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ABSTRACT

DEVELOPMENT OF A COUPLED FLUID/STRUCTURE AEROELASTIC 
SOLVER WITH APPLICATIONS TO VORTEX BREAKDOWN INDUCED

TWIN TAIL BUFFETING

Steven J. Massey- 
Old Dominion University 

Director: Dr. Osama A. Kandil

Simulation of tail buffet is studied for several delta wing-vertical tail configurations. 

Flow conditions are chosen such that the wing primary-vortex cores experience vortex 

breakdown and the resulting turbulent wake flow impinges on the vertical tail. The 

dimensions and material properties of the vertical tails are chosen such that the deflec­

tions are large enough to insure interaction with the flow, and the natural frequencies 

are high enough to facilitate a practical computational solution. This multi-disciplinary 

problem is solved sequentially for the fluid flow, the elastic deformations and the grid 

displacements. The flow is simulated by time accurately solving the laminar, unsteady, 

compressible, Navier-Stokes equations using an implicit, upwind, flux-difference splitting, 

finite  volume scheme. The elastic vibrations of the tail are modeled by coupled bending 

and torsion beam equations. These equations are solved accurately in time using the 

Galerkin method and a five-stage, Runge-Kutta-Vemer scheme. The grid for the fluid 

dynamics calculations is continuously deformed using interpolation functions to smoothly 

disperse the displacements throughout the computational domain. Tail buffet problems 

are solved for single tail cases, twin F/A-18 tail cases and twin highly swept generic 

tail cases. The use of an apex flap for buffet control is also computationally studied. 

The results demonstrate the effects of inertial structural coupling, Reynolds number, aft
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IV

fuselage geometry and spanwise tail location on the tail buffet loads and response. Favor­

able comparisons with experimental data indicate that the present aeroelastic method 

is well suited to providing qualitative insight into the tail buffet problem, as well as 

quantitative data for refined long duration simulations.
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NOMENCLATURE

E nglish  Sym bols

A attachment line

A (f) amplitude of function /

a local speed of sound

at absolute acceleration of the tail

b beam width

d beam thickness

C saddle point

C Sutherland constant

c wing root chord

c mean wing aerodynamic chord

°p constant pressure specific heat

Cv constant volume specific heat

E modulus of elasticity

E>m inviscid flux vector

viscous flux vector

et total energy per unit mass

T spiral saddle point (focus in 2-D)

G modulus of rigidity

I area moment of inertia

IzZCM mass moment of inertia about the tail span axis

Ie mass moment of inertia about the elastic axis
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J polar moment of inertia, coordinate transformation Jacobian

K turbulent-kinetic-energy, structural stiffness matrix

k thermal conductivity coefficient

L vertical tail length

I characteristic length

M integrated moment per unit length on tail, structural mass matrix

M rb root bending moment

M rt root twisting moment

m mass per unit length

N integrated force per unit length on tail

Tl(£l ith dominant frequency

P static pressure

Po total pressure

Q generalized aerodynamic force vector for structural calculations

q(t) generalized structural coordinate

9 heat flux per unit area, dynamic pressure

Q vector of conserved flow variables in generalized coordinates

9 vector of conserved flow variables in Cartesian coordinates

R ± 1-D Riemann invariants

S separation line

St tail plan area

Sl wing semispan

T temperature; kinetic energy

t time
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U characteristic velocity component

Um contravariant velocity component

V  velocity vector

V  elastic potential energy

W  total work done on tail by aerodynamic loading

w bending deflection of tail

u. v, w: Ui Cartesian velocity components 

xq distance between the elastic and inertial axes

xs x  coordinate along As cutting plane

x, y, z; Xi Cartesian coordinates

Greek Symbols 

a  angle-of-attack

0  angle-of-yaw, apex flap deflection angle

5 virtual displacement operator

S{j Kronecker delta tensor

e turbulent dissipation

7 ratio of specific heats, Cp/cy

6 single of twisting displacement

As leading-edge sweep angle

A second coefficient of viscosity

(i molecular viscosity

characteristic angular velocity magnitude 

<p free vibration modes for bending and torsion

p density
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T{j viscous shear stress tensor

uj natural frequency

C  computational coordinates

D im ensionless G ro u p s 

Cm  moment per unit length,

Cn  force per unit length, -^=
Qooc

Cp coefficient of pressure, ^

Crbm  coefficient of root bending moment,

Crtm  coefficient of root twisting moment,

M  Mach number, ^

n reduced frequency,

Pr  Prandtl number, ^

Re root chord Reynolds number,

Ro Rossby number,

r  nondimensional time, ^ aL
c

S ubscrip ts 

oc far field

V volume

S uperscrip ts

~  dimensional quantities

—*• vector in Cartesian coordinates

vector in computational coordinates

M r b _
^ o o ^ tc

QoaStC
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CHAPTER 1 

INTRODUCTION

1.1 Motivation

Current and future requirements for highly maneuverable fighter aircraft have 

necessitated research into the tail buffeting problem. With the advent of aircraft equipped 

with thrust vectoring and advanced flight control systems, post-stall departure can now 

be effectively controlled, making aggressive maneuvering at elevated angle-of-attack a 

reality. These aircraft maneuver at very high angle-of-attack (HAOA) and under high 

loading conditions. The tail buffeting problem affects all fighter aircraft to a degree, 

but is particularly severe for the F/A-18. The production F/A-18 achieves its high ma­

neuverability through the use of wing leading edge extensions (LEX), a delta wing and 

strategically placed vertical tails. The LEX produces lift at HAOA by generating a pair 

of vortices that trail over the wing surface. The vortices also entrain air over the vertical 

tails, m ain taining control surface effectiveness at HAOA. This combination of LEX and 

vertical tail location produces excellent HAOA performance. However, at HAOA, the 

vortices emanating from the highly swept leading edge extensions breakdown, or burst, 

before reaching the vertical tails, bathing them in a highly unsteady, swirling flow. This 

flow produces severe buffeting of the vertical tails and has led to their premature fatigue 

failure. Figure 1.1 shows smoke and tuft flow visualizations [13], of the F/A-18 High 

Alpha Research Vehicle, (HARV), at a  =  20°, 25° and 30°. The forward vortex burst 

location of the a  =  30° condition produces the largest buffet loads.

T h e  fo rm a t o f  th is  d is s e rta tio n  is based on  th e  Am erican Institute of Aeronautics and Astronautics 
Journal an d  was typeset in  IN T eX  2 j  by th e  a u th o r .
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Figures 1.2 and 1.3 depict reconstructions from actual flight data of a post 

stall reversal, also known as a Herbst Turn or J- Turn, followed by an offensive spiral or 

helicopter gun attack. In each figure the black and white vehicle is the HARV, while the 

red vehicle is a NASA chase F/A-18. A prototype thrust vectoring system recently tested 

on the F/A-18 HARV enabled the aircraft to maneuver at up to 65° angle-of-attack, and 

steady-state trim to 70° angle-of-attack. In Figure 1.2, the velocity vector of the HARV 

clearly shows the rapid onset of angle-of-attack, with a  maximum of 60°, just before the 

velocity vector roll and target acquisition, shown by the projected square. The overall 

maneuver takes about 17 seconds. In Figure 1.3 the HARV has acquired the target at 

the end of the high alpha reversal, Figure 1.2, and continued to track the target for about 

10 seconds in the 50°-60° angle-of-attack range. Next generation aircraft such as the 

F-22 and Joint Strike Fighter will be required to fly these types of maneuvers routinely, 

thus it is imperative that aircraft designers have the ability to model the flow physics of 

high alpha, buffet flow with high fidelity at minimal cost.

In general, buffeting refers to the forced vibration of a body under the aerody­

namic action of a wake. The principal difference between the phenomena of buffeting 

and flutter is that flutter is a  self-excited vibration while buffeting is a  forced vibration. 

Thus, flutter is a stability problem and buffeting is a structural response problem. The 

goal of tail buffeting research is to insure that the aerodynamic wake frequencies are 

far removed from the resonance frequencies of the tail while maintaining the favorable 

aerodynamics from which the aircraft’s agility is derived. This may be accomplished by 

passive or active control of the wake flow via a wide variety of control solutions, such 

as suction/blowing and/or control surface deflections. Traditional analysis methods as­

sume that the aerodynamic forces are known when evaluating the buffeting response.
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This method allows the structural properties of the vertical tails to be strengthened 

sufficiently for maximum loading, but still does not alleviate the fatigue problem. The 

assumption of aerodynamic forces also precludes the approach of modifying the flow to 

alleviate tail buffeting, since the aerodynamics have been assumed away. For this reason, 

flow control of the tail buffeting problem has only been attem pted experimentally.

Since accurate theoretical models currently do not exist and full aircraft com­

putational simulations are prohibitively expensive, there is a need for a simple model 

that captures the essence of the tail buffeting phenomenon. The purpose of this study 

is to create a practical tool for conducting fundamental HAOA tail buffeting research 

while retaining as much of the physics as possible.

1.2 The Present Research

The goal of this study is to develop an efficient computational simulation of 

vortex breakdown induced vertical tail buffeting. The basic model under consideration 

consist of a sharp-edged delta wing placed at a moderately high angle-of-attack in order 

to produce a strong vortex breakdown flow. Vertical tail(s) of varying geometry are 

suspended directly behind the trailing edge of the delta wing and modeled as cantilevered 

beams in bending and torsion. This multi-disciplinary problem is solved sequentially for 

the fluid flow, the elastic tail deformations and the grid displacements. The fluid flow 

is simulated by time accurately solving the laminar, unsteady, compressible, Navier- 

Stokes equations using an implicit, upwind, flux-difference splitting finite volume scheme. 

The elastic vibrations of the tails are modeled by uncoupled bending and torsion beam 

equations. These equations are solved accurately in time using the Galerkin method and 

a five-stage Runge-Kutta-Vemer scheme. The grid for the fluid dynamics calculations
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is continuously deformed using interpolation functions to disperse the displacements 

smoothly throughout the computational domain.

In Chapter 2, a survey of the literature on vortex breakdown flows and the 

resulting tail buffet problem is presented. A historical perspective of vortical flow is given 

emphasizing early physical observations. The experimental literature is then reviewed 

focusing on the key physical issues. Next, numerical simulations of vortex breakdown 

and buffet are surveyed. The review concludes with an introduction to vortex breakdown 

control techniques.

In Chapter 3, the analytical and numerical basis of the fluid dynamics formu­

lation is presented. The laminar, unsteady, compressible, Navier-Stokes equations are 

written in the strong conservation form in time-dependent, body-conformed coordinates. 

Strong refers to the pure divergence form of the differential equation and conservation 

refers to the numerical property of the resulting finite difference equation which pre­

serves the conservation of the flow variables at the discrete level. The computational 

scheme is then formulated, as an implicit, upwind, Roe flux-difference splitting, finite 

volume scheme. Initial and boundary conditions are discussed. Issues regarding single 

and multiblock CFD gridding are then presented.

In Chapter 4, the structural tail buffet problem is formulated in detail both 

analytically and numerically, including boundary conditions. The governing equations 

for coupled bending and torsional vibrations of a beam are derived from Hamilton's 

energy principle. The numerical scheme for solving the coupled bending and torsion beam 

equations using the Galerkin method with six bending modes and six torsion modes is 

outlined. The chapter then is concluded with a discussion of the general solution method 

to solve the coupled sets of fluid, structure and grid equations.
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Chapters 5 through 8 contain numerical results for the single and twin tail 

investigations conducted in this study. In Chapter 5, the fundamental issues of inertial 

coupling, Reynolds number dependence and aeroelastic effects are addressed with regard 

to single vertical tail buffet.

Chapter 6 addresses the determination of the effect of aft fuselage geometry 

on twin F/A-18 vertical tail buffet. Three fuselage configurations are considered; wide, 

narrow and open. Secondarily, the effect of the tail response on the loads will be ac­

cessed for the wide and narrow configurations by comparing the rigid tail loads with 

the dynamically interacting cases. Finally, the effect of decreased tail stiffness will be 

considered for the open fuselage case.

The focus of Chapter 7 is the determination of the effect of spanwise tail location 

on the tail buffet loading and response. Three spanwise tail positions are considered: 

corresponding to 33%, 56% and 78% of the wing semispan. Quantitative comparisons 

are made with the experimental data of Washburn et al. [12] for the same configuration.

In Chapter 8, the issue of control is addressed. Results are presented for an 

apex flap deflection scheme which delays the onset of vortex breakdown. The configu­

ration used is the inboard Washburn tail case of the previous chapter, which had the 

highest level of buffeting for all of the cases studied. The flap is deflected by a single 

optimum single which was experimentally [14] found to produce the greatest delay in the 

onset of breakdown. Chapter 9 concludes the present study with general remarks and 

recommendations for future investigations.
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Figure 1.1: F-18 HARV smoke and tuft flow visualization for a) a  =  20° b) 25° and 
c) 30°. M  =  0.24, Re = 11 x 106. NASA Dryden EC89-0096-206, EC89-0096-226 and 
EC89-0096-240
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Figure 1.2: Flight data reconstruction of post-stall reversal also known as a Herbst turn 
or J-turn. NASA Dryden [1]

u

Figure 1.3: Flight data reconstruction of an offensive spiral also known as a helicopter 
gun attack. NASA Dryden [1]
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CHAPTER 2 

LITERATURE REVIEW  

2.1 Introduction

One advantage of numerical modeling over wind tunnel experimentation is the 

ability to easily and economically incorporate a  wide variety model geometries and con­

trol solutions, such as suction or blowing and/or control surface deflections. The purpose 

of this study is to develop a simple numerical simulation of vortex breakdown induced 

tail buffeting to serve as a test bed for investigations into controllability and as a model 

for the examination of the fundamental physics. Thus, the focus of this review is on the 

physical nature of these phenomena and methods to numerically simulate them.

2.2 Vortex Breakdown

The literature on vortical flow and vortex breakdown in particular is substantial. 

These areas have been the subject of intense research for over four decades. Many 

excellent comprehensive reviews exist. Of particular interest in this study are those of 

Newsome and Kandil [15], Escudier [16] and Rockwell [17].

2.2.1 Historical Perspective

2.2.1.1 The Discovery of Vortex Lift

Beginning with the first controlled flights of powered aircraft, there has been a 

quest for ever-increasing speed and maneuverability. As Polhamus [18] recounts in his 

survey article, the quest for speed is what led to the introduction of highly swept wings
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and the discovery of vortex lift. In 1940, Ludwieg [19] experimentally demonstrated 

that Busemann’s [20] 1935 supersonic swept wing theory also applied to subsonic com­

pressibility effects. Thus, German researchers immediately began to design highly swept 

wings for their Messerschmitt Me 262 jet. The Me 262 first flew in 1942 with a  sweep 

of 18°. Advanced versions of the Me 262 incorporated wing sweep angles as high as 50°. 

Also under consideration were highly swept delta wings, but the end of the war halted 

German research.

In 1946, researchers at the Langley Memorial Aeronautical Laboratory began 

studying the captured German DM-1 highly swept delta wing test glider. In an attem pt 

to boost its low speed lift performance, Wilson and Lovell [21] sharpened the leading edge 

of the DM-1. This caused the flow to separate from the leading edge thereby producing 

a strong vortex which yielded a large lift increment. Their research provided the first 

insight into the effects of leading edge radius and Reynolds number on vortex lift.

2.2.1.2 Early Observations of Vortex Breakdown

The phenomenon of vortex breakdown was first documented by Peckham and 

Atkinson [22] in their 1957 study of vortex lift on “Gothic” wings: which are similar to 

delta wings, but have curved leading edges in the plan view. They noticed tha t as the 

angle of incidence increased beyond 25°, the length of the vortex core, made visible by 

natural condensation, decreased from a length of three root-chords downstream of the 

trailing edge to only 1/4 root-chord at 30° incidence. They noted that the condensation 

trail began to “bell-out” before disappearing and attributed this to the core becoming 

more diffuse.

In 1958, Elle [23], working independently of Peckham and Atkinson [22], noticed 

the same phenomenon on a delta wing and termed it “vortex breakdown.” Elle [23]
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suggested that breakdown was caused by the vorticity field away from the core impeding 

downstream transport of fluid in the core.

In 1960, Werle [2], using water t u n n el visualization, also observed the depen­

dence of breakdown location on the incidence of a delta wing. He suggested tha t the 

m echan ism for vortex breakdown was the sudden transition of the vortex flow from lam­

inar to turbulent. Werle also showed the initial dependence of breakdown location on 

Reynolds number for very low Reynolds numbers. In Figure 2.1, the breakdown position 

at Re =  5,000 is further aft than the case of Re  =  10,000, which is nearly in its limiting 

position.
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Figure 2.1: Effect of Reynolds number on vortex breakdown on a 63° delta wing. 
Retouched and shown in negative, top: a  =  20°, Rec =  5000; bottom: a  =  20°. 
Rec =  10,000. Note; the photo of the bottom  wing was warped and has been retouched. 
Werle [2].
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In near-sonic studies also published in 1960, Elle [24] contended that, because 

of the relative invariance of breakdown location with respect to Reynolds numbers be­

tween 104 and 5 x 106, it was improbable tha t transition was the prime mechanism of 

breakdown. He conceded, however, that “the phenomenon is apparently due to some 

sort of instability.” Also based on the observed Reynolds number invariance, was his 

assertion that the weak shock at the breakdown location was a result of the breakdown, 

not the cause.

In 1961, Lambourne and Bryer [3] published the first comprehensive exper­

imental investigation of vortex breakdown on a delta wing. They identified the two 

major modes of breakdown: the axisymmetric bubble type and the asymmetric spiral 

type, shown in Figure 2.2. They suggested that the primary cause of breakdown was

Turbulence

Spiralling

Deceleration

Figure 2.2: Sketch of spiral type vortex breakdown [3].
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an increase in pressure along the vortex axis. They also studied the effects of incidence, 

sweepback, Reynolds number, and upstream and downstream flow perturbations.

In 1960, Squire [25] performed the first analytical study of vortex breakdown. 

He suggested that breakdown was a result of disturbances propagating upstream along 

standing waves in the vortex core. His analysis was restricted to cylindrical vortices and 

symmetrical disturbances.

In 1962, Harvey [26] contended that the simplified flow conditions of the classical 

cylindrical vortex tube better isolated the mechanisms of breakdown and were more 

applicable to axisymmetric based theories [25,27,28]. This marked an experimental 

shift away from delta wings, and towards the study of the axisymmetric bubble-type 

breakdown flows in cylindrical tubes.

A remarkable feature of these early studies, as observed by Escudier [16] and 

others, is that the key ideas of axial stagnation, sudden transition, instability and wave 

motion are all present in these early works, but there is still, to this day no generally 

accepted theoretical description of vortex breakdown. In the author’s opinion, this is 

because the dominant cause of vortex breakdown depends on the flow regime. In the case 

of a delta wing at high incidence, the dominate cause is the adverse pressure gradient 

stemming from the wake which then causes the axial stagnation associated with the 

breakdown.

2.2.2 Physical C haracteristics and Topology o f V ortex  Breakdown

In Lambourne and Bryer’s [3] classic photograph, sec Figure 2.3, the two dom­

inant modes of vortex breakdown can be seen clearly. The lower vortex shows the nearly 

axisymmetric swollen core in which the dye has diffused into a recirculating bubble re­

gion. The upper vortex shows an asymmetric spiral filament in which the dye remains
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concentrated until the onset of large scale turbulence. Both forms exhibit axial stagna­

tion as well as a region of reversed axial flow. The spiral form can be further classified 

into three successive stages; a  sudden deceleration of the fluid moving along the vortex 

core, an abrupt kink where the core is deflected spirally for a few revolutions, and finally 

a  transition to large scale turbulence, see Figure 2.2.

The precise relationship of the spiral and bubble forms is still a matter of 

controversy. Leibovich [29] and Sarpkaya [4, 30, 31] contend that the two forms are 

fundamentally different phenomenon. Escudier [16] suggests that the axisymmetric or 

bubble form is fundamental, and that the asymmetric spiral form is a consequence of the 

instability of the bubble. Figure 2.4 shows bubble type breakdowns of varying symmetry

Figure 2.3: Vortex breakdown on a 65° delta wing in water, Re =  104 [3].
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Figure 2.4: Axisymmetric vortex breakdown in a swirling flow through a  pipe at moderate 
(top) and slightly higher (bottom) inlet swirl ratios. Sarpkaya [4].

for increasing inlet swirl ratio. In delta wing experiments [3], it has been noted that the 

axisymmetric bubble breakdown occurs only occasionally and is short lived. This would 

favor the latter description. Regardless of their fundamental relationship, the two forms 

are very different in structure.

A large portion of the literature stems from experimental investigations of con­

fined vortices generated in tubes, where swirl is introduced by upstream guidevanes. Of 

particular note are the reports by Harvey [26], Sarpkaya [31], Kirkpatrick [32] and Faler 

and Leibovich [33]. In general, the vortex in a tube is highly axisymmetrical, radially 

confined and subject to only small axial variations unless the tube is flared. The vortex 

generated by a delta wing is formed from the roll-up of the vortex sheet which is contin­

uously shed from the leading edge, so that a significant variation in the axial direction 

is an inherent feature of the vortex structure. This lack of axial symmetry triggers the
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unstable axisymmetric bubble to degenerate to the asymmetric spiral form, commonly 

found on delta wings. Escudier [34,35] used a device in which the vortex was generated 

by a jet tangent to the wall of a cylindrical cavity with a  side slot entry which then 

was exhausted to a cylindrical tube. Although, this process is more closely related to 

the leading-edge vortex, neither reproduces the type of free vortex flow found on a  delta 

wing.

Thus, for a clear understanding of the fundamental physics of the flow cur­

rently under study, a detailed description of the vortical flow over delta wing is in order. 

Delery [6] gives an excellent physical description of the flow field around a delta wing 

at incidence based on topological fluid mechanics. Mathematical vector field topology 

provides a concise grammar in which separated flows can be described rationally. The 

essential components of vector field topology are the points, curves and surfaces that, 

taken together, characterize all integral manifolds in V. Integral manifolds include par­

ticle traces, streamlines and stream surfaces. Points in the velocity field where V  = 0 

are known as singular or critical points. These points coincide with flow separation and 

attachment lines, and the stagnation points associated with vortex breakdown. Critical 

points are characterized by their surrounding local velocity field or more precisely by the 

eigenvectors and eigenvalues of the Jacobian of velocity at the critical point, see Globus 

et al. [5] for details. Figure 2.5 shows the three basic types of critical points: nodes, 

saddles and foci (2-D only). Nodes and foci can be further classified as attracting or 

repelling based on the local velocity direction. Since the 1970’s, a significant amount of 

mathematical rigor has been incorporated into the theory of topological fluid mechan­

ics, see Tobak and Peake [36] and Levit [37]. Much of the past mathematical effort 

was expended to develop rigorous topological theorems to predict flow features based
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Figure 2.5: Classification of 2-D {left) and 3-D (right) critical points by local velocity. 
Globus et al. [5].

on limited observations. An example is the application of the well defined 2-D topology 

theory applied to the closed surfaces of 3-D bodies to infer off-body flow features. With 

the advent of CFD and the advancement of modem experimental techniques, such as 

Laser-Doppler velocimetry, the use of topology has shifted from of method of prediction 

to means of interpretation. This approach will be used throughout this study.

The flow field about a sharp delta wing at a moderate angle-of-attack is shown in 

Figure 2.6. Shown in the figure are the shear layers resulting from the primary, secondary 

and tertiary boundary layer separations along with streamlines and skin friction lines. 

Figure 2.7 depicts the crossflow topology corresponding to the left side of the delta 

wing shown in Figure 2.6, where saddle points are marked with C and foci (in the

2-D sense, or attracting spiral saddles in 3-D) are marked with T .  An experimental 

crossflow visualization by Werle [7] is shown in Figure 2.8. Streamlines that converge to 

separation lines are denoted by S,  Figure 2.9. Half saddle points C\, C2 , C3 correspond 

to the separation lines, Si, S2, S3 in Figure 2.9 and the half saddle points denoted by 

C4 , C5 , Cq correspond to attachment lines, Ai, A2, A3.
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Figure 2.6: Sketch of shear layers resulting from boundary layer separations for a  sharp 
edged delta wing at a moderate angle-of-attack with no breakdown. Delery [6].

f77777777t ZZZZ2

Topological sketch of a typical delta wi:wing crossflow plane. Delery [6],
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Figure 2.8: Hydrogen bubble flow visualization of a crossflow plane above a sharp 76° 
delta wing in water, Re =  20,000, a  = 20°. Werle [7].

Figure 2.9: Topological sketch of the left aft wing surface showing skin friction lines, and 
separation and attachment lines. Delery [6].
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With the general flow field topology established, attention is now focused specif­

ically on the vortex breakdown. This is accomplished by extracting a vertical slice down 

the length of the vortex core for a typical numerical solution presented in the current 

study. In Figures 2.10-2.13, the topology of the vortex breakdown is shown together 

with plots of velocity and total pressure to reveal their relationships. The vertical axial 

plane under consideration passes through the tip of the delta wing and the trailing edge 

spanwise location of y = 0.17c. In order to preserve the true geometry of the flow, the 

arc length coordinate, x3 is used rather than x. Figure 2.10 depicts the in plane stream­

lines, where the saddle points and foci are denoted by C and T , respectively. From the 

arrows on the streamline plots it is evident that both foci are of the attracting type. 

Areas of flow stagnation and reversal can clearly been seen in Figure 2.11, which shows 

regularly spaced velocity vectors with marked and labeled critical points. Since the true 

flow is three dimensional, the normal component of velocity also needs to be considered. 

In Figure 2.12, contours of the normal velocity component are plotted along with the 

in plane topology. An important feature of this plot is the boundary contour between 

negative and positive velocities. If 2-D critical points lie on this contour of zero normal 

velocity then they are true 3-D critical points, otherwise they are only critical points 

in a 2-D sense. Thus, from Figure 2.12 C\ and T \  are confirmed to be a 3-D saddle 

and an attracting spiral saddle respectively. Points C2  and T 2  clearly possess a normal 

velocity component and hence are not 3-D critical points. The existence of exclusively

2-D critical points, such as C2  and are a result of the unsteadiness of the breakdown 

flow and hence represent the convection of 3-D critical point structures downstream. 

Another useful quantity in the detection vortex breakdown is total pressure. In Fig­

ure 2.13, contours of total pressure are plotted along with the topology obtained from
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the streamlines. High gradients in total pressure, seen by clustered contour lines, reveal 

the boundaries of the vortex core. Another key feature shown in the plot is that the 

start of the core expansion precedes the first stagnation point in the flow, C\.

In su m m ary, the key features of the delta wing vortex breakdown flow were 

accurately described early on by Lamboume and Bryer [3], and they axe as follows:

1. Vortex breakdown involves a sudden deceleration of the axial flow accompanied by 

expansion of the vortex around the stagnant core. A short distance downstream a 

transition to large-scale turbulence occurs.

2. An essential feature for breakdown to occur is relatively low total pressure in the 

core of the laminar (pre-breakdown) vortex.

3. A prerequisite for the core flow of a laminar vortex to stagnate is a positive static 

pressure gradient along the vortex axis.

4. The breakdown position is sensitive to the pressure gradient along the vortex axis, 

a reduction in the pressure gradient serving to delay breakdown.

5. The required positive pressure gradient could be attributed to viscous actions 

within the vortex core, or to deceleration of the flow external to the core. A small 

change in the external flow would suffice, because an external pressure gradient 

becomes magnified towards the axis of the vortex.

6. Depending on the ratio of the rotational to axial velocity components, spontaneous 

expansion of a vortex occurs and in turn produces the pressure rise necessary for 

core stagnation.

7. Breakdowns situated above a delta wing may be attributed to the pressure recovery 

associated with the existence of the trailing edge.
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8. When the breakdown occurs upstream of the trailing edge, its position depends on 

a combination of incidence and leading-edge sweepback and is largely independent 

of Reynolds number.

9. The presence of breakdown above the wing surface causes a  local loss in suction and 

modification of the position of surface flow separation. Hummel and Srinivasan [11] 

showed the resulting abrupt loss of lift can create a substantial nose up pitching 

moment.
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Figure 2.10: Streamlines plotted on an axial plane showing a typical vortex breakdown 
topology from computed results for a 76° delta wing at a  =  35°, Re =  1.25 x 106, 
M  =  0.3. See Chapter 7.
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Figure 2.11: In plane velocity vectors with marked and labeled critical points, a  =  35°. 
Re =  1.25 x 106, M  =  0.3. See Chapter 7.
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Figure 2.12: Contours of the velocity component normal to  the axial cutting plane. 
Dashed lines indicate velocities pointing out of the page. Critical point locations obtained 
from streamlines are also plotted, a  =  35°, Re =  1.25 x 106, M  = 0.3. See Chapter 7.
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Figure 2.13: Contours of total pressure, and labeled critical point locations showing the 
vortex core expansion following breakdown, a  =  35°, Re =  1.25 x 106, M  =  0.3. See 
Chapter 7.
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2.2.3 Num erical Sim ulations o f V ortex Breakdown

Early computations of vortex breakdown, by Gartshore [38] and others, only 

considered isolated, axisymmetric. steady vortices. Vortex breakdown was identified as 

occurring at the location where the calculation procedure could no longer continue due 

to the excessively high axial gradients, which arise as the stagnation point is approached. 

In 1 9 8 7  Spall [39] solved for an isolated vortex at very low Reynolds numbers, using the

3 - D  incompressible Navier-Stokes equations written in a velocity-vorticity formulation. 

Using this formulation, the Rossby number, Ro =  ^  which represents the ratio of 

inertial forces to Coriolis forces, was found to be a critical parameter in the prediction of 

breakdown, where u, I and Cl represent characteristic speed, length and rate of rotation, 

respectively. The present study is not focused on the onset of breakdown, but rather, 

the unsteady flow within and especially downstream of breakdown. Thus, attention is 

focused on methods capable of accurately resolving the entire unsteady flow field.

The first time-accurate, full Navier-Stokes solutions of supersonic vortex break­

down were produced by O .  Kandil, H .  Kandil and Liu [4 0 ]. T h e y  considered a  s u p e r ­

sonic, quasi-axisymmetric vortex flow in a configured circular duct. In general, quasi- 

axisymmetric solutions are obtained by forcing the components of the flow field vector 

to be equal on two axial planes, that are in close proximity of each other. In their study, 

a shock wave was generated near the duct inlet and an unsteady vortex breakdown was 

predicted behind the shock. The flow was found to be characterized by the evolution, 

convection and shedding of vortex breakdown bubbles. In papers by O. Kandil. H. 

Kandil and Liu [ 4 0 - 4 3 ] ,  extensive parametric studies were conducted to determine the 

effects of grid resolution, Reynolds number, inflow/outflow boundary conditions, and 

inlet swirl ratio. External and three-dimensional flow configurations also were addressed
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in the more recent papers. A detailed discussion of these results also can be found in 

the dissertation by H. Kandil [44].

Advances in algorithms and computational resources have made it possible to 

retain all of the key physical aspects of the vortex breakdown flow, namely, unsteadiness, 

viscosity and three-dimensionality. A delta wing with sharp leading edges presents a 

simple configuration for study. Taylor et al. [45] solved the unsteady, thin-layer Navier- 

Stokes equations for stable vortex flow over a 76° delta wing at 20° incidence. Comparison 

with experimental data revealed that the computational method under predicts vorticity 

and total pressure loss in the vortex core. Gordnier and Visbal [46], solved the unsteady,

3-D, full Navier-Stokes equations, for vortex breakdown flow over a 76° delta wing at 

20.5° incidence. Their results showed that the shear layer emanating from the leading 

edge is subject to an instability similar to that occurring in a two-dimensional shear 

layer. Webster and Shang [47] investigated vortex breakdown over a 70° delta wing at 

33° incidence, also using the full set of governing equations. They noted that the time 

averaged flow field resembled a bubble type breakdown, while the instantaneous flow field 

appeared to be the spiral type. In 1993, O. Kandil, H. Kandil and Liu [48], presented 

the first solutions to the full Navier-Stokes equations for transonic vortex breakdown on 

a 65° delta wing.

Vortex breakdown has also been simulated on simplified F/A-18 configurations 

as a precursor to the study of tail buffeting. In 1990, Rizk, Schiff and Gee [49] modeled 

the F/A-18 at Mach number and angle-of-attack of 0.24 and 30.3°, respectively. Results 

obtained from the solution of the steady, Reynolds averaged Navier-Stokes equations on 

a Chimera-type grid consisting of 1.7 million grid points, were found to be in qualitative 

agreement with flight test data.
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The effect of turbulence modeling on subsonic delta wing vortex breakdown 

was assessed by Ekaterinaris and Schiff [50]. They found that the main effect was to 

increase the amount of vorticity in the vortex feeding sheets, thus increasing the strength 

of the primary and secondary vortices. This in turn affected the location and size of the 

breakdown. In a very recent computational study by Rizzetta [51], the effect of a two 

equation (K  — e) turbulence model on delta wing vortex breakdown was assessed. It was 

found that the (K  — e) model produced excessive turbulent dissipation, which resulted 

in enlarged weak vortices with no breakdown. The focus of the present study is on 

tail buffeting, therefore to avoid issues of turbulence modeling, only the laminar Navier- 

Stokes equations are considered.

2.3 Vortex Breakdown Induced Tail Buffeting

In general buffeting refers to the forced vibration of a body under the aerody­

namic action of a wake. The principal difference between the phenomena of buffeting 

and flutter is that flutter is a self-excited vibration while buffeting is a forced vibration. 

