
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Physics Theses & Dissertations Physics 

Winter 2005 

Inclusive and Exclusive Compton Processes in Quantum Inclusive and Exclusive Compton Processes in Quantum 

Chromodynamics Chromodynamics 

A. Psaker 
Old Dominion University 

Follow this and additional works at: https://digitalcommons.odu.edu/physics_etds 

 Part of the Elementary Particles and Fields and String Theory Commons, and the Nuclear Commons 

Recommended Citation Recommended Citation 
Psaker, A.. "Inclusive and Exclusive Compton Processes in Quantum Chromodynamics" (2005). Doctor of 
Philosophy (PhD), Dissertation, Physics, Old Dominion University, DOI: 10.25777/ahsy-dv57 
https://digitalcommons.odu.edu/physics_etds/72 

This Dissertation is brought to you for free and open access by the Physics at ODU Digital Commons. It has been 
accepted for inclusion in Physics Theses & Dissertations by an authorized administrator of ODU Digital Commons. 
For more information, please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/physics_etds
https://digitalcommons.odu.edu/physics
https://digitalcommons.odu.edu/physics_etds?utm_source=digitalcommons.odu.edu%2Fphysics_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/199?utm_source=digitalcommons.odu.edu%2Fphysics_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/203?utm_source=digitalcommons.odu.edu%2Fphysics_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics_etds/72?utm_source=digitalcommons.odu.edu%2Fphysics_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


INCLUSIVE AND EXCLUSIVE COMPTON PROCESSES

IN QUANTUM CHROMODYNAMICS

B.S. March 1997, University of Ljubljana 
M.S. May 2001, Old Dominion University

A Dissertation Submitted to the Faculty of 
Old Dominion University in Partial Fulfillment of the 

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

PHYSICS

OLD DOMINION UNIVERSITY 
December 2005

by

A. Psaker

Approved by

Ian Balitsky Ian Balitsky

Charles Hyde-Wright

Mark Havey

John Adam

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ABSTRACT

INCLUSIVE AND EXCLUSIVE COMPTON PROCESSES 
IN QUANTUM CHROMODYNAMICS

A. Psaker 

Old Dominion University, 2005 

Director: Dr. Anatoly Radyushkin

In our work, we describe two types of Compton processes. As an example of an inclu­

sive process, we consider the high-energy photoproduction of massive muon pairs off 

the nucleon. We analyze the process in the framework of the QCD parton model, in 

which the usual parton distributions emerge as a tool to describe the nucleon in terms 

of quark and gluonic degrees of freedom. To study its exclusive version, a new class 

of phenomenological functions is required, namely, generalized parton distributions. 

They can be considered as a generalization of the usual parton distributions mea­

sured in deeply inelastic lepton-nucleon scattering. Generalized parton distributions 

(GPDs) may be observed in hard exclusive reactions such as deeply virtual Compton 

scattering. We develop an extension of this particular process into the weak inter­

action sector. We also investigate a possible application of the GPD formalism to 

wide-angle real Compton scattering.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



©Copyright, 2006, by A. Psaker, All Rights Reserved.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



iv

ACKNOWLEDGMENTS

I would like to express sincere and deep gratitude to my advisor Anatoly Radyushkin 

for his generous support and guidance during my graduate student years. I would 

like to extend my gratitude to all the members of my committee for their helpful 

comments and suggestions. In particular, I ’m grateful to Charles Hyde-Wright and 

Wally Melnitchouk for various stimulating and valuable discussions. I would like to 

thank my colleagues at the Physics Department of Old Dominion University and 

the Theory Group of Jefferson Lab. I ’m thankful to my family for their support, 

and to my wife M ateja for her patience and continuous encouragement. This work 

was supported by the US Department of Energy DE-FG02-97ER41028 and by the 

contract DE-AC05-84ER40150 under which the Southeastern Universities Research 

Association (SURA) operates the Thomas Jefferson Accelerator Facility.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



V

TABLE OF CONTENTS

Page
List of T a b le s .................................................................................................................... vii
List of Figures ................................................................................................................. viii

CHAPTER

I In tro d u ctio n ............................................................................................................... 1
II Deeply Inelastic Lepton S c a t te r in g .................................................................... 5

II. 1 In tro d u c tio n ....................................................................................................  5
11.2 Kinematics ....................................................................................................  5
11.3 Bjorken Scaling and the Parton M o d e l ................................................... 12

III Phenomenological F u n c tio n s .................................................................................  17
III. 1 In tro d u c tio n ....................................................................................................  17
III.2 Form F a c to r s .................................................................................................  17
III. 3 Parton Distribution F u n c tio n s ...................................................................  19
111.4 Distribution A m p litu d e s .............................................................................  22
111.5 Generalized Parton D is tr ib u tio n s ............................................................. 23

111.5.1 Skewed Parton D istribu tions.......................................................  24
111.5.2 Double D is trib u tio n s ..................................................................... 29

IV Deeply Virtual Compton S ca tte rin g .................................................................... 32
IV. 1 In tro d u ctio n ....................................................................................................  32
IV.2 Virtual Compton Scattering A m p litu d e ................................................... 33
IV.3 Kinematics ....................................................................................................  41
IV.4 Toy M o d e l.......................................................................................................  48
IV.5 Cross S e c t io n .................................................................................................  50

V Inclusive Photoproduction of Lepton P a i r s ......................................................  57
V .l In tro d u c tio n ....................................................................................................  57
V.2 Compton S ub p ro cess .................................................................................... 58
V.3 Bethe-Heitler Subprocess.............................................................................  64
V.4 Interference T e r m s .......................................................................................  70
V.5 Kinematics ....................................................................................................  71

VI Exclusive Photoproduction of Lepton P a ir s ....................................................... 75
VI. 1 In tro d u c tio n ....................................................................................................  75
VI.2 Kinematics ....................................................................................................  76
VI.3 Cross S e c t io n .................................................................................................  77

VI.3.1 Compton P ro c e s s ...........................................................................  79
VI.3.2 Bethe-Heitler P rocess ..................................................................... 83

VII Weak Deeply Virtual Compton S c a t te r in g ....................................................... 89
VII. 1 In tro d u ctio n ....................................................................................................  89
VII.2 Weak Virtual Compton Scattering A m p li tu d e .....................................  90

VII.2.1 Weak Neutral A m plitude..............................................................  91
VII.2.2 Weak Charged A m p li tu d e ..........................................................  94

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



vi

VII.3 Weak DVCS P ro c e sse s ...............................................................................  96
VII.3.1 Weak Neutral Neutrino-Proton S c a t te r in g ............................  97
VII.3.2 Weak Neutral Electron-Proton Scattering ............................  99
VII.3.3 Weak Charged Neutrino-Neutron S c a tte r in g .........................  105

VIII Wide-Angle Real Compton Scattering ..........................................................  I l l
V III.l In tro d u c tio n ...................................................................................................... I l l
VIII.2 Twist Decomposition and P a ram e triza tio n .............................................  113
VIII.3 Compton Scattering A m p litu d e .................................................................  117

VIII.3.1 Twist-2 A m p litu d e .......................................................................  118
VIII.3.2 Twist-3 A m p litu d e .......................................................................  118
VIII.3.3 Electromagnetic Gauge Invariance.............................................  120
VIII.3.4 Helicity Amplitudes ....................................................................  121
VIII.3.5 M o d e l ............................................................................................... 123

VIII.4 Compton Scattering on a Pion in Q E D ...................................................  130
IX Conclusions and O u tlo o k ........................................................................................  132

B IB L IO G R A P H Y ............................................................................................................  135

APPENDICES

A G lo ssa ry ......................................................................................................................  142
B List of Integrals and Scalar Functions That Appear in the Bethe-Heitler

Subprocess of the Inclusive Photoproduction of Lepton P a i r s ......................  143
C Modified Param etrization of the Nonforward M atrix Element in the Scalar

Toy M o d el...................................................................................................................  147

V I T A ...................................................................................................................................  149

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



LIST OF TABLES

Page
I Lower and upper limits of the invariant momentum transfer t within 

the kinematically allowed region illustrated in Fig. 14 for two different 
lepton beam energies uo..................................................................................... 46

II Polar angles cf> and <fi' of the incoming and scattered leptons, respec­
tively, in the target rest frame for Q\ =  2.5 GeV2 and x b  =  0.35 with
two different lepton beam energies uj............................................................  47

III Polar angles 4> and (/)' of the incoming and scattered leptons, respec­
tively, in the target rest frame for Qf =  2.5 GeV2 and x b  — 0.35 with
two different lepton beam energies uj..............................................................  103

IV Orders of magnitude (in nbarns) for the unpolarized total weak neu­
tral avp, Compton weak neutral crcepj Compton weak charged (Jem and 
Compton electromagnetic ocep cross sections for two different kinemat- 
ical regions of the Bjorken scaling variable with two different lepton 
beam energies uj.................................................................................................... 1 1 0

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



v i i i

LIST OF FIGURES

Page
1 Deeply inelastic electron-nucleon scattering in the one-photon exchange

approximation..................................................................................................... 6

2  Forward virtual Compton scattering amplitude........................................... 9
3 Kinematics of deeply inelastic electron-nucleon scattering in the parton

model....................................................................................................................  14
4 Elastic electron-nucleon scattering in the one-photon exchange approx­

im ation.................................................................................................................  2 0

5 Deeply inelastic electron-nucleon scattering cross section as the imag­
inary part of the forward virtual Compton scattering amplitude. . . .  22

6  The handbag contribution to the process 7 * 7  -> 7r°...................................  23
7 Comparison between the descriptions in terms of nonforward and off-

forward parton distribution functions...........................................................  25
8 Handbag contribution to the nonforward virtual Compton scattering

am plitude.............................................................................................................  27
9 Description in terms of double distributions................................................. 30
10 Conversion from a double distribution to an off-forward parton distri­

bution function with a zero and nonzero skewness....................................  30
11 DVCS (a) and Bethe-Heitler (b and c) diagrams contributing to elec­

troproduction of a real photon........................................................................ 33
1 2  Handbag diagrams (s- and u-channel) in the virtual Compton scatter­

ing am plitude......................................................................................................  34
13 Kinematics of the generalized DVCS process in the target rest frame. 43
14 Kinematically allowed region for s > 4 GeV2 and Qf >  2.5 GeV2 with

u j  = 5.75 GeV (solid line) and u j  =  11 GeV (dashed line) lepton beam. 46
15 Invariant momentum transfer t  plotted as a function of the angle 077 

between the incoming virtual and outgoing real photon in the target
rest frame for Q\ =  2.5 GeV2 and xb  =  0.35..............................................  47

16 Compton cross section oc  plotted as a function of the angle 077 between 
the incoming virtual and outgoing real photon in the target rest frame 
for Q\ =  2.5 GeV2 and xb  =  0.35 with co = 5.75 GeV (solid line) and
u j  — 11  GeV (dashed line) electron beam .....................................................  52

17 Bethe-Heitler cross section gBh plotted as a function of the angle 077

between the incoming virtual and outgoing real photon in the target 
rest frame for Q\ =  2.5 GeV2 and xb  = 0.35 with u j  = 5.75 GeV (solid 
line) and u j  = 11 GeV (dashed line) electron beam ...................................  54

18 Bethe-Heitler cross section obh plotted as a function of the angle 077

between the incoming virtual and outgoing real photon in the target 
rest frame for Q\ =  2.5 GeV2 and xb  = 0.35 with u j  =  5.75 GeV (solid 
line) and u j  =  11 GeV (dashed line) electron beam ...................................  55

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



19 Compton cross section ac  (solid line) and Bethe-Heitler cross section 
obii (dashed line) plotted as a function of the angle 0 77 between the 
incoming virtual and outgoing real photon in the target rest frame for 
Q\ =  2.5 GeV2 and xb  =  0.35 with uj =  5.75 GeV electron beam. . . .

