem-

ber 1981.

[6] C. Partridge, “Workshop Report: Internet Research Steering Group Workshop

on Very-High-Speed Networks,” Request for comments 1152, April 1990.

[7] B. Leiner, “Critical issues in high bandwidth networking,” Request for com-

ments 1077, November 1988.

8] R. Fox, “TCP big window and NAK options,” Request for comments 1106, June

1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

[9] A. McKenzie, “Problem with the TCP big window option,” Request for com-

ments 1110, August 1989.

[10] R. Braden and V. Jacobson, “TCP extensions for long-delay paths,” Request

for comments 1072, October 1988.

[11] D. E. Comer, “TCP Buffering And Performance Over An ATM Network,” tech.
rep., Purdue, # CSD-TR-94_.26. March 1994.

[12] V. Jacobson, “Congestion avoidance and control,” ACM Computer Commu-
nication Review, Proceedings of the Sigcomm '88 Symposium, vol. 18, August

1988. Stanford, CA.

(13] A. Danthine, O. Bonaventure, Y. Baguette, G. Leduc, and L. Leonard, “OSI
95 Enhancements and The New Transport Services,” Local Area Network In-

terconnection, pp. 1-22, 1993.

[14] D. Ferrari, “Real-time communication in an internetwork.” tech. rep., Univer-

sity of California, Berkeley, # CSD-TR_94_034, 1994.

[15] C. Topolcic, “Experimental Internet Stream Protocol, Version 2 ST-TL.” Request

for comments 1190, October 1990.

[16] W. Prue and J. Postel, “Queuing algorithm to provide type-of-service for IP

links,” Request for comments 1046, February 1988.

[17] P. Almquist, “Type of Service in the Internet Protocol Suite,” Request for com-

ments 1349, July 1992.

(18] W. Fischer et al.. “Data Communications Using ATM: Architectures. Protocols,

and Resource Management,” [EEE Communications, vol. 32, August 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

19] T. ATM-Forum, ATM: User-Network [Interface specification - version 3.0.

Prentice Hall Publications limited, 1993.

[20] P. Boyer and D. Transchier, “A reservation principle with application to the

ATM traffic control,” Computer Networks and ISDN systems, vol. 24, 1992.

[21] B. Doshi and H. Heffes, “Overloading performance of an adaptive, buffer-
window allocation scheme for a class of high speed networks,” Teletraffic and

Data Traffic in a Period of Change, Jensen and Iversen (eds.), 1991. Elsevier.

[22] P. Newman, “ATM Local Area Network,” [EEE Communications, vol. 32,

March 1994.

[23] N. Yin and M. G. Hluchyj, “On closed-loop rate control for ATM cell relay

networks,” Proc. IEEE INFOCOM, June 1994. Toronto.

[24] H. T. Kung et al., “Use of link-by-link flow control in maximizing ATM network
performance: Simulation results,” Proc. [EEE Hot Interconnection Symposium,

August 1993. Palo Alto, California.

[25] J. Crowcraft, Z. Wang, A. Smith, and J. Adams, “A Rough Comparision of the
IETF and ATM Service Models,” IEEE Network, November/December 1995.

[26] S. Dixit and S. Paul, “MPEG-2 over ATM for Video Dial Tone Networks: Issues

and Strategies,” [EEE Network, September/October 1995.

[27) B. Braden, D. Clark, and S. Shenkar, “Integrated Services in the Internet Ar-

chitecture: an Overview.” Request for comments 1639, June 1994.

(28] L. Zhang et al., “Resource ReSerVation Protocol,” I[EEE Network, Septem-
ber/October 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

[29] “Tenet Home Page,” hitp://tenet.berkeley.edu.

[30] S. Boking, “TIP’s performance Quality of Service,” IEEE Communications

Magazine, August 1995.

[31] A. Banerjea et al., “The Tenet Real-Time Protocol Suite: Design. Implemen-
tation, and Experiences,” tech. rep., International Computer Science Institute,

CSD-TR-94.059. November 1994. Berkeley, CA.

(32] “BISDN access signaling system DSS2 (Digital Subscriber Signaling System No.
2),” ITU-T Recommendation Q.2931.

[33] E. S. Domino et al., “Overview of ATM networks: functions and procedures,”

Computer communications review, vol. 14, pp. 615-626, December 1991.