Thus, flutter is a stability problem and buffeting is a structural response problem. In 

this study, the tail buffeting phenomenon is particularly violent and long lasting as it is 

a result of prolonged high speed, high angle-of-attack maneuvers.

2.3.1 H istorical Perspective

The study of the buffeting phenomenon began in earnest with the investigation 

into the fatal crash of the Junkers low-wing monoplane at Meopham, England in 1930. 

[52] Eye witnesses reported seeing the plane enter a cloud, suddenly hearing a loud noise 

and then seeing the pieces of the plane fall to the ground. British investigators concluded 

that the most likely cause of the accident was buffeting of the tail, brought on by strong

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rising air currents. The updrafts effectively increased the angle of incidence, resulting 

in flow separation over the wing. The tail, situated in the wing’s highly turbulent wake 

flow, was then subjected to severe vibrations, which resulted in its catastrophic failure.

The primary cause of tail buffeting in these early low-wing monoplanes was 

flow separation at the wing-fuselage junction. In 1934, White and Hood [53] found that 

adding large wing fillets and an engine cowling greatly reduced buffeting and improved 

the aircraft’s lift-to-drag ratio.

In 1939, Abdrashitov [54] asserted that existing solutions to the tail buffeting 

problem were based only on qualitative estimates of the phenomenon, and that the 

quantitative analytical problem had not even been approximately solved. Abdrashitov’s 

analysis considered only the dynamics of the tail, in which the loads were assumed to 

be harmonic. The tail was modeled as a beam in bending and torsion and solved via 

Galerkin’s method. Remarkably, this parallels the approach used in the present study. 

Since the forces are obtained directly from the CFD solution, there is no need for all of 

the additional complexities involved in predicting the buffet loads. In a sense, the theory 

has come full circle.

2.3.2 P hysical C haracteristics o f Tail Buffeting

Modem fighter aircraft, such as the F/A-18, maneuver at very high angles-of- 

attack under high loading conditions. The F/A-18 achieves its high maneuverability 

through the use of wing Leading Edge extensions (LEX), a delta wing, and strategically 

placed vertical tails. The LEX produce lift a t high angles-of-attack by generating a pair 

of vortices that trail over the wing surface. The vortices also entrain air over the vertical 

tails, maintaining control surface effectiveness at high angle-of-attack. This combination 

of LEX and vertical tail location produces excellent high angle-of-attack performance.
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However, at high speed, high angle-of-attack conditions the vortices emanating from 

the highly swept leading edge extensions breakdown or burst before reaching the verti­

cal tails, bathing them in a highly turbulent, sw irling  flow. This flow produces severe 

buffeting of the vertical tails which leads to premature fatigue failure.

In the past decade, this phenomenon has been the subject of substantial ex­

perimental inquiry. In 1983, Triplett [55] conducted wind tunnel studies of a 13% scale 

F-15 model. He concluded that the predominant vibration mode was first torsion and 

occurred at 22° angle-of-attack. He also concluded that tail flexibility has a significant 

effect on the impinging buffet loads.

In 1989, Fisher, Del Frate and Richwine [56] conducted flight test on the NASA 

F/A-18 High Alpha Research Vehicle (HARV). Flow visualizations revealed extensive 

regions of separated, reversed, and vortical flow on the wing at angles-of-attack above 

20° .

Erickson et al. [57] investigated F/A-18 vortex flows at subsonic through tran­

sonic speeds using a 6% scale model. They concluded that the LEX vortices are highly 

compressible, even at very low subsonic Mach numbers. However, compressibility ef­

fects are not manifested on the forebody until transonic speeds, where shock-induced 

boundary layer separation promotes larger and stronger vortices.

Lee and Brown [58] also used the 6% scale F/A-18 model in their wind tunnel 

studies of tail buffet. Unsteady pressure measurements on the vertical tail were con­

ducted and the vortex flow structure behind the tail was studied. It was observed that 

the LEX fence has only a small effect on the steady balance measurements such as lift 

and pitching moment.
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Cole, Moss and Doggett [59] conducted wing tunnel test on a l / 6th scale rigid 

F/A-18 model fitted with flexible vertical tails of two levels of stiffness. They con­

cluded that the buffeting response occurred in the first bending mode, and increased 

non-linearly with dynamic pressure and peaked at M  =  0.3. They also classified the 

buffeting response as “heavy” to “severe.”

In a recent NASA technical memorandum [60], Moses and Pendleton com­

pared tail pressure measurements between full-scale and 1/6-scale models. Results were 

presented in terms of non-dimensional buffet excitation parameter and power spectral 

densities of root bending moment for an angle-of-attack range of 7° to 40° and Mach and 

Reynolds numbers up to 0.15 and 12.3 x 106, respectively. The LEX fence was confirmed 

to be effective at reducing buffet loads for a < 32°. It was found that the data trends 

for the two different size models scaled well using a simple scaling equation.

An experimental investigation of vortex breakdown induced tail buffeting, par­

ticularly relevant to this study, is that of Washburn, Jenkins and Ferman [12]. They 

conducted an extensive investigation into vortex-tail interaction using a 76° delta wing 

with twin vertical tails. The vertical tails were placed at nine locations aft of the delta 

wing. The results showed that the aerodynamic loads were more sensitive to the chord- 

wise tail location than the spanwise location. The buffeting response was seen to decrease 

as the tails were moved towards the vortex core. It was also shown that the core trajec­

tories upstream of the tail were not influenced by the tail location, but the breakdown 

location was. Additionally, the investigation showed that the presence of a flexible tail 

can affect the unsteady pressures on a rigid tail located on the opposite side of the 

model. This case is the subject of the one of the numerical simulations of this study and 

is discussed further in Chapter 7.
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2.3.3 N um erical S im ulation  o f  Tail Buffeting

For design and analysis purposes, a  model of the tail buffeting phenomenon is 

desired. Currently, accurate theoretical models do not exist and accurate full aircraft 

computational simulations are prohibitively expensive. Thus, there is a need for a simple 

model that captures the essence of the tail buffeting phenomenon.

In 1990, Edwards [61] assessed the computational cost of direct numerical sim­

ulation of tail buffeting. He concluded that computer speed would have to increase by 

a factor of a thousand before full aircraft computations would become practical, thus 

reducing a 1000-hour computation to only 1 hour. His time estimates were based on 

40/u seconds per grid cell per time step for thin-layer Navier Stokes solutions. The cur­

rent run time for the full Navier-Stokes equations on a single processor of a Cray C90 

is 7.8(i seconds per grid cell per time step, a factor of only five times faster. Because 

of this high computational cost, very few numerical studies have been conducted to 

date [51,62-75] and of those, the only ones to include aeroelastic effects are those by the 

author’s research group [67-75], led by O.A. Kandil.

In 1992, Rizk et al. [62,63] investigated the unsteady loads on vertical tails by 

solving the Reynolds-averaged Navier-Stokes equations time accurately for a F/A-18 at 

a  =  30°. The flow field and response were qualitatively similar to some experimentally 

observed phenomena. To model the symmetric half of the aircraft, a  Chimera-type grid 

consisting of 0.9 million cells was used. Note that, in studies conducted by Kandil. 

Massey and Kandil [70], the same number of grid points were used to resolve the flow 

about a simple delta wing. In a later study by the same group [64], a refined grid con­

sisting of 1.7 million cells produced significantly better results for aerodynamic loads. 

Another issue with the Rizk et al. [62,63] studies is “weak coupling” between the aero­
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dynamics and the structures. The flow only saw a fixed, rigid tail. Thus, all of the 

inertial effects on the local flow field from the very high accelerations of the tail were 

neglected. Moreover, their model neglected the aerodynamic damping originating from 

the interaction between the deflected tail and the flow. These effects have been shown, 

experimentally [12,55] and computationally [67], to significantly affect the unsteady pres­

sure loading on the tails. Although, this latter concern can be easily alleviated by the 

implementation of moving grids, the high computational cost of accurately solving for a 

full aircraft configuration remains.

In the studies by Kandil et al. [67-75], geometrically simple models of two 

basic types are considered such that the computational resources are only concentrated 

on the pertinent flow physics. The first model type consists of a configured duct in 

which the inlet .swirling flow is forced to breakdown either through a shock wave (for 

transonic and supersonic inlet flows) or through a gradual adverse pressure gradient that 

is generated by the duct wall (for subsonic inlet swirling flows). A vertical cantilevered 

tail is placed downstream of the breakdown flow. Using this configuration, Kandil and 

Flanagan [68] and Flanagan [69] solved the unsteady, compressible, full Navier-Stokes 

equations, assuming quasi-axial symmetry. The tail was modeled as a beam in bending 

and was coupled with the aerodynamics so as to allow full communication with the 

flow. Work is currently under way to solve the three-dimensional duct problem with an 

improved vertical tail model.

The second model type consists of a delta wing at a  high angle-of-attack with 

either, a single vertical tail [67,70-73] or twin-tails [74,75] placed at the trailing edge of 

the wing. In the present study, only the second model type is considered and emphasis 

is place in the twin-tail configurations.
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In 1993, Kandil, Kandil and Massey [67] solved the three-dimensional, unsteady, 

compressible, full Navier-Stokes equations time accurately on the single tail/delta wing 

configuration. The tail was modeled as a cantilevered beam in bending only and was fully 

coupled with the aerodynamics. Variations in tail size, location, and structural properties 

were investigated. The solutions showed that the tail location, shape, flexibility and 

motion affect the upstream flow field.

The structural equations were then reformulated by the author to include in- 

ertially coupled bending and torsion vibration modes, Kandil, Massey and Kandil [70]. 

In this study a single flat square tail was considered. The flow field was once again 

obtained by solving the unsteady, compressible, full Navier-Stokes equations, using an 

upwind, flux-vector splitting finite-volume scheme. The results show substantial effects 

of torsional deflections of the tail for the coupled bending-torsion response case in com­

parison with the bending response case. The results also show that the deflections and 

loads of the coupled bending-torsion response case are substantially lower than those 

of the uncoupled bending-torsion response case. These results were the subject of the 

author’s master’s thesis [71]. Results for this configuration were then obtained for longer 

time periods and higher Reynolds numbers using the flux difference splitting scheme 

of Roe, which introduces less numerical dissipation than flux vector splitting, Kandil, 

Massey and Sheta [72]. These results are discussed in detail in Chapter 5.

As a transition to a more realistic tail model, Kandil, Sheta and Massey [73] 

considered a single tail shaped after Washburn et al. [12] mounted at the trailing edge 

of a cropped delta wing in transonic flow. The wing and flow selection follows that 

of Kandil et al. [76]. Solutions were obtained at a  =  20° and 28°. The buffet loads 

increased with angle-of-attack and did not reach periodicity as in the previous subsonic 

cases [70].
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In 1996, twin vertical tail buffeting was successfully simulated. Kandil. Sheta 

and Massey [75] considered twin vertical F/A-18 tails mounted behind the same 76° 

delta wing used previously. Two spanwise tail positions were studied, one corresponding 

to the separation distance of the tails being equal to the relative placement of the tails on 

the actual aircraft and smother position inboard, corresponding to the location chosen in 

the Washburn et al. [12] study. The first spanwise location case, is considered in detail 

in Chapter 6 as part of a study on the effects of the placement of aft solid surfaces as the 

root of the tails. The second span location is considered in Chapter 7 as part of a study 

on the effect of spanwise tail placement using the configuration of Washburn et al. [12]. 

Early results of the latter study by Kandil, Massey and Sheta [75] agreed well with the 

experimental data of Washburn et al. [12].

The Washburn experimental study was first published with a companion nu­

merical study by Krist et al. [65]. Unfortunately the choice of a low angle-of-attack 

and Mach number produced no vortex breakdown whatsoever, and therefore no buffet 

loads. Very recently a numerical simulation of the same configuration was also con­

ducted by Findlay [66]. Although, the flow parameters were sufficient to produce the 

buffeting breakdown flow, no attempt was made to predict or include aeroelastic effects 

into Findlay’s simulation.

2.4 Vortex Control Techniques

The ultimate purpose of studying the vortex breakdown buffeting problem is to 

devise a way of alleviating or removing violent buffet loads from the vertical tails without 

sacrificing high angle-of-attack maneuverability. Although a great deal of studies have 

been published on the subject of vortical flow control, the majority are concerned with
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the control of forebody asymmetry. Vortex asymmetry plays an important role in the 

ability of an aircraft or m issile  [77] to maintain yaw control at high angles-of-attack, 

but has n oth in g  to do with vortex breakdown induced buffeting. The primary methods 

employed in forebody control are; movable full and m in iature nose strakes, jet and slot 

blowing, and tip suction. A thorough review of the applications of these methods to 

F/A-18, F-16, X-29A and other aircraft is given by Malcolm [78].

At the next level of specialization is the control of vortex breakdown itself. 

Studies of vortex breakdown control proceeded closely after the first observations of vor­

tex breakdown. In 1962, Lamboume and Bryer [3] evaluated the effects of upstream 

flow perturbations, slender bodies placed within the vortex cores, free stream accel­

eration/deceleration, core suction, trailing edge flaps, and wing camber. Because the 

majority of the early studies only considered isolated vortices in tubes or above clean 

delta wings, the effect of the vertical tails on the breakdown, and hence the ability to 

control breakdown can not be determined from these studies alone.

Thus, at the final level of inquiry the question to be answered is, “Does a given 

vortex control technique reduce the level of vertical tail buffet?” There are essentially two 

methods of attacking this problem in the flow regime: removing the vortex breakdown 

while preserving the vortex itself; or diffusing the vortex at some location upstream 

of the tails so as to optimize the balance between the benefit of vortex lift and the 

adverse effects of the post breakdown buffeting flow. Perhaps because of the difficulty 

of preventing breakdown in the presence of vertical tails, the method of choice for the 

F/A-18 has been diffusion.

Through trial and error the F/A-18 was retro-fitted with a short fence normal 

to the surface of the LEX, see Figure 2.14, in order to diffuse the vortex strength while
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having a m inim al effect on aircraft aerodynamics, Lee and Valerio [8]. In flight tests by 

Lee et al. [79] without the LEX fence, peak accelerations of 450g close to the tip of the 

vertical tail were measured. With the addition of LEX fences, the peak accelerations 

were reduced to 200g. While this solution provides sign ifican t buffet relief, diffusion does 

impose an aerodynamic penalty and is less effective a t high angles-of-attack [80-82].

Recalling the fact that buffeting is a  structural problem at its core, another 

avenue of attack is the control of the tail itself. This can be accomplished in several ways; 

engineering a structure or material that is less susceptible to fatigue, using composites 

to create a strain hardening tail, or active structural control using piezoelectric panels 

for active stiffening. Although, the first two methods are simpler in the long run, initial 

test of active buffet damping through the use of piezoelectrics have produced favorable 

results, e.g., Hauch et al. [83]. In the final analysis, a  combination of aerodynamic and 

structural controls may provide the greatest benefit to high angle-of-attack aviation. In 

this study only flow control is considered. However, since the structural response was 

included in the present analysis, the problem of active structural control could be solved 

by modifying the existing structural subroutines.

a)

b)

Figure 2.14: LEX fence shown a) installed and with b) front and c) top-view flow field 
topology sketches. Lee and Valerio [8]
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CHAPTER 3 

FLUID DYNAMICS FORMULATION 

3.1 Introduction

In this study, two sets of governing equations, along with certain initial and 

boundary conditions, are used to formulate the problem of vortex breakdown induced 

tail buffeting. The first set is the laminar, unsteady, compressible, full Navier-Stokes 

equations. The second set consists of the elastic beam equations for coupled bending 

and torsion vibrations.

For complex flow fields with strong viscous-inviscid interactions, reduced forms 

of the equations of fluid motion do not provide an adequate model of the flow physics. 

In the present study, strong viscous-inviscid interactions in the form of large-scale three- 

dimensional boundary-layer separation require that the full Navier-Stokes equations be 

considered.

3.2 Three-Dimensional Navier-Stokes Equations

The conservative form of the dimensionless, unsteady, compressible, full Navier- 

Stokes equations in terms of continuity, momentum and energy are expressed as:

1. Continuity:

|  +  A (pU i)= 0  (3.1)
a t

where according to the Einstein indicial notation, all indices range from 1-3 and repeated 

indices denote summation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. it/l-component of the Navier-Stokes Equations:

d d drij
+ -^— (PuiuJ +  SHP) =  —dt dxj dx i

(3.2)

For a Newtonian fluid with Stoke’s hypothesis imposed (A =  

components are given by,

the shear stress

pM 0

Rene
dui duj 2 duk
d i j  dxi 3 dxk

(3-3)

3. Energy:

d_
dt (pet ) +  ~  [puj ( e ,  +  £ ) ]  =  4 L  (ukrjk  -  „ ) (3.4)

Assuming Fourier conductivity, the heat flux components are given by

nM a dT
ReaoPr('y -  1) dxj (3.5)

The Prandtl number is defined as Pr  =  ^  and is assumed to be a constant value of

0.72 for all computations. Pressure is related to the total energy per unit mass, and 

density for a thermally perfect gas by the equation

p =  (7 -  l)p (3-6)

The flow is also assumed to be calorically perfect with the ratio of specific heats (7 ) 

equal to 1.4. The molecular viscosity is calculated from Sutherland’s law

T  \ 3 / 2  (Too +  C '
—  = ( T̂ +n  )  ’ C = llQ A °KMoo \T o o J  \  T  + C J

(3.7)

The governing equations, Eqs. (3.1-3.4) may be written in nondimensional flux 

vector form as,

dq d  r -
=  0 (3.8)
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p p u j 0

p u  1
y E j  =  <

pU lU j +  S ijp

* (E v ) j  — '
Tij

p u  2 p u 2u j +  S2 jp T 2j

PU 3 pu^Uj +  8 zjp
f  n\ r z j

. Pet t PUj +  p J . U k T k j - Q j  .

where the flow vector (q), and the j th inviscid flux (Ej) and viscous flux vectors ((Ev)j) 

are given by:

(3.9)

Because of their favorable conservation properties in supersonic flow, the preceding equa­

tions were written on the strong conservation form. Another concern is the implementa­

tion of the boundary conditions. In order to assign the boundary conditions on the body 

surfaces and to handle deforming clustered grids, the governing fluid dynamics equations 

must be transformed into time-dependent, body-conformed coordinates, and £3:

where

Z" 1 = Zm(x i ,x 2 , x 3 ,£) (3.10)

Equation (3.8) becomes

where

(3.11)

P 
pu i 
PU 2 
PU 3
pet

(3.12)

and j  = J  1 is the Jacobian of the transformation from physical Cartesian space to 

computational curvilinear coordinates, given by

x l'l
= x 2^ x 2 (3

x 3(l X ^ 2 X^3
(3.13)

This Jacobian is identical to the Jacobian obtained for a  time-independent coordinate 

transformation. This is due to the fact that, the transformed time, r .  is identical to the
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physical time variable, t, which is considered absolute. The transformed inviscid flux 

vector is given by
f

pUm

=, 1 r d f ” -  d C 1 X 1 1
m ~  J  {  d t q +  dxk k)  ~  J  ' dX2  ‘ 

d f 71
PUzUm + -g ^ P  

dz™
Um{pet + p )  -  - g j - p  

where Um is the contravariant velocity component in the direction given by

d C 1 d C 1
Um — —ST" +  uk

d C 1pUlUm +  -q^ P

dt? 1pu2 Um +    p (3-14)

dt d xk
(3.15)

The viscous and heat fluxes are given by

o

d C 1 

dxk 
de 71 
dxk 
d C 1 

dxk

Tlk

T~2k

TZk

(3.16)

s r ,  x o—  (Uink -  qk) 
dxk

The shear stress and heat conduction components in Eq.(3.16) are given by

PMoo
nk = Rea

dt™ duj d C 1 duk 2 d? * 1 duj
dxk dt™ +  dxi d£m 3 ik d i j  d£m

and

Qk =  —
d?" da2

(3-17)

(3.18)
/ ? e o o P r ( 7  — 1 )  dxk d£m 

where a is the dimensionless local speed of sound and a2 = T. Expanding the ith

momentum element of Eq. (3.16) gives

dxk Tik = Re~
( d ? n d? ' 2 dZm dZn \ d u k d C 1 d C  du, '

.V dxk dxi 3 dxi d x k )  d£n dxk d ik  d f
(3.19)
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Expanding the energy element of Eq. (3.16) gives 

d?"
dxk (UiTik -  qk) =

ItMo
R e a r

f d ? n d? 1 

V dxk dxi
2 dCn df*  
3 dxi dxk

\  duk d ^ d C  duj 1 d ^ d j d * )  
dxk dxk^  d£n (7 — l)P r dxk d£n

(3.20)

3.3 Computational Fluid Dynamics Formulation

3.3.1 Introduction

Throughout this study, an implicit, upwind, finite volume scheme, with Roe [84] 

flux-difference splitting, is used to integrate the laminar Navier-Stokes equations. The 

scheme is implemented in a modified version of the CFL3D [85] code, which was upgraded 

by Kandil et al. [40-43, 76] to solve the fully viscous Navier-Stokes equations. The 

following sections contain a brief discussion of the components of this scheme. A general 

survey of methods used to solve the compressible Navier-Stokes equations can be found 

in the review article of Walters and Thomas [86].

3.3.2 Nondimensionalization

The advantage of nondimensionalizing the governing equations is that the char­

acteristic parameters of the flow such as Mach number, Reynolds number, Prandtl num­

ber, etc., become isolated and can be varied independently. This also facilitates com­

parison with data from other sources. Numerically, nondimensionalization prevents the 

order of magnitude of individual terms from changing arbitrarily due to the selection of 

units. Many nondimensionalization schemes are possible. The reference parameters for 

the dimensionless form of the fluid dynamics equations in the code are c, Ooo, jr~,poc and(Zoo

Poo for the length, velocity, time, density and dynamic viscosity, respectively. Performing
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the nondimensionalizations yields:

t = ta-oo
c

(3-21)

Xi =
Xi

c
(3.22)

p = P

Poo
(3.23)

Ui =
Ui_

(Zoo
(3-24)

p = P
Poodlo

(3.25)

e —
e

Poodle
(3.26)

a =
a

doc
(3.27)

T = - t  =  ZE =  „ 2
Too P

(3.28)

where ~ represents dimensional quantities. The freestream parameters are given by;

Poo = 1 (3.29)

'u i00 =  Moo cosa cos/3 (3.30)

u2oo -  -M o o  sin/3 (3.31)

u3<=o =  Moo sina cos/3 (3.32)

Poo =  -  (3.34)
7

aoo =  1 (3.35)

T o o  =  1 (3.36)

*oo =  \ ju  L  + t* L  (3-37)

M o o  =  ^  (3.38)
aoo

Reoo = (3.39)
Poo

where a  and 3 are the angle-of-attack and yaw, respectively.
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3.3.3 Im plicit Upwind Conservative Schemes

The governing equations may be integrated in time, explicitly or implicitly. Ex­

plicit schemes are simpler and more computationally economical per time step. However, 

numerical stability requirements impose a heavy time step penalty, which substantially 

increases the total computational cost of the scheme. Implicit methods, while more 

costly per time step, have a more relaxed stability criterion, which allows larger time 

steps. Thus, taken on the whole, implicit schemes are more economical and are therefore 

utilized in the present study. In the future as computers become more parallel, explicit 

schemes may be more economical.

Upwind methods seek to recognize the direction of propagation of information 

within a mesh, in accordance with the theory of characteristics, and to take advantage of 

this knowledge by type-dependent differencing components of the information traveling 

in opposite directions separately. Upwind methods may be incorporated into either 

conservative or nonconservative forms of the governing equations. The advantage of the 

conservative formulation is that shock waves and contact discontinuities evolve as part 

of the solution. In addition, as grid resolution increases, the location and strength of 

these discontinuities are accurately resolved. Thus, this approach is applicable to a wide 

class of problems. The disadvantage is that the nonconservative formulation is more 

computationally economical, however, it must be supplemented by shock fitting schemes 

which are not applicable to complex flows. Thus, the upwind, conservative formulation 

is the most appropriate scheme for general-purpose codes, such as the one used in this 

study.
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3.3.4 Cell-Centered Finite Volume Formulation

Recalling from Eq. (3.11), the conservative flux vector form of the dimension- 

less, unsteady, compressible, full Navier-Stokes equations in terms of time-dependent, 

body-conforming coordinates is

^  + - ^ [ E m - i K ) m } = 0  (3.40)

Rewriting as an integral statement of conservation gives

L i * * 1*  (£ ”)ml * = 0 < 3 ' 4 L )

Application of the divergence theorem to the second term to convert the volume integral 

to a surface integral yields

^  [Em -  (Ev)m] dV =  £  [Em -  (Ev)m] hmdS (3.42)

where, S  is the surface bounding the volume, V, and n is the unit outward normal to S. 

For a particular cell, the surface integral may be expressed as the sum of the contributions 

from the six faces of the hexagonal cell.

£  [Fm (Fu)mj fhndS

IIVCMIy1 J

V£2 ^, IIV£2II
l i v a i j 1 j

V?3 \ , live3!!
I|V^3||J1 j

1

V^1 >i iiveMi
live1 il;' j

v 2̂ ,̂ iive2n
m 2\\)1 j

v e 3 \ nv e3ll
\ m 3\\ J

(3.43)
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=  [ £ i  -  ( £ „ ) i ] i+ i JiJt -  [ £ i  -  ( £ v ) i ] t- _ i JtA.

+  [ E 2 -  ( E v h ] i J + ± 'k  ~  [ E 2 -  ( E v )2\ i j _ i yk

+  [£3 -  (£v)3]ij> + i  -  [£3 -  (£«)3]ijVfc_ i (3-45)

where

dxr
11^11 f o e W

V dxs dxs

which axe the direction cosines of the cell face normal to the direction, and

(3.46)

d£} d ?

 ̂ => V 9x dxs ^  ajga Qf the cell face (3-47)
U J

Substituting Eq. (3.45) into Eq. (3.41) and recognizing that j  corresponds to 

the discrete evaluation of the volume bounded by surfaces of constant £*, £2 and £3, gives 

the final form of the semidiscete finite volume representation of the governing equations.

GIL +
+  [E2  -  C£,)2]t-j+ i k ~  [£2 -  (Ev)2]iJ_ i  k

-F [Ez -  (£„)3]fjiA:+i  -  [£3 -  (Ev)3]iJik_ i  -  0 (3.48)

3.3.5 Euler Im plicit T im e Integration

The semidiscrete finite volume representations of the governing equations, Eq. 

(3.48) are integrated in time using Euler implicit time differencing. Expanding the vector 

of conserved variables, q, using a Taylor series gives

<T+1 = < r  + A t ( | 0 n +  0 (A t)2 (3.49)
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The governing equations, Eq. (3.11), at the n +  1 time level, are given by

n+l /  \  n+ l
(3.50)

Substituting the Taylor series expansion, Eq. (3.49), into this equation gives

(3.51)

where

Aq =  ? n+1 -  qn (3.52)

In terms of a steady state residual, R, Eq. (3.51) may be rewritten as

i f - A *  =  * ( , - ) (3.53)

This set of coupled nonlinear algebraic equations are linearized using Taylor series ex­

pansions as follows,
r t a m

A q = R(q") (3.54).JA t dq

In terms of the inviscid and viscous fluxes, we have

\ jK t  + Spn ( § ? [£m  “ A<f= “ {Ev)m)n (3'55)

where the spatial derivatives have been replaced by the general difference operators, .

3.3.6 A pproxim ate Factorization

Because of the high computational cost of solving Eq. (3.55) directly, an ap­

proximation within the limits of the accuracy of the original discretization is sought. 

The basic idea of approximate factorization is to factor the left side of Eq. (3.55) into 

a sequence of simpler operations. Following Beam and Warming [87], the left side of
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Eq. (3.55) can be approximately factored as

b s +*■ (I- - <*w)][3s +*  (I-[i* - (£”h1)]
[ j E  +  *■ ( | - [ « 3  -  ' W -  -  V .  ( A .  -  <*-)->* <*»>

In this form, the solution can be obtained by solving the following three one-dimensional 

problems

[ j ^ + V  d = . [ £ |  - ( E „ ) i j ) ]  A?" =  -ip n  (Em -  ( £ , ) „ ) “ (3.

[jS (+ ^ ( ^ - [£2‘ (£'’)21)] A<T* =  A<f* (3.58)

-  esp ( 3 ' 5 9 )

where <f * and q ** denote intermediate values. The solution of each of these equations 

is obtained by solving a block tri-diagonal or penta-diagonal set of equations, depending 

on the spatial accuracy used.

3.3.7 R oe Flux D ifference S p littin g

The discretization of the inviscid fluxes is achieved using the technique of flux 

difference splitting. This approach involves the introduction of locally exact solutions 

of the one-dimensional Euler equations directly into the discretization process. This 

method was first devised by Godunov [88] in 1959. The local flow is solved at time n +  1 

via an initial-value problem between the piecewise constant flow states in adjacent cells. 

qi,qR at time n. This flow problem is the well-known Riemann or shock-tube problem, 

named after the German mathematician G.F. Riemann who first attempted its solution 

in 1858. The solution generally contains a shock wave, a contact discontinuity and an 

expansion fan separating regions of uniform flow conditions.
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In the numerical application of Godunov methods, the Riemann problem is 

solved over successive pairs of cells defining the left and right states over all cells in a given 

direction. The piecewise constant solution is then obtained by averaging the solutions 

over each cell. As a  result of this averaging process, the exact solution of the Riemann 

is significantly degraded. This fact coupled with the computational expense of solving 

the nonlinear algebraic equation associated with the Riemann problem, necessitates an 

approximate solution to the Riemann problem. Several approximate solvers have been 

developed and are surveyed in Hirsch [89]. The most successful approximate Riemann 

solver is the Roe [84] scheme, which is used throughout this study.

The Roe scheme is based on the characteristic decomposition of the flux dif­

ferences such that the scheme remains conservative. Roe’s approach achieves this by 

extending the linear wave decomposition to non-linear equations. The following devel­

opment follows that of Kandil [44] and Roe [84].

Consider the one-dimensional initial-value problem for a hyperbolic system of 

conservation laws,

§  +  §  =  » <“ » 

subject to the R iem ann problem initial conditions

0 ( $ \ 0 ) = Q l , ( ^ < 0 ) ;  0 (^ ,0 )  =  Q«, (£l > 0 )  (3.61)

where E\ is a linear function of Q. Using the chain rule, Eq. (3.60) can be rewritten as

w + A §  = ° (362)
where A = The solution to the Riemann problem in terms of the flux difference is 

given by
3

E \r — E\l — ^ 2  (3.63)
j =i
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where Aj  and e_, are the eigenvalues and eigenvectors of the Jacobian matrix A, respec­

tively, and c i j  represents the strength of the wave. Averaging contributions from the left 

and right directions gives,

Ei i+hiQR,QL) = \
3

(E\l + E ir ) — y  '  \\j\atjej 
j =1

(3.64)

Now, consider the one-dimensional Euler equation for which E\ is a  non-linear 

function of Q. Roe’s scheme extends the linear wave decomposition, which provides an 

exact solution to Riemann’s problem, to non-linear equations. Roe [84] suggested the 

following solution to the linearized problem,

§  +  A §  =  o

where A  is the Roe-averaged matrix constructed under the following conditions:

1. A  constitutes a linear mapping from the vector space Q to the vector space Ei.

2. A s Q l -> Q r -> Q, A( Ql , Qr)  — A(Q), where A = ^ .

3. For any Ql ,Q r , M Q l ,Q r ) x (Ql ~  Qr ) = E \L -  E ir .

4. The eigenvectors of A  are linearly independent.

From the third property, the flux difference between the left and right states 

and the interface fluxes can be written as

E lL -  E 1r = A(Ql -  Q r ) (3.66)

The interface flux is then

E ii+)i(Q l ,Q r )  =  \  [(ElL + E lR) -  \A\{Ql  ~ Q r ) } . + 1  (3-67)
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For three-dimensional flows, Eq. (3.67) becomes

£mi+i (Ql , Q r ) =  \  [cEmt  +  EmR) ~  IM Q l -  Qft)] ; m =  1 -  3 (3.68)

where for the ith direction, j ,  k  and n  are kept constant. The last term in this equation 

is the dissipation contribution to the interface flux and is given by Vatsa [90] as follows

q4

d C 1
UiC*4 +  » — a 5  +  C*6 

O X  i

ar*
U2<X4 +  -5--- <*5 +  C*7

O X  2
d C 1U3a4 +  —---05 +  08
O X 3

H a \  -t- UmOcs +  U1O6 +  U2Q7 +  U3O8 —

\A\(Ql - Q r ) =  {

d2 
. 7 - 1

<*1

where

0 2  =  

03  =

v c 101 =
J

1 v c 1
2 d? J

1
2 d? J

aj +5 — J

l4ml

l^m +  C\ (Ap +  pa&Urn) 

lu™ -  c| (Ap -  paAdm) 

0 4 = 0 1 + 0 2  +  03  

0 5  =  0 (0 2  — 03)

 ̂ f  d C 1 \\um\ ypAuj  -  - ^ - p A u m j  ; j  = 1 -  3

(3.69)

(3.70)

(3-71)

(3.72)

(3.73) 

(3-74) 

(3.75)

The Roe-averaged variables are defined as follows

P =  \JP l P r

a2

ix, =

H =

_  U 3L +  U3R  sJ P L P R

1 +  \JP l P r  
He  +  H Rs/ p LpR 

1 +  y/PLPR

=  ( 7 - 1 ) H  —
txf + 1x2 + u§

(3.76)

(3.77)

(3.78)

(3.79)
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3.3.8 D iscretization o f V iscous F luxes

In keeping with the flow physics, the viscous fluxes are centrally differenced in 

space. The cross-derivative terms are approximated second-order accurately as follows,

=  a + ( ^ ( u O i + i j + ^ . j k  +

-  a~ +  6 ^ 2 ( u i ) i+i j _ i k)  (3.80)

where

V $ 2(“ l)i+Ij+i.fc =  (« l) i+ lj+ l,*  ~  («l)i.j+l,fc +  (“ l)*j',fc ~  (u l)i-l , j ,k  (3.81)

and

q + +  oT  =  i  (3.82)

If a symmetric difference is chosen, then a + =  a -  =  \  which gives

&Zlp ( u l)i j,k =  4 [(«l)i+lj+l,fc -  (“ l j i+ lj - l ,* ]  -  ^ [(u l)t—l,j+l,fc — (ttl)t-lj-l,A:] (3.83)

3.4 Initial and Boundary Conditions

3.4.1 Initial Conditions

The fluid flow initial conditions correspond to an undisturbed freestream flow 

throughout the computational domain. This is equivalent to impulsively placing the 

wing-tail configuration into the freestream. For the aeroelastic initial conditions, the 

tails are initially undeformed and motionless. For buffeting cases, the initial fluid state is 

obtained by pseudo-time-stepping based on the CFL number until the vortex breakdown 

flow has fully developed.
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3.4.2 Surface Boundary C onditions

On the body surfaces, the fluid may neither slip nor penetrate; tha t is, the 

relative velocity must equal zero. Additionally, the normal pressure gradient, is zero 

on the stationary wing surface. On the moving tails, =  —pat • n, where at is the 

absolute acceleration of a point on a tail due to bending (w) and torsional (8 ) motions. 