20 Inclusive photoproduction of lepton pairs....................................................
21 Compton contribution to the inclusive photoproduction of lepton pairs

in the parton model...........................................................................................
22 Bethe-Heitler contribution to the inclusive photoproduction of lepton

pairs in the parton model................................................................................
23 Bjorken scaling variable x b  plotted as a function of the angle 077 be­

tween the incoming real and outgoing virtual photon in the target rest 
frame for a / =  10 GeV and Mpair = 3 GeV with uj = 40 GeV photon 
beam .....................................................................................................................

24 Invariant momentum transfer t plotted as a function of the angle 077

between the incoming real and outgoing virtual photon in the target 
rest frame for uj' =  10 GeV and Mpair = 3 GeV with uj = 40 GeV 
photon beam .......................................................................................................

25 Unpolarized valence quark distributions for u-flavor (bold solid line)
and d-flavor (solid line), and the sea quark distribution (dashed line) 
in the proton.......................................................................................................

26 Compton cross section ac  (solid line) and Bethe-Heitler cross section 
obh (dashed line) plotted as a function of the angle 0 77 between the 
incoming real and outgoing virtual photon in the target rest frame for 
a / =  10 GeV and Mpair =  3 GeV with uj =  40 GeV photon beam. . . .

27 Exclusive photoproduction of lepton pairs..................................................
28 DVCS (a) and Bethe-Heitler (b and c) diagrams contributing to the

exclusive photoproduction of a lepton pair..................................................
29 Invariant momentum transfer t plotted as a function of the angle 077

between the incoming real and outgoing virtual photon in the target 
rest frame for the invariant mass of the lepton pair q% = 3 GeV2 and
X  =  0.32 with v l =  5 GeV photon beam ......................................................

30 Energy of the scattered nucleon E 2 plotted as a function of the angle
077 between the incoming real and outgoing virtual photon in the target 
rest frame for the invariant mass of the lepton pair q% = 3 GeV2 and 
X  =  0.32 with Vi =  5 GeV photon beam ......................................................

31 Contributions from u quarks (solid line) and d quarks (dashed line) to
the real part of %t c s ........................................................................................

32 Contributions from u quarks (solid line) and d quarks (dashed line) to
the imaginary part of %t c s ............................................................................

33 Contributions from u quarks (solid line) and d quarks (dashed line) to
the real part of t i r e s  divided by gA (t) /gA (t = 0 ) ...................................

34 Contributions from u quarks (solid line) and d quarks (dashed line) to
the imaginary part of t i r e s  divided gA(t) /9 a (t = 0 ) ..............................

ix

55
57

58

58

72

73

73

74
76

76

78

78

81

81

82

82

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



35 Compton cross section ac  plotted as a function of the angle 077 between 
the incoming real and outgoing virtual photon in the target rest frame
for Mpair = 3 GeV2 and x  =  0.32 with v\ =  5 GeV photon beam. . . .  87

36 Bethe-Heitler cross section gbh plotted plotted as a function of the
angle 077 between the incoming real and outgoing virtual photon in the 
target rest frame for M^air =  3 GeV2 and x  =  0.32 with ui =  5 GeV 
photon beam .......................................................................................................  87

37 Compton cross section ac  (solid line) and Bethe-Heitler cross section 
Qbh  (dashed line) plotted as a function of the angle 0 77 between the 
incoming real and outgoing virtual photon in the target rest frame for 
Mpair =  3 GeV2 and x  =  0.32 with ui =  5 GeV photon beam ................ 8 8

38 Handbag diagrams (s- and u-channel) in the weak virtual Compton
scattering am plitude.......................................................................................... 91

39 DVCS (a) and Bethe-Heitler (b and c) diagrams in the weak deeply
virtual Compton scattering process...............................................................  97

40 Weak neutral DVCS cross section avp plotted as a function of the 
angle 9 g 7  between the incoming weak virtual boson and outgoing real 
photon in the target rest frame for Q\ =  2.5 GeV2 and xg  = 0.35 with
ui =  5 GeV (solid line) and ui = 20 GeV (dashed line) neutrino beam. 99

41 Compton cross section acep for the weak neutral DVCS process plotted 
as a function of the angle 8 g 7  between the incoming weak virtual boson 
and outgoing real photon in the target rest frame for Q\ =  2.5 GeV2 

and xg  = 0.35 with u j  = 5 GeV (solid line) and u j  = 20 GeV (dashed 
line) electron beam ............................................................................................  1 0 0

42 Bethe-Heitler cross section a g g ep for the weak neutral DVCS process 
plotted as a function of the angle d g 7 between the incoming weak 
virtual boson and outgoing real photon in the target rest frame for 
Q\ =  2.5 GeV2 and xg  =  0.35 with u j  = 5 GeV (solid line) and
u j  =  20 GeV (dashed line) electron beam .....................................................  103

43 Bethe-Heitler cross section ag g ep for the weak neutral DVCS process 
plotted as a function of the angle d g 7  between the incoming weak 
virtual boson and outgoing real photon in the target rest frame for 
Q\ = 2.5 GeV2 and xg  =  0.35 with u  = 5 GeV (solid line) and
u j  = 20 GeV (dashed line) electron beam .....................................................  104

44 Compton cross section a cep (solid line) and Bethe-Heitler cross section 
G g H e p  (dashed line) for the weak neutral DVCS process plotted as a 
function of the angle 9 g 7  between the incoming weak virtual boson and 
outgoing real photon in the target rest frame for Q\ =  2.5 GeV2 and
x g  =  0.35 with u j  =  5 GeV electron beam ...................................................  104

45 Compton cross section Gcun for the weak charged DVCS process plotted
as a function of the angle 0 g 7  between the incoming weak virtual boson 
and outgoing real photon in the target rest frame for Qf = 2.5 GeV2 

and xg  =  0.35 with u j  = 5 GeV (solid line) and u j  = 20 GeV (dashed 
line) neutrino beam ...........................................................................................  107

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



x i

46 Bethe-Heitler cross section ffBHm f°r the weak charged DVCS process 
plotted as a function of the angle 9By between the incoming weak 
virtual boson and outgoing real photon in the target rest frame for 
Ql = 2.5 GeV2 and xb  =  0.35 with uj =  5 GeV (solid line) and
uj =  20 GeV (dashed line) neutrino beam ....................................................  109

47 Bethe-Heitler cross section obhvu for the weak charged DVCS process 
plotted as a function of the angle 9By between the incoming weak 
virtual boson and outgoing real photon in the target rest frame for 
Q\ =  2.5 GeV2 and xb  =  0.35 with uj = 5 GeV (solid line) and
uj =  20 GeV (dashed line) neutrino beam ....................................................  109

48 Compton cross section <7C„n (solid line) and Bethe-Heitler cross section 
®BHvn (dashed line) for the weak charged DVCS process plotted as a 
function of the angle 9By between the incoming weak virtual boson and 
outgoing real photon in the target rest frame for Q\ =  2.5 GeV2 and
Xb =  0.35 with uj =  5 GeV neutrino beam ..................................................  110

49 Handbag contribution (a and b) and the configuration (c) with the 
exchange of two hard gluons...........................................................................  113

50 Real part of the helicity amplitudes H\^l}t_2 (solid line) and 
(dashed line) plotted as a function of the center-of-mass scattering 
angle 9cm for the invariant s =  5 GeV2 ......................................................... 125

51 Imaginary part of the helicity amplitudes (solid line) and
Htwist—2 (dashed line) plotted as a function of the center-of-mass scat­
tering angle 9cm for the invariant s =  5 GeV2 ............................................. 126

/ i  1 \  / n  q \

52 Real part of the helicity amplitudes H\vjJt_2 (solid line) and H\^Jt_2
(dashed line) plotted as a function of the center-of-mass scattering
angle 9cm for the invariant s =  10 GeV2 ....................................................... 126

53 Imaginary part of the helicity amplitudes H\]^}t_2 (solid line) and
Htwist—2 (dashed line) plotted as a function of the center-of-mass scat­
tering angle 9cm for the invariant s = 10 GeV2 ........................................... 127

54 Real part of the helicity amplitudes H ^ fs]_2 (solid line) and H^f}t_2
(dashed line) plotted as a function of the center-of-mass scattering
angle 9cm for the invariant s =  20 GeV2 ....................................................... 127

55 Imaginary part of the helicity amplitudes 7 7 ^ ! , ] (solid line) and
Httiist- 2 (dashed line) plotted as a function of the center-of-mass scat­
tering angle 9cm for the invariant s =  20 GeV2 ........................................... 128

56 Twist-2 cross section o^1*1) plotted as a function of the center-of-mass 
scattering angle 9cm for the invariant s =  5 GeV2 (bold solid line),
s — 10 GeV2 (solid line) and s — 20 GeV2 (dashed line)..........................  129

57 Twist-2 cross section a t2,2) plotted as a function of the center-of-mass 
scattering angle 9cm f°r the invariant s =  5 GeV2 (bold solid line),
s =  10 GeV2 (solid line) and s =  20 GeV2 (dashed line)..........................  129

58 Combination s4-6da^2’2̂  /d t  plotted as a function of the center-of-mass 
scattering angle 9cm for the invariant s =  5 GeV2 (bold solid line),
s =  10 GeV2 (solid line) and s = 20 GeV2 (dashed line)..........................  130

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



59 Feynman diagrams for Compton scattering on a pion in QED

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1

CHAPTER I 

INTRODUCTION

Strong interaction physics, the study of hadron structure in general, is one of the most 

fascinating frontiers of modern science. The underlying theory is the universally 

accepted nonAbelian gauge field theory called quantum chromodynamics (QCD). 