[34] J. Y. L. Boudec, "The Asynchronous Transfer Mode: a tutorial,” Computer

Networks and ISDN Systems, pp. 279-309, 1992.
[35] ATM forum signaling group discussions, June 1995.
(36] “STREAMS Programmer’s Guide,” SunSoft Technical Manual. SunOS 5.1.

[37] F. Bonomi and K. W. Fendick, “The Rate-Based Flow Control Framework for
the Available Bit Rate ATM Service.” IEEE Network, vol. 9, March/April 1995.

(38] H. T. Kung and R. Morris, “Credit-Based Flow Control for ATM Networks,”
IEEE Network, vol. 9, March/April 1995.

[39] D. Hong and T. Suda, “Congestion Control and Prevention in ATM Networks,”
IEEE Network Magazine, pp. 10-16, July 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

[40] P. Moldeklev, K.and Gunningberg, “Deadlock situations in TCP over ATM,”
4th International IFIP workshop on Protocols for HSN, August 10-12 1994.

Vancouver, B.C.Canada.

[41] C. Papadopoulos and G. M. Parulkar, “Experimental evaluation of SUNOS IPC
and TCP/IP protocol implementation,” I[EEE/ACM Transactions on Networks,

vol. 1, April 1993.

[42] S. Dharanikota, K. Maly, C. M. Overstreet, and R. Mukkamala, “Missing end-
system components: A case-study,” tech. rep., Department of Computer Sci-

ence, Old Dominion University, # TR_95_15, June 1995.

[43] S. Dharanikota, K. Maly, and C. M. Overstreet, “Three phases of
QUANTA: Design specifications and implementation details.” tech.
rep.. Department of Computer Science, Old Dominion TUniversity.

http://www.cs.odu.edu/~dhara_s/QUANTA.

[44] S. Dharanikota, K. Maly, and C. M. Overstreet, “Performance evaluation of
TCP(UDP)/IP over ATM networks,” tech. rep., Department of Computer Sci-

ence, Old Dominion University, # TR.95_23, September 1995.

[45] A. Campbell, G. Coulson, and D. Hutchison, “A quality of Service Architec-

ture,” Computer communications review, vol. 24, April 1994.

[46] A. K. J. Parekh, “A Generalized Processor Sharing A pproach to Flow Control in
Integrated Services Networks,” MIT Laboratory for Information and Decision

Systems, LIDS-TH-2089, February 1992. Cambridge, Mass.

[47] The ATM Forum Technical Committee, “ATM User-Network Interface Specifi-

cation: Version 3.1,” September 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

[48] The ATM Forum Technical Committee, “Traffic Management Specification:

Version 4.0, February 1996. ATM Forum/95-0013R10, Straw Vote.

[49] A. Banerjea, D. Ferrari, B. A. Mah, M. Moran, D. C. Verma, and H. Zhang,
“The Tenet Real-Time Protocol Suite: Design, Implementation, and Experi-
ences,” tech. rep., University of California, # CSD-TR_94_059, November 1994.

Berkeley, CA.

[50] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,”

Request for comments 1883, December 1995.

[51] C. Partridge, “A Proposed Flow Specification,” Reguest for comments 1363.

September 1992.

[52] L. Zhang et al., “Resource ReSerVation Protocol (RSVP) - Version 1 Functional

Specification,” Internet Draft, draft-ietf-rsvp-spec-10.tzt, February 1996.

(53] S. Dharanikota and K. Maly, “QUANTA:Quality of Service Architecture for
Native TCP/TP over ATM networks.” tech. rep., Department of Computer Sci-
ence Old Dominion University, #CSD-TR_.96.01. Februarv 1996. avaiable at
http://www.cs.odu.edu/~dhara_s/QUANTA, also accepted at HPDC Confer-

ence.

[54] A. Varma et al., “An efficient rate allocation algorithm for ATM networks pro-

viding min-max fairness,” High Performance Networking VI, September 1995.

[53] S. Dharanikota and K. Maly, “QoS issues in HQNs: QUANTA's ap-
proach,” tech. rep., Department of Computer Science Old Dominion University.
http://www.cs.odu.edu/~dhara_s/QUANTA, also accepted at Eighth [EEE

Workshop on Local and metropolitaArea Networks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

[56] “Some details of QUANTA," http://www.cs.odu.edu/~dhara_s/QUANTA.