This is given by

at =  —r ■ a ( d9\ 2 J  *• f  a f d9\ 2 • a
s ? s m 9 + u j  “ > ! # ' + i F + r  sm e

• j  (3.84)

where r  is the point distance from the elastic axis. All surfaces are also considered 

adiabatic.

3.4.3 Far-Field Boundary Conditions

For all cases under consideration in this study, the far-field boundary condi­

tions are specified approximately one chord upstream, three chords downstream and 

three chords in the direction normal to the wing. In order to minimize reflectivity, the 

inflow/outflow boundary conditions are based on the theory of characteristics. Details 

of this and other boundary conditions are given in the CFL3D user manual [85]. For a 

surface of constant £J, the Cartesian velocities in the direction of the outward normal to 

the grid surface, are determined by

§ !
ul/ace — UW  |V£li | ( “/ace ~  “re/) (3.85)

“2/ace =  +  jy^j(tt/«ee “  «re/) (3.86)

U3fa(x ~  u 3re f +  |V ^ 1 | (“ /«*  “ r e / )  (3.87)

where for inflow ref refers to freestream conditions and for the outflow ref refers to the 

values from the cell inside the domain adjacent to the boundary. The velocity normal to
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the far-field boundary is obtained from the two locally 1-D Riemann invariants. R* as 

follows

Uface = \ ( R + + R - )  (3.88)

where

The density and pressure on the boundary are given by
1

Pface — (~g  )  (3.90)
\  I s face J 

2
PfaceO-face  / o  n i  \Pface — (3.91)

7

where the speed of sound is calculated by

a/ace =  1 - r ^ ( R + -  R~) (3.92)

and the entropy is determined from outside the domain for inflow and inside the domain 

for outflow as follows,

s =  ^  (3.93)

3.4.4 B lock Interface B oundary C onditions

In single block and multiblock grid configurations, internal boundary conditions 

need to be set anywhere grid boundaries collapse on themselves or touch each other. 

Examples of the first case are in the region before the wing where the grid lines that 

cover the wing collapse to a single line. An example of the second case is the symmetry 

plane and wake plane.

For multiblock grid configurations, boundary conditions must also be set at all 

block interfaces. There are several methods for doing multiblock computations such as 

the use of overlapping grids, or grids that share a boundary but do not match cells. In
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the present study, all grids share a boundary, and cells match on a one-to-one basis. In 

this case the boundary data is simply obtained from the neighboring cell in the adjacent 

block. The advantage of this method is tha t it eliminates the need for interpolation 

between blocks and insures conservation across block boundaries. The disadvantage of 

this method is that it is less flexible when trying to refine only local regions of the grid.

3.5 Structured CFD Grid Construction Methodology

3.5.1 Introduction

A modified Joukowski transformation with exponential stretching is used to 

create all of the grids used in this study. The transformation is applied in the crossflow 

(77, C) plane for each streamwise x  location. The parameters for the Joukowski transfor­

mation are given by
1 -4- v l —g* g

c — -------  tan  <5 s =  -  tan <5 (3.94)

where e is the eccentricity of the elliptical cone and <5 is the cone half-angle. For a

flat delta wing e =  1 and <5 =  j  — As, where As is the leading-edge sweep angle. The

transformed crossflow coordinate points are defined in terms of the complex variable s 

as

77 =  xSt(z) (3.95)

C =  x9r(z) (3.96)

where z is given by

s2
2 =  zb + (za ~  zb)r -f — ------------r (3.97)

*6 +  r(zs -  zb)
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where the body points and shock points are defined as follows

Zf, =  c(sin0 +  xcos0) (3.98)

za = - (sin# + icos9) ±  i/  —(sin9 + icos9)
2

-  4s2 S (3.99)

rQ is the radius of the outer boundary and r  is a stretching function based on an arbitrary 

parameter (3 and the kth radial grid point.

(3.100)

In these equations, 9 is the angle of each radial grid line in the crossflow plane. 

The sign of the root in Eq. (3.99) is determined from the quadrant of the shock point, 

positive if ^ s in #  >  0 and negative if ^ s in #  =  0 and ^ c o s 9 >  0. This algorithm 

is coded in a delta wing grid (DGRIDGEN) generation program which was distributed 

with early versions of CFL3D [85]. To generate the grids used in this study, DGRIDGEN 

was modified extensively by the author. A close-up view of a typical crossflow plane is 

shown in Figure 3.1.

3.5.2 Single B lock Grid

To generate the grid used for the single square tail configuration, seen in Fig­

ure 3.2, the only modifications made to the default grid was clustering in the streamwise 

direction at the leading and trailing edges of the square tail. This clustering can be seen 

in the symmetry plane and half grid plots, see Figure 3.3.
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Figure 3.1: Typical crossflow plane at showing the elliptic cone surrounding the trailing 
edge of the delta wing.
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Figure 3.2: Body grid surfaces for the single square tail configuration.

Y-0  Symmetry Plane

Figure 3.3: Symmetry plane and half grid showing streamwise clustering in the single 
tail configuration.
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3.5.3 M ultib lock Grids

The introduction of twin tail models necessitated the use of multiblock grids. 

The blocking method used throughout this study consists of blocks with C° continuity: 

that is, blocks whose boundaries match each other and with boundary cells that match 

one-to-one. Based on the type of surface boundary conditions required, either five and 

six block configurations were used, see Figure 3.4. When the tails are placed on solid 

surfaces behind the wing, a five block grid is sufficient. Note that with special treatment 

of the tail surface boundary condition the five block case can be reduced to only four 

blocks. The six block grid was required to implement the wake boundary conditions 

around the tails when they were considered to be suspended in the freestream with 

no supporting solid surfaces. In order to accommodate the twin tail configurations, 

significant modifications were made to the original DGRIDGEN program. A great deal 

of ad hoc algebraic grid manipulation was done to conform the original highly orthogonal

&

Figure 3.4: Five (left) and six (right) block grid structure, showing all block boundaries.
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Figure 3.5: Example of highly stretched grid blocks for a five block configuration.

grid, see Figure 3.3 to the new twin tail surfaces, see Figure 3.5. The basic method used 

to create the new body conforming grids was to define the new boundary surfaces and 

then stretch the baseline grid smoothly using cosine weighting functions. Consider the 

distribution of a grid displacement A x resulting from the difference between the new 

and old grid boundaries.

£new = SoU + f& £  (3-101)
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where /  is the weighting function. Figure 3.6 depicts two different cosine-based weighting 

functions of varying smoothness. They are defined by using different portions of a cosine 

curve as follows,

/[  -  “  [(££) s] (3' 102)

h  =  ‘ { i + „ [ ( ^ ) , ] }  (3.103)

When either of Eqs. (3.102,3.103) are substituted into Eq. (3.101), the new grid is fully 

deflected at xo corresponding to the source of A£ such at the new tail, and not de­

flected at all at £i, which corresponds to an undeformed far-field boundary. Note that

in Eqs. (3.102,3.103) the weighting functions could alternatively be based on the actual

coordinate, £ rather than its index.

i   Weighting Functions

0.8 

0.6 -

f

0.4  -

0 2  -

f2

0.0
0.0 0 2  0.4  0.6  0.8  1.0

r

Figure 3.6: Example cosine-based grid weighting functions.
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3.5.4 Grid M otion A lgorithm

The new grid resulting from the deformations of the twin tails is created in 

precisely the same way the original grid was stretched to conform to the undeflected twin 

tail geometry. Because the grid displacements are relatively small, advanced methods 

of grid deformation such as the Navier-displacement equations are not implemented in 

this study. Instead, simple interpolation functions, Eq. (3.101) are used to deform the 

grid smoothly to match the deformations of the tail. These interpolation functions 

efficiently deform the grid without losing the important contributions of the grid speed 

and acceleration. From the structural solution at the n -I- 1 time step, the grid at n -t- 1 

is deformed throughout the computational domain using cosine interpolation functions. 

These functions have the effect of exponentially smoothing the grid displacements away 

from tail. To handle the independent displacements of the tails, the grid is deflected in 

two steps corresponding to each tail. Since this occurs before the fluid update, the fluid 

sees only one grid deflection.
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CHAPTER 4

STRUCTURAL DYNAMICS FORMULATION

4.1 Introduction

In this study, each tail is modeled as a cantilevered beam. The tail is allowed

to bend and twist about its elastic axis which does not necessarily coincide with its

inertial axis. For this case the bending and torsional motions will be elastically coupled

in addition to the natural coupling produced by the fluid flow. All structural properties 

are free to vary in the vertical z—direction. All displacements are assumed small, and the 

cross-section of the beam is assumed to be rigid. The governing equations are formulated 

using a variational energy approach.

4.2 Derivation of the Structural Dynamics Equations

Neglecting the motion in the z—direction the velocity of the center of mass in 

the x — and y —directions is

where xg(z) is the distance in the positive x —direction from the elastic axis to the inertial

respectively, as indicated in Figure 4.2. The kinetic energy of the system with the

v x ( z , t )  =  - X g { z ) dd^  sin fl(z, t ) (4.1)

(4.2)

axis of the tail, see Figure 4.1, and w  and 6  are the bending and twisting displacements.

center of mass (CM) moving at v and rotating about z at (ccw positive) is

(4.3)
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Figure 4.1: Delta wing, single vertical tail configuration, showing typical elastic and 
inertial axes locations.

_  f L l r  iy dO . \2 /dw 8 6  \ 21 r ta
T = /o 2{m [(xe^ sm0) + ( - m + X 9 m cosd)  J + /z ^ ( a ? )  ) d z  (4-4)

where L  is the length of the tail, m(z) is the lumped mass per unit length, I ZzC\t t l̂e

mass moment of inertia about the 2—axis of the tail; and E I  and G J  are the bending

stiffness and torsional rigidity, respectively. The elastic potential energy is given by

k - r  (IS) 2 +"«(!)>  <4-5)
The work done on the system by the force (N ) and moment (M ) assuming small dis­

placements is

W n ( z ) =  N(z, t)w(z, t) (4.6)

W m ( z ) = J  M(z, t)dO =  M (z, t) 0 (z. t) (4.7)
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Figure 4.2: Sketch of orientations for bending {left), torsion {right), and combined bend­
ing and torsion {center).

thus, the total work done on the system by aerodynamic loading is

W - j  [n {z , t)w{z, t) -t- M{z, t)Q{z, t)^dz (4.8)

From Hamilton’s principle we have,

[ T{ST - 5 V  + SW)dt = 0 (4.9)
Jo

Substituting the expressions for kinetic energy, potential energy and total work done 

gives,
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5 f  (T — V  + W )dt  =

s: C  f  1 f L f T( 39 . /A2 (3w  89 \2-i ( 3 9 \2\ j
6 Jo { 2 J 0 M l 3̂ 3111*) + ( - m + X e m c o s d )  ] + / —  ( * )  } d z

[ e i ( ^ - ) 2  + G j { ^ ) 2]dz + j \ N w  + M 9)dz^d t  =  0 (4.10)

Distributing J  yields

5 r  (T - V  + W )dt  =
Jo

r  f f L f IV 36 . . ..  30 . . ,3u/ 30 .. c,3u/ 30 ..-i
Jo I Jo sm0) +  ( ^  +  x* ^ c^ ) 5( ' ^ + z 0 ^ cos<9)J

30 3 0 .i f L r „ T.d 2 w . . . d 2 w. _ r.30. (..30.-1 ,

+  J  (NSw + MS6 )dz^dt = 0 (4.11)

Expanding factored terms yields

6  T ( T - V  + W)dt =
Jo

n L f 2 - 2/i 36 /8 9 \  2(36\2  r - dw (d w \|  mxe sin g - f ( - ) + m x , f e )  sm0cos0«50 +  m — * (— )

1 2
3w - r /3 0 \ 3to 30 30 . r /3u7\+  m — a :# co s0 ^ — j - m — xg —  sm 0 50 +  mx0 —  c o s 0 ^ — j

' ----------------------------------V ---------------------------------'  ' ----------------------------------V -----------------------------------

3 4
2 30 2/) s ( 3 6 \  2 ( 3 6 \ 2 a - n ra r 30 / 30\+  m x^— c o s ^ ^ - j  cos0sm0 <50 + / 22cm — <5̂ — J

' ----------------------------------v--------------------------------- '  ' --------------------------V -------------------------'

5 6

- ° J f z S( % )  +MK> + N Sw idzd t  =  0 (4.12)
V v     '-------  '  J

7 8

Assuming;

a'(^ )  = !<*> (4l3)

4(|f) = l (W> (4-14)
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/  j  tpdt dz = J J  ipdzdt (4.15)

where ip =  ip(z. t ), we can then express the terms containing variations of derivatives, in 

terms of virtual displacements, 5w and 56. This is done using integration by parts and 

enforcing the temporal invariance definition of virtual displacements. Thus, the labeled 

terms in Eq. (4.12) are factored as follows:

Term 1:

r  2 -  20 dex(de\^ r  2 •  2od0 d(86).I mxgSin^e— 5^— Jdt = J  mxgsmz9 —  - di

u
r f T

— vdu  
o Jo

= mxg sin29 -^-80\ — F 59-^-(mxg sin2  9 ~^~\dt 
>_________a t  io Jo a t '  a t '

d v
T f T

= uv

=0

Term 2:

=  — j T89mxg [2sinflcosfl (^ ~ )  +sin20 ^ ^ d t  (4.16)

r  dw / d w \ , i f  dw d(5w)
I  = /„  m ~ d t ~ d T

=  m ^ S w \ o ~  J J  m S w ^ d t  i4-17)
=0

Term 3:

r  dw z fd 9 \  H" dw d(89)/ m — xg cos 9 51— )dt =  / m — xg cos 6  -  dtJo at \ a t '  Jo at at
T r  d r dw n\ ,
0 - J o

dxu
=  m -z-xg  cos 9 59 

d t

=0

=  -  £  m 5 9 x g ( ^ £  cos6  -  ^ s i n 0 ^ ) d f  (4.18)
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Term 4:

r  99 fdw\ r  dO n d{8w) ,J mxg— cosOS^— jdt  =  J mxg— cos0 —Qj—dt

dO it r* 3 /  30 \
=  mxg— cos08w\ — I Sw—[mxg— cos0)dt dt lo Jo d t \  dt >

=o

=  — J ^ S w m x g ^ ^  cosO — sin0 ( ^ )  ]d£ (4.19)
Term 5:

r  2 2ndecfde\ ^  r  2 2 / , 3 0 ^ ( ^ ) jJf m xg C O S  0 -fc5 \ - fc )dt =  yo m x 0 cos20

= mxg cos2 0  ^ -60  — r  6 0 (mxg cos2 0  ^ ) d t  
dt o Jo at  v d t '

=o

=  — j^SO mxg |̂ —2 cos0 sin0 ( ^ )  +cos20 d(4.20)

Term 6:

r T d9,(de\^  _  [rT d6dw  Jo h zc M  d t d\ d t ) dt ~  J0 ZZCM~ d t~ d T
dt

=  I n c J f i M
=0

r r  sPo
o - L s e t ^ w dt (4-2i)

Term 7:

f L „ TcPw t ( d 2 w \ f L d2w d2 (6 w)
Jo E I e ? < l & ) d* = Jo

d2 w d(Sw ) £ rLd{6 w) d /  , d2 w \  
dz2 3z o, Jo ~ d ^ ~ d ^ \  ~ d ^ )

E I-i
=0, Boundary Conditions

= (4- >
= 0 , Boundary Conditions

Term 8:

! > € € >  -

- j J m U G J W >  (4-23>
i  _  f L ^ d  f„^dO '

,o 70
=0, Boundary Conditions

G J^-6 0  dz
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Substitution of the factored terms, Eqs. (4.16-4.23) back into Eq. (4.12) and distribution 

of virtual displacements yields

8 f  (T -  V  +  W )dt  =
Jo

f  J  |  — 25# sin# cos# ( ^ )  — 86 mxg sin2# + mxg sin# cos# 86

(Pw sn&w - a 96 9w 96
~  mXe ° ~dt^ +  m  ~dt S dt ~  m ~dtX 0  ~dt S

— cos# 8 w + m xeQ )  sin# 8 w -(- 2mxgSd cos#sin# ( ^ )

SfiQ 30 2 dfiQ
—86 mxj cos2# ~q£2 ~~ mxo ( ^ )  cos^ ^  ~  ^  Izzcm ~q£l

- 8 w ( E I ^ p )  +  8 6 - ^  +  M 8 6  +  N 8 w ^d z  dt = 0 (4.24)

Collecting terms of Eq. (4.24) on the virtual displacements, yields

8  r  (T - V  + W )d t  =
Jo

r  f L f r r 9Pw dP6 . a (d 6 \2 d2 / 92w\  i
Jo Jo [ H - m W ~ m x > c o s e ' 0 + m x e s '°e y w  - a ^ { E I W  +  N  1

r t . On 2 / 1  /I /i^2 7̂ r ^
+ 8 6  [ -  mxg~ ^ 2  (sm # +  cos^ #) -m i«  cos# cos 0-^5" ~  ^ 2  +  ^7 ( ^ 7 )

=1

+ M \^ d zd t  = Q (4.25)

The virtual displacements 8 w and 8 6  are arbitrary and independent, so they can be set 

to zero at z =  0 and z =  L, and taken as arbitrary for z 6 (0, L). Therefore, the terms 

multiplying the virtual displacements in the integrand must each be zero, which gives

5 ?  i E I I ? )  +  +  mx„ cos0 | ^  -  mx, sin8 { % )*  =  N  <4-26)

§ ; { G J ^ ) - m x e cos6 ^ - £ « 2 + ^ ^  = - M  (4.27)
"V"
/«
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Enforcing the assumption of smaJl displacements gives the final form of the governing 

equations for coupled bending and torsional vibrations of a  beam,

g ,  [ m z ) ? ^ \  +  =  JV(2, 0  (4.28)

=  - M ( M )  (4.29)

4.3 Boundary and Initial Conditions

The boundary conditions for each tail, which is clamped at the root and free 

at the tip, are as follows,

„ (0 ,t) =  ^ i  =  ^  =  | [ £ / ( i ) ^ ] = 0  (4 ,0 ,

0(0 .0  =  d- ^ ll = Q  (4.31)
az

The initial conditions consistent with an initially undeformed stationary tail are

W(Z, 0) =  ^ l ° l = 0  (4.32)

9(z, 0 ) = ^ M  = 0  (4.33)

4.4 Computational Structural Dynamics Formulation

In this study, the structural dynamics equations (4.28-4.29) Eire solved approx­

imately using the Galerkin method with six bending modes and six torsion modes. This 

method expands the dependent variables in terms of natural free vibration modes of the 

system. The resulting error is minimized by weighting these modes such that the error 

integrated over the domain is zero.

The dependent variables are given by

r  j

w(z,t) = ' ^ q i {t)(t>i{z) 9(z,t) = (4-34)
t=l j = /+ l
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where

q i ( t )  =  generalized coordinate for bending

q j ( t )  = generalized coordinate for torsion

=  comparison function satisfying the free vibration modes of a beam in bending

4>j(z) = comparison function satisfying the free vibration modes of a beam in torsion

/  =  number of bending modes selected =  6 

J  = I  + number of torsion modes selected =  6 +  6 =  12

The comparison functions may be any arbitrary functions which satisfy the geometric 

and natural boundary conditions of each tail. Hence, the free vibration modes for a 

cantilevered beam may be used for this purpose. The modes are easily derived by 

solving the uncoupled free bending and torsion equations individually by the method of 

separation of variables. The ith free vibration bending mode is given by

<t>i{z) =  (sin f c L  — sinh 0 i L ) {  sin 0iZ — sinh 0iz) +  (cos 0 \ L  +  cosh 0 i L ) {  cos 0iZ — cosh 0iz)

(4.35)

where 0 i  L is the ith solution to the transcendental equation

cos0iL cosh0iL  =  —1 i =  l , 2 , . . . , oo  (4.36)

and the ith bending natural frequency is given by

The j th free torsional vibration mode is given by

‘(2j  — 1)7rz'
<Pj =  sm

2 L
j  = 1 ,2 , . . . .  oc (4.38)
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and the j th torsional natural frequency is given by

( 2 j - 1 ) t t  G J  , <om
u> = — u r ~  h i ;  (4-39)

Since Eqs. (4.34) are approximate solutions to Eqs. (4.28-4.29), the resulting errors are

given by

&  r P w i  dPw 6P6
«»(*,«) =  s ? [ £ / ^ ? ] + m ^ 5. + m x , ^ - i V  (4.40)

d r dOi d^w cP’d
«(* ,«) =  (4.41)

The Galerkin method requires that,

[  ew{z,t)<t>r{z)dz =  0, r  =  1 , 2 , . . . , /  (4.42)
Jo

f  eg(z. t)(ps(z)dz = 0. s = I  +  1,1 -F 2 , . . . ,  J  (4.43)
Jo

Substituting the series representations, Eqs. (4.34) into Eqs. (4.42-4.43) gives

/; + i r x s ^  -  N V
dz = o 

r  =  1 ,2 , . . . ,  /  (4.44)

£ {  t  ' tJo I j= m  az i=i az j=t+1
s =  /  + 1,1 +  2 , . . . ,  J  (4.45) 

and the boundary conditions, Eqs. (4.30-4.31) become

* =  1 , 2 , . . . , /  (4.46)

^ ( 0 )  =  ^ ) = 0 j  =  J + 1 , 7  +  2 , . . . , . /  (4.47)dz
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Integration by parts and enforcement of the boundary conditions yields

rL d<t>r d r d?<pi]

= 0, B.C. Eq. (4.46)

d t r E i * *  ' L
dz dz2

dz dz l dz2

(P'ffrr d?4>i+ [ L E r ^ ^ ^ dz 
Jo dz2  dz2

= 0 , B.C. Eq. (4.46)

= 0 , B.C. Eq. (4.47)

In matrix form Eqs. (4.44-4.45) become

L dz2  dz2  ^Zr x i  J

f LI mxe<t>r<t>jdz 
Jo r x j J { ^ L r U ^ L r W

R *,+
+  [ r ^ K ^ i r f r ^ L r W

(4.48)

(4.50)

(4.51)

Equations (4.50-4.50) can be further simplified by writing them in partitioned matrix 

form.

M u  M\2 

M 21 M 2 2

d?qi
dt2

d?Qj
dt2

+
K n  0 

0 K 22

Qi

Qj
> =  <

Q i

Q 2

(4.52)

where the elements of the mass matrix are given by

rL rL
M u  =  [  m<J>r4>idz M 12 =  [  mxQ(pr(j)jdz 

Jo Jo ^

M 21  =  /  mxg<j>3 <f)idz M2 2  =  /  Ie<Ps4>jdz 
Jo Jo

(4.53)

the stiffness elements are given by

K  n
- L

dz Kk = [ L G J ^ p -^ p -d z  (4.54)
J0 dz dz
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and the generalized force elements are given by

Q i  =  f  N<t>rdz Q2 = f  M(f)sdz 
Jo Jo

(4.55)

The original govern in g  equations have now been transformed from a set of two 

coupled partial differential equations into a set of twelve coupled second-order ordinary 

differential equations. In compact matrix notation, these equations axe written as

[M]{q} + {K]{q} = {Q} (4.56)

By introduction of a new variable 77, the equations may be further reduced to a set of 

2 J  coupled first-order ordinary differential equations. Letting

(4.57)

gives

+  [*]{*} =  « }

Writing the new system in a state-space like form gives

(4.58)

V  ̂ _

1
0 1 5

1 ►—
*

s
1

1 , 1 - +  - *

q 1 5 0 1 1  « , 0
k t

(4.59)

This final form of the governing equations is solved using a five-stage Runge-Kutta-Vemer 

scheme.

4.5 Multidisciplinary Solution Methodology

At this point the solution algorithms for the fluid flow, elastic tail deformations 

and the grid displacements are well in hand. Now, attention is focused on the method 

in which these independent disciplines are brought together. The first step is to solve 

for the flow field under conditions favorable to vortex breakdown. During this step, the
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flow field solution and the pressure difference across each tail axe obtained. The pressure 

difference is used to compute the normal force and twisting moment per unit length 

along each tail. With aerodynamic forces known, the deflections, Wi,j,k and 8 i,j,k? can 

be obtained. Next, the grid is smoothly interpolated to conform to the new position 

and velocity of each tail. In this step, the metric coefficients of the coordinate Jacobian 

matrix are updated as well as the grid speed, The cycle is now repeated for the

next global time step with the current tail positions and velocities as initial conditions. 

It should be noted that the time step for the fluid dynamics calculations is generally 

much smaller than the structural dynamics time step. Hence, Wijtk and need not 

be calculated for every global time step. However, for the sake of simplicity and because 

of the relatively low cost of structural calculations, the structures time step is kept in 

line with the fluid dynamics time step.
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CHAPTER 5 

SINGLE SQUARE VERTICAL TAIL BUFFETING

5.1 Introduction

In this chapter, the fundamental issues of inertial coupling, Reynolds number 

dependence and aeroelastic effects are addressed with regard to single square vertical tail 

buffet. The case definitions are summarized in Table 5.1. Because of the detailed analysis 

required to address these fundamental issues properly, detailed plots are presented for 

each case along with the initial condition flow fields. In later chapters, the analysis will 

be more tightly focused on the buffeting response. The chapter is divided into sections 

corresponding to each case plus the initial conditions. As each case is presented, it is 

discussed individually and then compared to the relevant case preceding it. Finally, the 

results of each case are tabulated in the concluding section for reference.

Case Elastic Model Re a xg
1 Uncoupled Bending and Torsion 104 38° 0.00
2 Coupled Bending and Torsion 104 38° 0.05
3 Rigid Tail 10“ 38° 0.00
4 Uncoupled Bending and Torsion 10b 38° 0.00
5 Coupled Bending and Torsion 10y 38° 0.05

Table 5.1: Summary of single square vertical tail buffeting cases.
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5.2 Computational Model

5.2.1 M odel G eom etry and  C om putational Dom ain

The model consists of a  sharp-edged, flat delta wing of aspect ratio 1 (leading 

edge sweep of A =  76°) and a single flat square vertical tail, which is placed in the plane 

of geometric symmetry. The vertical tail is located directly behind the trailing edge of 

the wing, with the root edge along the wing symmetry axis.

An O-H type grid of 83 x 124 x 84 cells in the axial, wrap-around and normal 

directions, respectively, is used to solve for the initial condition flow field for the low 

Reynolds number case, see Figures 5.1-5.5. Note that all grid dimensions given through­

out this study are nondimensionalized by the wing root chord. The grid was generated 

algebraically by the method described in Section 3.5. Although this grid contains 864,528 

cells, it is very wasteful in the far-field radially and lacks any j-plane clustering along 

the vortex cores. Furthermore, this grid is not explicitly designed for capturing vortex 

breakdown, in that the stream-wise i-plane grid density is much coarser than the normal 

or wrap around distributions. For a vortex flow at low to moderate angles-of-attack, the 

flow is nearly conical and thus, a  coarse stream-wise distribution is justified. However, 

with the occurrence of breakdown, the stream-wise direction becomes very significant. 

Essentially, the fine grid represents a fine weekly viscous conical flow grid.

To reduce the spatial accuracy of the wrap around (j) and normal (k) directions 

to a level closer to that of the axial (i) direction, every other j-plane and k-plane was 

removed. This reduced the total number of cells to 223,104 cells, a reduction of 74%. 

The coarsened grid is shown in Figures 5.6-5.10. Comparison of flow plots for the initial 

flow state generated from the fine grid with the solution obtained from the coarse grid 

indicates that the coarse grid produces flow solutions of similar quality to the fine grid.
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5.2.2 Freestream  Flow C onditions

For each of the single tail cases under consideration, the configuration angle- 

of-attack is 38° and the freestream Mach number is 0.4. Solutions are obtained at low 

and moderate Reynolds numbers of 104 and 106. The angle-of-attack of 38° is chosen to 

complement an earlier study [71] and represents a relatively high value for subsonic tail 

buffet. The nominal angle-of-attack range for subsonic tail buffet is from 20° to 40° with 

the peak loads occurring near 30°. Below the lower limit  vortex breakdown does not 

occur and as angle-of-attack increases the burst vortex core becomes more diffuse and 

passes higher above the tail. The Mach number is chosen to coincide with the severe tail 

buffet conditions which occur during subsonic high-alpha maneuvers. The low Reynolds 

number is chosen to facilitate numerical computations since fewer grid cells are required 

to capture boundary layer effects. The moderate Reynolds number of 106 is chosen to 

bring the simulation closer to flight Reynolds numbers of order 107. However, since the 

single tail grid is not refined to compensate for the increased Reynolds number, the main 

effect is on the buffeting response.

5.2.3 Tail M aterial Properties

One of the major goals of this study is to capture the full dynamic interaction 

between the tail and the flow. For this reason care is taken to optimize the geometric 

and material properties of the tail to produce a relatively large-amplitude, high-frequency 

response. A large amplitude relative to the grid spacing normal to the tail is desired so 

that the movement of the grid will not be lost in the spatial discretization error inherent 

in the flow solution. The need for a high-frequency response is necessitated by the high 

computational cost of solving the flow for long periods of time. These conflicting goals 

are attained by choosing a small tail thickness to boost the amplitude, and a low material

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



density to increase the frequency. For all of the single tail cases, the tail is modeled as a 

rectangular beam with thickness d  =  0.005, width b  =  0.5 and height L  =  0.5 normalized 

by the wing root chord. The dimensionless moduli of elasticity and rigidity, E  and G ,  

of the tail material are 1.8 x 105 and 0.692 x 10°, respectively. The mass per unit 

length, m, is 0.0653 and the mass-moment of inertia per unit length about the elastic 

axis, I g ,  for x g  =  0 is 0.00136. For the inertially coupled bending and torsion cases, the 

distance between the inertial and elastic axes, x g  is 0.05 which gives Ig  =  0.00153. The 

chosen material properties correspond to a  very thin, stiff and light-weight beam. In 

the following chapters of this study, the twin tails are modeled more realistically. The 

natural frequencies for the first six bending and torsion modes are listed in Table 5.2.

Ml UJ2 073 UJ4 ^5 Me
Bending 0.16 1.02 2.86 5.60 9.26 13.84
Torsion 0.29 0.88 1.46 2.06 2.63 3.21

Table 5.2: First six bending and torsion natural frequencies of a cantilevered beam, 
where the dimensional frequency, /  in H z  is nondimensionalized as
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Figure 5.1: Fine grid: 83 x 124 x 84 cells. Full and half views showing stream-wise 
clustering.
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Figure 5.2: Fine grid: 83 x 124 x 84 cells. Full and close-up views showing the crossflow 
i-plane at the wing trailing edge.
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Y=0 Symmetry Plane

Figure 5.3: Fine grid: 83 x 124 x 84 cells. Full symmetry j-plane.
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Y=0 Symmetry Plane
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Figure 5.4: Fine grid: View of symmetry j-plane from wing apex to trailing edge of tail.
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Figure 5.5: Fine grid: 83 x 124 x 84 cells. Upper wing surface: 30 x 64 cells. Tail surface 
15 x 40 cells.
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Figure 5.6: Coarse grid: 83 x 64 x 42 cells. Full and half views showing stream-wise 
clustering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

4 ___  X=1 Plane

Zo

•3-4 2 1 0 1 2 3 4
Y

X=1 Plane

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
Y

Figure 5.7: Coarse grid: 83 x 64 x 42 cells. Full and close-up views showing the crossflow 
i-plane at the wing trailing edge.
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Figure 5.8: Coarse grid: 83 x 64 x 42 cells. Full symmetry j-plane.
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Figure 5.9: Coarse grid: View of symmetry j-plane from wing apex to trailing edge of 
tail.
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Figure 5.10: Coarse grid: 83 x 64 x 42 cells. Upper wing surface: 30 x 32 cells. Tail 
surface 15 x 20 cells.
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5.3 Low Reynolds Number Cases: R e  =  104

5.3.1 Initial C on d ition  Flowfield

At the start of the flow computations, the flow field is solved by impulsively 

inserting the wing-tail configuration into the freestream. Thus, before the structural 

dynamics computations can begin, the flow must be allowed to mature to the point 

where the large transients caused by the impulsive insertion have subsided. Once this 

developed flow solution is obtained, the tail, which up to this point has been rigid, may 

now be released to interact with the flow. For both of the low Reynolds number cases 

considered in this chapter, the flow field buffeting initial condition is taken from the end 

of a previously run rigid tail case in which the angle-of-attack was impulsively changed 

from a converged solution at a = 35° to a  =  38°. The solution is obtained by solving the 

Navier-Stokes equations time-accurately using an implicit, flux-vector splitting scheme. 