In principle, QCD embraces all phenomena of hadronic physics. It postulates tha t 

hadrons (baryons and mesons) are composite objects made up of quarks, and that 

the color interaction between quarks is mediated by gluons as the gauge bosons. The 

main difficulty of this elegant theory lies in the fact that it is formulated in terms 

of colored degrees of freedom (quarks and gluons) while the physical hadrons are 

colorless. How the hadrons are built out of quarks and gluons has yet to be answered, 

and it represents a challenging task.

Historically, QCD originated from the constituent quark model [1, 2]. In the 

1960’s, the development of high-energy accelerators made it possible to resolve the 

structure of hadrons for the first time. The studies of the hadron spectroscopy led to 

the concept of quarks as the fundamental building blocks of hadrons, in particular, 

three quarks for baryons and a quark-antiquark pair for mesons. The natural step tha t 

followed, was the search for quarks in the experiments with the momentum transfer 

large enough to look inside the hadrons. The first series of such high-resolution ex­

periments was performed at SLAC by probing the proton structure. The process was 

known as deeply inelastic electron-proton scattering (DIS). It is probably the most 

studied QCD process. The data on DIS have strongly supported the parton model, a 

physical picture given by Feynman [3, 4, 5], in which the proton, when observed with 

high spatial resolution, is built out of almost-free and point-like constituents. They 

were called partons. Thus the dynamics of partons described by the QCD parton 

model should have the property of asymptotic freedom. In other words, the coupling 
constant of interaction between partons is vanishing at small distances (or large mo­

mentum transfers). In addition, the DIS experiments also suggested th a t charged 

partons should be spin-1/2 particles th a t were later identified with quarks. Another 

im portant result from these experiments was the first evidence for the presence of

This dissertation follows the style of The Physical Review.
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2

electrically neutral gluons. It turns out tha t quarks carry only about a half of the 

total nucleon momentum.

The fact tha t the theory of quark dynamics should exhibit the desired property of 

the asymptotic freedom led physicists to consider the nonAbelian gauge field theory, 

originally constructed by Yang and Mills [6 ], as the best candidate [7, 8 , 9]. In 

order to resolve several difficulties in the constituent quark model, a new quantum 

number, color, was introduced to quarks [10,11,12]. By identifying color as the SU(3) 

symmetry of the nonAbelian gauge theory [13, 14], QCD was finally established.

The description of all inclusive hard reactions in QCD is possible due to the so- 

called factorization. According to this property, the cross section of a particular QCD 

process splits (factorizes) into the haxd (short-distance) and the soft (long-distance) 

parts. Introducing the factorization scale as a point of separation can only be possible 

by assuring the presence of a large invariant, such as the virtuality of the probe or the 

momentum transfer [15, 16, 17, 18, 19, 20, 21, 22], The clear separation of scales is of 

the crucial importance. The asymptotically free nature of QCD allows to discuss the 

short-distance interactions by means of perturbation theory. This is, however, not the 

case for the soft (nonperturbative) stages of interactions. They are expressed in terms 

of the hadronic m atrix elements of well-defined quark-gluon operators, i.e. the QCD 

operators taken on the light-cone and sandwiched between the hadronic states. These 

m atrix elements accumulate information about long-distance dynamics. They emerge 

as a result of the description of the hard hadronic processes using a powerful tool 

called the light-cone operator product expansion (OPE) [23, 24]. Originally applied 

to DIS [25, 26, 27], the technique is based on the statem ent that, in the particular 

kinematical regime, the asymptotic behavior of the relevant scattering amplitudes is 

governed by the singularities on the light-cone which, in the framework of a light-cone 

expansion, can be described in terms of contributions of definite twist [24] (see [28] for 

a recent review). In other words, one performs a systematic expansion in the inverse 

powers of a characteristic momentum scale, and extracts the leading and higher twist 

contributions, the la tter containing information about quark-quark and quark-gluon 

correlations inside the hadron.

The hadronic m atrix elements are process-independent nonperturbative objects 

measured with the help of different probes, such as photons and weak interaction 

bosons. For tha t reason, these objects are parametrized by universal functions, al­

lowing to relate various light-cone dominated scattering processes to each other. The
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well-known example of such phenomenological functions is given by the usual parton 

distribution functions (PDFs). They parametrize forward hadronic m atrix elements 

and, since these elements are related to inclusive cross sections, PDFs enter the de­

scription of hard inclusive reactions. Additional information on quark and gluon 

structure of hadrons is provided by measuring the nonforward hadronic m atrix ele­

ments. They correspond to nondiagonal transitions between the hadronic states in 

momentum, flavor and spin spaces, and hence are described in terms of more general 

phenomenological functions known as the generalized parton distributions (GPDs) 

[29, 30, 31, 32, 33, 34]. These distributions can be accessed in hard exclusive reac­

tions [35, 36], such as deeply virtual Compton scattering (DVCS) [30, 31, 32, 33, 34] 

and deeply exclusive production of mesons (DMP) [33, 34, 37]. In particular, the 

DVCS process attracted  a lot of attention, both theoretical and experimental.

The thesis is organized as follows. In Chapter II, we give a short review on the DIS 

process and discuss its relation to the forward virtual Compton scattering amplitude 

(VCA). In addition, we introduce parton distribution functions within the context 

of the parton model. The commonly used phenomenological functions, such as form 

factors, PDFs, distribution amplitudes (DAs) and GPDs are the subject of study 

in Chapter III. We list the definitions and discuss some of theoretical aspects, i.e. 

the basic properties of these functions and their relations to one another. Typically, 

GPDs can be measured in hard exclusive leptoproduction processes. DVCS, as the 

simplest process in this respect, is discussed in Chapter IV. The VCA is calculated 

at the leading twist within the framework of the nonlocal light-cone expansion of 

the product of currents in QCD string operators. Moreover, a simple model for 

the nucleon valence GPDs (i.e. those, which do not include the contribution from 

sea quarks) is introduced. In Chapter V, we apply the parton model to study the 

inclusive photoproduction of lepton pairs. Chapter VI is devoted to the exclusive 

version of the same process. It is related to time-like Compton scattering (TCS), tha t 

is the inverse of the DVCS process. W ith the help of a different set of GPDs, which 

cannot be accessible in the standard electromagnetic DVCS process, the extension 

into the weak interaction sector is made possible. This work is presented in Chapter

VII. In Chapter VIII, we turn  our attention to wide-angle real Compton scattering 

(WACS). Our approach is based on the handbag dominance, in other words, the 

light-cone singularities of the Compton scattering amplitude again play an im portant 

role [38, 39, 40]. Here we use the formalism of double distributions (DDs) to describe
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nonforward m atrix elements of light-cone operators. We study both the leading and 

next-to-leading twist contributions. Finally, we draw conclusions and outline future 

research plans in Chapter IX.
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CHAPTER II 

DEEPLY INELASTIC LEPTON SCATTERING

11.1 INTRODUCTION

We start with phenomenologically most im portant of the hard processes, inclusive 

scattering of high-energy (charged and neutral) leptons on hadrons (to be specific, 

we will consider here and throughout this thesis, except in Chapter VIII, a spin-1/2 

hadronic target, e.g. a nucleon) with the exchange of vector bosons (photons, 

or Z°). It played the key role in revealing the quark structure of hadrons, and it 

is, in addition to electron-positron annihilation into hadrons, the simplest process 

involving strongly interacting particles. Since leptons do not possess a resolvable 

internal structure, the reaction cross section depends solely on the internal structure 

of hadrons.

In Section II. 2, we discuss the kinematics and the relation between the hadron 

tensor and the forward VCA. Both the electron and neutrino-induced DIS cross sec­

tions are given in terms of the relevant structure functions. The parton model is 

introduced in Section II.3. W ith the help of the parton model m aster formula, we 

calculate the DIS cross section, and express the structure functions in terms of PDFs.

11.2 KINEMATICS

Consider the electron scattering process off the nucleon target through a single photon 

exchange,

e~(k)  + N ( P )  — > e“ (A;') + X ,  (1)

as illustrated in Fig. 1. In other words, we consider only the quantum electrodynamic

(or shortly QED) interaction between the electron and the nucleon, and further keep 

only its lowest order. We denote the nucleon four-momentum with P  and the initial 

and final momenta of electrons with k and k', respectively. In the laboratory frame, 

in which the target is at rest, the nucleon four-momentum is P  = (M,  o), where

M  stands for the nucleon mass. The electron four-momentum in the initial state is

k = (ui,k^, and in the final state is k' =  (' o o ' , k The momentum transfer to the
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e(k)

N (P )

elk')

X

FIG. 1: Deeply inelastic electron-nucleon scattering in the one-photon exchange ap­
proximation.

target, carried by the virtual photon, is q =  k — k' =  (v,q). In this scattering process, 

due to the large q, the nucleon breaks up and forms an infinite number of possible 

hadronic final states labeled by X , which remain unobserved. Thus only the outgoing 

electron is detected. One measures its energy u j '  and the scattering angle 6  relative 

to the incident beam of fixed energy co.

There are two characteristic Lorentz-invariant quantities of the process, namely, 

the virtuality of the photon (since it is space-like, q2 < 0 , one conventionally defines 

a positive quantity),

<z2 =  - Q \  (2)

which fixes the spatial resolution of the scattering process, A ~  1 / \ fC p ,  and the

invariant mass of the final hadronic state,

W 2 = (P + q f  = M 2 + 2 ( P - q ) - Q 2. (3)

In the laboratory frame, they are given by

Q2 = 4wu/sin2 (0/2) (4)

and

W 2 = M 2 + 2Mu  — Q2. (5)

Note tha t in Eq. (4) we have neglected the electron mass compared to its energy. 