[67] I. Stoica and H. Abdel Wahab, “Earliest Eligible Virtual Deadline First: A
Flexible and Accurate Mechanism for Proportional Share Resource Allocation,”

November 1995. Revised January 26, 1996.

(58] R. Jain, The Art of Computer Systems Performance Analysis. John Wiley &
Sons, Inc., 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

STATE DIAGRAMS AND ALGORITHMS

In Figures A.1 and A.2 we present the state diagrams of QUANTA involved in
different stages of an application communication. These state diagrams are self-
explanatory after understanding the functionality of QUANTAs application inter-
face. In Figure A.3, we present the weights algorithm used by QUANTA to identify
the application requirements by deciphering the weights and QTG map of the ap-
plication. Figure A.4 presents the algorithms used by the send side, and in Figure
A.D the receive side of the QUANTAs library to maintain. monitor and react to the

current state of the host and network status.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

RECGISTRATION STATE DIACRAM

PASSIVE CONNECTION ESTABUSHMENT

_.-=""" NEW CONNECTION

__CrxCheck

Close all the
EXIUNg connections
<rul relinquish thesr
Urces

b
) Q"'brc,,, CConnected
(Tx. anth the n

acceptat QID;

ACTIVE CONNECION ESTABUSHMENT

Figure A.1: State diagrams of QUANTA's application library.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

DATA TRANSFER

{ Connectaon
GsSlmt =% ubishment |

GSSMod ———> | Duta Transfer

]
1
]
)
‘
1
]
' CSS.Rey -——— Phuse |
1
]
| GSSRey
1 CGSS 1
' Gss 2
=
]
1
]
' agpy s
1
t GSS 1
' CGSS 2
[} FP Foruwnt Path
! BP Backuun! Path

CratSs rey

Figure A.2: State diagrams of QUANTA's application library (continued).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WEIGHTS ALGORITHM 7% Used to deterimine the “plan of action” for the scheduler in case of congestion */

/* This algorithm is run only at the connection establisahment time */

if (wloss <0.5) #* Meddle with loss - can afford high losses */
if((QTG && DELAY)=TRUE) /* Delay Sensitive connection */
if (wthput < wloss) /* bursty losses or loss rate */
if (wjitter <= wdelay) /* Can have bursty losses */
Decision = BURSTY
else /* Only increase the loss ration */
Decision = LOSS _RATE
else
Decision = LOSS_RATE

else /* Throughput sensitive connection */ 7* Meddle with delay */
i (wdelay <= wloss) /* Can have bursty losses */
Decision = BURSTY
else /* Only increase the loss rate */
Decisivn = LOSS_RATE

/* NOTE : "wjitter" is not considered because for throughput sensitive connections this parameter does not matter %/

else if (wloss >=0.5) /* connctions are loss-sensitive */
il (QTG && DELAY) == TRUE) /* Delay Sensitive connection */
ift wloss != 1.0)
ifl wiitter < wdelay) /* Can have bursty losses */
Decision = BURSTY
else /* Jitter sensitive */
Decision = LOSS_RATE
else /* Typical audio connections - what w do !! %/
Decision = LOSS_RATE
else 7* Throughput sensitive class */
ift wloss == 1.0) /* delay */
Decision = DELAY
else
Decision = LOSS_RATE

Figure A.3: QUANTA application library's weights algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SEND ALGORITHM

CSend(CCB, PKT)
PKT.SequenceNumber = ++ CCB.FPSegNum
PKT.Time = GetPresentTime();

i(CCB.FPremainingTokens >0)
QPKT(FPQ, PKT)
else
ift Decision == DELAY)
delay(CCB->FPDelay)
else if (Decision == LOSS_RATE)
Free (PKT);
else
Free (PKT);

SendDataThread (CCB)
while (TRUE)
if (QStatus (CCB.FPDataToTx))
SendData (PKT);
else

wail till PKT existin the) /% Using broadcast message */
delay (ScheduleTime)
RecyGSS.Reg (CCB , GSSPk)
ift GSSMinThroughput < GSSPkt.Throughput < GSS.MaxThroughput)