The transition case is integrated for 6000 time steps to a nondimensional time of 10.8. 

This amount of time is more than enough to insure a converged solution. In the absence 

of previous solutions, pseudo-time stepping provides a converged solution much more 

efficiently than time-accurate stepping.

Three-dimensional and top views of nondimensional surface pressure and vortex 

core streamlines are shown in Figure 5.11. Since this flow is viscous the total pressure 

on the surfaces is equivalent to the static pressure. The total pressure contours show 

the gradual decrease of suction power as the vortex moves over the wing. This is due 

to the diffusion of the vortex after bursting and the adverse pressure gradient from the 

wake. Close inspection of the wing surface reveals a total pressure spike at the symmetry 

plane. This spike is a plotting artifact and exist only at the k =  1 wing surface plane 

and is due to an improper interpolation from the cell-centered finite volume coordinates
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to the PLOT3D format of vertex coordinates. Thus, it has no effect on the solution. 

This plotting error exists only in the single tail cases.

The streamlines shown in Figure 5.11 are traced from a position at just above 

the wing apex such that they are entraned into the vortex cores. By tracing the vortex 

cores the breakdown region becomes clearly defined where the streamlines ‘bell out.' 

From topological analysis, a spiral saddle point will be located just downstream of the 

initial core expansion. In this case, the initial expansion starts at x  =  0.23 and from 

inspection of the velocity vectors the critical point is located at x  =  0.3. This difference 

in location leads to a source of ambiguity in the definition of the location of breakdown. 

Since a critical point can generally be located more precisely than the start of core 

expansion, the location of the breakdown will be recorded in reference to the spiral 

saddle critical point locations.

Another sign of breakdown is the sudden increase in core pressure and total 

pressure (despite the decrease in axial velocity). In Figure 5.12a, finite diameter, core 

streamlines, colored by local total pressure, show a constant core total pressure before 

breakdown that sharply increases at the start of core expansion. Note that the apparent 

high pressure readings on the streamlines very close to the apex are a result of the core 

streamlines being colored by the pressure location corresponding to the outer radius of 

the streamlines, which extends outside the core near the apex where the vortices are 

very small. In Figure 5.12b, a j-plane slicing the right vortex core is shown with flooded 

total pressure contours. From the contours, the increase in total pressure due to vortex 

breakdown can clearly be seen. Although there are many other scalar indicators of vortex 

strength, for this flow field it is found that total pressure provided the best indication of 

vortex breakdown. In Figures 5.13a and 5.13b, side views at flow angle-of-attack show
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surface pressure and right vortex core streamlines. Figure 5.13b shows a close-up view. 

x  =  [0,0.4], of the total pressure colored vortex core streamlines.

Figures 5.14 and 5.15 provide new insight into the structure of three-dimensional 

vortex breakdown. To the author’s knowledge, 2-D and 3-D streamlines of vortex break­

down plotted together have never been published. The value of this type of plot is that 

it provides a clear spatial relationship between 2-D and 3-D core streamlines. While 

3-D streamlines generally provide the clearest indication of a burst vortex, they are less 

effective at capturing the internal structure of the post breakdown core. Conversely 2-D 

streamlines are well suited to the latter, but due to the loss of the out-of-plane velocity 

component, flow features dependent on this component can only be inferred from their 

in-plane effects. Figure 5.14 shows the full configuration at side and three-dimensional 

orientations. In-plane streamlines are plotted on an opaque vertical plane (Ap =  82°) 

which slices through the three-dimensional vortex core streamlines. Close-up views of 

the breakdown region with opaque and clear cutting planes are shown in Figure 5.15. 

Comparison of the 2-D streamlines with the 3-D streamlines shows that the breakdown 

point is clearly captured by the 3-D streamlines but is not clearly visible at this flow 

instant in the 2-D cutting plane. This is most likely due to a lack of sufficient grid 

resolution in the axial direction.

The relationship between in-plane streamlines, velocity vectors, normal Mach 

number and total pressure is shown in Figure 5.16. The cutting plane is again at 

(Ap =  82°) as in the previous two figures, however the oblique cutting plane data have 

now been transformed (not projected) onto a flat 2-D representation that preserves the 

spatial aspect ratio, hence the plots use the tangential component x a instead of x. The 

transformation to a cutting plane of sweep angle Ap is as follows:
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where us and ws are the in-plane velocity components, vn is the velocity component 

normal to the cutting plane and A =  ^ — Ap. Arrowed streamlines plotted on a axial 

plane in Figure 5.16a reveal an attracting and repelling 2D foci pair near x s =  0.55. 

With more grid resolution, other streamline ‘kinks’ would likely become additional foci. 

In-plane velocity vectors drawn from a uniform rectangular 30 x 30 mesh are shown in 

Figure 5.16b. Contours of the nondimensionalized velocity component normal to the 

axial cutting plane, M n axe plotted in Figure 5.16c. The dashed lines indicate velocities 

pointing out of the page.

Comparing the in-plane streamlines with in-plane velocity vectors plotted once 

again reveals the danger of relying solely on 2-D streamline plots in detecting 3-D critical 

points associated with breakdown. The vector plot clearly shows the strong flow reversal 

near x s = 0.3, z = 0.03. The streamlines also show this feature, but in a much less 

pronounced way. Combining information from the in-plane velocity vector plot with 

out-of-plane Mach number contours of Figure 5.16c confirms the fact that the 2-D foci 

clearly seen in the in-plane streamline plots do not coincide with 3-D spiral saddles or 

any other 3-D critical points. If they did, there would have to be regions of zero (within 

numerical error) normal velocity, and there are no such regions in the vicinity of the
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off core 2-D foci. Contours of total pressure coefficient in Figure 5.17 show that the 

m inim um  Cpo is -3.0 and is located in the unburst vortex core.

In Figures 5.18-5.22, surface flow features are shown. Recently a new numerical 

visualization technique has become available for simulating surface oil flow patterns. The 

algorithm is called Line Integral Convolution (LIC) and was developed by Cabral and 

Leedom [9]. The approach uses linear and curvilinear filtering techniques to blur textures 

locally along a  vector field. To generate the computational surface oil flows in this study, 

the Animated Flow Integral Convolution (AFLIC) program is used, see Figure 5.18. The 

source bitmap is made up of white noise and in order to preserve configuration geometry, 

the flow state from the second grid plane normal to the viscous surfaces is moved to the 

surface. The value of LIC is its global nature, only a surface needs to be specified. 

Once the global structure is outlined streamlines restricted to the surface may be used 

to further enhance to flow depiction. A comparison of a computational wing surface 

oil flow with streamlines restricted to the k =  2 plane is shown in Figure 5.19. The 

two methods are also compared on the tail surfaces in Figure 5.20. From these plots, it 

can be seen that LIC produces results very similar to surface streamlines. The physical 

interpretation of the wing surface flow is that the flow above the surface of the wing is 

dominated by the primary vortices, which is to be expected at the low Reynolds number 

of 104. Also evident from the wing surface flow is an unsymmetric region of recirculation 

near the outer trailing edge. Inspection of the tail surface plots of Figure 5.20 reveals a 

strong separation line on both sides of the tail running diagonally up from the bottom of 

the tail at the leading edge to half way up the tail at the trailing edge. The separation 

lines are a result of the flow on the underside of the primary vortices moving away from 

the tail and merging with the freestream flow.
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The relationship between near-surface total Mach number and surface pressure 

is shown in Figure 5.21. In the Mach number plot, the growth of the boundary layer 

is evidenced by the progressive decrease of Mach number (even before the breakdown). 

Close inspection of the pressure contours reveals a slight pressure drop very close to the 

leading edge. This is indicative of a very small secondary separation. Also evident in 

the wing surface plots is the flow asymmetry. At this relatively high angle-of-attack, the 

flow is known to be slightly asymmetric and becomes more so as it increases.

The tail loading distribution is shown in Figure 5.22. Coefficient of pressure 

contours are plotted on each side along with the differential pressure coefficient. For each 

plot, pressure contours are drawn in increments of ACv =  0.05 and labeled at ACv =  0.1 

intervals. From the plots it can be seen that the greatest gradients in pressure occur 

at the leading edge of the tail and the gradients in pressure difference occur over the 

same locations, but are approximately half as steep. The magnitude of the differential 

pressure is also observed to be about one third of the pressure range on either side.

In Figures 5.23 and 5.24, total pressure coefficient contours and streamlines 

are plotted on vertical crossflow planes. Total pressure plots at chord stations on the 

wing, Figure 5.23, reveal a slight vortical asymmetry and confirm the enlargement and 

weakening of the vortices as the move downstream. The in-plane streamline plots at the 

same locations confirm that the total pressure m inim nm s are occurring at the vortex 

cores and that any secondary separation is extremely small. Total pressure contours and 

streamlines in the crossflow planes surrounding the tail show a significant total pressure 

gradient near the tail and the main vortices rapidly diffusing and moving upwards. Note 

that since this data  set are not ‘i-blanked’ the streamline routine tries to plot through 

the no-slip region of the tail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



y 2

In Figure 5.25, the normalized spanwise variation of the coefficient of pressure 

is plotted at the same chord stations as the previous crossflow plots. Plotting Cp in this 

fashion provides the clearest indication of flow separation beyond the primary vortices, 

because an additional suction peak will occur for each additional vortex. In this case, 

no evidence of a secondary vortex can be seen. Also of note is the increasing asymmetry 

shown at chord stations 0.7 and 0.9.
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Figure 5.11: Three-dimensional and top views of surface pressure and vortex core stream­
lines. Initial Condition Flow Field: Re =  104, M  =  0.4, a  = 38°.
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b)
Figure 5.12: a) Three-dimensional view of total pressure colored vortex core streamlines, 
b) Three-dimensional view of j  = 13 plane colored with total pressure slicing through 
vortex core streamlines. Initial Condition Flow Field: Re — 104, M  =  0.4, a  = 38°.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

a)
Total Pressure

0.45 OSS 0.65 0.75 OSS

Figure 5.13: a) Side view at incidence showing surface pressure and vortex core stream­
lines. b) close-up side view, x = [0,0.4|, showing total pressure colored vortex core 
streamlines. Initial Condition Flow Field: Re =  104, M  =  0.4, a — 38°.
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Figure 5.14: Side and three-dimensional views of in-plane streamlines plotted on an 
opaque vertical plane (Ap =  82°) slicing through three-dimensional vortex core stream­
lines. Initial Condition Flow Field: Re =  104, M  =  0.4, a  =  38°.
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«

Figure 5.15: Close-up views of in-plane streamlines plotted on opaque and transparent 
vertical planes (Ap = 82°) slicing through the three-dimensional vortex core streamlines. 
Initial Condition Flow Field: Re = 104, M  = 0.4, a  = 38°.
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Figure 5.16: a) Streamlines, b) velocity vectors, c) normal Mach contours and d) to­
tal pressure contours plotted on a vertical plane which bisects the vortex core. Initial 
Condition Flow Field: Re =  104. M  =  0.4. a  =  38°.
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Total Pressure Coefficient on Axial Plane (A-82°)
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Figure 5.17: Contours of total pressure coefficient plotted on a vertical plane which 
bisects the vortex core. Initial Condition Flow Field: Re =  104, M  =  0.4, a  =  38°.

Figure 5.18: Computational surface oil flow plotted using the Line Integral Convolution 
algorithm of Cabral and Leedom [9]. Initial Condition Flow Field: Re =  104, M  = 0.4. 
a  =  38°.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

Near Surface Streamlines
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Figure 5.19: Comparison of computational wing surface oil flow with streamlines re­
stricted to the k  =  2 plane. Initial Condition Flow Field: Re =  104, M  =  0.4, a  =  38°.
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Figure 5.20: Comparison of computational tail surface oil flows with streamlines re­
stricted to the j  =  2 plane for the right side and j  =  jdirn — 1 for the left side. Initial 
Condition Flow Field: Re =  104, M  =  0.4, a  =  38°.
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Figure 5.21: Mach number on the k = 2 plane above wing, surface pressure and pressure 
coefficient on wing surface. Initial Condition Flow Field: Re = 104, M  =  0.4, a  =  38°.
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Figure 5.22: Coefficient of pressure on right and left sides of tail, and differential pressure 
coefficient. Initial Condition Flow Field: Re =  104, M  =  0.4. a  =  38°.
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Figure 5.23: Toted pressure coefficient and streamlines plotted on vertical crossflow planes 
above wing. Initial Condition Flow Field: Re =  104. M  =  0.4. a  =  38°.
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Figure 5.24: Total pressure coefficient and streamlines plotted on vertical crossflow planes 
near the tail. Initial Condition Flow Field: Re =  104. M  =  0.4, a  =  38°.
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Figure 5.25: Coefficient of pressure on upper and lower wing surfaces at chord stations 
corresponding to plotted crossflow planes. Initial Condition Flow Field: Re =  104. 
M  = 0.4. a  =  38°.
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5.3.2 U ncoupled B ending and Torsion R esponse

In this section, the buffeting response due to uncoupled ( xg  =  0) bending and 

torsional vibrations is considered. This case is the most basic of this study due to 

the simple tail geometry, low Reynolds number and the uncoupling of the bending and 

torsional vibration modes. The purpose of this case is to provide a baseline for studies 

of the effects of increased Reynolds number and inertial coupling on single tail buffet. 

This and the other single tail buffeting cases in this chapter will also be compared the 

twin tail buffeting cases in the following chapters.

As previously discussed in Section 5.2.1, to improve the efficiency of the com­

putations the fine grid used to develop the initial flow state was coarsened by deleting 

every other j-plane and k-plane. This reduced the total number of cells by 74%. The 

coarsened grid is shown in Figures 5.6-5.10. Comparison of Cv plots for the initial flow 

state generated from the fine grid, see Figure 5.25, with the solution obtained from the 

coarse grid, Figure 5.26, shows that generally, the coarse grid produces vortices of similar 

size and strength to the fine grid. Note that the latter Cp plot is also influenced by the 

response of the tail so only a general comparison can be made.

Three-dimensional and top views of nondimensional surface pressure and vortex 

core streamlines at r  =  =  5.28 are shown in Figure 5.27. The time of r  =  5.28

corresponds to the end of the coupled case in the next section. This buffeting case runs to 

t  = 13.2. Note that throughout this study nondimensional time is expressed in the more 

physically meaningful form of rather than the standard CFD form of ^J0-. Flooded 

contours of total pressure show the gradual decrease of suction as the vortex moves over 

the wing. As previously discussed in Section 5.3.1, the pressure spike on the wing surface 

at the symmetry plane is only a  plotting artifact. Inspection of the core streamlines show
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that the coarser grid produces a more gradual vortex breakdown than the fine grid, this 

makes finding the precise location of the spiral saddle critical point more difficult. Thus, 

the Topology module of the Flow Analysis Software Toolkit (FAST) was used to solve for 

the precise locations of all spiral saddle critical points and are marked with 3-D crosses. 

Only the first critical point in each vortex is significant since it denotes the location 

of breakdown. From the top view of Figure 5.27 a significant asymmetry can be seen, 

with the right and left breakdowns occurring at 36%c and 26%c, respectively. Recall 

that the initial condition was much more symmetric with both breakdowns occurring 

very near 30%c. Also from the top view, the deflection of the tail surface can clearly 

be seen. This is the most significant source of flow asymmetry. On the left side of the 

tail, streamlines can be seen to be stopping at the surface of the tail. This is due to 

two reasons: The first is the fact that the tail is moving so the no-slip condition of zero 

surface velocity has become a relative velocity of zero, hence the absolute velocity the 

stream tracer sees is nonzero at the tail surface. The second reason the streamlines do not 

pass through the tail in this figure is that FAST does not trace through grid boundaries 

on non-i-blanked grids. If particle traces were used instead of streamlines, no special 

treatment of the moving tail would be required. The configuration at angle-of-attack is 

shown in Figure 5.28. In this side view, the relative position of the critical points can 

be seen as well as the position of the vortex as it passes by the tail. In Figure 5.29, the 

computational surface oil flow for the whole configuration is shown. Since for this flow' 

regime (and grid) the LIC oil flow does not provide any greater insight over near-surface 

streamlines, the latter method will be emphasized in the remaining cases of this chapter. 

Plots of near-surface streamlines for the tail and wring surfaces are shown in Figure 5.30. 

The tail streamlines exhibit a separation line at the bottom of the vortex, but unlike the
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initial condition flow state, possess a greater asymmetry. The wing surface streamlines 

are mostly symmetric with no signs of secondary separation. The region of circulation 

previously observed near the leading edge at x  =  0.9 is now much weaker than in the 

fine grid initial condition solution. This is most likely a  result of the grid coarsening.

The tail loading distribution for the same instant of time as the previous plots 

is shown in Figure 5.31. Coefficient of pressure contours are plotted on each side along 

with the differential pressure coefficient. For each plot, pressure contours are drawn in 

increments of A Cp = 0.05. From the plots, it can be seen that the greatest gradients 

in pressure no longer occur at the leading edge, but axe now more evenly spread out 

over the forward half of the tail. The range of the net pressure on the deflected tail is 

also observed to be about three times as large as in the initial condition flow field and is 

dominated by the low pressure on the left side of the tail. From Figure 5.27, the greater 

pressure differential is undoubtedly caused by the torsional deflection of the tail into the 

passing vortex, which is one of the reasons the tail buffeting problem is best solved in a 

multi-disciplinary fashion.

Wing crossflow planes at the same chord stations as the spanwise Cp plots 

are shown in Figure 5.32. Contours of total pressure coefficient reveal that the vortex 

strength captured by the coarse grid is indeed the same as that of the fine grid. Of 

particular note is the x  =  0.30 chord station where the right vortex core is unburst and 

tight, while the left core is burst and weaker.

Crossflow planes near the tail are shown in Figure 5.33. The contours of total 

pressure, reveal the close proximity of the low pressure left vortex core to the tail surface. 

The streamlines in the crossflow planes around the tail are seen to pass through the tail, 

this is due to the motion of the tail as was previously discussed. The only difference

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L10

being that unlike FAST, Tecplot will trace through a non-i-blanked grid boundary. A 

key feature of the crossflow plots of total pressure coefficient and strea m lin es  can be seen 

in the x =  1.3 plane. In this plane the right vortex core, which is defined by the center of 

rotation and is visible as a focus point in the streamline plot, does not coincide with the 

local m inim um  of total pressure. The latter is 0.1c below the actual core. This is due 

to the fact that total pressure is not a purely kinematical quantity, thus the correlation 

with stream lines is not direct. However, total pressure is a very good indicator of vortical 

flow and is off in this case only because the vortex core has become very diffuse.

In Figures 5.34-5.40, the buffet loading and response is presented in detail. 

To get a general idea of the primary vibration modes and loading distributions, the 

displacements and forces per unit length are plotted against z at regular time intervals 

in Figures 5.34 and 5.35. These plots indicate that the bending and torsion responses 

both occur primarily in the first modes. Force and moment distributions at regular

time intervals give a qualitative picture of the magnitude and variations of the tail

loadings. For a quantitative portrait of the tail loading, mean and RMS distributions 

are appropriate, see Figure 5.36. Note that the force and moment loadings per unit 

length are expressed in the standard coefficient form as follows;

N
Cn  = --- i ----- r^ =  (5.6)

5P00 V£c

C*' =  i v 2 c  (5-7>^PooV^St

In Figure 5.36, the mean force and moment coefficients show a peak a t z = 0.23. The 

RMS moment distribution also peaks at z =  0.23. The RMS force distribution shows 

a constant force variation from the root to z = 0.2 above which it declines, the one 

exception to this rule being the data point at the root. This is due to a small area of 

separation resulting from flow across the root, recall that the tail is suspended in the
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wake. The other peaks in the vicinity of z =  0.23 are a result of the primary vortices 

tailing past the tails. The reason the RMS bending force distribution did not exhibit 

this same peak is due to the deflections of the tail. Note that because the single tail 

configuration is symmetric geometrically and with respect to the flow, there should not 

be any long term  directional bias in the buffet loading or response. Hence, for single tail 

cases, the mean loading represents a type of unsteady residual that should tend to zero 

as time passes. In this case, the mean loads are an order of magnitude lower than the 

instantaneous loads.

Recall that the study of tail buffeting was necessitated by the fatigue failure of 

the vertical tails. This failure takes place a t or near the root, thus the buffet loading is 

best characterized by the root bending and root twisting moments. These moments are 

nondimensionalized as follows:

Crbm =

Crtm =

Time and frequency domain data are plotted in Figures 5.37 and 5.38 respectively. The 

time domain data are converted to the frequency domain using Fast Fourier Transform 

(FFT) techniques. Since CFD stability requirements dictate a very small time step, only 

every fifth data  point is sampled, giving a total of 4000 points. To improve statistical 

confidence, the sample is subdivided into 7 blocks of 1000 samples each with 50% overlap. 

To reduce bandwidth leakage, a Hanning window is applied to each block which is then 

zero padded to  a length of 2048 (2U) samples. The time averaged power spectral density 

(PSD) is obtained by calculating the PSD of each block and averaging them together. 

The MATLAB signal processing tool box is used to perform the calculations. The mean

M m  (5.8)
\PooV^Stc

M r t  
\p 0 0 v i s tz

(5.9)
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and RMS root moment values, m axim um  amplitudes (A) and d o m in an t frequencies (n^) 

are summarized for this case in Table 5.3.

In the same way that the buffet loads are best characterized by integrating along 

the length of the tail to yield root values, the buffeting response is most clearly shown by 

looking at the tip displacements and accelerations. Accelerations are important because 

they are the primary source of structural fatigue as opposed to maximum deflections. 

Time and frequency domain data are plotted in Figures 5.39 and 5.40, respectively. The 

time domain data are converted to the frequency domain using the same parameters 

that were used for the load data. Unlike the loading, the dominate frequencies of the tip 

bending and rotation accelerations do match each other. The maximum amplitudes of the 

tip displacements, accelerations and the first two dominant frequencies are summarized 

in Table 5.4.

Root Loads
Crbm Crtm

Mean RMS A nd\ nd2 Mean RMS A Kdl nd2

0.015 0.026 0.060 0.75 1.75 0.00095 0.029 0.057 0.45 2.0

Table 5.3: Summary of root bending and twisting moment statistics, maximum am­
plitudes and dominant frequencies. Uncoupled Bending and Torsion Case: Re =  104. 
M  =  0.4, q  =  38°.

Tip Response
Bending Torsion

A(w) A(wt t ) n-di nd2 A{6 )° A{0t t )° ndl nd.2

0.082 3.5 0.45 1.75 9.8 420 0.45 1.75

Table 5.4: Summary of tip displacement and acceleration statistics, maximum amplitudes 
and dominant frequencies. Uncoupled Bending and Torsion Case: Re =  104, M  =  0.4. 
a  =  38°.
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Figure 5.26: Coefficient of pressure on upper and lower wing surfaces at chord stations 
corresponding to plotted crossflow planes. Uncoupled Bending and Torsion Case: r  =  
5.28, Re =  104, M  =  0.4, a  =  38°.
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Total Pressure

045 045 0.65 0.75 045

Figure 5.27: Three-dimensional and top views of surface pressure and vortex core stream­
lines at t  —  ^ 2 °- = 5.28 and A t =  0.00066. Purple crosses denote critical points asso­
ciated with either attracting or repelling spiral saddle points. Uncoupled Bending and 
Torsion Case: Re = 104, M  — 0.4, a  =  38°.
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Figure 5.28: Side view at angle-of-attack showing surface pressure, vortex core stream­
lines, and spiral saddle points at r  =  5.28. Uncoupled Bending and Torsion Case: 
Re =  104, M  =  0.4, a  =  38°.

Figure 5.29: Computational surface oil flow at r  =  5.28. Uncoupled Bending and Torsion 
Case: Re =  104, M  = 0.4, a  = 38°.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



l i e

Left Side Streamlines Right Side Streamlines
0 5 -

02 -

1.*  1.5

0 5 -

0 .4 -

0 3 -

0 3 -

Near Surface Streamlines

050

0.15

0.10

0.05

Yo.00

-0.05

•0.10

-0.15

1.00.8 0.90.6 0.70.3 0.40.10.0

Figure 5.30: Near surface streamlines. Uncoupled Bending and Torsion Case: r  =  5.28, 
Re =  104. M  = 0.4. a  =  38°.
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Figure 5.32: Total pressure coefficient and streamlines plotted on vertical crossflow planes 
above wing. Uncoupled Bending and Torsion Case: r  =  5.28, Re =  104. M  = 0.4. 
a  =  38°.
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Figure 5.33: Total pressure coefficient and streamlines plotted on vertical crossflow planes 
near the tail. Uncoupled Bending and Torsion Case: r  =  5.28, Re =  104, M  =  0.4, 
a  =  38°.
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Figure 5.34: Bending deflection and force distributions along the tail span plotted at 
integer nondimensional time levels. Uncoupled Bending and Torsion Case: Re =  104. 
M  =  0.4, a  =  38°.
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Figure 5.35: Torsion deflection and moment distributions along the tail span plotted at 
integer nondimensional time levels. Uncoupled Bending and Torsion Case: Re =  104, 
M  =  0.4. a  =  38°.
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Figure 5.36: Mean and RMS load distributions along the tail span. Uncoupled Bending 
and Torsion Case: Re = 104, M  = 0.4, a  =  38°.
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Figure 5.37: History of root bending moment coefficient and root twisting moment co­
efficient. Uncoupled Bending and Torsion Case: Re = 104, M  =  0.4, a = 38°.
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Figure 5.38: Power spectral density of root bending moment coefficient and root twisting 
moment coefficient versus reduced frequency. Uncoupled Bending and Torsion Case: 
Re =  104, M  =  0.4, q  =  38°.
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Figure 5.39: History of tip bending and torsion deflections and accelerations. Uncoupled 
Bending and Torsion Case: Re =  104, M  = 0.4, a  =  38°.
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Figure 5.40: Power spectral density of tip bending and torsion accelerations versus re­
duced frequency. Uncoupled Bending and Torsion Case: Re =  104, M  =  0.4, a  =  38°.
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5.3 .3  Coupled B ending and Torsion R esponse

In this section, the buffeting response due to inertially coupled bending and 

torsion vibrations is considered. The purpose of this case is to assess the effect of 

structural coupling on the buffeting response. Note that since the buffeting problem is 

being solved in a  multi-disciplinary fashion, the bending and torsion modes are already 

coupled by virtue of the aerodynamics. However, the addition of inertial coupling will 

change the overall coupling between bending and torsional vibrations because of its 

fundamentally different physical mechanism. For completeness, the full set of figures 

plotted for the uncoupled case are reproduced in this section for the coupled response. 

However, since the basic flow field has now been discussed in detail, the buffeting response 

will now be emphasized.

Figures 5.41- 5.48 depict the flow field at the same time level as in the uncoupled 

case. The plots of spanwise variation of Cp are the simplest of all the flow field plots 

presented in this study. However, these plots are packed with information and provide 

the most succinct and clear depiction of the differences between the present flow field 

and that of the uncoupled case. Comparing the Cp plots of Figure 5.26 with Figure 5.41 

indicates that the two flow fields are very similar to each other but become significantly 

different by the x =  0.9 chord station. This demonstrates the upstream effect that 

a small difference in tail deflection produces. Examining the 3-D streamline plots in 

Figure 5.42 shows that the left vortex traces start to differ at the x =  0.5 chord location. 

Note that throughout this study all 3-D streamline plots are created via scripts and 

therefore have identical seed locations for like grids. From the top view in Figure 5.42. 

there is no significant difference in the breakdown locations between the two cases.

Contours of the coefficient of differential pressure on the tail surface in Fig­

ure 5.46 show 71% greater range of pressure over the tail surface at the instant of
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r  =  5.28. Displacement and loading distributions plotted in Figures 5.49 and 5.50 give a 

more complete picture of the loading. Note tha t data for the present case only extends 

to the time level of r  =  5.28 instead of r  =  13.2 as in the uncoupled case. Despite 

the smaller sample size, the mean and RMS load distributions shown in Figure 5.51 are 

very similar to the uncoupled case. From the root loading histories in Figure 5.52, the 

maximum root bending moment coefficient amplitude is 50% higher than that of the 

uncoupled case. The maximum root twisting moment coefficient amplitude is identical 

to the value obtained in the uncoupled case. Frequency domain data are obtained using 

the same method described in the previous section and are plotted in Figure 5.53. From 

this plot, the dominant reduced frequencies for both bending and twisting moments are 

n =  0.5 with a second peak at n =  2.0. Recall that these frequencies are very close to 

those of the root twisting moment of the uncoupled case. However, in the uncoupled 

case, the root bending moment peak frequencies did not match those of the root twisting 

moment. Thus, it appears that coupling the modes together structurally also influences 

the frequency and magnitude of the aerodynamic loading due to the natural coupling 

of the deflections with the flow. The mean and RMS root moment values, maximum 

amplitudes (A) and dominant frequencies (nj) are summarized in Table 5.5.

Tip displacement and acceleration histories are shown in Figure 5.54. The 

maximum amplitudes of the bending deflections and accelerations are 50% and 43% 

higher, respectively, than those of the uncoupled response. Tip torsional displacement 

and accelerations are 80% and 31% higher, respectively, than the uncoupled response. 

Power spectral densities of the tip accelerations, shown in Figure 5.55 indicate that the 

dominant frequencies of the buffeting response match those of the loading, but have 

greater high-frequency content than the uncoupled case. Thus, it is clear that the initial
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coupling of bending and torsional modes, even when small (xg = 0.05), has a significant 

impact on the loading and buffeting response. The maximum amplitudes of the tip 

displacements, accelerations and the first two dominant frequencies are summarized in 

Table 5.6.

Root Loads
Crbm Crtm

Mean RMS A Tldl n<i2 Mean RMS A ndl nd2

-0.019 0.042 0.091 0.50 2.00 -0.000042 0.038 0.088 0.50 2.00

Table 5.5: Summary of root bending and twisting moment statistics, maximum am­
plitudes and dominant frequencies. Coupled Bending and Torsion Case: Re =  104, 
M  = 0.4, a  =  38°.

Tip Response
Bending Torsion

A(w) A{ Wrr) Tldl Tld2 A(9)° A(0rr)° ndi nd2

0.117 5.0 0.50 2.00 17.6 550 0.50 2.00

Table 5.6: Summary of tip displacement and acceleration statistics, maximum amplitudes 
and dominant frequencies. Coupled Bending and Torsion Case: Re = 104, M  =  0.4. 
q =  38°.
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Figure 5.41: Coefficient of pressure on upper and lower wing surfaces at chord stations 
corresponding to plotted crossflow planes. Coupled Bending and Torsion Case: r  =  5.28. 
Re = 104, M  =  0.4, a  =  38°.
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0.45 0.55 0.65 0.75 M5

Figure 5.42: Three-dimensional and top views of surface pressure and vortex core stream­
lines at t  — =  5.28 and A t  =  0.00066. Purple crosses denote critical points as­
sociated with either attracting or repelling spiral saddle points. Coupled Bending and 
Torsion Case: Re — 104, M  =  0.4, a  =  38°.
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Figure 5.43: Side view a t angle-of-attack showing surface pressure, vortex core stream­
lines, and spiral saddle points at r  =  5.28. Coupled Bending and Torsion Case: Re =  104, 
M  =  0.4, a  -  38°.