Unlike elastic scattering, for which W 2 =  M 2 and the momentum transfer squared 

Q2 is connected by the relation v  =  Q2/2 M  to the energy loss of the electron v, we
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now have two independent variables, v  and Q2. The inclusive differential cross section 

(see, e.g. [5, 41, 42, 43]) factors into the electron tensor LjfJ and the hadron tensor 

W ^ ,

<̂ (T̂ N) _  (g)
dQdu1 Q*UJ »v ’ [ )

where dil is the solid angle into which the electron is scattered and a  =  e2 /At: ~  

1/137 is the electromagnetic fine structure constant (in the following we use the 

Heaviside-Lorentz convention together with the natural choice of units, frequently 

used in particle physics, in which % =  c =  1). The electron tensor can be computed 

exactly in QED. For unpolarized electron scattering, the expression for the spin- 

averaged electron tensor is

L$  =  \LY.u(k ,s )i»u(k\s ')u{k' ,s ') 'fvu{k,s)
s,s'

= 2 [ k X  + Kk' t l - g llv{k -k ' ) \ .  (7)

The hadron tensor, on the other hand, describes the response of the nucleon and 

therefore, it should include all possible transitions of the nucleon from its ground state 

|N ( P , S ) )  to any hadronic final state \X  (P ')). It is worth noting that at present, 

the nonperturbative nature of strong interactions prevents us from calculating the 

hadron tensor directly within the framework of QCD. Formally, it can be written as

x <A- (/")! (0) |iV (/> S)>, (8)

where J%M is the quark electromagnetic current. Using the translation invariance, 

(JV(F,S)|J«„(z)|A-(P')) =  <^(P ,S)|Jg„(0) |A :(P ')>e-i<'”- ,’»'=, (9)

and the completeness condition of the states \X  (P')),

E l x ( i y) ) < x ( P ' ) |  =  1 , (io)
X

the hadron tensor can be presented in a more compact form, namely,

wr- = ^  i  S  (IV (P, S) | (0)|JV (P,S)). (11)
s

Adopting a simplifying notation,

<JV(P)|0|JV(P)> s  t£ (J V (P ,S ) |0 |iV (P ,S )> , (12)
^  S
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where O  is an arbitrary operator we have

w =  4^ j J ’t ‘ze<l*’>( N( P) \ JZu ( z ) J i u (0) \ N ( F ) ) .  (13)

Interchanging the currents inside the m atrix element leads to a delta function 
j(4) (p i  _  p  _)_ gj which, in the laboratory frame, requires tha t E'  =  M  — v < M.  

Note th a t such a state \X (P')) does not exist since the nucleon \ N ( P , S )) is the 

ground state baryon. Hence the delta function cannot be satisfied and the expression 

with the interchanged currents vanishes. By adding this vanishing m atrix element, 

one can also rewrite the hadron tensor as a current commutator,

w ”  = ^ J d ,* ‘il,‘'zHN(P)\lJl‘BM(z),rEM(0)}\N(P)).  (14)

Next we discuss the relation between W p,v and the object known as the forward 

virtual Compton scattering amplitude (VCA). The latter, shown in Fig. 2, is defined 

as a Fourier transform of the correlation function of two electromagnetic currents,

T '- ' =  i J d ‘z e i^ ( N ( P , S ) \ T { J I :M( z ) r E M( 0 ) } \ N ( P , S ) ) .  (15)

The time-ordering symbol T  inside the m atrix element instructs us to place the 

operators into chronological order with the operator having the later time argument 

to the left. The amplitude (15) is averaged over the nucleon spin. It corresponds 

to the scattering amplitude for the Compton process off the proton in the forward 

direction, when contracted with the polarization vectors of the off-shell photon of 

momentum q, q2 ^  0 ,

i T ( j p ^ j p )  = ( - i \ e \ ) 2 e l{q)ev ( q ) ( - i T ^ ) , (16)

or

T  ( jp  7 p) =  e2e* (q) ev (q) . (17)

Here e denotes the electric charge of the electron. W ith the help of the optical 

theorem, the hadron tensor can be written as

W ^  (18)
2?tM  k ’

Lastly, it is customary to express the hadron tensor, see Eqs. (13) and (14), in 

terms of the so-called structure functions. The tensor expression is Lorentz-invariant,
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f ( Q )

N(P)

y ‘(q)

N(P)

FIG. 2 : Forward virtual Compton scattering amplitude. The dashed line denotes the 
cut, which gives the imaginary part, and it is further related to the hadron tensor 
through the optical theorem.

and it should also be invariant under parity and time reversal. Together with the 

electromagnetic current conservation, =  0 , implying the electromagnetic gauge

invariance,

= 0  and W vqv = 0, (19)

one arrives at the most general form for W tiV in the case of unpolarized scattering. 

It is determined only by two independent scalar structure functions (or alternatively 

the response functions),

= Wi (v, Q2) 

W2(v,Q2)

<r +

+
M 2

P » ~ ( f (P - q ) Pv - qA P - q ) (20)

The hadron tensor (20) is symmetric with respect to Lorentz indices /i and v. In the 

case of polarized scattering the tensor has an extra term, which is antisymmetric with 

respect to fi and u and contains two additional structure functions. We notice tha t 

both functions W x and W 2 depend on two invariant variables, v = (P ■ q) / M  and Q2. 

Substituting Eqs. (7) and (20) into Eq. (6 ) and using Eq. (4), gives the differential 

cross section in the laboratory frame in the form

<P°{eN) a
dflduj' 4w2 sin4 (9/2)

2 W, (v, Q2) sin2 (6/2) + W 2 (V ( f )  cos2 (9/2)] .

(21)

Usually, v  is replaced by another Lorentz-invariant quantity, the Bjorken scaling
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variable

XB ~  2 ( p - qy  (22)

and further the dimensionfull W -structure functions by their dimensionless partners 

defined as

F ^ x ^ Q 2) = M W l ( v , Q2) ,

F2 ( x B, Q 2) = v W 2 ( v , Q 2) .  (23)

Since the invariant mass of the unobserved hadronic final state is always larger than 

the nucleon mass, it follows from Eqs. (3) and (2 2 ) that

Q2 _  1 W (i n
Xb ~  W 2 — M 2 +  Q2 ~  1 + ( W 2 -  M 2) IQ 2 G ^  ^

In particular, the kinematical point x B =  1 corresponds to elastic electron-nucleon 

scattering. In addition to x B, there is another dimensionless variable frequently used, 

the so-called inelasticity parameter,

■ ■ H  «
It specifies, in the laboratory frame, the fraction of the electron energy th a t is trans­

ferred to the nucleon, y = 1 — u'/u>, and hence it is also kinematically constrained to

the region (0,1]. The invariants Q2, x B and y are related to each other through

Q2 = x By (s -  M 2) , (26)

where s =  (k +  P )2 is the usual Mandelstam invariant of the scattering process. The

last formula is obtained by writing the Bjorken scaling variable in the laboratory

frame, x B =  Q2/ 2Mv .  Sometimes it is convenient to present the cross section in the 

invariant form. After some algebra, the cross section results, in terms of dimensionless 

structure functions, into

d V ( e AQ _  / 2 n M u j y \  d ? 0 ( e N ) 

d x B d y  V u j ’  )  d Q d u '

(* b ,Q 2) +  *  (* b ,Q 2)Q2y

For the sake of completeness, let us investigate the weak version of inclusive lepton- 

nucleon scattering. In general, the weak boson is used as a probe to study the nucleon
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structure. To be specific, we shall consider only the charged current case using muon 

neutrinos. The latter convert into muons by the emission of a W + boson. The 

reaction is

Recall tha t the incident neutrino is always left-handed and for tha t reason, there is

state polarized yields an extra term in the lepton tensor tha t is antisymmetric in 

Lorentz indices fi and v,

In constructing the corresponding hadron tensor we have to respect tha t the parity in 

the weak interaction is no longer conserved. Thus, due to the presence of the parity- 

violating term ie^va^Paq^ in the hadron tensor, a third response function W$ (1' , Q2) 

arises in the expression for the cross section. In analogy with Eq. (6 ), along with the 

factor replacement a /Q 2 —» G f / ^ it^/2, where G f =  0 2/ 4 \ / 2 M ^  ~  1.166-10-5 GeV - 2  

is the so-called Fermi constant with g being the weak interaction constant and M w  

the mass of the IF-boson (note tha t one chooses the coupling constant of the W- 

boson to the nucleon as g / 2 \ / 2 , and tha t the factor 1 / M ^  in the definition of Gf 

comes from the IF-boson propagator considered in the limit Q2 <C Mjy, in other 

words, one deals with the Fermi contact interaction), the laboratory differential cross 

section is

Finally, in terms of the Lorentz invariant variables xb and y, the invariant cross 

section reads

Similarly to the electromagnetic case, the dimensionless structure functions in the 

weak interaction sector are defined as follows

(28)

no averaging over the initial spin. Moreover, having the initial lepton (i.e. neutrino)

L $  = 8  [knK  +  ~  9nv (k • k') + ieltvirrk ,rk'T] . (29)

d2(T{vN)
dQdoj'

[2 ^ '  (*, Q‘‘j  sin2 (6/2) + w t N) (v, c f )  cos2 (6/2)

(30)

(31)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



12

F2 N)(xb,Q2) =  BWt"' (b ,Q2) ,

F ? n ) (x b , Q 2) =  v W ^ ^ Q 2) .  (32)

II.3 BJORKEN SCALING AND THE PARTON MODEL

The nucleon structure with the size of the order A < 0.2 fm can only be resolved at 

sufficiently large Q2 > 1 GeV2. Having large Q2 also implies large values of v, more 

precisely v2 Q2, since the ratio x B = Q2/ 2 M u  is finite and bounded between 0 

and 1. Accordingly, a massive hadronic state  X  is produced with the invariant mass 

equal to

W 2 = Q2 { l - x B) / x B + M 2 ^  M 2. (33)

It lies well above the resonance region, W  >  2 GeV. In this kinematical regime, 

known as the deeply inelastic region, the structure functions F ( x B, Q 2) extracted 

from the measured inelastic cross sections do not depend significantly on Q2 but 

rather only o n x B. This interesting feature is termed Bjorken scaling [44, 45, 46, 47]. 

It can be stated in the following way: in the Bjorken limit, where both Q2 —> oo and 

v  —y oo whereas x B is kept fixed, one experimentally observes

F ( x B, Q 2) — > F  (xB) . (34)

The fact that, for sufficiently large values of Q2, the structure functions are inde­

pendent of Q2 implies th a t the nucleon, or any other hadron, is made of point-like 

constituents. Recall that a finite size object must have a form factor and hence intro­

duce some dependence on Q2. Furthermore, since the structure functions are Lorentz 

invariant, one can study the scattering process in any reference frame. However, the 

description is considerably simplified, if we look at the nucleon in a very fast moving 

system with its momentum approaching to infinity along the ^-direction, i.e. in the 

so-called infinite momentum frame (the physics of the process is, of course, indepen­

dent of this choice). Then the transverse momenta, the rest masses of the nucleon 

constituents and, for consistency, the nucleon mass can be neglected and accordingly, 

the nucleon momentum is =  (P 2 , 0 i ,  P^j. In other words, the structure of the 

nucleon is described only in terms of the longitudinal momenta of its constituents. 