SET TOKENS ACCORDING TO THE NEW THROUGHPUT
else

Inform the user about the current state of the network

Figure A.4: QUANTA application library’s send-side algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Receiver measurements:

Jitter = LR2-RI - 182-511 These measurements are averaged over CGSS interval
which is measured as "’'N'* packet interval.
Delay = (R2 - 52) +/- Cluck Difference
Congestion condition is identified initially by the Jitter bounds
Lost Sequence numbers
Loss Rate = and then by the Loss Rate.
Total Sequence numbers
. In either case throughput is decreased by increasing the
Number of bytes received i i : A
Throughput = delay or increasing the loss rate (depending on the ""weights"’).
Time between CGSS packets _

PrevPktSentTimeStamp = 0; PrevPktRevTimeStamp =0 ;

PrevPktSeqNum = I;

MONITOR (CCB, PKT)
CCB.TemplJiuter = CCB.TempJister + (CurrentTime - PrevPktRcvTimeStamp) - (PKT.Time - PrevPkiSentTimeStamp)
PrevPkiSen(TimeStamp = PKT.Time PrevRevTimeStamp = CurrentTime

CCB.LostPkts = LostPkts + (PKT.SeqNum - PrevPkiSeqNum)
PrevPktSeqNum = PKT.SeqNum
/* Delay measurement needs clock difference and throughput can be calculated from the above information itself */

PrevCCGSclock =0 ;
CGSS.Reg Receive (CCB)
f(((CCB.TempJitter) / (TotalPkts - CCB.LostPkts)) > 0.1 * CCB.Jmax) OR (CCB.LustPkis/ TotalPkts) > 0.1 * LossRale j
CGSS.Throughput = PrevCGSS.Throughput * (1/(2* celing(AvgJitter / 10)))
else if (Avglitter < 0.1 CCB.Jmax) AND (LessRate > 0.1 * LossRate_max)
AND (CCB.MaxThroughput - CGSS.Throughput > 0.1 * CCB.MaxThroughput)
CGSS.Throughput = PrevCGSS.Throughput * 0.1 * CCB.MaxThroughput

Figure A.5: QUANTA application library's receive-side algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

APPENDIX B

ACRONYMS

AAL ATM Adaptation Layer
ATM Asynchronous Transfer Mode

BECN Backward Error Congestion Notification
BSD Berkeley Software Division

CAC Connection Admission Control

CCITT The International Telegraph and Telephone Consultative Committee
DQDB Distributed Queue Dual Bus

FDDI Fiber Distributed Data Interface

FECN Forward Error Congestion Notification
FPS Frames Per Second

GN Gigabit Network

HSN High Speed Network

HQN High Quality Network

(Continued in the next page)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[P
LAN
MAN
MPEG
MSS
(0N}
QoS
RFC
RTT
RTTM
ST
SWS
TCP
TOS
UDP
vC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Internet Protocol

Local Area Network
Metropolitan Area Network
Motion Picture Expert Group
Mean Segment Size

Open System Interconnection
Quality of Service

Request For Comments
Round Trip Time

Round Trip Time Measurement
Stream Protocol

Silly Window Syndrome
Transmission Control Protocol
Tvpe of Service

User Datagram Protocol

Video Collaborative application

159

160

VITA

Sudheer Dharanikota was born in Srikakulam, A.P., India, on June 14**, 1967. He
received his Bachelor of Technology in Electronics and Communications Engineer-
ing from Nagarjuna University, Vijayawada, India, in August, 1988; and received his
Master of Technology in Electrical Communications Engineering from Indian Insti-
tute of Science (IISc), Bangalore, India, in January, 1990. He worked as a Scientific
Officer at ERNET (Education and Research in Networking), 1ISc from January,
1990 until August, 1992, when he joined for his PhD at Old Dominion University
(ODU). From August, 1992 until August, 1996 he was working on his Ph.D degree

in the department of Computer Science at ODU, Virginia, USA.

Permanent address: Department of Computer Science
Old Dominion University
Norfolk, VA 23529
USA

This dissertation was typeset with XTEXT by the author.

tIATEX is a document preparation systern developed by Leslie Lamnport as a special version of

Donald Knuth's TgX Prograin.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Designing a High-Quality Network: An Application-Oriented Approach
	Recommended Citation

	tmp.1550584550.pdf.L6IB2