Figure 5.44: Computational surface oil flow at r  = 5.28. Coupled Bending and Torsion 
Case: Re — 104, M  = 0.4, a  = 38°.
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Figure 5.45: Near surface streamlines. Coupled Bending and Torsion Case: r  =  5.28, 
Re =  104, M  =  0.4, a  =  38°.
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Figure 5.46: Coefficient of pressure on right and left sides of tail, and differential pressure 
coefficient. Coupled Bending and Torsion Case: r  =  5.28, Re =  104, M  =  0.4, a  =  38°.
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Figure 5.47: Total pressure coefficient and streamlines plotted on vertical crossflow planes 
above wing. Coupled Bending and Torsion Case: r  =  5.28, Re =  104, M  = 0.4, a = 38°.
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Figure 5.48: Total pressure coefficient and streamlines plotted on vertical crossflow planes 
near the tail. Coupled Bending and Torsion Case: r  =  5.28, Re =  104, M  =  0.4, a  =  38°.
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Figure 5.49: Bending deflection and force distributions along the tail span plotted at 
integer nondimensional time levels. Coupled Bending and Torsion Case: Re =  104. 
M  =  0.4, q =  38°.
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Figure 5.50: Torsion deflection and moment distributions along the tail span plotted 
at integer nondimensional time levels. Coupled Bending and Torsion Case: Re =  104. 
M  = 0.4. a  = 38°.
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Figure 5.51: Mean and RMS load distributions along the tail span. Coupled Bending 
and Torsion Case: Re =  104, M  =  0.4, a = 38°.
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Figure 5.52: History of root bending moment coefficient and root twisting moment co­
efficient. Coupled Bending and Torsion Case: Re =  104, M  =  0.4, a  =  38°.
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Figure 5.53: Power spectral density of root bending moment coefficient and root twisting 
moment coefficient versus reduced frequency. Coupled Bending and Torsion Case: Re = 
104, M  =  0.4, a  =  38°.
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Figure 5.54: History of tip bending and torsion deflections and accelerations. Coupled 
Bending and Torsion Case: Re =  104, M  = 0.4, a  =  38°.
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Figure 5.55: Power spectral density of tip bending and torsion accelerations versus re­
duced frequency. Coupled Bending and Torsion Case: R e  =  104, M  = 0.4, a  =  38°.
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5.4 High Reynolds Number Cases: R e  =  106

In the rem ain in g  sections of this chapter, the effect of Reynolds number on 

single tail buffet will be considered. Cases of uncoupled and coupled bending and tor­

sion vibration modes are studied. All other flow and structural parameters will remain 

unchanged. Also included is a rigid tail case in which the deflections are solved for, but 

are not imposed in the flow solution. Hence, the flow sees a rigid tail and the structure 

reacts to the forces generated from the flow past an undeformed tail. The value of the 

rigid case is that it provides a baseline flow in which the effect of the moving tail on the 

flow field can be assessed.

5.4.1 Initial Condition

The initial flow state for the higher Reynolds number buffeting cases was ob­

tained by taking the initial condition for the low Reynolds number cases and of inte­

grating time-accurately for 2000 more time steps on the coarse grid with A r  =  0.00132. 

Note that in this case the time step is twice as large as in the low Re cases. Generally the 

time step must be decreased with increasing Re due to stability requirements; however 

in this case, the time step in the low Re cases was set from a previous large deflection 

case (not included in this study), in which the strong fluid-structure interactions coupled 

with a finer grid were the limiting factors. In the present high Re cases, the time step 

was limited only by CFD stability.

Comparing the 3-D streamline plots of the present coarse Re  =  106 case, given 

in Figure 5.56, with those of the fine Re =  104 case, given in Figure 5.11, reveals the 

effects of both Re and grid resolution. Because the other buffeting cases at low Re were 

also computed on a coarse grid interpolated from the fine initial condition, the effect of
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grid resolution can be separated from the effect of Re. As previously noted, coarsening 

the grid results in a weaker breakdown and a more diffuse vortex core in general. It 

is possible that this lack of clarity in the vortex core and breakdown has the effect of 

driving the natural breakdown instability more unstable with respect to position. This 

would account for the greater asymmetry seen in all of the coarse grid cases. Recalling 

that all of the low Re cases had breakdown locations around 30% chord, it can clearly 

be seen that the effect of increasing the Re  from a very low value of 104 to a moderate 

Re of 106 pushes back the breakdown by 10%c. This shows tha t the effect of greatly 

increased viscosity is to hasten breakdown. However, this trend is well known not to 

continue with increasing Re. In general, there is very little change in the breakdown flow 

from moderate (106) to high Reynolds numbers (107).

Figure 5.57 depicts the side view of the configuration at angle-of-attack and 

shows that the vortex trajectory remains unchanged with the increased Re. Note that 

because the grid dimensions changed between this and the low Re initial condition, the 

number of streamlines are also unequal, all other streamline plots share identical seed 

locations. The surface flow shown in Figures 5.58 and 5.59 reveals that once again the 

coarse grid does not capture any secondary flow separation or reattachment. From the 

wing surface flow, the previous region of recirculation seen near the trailing edge is now 

completely gone. The tail surface flows however, are still very similar with separation 

lines occurring in nearly the same locations.

Tail surface Cp plots, Figure 5.60, show pressure levels a t nearly the same level 

as the low Re case. However, the differential pressure range at this time level is 50% 

lower. Further analysis of the tail loading will be conducted in the following buffeting 

sections.
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In Figures 5.61-5.64, crossflow planes are shown with total pressure coefficient 

contours, streamlines and velocity vectors drawn from each cell interface. The value 

of velocity vectors plots is their uniform ity  and the additional information of velocity 

magnitude, which streamline plots do not easily show. Note the in all crossflow plots the 

orientation is such that the viewer is looking upstream. Cpo contours at the same range 

and levels confirm  the vortex size and breakdown position shown by the 3-D streamlines. 

In the x  = 0.3 crossflow plane the vortices are much tighter than in the Re = 104, 

confirm in g  that the vortices have yet to burst. Another key feature of all the vector 

plots over the wing is the lack of vortical flow near the leading edges, again confirming 

the absence of secondary separation.

In Figure 5.65, the normalized spanwise variation of the coefficient of pressure 

is plotted at the same chord stations as the previous crossflow plots. The main difference 

between the Cp plots of this case and the low Re case is at the x  =  0.3 plane. In this 

case, since breakdown has not yet occurred so the vortices are much stronger and hence 

exhibit a greater suction force. The asymmetry in Cp also adds credibility to the purely 

kinematical signs of asymmetric breakdown.
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Figure 5.56: Three-dimensional and top views of surface pressure and vortex core stream­
lines. Purple crosses denote critical points associated with either attracting or repelling 
spiral saddle points. Initial Condition Flow Field: Re =  106, M  = 0.4, a  = 38°.
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Figure 5.57: Side view at angle-of-attack showing surface pressure, vortex core stream­
lines, and spiral saddle points. Initial Condition Flow Field: Re — I06, M  = 0.4, 
a  =38°.

Figure 5.58: Computational surface oil flow. Initial Condition Flow Field: Re = 106, 
M  = 0.4, a  =  38°.
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Figure 5.59: Near surface streamlines. Initial Condition Flow Field: Re =  106, M  =  0.4, 
a  =  38°.
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Figure 5.61: Total pressure coefficient, streamlines, and velocity vectors plotted on ver­
tical crossflow planes above wing at chord stations x  =  0.3,0.5. Initial Condition Flow 
Field: Re =  106, M  = 0.4, a  =  38°.
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Figure 5.65: Coefficient of pressure on upper and lower wing surfaces at chord stations 
corresponding to plotted crossflow planes. Initial Condition Flow Field: Re =  106, 
M  = 0.4. a  =  38°.
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5.4.2 R igid Tail Load H istory

The purpose of this case is to provide a baseline from which the effect of struc­

tural interaction with the flow can be assessed quantitatively. The two main issues to be 

resolved are: to what degree does the motion of the tail affect the upstream breakdown 

location, and secondly, what effect does the exclusion of the fluid-structure interactions 

have on the predicted buffeting response and loading. To answer these questions, a rigid 

tail case in which the deflections are solved for, but not imposed back into the flow 

solution is presented.

The global flow field at the end of the buffeting case is plotted in Figures 5.66- 

5.71. Comparison of these plots with the initial condition flow field of the previous 

section reveals the unsteady nature of the global flow. This is most clearly shown by the 

widely varying position of the breakdown locations.

In Figures 5.72-5.78, the loading and the hypothetical uncoupled bending and 

torsion buffeting response are plotted. The mean and RMS root moment values, maxi­

mum amplitudes and d om inant frequencies are summarized for in Table 5.7. From the 

time and frequency domain load data, the loading is largely random with two distinct 

d o m inant frequencies. It is also observed that the dominate frequencies for bending 

and twisting root moments are identical. This proves conclusively that the similarity in 

dominant frequencies seen in the previous low Re cases is not due to the aerodynamic 

coupling of the bending and torsional modes.

The maximum amplitudes of the hypothetical tip displacements, accelerations 

and the first two dominant frequencies are summarized in Table 5.8. Since these dis­

placements are not implemented in the flow solution, there is no aerodynamic damping 

of the response. The effect is larger displacements and increased high-frequency content.
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Both the loading and response of this case will be further discussed in contrast with the 

following two buffeting cases in the next sections.

Root Loads
Crbm Crtm

Mean RMS A Kdl nd2 Mean RMS A rc<fi n d2

-0.021 0.029 0.070 0.75 1.5 0.007 0.014 0.039 0.75 1.5

Table 5.7: Summary of root bending and twisting moment statistics, maximum ampli­
tudes and dominant frequencies. Rigid Tail Case: Re =  106, M  =  0.4, a  =  38°.

Hypothetical Tip Response
Bending Torsion

A(w) A(wt t ) ndi n<e A(0)° nd2

0.131 6.8 0.50 2.50 42.2 3240 0.88 2.50

Table 5.8: Summary of hypothetical tip displacement and acceleration statistics, max­
imum amplitudes and dominant frequencies. Rigid Tail Case: Re = 106, M  =  0.4. 
a  =  38°.
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Figure 5.66: Coefficient of pressure on upper and lower wing surfaces at chord stations 
corresponding to plotted crossflow planes. Rigid Tail Case: Re =  106, M  =  0.4, a  =  38°.
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Figure 5.67: a) Three-dimensional, b) top and c) side views of surface pressure and 
vortex core streamlines at t  — =  13.2 and A r  = 0.00132. Purple crosses denote
critical points associated with either attracting or repelling spiral saddle points. Rigid 
Tail Case: Re = 106, M  = 0.4, a  = 38°.
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Figure 5.68: Near surface streamlines at r  =  13.2. Rigid Tail Case: Re =  106, M  =  0.4, 
a  =  38°.
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Figure 5.70: Total pressure coefficient and velocity vectors plotted on vertical crossflow 
planes above wing. Rigid Tail Case: r  =  13.2, Re = 104, M  = 0.4, a  =  38°.
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Figure 5.71: Total pressure coefficient and velocity vectors plotted on vertical crossflow 
planes near the tail. Rigid Tail Case: r  =  13.2, Re =  104, M  =  0.4, a  =  38°.
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Figure 5.72: Hypothetical Bending deflection and force distributions along the tail span 
plotted at integer nondimensional time levels. Rigid Tail Case: Re =  106, M  — 0.4. 
a  =  38°.
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Figure 5.73: Hypothetical torsion deflection and moment distributions along the tail 
span plotted a t integer nondimensional time levels. Rigid Tail Case: Re =  106, M  =  0.4. 
a  =  38°.
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Figure 5.74: Mean and RMS load distributions along the tail span. Rigid Tail Case: 
Re = 106. M  =  0.4, a  =  38°.
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Figure 5.75: History of root bending moment coefficient and root twisting moment co­
efficient. Rigid Tail Case: Re = 106, M  =  0.4, a  =  38°.
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moment coefficient versus reduced frequency. Rigid Tail Case: Re =  106, M  =  0.4, 
q =  38°.
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Figure 5.78: Power spectral density of hypothetical tip bending and torsion accelerations 
versus reduced frequency. Rigid Tail Case: Re = 106, M  = 0.4, a  =  38°.
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5.4.3 Uncoupled Bending and Torsion Response

In this section, the buffeting response due to uncoupled (xg =  0) bending and 

torsion vibrations is considered. Comparison of the results of this case with those of Sec­

tion 5.3.2 will demonstrate the effect of increased Re on the single tail buffeting response. 

Comparison with the inertially coupled response in the next section will demonstrate the 

effect of coupling at high Re.

The global flow field at the end of the buffeting case is plotted in Figures 5.79- 

5.84. Comparison of these plots with the rigid tail buffeting case of the previous section 

demonstrates that the motion of the tail has a noticeable effect on the breakdown posi­

tion, with the right critical point 3%c further aft and the left critical point 7%c farther 

forward than the locations of the rigid buffeting case at the same time level. Small but 

noticeable differences also exist in the tail surface flow streamlines, especially at the lower 

left separation line, Figure 5.81. Inspection of the tail surface Cp plots, Figure 5.82 re­

veals a more significant difference in the tail flow field. This is particularly noticeable in 

the differential Cp plots, where the overall range is close, but the distribution of pressure 

over the tail surface is significantly different. Comparing the crossflow plots, Figures 5.83 

and 5.84, with the rigid case, confirms that with increasing distance upstream of the tail 

the flow is less disturbed. This fact is also shown in the Cp plots, Figure 5.79, where the 

spanwise variation of Cp at the x  =  0.3 and x  =  0.5 chord stations match closely with 

the rigid case, while the last two at x  =  0.7 and x  =  0.9 differ on the right side.

The mean and RMS load distributions in Figure 5.87 show that while the 

mean loads of the present case are very similar to the rigid case, the RMS loads are very 

different in both magnitude and distribution. The clearest depiction of the effects of fluid- 

structure interaction on the buffet loading is shown in the time and frequency domain
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data of Figures 5.88 and 5.89. The mean and RMS root moment values, maximum 

amplitudes and dominant frequencies are summarized in Table 5.9. A key difference 

between the present case and the rigid loading is that while the bending moment became 

less periodic the root twisting moment become more periodic. This can also be seen in 

the PSD plots shown in Figure 5.89 where the bending frequency peak split into two 

peaks and the twisting frequency peak became narrower. In addition to the changes in 

frequency, the magnitude of the root twisting moment is 46% higher than the rigid tail 

case while the root bending moment is 11% lower, see Table 5.10.

The maximum amplitudes of the tip displacements, accelerations and the first 

two dominant frequencies are summarized in Table 5.11. As expected the present buf­

feting response is much lower than the hypothetical response calculated from the rigid 

loading. This is because the rigid case had no source of damping.

W ith the effects of fluid-structure interactions established, the second issue of 

this case is the effect of increased Re on the buffet loading and response. Comparison 

of the loading and response summaries of the present high Re  case, shown in Tables 5.9 

and 5.11, with the low Re case of Section 5.3.2, see Tables 5.3 and 5.4, indicate that 

the increase in Re increases the buffet loading and response magnitudes by only a small 

amount due to a decrease in aerodynamic damping. This loss of damping is also clearly 

visible in the increased high-frequency content of the loading and especially the response, 

see Figures 5.89 and 5.91. In Tables 5.12 and 5.13, the effects of Re on the uncoupled 

bending and torsion buffet loads and response are summarized.
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Root Loads
C r b m C r t m

Mean RMS A ndi rid 2 Mean RMS A Tldl n<i2
-0.031 0.035 0.062 0.5 1.0 0.0089 0.034 0.057 0.5 2.0

Table 5.9: Summary of root bending and twisting moment statistics, maximum am­
plitudes and dominant frequencies. Uncoupled Bending and Torsion Case: Re =  106. 
M  =  0.4, a  =  38°.

Root Loads
C r b m C r t m

Case RMS A Tldl Tld.2 RMS A Tldl Tld 2
3 0.029 0.070 0.75 1.5 0.014 0.039 0.75 1.5
4 0.035 0.062 0.5 1.0 0.034 0.057 0.5 2.0

% Difference 21% -11% -33% -33% 143% 46% -33% 33%

Table 5.10: Effect of fluid/structure interaction on root loading.

Tip Response
Bending Torsion

A (w ) A{wt T) Tldl Tld2 A(6 )° A(0r r)° Tldl Tld-.1
0.082 4.8 0.5 2.0 10.8 470 0.5 2.0

Table 5.11: Summary of tip displacement and acceleration statistics, maximum am­
plitudes and dominant frequencies. Uncoupled Bending and Torsion Case: Re =  106. 
M  = 0.4, a  =  38°.

Root joads
C r b m C r t m

A Tldl A Tldl
R e  = 104 0.060 0.75 0.057 0.45
R e  = 106 0.062 0.5 0.057 0.5

% Difference 3% -50% 0% 13%

Table 5.12: Effect of increased Reynolds number on root loading.
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Tip Response
Bending Torsion

A(w) A(wtt) Tldl A(0)° A ie ^ r Tldl
Re = 104 0.082 3.5 0.45 9.8 420 0.45
Re = 10° 0.082 4.8 0.5 10.8 470 0.5

% Difference 0% 37% 11% 10% 12% 13%

Table 5.13: Effect of increased Reynolds number tip response.
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Figure 5.79: Coefficient of pressure on upper and lower wing surfaces at chord stations 
corresponding to plotted crossflow planes. Uncoupled Bending and Torsion Case: r  = 
13.2, Re = 106, M  =  0.4, a  =  38°.
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Figure 5.80: a) Three-dimensional, b) top and c) side views of surface pressure and vortex 
core streamlines at r  = ^ SL =  13.2 and A t =  0.00132. Purple crosses denote critical 
points associated with either attracting or repelling spiral saddle points. Uncoupled 
Bending and Torsion Case: Re — 106, M  — 0.4, a — 38°.
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Figure 5.81: Near surface streamlines at r  =  13.2. Uncoupled Bending and Torsion 
Case: Re = 106, M  =  0.4, a  =  38°.
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a  =  38°.
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Figure 5.83: Total pressure coefficient and velocity vectors plotted on vertical crossflow 
planes above wing. Uncoupled Bending and Torsion Case: r  = 13.2, Re =  106, M  =  0.4, 
a  =  38°.
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Figure 5.84: Total pressure coefficient and velocity vectors plotted on vertical crossflow 
planes near the tail. Uncoupled Bending and Torsion Case: r  =  13.2, Re =  106, M  =  0.4. 
a  =  38°.
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Figure 5.85: Bending deflection and force distributions along the tail span plotted at 
integer nondimensional time levels. Uncoupled Bending and Torsion Case: Re =  106. 
M  =  0.4, a  =  38°.
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Figure 5.86: Torsion deflection and moment distributions along the tail span plotted at 
integer nondimensional time levels. Uncoupled Bending and Torsion Case: Re =  106. 
M  =  0.4. a  =  38°.
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Figure 5.87: Mean and RMS load distributions along the tail span. Uncoupled Bending 
and Torsion Case: Re =  106, M  =  0.4, a  =  38°.
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Figure 5.88: History of root bending moment coefficient and root twisting moment co­
efficient. Uncoupled Bending and Torsion Case: Re =  106, M  =  0.4, a = 38°.
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Figure 5.89: Power spectral density of root bending moment coefficient and root twisting 
moment coefficient versus reduced frequency. Uncoupled Bending and Torsion Case: 
Re =  106, M  =  0.4, a  =  38°.
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Bending and Torsion Case: Re — 106, M  =  0.4, a  = 38°.
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duced frequency. Uncoupled Bending and Torsion Case: Re =  106. M  =  0.4, a  = 38°.
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5.4.4 Coupled B ending and Torsion R esponse

In this section, the high Reynolds number buffeting response due to inertially 

coupled bending and torsion vibrations is considered. The purpose of this case is to 

assess the effect of inertial coupling on the buffeting response in a moderately high Re 

flow.

Figures 5.92-5.97 show the global flow field at the same time level as the rigid 

and uncoupled high Re  cases of the previous two sections. Examining the spanwise Cp 

plot at x  =  0.3, Figure 5.92 confirms the change in position of the right vortex breakdown 

location as shown in the 3-D streamline plots, given in Figure 5.93. In the previous high 

Re cases, the right core burst near the 28%c station. In the present case, the right core 

does not burst until 65%. In all three high Re cases, the left core burst near 53%. Thus, 

the global flow in clu d in g  the breakdown location is seen to be influenced significantly 

by the motion of the tail. Note, video animation of the present case has shown that the 

breakdown locations on both sides are very unsteady. So the breakdown locations are 

only relevant to a single time level and thus do not indicate any long term bias.

The time and frequency domain load plots, Figures 5.101 and 5.102, indicate 

that the coupling of the bending and torsional modes has a strong effect on the bending 

moment history, in frequency and amplitude. This is due to the strong influence the 

twisted tail exerts on the aerodynamics. The response plots, Figures 5.103 and 5.104, 

show an increase of over a 100% in all deflections and accelerations. Another sign of the 

strong aeroelastic coupling, is the attainment of periodicity for this case. Examining the 

acceleration histories for r  >  7 shows a complex, but repeating pattern for three cycles 

in both bending and torsion responses. In Tables 5.14 and 5.15, the root moment loads 

and tip responses are summarized and compared with the uncoupled low Re case.
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Case Root .nads
C r b m Crtm

Mean RMS A Tldl Tld2 Mean RMS A Tldl Tld2
Uncoupled -0.031 0.035 0.062 0.5 1.0 0.0089 0.034 0.057 0.5 2.0
Coupled -0.0065 0.067 0.122 0.5 2.0 -0.0024 0.069 0.114 0.5 1.5
% Diff 80% 91% 98% 0% 100% -127% 103% 100% 0% -25%

Table 5.14: Effect of inertial coupling on root moment loads at Re =  106, M  =  0.4. 
a  =  38°.

Case Tip Response
Bending Torsion

A(w) A{wTT) n<fi n<f2 A(0)° A(9t t )° Tldl Tld2
Uncoupled 0.082 4.8 0.5 2.0 10.8 470 0.5 2.0
Coupled 0.181 10.0 0.5 2.13 23.4 1220 0.5 2.0
% Diff 120% 1.08% 0% 7% 117% 160% 0% 0%

Table 5.15: Effect of inertial coupling on tip response at Re =  106, M  =  0.4, a  =  38°.
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Figure 5.92: Coefficient of pressure on upper and lower wing surfaces at chord stations 
corresponding to plotted crossflow planes. Coupled Bending and Torsion Case: r  =  13.2. 
Re = 106, M  = 0.4, a  =  38°.
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a)

c)
Tattl

Figure 5.93: a) Three-dimensional, b) top and c) side views of surface pressure and 
vortex core streamlines at r  =  =  13.2 and A t  = 0.00132. Purple crosses denote
critical points associated with either attracting or repelling spiral saddle points. Coupled 
Bending and Torsion Case: Re =  106, M  — 0.4, a  = 38°.
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Figure 5.94: Near surface streamlines at r  =  13.2. Coupled Bending and Torsion Case: 
Re =  106. M  =  0.4, a  =  38°.
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Figure 5.95: Coefficient of pressure on right and left sides of tail, and differential pressure 
coefficient. Coupled Bending and Torsion Case: r — 13.2, Re =  106, M  =  0.4, a  =  38°.
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Figure 5.97: Total pressure coefficient and velocity vectors plotted on vertical crossflow 
planes near the tail. Coupled Bending and Torsion Case: r  =  13.2, Re =  106. M  =  0.4, 
q  = 38°.
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Figure 5.98: Bending deflection and force distributions along the tail span plotted at 
integer nondimensional time levels. Coupled Bending and Torsion Case: Re =  106. 
M  = 0.4, a  =  38°.
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Figure 5.100: Mean and RMS load distributions along the tail span. Coupled Bending 
and Torsion Case: Re = 106, M  — 0.4, a  =  38°.
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Figure 5.101: History of root bending moment coefficient and root twisting moment 
coefficient. Coupled Bending and Torsion Case: Re =  106, M  =  0.4, a  =  38°.
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Figure 5.102: Power spectral density of root bending moment coefficient and root twisting 
moment coefficient versus reduced frequency. Coupled Bending and Torsion Case: Re =  
106, M  =  0.4, a  =  38°.
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Figure 5.103: History of tip bending and torsion deflections and accelerations. Coupled 
Bending and Torsion Case: Re =  106, M  =  0.4, a  =  38°.
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Figure 5.104: Power spectral density of tip bending and torsion accelerations versus 
reduced frequency. Coupled Bending and Torsion Case: Re — 106, M  =  0.4, a  =  38°.
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5.5 Summary

In this chapter, the simulation of tail buffeting was accomplished using a simple 

delta wing/single vertical tail configuration. Computational applications have provided 

fundamental insights into the physical and numerical aspects of vortex breakdown in­

duced tail buffet. The flow conditions, tail dimensions, and material properties were 

chosen such that the deflections would be large enough to insure interaction with the 

flow, and the natural frequencies would be high enough to facilitate a practical compu­

tational solution. This multi-disciplinary problem was solved sequentially for the fluid 

flow, the elastic tail deformations and the grid displacements. The flow field was ob­

tained by time-accurately solving the laminar, unsteady, compressible, Navier-Stokes 

equations using an implicit, upwind, flux-difference splitting finite volume scheme. The 

elastic vibrations of the tail were modeled by coupled bending and torsion beam equa­

tions. These equations were solved accurately in time using the Galerkin method and 

a five-stage Runge-Kutta-Vemer scheme. The grid for the fluid dynamics calculations 

was continuously deformed using interpolation functions to disperse the displacements 

smoothly throughout the computational domain. Computations for the single tail cases 

were performed on a Cray C90 and required one hour per 1678 time steps, or 27 minutes 

per nondimensional time unit (A r =  0.00132). The memory required was 20 MW on a 

64-bit machine which is equivalent to 80 MB on a 32-bit machine.

In this chapter, the effects of three parameters were assessed; inertial coupling, 

Reynolds number and fluid/structure interaction. The case definitions are summarized 

in Table 5.16 and the root loadings and tip responses are listed by case in Tables 5.17 

and 5.18, respectively. The effects of inertial coupling were studied at two Reynolds 

numbers. For Re =  104, the tip response for the coupled case (2) was 42% and 80%
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higher, for bending and torsion deflections, respectively, than that of the uncoupled case 

(1). Accelerations also rose by 43% and 31% for bending and torsion, respectively. At 

Re ~  106, the bending and torsion deflections were 121% and 117% higher, respectively 

and the respective accelerations were 108% and 160% higher. Thus, it is clear that for 

the single tail configuration inertial coupling increases the tail buffeting response. The 

mechanism for this is the increase in bending due to torsional deflections, which moves 

the tail further off center, thus increasing the aerodynamic loading due to asymmetry. 

This effect is amplified in the Re = 106 due to the decrease in aerodynamic damping.

In Section 5.4.3, the effect of Re was assessed without the added complication 

of inertial coupling by comparing cases (1) and (4). The principle differences in loading 

were in the RMS values, which increased by 34% and 17% for root bending and root 

twisting moments, respectively. The corresponding tip bending and torsion accelerations 

increased by 37% and 12%, respectively. The increase in RMS loads and accelerations 

indicates that with rising Re, flow unsteadiness increases while aerodynamic damping 

decreases. Examination of the frequency domain plots also reveals this trend by the 

significant increase in high-frequency content.

As part of the moderately high Reynolds number cases (Re =  106), the buffet 

loads were recorded for an undeflected rigid tail case. The purpose of this case was to 

provide a baseline from which the effects of structural interaction with the flow could be 

assessed. In Section 5.4.3, comparison of the loads calculated from the moving uncou­

pled bending and torsion case (4) with the rigid case (3) at the same Re demonstrated 

that the deflections of the tail contribute significantly to the buffet loads. In addition, 

the disturbances caused by the large deflections were seen to propagate upstream to 

influence the breakdown locations. Hypothetical displacements were also calculated for
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the rigid case using the same structural model with no attempt made to compensate for 

the absence of aerodynamic damping. As expected, the undamped response was much 

higher than the actual buffeting cases. However, it did not diverge since the natural 

frequencies of the tail were sufficiently distant from the forcing frequencies, see Table 5.2 

and Figure 5.76, respectively. With the fundamental issues of inertial coupling, Reynolds 

number dependence and aeroelastic effects addressed, the following chapters will focus 

on the effects of tail geometry and wing/tail configuration for twin vertical tail buffeting 

applications.

Case Section Elastic Model Re Q xe
1 5.3.2 Uncoupled Bending and Torsion 104 38° 0.00
2 5.3.3 Coupled Bending and Torsion 104 38° 0.05
3 5.4.2 Rigid Tail 10ti 38° 0.00
4 5.4.3 Uncoupled Bending and Torsion 10e 38° 0.00
5 5.4.4 Coupled Bending and Torsion 10ti

O00CO 0.05

Table 5.16: Single square vertical tail buffeting cases.

Root Loads
C rbm Cr tm

Case Mean RMS A Tldl Tldl Mean RMS A Tldl Tld.2
1 0.015 0.026 0.060 0.75 1.75 0.00095 0.029 0.057 0.45 2.0
2 -0.019 0.042 0.091 0.5 2.0 -0.000042 0.038 0.088 0.5 2.0
3 -0.021 0.029 0.070 0.75 1.5 0.007 0.014 0.039 0.75 1.5
4 -0.031 0.035 0.062 0.5 1.0 0.0089 0.034 0.057 0.5 2.0
5 -0.007 0.067 0.122 0.5 2.0 -0.0024 0.069 0.114 0.5 1.5

Table 5.17: Summary of root bending and twisting moment statistics, maximum ampli­
tudes and dominant frequencies for all single tail cases.

Tip Response
Bending Torsion

Case A(u;) A(wt t ) Tldl Tld2 A(d)° A(eTT)° Tldl Tld2
1 0.082 3.5 0.45 1.75 9.8 420 0.45 1.75
2 0.117 5.0 0.5 2.0 17.6 550 0.5 2.0
3 0.131 6.8 0.5 2.5 42.2 3240 0.88 2.5
4 0.082 4.8 0.5 2.0 10.8 470 0.5 2.0
5 0.181 10.0 0.5 2.13 23.4 1220 0.5 2.0

Table 5.18: Summary of tip displacement and acceleration statistics, maximum ampli­
tudes and dominant frequencies all single tail cases.
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CHAPTER 6 

EFFECT OF AFT FUSELAGE ON TW IN F /A -18  

VERTICAL TAIL BUFFETING

6.1 Introduction

The primary focus of this chapter is the determination of the effect of aft fuse­

lage geometry on twin F/A-18 vertical tail buffeting. Three fuselage configurations are 

considered: wide, narrow and open, see Figure 6.1. The case definitions are summarized 

in Table 6.1. Secondarily, the effect of the tail response on the loads will be accessed for 

the wide and narrow configurations by comparing the rigid tail loads with the dynami­

cally interacting cases. Finally, the effect of decreased tail stiffness will be considered for 

the open fuselage case. Note that because of the high computational cost —greater than 

30 C90 hours per case, more than one design parameter was changed in the open case, 

the most significant of which was the effective tail stiffness. Thus, rigorous comparisons 

can only be made between the wide and narrow cases.

Since there is no experimental data for the simple delta wing configurations of 

this chapter, qualitative comparisons will be made with experimental test results for the 

full F/A-18 aircraft. Quantitative comparisons will be made in Chapter 7 for which the 

chosen configuration has been tested experimentally.
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Case Fuselage Elasticity Re Q Mach
1 Wide Rigid 10° 30° 0.4
2 Wide Flexible Stiff 10° 30° 0.4
3 Narrow Rigid 10e 30° 0.4
4 Narrow Flexible Stiff 10° 30° 0.4
5 Open Flexible Soft 0.75 x 10° 30° 0.3

Table 6.1: S u m m ary of twin F/A-18 vertical tail buffeting cases.

Figure 6.1: a) Wide, b) narrow and c) open fuselage configurations for the delta wing 
twin F/A-18 vertical tail model.
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6.2 Wide Fuselage Model

6.2.1 M odel G eom etry and Computational Domain

The model consists of a  sharp-edged, flat delta wing of aspect ratio 1 (leading 

edge sweep of A =  76°) and twin F/A-18 vertical tails placed a distance of (y =  0.14c) 

from the symmetry plane. This placement is chosen to coincide with the vortex core 

locations. The height of the tails is chosen such that the ratio between the tail separation 

and height for the model is consistent with the aircraft. This results in a vertical tail 

height of 0.315c. Each tail has an aspect ratio of 1.2 and a crop ratio of 0.4. The tails 

are cantilevered outward at an angle of 20°, and swept back 35° at the quarter chord. 

The tail airfoil section is a NACA 65-A with a base thickness ratio of 5% which decreases 

linearly to 3% at the tip. See Figure 6.2 for a sketch of the actual F/A-18 and Figure 6.3 

for a photo of the left tail.

To accommodate the boundary conditions of the twin tails, a five block, C° 

continuous, O-H type grid with a total of 458,100 cells is used, see Figure 6.4. Block

1 covers the free stream and wing up to the leading edge of the tails, with dimensions 

of 53 x 100 x 49 in the axial, wrap-around and normal directions, respectively. Block

2 covers the volume between the tails, from the root to the tip and has dimensions 

of 11 x 22 x 29. Block 3 has the same width and height as block 2 and covers the 

volume outside of the tails, 11 x 78 x 29. Block 4 covers the downstream region and has 

dimensions 26 x 100 x 49. Block 5 is an O-grid surrounding blocks 2 and 3 from the 

tail tip to the outer radial boundary. This grid was constructed to avoid using mixed 

boundary conditions and has dimensions 11 x 100 x 20. The global grid extends 0.8c 

upstream, 3c radially and 3.6c downstream. The grid was constructed algebraically as 

previously discussed in Section 3.5.
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Figure 6.2: Sketch of McDonnell Douglas F/A-18C. Public domain clip art.

Figure 6.3: View of F/A-18 tail with retracted wing tips shown. Photo by author.
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b)

Figure 6.4: a) Block boundaries, b) Cutaway view showing individual blocks, c) Close 
up view of surface grids. Wide Fuselage Case.
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6.2.2 Freestream  Flow C onditions

For all of the F/A-18 tail cases under consideration, the configuration angle- 

of-attack was reduced from the single tail value of 38° to 30° and the freestream Mach 

and Reynolds numbers were held constant at 0.4 and 106, respectively, for the wide and 

narrow cases. The angle-of-attack of 30° matches the peak a  in which maximum tail 

buffeting occurs on the F/A-18 aircraft. The Mach number was chosen to coincide with 

the severe tail buffet conditions and to match previous computations. The moderate 

Reynolds number of 106 was chosen to bring the simulation closer to flight Reynolds 

numbers of order 107 and to match previous computations.