This is the basis of the parton model of Feynman [4], which gives the clearest physical 

interpretation of scaling. In the parton picture, the nucleon is viewed as a collection 

of noninteracting, point-like constituents, the partons. The interaction of the electron
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with the nucleon can be then viewed as the incoherent sum of interactions between 

the electron and the individual partons. This approximation is valid as long as the 

duration of the electron-parton interaction, which is regarded as elastic scattering, is 

so short tha t the interaction between the partons themselves can be safely neglected. 

Thus we consider the scattering process in the impulse approximation by picking up 

only the lowest-order electromagnetic contribution, and neglect all the QCD correc­

tions associated with the exchange or emission of gluons.

In the infinite momentum frame, a given parton is characterized by the longitu­

dinal momentum fraction x  £ [0,1] of the total nucleon momentum P,

p = xP.  (35)

In addition, for each parton species a, we define the parton distribution function 

(PDF) f a/N (x). It describes the probability of finding a parton of type a at the lon­

gitudinal momentum fraction x  inside the target nucleon N. Note tha t these functions 

cannot be computed using QCD perturbation theory. All fractions x have to add up 

to 1 and hence the normalization

E [  dx x f a/N {x) =  1 (36)
a J °

holds. The scattered parton has the momentum p' =  p  +  q, given by the four- 

momentum conservation, where q is the momentum of the virtual photon. Since the 

parton is on its mass shell, it follows tha t

p'2 = (x P  + q) 2

=  x2M 2 +  2x (P  • q) -  Q2

«  0. (37)

Neglecting x2M 2 compared to Q2 and u (recall tha t (P  • q) = Mu)  yields

* =  W ^  = XB- (38)

The longitudinal momentum fraction is found to be identical to the Bjorken scaling 

variable. It means tha t the parton must have the fraction xb  of the nucleon momen­

tum  in order to absorb the virtual photon. It should be emphasized, however, tha t 

the variable xb  has this simple meaning only in the infinite momentum frame.

Due to the fact that the partons are point-like and noninteracting, the DIS cross 

section for nucleon-electron scattering in the parton picture is simply given by the
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e'(k) e~(k')

qJp'=xP+q)

N(P)

FIG. 3: Kinematics of deeply inelastic electron-nucleon scattering in the parton 
model.

incoherent sum over all the contributing partons (i.e. the partonic cross sections 

for elastic scattering of an electron from the individual partons), weighted with the 

proper distribution functions. The fundamental relation, known as the parton model 

m aster formula, reads

where the sum runs over quarks and antiquarks, in order words, over all charged 

partons because they are the ones th a t interact with the virtual photon. Schemati­

cally, see Fig. 3, the hadronic interaction is broken into a PDF part, represented by 

the blob, and hard (parton-electron) scattering part. According to the factorization, 

PDFs do not interfere with the hard scattering part. For tha t reason, they are uni­

versal in a sense tha t they are same for all inclusive hard scattering processes, not 

only for electromagnetic DIS [48].

Let us work out the explicit leading-order formula for the DIS cross section using 

Eq. (39). First we calculate, at the most elementary level, the cross section for 

electron scattering from a single parton. For M 2 <C —u , s , Q 2, where u =  (k1 — P ) 2 

is the Mandelstam variable, one has

and the invariant form of the partonic double differential cross section is (see, e.g.

a

X<T [e (k) qa (x P ) e (k ') qa (p ') , (39)

Q2 =  x b VS and y (40)

[41, 49])

d2a (e qa —> e qa) 
dxsdy

27T0̂ Qas [i +  (i _  y)2] XBs [x -  XB). (4i)
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The electric charge of the parton of type a in units of \e\ is denoted by Qa. Substituting 

Eq. (41) into Eq. (39) results in

d2a  (e~N  —> e~X)  2na2s r
d ^ d y  “  - Q 4 - [ l  +  ( l - » ) ] E « . W . / W(lB ) .  (42)

Comparing now Eqs. (42) and (27), under the assumption tha t M 2 C  s, gives

2  [xBy2Fl ( xB, Q2) +  (1 - y )  F2 ( x B, Q 2 ) J  =  [l +  (1 -  y)2] Q2ax Bf a/N (xB) .
a

(43)

We notice tha t the right-hand side of Eq. (43) depends only on x B and y. Therefore, 

x ^ F i  ( xB, Q2) +  (1 - y )  F2 (x b , Q 2) =  const, for all Q2 (44)

or,

F i (x b , Q 2) = F ^ x b ),

F2 (x b , Q 2) = F2 (xB).  (45)

Hence the structure functions in the parton model exhibit the scaling property, i.e. 

they do not depend on Q2. Conversely, Bjorken scaling suggests the asymptotically 

free quark dynamics, the property tha t the quark interaction gets weaker at short 

distances. In addition, by comparing powers of y in Eq. (43), we can express the 

F-structure functions in terms of PDFs, namely,

F i (x b ) =  * E  Q2J « / n (*b ) ,
^ a

F2 (x B) = Y d Q l XBfa/N{xB) . (46)
a

Finally, from Eq. (46) one can read off the following simple relation specific to the 

scattering of electrons from massless fermions

F2 (x b) =  2x b F1 (x B). (47)

It is known as the Callan-Gross relation [50], and it is an im portant evidence tha t 

the partons detected in DIS are indeed the spin-1/2 quarks of hadron spectroscopy 
[48]. It is worth noting tha t a more descriptive notation is commonly used, in which

fa/N (x ) is replaced by the flavor labels (x ) , du (x) , sjv (x) , un (x), etc. Then the

proton structure function F\ is

f\„ (x) = ~ {  j  K  W  +  « p  M l  +  5 K  M  +  4  M ]  +  ^  W  M  +  h  M l } .
(48)
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and similarly for F2p (x ).

In summary, the parton model serves both to explain scaling and to identify 

partons as quarks. However, it is im portant to add that ultimately, the success of 

this simple model must be justified in quantum field theory, in particular within 

the framework of the QCD operator product expansion (OPE). It turns out tha t, in 

the Bjorken regime, the dominant contribution to W7*", see Eq. (13), comes from 

the integration region 0 < z2 <  const./ Q 2. Accordingly, the DIS cross section is 

dominated by the light-cone region, z 2 —» 0, of the space-time integration in Eq. (13) 

[51]. In fact, the scattering amplitudes of other hard inclusive and exclusive processes 

are also governed by the product of currents (z) J v (0) near the light-cone. Thus 

OPE is a powerful tool which, not only recovers the parton model predictions but 

also allows to analyze, in a systematic way, the terms in the light-cone expansion 

contributing to a given power of l / Q 2.
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CHAPTER III 

PHENOMENOLOGICAL FUNCTIONS

111.1 INTRODUCTION

The fundamental particles, from which hadrons are built, are known. They are quarks 

and gluons. The interactions between them are described by the QCD Lagrangian, 

which is also established. Unfortunately, knowing the first principles is not sufficient. 

We still need to understand how QCD works, in other words, how to translate the 

information obtained from experiments on the hadronic level into the language of 

quark and gluon fields. One may, for example, consider projecting these fields onto 

hadronic states. The resulting m atrix elements can be interpreted as hadronic wave 

functions [52, 53]. An alternative approach to describe the hadronic structure is to 

use different phenomenological functions. The well-known examples are form factors, 

usual parton distributions functions and distribution amplitudes. Since they have 

been around for a long time, they are termed the old phenomenological functions. 

We discuss them separately in Sections III.2, III.3 and III.4. On the other hand, 

the concept of generalized parton distributions [29, 30, 31, 32, 33, 34] (for reviews, 

see [54, 36, 55] and recently [56]) is new. These new phenomenological functions are 

hybrids of the old ones and therefore, provide a unified and more detailed description 

of the hadronic structure. Different species of generalized parton distributions are 

presented in Section III.5 together with some of their general properties.

111.2 FORM FACTORS

Form factors are defined through the m atrix elements of electromagnetic and weak 

(neutral and charged) currents between the hadronic states. In particular, the m atrix 

element of the electromagnetic current (for the weak currents, see Section VII.3),

=  £ < ? / ^ / ( ° ) V V / ( 0 ) ,  (49)
/

where Qf  is the electric charge (in units of |e|) of the quark of flavor /, between the 

nucleon states N ( p i , s i )  and N ( p 2, s 2) is parametrized in terms of two independent
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nucleon electromagnetic form factors known as the Dirac and Pauli form factors. 

Namely,

( N ( p 2, s 2)\ J e m ( Q ) \ N ( p i , s i ) )  = u ( p2, s 2)

(50)

where u{p2, s 2) and m(p1}si) are the Dirac spinors, r = pi — p2 is the overall mo-

troduced in the preceding chapter. Note also tha t for elastic scattering, we have 

Q2 =  —t. The nucleon mass M  in Eq. (50) is introduced only for dimensional con­

venience. Similarly to the flavor decomposition of the electromagnetic current given 

by Eq. (49), the Dirac and Pauli form factors can also be expressed in terms of their 

flavor components,

Their limiting values at t = 0 are known. The Dirac form factor gives the total 

electric charge of the nucleon N, (t = 0) =  Qm, and the Pauli form factor gives its 

anomalous magnetic moment, F1 (t = 0) =  k n . For the proton, we have Kp =  1.793, 

and for the neutron Kn = —1.913. The Q2-dependence of form factors is a clear 

evidence for the extended structure of the nucleon, in particular the charge and current 

distributions.

Note th a t writing the m atrix element (N  (p2, s2)| Jem  (0) \N (pi, «i)) in the most 

general form, one might expect to include, in addition to terms and o^r , , ,  also 

terms like (pi + P2Y ,  ?lL and (pi + p2)v- However, with the help of the Gordon 

identity,

one can express the terms (pi + P2Y  as the linear combination of terms 7 ^ and 

Moreover, the electromagnetic current conservation, =  0, implies that the

term should vanish and hence the most general form reduces to the expression

mentum transfer and the invariant t = r2. The elastic form factors should not be 

confused with the dimensionless structure functions F\ (x b , Q2) and F2 (Xb , Q2) in-

F>(t) =
/

f i t* )  = (51)
f

(50).
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Instead of Fx and F2, we often introduce the so-called Sachs electric and magnetic 

form factors, GE and G m , respectively. Then the m atrix element takes the form

(N(P2,S2)\J%M (0)|IV (pi,Si)) =  u(p2, s2) 7'
uGE ( t ) - ( t / A M 2) G M (t)

1 -  t / A M 2

- i a » v
rv G m (t ) — Ge (t )

2M  1 -  t / 4 M 2

where

and

GE (t) -  F, (4) +  ^ p F 2 ( t ) ,

Gm (t) — Fi (t ) +  Fj (/).