6.2.3 Tail M aterial Properties

In the previous single tail cases, the bending and torsional rigidity was relaxed 

to allow for maximum structural interaction with the flow. In the remaining cases of this 

study, the stiffness is increased to more accurately model the real tail, and to explore the 

effects of higher frequency aeroelastic coupling. The wide and narrow cases represent 

an extreme in stiffness because the non-dimensional properties used for the arbitrarily 

thin (0.005c) single tail were kept for the solid F/A-18 tail, which has a root average 

thickness of 0.0134c which tapers to 0.0039c at the tip. The root chord of the tail is 

0.4c with a  taper ratio of 0.4. For the wide and narrow fuselage cases, a stiff tail was 

used, with material dimensionless moduli of elasticity and rigidity, E  and G, of 1.8 x 10° 

and 0.7 x 10°, respectively. The nondimensional density, p, was 26.1. These material 

properties correspond to very stiff and very light beam.

For the open fuselage case, much more flexible properties were chosen. The 

dimensionless moduli of elasticity and rigidity, were reduced by a factor of 40 to 4.6 x 103 

and 1.8 x 103. The nondimensional density was increased to 145, which is over 5 times
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larger than the stiff case. These properties correspond to balsa wood if the wing root 

chord is taken to be 18 inches. This material was chosen to match an experimental case 

of Washburn et al. [12]. Additional flexibility is obtained by reducing the tail thickness 

used in the structural calculations by 50%. Since this case and all the remaining cases 

in the study are inertially uncoupled, the distance between the inertial and elastic axes, 

xg is 0.

6.2.4 Initial C onditions, Re = 106, M  =  0.4, a  =  30°

The initial flow state is obtained by first solving the flow field using local time 

stepping for 2000 iterations and then solving time accurately for another five nondimen­

sional time with a A t  =  0.00036. The reason for the time accurate integration is to allow 

for the presence of any large unsteady flow features in the initial condition. The time 

step is limited by stability and is very low due to the motion of the tail and the small 

grid spacing near the wing leading edge, the latter being most significant. The number 

of iterations and time steps used to obtain the initial condition are also relatively high, 

since no attem pt is made to use aggressive convergence acceleration techniques such as 

coarse to fine mesh sequencing.

Comparing the 3-D streamline plots of the present refined grid case, shown 

in Figure 6.5, with those of the initial condition for the coarse single tail case at the 

same Reynolds and Mach numbers, Figure 5.56, dramatically displays the difference 

grid refinement makes in the capture of the vortex cores and breakdown. Unlike all of 

the previous single tail cases (including the fine grid case of Section 5.3.1), the cores in 

the present case remain very tight until the moment of breakdown, upon which they 

expand much more rapidly and fully. Note that delay in bursting is a result of the 

decrease in angle-of-attack and more importantly the addition of the aft fuselage, which
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translates the region of adverse pressure gradient downstream. Another feature of the 

refined grid is a more symmetric solution. However, particle trace animations still show 

an unsteady asymmetry in the breakdown locations.

The surface flow, shown in Figures 6.7 and 6.8, indicate that unlike the previous 

cases, the secondary flow features are now prominently captured. Looking to the wing 

near surface streamlines, reveals a primary attachment line at a normalized semispan 

location of -JL =  0, secondary attachment lines at =  0.81 and secondary separation 

lines at ±4L =  0.94. These locations are verified by the troughs in Cv visible in Fig- 

ure 6.10. The general relationship between the off surface flow and the surface pressure 

distribution is illustrated in Figure 6.9. Also, recall the topological sketches, see Fig­

ures 2.7 and 2.9, which depict the relationship between the off surface flow and the skin 

friction lines or near surface streamlines.

The near surface streamlines for the inner and outer sides of the right tail 

show that the primary vortical flow is impinging on the inner surface of the tail and 

separating on the outer surface of the tail. Note that only the right tail was plotted due 

to the observed flow symmetry. A region of reversed flow can also be seen on the lower 

outer tail surface. This is due to a vortex which forms from the outer leading edge in the 

vicinity of the tail. The tail prevents the outer vortex from merging with the primary 

vortex until they are downstream. This is visible in the crossflow planes of Figures 6.11 

and 6.12 of the tail.
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a)

b)

c)

Figure 6.5: a) Three-dimensional, b) top and c) side views of surface pressure and vortex 
core streamlines. Initial Condition Flow Field: Re =  106, M  — 0.4, a  =  30°.
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Figure 6.6: Rear view at angle-of-attack showing total pressure contours on a vertical 
plane bisecting the left vortex core (A =  80.4°). The right vortex core streamlines are 
colored yellow and blue as an indicator of swirl ratio. Initial Condition Flow Field: 
Re = 106, M  = 0.4, a  =  30°.

Figure 6.7: Computational surface oil flows. Initial Condition Flow Field: Re  =  106, 
M  =  0.4, a  =  30°.
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Figure 6.8: Near surface streamlines for the a) inner and b) outer right tail surfaces and 
the upper wing surface. Initial Condition Flow Field: Re = 106, M  =  0.4, a  =  30°.
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secondary vortex primary vortex

Figure 6.9: Sketch of a primary - secondary vortex system with a corresponding plot of 
spanwise surface pressure. Hummel [10]
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Figure 6.10: Coefficient of pressure on upper and lower wing surfaces at chord stations 
corresponding to plotted crossflow planes. Initial Condition Flow Field: Re =  106. 
M  =  0.4, a  =  30°.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



199

X=0.3 Rane

-aos 010•aos 0.00

UM CpO

F 0.00
E •020
0 •040

c •060
B -060
A •160
0 •120
8 •140
7 •160
8 •160
5 •260
4 •220
3 •240
2 -260
1 -260

X=0.5 Plane

020
015

OtO

0.06

000

•015 -0.10 -006 000 005 0.10 015

LMf CpO

F 060
E 420
0 440
c 460
a 460
A -1 00
8 •120

8 -140
7 •160

8 -160
5 -200
4 •220
3 -240
2 •280
1 -260

. XaQ.7 Ptane

050 

046 

040 

006 

000 
025 

2 020 
015 

010 
0.06 

000 
-0 06 

-010

•026 -020 -015 -010 -006 OOO 006 010 OlS 020 025

Y
X=0.9 Plane ______________

X=0.3 Ptane

015 r

4.10 466

X*0.5 Plane

000

Y
0.06 0.10

025 f * * 1
1 . ‘

020

015 r* . . „7» • • * 
010 * * * f

Z ( ! V
1051-." '*• '

040

026 £ 
t,020 j;
I,

025 f,

020 hn
2  0.15

•015 -010 -0.06 000 006 0.10 015

Y
X=0.7 Plane_______________

tsf *I • r V . 101- *•

006 r 
o.oo f  

-0.06 7 

•0.10 -
•025 -020 -015 -0.10 -005 000 0.05 010 015 020 025

Y
, x=0.9 Plane

"1 16** CpO r
: F 0.00 0 4 5 ? ....................................................

| E 420

: 0 440

 ̂ C 460 025 r.
: B 460

A -100 “ °r: •
: o •120 025 ** • * , * '  -  - -  ~ * * » •

8 -1 40 U • • . * — — * * *
-  7 -160 Z ' * i

o-.sl * ’ .

-  '  » '  1
] 8 •160
: 5 •260
; 4 -220 a to - .  . ' ■ . .
• 3 •240 : * . • . . t . '

* 2 260 « * r  v- -  • . ■ • . * _____
: i -260 000 f  ------------- .

Figure 6.11: Total pressure coefficient and uniformly plotted velocity vectors on vertical 
crossflow planes above wing. Initial Condition Flow Field: Re =  106, M  =  0.4, a  =  30°.
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Figure 6.12: Total pressure coefficient and uniformly plotted velocity vectors on vertical 
crossflow planes near the tails. Initial Condition Flow Field: Re =  106, M  =  0.4. 
a  =  30°.
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6.2.5 Load H istories for R igid  Tails

The purpose of this case is to provide a baseline from which the effect of de­

creased aft fuselage size can be studied. Furthermore, since this case is rigid, comparisons 

with the flexible case in the next section will provide insight into the effect that the dy­

namic tail response has on the buffet loading.

In Figure 6.13, the force and moment distributions are plotted at several time 

levels to give a qualitative view of the mean and unsteady flow components. Quantitative 

plots are shown in Figure 6.14, where the dashed lines represent values for the left tail. 

Note that because of the global sign convention for forces and moments, a symmetric 

loading produces loads of opposite signs between each tail. Inspection of the mean and 

RMS loads for the left and right tails indicate that the steady loads are nearly identical, 

while the peak unsteady loadings differ by 9% and 18% for the forces and moments, 

respectively. The plots show that from the tail tip to the mid span there is a symmetric 

load pushing inward. The low moments in this range indicate tha t these loads are largely 

constant or balanced across the tail chord. On the lower half span there is a symmetric 

load twice as large as outer span and pushing outward. The moments in this range are 

twice as high as the tip levels and are symmetrically trying to twist the lower leading edge 

of each tail outward. These observations are confirmed by the plots of mean and RMS 

differential pressure over each tail surface, see Figure 6.15. The high outward loading 

is due mainly to the suction created by the small secondary vortex emanating from the 

outer edge of the aft fuselage. The increased outward moment is due to the primary 

vortex impinging on the inside lower leading edge of each tail creating a high pressure 

zone.
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In Figure 6.16, differential pressure ( ^ )  histories at the 45% chord and 60% 

span location for both tails are plotted. These positions were chosen to coincide with 

published experimental results. The time histories show that the loads are non-periodic 

and unsymmetric with respect to each tail, despite their steady symmetry. Also shown

are the buffet excitation spectra, presented in nondimensional RMS form as y/nF{n) 

versus nondimensional frequency n. This form was first suggested by Owen [91] and is 

recommended for standard use by Mabey [92]. The buffet excitation is defined in terms 

of freestream dynamic pressure as follows:

PSD (p) r n —oo r  In n = oc
=  / F(n)dn = / nF(n)d(\n.n) (6.1)

J n = 0 J  ln n = —oo

where

PSD(p) =  power spectral density of pressure (6.2)

n
u n
f c

n — nondimensional frequency, —— (6.3)

F(n) =  contribution to in a frequency bandAn (6.4)
95c

The power spectral densities are computed from averaged blocks of data which are zero 

padded and windowed using a Hanning function as described in the previous chapter. 

Because of the relatively short sample size, the multiple discrete peaks seen in the inside 

pressure spectra cannot be trusted to represent the actual flow. It is expected that with 

additional time the multiple peaks would merge and average out to one peak of roughly 

the same magnitude and location of the highest of the discrete peaks. The statistics for 

the point pressure data are summarized in Table 6.2

Root handing and twisting moment histories for each tail, see Figure 6.17. 

indicate that as in the case of the pressure measurements, neither tail loading is periodic 

or symmetric with respect to each other. The root moment spectra, see Figure 6.18. show
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a more clearly defined single peak than the pressure data, since there is an additional 

source of averaging inherent in the integration of the loads along the span. The statistics 

for the root moment data are summarized in Table 6.3. The relatively large variance 

between the tails in the peak power of C r b m  and C r t m  is once again due to the brief 

sample time. However, the peak frequencies for each tail are within 20% of each other.

Point Pressure Data
Right Tail Left Tail

P in P o n t P in —o u t P in P o u t P in —o u t
Mean 8.14 8.49 -0.35 8.14 8.48 -0.34
RMS 0.16 0.04 0.17 0.17 0.05 0.18

Tld 1.9 1.5 2.3 1.2
Peak Power 1.8 0.5 1.6 0.4

Table 6.2: Summary of nondimensional pressure ( ^ )  data at 45% chord and 60% span. 
Wide Rigid Case: Re =  106, M  =  0.4, a  =  30°.

Root Loads
C r b m C r t m

Tail Mean RMS Peak Tld Mean RMS Peak Tld

Right -0.0088 0.0084 0.0046 1.1 -0.0100 0.0051 0.0034 1.0
Left 0.0068 0.0095 0.0082 1.4 0.0095 0.0041 0.0014 1.2

Table 6.3: Summary of root bending and twisting moment statistics, peak power and 
dominant frequency. Wide Rigid Case: Re = 106, M  =  0.4, a  =  30°.
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Figure 6.13: Bending force and twisting moment distributions along the tail span plotted 
at integer nondimensional time levels for a) right and b) left tails. Wide Rigid Case: 
Re =  106. M  =  0.4, a  =  30°.
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Figure 6.14: Mean and RMS load distributions along the right and left tail spans. Wide 
Rigid Case: Re = 106. M  =  0.4. a  =  30°.
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Figure 6.15: Mean and RMS differential coefficient of pressure contours on a) right and 
b) left tails. Wide Rigid Case: Re =  106, M  =  0.4, a  =  30°.
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at the 45% chord and 60% span location for a) right and b) left tails. Wide Rigid Case: 
Re = 106. A/ =  0.4. q  =  30°.
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6.2.6 Uncoupled Bending and Torsion Response

In this section, the buffeting response due to inertially uncoupled bending and 

torsion vibrations of flexible but stiff twin F/A-18 tails is considered. The purpose of 

this case is to provide a baseline from which the effect of decreased aft fuselage size can 

be studied. In addition, the effect of the dynamic tail response on the buffet loading will 

be assessed, by contrasting this case with the rigid case of the previous section.

The qualitative view of the mean and unsteady flow components shown in 

Figure 6.19, is very similar to  the rigid case as are the mean and RMS plots, shown in 

Figure 6.20. While the mean values between the two cases are almost identical, the RAIS 

values do differ slightly. The most notable difference being the enlargement of the peak 

in Cjv at z — 0.05. These observations are confirmed by the plots of mean and RAIS 

differential pressure over each tail surface, see Figure 6.22.

The differential pressure histories at the 45% chord and 60% span location, 

shown in Figure 6.22, match the rigid case up to about r  =  5.5, after which the accumu­

lation of small differences produces unique solutions. The peaks in the buffet excitation 

spectra, v/n F (n ), also match closely with the only difference being the diminished mag­

nitude of the central peak around n =  2, which is most likely due to the uncertainty 

caused by the short sample time.

A comparison of the statistics for the point pressure data is presented in Ta­

ble 6.4. Since the loads between the tails are largely alike, to improve statistical confi­

dence, their averaged values axe compared between cases. For both cases, the mean and 

RAIS point pressure data axe identical. The dominant frequencies for the flexible tail axe 

10% and 7% lower for the inner and outer tail locations, respectively. The peak powers 

are 18% and 20% lower.
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Root bending and twisting moment histories for each tail, see Figure 6.23. match 

the rigid case up to about r  =  6.5, with the left tail matching more closely than the 

right. The root moment spectra, see Figure 6.24, also match closely, the main difference 

being a slightly increased sharpness in the peaks. The statistics for the root moment 

data for rigid and flexible stiff tail cases are compared in Table 6.5.

The reason for the close similarity between the loads for the rigid and flexible 

stiff tail cases is due to the very small deflections shown in Figures 6.25-6.28. The bending 

and torsion distributions for each tail indicate that the tails tend to bend inwards and 

twist outwards on the lower half span. The distribution plots also indicate that the 

bending vibration is dominated by the first mode and the torsional vibrations occur 

mainly in the first and second modes. Tip bending and twisting histories show that 

the deflections and accelerations are non-periodic and unsymmetric with respect to each 

tail at a particular instant, but do share the same maximum range. The power spectral 

densities of acceleration show that the dominant response frequency for bending and 

torsion occurs around n  =  4, which is much higher than the loading, but is not surprising 

given the high stiffness. In the following sections, results from rigid and flexible stiff tail 

cases of the same structural properties as this case but mounted on a narrow fuselage 

will be compared to the results in this and the previous wide fuselage case.
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Point Pressure Data
Rigid Tail Flexible Tail

P in P o u t P in —o u t P in P o u t P in —o u t
Mean 8.14 8.49 -0.35 8.14 8.49 -0.35
RMS 0.17 0.05 0.18 0.17 0.05 0.18

Tld 2.1 1.4 1.9 1.3
Peak Power 1.7 0.5 1.4 0.4

Table 6.4: Comparison of averaged nondimensional pressure ( ^ )  data at 45% chord and 
60% span for rigid and flexible tail, wide fuselage cases: Re = 106. M  — 0.4, a = 30°.

Root Loads
C r b m C r t m

Tail
Mean 

+tip inward RMS Peak Tld

Mean 
+LE inward RMS Peak Tld

Rigid -0.0078 0.0090 0.0064 1.3 -0.0098 0.0033 0.0024 1.1
Flexible -0.0073 0.0092 0.0082 1.5 -0.0098 0.0043 0.0022 1.2
% Diff -6% 2% 28% 13% 0% 30% -8% 9%

Table 6.5: Comparison of averaged root bending and twisting moment statistics, peak 
power and dominant frequency for rigid and flexible stiff tail, wide fuselage cases: Re = 
106, M  =  0.4, a  =  30°.
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Figure 6.19: Bending force and twisting moment distributions along the tail span plotted 
at integer n on dim ensional time levels for a) right and b) left tails. Wide Flexible Case: 
Re = 106, M  = 0.4, q  =  30°.
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Figure 6.20: Mean and RMS load distributions along the right and left tail spans. Wide 
Flexible Case: Re =  106. M  =  0.4. a = 30°.
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Figure 6.25: Right Tail: Bending and torsion deflection distributions along the tail span 
plotted at integer nondimensional time levels. Wide Flexible Case: Re =  106, M  =  0.4, 
q  =  30°.

Tip Bending Displacement History

Uf

Tip Bending Acceleration History

Tip Rotation History

9 10 11 12

Tip Bending Acceleration Power
0.05

0.04

;0.03

0.02

0.01

0.00.
n

if

9  10 11 12

Tip Rotation Acceleration History

T

Tip Rotation Acceleration Power
350

300

250

200
CO 150

100

n

Figure 6.26: Right Tail: Time and frequency domain data for tip bending and torsion 
deflections and accelerations. Wide Flexible Case: Re =  106. M  — 0.4. or =  30°.
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Figure 6.27: Left Tail: Bending and torsion deflection distributions along the tail span 
plotted at integer nondimensional time levels. Wide Flexible Case: Re =  106, M  =  0.4. 
q  =  30°.
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Figure 6.28: Left Tail: Time and frequency domain data for tip bending and torsion 
deflections and accelerations. Wide Flexible Case: Re =  106. M  =  0.4, a  =  30°.
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6.3 Narrow Fuselage Model

6.3.1 M od el G eom etry  and C om putational D om ain

For this case, the trailing edge extensions on the outside of each tail have 

been removed. This narrow fuselage configuration is the closest representation of all 

the cases in this study to the wing/tail/fuselage arrangement of the F/A-18. The only 

other change from the previous case is to the bottom surface of the wing. Instead 

of a completely flat wing with zero thickness, a more realistic Hummel [11] type wing 

consisting of a lower diamond shaped surface with an apex thickness of 0.021c at x  =  0.9c. 

see Figure 6.29.The blocking arrangements and number of grid points used in this case is 

identical to the previous wide case, Figure 6.30. To accommodate the narrow fuselage, a 

mixed solid/wake boundary condition was written for the k =  1 plane of block 3, which 

covers the volume between the outer sides of the tails.

f r
-----------------------  1 c ------------------------

76° . .

^  ,5 c

.9 c -----------  '  ,
 T

.021 c

Figure 6.29: Diagram of Hummel [11] type delta wing.
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a)

Figure 6.30: a) Block boundaries, b) Cutaway view showing individual blocks, c) Close 
up view of surface grids. Narrow Fuselage Case.
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6.3 .2  F r e e s tre a m  F lo w  C o n d itio n s  a n d  T ail M a te r ia l  P r o p e r t ie s

The flow conditions and tail structural properties for the narrow fuselage case 

are the same as for the wide fuselage case. The angle-of-attack is 30°. The freestream 

Mach and Reynolds numbers are 0.4 and 106, respectively. The tail material dimension- 

less moduli of elasticity and rigidity, E  and G, are 1.8 x 105 and 0.678 x 105, respectively. 

The nondimensional density, p, is 26.1.

6 .3 .3  In i t ia l  C o n d itio n s , Re =  106, M  =  0.4, a  =  30°

The initial flow state is obtained by the same method as the wide fuselage 

case. The flow is first solved using local time stepping for 2000 iterations, time accurate 

stepping for another five nondimensional time with A r =  0.00036.

Comparing the 3-D streamline plots of Figure 6.31 with those of the wide 

fuselage case shows that one effect of a narrower fuselage is a slightly smaller breakdown 

bubble and a tighter post breakdown core which flows mainly on the inside of the tails. 

The breakdown location is unaffected and occurs at 78% root chord. The pressure 

coefficient contours in the same figures also reveal that the principle difference between 

the wide and narrow fuselage Cp distributions occur on the outer sides of the tails. This 

is due to the formation of a vortex by the flow rolling up around the edge of the aft 

fuselage. The imprint of this vortex can be clearly seen on the lower 25% of the tail 

span.

Near surface streamline plots of the right tail, shown in Figure 6.32, confirm 

that the flow on the outer side is now dominated by the freestream flow and the small 

vortex emanating from the bottom of the tail. The influence of this vortex can be seen in 

the prominent region of separation at the 17% span location of the tail. The wing surface
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flow is much the same as it was for the wide fuselage, as is the pressure distribution shown 

in Figure 6.33.

The wing crossflow planes of total pressure coefficient and velocity vectors 

shown in Figure 6.34 confirm that there is little difference in the flow over the wing 

between the two cases. Note tha t in the crossflow planes of the narrow fuselage the cross 

section of the wing can now be clearly seen in the pressure contours and in the absence 

of velocity vectors. The tail crossflow planes confirm that the vortex emanating from 

the side of the aft fuselage section is much smaller and closer to the tail than in the wide 

fuselage case.
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a)

b)

c)

Figure 6.31: a) Three-dimensional, b) top and c) side views of surface pressure and 
vortex core streamlines. Initial Condition Flow Field: Re =  106, M  = 0.4, a  =  30°.
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Figure 6.32: Near surface streamlines for the a) inner and b) outer right tail surfaces 
and the upper wing surface. Initial Condition Flow Field: Re =  106, M  =  0.4, a  =  30°.
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corresponding to plotted crossflow planes. Initial Condition Flow Field: Re =  106. 
M  = 0.4. a  =  30°.
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Figure 6.34: Total pressure coefficient and uniformly plotted velocity vectors on vertical 
crossflow planes above wing. Initial Condition Flow Field: Re =  106, M  =  0.4, a  =  30°.
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Figure 6.35: Total pressure coefficient and uniformly plotted velocity vectors on vertical 
crossflow planes near the tails. Initial Condition Flow Field: Re = I06, M  =  0.4, 
a  =  30°.
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6.3 .4  Load H istories for Rigid Tails

The purpose of this case is to determine the effect of a decrease in aft fuselage 

size without the complicating effects of dynamically deforming tails. Furthermore, com­

parisons with the flexible case in the next section will provide additional data on the 

effect that the dynamic tail response has on the buffet loading.

Inspection of the load distribution histories, shown in Figure 6.36 and the mean 

and RMS load distributions, see Figure 6.37, indicate tha t the steady loads are again 

virtually identical between the left and right tails, while the peak unsteady loadings differ 

by a maximum of ±9% and ±13% for the forces and moments, respectively. Essentially, 

the effect of the removal of the outer fuselage on the tail loading is to exaggerate or 

amplify the force and moment distribution of the wide case. This is due primarily to the 

increased proximity of the aft fuselage vortex to the outer tail surface. In addition, the 

primary wing vortex now passes mostly by the inside of the tail, due to the increased 

adverse pressure gradient created by the exposed wake.

The differential point pressure history, shown in Figure 6.39, clearly indicates 

a lower dominant frequency than in the wide fuselage case. The outer point pressure 

spectra confirms that the dominant frequency for the narrow case is 50% lower than the 

wide case. The outer pressure frequency does not change appreciably between the wide 

and narrow cases. A comparison of the statistics of the right-left averaged point pressure 

data for the wide and narrow fuselage rigid tail cases is presented in Table 6.6.

Root bending and twisting moment histories and spectra for each tail, shown 

in Figures 6.40 and 6.41, do not indicate a decrease in frequency with respect to the 

wide case, as in the point pressure data. This indicates that the effect was local. A 

comparison of the statistics of the right-left averaged root moment data for the wide and
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narrow fuselage rigid tail cases is presented in Table 6.7. From the table it is clear that 

the main effect of the removal of the outer fuselage panels is to increase the unsteady 

loads, and hence the buffeting, by 18% and 27% for the RMS root bending and root 

twisting moment coefficients, respectively. This increase mirrors that observed in the 

buffet excitation parameter, which increased by 23% for the dominating inner side. Also 

observed is an very large increase in the mean root bending moment. However, mean 

loads are less relevant to buffeting.

Rigid Tail Point Pressure Data
Wide Fuselage Narrow Fuselage

P in P o u t P in —ou t P in P o u t P in —out
Mean 8.14 8.49 -0.35 8.13 8.79 -0.66
RMS 0.17 0.05 0.18 0.19 0.03 0.20

n<i 2.1 1.4 1.0 1.8
Peak Power 1.7 0.5 2.1 0.3

Table 6.6: Comparison of averaged nondimensional pressure ( ^ )  data at 45% chord 
and 60% span on rigid tails for the wide and narrow fuselage cases: Re =  106, M  =  0.4. 
a  =  30°.

Rigid Tail Root Loads
C r b m C r t m

Fuselage
Mean 

4-tip outward RMS Peak nd
Mean 

+LE inward RMS Peak rid
Wide -0.0078 0.0090 0.0064 1.3 -0.0098 0.0033 0.0024 1.1

Narrow -0.0716 0.0106 0.0160 1.0 -0.0135 0.0042 0.0016 1.0
% Diff 818% 18% 150% -23% 38% 27% -33% -9%

Table 6.7: Comparison of averaged root bending and twisting moment statistics, peak 
power and dominant  frequency for rigid and stiff tail, wide fuselage cases: Re = 106. 
M  =  0.4, a  =  30°.
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Figure 6.36: Bending force and twisting moment distributions along the tail span plotted 
at integer nondimensional time levels for a) right and b) left tails. Narrow Rigid Case: 
Re = 106. M  =  0.4. q  =  30°.
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Figure 6.37: Mean and RMS load distributions along the right and left tail spans. Narrow 
Rigid Case: Re =  106, M  =  0.4. a  =  30°.
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6.3.5 U ncoupled  Bending and Torsion R esponse

In this section, the buffet response due to inertially uncoupled bending and 

torsion vibrations of flexible but stiff twin F/A-18 tails is considered for the narrow 

fuselage case. The results from this case will be compared to the wide flexible case to 

assess the effect of decreased aft fuselage size on buffet loads and deflections. In addition, 

generalizations about the effect of the dynamic tail response on the buffet loading will 

be made, by contrasting this case with the rigid case of the previous section, as well as, 

considering the wide fuselage results.

As in the rigid tail case of the last section, the principle differences of the 

narrow fuselage loading, Figures 6.42-6.47, from the loading of the wide fuselage case, 

Figures 6.19-6.24, are a large increase in magnitude of the steady forces and a decrease 

in load frequencies, Table 6.8. This is due to the closeness of the aft fuselage vortex to 

the outer tail surface and the inside passage of the primary wing vortex. A similarity 

with the wide flexible case is the increase in the unsteady RMS bending loads over the 

rigid case from 10% to 78%. Thus, one effect of a stiff but flexible tail is to increase the 

unsteady loading.

Unlike the narrow rigid case, root bending and twisting moment histories and 

spectra for each tail, Figures 6.46 and 6.41, do indicate a decrease in frequency with 

respect to the wide flexible case, as in the point pressure data. A comparison of the 

statistics of the right-left averaged root moment data for the wide and narrow fuselage, 

flexible tail cases is presented in Table 6.9. From the table it is clear that as with the 

narrow rigid case, the removal of the outer fuselage panels increase the steady loads 

substantially. Despite the large increase in steady loads over the wide case, the unsteady 

RMS loads varied little, increasing for bending and decreasing for torsion.
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Comparison of the narrow fuselage buffeting response plots, shown in Fig­

ures 6.25-6.28, with the wide case, see Figures 6.25-6.28, indicates that the principle 

effect of narrowing the fuselage is to increase the mean deflections. The right-left av­

eraged responses are summarized in Table 6.10. Despite the large increase in mean 

deflections over the wide case, the amplitudes of the deflections and accelerations de­

creased overall as did the frequency of the accelerations. Hence, the overall buffet loads 

and response for the narrow case is approximately 30% less than the wide case. This 

can be attributed to the aerodynamic damping effect of having the outer side of the tail 

more exposed to the freestream.

Flexible Tail Point Pressure Data
Wide Fuselage Narrow Fuselage

P in P out P in —out P in P ou t P in —o u t
Mean 8.14 8.49 -0.35 8.13 8.79 -0.66
RMS 0.17 0.05 0.18 0.20 0.03 0.21

rid 1.9 1.3 1.1 1.9
Peak Power 1.4 0.4 2.3 0.3

Table 6.8: Comparison of averaged nondimensional pressure ( ^ )  data at 45% chord 
and 60% span on flexible stiff tails for the wide and narrow fuselage cases: Re — 106. 
M  = 0.4, a  =  30°.

Flexible Tail Root Loads
Crbm Crtm

Fuselage
Mean 

-l-tip outward RMS Peak nd
Mean 

+LE inward RMS Peak nd
Wide -0.0073 0.0092 0.0082 1.5 -0.0098 0.0043 0.0022 1.2

Narrow -0.0711 0.0112 0.0180 1.0 -0.0123 0.0040 0.0019 1.0
% Diff 873% 22% 120% -33% 26% -7% -14% -17%

Table 6.9: Comparison of averaged root bending and twisting moment statistics, peak 
power and dominant frequency for wide and narrow fuselage, flexible tail cases: Re = 106. 
M  = 0.4. a  =  30°.
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Averaged Tip Response
Beneling

Fuselage A(w) Mean w -(-outward A(wt t ) Peak Power nd.
Wide 0.00032 -0.0004 0.078 0.047 3.8

Narrow 0.00033 -0.0011 0.048 0.032 2.6
% Diff 3% 175% -38% -32% -19%

Torsion
Fuselage A(d)° Mean 8 ° -t-LE inward A(0t t )° Peak Power nd

Wide 0.031 -0.0013 7.0 325. 4.5
Narrow 0.026 0.0190 5.0 108. 2.9
% Diff -16% 136% -29% -67% -36%

Table 6.10: Effect of fuselage width reduction on buffeting response. Re =  106, M  = 0.4. 
o  =  30°.
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Figure 6.42: Bending force and twisting moment distributions along the tail span plotted 
at integer nondimensional time levels for a) right and b) left tails. Narrow Flexible Case: 
Re = 106. M  = 0.4, a  =  30°.
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Figure 6.43: Mean and RMS load distributions along the right and left tail spans. Narrow 
Flexible Case: Re =  106, M  =  0.4, a  =  30°.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



232

Mean Differential Coefficient ot Pressure Cw ap-^-p. 
too
90

RMS Differential Coefficient ot Pressure C,

80 
70 
60 

2% SO 
40 
30 
20 
to 
0,

/

a)
10 20 30 40 50 60 70 80 90 100110 

X%

Cp 100
2.8 90
22 80
18
t 4 70
to 60
a s 2% 50
02

•0.2 40
-0.6 30

20
10

o

100
90
80
70
60

Z%50
40
30
20
10
0

'o
Level Cp

9 26

8 2 2

7 I B

6 1.4

S 1.0

4 0.6

3 0 2

2 4 2

1 -0.6

.•ap-P.-P

20 30 40 50 60 70 80 90 100110 
X%

0 10 20 30 40 50 60 
X%

70 80 90 100

RMS Differential Coefficient of Pressure Ap-fvpe

20 30 40 50 60 70 80 90 100110 
X%b)
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plotted at integer nondimensional time levels. Narrow Flexible Case: Re =  106, M  =  0.4. 
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Figure 6.51: Left Tail: Time and frequency domain data for tip bending and torsion 
deflections and accelerations. Narrow Flexible Case: Re = 106. M  =  0.4. a  =  30°.
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6.3.5.1 Comparison with Experimental Data

The narrow fuselage model, although simple, offers the closest approximation

tex/vertical tail configuration. Therefore, before continuing with the remaining F/A-18 

case results from the narrow fuselage, the flexible tail case will be compared to published 

experimental data.

Recall that the standard non-dimensionalization scheme uses the wing mean 

aerodynamic chord for length, but in this study only the F/A-18 vertical tail is modeled. 