(53)

(54)

(55)

These form factors are normalized at Q2 = 0 in the following way

GEp(t — 0) =  1,

Gmp {t =  0) =  fj,p = 2.793 (56)

for the proton and

GEn (t — 0 ) — 0 ,

G Mn (t = 0 ) =  Pn =  -1 .913 (57)

for the neutron. Their magnetic moments are given in terms of the nuclear magneton, 

p  =  \e\ / 2 Mp — 5.051 • 10-2 7  Am2 in the SI units.

The nucleon electromagnetic form factors can be measured through elastic 

electron-nucleon scattering,

e~(k)  + N ( Pl) — > e - (k ' )  + N  (p2) . (58)

The process is shown in the one-photon exchange approximation in Fig. 4.

III.3 PARTON DISTRIBUTION FUNCTIONS

Parton distribution functions (PDFs) are defined through the forward m atrix elements 

of the light-like correlation functions, i.e. the quark and gluon fields separated by
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FIG. 4: Elastic electron-nucleon scattering in the one-photon exchange approxima­
tion.

light-like distances. For the unpolarized case we have

( N  (P, S)| i ,  ( - z l 2) 7 (*/2) |JV ( P  S)>,1=0 =  5 (P, S) 7“« (P. S)

x f  ' d x  (*) -  (x)
Jo L J

(59)

and for the polarized one

(JV (P, S)| i>, ( - z /2 )  (z/2) |Af (P, S)>,1=0 =  fi (P, S) 7"75« (P, S)

x [ ‘ Ac [c!z,p'?iA / ;v (x) +  e- ' x ip ‘‘Af,, .  (>:)
7o L J

(60)

To make connection with GPDs, which are usually discussed in the region — 1 <  x  <  1 

(the variable x  runs from 0 to 1 for quarks and from —1 to 0 for antiquarks), it is 

convenient to introduce new distribution functions,

and

I n  (®) =

A / at (a) =

f N (x ) x  > 0 

- I n  {~x ) x <  0

A f N (x) x  > 0

(61)

(62)
A/at ( - x )  x  < 0 

and alternatively, write the integrals over x  in Eqs. (59) and (60) as

^  dx [eix^ f N ( x )  -  e~ix^ f N (x)] =  dx eix^ f N ( x ) ,

dx [eix^ A f N (x) + e~ixip-z)A f N (x)] =  dx eix^ A f N ( x ) . (63)
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Furthermore, we observe tha t the definition of PDFs has the form of the plane- 

wave decomposition. Thus it allows to give the momentum-space interpretation. For 

example, f n  {%) (/at (z)) is the probability to find the quark (antiquark) of flavor /  

carrying the momentum x P  inside a fast-moving nucleon N  having the momentum 

P.

Parton distribution functions have been intensively studied in hard inclusive pro­

cesses for the last three decades. The classic example in this respect is the deeply 

inelastic scattering process shown in Fig. 1. Its structure functions are directly ex­

pressed in terms of PDFs. By substituting Eq. (18) into the expression (6 ), it is easy 

to see th a t the DIS cross section is given, via the optical theorem, by the imaginary 

part of the forward virtual Compton scattering amplitude.

Let us consider this amplitude in the specific kinematics known as the Bjorken 

limit. Here the invariant momentum transfer to the nucleon system is sufficiently 

large, — q2 =  Q2 -* oo, together with large total center-of-mass energy of the virtual 

photon-nucleon system, s =  (P + q)2 —> oo, while the Bjorken ratio x b  =  Q2/ 2 (P • q) 

is finite. In the deeply inelastic region discussed in Section II.3, we have, for instance, 

Q2 > 1 GeV2 and W 2 = s > 4 GeV2. Hence in this particular regime, the behavior 

of the forward VCA is dominated by short distances, i.e. when the separation be­

tween the two point-like photon-quark vertices (note that the photons couple to the 

quarks of the nucleon) in the amplitude is light-like. As a result, QCD factorization 

works and the amplitude factorizes into a convolution of a perturbatively calculable 

hard scattering process at the level of quarks and gluons, and process independent 

m atrix elements, containing the soft nonperturbative information about the nucleon 

structure. These m atrix elements are parametrized in terms of PDFs. Schematically, 

factorization allows to write the leading-order amplitude in the form of the so-called 

handbag diagrams. In these diagrams, two photons couple to the same quark line, 

as illustrated in Fig. 5. It is worth noting at this point tha t throughout this thesis 

we work only to the leading order in the strong coupling a s. Perturbative corrections 

produce logarithmic dependence of PDFs on the scale Q2, in other words, they define 

the evolution of parton distributions, which can be calculated in QCD [57, 58, 59].

Now taking the imaginary part of the forward VCA generates the delta function,

(64)

which selects two points, x  = ± x B, after the integration over the momentum fraction 

x. Thus in the DIS process we measure parton distribution functions /at (a;) and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FIG. 5: Deeply inelastic electron-nucleon scattering cross section as the imaginary 
part of the forward virtual Compton scattering amplitude. The summation over X  
reflects the inclusive nature of the nucleon structure description by parton distribution 
functions.

A/w (x) at x = xb  corresponding to the quark PDFs, and at x = —x b  for those of 

antiquarks. Unlike the form factors, one deals, in the case of the parton distribution 

functions, with a light-like separation instead of a point vertex, and also the initial 

and final nucleon momenta are equal.

In summary, the unpolarized DIS experiments have mapped out the quark and 

gluon distributions in the nucleon while the polarized DIS experiments have shown 

that quarks carry a small fraction of the nucleon spin. As a result, new investigations 

to understand the nucleon spin became necessary.

III.4 DISTRIBUTION AMPLITUDES

Distribution amplitudes (DAs) (sometimes also referred to as the hadronic wave func­

tions) [60, 61, 62, 63, 64] describe hadrons in hard exclusive scattering processes and 

therefore, in addition to usual parton distribution functions, provide complementary 

information about the hadronic structure. They are defined through the vacuum-to- 
hadron m atrix elements (0 |... |P ) of light-cone operators. For example, in the pion 

case we write

(0 =  iP“U f_t da (a) ■
(65)
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y*(q)
"T-i (l+a)P/2

t  >

n°(P)

y(q')

FIG. 6 : The handbag contribution to the process 7 * 7  —» 7r°. The light-cone domi­
nance is secured by the high virtuality of the incoming photon 7 *.

The fractions of the pion momentum carried by the quarks are (1 ±  a) /2 . One can 

interpret <pv+ (a) as the probability amplitude to find a positive fast-moving pion 7r+ 

in a quark-antiquark state ud, with the longitudinal pion momentum P  shared in 

fractions (1 +  a)  /2  and (1 — a) /2 . The distribution cpn+ (a) is an even function in 

the relative fraction a  [54],

The simplest and cleanest process, in which the pion DA can be accessed, is the 

transition [64, 65]

For large virtuality Q2, the leading-order contribution to the amplitude is given by 

the handbag diagrams depicted in Fig. 6 .

III.5 GENERALIZED PARTON DISTRIBUTIONS

The key idea of the GPD approach is the so-called hybridization. As hybrids of form 

factors, PDFs and DAs, generalized parton distributions provide the most complete 

information about the hadronic structure. Parton distributions parametrize the lon­

gitudinal momentum distributions (in an infinite momentum frame) of partons in 

the hadron while the Fourier transforms of form factors in impact param eter space 

(impact param eter measures the transverse distance of the struck parton from the 

hadron center) describe the transverse coordinate distributions of the hadron’s con­

stituents [6 6 , 67]. Generalized parton distributions, on the other hand, encapsulate at 

the same time the longitudinal momentum and transverse coordinate distributions,

(66)
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thereby providing a much more detailed and comprehensive, three-dimensional snap­

shot of the substructure of the hadron. In addition, the universality of GPDs allows to 

develop a unified description of wide variety of different hard processes, both inclusive 

and exclusive.

Generalized parton distributions can be, in general, divided into two groups, 

namely, the skewed parton distributions (SPDs) and the double distributions (DDs).

III.5.1 Skewed Parton Distributions

There are two implementations of the SPD formalism, as illustrated in Fig. 7. The 

nonforward parton distributions (NFPDs) [34] have the advantage of using the vari­

ables similar to those of the usual PDFs. The distributions depend on X ,  the fraction 

of the plus component of the light-cone momentum P + of the hadron carried by the 

parton (the plus and minus light-cone components are defined by a± = (o° ±  a3) / \ / 2  

for any Lorentz four-vector a), or alternatively, the longitudinal momentum fraction 

with respect to the initial hadron momentum P\ on the skewness param eter £ spec­

ifying the difference between the initial and final hadron plus momenta, r + =  £ P +; 

and on the invariant momentum transfer t =  r 2. For instance, the nonforward par­

ton distribution (X, t )  is the probability amplitude that the initial fast-moving 

hadron, having longitudinal momentum P +, emits a parton of flavor /  carrying the 

momentum X P + while the final hadron, having longitudinal momentum (1 — ( ) P +, 
absorbs a parton of flavor /  carrying the momentum ( X  — £) P +. In this particular 

scheme, the initial and final hadron momenta are not treated symmetrically. The 

off-forward parton distributions (OFPDs) [30, 31], on the other hand, use symmetric 

variables expressed in terms of the average hadron momentum, p = (jp\ -F p?) /2 , with 

Pi being the momentum of the initial hadron and pi  the momentum of the final one. 

In the symmetric scheme the hadron longitudinal (the plus component) momenta axe 

(1 ±  £ )p+ and accordingly, those of the active partons become (x ±  £ )p+. Similarly 

to NFPDs, the off-forward distributions are defined for each quark flavor, and are 

the functions of three variables, namely, the light-cone momentum fraction x, the 
skewness, £ =  r +/ 2p +, (here the skewness is introduced as the coefficient of propor­

tionality between the light-cone plus components of the momentum transfer and the 

average hadron momentum, and like (  varies between 0  and 1 ) and the invariant t. 

In fact, one should bear in mind tha t both the nonforward and off-forward parton 

distributions also depend weakly (i.e. logarithmically) on the probing scale Q2.
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FIG. 7: Comparison between the descriptions in terms of nonforward and off-forward 
parton distribution functions.