The delta wing is only a device to create the vortical flow and is not similar to the 

F/A-18 wing. Hence, in order to compare with F/A-18 data, the length scales must first 

be referenced to the tail instead of the wing. This is done by replacing all occurences 

of Sunng with 5tai/. The converted equations for nondimensional time, frequency, root 

bending moment and root twisting moment are as follows;

of all the models in this study to the characteristics of the full F/A-18 aircraft vor-

n

r t l o o  ^  C « J

Cyj Q

—  x 3 -

(6.5)

(6.6)
V 'oo C ti,

PooV&jStCw c t

(6.7)

(6-8)

Peak Power (C rbm )i =  Peak Power ('C r b m )w x (6.9)

The length ratios for the F/A-18 and the CFD model are as follows;

(6.11)

(6.10)
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In Tables 6.11 and 6.12, comparisons of point pressure data at 45% chord and 60% span 

and root bending moment, respectively, are summarized. The purpose of a comparison 

with full aircraft data is to establish the relevance of the present simplified model in 

its capability of providing insight into the full aircraft tail buffeting problem. Although 

nondimensional quantities are compared, the lack of geometric similarity precludes quan­

titative agreement. However, internal comparisons can be made such as the ratio between 

buffet excitation frequency and root bending moment, which was 1.08 and 1.1 for the 

present CFD case and the average experimental data, respectively. The ratio of inner 

to outer pressure coefficient did not compare as favorably though, with a ratio of over 

5 for the CFD and 2 for the experimental values. This is indicative of the differences 

between the aircraft flow field and the delta wing model. Despite these differences, the 

inner RMS pressure and the dominant frequencies did match fairly well with differences 

of 15% and 50%, respectively.
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Case
RMS RMS RMS 

Cp4„ — CPml
Buffet

nd
Buffet 

Peak Power
Present CFD 

M  = 0.40 
a  = 30°

0.21 0.04 0.22 0.49 1.53

Full Scale [81] 
M = 0.15 
a  = 32°

- - 0.37 0.33 0.34

Flight [93] 
M = 0.24 
a  = 30.3°

0.24 0.12 0.30 0.33 -

Full Scale [60] 
M  = 0.15 
a = 32°

- - - 0.35 0.33

Full Scale [93] 
M  = 0.15 
a  = 30°

0.28 0.15 0.36 0.33 -

6% Scale [93] 
M  = 0.15 
a = 30°

0.22 0.10 - 0.33 -

Table 6.11: Comparison with experimental data for averaged nondimensional pressure 
(<7oT)’ Pressure coefficient (Cp), buffet excitation (y/nF(n)) dominant frequency (nd), 
and buffet excitation peak power at 45% chord and 60% span on the flexible stiff tail for 
the narrow fuselage case. The length scale is nondimensionalized by q .

Case RMS C r b m nd Peak Power
Present CFD 

M  = 0.40 
q =  30°

0.025 0.45 0.20

Full Scale [81] 
M = 0.15 
a  =  30°

0.096 0.30 0.04

Full Scale [94] 
M  =  0.15 
a  = 30°

0.076 - -

Full Scale [60] 
M = 0.15 
q = 32°

0.096 0.30 0.04

Table 6.12: Experimental data comparison of averaged unsteady root bending moment, 
peak power and dominant frequency for the flexible stiff tail on the narrow fuselage. The 
length scale is nondimensionalized by Ct-
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6.4 Open Fuselage M odel

6.4.1 M odel G eom etry and Computational Dom ain

In this section, the effects of removing the aft fuselage panels and decreasing 

the tail stiffness on the buffet loading and response will be assessed. Geometrically the 

open fuselage configuration differs from the previous case only by the removal of the 

center fuselage panel. To accommodate the wake boundary condition between the tails, 

a new blocking strategy was used. Namely, the blocks su rrou n d in g  the tails were recut to 

be symmetric with respect to the wake plane. The outer blocks were also consolidated 

by using mixed boundary conditions for the tail surfaces, see Figure 6.52. The total 

number of grid cells and clustering remains unchanged from the previous F/A-18 cases. 

For the remainder of this study the open fuselage configuration will be used, but with 

highly swept tails. Thus, this case will also serve as a transition case from the F/A-18 

tail to the swept tails considered in the following chapter which are modeled after the 

experimental wind tunnel model of Washburn et al. [12].
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Figure 6.52: a) Block boundaries, b) Cutaway view showing individual blocks, c) Close 
up view of surface grids. Open Fuselage Case.
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6.4 .2  F re e s tre a m  F lo w  C o n d itio n s  a n d  T a il M a te r ia l  P r o p e r t ie s

Since most flight test data is obtained at M  =  0.3 or less, the Mach number 

for this case was reduced from M  = 0.4 to M  =  0.3. Although much of the wind tunnel 

data was obtained a t M  = 0.15, CFD computations had to be restricted to M  =  0.3 

for numerical convergence considerations since CFL3D is a compressible code. The Re 

was also reduced by 25%. However, flow comparisons with the wide and narrow cases 

are still valid since it has been shown experimentally that vortex breakdown is fairly 

insensitive to Re and changes in low subsonic Mach number.

In the single tail model of Chapter 5, the choice of tail structural properties 

resulted in very large deflections and in the wide and narrow cases of this chapter, the 

tail stiffness was greatly increased resulting in very small deflections. For the present 

open fuselage case, the tail material properties were chosen based on the dynamically 

scaled wind tunnel model of Washburn et al. [12], who used a solid tail made of balsa 

wood with a thin aluminum core. The Washburn scaling was based on a delta wing 

root chord of 18 inches. For the present case, the resulting nondimensional material 

moduli of elasticity and rigidity, E  and G, axe 4.6 x 103 and 1.8 x 103, respectively. This 

represents a reduction in stiffness by a factor of 40 over the previous F/A-18 tail cases. 

The nondimensional density, p, is now 147, which is nearly 6 times greater than the 

previous case. A further decrease in the effective stiffness was achieved by using a tail 

thickness of 1/2 of the geometric thickness that the CFD computations see.

6 .4 .3  In i t ia l  C o n d itio n s , Re  =  0.75 x 106, M  =  0.3, a  =  30°

The initial flow state is obtained by the same method as in the previous twin 

tail cases. The flow is first solved using local time stepping for 2000 iterations, time 

accurate stepping for another five nondimensional time with A t  = 0.00036.
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Comparing the 3-D streamline plots of Figure 6.53 with those of the wide and 

narrow fuselage cases, see Figures 6.5 and 6.31, shows a continuation of the trend of 

decreasing breakdown bubble diameter with reduced aft fuselage size. The diameter of 

the open case bubble is 50% smaller than the narrow case. The breakdown location now 

occurs at 67% root chord, compared to 78% for both the wide and narrow cases. This 

is due to a large increase in the adverse pressure gradient from the now fully exposed 

wake.

Near surface streamline plots of the right tail, see Figure 6.54, show that the 

flow on the outer side is no longer dominated by the the small vortex emanating from 

the bottom of the tail. The wing surface flow is much the same as it was for the previous 

cases. The pressure distribution shown in Figure 6.55 now indicates decreases in peak 

suction for the x  =  0.7,0.9 crossflow planes over the narrow case of 20% and 40%, 

respectively. This is due to the forward movement of the burst location.

Comparison of the wing crossflow planes of total pressure coefficient and velocity 

vectors, shown in Figure 6.56, with the wide and narrow cases confirm the observations 

from the Cp plots. Namely, that before breakdown the vortices are essentially of the 

same strength, and after breakdown the vortices of the open case do not expand as 

much as with the other cases. Thus, because of the weaker adverse pressure gradient the 

breakdown is diminished leaving the vortices more intact downstream, as can be seen in 

the x  =  0.9c cross section.
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a)

b)

c)

Figure 6.53: a) Three-dimensional, b) top and c) side views of surface pressure and vortex 
core streamlines. Initial Condition Flow Field: Re = 0.75 x 106, M  = 0.3, a  = 30°.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



244

Right inner Side Streamlines Right Outer Side Streamlines

0.3

e
3.to

0.1

1.4
Xa)

I
0.1

13 1.4
Xb)

Near Surface Streamlines

0.15

0.10
0.05

yo.oo

-0.05

•0.10
•0.15

0.0 0.1 02 0.4 0.5 0.6 0.7 0.8 0.9 10
X

Figure 6.54: Near surface streamlines for the a) inner and b) outer right tail surfaces 
and the upper wing surface. Initial Condition Flow Field: Re =  0.75 x 106. M  =  0.3. 
a  =  30°.
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Figure 6.55: Coefficient of pressure on upper and lower wing surfaces at chord stations 
corresponding to plotted crossflow planes. Initial Condition Flow Field: Re = 0.75 x I06. 
M  = 0.3, a  = 30°.
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Figure 6.56: Total pressure coefficient and uniformly plotted velocity vectors on vertical 
crossflow planes above wing. Initial Condition Flow Field: Re =  0.75 x 106, M  =  0.3. 
a  = 30°.
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Figure 6.57: Total pressure coefficient and uniformly plotted velocity vectors on vertical 
crossflow planes near the tails. Initial Condition Flow Field: Re =  0.75 x 106, M  = 0.3, 
a  =  30°.
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6 .4 .4  Uncoupled B ending and Torsion R esponse

In this section, the buffeting response due to inertially uncoupled bending and 

torsion vibrations of dynamically scaled flexible twin F/A-18 tails is considered for the 

open fuselage case. The loads from this case will be compared to the wide and narrow 

flexible cases to assess the effect of decreased aft fuselage size. Because of the decreased 

tail stiffness used in the present open fuselage case, rigorous comparisons of the buffeting 

responses are not possible, however changes in the buffeting response due to relaxed 

stiffness will be discussed.

In terms of integrated loads, see Figures 6.58 and 6.59, the open fuselage loads 

closely resemble those of the narrow case, with the main difference being the lessening of 

the effect of the outer vortex emanating from the root of the tail. The diminished loads 

near the root can also be seen in the mean and RMS differential pressure distributions, 

see Figure 6.60. The differential pressure history and spectra, shown in Figure 6.8, 

indicate that the open case has a smaller amplitude and a peak frequency nearly the 

same as the narrow case. One significant difference is a  strong second peak around 

n =  2 in buffet excitation for the open case. The point pressure data is summarized in 

Table 6.13, however when comparing the open case with the wide and narrow cases, one 

must account for the fact that the open case was non-dimensionalized with ^  based on 

M  =  0.3 instead of M  =  0.4 thus for all other quantities being equal the non-dimensional 

pressure for the open case would be times larger. Reduced frequency, n, is also 

affected, but by a factor of just | .  Accounting for this fact, the differential point pressure 

for the open case is by far the lowest of the three F/A-18 tail cases.

Root bending and twisting moment histories and spectra are plotted in Fig­

ures 6.62 and 6.63 and summarized for all F/A-18 tail cases in Table 6.14. Again, the
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Flexible Tail Point Pressure Data
Wide Fuselage Narrow Fuselage Open Fuselage

Pin Pout Pin—out Pin Pout Pin—out Pin Pout Pin—out
Mean 8.14 8.49 -0.35 8.13 8.79 -0.66 15.3 15.7 -0.46
RMS 0.17 0.05 0.18 0.20 0.03 0.21 0.14 0.04 0.15
nd 1.9 1.3 1.1 1.9 1.0 1.6

Peak Power 1.4 0.4 2.3 0.3 1.9 0.7

Table 6.13: Comparison of averaged nondimensional pressure (-2-) data at 45% chordwoo
and 60% span on flexible stiff tails for the F/A-18 tail cases. Note, for the wide and 
narrow cases M  =  0.4, and for the open case M  =  0.3.

difference in Mach number increases the open case coefficients by . Thus it is ev­

ident that the mean root loads for the open case are closer to the wide case than the 

narrow case, and the RMS root loads are much smaller in real terms than either of the 

other F/A-18 cases.

With the reduced stiffness on the open case tails, the buffeting response is 

now much larger — up to two orders of magnitude, while not being unrealistically large

as in the single tail cases. In fact, the maximum deflections are still quite small with

a maximum bending deflection of only 5% of the tail span and a maximum twist of 

only 2°. The right-left averaged open fuselage response, shown in Figures 6.65 -  6.67, 

is summarized with the other cases in Table 6.15. To characterize the accelerations, 

it is useful to evaluate them in dimensional form. The length scale is determined by 

comparing the tail root chord lengths as follows,

C* C F D  =  C * F / A - 1 8

0.4[Lcfd] =  2.87[m]

1.0[LCfd] =  7.18[m] (6.12)
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which gives a time conversion of

tUoo
T  =

c
t  X 0.3 X 340.3 [ f  ]

|  x 7.18[m]

r  =  21.3f i
.sj

1.0[TCfd] =  0.0469[s] (6.13)

where L c f d  a n d  T c f d  are units of CFD length and time. One unit of linear CFD 

acceleration is then given as follows

1 0 [l cfd1 =  7.18[m] ^ ___[g
[Tcfd]2 (0.0469[s])2 9.81 jp]

L° I ^ ^  =  332.7[g] (6.14)

and similarly, angular acceleration is given by

i n [deg] _  , c , ^[deg]
i T c r o P "  " 5 F  ' ’

Reduced frequency is converted as,

L° ^ ^ =21'3{HZ] (6' 16) 

Thus, in dimensional form the peak linear acceleration is over 1000 g. This value 

is very high, but is not ridiculously high in light of measurements taken by Lee et al. [79] 

who recorded peak accelerations of 450 g in flight test. The error introduced by numerical 

differentiation is a  major cause of the large values, since the differentiation of velocity will 

surely exaggerate any errors introduced in the first differentiation of displacement. Also 

recall that the present tail model was designed to simulate a generic buffeting response 

with the added constraint of being numerically practical, thus quantitative matching 

with the full F/A-18 is not expected.
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Flexible Tail Root Loads
C rbm Crtm

Fuselage
Mean 

4-tip outward RMS
Peak
Power nd

Mean 
+LE inward RMS

Peak
Power nd

Wide -0.0073 0.0092 0.0082 1.5 -0.0098 0.0043 0.0022 1.2
Narrow -0.0711 0.0112 0.0180 1.0 -0.0123 0.0040 0.0019 1.0
Open -0.0404 0.0075 0.0100 0.9 -0.0166 0.0024 0.0007 1.4

Table 6.14: Comparison of averaged root bending and twisting moment statistics, peak 
power and dominant frequency for flexible F/A-18 tail cases.

Averaged Tip Response
Bending

Fuselage A(w) Mean w 4-outward A(wt t ) Peak Power rid
Wide 0.00032 -0.0004 0.078 0.047 3.8

Narrow 0.00033 -0.0011 0.048 0.032 2.6
Open 0.00450 -0.0150 1.950 49.0 5.5

Torsion
Fuselage .4(0)° Mean 9° 4-LE inward A{9rr)° Peak Power nd

Wide 0.031 -0.0013 7.0 325. 4.5
Narrow 0.026 0.0190 5.0 108. 2.9
Open 1.700 -0.0500 970 6.1E6 1.5

Table 6.15: Comparison of stiff(wide, narrow) and soft (open) tail responses.
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Figure 6.58: Bending force and twisting moment distributions along the tail span plotted 
at integer nondimensional time levels for a) right and b) left tails. Open Flexible Case: 
Re =  0.75 x 106, M  =  0.3, a  =  30°.
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Figure 6.65: Right Tail: Time and frequency domain data for tip bending and torsion 
deflections and accelerations. Open Flexible Case: Re =  0.75 x 106. M  =  0.3. a = 30°.
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Figure 6.67: Left Tail: Time and frequency domain data for tip bending and torsion 
deflections and accelerations. Open Flexible Case: Re = 0.75 x 106. M  =  0.3. a = 30°.
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6.4.5 Sum m ary

In this chapter, the simulation of twin vertical tail buffeting was accomplished 

using a delta wing/twin F/A-18 vertical tail configuration. Computational applications 

provided insight into the effects of aft fuselage geometry on the buffet loading and re­

sponse. In addition, a lower limit on the magnitude of the amplitude of the dynamic 

tail response required to affect the buffet loading was established. Finally, a dynamically 

seeded tail model was tested and validated.

As in the single tail computations, the multi-disciplinary buffeting problem was 

solved sequentially for the fluid flow, the elastic tail deformations and the grid displace­

ments. The flow field was obtained by time accurately solving the laminar, unsteady, 

compressible, Navier-Stokes equations using an implicit, upwind, flux-difference splitting 

finite volume scheme. The elastic vibrations of the tail were modeled by coupled bend­

ing and torsion beam equations. These equations were solved accurately in time using 

the Galerkin method and a five-stage Runge-Kutta-Vemer scheme. The grid for the 

fluid dynamics calculations was continuously deformed using interpolation functions to 

smoothly disperse the displacements throughout the computational domain. Computa­

tions were performed on a Cray C90 and required one hour per 935 time steps including 

movie output, or nearly 3 hours per nondimensional time (A r =  0.00036). The memory 

required was 21 MW on a 64-bit machine which is equivalent to 84 MB on a 32-bit 

machine.

To determine the effect of aft fuselage geometry on twin F/A-18 vertical tail 

buffeting, three fuselage configurations were considered: wide, narrow and open. It was 

found that overall, the narrow fuselage case produced the largest buffet loads. Results 

for the wide and open cases were mixed with the wide case having lower steady loads
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and higher unsteady loads. Comparison of dynamic tail cases with their corresponding 

rigid cases for the wide and narrow cases showed that even for very small deflections, the 

loading can be affected by up to 30% for RMS values. However, the very stiff tails of the 

wide and narrow cases produced deflections that were an order of magnitude lower than 

the normal grid spacing, which even with moving grids is too small to produce accurate 

results. Thus, for the open case, dynamically scaled tails were used which produced 

more realistic deflections of up to 5% tail span and of the same order as the normal grid 

spacing.

To establish the ability of the present simplified configuration to aid in the full 

aircraft tail buffeting design problem, results from the narrow fuselage case were com­

pared to experimental full F/A-18 aircraft results. The ratio between buffet excitation 

frequency and root bending moment, was found to be in good agreement with experi­

mental data. The inside tail loads also match fairly well. However, overall the results 

were mixed owing to the fact that the aircraft flow field and the delta wing flow field have 

many differences. But for the purpose of evaluating tail buffeting design modifications, 

the simple delta wing model does share enough of the physics with the full aircraft to 

be very useful.
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CHAPTER 7 

EFFECT OF SPANWISE TAIL LOCATION ON TW IN  

WASHBURN VERTICAL TAIL BUFFETING  

7.1 Introduction

The focus of this chapter is the determination of the effect of spanwise tail loca­

tion on the tail buffet loading and response. Three spanwise tail positions are considered: 

corresponding to 33%, 56% and 78% of the wing semispan, see Figure 7.1. The case def­

initions are summarized in Table 7.1. Quantitative comparisons will also be made with 

the experimental data of Washburn et al. [12] for the same configuration.

The method of solution and the total number of grid cells used is the same 

as in the previous F/A-18 cases. For each of the cases considered in this chapter the 

material properties of the tails are the same as those used in the open F /A -18 case, which 

consisted of a dynamically scaled tail corresponding to the properties of solid balsa wood 

for a wing root chord of 18 inches, as in the wind tunnel model of Washburn et al. [12].

7.2 Model Geometry and Computational Domain

Each of the models consist of a sharp-edged, flat delta wing of aspect ratio 

1 (leading edge sweep of A =  76°) and twin swept vertical tails placed at distance of 

either (y =  0.082c, 0.14c or 0.195c) from the symmetry plane. The midspan location is 

identical to the previous F/A-18 cases, which was chosen to coincide with the vortex core 

locations. The vertical height of the Washburn tails are 0.22c which is 30% lower than 

the previous F/A-18 tails. The vertical tails are oriented normal to the upper surface
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Figure 7.1: a) Inboard, b) midspan and c) outboard tail configurations.

of the wing and have a centerline sweep of 53.5°. The root chord is 0.35c with a taper 

ratio of 0.23. See Figure 7.2 for a sketch of the tail with pressure tap locations.

To accommodate the boundary conditions of the twin tails, the same type of 

five block, C° continuous, O-H grid used in the open F/A-18 case, is used for all of 

the cases in this chapter. The total number of cells for each case is 458,100, with only 

the distribution in the blocks surrounding the tails changing for each case. The block 

structure is shown in Figure 7.3 and each of the surface grids are shown in Figure 7.4. 

The global grid extends 0.8c upstream, 3c radially and 3.6c downstream. These limits 

were obtained from earlier numerical experiments which showed that primary flow was 

insensitive to the far-field boundary conditions at the current distance. The grid is 

constructed algebraically as previously discussed in Section 3.5.
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Transducer Locations 
#  Chord Span
1 50% 90%
2 75% 50%
3 50% 50%
4 33% 50%
5 50% 30%

Figure 7.2: Location of Washburn pressure transducers.

Figure 7.3: Block boundaries for Washburn-type cases.
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7.3 Freestream Flow Conditions

For all of the Washburn-type tail cases under consideration, the configuration 

angle-of-attack is increased from the F/A-18 case value of 30° to 35°, in order to increase 

the unsteady loads on the tails. The freestream Mach and Reynolds numbers are changed 

slightly to 0.3 and 1.25 x 106, respectively, to more closely model the experimental 

conditions while not posing too stiff of a  problem for the compressible solver. The Mach 

number is chosen to coincide with the severe tail buffet conditions and to match previous 

computations.

7.4 Tail Material Properties

The nondimensional material properties used for each of the cases considered 

in this chapter are the same as in the F/A-18 open fuselage case of the previous chapter, 

and are E  = 4.6 x 103, G =  1.8 x 103 and p = 145. This corresponds to balsa wood 

based on the wing root of 18 inches and matches the experimental case of Washburn 

et al. [12]. Additional flexibility is obtained by reducing the tail thickness used in the 

structural calculations by 50%. Since this case and all the remaining cases in the study 

are inertially uncoupled, the distance between the inertial and elastic axes, xg is 0.

Case Tail Location Re Q Mach
1 Inboard 1.25 x 10d 35° 0.3
2 Midspan 1.25 x 106 35° 0.3
3 Outboard 1.25 x 106 35° 0.3
4 Experimental 0.5—1.25 xl0° 34° 0.05—0.12

Table 7.1: Summary of twin Washburn-type vertical tail buffeting cases, and experimen­
tal range in which nondimensional buffeting data were constant.
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7.5 Inboard Twin Tail Model

7.5.1 Initial C onditions, R e  =  1.25 x  106, M  =  0.3, a  =  35°

The initial flow state is obtained by the same method as in the previous twin

tail cases. The flow is solved using local time stepping for 2000 iterations and then time 

accurate stepping for another five nondimensional time with A t  =  0.00036. Detailed 

initial condition flow field plots for the inboard case are shown in Figures 7.5-7.10.

Comparing the 3-D streamline plots of Figure 7.5 with the F/A-18 tail, open 

fuselage case of the previous chapter, see Figure 6.53, demonstrates that one effect of 

increasing the angle-of-attack from 30° to 35° is to move the burst location forward 

from 67% root chord to 50%. The lower profile of the swept tails also allows the vor­

tices to interact more strongly with the wake, which is indicated by the dispersion of 

aft streamlines. In Figure 7.6, total pressure isosurfaces are plotted over the existing 

core streamlines. The burst location is indicated by the isosurface inflection point and 

matches the burst location determined from the streamlines in Figure 7.5. The decrease 

in diameter and abrupt end of the total pressure isosurfaces in the region aft of the wing 

is a result of the increasing overall pressure in the wake.

Near surface streamline plots of the right tail, see Figure 7.7, indicate that

the flow on the outer surface is separating due to the nearby vortex. This has been

observed in the previous F/A-18 cases, however, unlike those cases, the surface flow on 

the opposite side of the core is very clean with no evidence of separation due to core 

spill-over. This is due to the high sweep angle of the Washburn tails and the inboard 

location of the tails. The curvature of the wing secondary separation line, see Figure 7.7. 

indicates that the region of recirculation associated with breakdown is much larger than 

in the F/A-18 cases. Comparison of spanwise pressure distributions, see Figure 7.8. with
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those of the open F/A-18 case in Figure 6.55 show an 18% increase in peak suction 

for the x =  0.3 crossflow plane and decreases of up to 18% for the aft planes. The 

forward suction benefit is due to the increased vortex strength and the aft suction loss is 

due to the forward movement of the burst point as evidenced by the near wing surface 

streamlines, all of which are a result of the 5° increase in angle-of-attack.

In Figures 7.9 and 7.10, total pressure contours and in-plane streamlines are 

plotted on vertical crossflow planes at 0.1c intervals from x  =  1.0c— 1.5c. The solid cross 

sections of the tails axe shown in black. The pressure contours indicate both an increase 

in core size and pressure in the streamwise directions. Secondary vortices emanating 

from the sharp bottom edges of the tails are clearly evident in the x  =  1.4 and x =  1.5 

planes, in both the pressure and the streamline plots.
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Pressure Coefficient

- 3.6 -15 -L4 -05 05

Figure 7.5: Three-dimensional and top views of surface pressure and vortex core stream­
lines. Inboard Initial Condition: Re = 1.25 x 106, M  — 0.3, a = 35°.
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Pressure Coefficient

Figure 7.6: Three-dimensional and top views of surface pressure, vortex core streamlines 
and solid toted pressure isosurfaces, { j ^ r  = 0.68j Inboard Initial Condition: Re = 
1.25 x 106, M  = 0.3, q  =  35°.
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Figure 7.7: Near surface streamlines for the a) inner and b) outer right tail surfaces and 
the upper wing surface. Inboard Initial Condition: Re =  1.25 x 106, M  =  0.3, a  =  35°.
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Figure 7.8: Coefficient of pressure on upper and lower wing surfaces at chord stations 
corresponding to plotted crossflow planes. Inboard Initial Condition: Re =  1.25 x 106. 
M  = 0.3. a  =  35°.
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Figure 7.9: Nondimensional total pressure contours and in-plane streamlines plotted on 
vertical crossflow planes, x  =  1.0,1.1,1.2. Inboard Initial Condition: Re =  1.25 x 106. 
M  =  0.3. a  = 35°.
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Figure 7.10: Nondimensional total pressure contours and in-plane streamlines plotted on 
vertical crossflow planes, x  =  1.3,1.4,1.5. Inboard Initial Condition: Re =  1.25 x 106, 
M  =  0.3. a  =  35°.
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7.5.2 U ncoupled  B ending and Torsion R esponse

In this section, the buffeting response due to inertially uncoupled bending and 

torsion vibrations of dynamically scaled, flexible, twin Washburn tails is considered for 

the inboard tail position. Results from this case will be compared to the midspan and 

outboard cases in the next two sections to  assess the effect of spanwise tail location on 

tail buffeting. The buffet loads are plotted in Figures 7.11-7.16, and the response is 

shown in Figures 7.17-7.20.

Lumped load distributions along the tail span, see Figures 7.11 and 7.12, in­

dicate that as with the F/A-18 cases, the mean flow is highly symmetric. The bending 

loads peak near the root of the tail and decrease monotonically along the span. The 

twisting moment peaks around 25% span and decreases rapidly on either side of the 

peak.

Mean and RMS differential pressure distributions for both tails, see Figure 1.13. 

confirm the similarity in loading between the left and right tails seen in the integrated 

or lumped loads. Note, at the current high angle-of-attack of a  =  35°, flow symmetry 

is not necessarily guarantied. Single sharp peaks in the frequency response of the buffet 

excitation parameter are observed on the inner and outer surfaces for both tails, see 

Figure 7.14. The higher magnitude and greater variation between the tails of the outer 

side excitation is indicative of the higher unsteadiness of the outer side loads. The 

differential pressure history and buffet excitation pressure are recorded at pressure tap 

location 5, shown in Figure 7.2.

Root bending and twisting moment histories and spectra, shown in Figures 7.15 

and 7.16, display no evidence of periodicity, but do exhibit strong single dominant fre­

quencies. For both tails, the dominant root bending moment frequency is approximately
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30% higher than the root twisting moment. The response of the right and left tails is es­

sentially equivalent. Spanwise deflection plots, see Figure 7.17 and Figure 7.19, indicate 

that bending is dominated by the first mode, while torsion exhibits higher mode influ­

ences. This observation is confirmed in the PSD’s of bending and twisting accelerations, 

see Figures 7.18 and 7.20, which show a sharp peak for bending and a  broader plateau 

of low frequencies for torsion. Tip deflections are centered around an outward bending 

displacement of 0.045c and an outward leading edge rotation of 9°.
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Figure 7.11: Bending force and twisting moment distributions along the tail span plotted 
at integer nondimensional time levels for a) right and b) left tails. Inboard Case: Re =
1.25 x 106, M  = 0.3, a  =  35°.
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Figure 7.12: Mean and RMS load distributions along the right and left tail spans. In­
board Case: Re = 1.25 x 106. M  — 0.3, a  =  35°.
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7.6 M idspan T w in Tail Case

7.6.1 Initial Conditions, Re =  1.25 x 106, M  =  0.3, a  =  35°

The initial flow state is obtained by the same combination method of local 

and time accurate stepping previously used with the same time step of At =  0.00036. 

Detailed initial condition flow field plots are shown in Figures 7.21-7.26.

Comparing the 3-D plots of Figures 7.21 and 7.22 with the inboard results, see 

Figures 7.5 and 7.6, indicate tha t the midspan case has a smaller burst core diameter 

than the inboard case. However, the burst location does not change appreciably.

Near surface streamline plots of the right tail, see Figure 7.23, indicate that the 

flow on the outer surface is separating due to the vortex and like the F/A-18 cases does 

show strong signs of inside separation due to vortex flow spillage over the tail leading 

edge. Comparisons of the wing secondary separation line, see Figure 7.23, with the 

inboard case shown in Figure 7.7 indicates that the midspan case does not contain a 

second strong area of recirculation near x  = 0.9c as in the inboard case.

Spanwise peak suction pressure distributions, see Figure 7.24, are higher at 

x  =  0.5c and x  =  0.7c than those of the inboard case, see Figure 7.8, and equal at the 

forward and aft positions. This is indicative of the a  stronger core due to the diminished 

strength of the midspan breakdown.

Comparison of the crossflow total pressure contours and streamlines of Fig­

ures 7.25 and 7.26, with the inboard case, shown in Figures 7.9 and 7.10, indicate that 

the midspan vortex differs only slightly in size and strength from the inboard case for 

the first three planes. However, in the aft planes from x  =  1.3c— 1.5c, where the tails are 

more of an obstruction, the midspan core is much more elongated than in the inboard 

case. Pressure contours indicate that the secondary vortices emanating from the sharp
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bottom edges of the tails are stronger than the inboard case due to the increased crossflow 

velocity coming from the closer primary vortex. Thus, it is concluded that moving the 

tail from the inner spanwise position of y =  0.082c to the midspan location of y =  0.14c 

significantly affects all of the flow downstream of point of breakdown, particularly in the 

aft region of the tails.
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Pressure Coefficient

Figure 7.21: Three-dimensional and top views of surface pressure and vortex core stream­
lines. Midspan Initial Condition: Re =  1.25 x 106, M  =  0.3, a  =  35°.
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Figure 7.22: Three-dimensional and top views of surface pressure, vortex core streamlines 
and solid total pressure isosurfaces. Midspan Initial Condition: Re =  1.25 x 106, M  — 
0.3, a  = 35°.
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Figure 7.23: Near surface streamlines for the a) inner and b) outer right tail surfaces and 
the upper wing surface. Midspan Initial Condition: Re =  1.25 x 106, M  =  0.3, a  = 35°.
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M  =  0.3. q =  35°.
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Figure 7.25: Non-dimensional total pressure contours and in-plane streamlines plotted on 
vertical crossflow planes, x  =  1.0,1.1,1.2. Midspan Initial Condition: Re =  1.25 x 106, 
M  =  0.3, a  =  35°.
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Figure 7.26: Nondimensional total pressure contours and in-plane streamlines plotted on 
vertical crossflow planes, x  =  1.3,1.4,1.5. Midspan Initial Condition: Re =  1.25 x 106. 
M  = 0.3. q  =  35°.
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7.6.2 U ncoupled  B ending and  Torsion R esponse

In this section, the buffeting response due to inertiaUy uncoupled bending and 

torsion vibrations of dynamically scaled, flexible, twin Washburn tails is considered for 

the midspan tail position. Results will be contrasted with the inboard case to determine 

the effect of spanwise tail location on tail buffeting. The buffet loads are plotted in 

Figures 7.27-7.32, and the response is shown in Figures 7.33-7.36.

Lumped load distributions along the tail span, see Figures 7.27 and 7.28, indi­

cate that as with the previous cases, the mean flow is highly symmetric. Bending loads 

peak near the root of the tail as in the inboard case, but with a 50% increase in the peak 

mean loading. The more relevant unsteady loads have the same peak magnitude, but 

drop off more quickly than in the inboard case. The same trends in steady and unsteady 

loads are also present in the moment data. It is also observed that the vertical location 

of peak moment magnitude is about half the height of the inboard case.

Mean and RMS differential pressure distributions, shown in Figure 7.29, depict 

a much lower gradient of RMS loads near the leading and trailing tail edges. Buffet 

excitation spectra, see Figure 7.30, indicate that the unsteady, differential, midspan 

loads are much smaller than the inboard results. This is consistent with the midspan 

tail being more fully immersed in the vortex core, as opposed to the inboard case in 

which the vortex passes by the outer side the tail. Another difference from the inboard 

case, is the inclusion of a second peak in the inner side buffet spectra.

Root bending and twisting moment histories and spectra, shown in Figures 7.31 

and 7.32 show no evidence of periodicity. Unlike the inboard case, two dominant fre­

quencies are observed for both bending and twisting moments. The double frequencies 

bracket the single dominant frequencies of the inboard case. The bending moments are
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dominated by the lower peak frequency while the twisting moments are equal or stronger 

in the higher of the two peak frequencies.

The buffeting response, shown in Figures 7.33-7.36, is more close to being pe­

riodic than the inboard case and has much smaller steady displacements in bending and 

torsion. The unsteady displacements for bending sire roughly equal, however, the angu­

lar deflections axe much smaller with an amplitude of 1.5°, as opposed to the previous 

8°. Detailed comparisons of loading and responses are located a t the end of this chap­

ter. Acceleration spectra indicate the presence of three peak bending frequencies with 

nearly equal magnitudes and up to six rotation peak frequencies, again with nearly the 

same magnitude. Thus, is it clear tha t the smaller deflections have allowed the response 

frequency to sustain very high frequency vibrations.
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Figure 7.27: Bending force and twisting moment distributions along the tail span plotted 
at integer nondimensional time levels for a) right and b) left tails. Midspan Case: Re =
1.25 x 106, M  =  0.3, a  =  35°.
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Figure 7.33: Right Tail: Bending  and torsion deflection distributions along the tail span 
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7.7 Outboard Twin Tail Model

7.7.1 Initial C onditions, R e  =  1.25 x 106, M  =  0.3, a  =  35°

The initial flow state is obtained by the same combination m ethod of local 

and tim e accurate stepping previously used in the inboard and midspan cases. Detailed 

initial condition flow field plots are shown in Figures 7.37-7.42.

Plots of 3-D streamlines and total pressure isosurfaces, see Figures 7.37 and 

7.38, indicate that the breakdown flow more closely resembles the inboard case than 

the midspan case, both in terms o f burst core diameter and overall wing surface pres­

sure distribution. However, the magnitude of the peaks in the spanwise Cp plots, see 

Figure 7.40, more closely match those of the midspan case.

Near surface streamline plots of the right tail, see Figure 7.39, indicate that as 

in the midspan case, flow on both the outer and inner surfaces indicate strong lines of 

flow separation. The secondary separation line on the wing, see Figure 7.39, shows an 

aft recirculation pattern similar to the inboard case.

Comparison of the crossflow total pressure contours and streamlines o f Fig­

ures 7.41 and 7.42 with the inboard and midspan cases, shows a wide variation of core 

location with respect to the spanwise tail location. The plots also indicate that the out­

board span vortices do not completely clear the tails as they pass by, as in the inboard 

case, which explains the surface streamline similarities with the midspan case. The sec­

ondary vortices emanating from the sharp bottom edges of the tails are the strongest for 

the outboard case and visible aft o f the x  =  1.3 plane.
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Figure 7.37: Three-dimensional and top views of surface pressure and vortex core stream­
lines. Outboard Initial Condition: Re =  1.25 x 106, M  =  0.3, a  =  35°.
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Figure 7.38: Three-dimensional and top views o f surface pressure, vortex core streamlines 
and solid total pressure isosurfaces. Outboard Initial Condition: Re — 1.25 x 106, 
M  =  0.3, a  =  35°.
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M  =  0.3. a  =  35°.
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Figure 7.42: Nondimensional total pressure contours and in-plane streamlines plotted on 
vertical crossflow planes, x =  1.3,1.4,1.5. Outboard Initial Condition: Re =  1.25 x 106, 
M =  0.3. a  =  35°.
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7.7.2 U ncoupled B ending and Torsion Response

In this section, the buffeting response due to inertially uncoupled bending and 

torsion vibrations o f dynamically scaled, flexible, twin Washburn tails is considered for 

the outboard tail position. Results will be contrasted with the previous inboard and 

midspan cases to determine the effect o f spanwise tail location on buffeting. The buffet 

loads are plotted in Figures 7.43-7.48, and the response is shown in Figures 7.49-7.52.

Lumped load distributions along the tail span, shown in Figures 7.43 and 7.44, 

closely resemble those of the midspan case in bending and are up 30% lower in torsion. 

Mean and RMS differential pressure distributions, see Figure 7.45, indicate the absence 

of edge RMS gradients which were present in the inboard case and to a lesser extent in 

the midspan case. Buffet excitation spectra, see Figure 7.46, indicate that the unsteady 

point loads at tap 5 are as much as 70% lower than the midspan and inboard cases, 

with the outer side loads being half o f the inner side loads. As with the inboard case, 

the loads are dominated by a single frequency of approximately the same value as in the 

inboard case, which matches and the lower o f the two midspan dominant frequencies.

Root bending and twisting moment histories and spectra, see Figures 7.47 and 

7.48, also indicate a decrease in loading by up to 50% from the midspan and inboard 

cases, with no evidence of periodicity. Twin dominant frequencies are observed in torsion 

but not in bending. Thus, the frequency response for bending resembles the inboard case, 

while the torsional response more closely matches that of the midspan case.

The buffeting response, shown in Figures 7.49-7.52, resembles the inboard case 

in terms of its lack of periodicity. Deflections are half of those of the midspan case, 

and fully an order of magnitude lower than the inboard case. Accelerations are less 

than half of the midspan and inboard case values. The bending response occurs in three

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



298

H i m i n i s h i n g l y  powerful frequencies and while the torsional response occurs in at least 

five equally powerful frequency bands, similar to the midspan case, but with much lower 

peaks.
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Figure 7.43: Bending force and twisting moment distributions along the tail span plotted 
at integer nondimensional time levels for a) right and b) left tails. Outboard Case: 
Re =  1.25 x 106. M  =  0.3, a  =  35°.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2‘J9

Mean Force Distribution
0.5

0.4

0.32
o
c10
CD
5

02.
-CJIeft)

0.1

0.0

0.05 0.10 0.15
Z

RMS Force Distribution
0.04

CN(left)0.03

z
O  
“  0.02
CC

0.01

0.05 0.10 0.15
z

Mean Moment Distribution
0.05

0.00

CJright)(J -0.05

-0.15

0.15 0.200.05 0.10
z

RMS Moment Distribution
0.030

CJright)

0.025

0.020

S2 o.oi5

0.010

0.005

0.15 0.200.100.05
z
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Differential Pressure History

a. o.oo

-0.15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Differential Pressure History

0.20
0.15

0.10

0. 0.00
-0.05

•0.10
•0.15

t

Buffet Excitation Spectra25
inner Side 
Outer Side

20

1.5
c
u.c. 1.0

0.5

0A
n

Buffet Excitation Spectra

2.0

c
li-c-  1.0

03

0.0.
nb)

Figure 7.46: Differential pressure ( ^ )  histories at the 50% chord and 90% span location 
for a) right and b) left tails. Outboard Case: Re =  1.25 x 106, M  =  0.3, a  =  35°.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



301

Root Bending Moment History0.055

0.050

0.045
1o

0.040

0.035

0.030

a) T

Root Twisting Moment History>0.005

-0.006

-0.007

>0.006

-0.009

-0.010
■0.011

•0.012

Root Sending Moment History•0.030

•0.035

•0.040
1o

•0.045

-0.055,

b) X

Root Twisting Moment History0.012

0.010

0.006
2

o '
0.006

0.004 •

0.002,
X

Figure 7.47: History of root bending moment coefficient and root twisting moment co­
efficient for a) right and b) left tails. Outboard Case: Re =  1.25 x 106, M  =  0.3. 
q =  35°.

^  t Root Twisting Moment Power Spectral Density

05 10 15 2.0 25 3.0 35 40
n

i zz j ^001 Moment Power Spectral Density

o.oeg 05
a) n

Root Twisting Moment Power Spectral Density
IE-4

i IE-4
O  8E-5 
(0

6E-5

3.0Z0
n

40

Root Bending Moment Power Spectral Density
1.4E-3

b) n

Figure 7.48: Power spectral density of root bending moment coefficient and root twisting 
moment coefficient versus reduced frequency for a) right and b) left tails. Outboard Case: 
Re =  1.25 x 106. M  =  0.3. a  =  35°.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



302

Bending Distribution History Rotation Distribution History

0.15

20.10

0.05

°°8. 0.020.01
W

0.15

z0.10

0.05

0.00
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7.8 Experimental Validation

To assess the accuracy o f the computations o f this study, experimental valida­

tion is sought from the data of Washburn, Jenkins and Ferman [12]. They performed 

low-speed wind tunnel experiments on configurations discussed in this chapter. Compar­

ison of inboard and outboard RMS pressures, at the five stations, see Figure 7.2, show  

that the computations differ from experiment by up to 71%, with other points much 

closer at around ±20% as indicated in Tables 7.2 and 7.3. This is most likely due to 

the short physical time in which the computations were run, which degrade all unsteady 

measurements. The buffet excitation frequencies are typically more robust and show 

good agreement considering the imprecision of the data and the massive undertaking 

that 3-D unsteady CFD is. Finally, root bending coefficients show fair agreement in 

Table 7.5, with the mean values considerably more close to experiment than the RMS 

values.

Inboard RMS Pressure Validation
Tap Location 1 2 3 4 5

EXP P in 0.17 0.07 0.07 0.10 0.07
CFD Pin 0.13 0.09 0.12 0.14 0.07

% Difference -24% 29% 71% 40% 0%
EXP P o u t 0.21 0.10 0.21 0.24 0.09
CFD P o u t 0.17 0.08 0.09 0.10 0.07

% Difference -20% -20% -57% -58% -22%
CFD P in —ou t 0.11 0.09 0.14 0.17 0.09

Table 7.2: Comparison of right tail RMS nondimensional pressures ( ^ )  w ith experi­
mental data o f Washburn et al. [12]. Inboard Case: a  =  35°, M  =  0.3, Re =  1.25 x 106.
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Outboard RMS Pressure Validation
Tap Location 1 2 3 4 5

EXP Pin 0.18 0.07 0.11 0.14 0.08
CFD Pin 0.11 0.05 0.07 0.09 0.06

% Difference -39% -28% -36% -35% -25%
EXP Pout 0.08 0.06 0.04 0.05 0.04
CFD P o u t 0.06 0.04 0.04 0.04 0.04

% Difference -25% -33% 0% -20% 0%
CFD P in - o u t 0.07 0.06 0.08 0.10 0.08

Table 7.3: Comparison of right tail RMS nondimensional pressures ( ^ )  with experi­
mental data of Washburn et al. [12]. Outboard Case: a  =  35°, M  =  0.3, Re =  1.25 x 106.

Buffet Excitation Frequency Validation
Inboard Outboard

Tldl Ud2 n<n Ud2
EXP 1.3 2.5 1.4 3.0
CFD 1.2 2.0 1.8 3.0

% Difference -8% -20% 29% 0%

Table 7.4: Comparison of right tail dominant frequencies for buffet excitation, y/nF(n), 
with experimental data o f Washburn et al. [12] using length scale of c. Case: a  =  35°. 
M  =  0.3, Re =  1.25 x 106.

Root Bending Moment Coefficient Validation
Inboard Midspan Outboard

C r b m C r b m C r b m

Mean RMS Mean RMS Mean RMS
EXP 0.046 0.018 0.043 0.012 0.033 0.010
CFD 0.033 0.009 0.048 0.005 0.041 0.004

% Difference -28% -50% 12% -58% 24% -60%

Table 7.5: Comparison of right tail root bending moment coefficient statistics with ex­
perimental data of Washburn et al. [12] using length scale of c. Case: a  =  35°, M  =  0.3, 
Re =  1.25 x 106.
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7.9 Summary

In this chapter, the simulation of twin vertical tail buffeting is accomplished 

using the delta wing/twin vertical tail configuration of Washburn et al. [12]. Computa­

tional applications demonstrate the effect of spanwise tail location on the buffet loading 

and response, and are in good agreement with experimental data. Overall, the inboard 

tail location produces the largest buffeting response, which is particularly high in torsion.

It was observed from the 3-D streamline and nondimensional total pressure 

isosurfaces, that the location and size of the breakdown does not vary with the spanwise 

location of the tails, for the present angle-of-attack of 35°. This is due to the small tail 

span and high sweep angle, which minimizes tail contact with the vortex cores.

In Table 7.6, the statistics o f right tail point pressure data at 50% chord and 

90% span indicate that the inboard span produces the largest unsteady pressure loads. 

The outboard span has the greatest differential mean loading by a factor of two over 

the other cases, as well as, higher individual frequencies for inner and outer pressures. 

However, this is only one point so it does not necessarily characterize the whole buffet 

loading. Note, because of the high degree of symmetry shown in the plots, only the 

results fot the right tail are tabulated.

More complete measures o f the buffet loading are the root bending and twisting 

moments, see Table 7.7. The unsteady RMS loads are most critical to assessing the 

buffet. The short physical sample time degrades the precision of peak power, however, 

the dominant frequencies are fairly robust. From this table it is evident that the inboard 

span location has by far the most severe buffeting in bending and is a close second in 

torsion to the midspan case. The outer span has the smallest overall loading.

In Table 7.8, the statistics of right tail buffeting response show that for bending, 

the inboard and midspan positions produce a response over five times as large as the
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outboard case. In torsion, the midspan and outboard are much closer together and 

smaller than the inboard case by a factor o f up to ten. Thus, from the deflections and 

accelerations it is concluded that the inner case experiences that largest buffeting with 

a strong component o f torsion, followed by the midspan and then outboard cases.

Point Pressure Data
Inboard Span Middle Span Outboard Span

P in P ou t P in —o u t P in P o u t P in —o u t P in P o u t P in —out
Mean 15.67 15.67 0.0046 15.54 15.50 0.041 15.58 15.49 0.0902
RMS 0.118 0.163 0.1010 0.132 0.131 0.071 0.106 0.060 0.061

Tld 1.2 1.2 1.3 1.3 1.8 1.7
Peak Power 1.4 2.3 1.6 1.6 1.0 0.5

Table 7.6: Comparison of right tail nondimensional pressure ( ^ )  data at 50% chord 
and 90% span at each tail location. Case: a  =  35°, M  =  0.3, Re =  1.25 x 106.

Right Root Loads
C r b m C r t m

Fuselage
Mean 

+tip outward RMS
Peak

Power n a

Mean 
+LE inward RMS

Peak
Power Tld

Inboard 0.033 0.0086 0.0060 1.0 -0.015 0.0015 1.7E-4 0.7
Midspan 0.048 0.0045 0.0017 0.5 -0.015 0.0017 2.0E-4 1.3
Outboard 0.041 0.0035 0.0012 0.7 -0.008 0.0013 1.8E-4 0.5

Table 7.7: Comparison of averaged root bending and twisting moment statistics, peak 
power and dominant frequency for each tail location. Case: a  =  35°, M  — 0.3, Re =  
1.25 x 106.

Right Tip Response
Bending

Tail Location A {w ) Mean w  -1-outward A ( w Tt ) Poweri Tldl Power2 Tld.2
Inboard 0.018 0.048 5 300 1.1 20 2.7
Midspan 0.019 0.008 6 400 0.7 400 2.5
Outboard 0.003 0.009 1 30 0.6 20 2.3

Torsion
Tail Location A (0 )° Mean 6° -f-LE inward A (6 rr )° Poweri Tldl Power2 Tld2

Inboard 10 -9 1800 8E7 1.1 2E6 3.5
Midspan 2 0.5 1215 3E7 1.6 2E7 2.3
Outboard 0.7 -0.4 450 1E6 1.4 8E6 3.2

Table 7.8: Comparison of buffet responses for each tail location. Case: a  =  35°, M  =  0.3. 
Re =  1.25 x 106.
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CHAPTER 8 

CONTROL OF TWIN TAIL BUFFETING

8.1 Introduction

In this chapter, the effectiveness of controlling vertical tail buffeting through 

the use of an apex flap is investigated computationally. In preliminary numerical exper­

iments, several o f the control schemes discussed in Section 2.4 were evaluated, in c lu d in g  

many slot and jet blowing arrangements on the wing and tails. However, none o f the  

pneumatic m ethods were nearly as effective at delaying breakdown as the present scheme, 

and worse, they significantly increased the level o f buffeting. The success of the apex  

flap, hinges on  its ability to preserve the core by decreasing the adverse pressure gradient 

over the wing. Attempts to overcome the adverse pressure gradient by injection of axial 

momentum directly into the vortex core was unsuccessful even at unrealistically high 

levels of mass flow rates. Thus, the simpler and more robust method of increasing the  

wing camber by an apex flap was selected.

The chosen configuration for the apex flap case is the inboard Washburn tail 

case of the previous chapter, which had the highest level o f buffeting for all of the cases 

studied. T he method of solution, number grid cells, and the material properties o f the  

tails are the sam e as in the previous Washburn cases. The apex flap refers to the portion 

of the delta wing forward of x =  0.4c, which is capable of rotating through a deflection 

angle 0, where the positive sense results in a local decrease o f angle-of-attack. The  

method of control in this study is totally passive. However, the apex flap concept could 

be readily extended to an active control system, where the deflection angle is adjusted
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based on angle-of-attack and breakdown location. The breakdown location would be 

known based on its surface pressure signature. For the present study, only a single 

optimum deflection angle is evaluated, 0  =  15°. This angle was experimentally [14] 

found to produce the greatest delay in the onset of breakdown.

Ideally one would like to  prevent breakdown completely or at least delay it until 

after the tails, however the strong adverse pressure gradient at the trailing edge insures 

that the breakdown location does not occur past the trailing edge. In Figure 1.1, the 

breakdown position closest to the tail (a =  20°) actually produced the lowest buffeting, 

while the highest levels resulted from a breakdown position much farther away for a  =  

30°. Thus, the hope is that by delaying the onset of breakdown, the aircraft will not 

only benefit from increased vortex lift, but will also experience less tail buffeting, a rare 

engineering “win - win” situation. The computational validation of this theory is the 

subject of this chapter.

8.2 Initial Conditions

The initial flow state was obtained by the same method as in the previous twin 

tail cases. The flow is first solved using local time stepping for 2000 iterations, time- 

accurate stepping for another five nondimensional time with A t =  0.00036. Detailed 

initial condition flow field plots for the inboard tail, deflected apex flap case are shown 

in Figures 8.1-8.6. The initial conditions for the undeflected baseline case are shown in 

Figures 7.5-7.10 of the preceding chapter.

The 3D streamline and total pressure isosurface plots, shown in Figures 8.1 

and 8.2, clearly demonstrate the effectiveness of apex flap deflection on the delay of 

breakdown. The original burst location was 50%c and now occurs very late at 94%c. The
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sparseness of streamlines is a result of using the same seed points as in the baseline case, 

which were non-optimal for showing the breakdown in this case. The isopressure surfaces 

show that the size o f the breakdown has actually increased due to the flap deflection. 

The near surface streamlines of the present case, see Figure 8.3, differ from the baseline 

case, see Figure 7.7, by the lack o f curvature of the line of secondary separation on the 

wing, due to the aft position o f the breakdown. The outside tail surface streamlines 

show, that for the apex flap case, the separation line along the leading edge of the tail is 

much more clearly defined, indicating a stronger entrainment o f fluid from the tail than 

in the baseline case.

In Figure 8.4, the spanwise coefficient of pressure is plotted for the deflected 

and baseline cases at several chord stations. Sections, x  =  0.5c and x  =  0.7c show the 

beneficial gain in lift due to the delay in breakdown. The coefficient o f lift for the apex 

flap case is Cl =  1.11 which is 6% higher than the baseline Cl of 1.05.

Comparison of the tail crossflow planes, shown in Figures 7.9-7.10 and Fig­

ures 8.5-8.6, indicate that the vortices o f the baseline case are generally more compact 

due to the smaller burst size as well as the greater distance upstream. The core total 

pressures are about the same.
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a)

b)

c)

Figure 8.1: a) Three-dimensional, b) top and c) side views of surface pressure and vortex 
core streamlines. Initial Condition: /?Fiap =  15°, Re =  1.25 x 106, M  — 0.3, a  =  35°.
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Figure 8.2: a) Three-dimensional, b) top and c) side views of surface pressure and vortex 
core streamlines and solid total pressure isosurfaces, -  =  0.68^ Initial Condition: 
/3piap =  15°, Re =  1.25 x 106, M  =  0.3, a  =  35°.
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Figure 8.3: Near surface streamlines for the a) inner and b) outer right tail surfaces 
and the upper wing surface. Initial Condition: f3piap =  15°, Re =  1.25 x 106, M  =  0.3, 
a  =  35°.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



314

Coefficient of Pressure. X 3̂.3

^ p -t o P

ao r 
02 h
0 4  j-
ash

• t a  -o o  - a s  -0 4  -02 0.0 02  0.4 a o  a s  t o

16 r 18 F

y/s,(x>

Coefficient of Pressure, X«0.7

—  iwr
-  -

CBp
■0.8 r
0.8 f-

02 r

•1 0  0 8  -0 6  0 .4  -0 2  0 0  0 2  0 .4  0 6  0 8
y / s t (x )

Coefficient of Pressure, X»0.5

Ct9

tO 0 8  0  6 0.4 0 2  00 02 0.4 06 08 t 0

• a o
-2 8

yfc,(x)

Coefficient of Pressure. X*0.9

>0*

c m'2 tp  - t o  ^

•18 0 8  0 8  0.4 0 2  08 02 0.4 0.6 08

y/s,(x)
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chord stations. Initial Condition: /3piap =  15°, Re =  1.25 x 106, M  =  0.3, a  =  35°.
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Figure 8.5: Nondimensional total pressure contours and in-plane streamlines plotted on 
vertical crossflow planes, x  =  1.0,1.1,1.2. Initial Condition: 0Fiap =  15°, Re =  1.25 x 106, 
M  =  0.3, a  =  35°.
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Figure 8.6: Nondimensional total pressure contours and in-plane streamlines plotted on 
vertical crossflow planes, x =  1.3,1.4,1.5. Initial Condition: (3Flap — 15°, Re =  1.25 x 106, 
M  =  0.3. a  =  35°.
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8.3 Uncoupled B ending and Torsion Response

The right tail buffet loads of the baseline and deflected apex flap cases are 

compared in Figures 8.7 - 8.10. The effect o f the apex flap is mixed in the lumped mean 

and RMS loads, with the RMS moment loads showing the clearest trend of being up  

to 30% lower than the undeflected case. Comparison of the area mean and RMS loads, 

shown in Figure 7.5.2 and Figure 8.8 indicate that the overall levels are the same with  

RMS distributions exhibiting the greatest differences in their gradients.

Differential point pressure history and point buffet excitation spectra are com­

pared in Figure 8.9. The buffet excitation show a dramatic decrease in buffeting for the  

apex flap case, at around 50% of the baseline case. However, this is only at one location 

so it does not necessarily represent the whole tail. Better measures of the global buffet 

loads are the root bending and twisting moments, see Figure 8.10. These plots show  

that the integrated buffet levels are roughly equal between the two cases. Given the  

favorable change in wing loading from the apex flap, even a unchanged buffet loading 

is acceptable since additional wing loading may be exchanged for a lower configuration 

angle-of-attack which would lower the buffeting levels.

The final measure o f the degree o f buffeting is the response, see Figure 8.11. As 

in the root moment data, the response also indicates that there is very little change in 

the response due to the apex flap deflection. Hence, it is concluded that the apex flap is 

an efficient and harmless means o f delaying vortex bursting and increasing aircraft nose 

authority without increasing the level o f tail buffeting.
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Figure 8.7: Effect of apex flap on mean and RMS load distributions along the right tail 
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8.4 Sum m ary

In this chapter, the issue o f control was addressed. Results were presented 

for an apex flap deflection scheme which delays the onset o f vortex breakdown. The 

configuration used was the inboard Washburn tail case of the previous chapter, which 

had the highest level o f buffeting for all of the cases studied. The flap was deflected 

by a single optimum an g le which was experimentally [14] found to produce the greatest 

delay in the onset of breakdown. The flap was found to be very effective in delaying the 

breakdown, increasing the location from 50%c to 94%c, which resulted in a 6% increase in 

lift coefficient over the baseline case of Cx =  1.05. The effect of the apex flap was mixed 

in the lumped mean and RMS loads, with the RMS moment loads showing the clearest 

trend o f being up to 30% lower than the undeflected case. Comparison of the area mean 

and RMS loads, showed that the overall levels are the same with RMS distributions 

showing the greatest differences in gradients. Differential point pressure histories and 

point buffet excitation spectra show a dramatic decrease in buffeting for the apex flap 

case, at around 50% of the baseline case. However, this is only at one location so it does 

not necessarily represent the whole tail. The integrated buffet load levels are roughly 

equal between the two cases. Given the favorable change in wing loading from the apex 

flap, even an unchanged buffet loading is acceptable since additional wing loading may 

be exchanged for a lower configuration angle-of-attack, which would lower the buffet 

levels. As with in the root moment data, very little ch a n g e  in the response was observed 

due to the apex flap deflection. Hence, it is concluded that the apex flap is an efficient 

and harmless means of delaying vortex bursting and increasing aircraft nose authority 

without increasing the level of tail buffeting. Furthermore, it is noted that trading the 

increased lift and pitching moment for a lower angle-of-attack may result in a lower level 

of vertical tail buffet.
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C H A P T E R  9 

C O NCLUSIO NS

9.1 O verview

A simulation of tail buffet has been accomplished using several delta wing- 

vertical tail configurations. Computational applications have provided fundamental in­

sights into the physical and numerical aspects of vortex breakdown induced tail buf­

fet. Favorable comparisons with experimental data indicate that the present aeroelastic 

method is well suited to providing qualitative insight into tail buffet, as well as, quanti­

tative data for spatially refined, long-duration simulations.

This multi-disciplinary problem was solved sequentially for the flow field, elastic 

deformations and grid displacements. The flow field was obtained by time accurately 

solving the lam inar, unsteady, compressible, Navier-Stokes equations using an implicit, 

upwind, flux-difference splitting, finite volume scheme. The elastic vibrations o f the 

tail were modeled by coupled bending and torsion beam equations. These equations 

were solved accurately in time using the Galerkin method and a five-stage Runge-Kutta- 

Vemer scheme. The grid for the fluid dynamics calculations was continuously deformed 

using interpolation functions to disperse the displacements smoothly throughout the 

computational domain. Tail buffet applications included; single tail cases, twin F/A -18  

tail cases and twin highly swept generic tail cases. The use of an apex flap for buffet 

control was also computationally simulated.

In Chapter 1, the motivation and scope of the present research was presented. A 

survey of the literature on vortex breakdown flows, and the resulting tail buffet problem
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was presented in Chapter 2. The review gave a historical perspective of vortical flow 

research emphasizing early physical observations. The experimental literature was then 

reviewed focusing on key physical issues of vortical flow. Next, numerical simulations of 

vortex breakdown and buffet were surveyed. The review concluded with an introduction 

to vortex breakdown control techniques.

In Chapter 3, the analytical and numerical basis of the fluid dynamics formu­

lation was established. The laminar, unsteady, compressible, Navier-Stokes equations 

were written in strong conservation form in time-dependent, body-conformed coordi­

nates. The computational scheme was then formulated, as an implicit, upwind, Roe 

flux-difference splitting, finite volume scheme. Initial and boundary conditions were 

discussed. Issues regarding single and multiblock CFD gridding were then presented.

In Chapter 4, the analytic and numerical formulation of the structural tail 

buffet problem was given. The governing equations for coupled bending and torsional 

vibrations of a beam were obtained using Hamilton’s energy principle. The Galerkin 

method for solving the coupled bending and torsion beam equations was presented. The 

general solution method employed for sequentially solving coupled sets of fluid, structure 

and grid equations was then given.

Chapters 5 through 8 contain numerical results for the single and twin tail in­

vestigations conducted in this study. In Chapter 5, the fundamental issues of structural 

inertial coupling, Reynolds number dependence and aeroelastic effects were considered 

with regard to single vertical tail buffet. For Re =  104, the tip response for the coupled 

case was 42% and 80% higher than the uncoupled case, for bending and torsion deflec­

tions, respectively. Accelerations also rose by 43% and 31% for bending and torsion, 

respectively. At Re =  106, the bending and torsion deflections were 121% and 117%
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higher, respectively, and the respective accelerations were 108% and 160% higher. Thus, 

it is clear that for the single tail configuration inertial coupling increases the tail buffet 

response. The mechanism for this is the increase in bending due to torsional deflections, 

which moves the tail further off center, thus increasing the aerodynamics loading due 

to  asymmetry. This effect is amplified in the Re =  106 due to the decreased aerody­

namic damping. The effects o f increased Reynolds number on the uncoupled, single tail 

case loading occurred m ainly in the RMS values, which increased by 34% and 17% for 

root bending and root twisting moments, respectively. The corresponding tip bending 

and torsion accelerations increased by 37% and 12%, respectively. The increase in RMS 

loads and accelerations indicates that with rising Re, flow unsteadiness increases while 

aerodynamic damping decreases. Examination of the frequency domain plots also re­

veals this trend by the significant increase in high-frequency content. Comparison of the 

loads calculated from the elastic, uncoupled bending and torsion case with the rigid case 

at the same Re demonstrated that the large tail deflections contribute significantly to 

the loading. In addition, the disturbances caused by the large deflections were seen to 

propagate upstream to  influence the breakdown locations.

In Chapter 6, the determination of the effect of aft fuselage geometry on twin 

F/A -18 vertical tail buffet was addressed. Three fuselage configurations were considered: 

wide, narrow and open. Secondarily, the effect of the tail response on the loads was 

accessed for the wide and narrow configurations by comparing the rigid tail loads with 

the elastic interacting cases. Finally, the effect of decreased tail stiffness was considered 

for the open fuselage case. It was found that overall, the narrow fuselage case produced 

the largest buffet loads. Results for the wide and open cases were mixed with the wide 

case having lower steady loads and higher unsteady loads. Comparison of elastic tail
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cases with their corresponding rigid cases for the wide and narrow cases showed that 

even for very small deflections, the loading can be affected by up to 30% for RMS values. 

However, the very stiff tails o f the wide and narrow cases produced deflections that were 

an order of magnitude lower than the normal grid spacing, which even with moving 

grids is too small to produce accurate results. For the open case, dynamically scaled 

tails were used which produced more realistic deflections o f up to 5% tail span and 

of the same order as the normal grid spacing. To establish the ability of the present 

simplified configuration to aid in the full aircraft tail buffet design problem, results from 

the narrow fuselage case were compared to experimental full F /A -18 aircraft results. The 

ratio between buffet excitation frequency and root bending moment was found to be in 

good agreement with experimental data. The inside tail loads also matched fairly well. 

However, overall the results were mixed owing to the fact that the aircraft flow field and 

the delta wing flow field have many differences. But for the purpose of evaluating tail 

buffet design modifications, the simple delta wing/tail configuration does share enough 

of the physics with the full aircraft to be very useful.

In Chapter 7, the effect of spanwise tail location on the tail buffet loading 

and response was determined using the delta w ing/tw in vertical tail configuration of 

Washburn, Jenkins and Ferman [12]. Three spanwise tail positions were considered: 

corresponding to 33%, 56% and 78% of the wing semi-span. Quantitative results agreed 

well with the experimental data of Washburn et al. [12]. The inner span location had 

by far the most severe buffeting in bending and was a close second in torsion to the 

midspan case. The outer span has the smallest overall loading. It was observed that the 

spanwise placement of the tails has little effect on the upstream breakdown flow. This is 

a result of the small span and high sweep of the tails, which minimize contact with the
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cores. Comparison of inboard and outboard RMS pressures with the experimental data 

of Washburn et al. [12] at five stations show that the computations differ from experiment 

by up to 71%, with other points much closer at around ±  20%. This is likely due to 

the short physical tim e in which the computations were run, which degrade all unsteady 

measurements. The buffet excitation frequencies are typically more robust and show 

good agreement considering the imprecision of the data and the massive undertaking 3D 

unsteady CFD is. Finally, root bending coefficients show fair agreement, with the mean 

values being considerably closer to the experimental data than the RMS values.

In Chapter 8, the issue of control was addressed. Results were presented for an 

apex flap deflection scheme which delays the onset o f vortex breakdown. The configura­

tion used is the inboard Washburn tail case of Chapter 7, which had the highest level of 

buffeting for all of the cases studied. The flap was deflected by a single optimum angle 

which was experimentally [14] found to produce the greatest delay in the onset of break­

down. The flap was found to be very effective in delaying the breakdown, increasing 

the location from 50%c to 94%c, which resulted in a 6% increase in lift coefficient and 

pitching moment. However, the integrated buffet loads and tip responses were roughly 

equivalent for the two cases. Given the favorable change in wing loading from the apex 

flap, even an unchanged buffet loading is acceptable since additional wing loading may 

be exchanged for a lower configuration angle-of-attack, which would lower the buffet 

levels. Hence, it is concluded that the apex flap is an efficient and harmless means of 

delaying vortex bursting and increasing aircraft nose authority without increasing the 

level of tail buffet. Furthermore, it is noted that trading the increased lift and pitching 

moment for a lower angle-of-attack may result in a lower level of vertical tail buffet.
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9.2 Recom m endations for Future Research

The advantage o f numerical modeling over wind tunnel experimentation is the 

ability to easily incorporate a wide variety o f active and passive control solutions, such as 

suction or blowing and/or control surface deflections. Moreover, it is still less expensive 

to perform these studies computationally than experimentally. W ith the development 

of a simple numerical m odel of vortex breakdown induced tail buffet complete, the time 

has come to look forward to a more mature structural model. However, the elegance and 

simplicity of the robust natural vortex-breakdown flow over the delta wing need not be 

exchanged for a full aircraft yet. At this stage, there are still many basic problems to 

solve. Thus, the key areas in which future research is recommended are as follows:

•  The implementation of more accurate structural models, such as those provided 

by plate equations or finite element methods.

•  The implementation of active controls on the wing to delay or diffuse the vortex 

breakdown flow.

•  The addition of active control surfaces on the tail to dampen the buffet response.

•  The implementation of fully dynamic grids to simulate and control tail buffeting 

during simulated flight maneuvers.

•  Full aircraft simulations to test specific control solutions developed using the simple 

delta wing model.
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