The two pairs of variables (X , C) and (x, £) are related to each other. The conver­

sions between them are

X  =

and

c  =

We emphasize tha t these variables solely characterize the plus, or the longitudinal, 

components of the momenta of the partons involved, however, their transverse mo­

menta are related to the ^-dependence of GPDs. The la tter is driven by the t- 

dependence of the corresponding elastic form factors. Thus it is possible to access 

simultaneously the longitudinal momentum and transverse position of the parton in 

the infinite momentum frame [6 6 , 67]. Moreover, by removing the parton with the 

light-cone momentum fraction x  +  £ from the hadron and replacing it, at some later 

point on the light-cone, with the parton of the momentum fraction x — £, one can say 

that SPDs (or GPDs, in general) measure the coherence between two different parton 

momentum states of the hadron whereas usual PDFs yield only the probability tha t 

a parton carries a fraction x  of the hadron momentum. In addition to the parton 

momentum as well as the spin correlations, we can even consider the m atrix elements 

corresponding to different hadrons in the initial and final states, e.g. the proton-to- 

neutron transition accessible through the exclusive charged pion electroproduction, 
the proton-to-A transition in the kaon electroproduction, the nucleon-to-delta transi­

tion, and hence study flavor nondiagonal GPDs.

Let us focus on the off-forward parton distributions. At the leading, twist-2 

level, the hadron structure information can be parametrized in terms of two un­

polarized OFPDs, H f  (x,£, t )  and E f  (x ,£ ,t) , and two polarized OFPDs, Hf  (x,£, t )

x  +  £ 

1 + ?

i +  f

(67)

(68)
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and E f  (x,£, t ) .  Since — 1 <  x  < 1 in Fig. 7, the momentum fractions x  ±  £ of the 

active partons can be either positive or negative. Positive and negative momentum 

fractions correspond to quarks and antiquarks, respectively. Therefore, each OFPD 

has three distinct regions. When £ <  x  < 1, both partons represent quarks while for 

—1 <  x  <  —£, they are both antiquarks. In these two regions, the distributions are 

just a generalization of the usual PDFs. In the central region, —£ <  x  < £, which is of­

ten referred to as the mesonic region, the parton with a positive momentum (x +  £)p+ 

is going out from the blob and represents a quark. The returning parton has a negative 

momentum and therefore, should be treated as an outgoing antiquark with the mo­

mentum (£ — x ) p +. The total momentum of the quark-antiquark pair, r + =  2£p+, is 

then shared in fractions (x +  £ )p+ =  (1  +  x/£)  r +/ 2  and (£ — x ) p + =  (1  — x/£)  r+/2.  

In this region of x, which is not present in deeply inelastic scattering, OFPDs behave 

like meson distribution amplitudes with a  =  x/£.

Clearly, in the nonforward kinematics, SPDs uncover much richer information 

about hadronic structure, which is not accessible in the DIS process. This new infor­

mation can be extracted with the study of hard exclusive processes, such as deeply 

exclusive photon or meson electroproduction (one refers to the former as deeply virtual 

Compton scattering or shortly DVCS), which turns out to be a much more difficult 

task due to the small cross sections. Nevertheless, high-energy and high-luminosity 

electron accelerators combined with large acceptance spectrometers give a unique 

opportunity to perform precision studies of such reactions.

The factorization into short and long distance dynamics is more general. Having 

large space-like virtuality of the initial photon is sufficient for QCD factorization to 

work [31, 34, 6 8 , 69]. In particular, in the DVCS process, which will be studied in 

detail in Chapter IV, the initial photon is highly virtual, —q\ oo, while the final 

photon is on shell, q% =  0. In the leading-twist handbag approximation (DVCS is a 

handbag-dominated process for —qf as low as 2 GeV2) illustrated in Fig. 8 , the hard 

short-distance part of the so-called nonforward virtual Compton scattering amplitude 

factorizes from the nonperturbative long-distance part. The la tter is represented by 

the lower blob and contains now the nonforward matrix elements (N  (p2)| ••• \N (pi)} 
of the same quark and gluon operators as in the forward case. These m atrix elements, 

describing the nucleon structure, are parametrized in terms of GPDs. Even though 

the parton picture of DVCS, see Fig. 8 , looks similar to th a t of DIS, see Fig. 5, 

there are three crucial differences. In DVCS, one deals with the skewed kinematics,
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FIG. 8 : Handbag contribution to the nonforward virtual Compton scattering am­
plitude. The hard quark propagator (this particular quark propagates along the 
light-cone) in the s- and u-channel diagrams is convoluted with generalized parton 
distributions.

in which the plus momenta of the initial and final hadrons as well as partons are 

not equal. Furthermore, the invariant momentum transfer t in DVCS is small but 

not zero. These two extra degrees of freedom, (  (or £) and t, make the dynamics of 

DVCS rich and diverse. Finally, in DVCS (or in any other hard exclusive process) the 

virtual Compton scattering amplitude described by GPDs appears at the amplitude 

level whereas in DIS (or in any other inclusive process) the amplitude described by 

PDFs enters through the optical theorem at the level of the cross section.

Skewed parton distributions have interesting properties linking them to usual 

PDFs and form factors. In the forward limit, p i =  P2 and r  =  0 , £  =  0 , t  =  0, 

they reduce to PDFs obtained from the DIS process. In particular, the OFPDs Hf  

and Hf  coincide with the quark density distribution f N (x) and the quark helicity 

distribution A / at ( x )  given by Eqs. (61) and (62). We write the so-called reduction 

formulas,
I I n  (x) x  > 0  . .

=  t J N) ’ (69)
(  - I n  ( - x )  x <  0

and

ir ( n J  ^  x > 0 (7n\Hf (x,Q,0) = < A i  t \ . n (70)[ A f N ( - X )  x < 0,

while the OFPDs E f  and E f  have no connections to PDFs. They are always accom­

panied with the momentum transfer r and therefore, simply not visible in DIS. One 

can say tha t E f  and E f  encode completely new information on the hadron struc­

ture, which is not accessible in inclusive measurements. Even though they have no 

analogue in the forward limit like Hf  and Hf,  their limits do exist.
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In the local limit, z — 0, off-forward parton distributions reduce to the standard 

vector and axial vector form factors. In other words, the first moments of OFPDs, 

obtained by integrating the distributions over x, are equal to the nucleon elastic form 

factors (i.e. the Dirac, Pauli, axial and pseudoscalar form factors). For any £ one has 

the following relations for a particular quark flavor

We call these relations the sum rules. It is im portant to note tha t these sum rules 

are model and ^-independent (the dependence on £ drops out after integration over

Generalized parton distributions are also relevant for the nucleon spin structure 

and have received considerable attention in recent years in connection with the so- 

called proton spin puzzle (for reviews, see, e.g. [70, 71, 72]). Namely, certain low 

moments of GPDs can be related to the total angular momentum carried by quarks 

and gluons (or generically, partons) in the nucleon [30]. In particular, in terms of 

the off-forward distributions, the second moment of the unpolarized OFPDs a t t  =  0 

gives the quark total angular momentum,

The above equation is independent of £ (again the ^-dependence of H f  and E f  is 

removed by integration over x). The quark angular momentum, on the other hand,

where AE is measured through the polarized DIS process. Substituting Eq. (72) into 

Eq. (73) we can determine L q. Moreover, the total spin of the nucleon comes from 

quarks and gluons,

(71)

x).

Jo = \ ' Z j \ d x x [H f ( x ’t ’t = 0) + E f ( x ’Z’t = °)}- (72)

decomposes into the quark intrinsic spin AE and the quark orbital angular momentum

1

2
(7 4 )
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where Jg is the total angular momentum carried by gluons. Thus we can also extract 

the gluon contribution to the nucleon spin. Note tha t A E / 2  accounts only for ap­

proximately 30 % of the nucleon spin. In summary, by measuring GPDs we obtain 

information about the angular momentum distributions of quarks and gluons in the 

nucleon. Therefore, the DVCS process, combined with measurements of the quark 

helicity distributions from inclusive deeply inelastic scattering, can unravel the orbital 

angular momentum carried by partons, on which little or no information is currently 

available.

III.5.2 Double Distributions

Two approaches are used to model generalized parton distributions:

•  A direct calculation of GPDs in specific dynamical models, such as the bag 

model [73], the chiral soliton model [74], the light-cone formalism [39], etc.

•  A phenomenological construction [75, 76, 77] based on reduction formulas re­

lating GPDs to PDFs /jv (x ) and A f N (x ) and form factors F\ (t ), F2 (t ), g& (t) 

and gP (t ).

The most convenient way to construct models in the second approach, and further 

study the interplay between x, £ and t dependencies of GPDs is performed using the 

formalism of double distributions (DDs) f ( / 3 ,a , t ) .  Here we only consider the so- 

called cc-DDs corresponding to the symmetric description with respect to the initial 

and final hadron momenta. In the parton picture of double distributions shown in Fig. 

9, the active parton momentum, k+ =  (3p+ +  (1 +  a)  r +/ 2 , is represented as the sum 

of two components j3p+ and (1 +  a)  r +/2. The former specifies the momentum flow 

in the s-channel due to the plus component of the average hadron momentum p+, and 

the la tter specifies the momentum flow in the ^-channel due to the plus component 

of the momentum transfer r + . Despite the proportionality between r + and p+, they 

correspond to the momentum fluxes in two different channels. Their superposition is 
the main feature of double distributions. In addition, it is im portant to note another 

characteristic feature, i.e. the absence of the ^-dependence in /  (f3, a,  t).

Thus double distributions are hybrids, which look like usual parton distributions 

with respect to the variable /3, and like distribution amplitudes with respect to a. 

Therefore, when modeling DDs we usually represent a double distribution in the 

factorized form as the product of a usual PDF in the ^-direction and a distribution
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$p+ (l -Ct)r/2

p+r/2 p - r /2

FIG. 9: Description in terms of double distributions.

a a

-i

-i

a b

FIG. 10: Conversion from a double distribution to an off-forward parton distribution 
function with a zero and nonzero skewness.

amplitude, which drives the o;-profile. The connection between the DD variables 

a  and 0  and the OFPD variables x  and £ can be established through the formula 

r + =  2 £p+, namely, x = 0  +
The support area of double distributions is the rhombus |of| +  \0\ < 1. Moreover, 

due to the hermiticity properties and time-reversal invariance of the nonforward ma­

trix elements, they are even functions in a , f  (0 ,a , t )  = f  (0, —a, t) .  This property 

is termed as the Munich symmetry [76]. Now, in order to obtain the usual PDFs 

from DDs (recall tha t the former correspond to the forward limit, £ =  0 and t  =  0, 

of OFPDs), one should simply integrate them along the vertical lines 0 = x,  see the 

rhombus (a) in Fig. 10. On the other hand, to get OFPDs H ( x , £ , t )  (we skip the 

flavor index for convenience) with a nonzero skewness (e.g. for £ =  1 , they behave 

like meson distribution amplitudes), one should integrate DDs /  (0 ,a , t )  along the 

parallel lines a  = (x — 0)  /£  with a ^-dependent slope,

(7 5 )
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as illustrated in the rhombus (b) in Fig. 10. We call this process of integration 
or scanning, the DD-tomography. To summarize, double distributions are primary 

objects producing SPDs after appropriate integration.
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CHAPTER IV

DEEPLY VIRTUAL COMPTON SCATTERING

IV. 1 INTRODUCTION

In recent years, significant effort was made to access GPDs through the measurement 

of hard exclusive leptoproduction processes, such as deeply virtual Compton scat­

tering or deeply exclusive meson production. The simplest process in this respect is 

DVCS. It can be accessed through the following reaction

and it is illustrated in Fig. 1 1 . There are three relevant diagrams. The nucleon blob 

with two photon legs, see the diagram (a), represents the virtual Compton scattering 

amplitude, which will eventually become the subject of our study. This diagram is 

referred to as the DVCS diagram or the Compton contribution. Unfortunately, the 

final real photon can be emitted not only by the nucleon, but also by the electron. 

The la tter is presented by the remaining two diagrams. They are referred to as the 

Bethe-Heitler contribution. Here lower part, the nucleon blob, stands for the electro­

magnetic form factor while the upper part can be exactly calculated in QED. Despite 

this disadvantage (in measuring of the VCA by extracting it from the cross section, 

the pure DVCS process is always in competition with the Bethe-Heitler process), in 

addition to a small cross section, deeply virtual Compton scattering is still regarded 

to be the cleanest tool to access the underlying GPDs.

At this point, we focus only on the Compton part. Hence an electron (or muon) 

scatters off a nucleon via the exchange (in the leading-order QED) of a space-like 

photon with virtuality qf =  (k — k' )2 < 0 , producing an intact nucleon (with altered 

momentum) and a real photon in the final state. Since we turn  a virtual photon 
into a real one there is always a nonzero momentum transfer. At the quark level, 

in leading twist, the electromagnetic current couples to different quark species with 

strength proportional to the squares of the quaxk charges, selecting specific linear 

combinations of GPDs. Flavor-specific GPDs can be reconstructed by considering 

DVCS from different hadrons (protons and neutrons, for instance), and using isospin 

or flavor symmetry to relate GPDs in the proton to those in the neutron.

e Ik) +  N  (pi) — > e (k'j +  N  (p2) +  7  (® ) , (76)
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e ( k )

Vfa)

N(p2) X
FIG. 11: DVCS (a) and Bethe-Heitler (b and c) diagrams contributing to electropro­
duction of a real photon.

In the Bjorken regime (recall tha t in addition to the large invariant mass of the 

photon-nucleon system, (pi + qi)2 —> oo, the initial photon is also highly virtual, 

nevertheless, their ratio x B = — <7i / 2  (pi • <?i) is finite), the VCA is dominated by 

light-like distances. The dominant light-cone singularities, which generate the leading 

power contributions in l / \ql \  to the amplitude, are represented by two handbag 

diagrams shown in Fig. 12, in which the (hard) quark propagator is convoluted with 

the soft function parametrized in terms of GPDs. In addition, keeping the momentum 

transfer squared to the nucleon, t =  (pi — P2)2, as small as possible, one arrives at the 

DVCS kinematics, s > —q\ —t. This particular kinematics implies, on one hand,

that —qf should be large enough to ensure scaling regime for the amplitude and, on 

the other hand, it implies small t.

One of the methods to study the virtual Compton scattering amplitude in the 

DVCS kinematics is the approach based on the nonlocal light-cone expansion of the 

product of currents in QCD string operators in coordinate space [78]. It will be 

employed in the present work.

A detailed derivation of the leading-twist (and to the lowest order in a s) VCA 

is provided in Section IV.2. In Section IV.3, we discuss the kinematics, common to 

all DVCS-like reactions. After introducing the simple model for nucleon GPDs, see 

Section IV.4, both the Compton and Bethe-Heitler cross sections are estimated in 

Section IV. 5.

IV.2 VIRTUAL COMPTON SCATTERING AMPLITUDE

We begin with an analysis of some general aspects of the VCA. In the most general 

nonforward case, the amplitude is given by a Fourier transform of the correlation
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tJ2 7n J y ^ < \ -7j2

FIG. 12: Handbag diagrams (s- and u-channel) in the virtual Compton scattering 
amplitude.

function of two electroweak currents. In particular, for the standard virtual Compton 

process on the nucleon, where both currents are electromagnetic one has [54]

7em = i J d ‘x J d ‘ye-«'>'*'>+> ^ { N ( p i , S2)\T{J£u (y)rBM(x)}\N(puSl)).
(77)

Due to the current conservation, the amplitude is transverse with respect to the 

incoming virtual and outgoing real photon momenta,

Te m Qiv — 0 and Q2hTe m  =  0. (78)

It will be convenient in the analysis to use symmetric coordinates, defined by intro­

ducing center and relative coordinates of the points x  and y, X  =  (x + y) /2  and 

z = y — x. Accordingly, the amplitude takes the form

T^m  =  > [  d 'x  j  j f j e - i l i ' - o l ' W l i  i+ « r f* /2

x (N (pa, »a)| T {rEM (X + 2 / 2 ) rEM ( X -  2/2)} |N(puSl) ) . (79)

Furthermore, in order to treat the initial and final nucleons in a symmetric manner, 

we introduce, as independent momentum variables, the averages of the photon and 

nucleon momenta, q = (q i+  <?2) / 2  and p = (pi + p 2) / 2 , and the overall momentum 

transfer to the nucleon, r = p\ — P2 =  q-z — qi- Then we can write

q2 = q \ / 2 - t / A  with t = r2. (80)

From the on-mass-shell condition, p \ = p \  = M 2, it follows that

p2 = M 2 — t / 4 and (p • r) =  0, (81)

where M  denotes the mass of the nucleon. After performing the translation in x  in 

Eq. (79), (p21 (x) |pi) =  (p2| (0) |pi) e~t(pi~p̂ ’x, and integrating over the center
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coordinate, one finds

TTm  =  (2*r)4 .5<4)( P i + g i - P 2 - 9 2 ) 7 X ,  (82)

where

TTu  =  i f  d ' z  <*«*> ( N i p -  r /2 ,  * ) |  T  {J£M ( z / 2) r BM { - z / 2 )}  |JV (p +  r /2 ,  * ) > .

(83)

We call the amplitude (83) the reduced virtual Compton scattering amplitude. It ap­

pears in the invariant m atrix element (or alternatively the T-matrix) of the standard 

electromagnetic DVCS process.

Having introduced the reduced VCA we demonstrate its calculation at the twist-2 

level in the DVCS kinematics, which amounts to neglecting contributions of the order 

M 2/q2 and t / q2 in the hard part of the amplitude, and keeping the i-dependence only 

in the soft part. It was noticed th a t a straightforward use of the twist-2 result for 

t ^  0 leads to inconsistencies, e.g. the VCA is not electromagnetic gauge invariant 

[35]. The invariance is restored through inclusion of the twist-3 corrections to the 

amplitude. They are power suppressed in q2, and have been calculated by several 

groups [79, 80, 81, 82, 83, 84, 85, 8 6 , 87, 8 8 , 89] using different approaches.

Since the final state photon is on shell, q% =  0, it follows in this particular kine­

matics tha t (r • <71) ~  — q\/2  =  Xb {pi •qi)■ Hence the momentum transfer should 

have a large component in the direction of the average nucleon momentum,

r  =  2r/p +  A, (84)

characterized by the skewness parameter,

'  ■ «
In the DVCS kinematics, the remainder A in Eq. (84) is transverse to both p and 

q, (A -p) = —2r)p2 —> 0 and (A • q) =  —1/4 —> 0 [82]. In the language of the 
parton model, the component 2-qp of the momentum transfer would be identified 

with the longitudinal component f|| while A would be a transverse component r± 

[83]. Moreover, r\ coincides with another scaling variable £ defined as [30]

5 "  (86)
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For tha t reason, £ in DVCS is frequently also referred to as skewness. It is easy to 

verify th a t £ =  xjg/ (2 — x b ) in the limit t / q2 —> 0. In DIS, on the other hand, the 

asymptotic region, which is also characterized by the large virtuality of the incoming 

photon, corresponds to the situation in which q1 = q2} p l = p2, r  = 0  and accordingly, 

p =  0  and £ =  xb-

Let us now turn to the formal light-cone expansion of the time-ordered prod­

uct T  {Je m  (z /2) Je m  (- 2 /2)}  in the coordinate representation. The expansion is 
performed in terms of QCD string operators, as discussed in Ref. [78]. The string 

operators have gauge links along the straight line between the fields (the gauge link 

connecting the two space-time points corresponds to the summation over twist- 0  lon­

gitudinal gluons, and it disappears, e.g. in the Fock-Schwinger gauge, z aA a (z ) =  0), 

however, for brevity we will not write them explicitly. The leading light-cone sin­

gularity, z 2 —» 0 , is given by the sum of two (s- and w-channel) handbag diagrams 

shown in Fig. 12. The hard part of each of the diagrams begins at zeroth order in 

o:s with the purely tree level diagrams, in which the virtual and real photons interact 

with the (massless) quarks. We have

i T  { J e m  ( * / 2 )  J e m  ( ~ z / 2 ) }  =  * £  Q /  { $ f  ( z / 2 ) $  ( z )  T ' V /  ( ~ z / 2 )

+7pf ( - z / 2) 7 vi p  ( - z )  7 *V/ ( z / 2)} , (87)

where Qf  denotes the electric charge of the quark with flavor /  in units of |e|. Note 

that the vertices, in fact, contribute the factor (—i \ e \ Q f f  rather than Q2. For 

convenience, we do not include an extra factor of — e2 in the expression for the VCA, 

however, it will be included in the T-matrix. The free quark propagator between the 

initial and final quark fields in the coordinate representation is given by

<88)

Using the 7 -m atrix formula,

7 V 7 " =  (6- ^ +  ^ ^ 7 5 ) 7 ^, (89)

where s =  g119gvn+ gm gpv— is the symmetric and e " 1'71 is the antisymmetric 

tensor in the Lorentz indices g  and u, we express the original bilocal quark operators 

in Eq. (87) in terms of operators with only one Lorentz index,

i T  {J em  {z l fy  J e m  (—z /2)} =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3 7

zp
2 ^ 4  E  Q2f { Ŝ UT> [i’f (~z/ 2) Ini’S (z / 2) -  i’f (z/ 2) Ini’S (~ z/ 2)\

+ie^  [0 / (~z/2)  7^750/ (z /2 ) + 0 /  (z /2 ) 77,750/ ( - z / 2 )] } ■ (90)

It is customary to write these new QCD bilocal operators (the vector and axial vector 

string operators) as

QS (z |0 ) =  [0 /  (~z/2)  7 t,0 /  (z/2)  -  0 /  (z/2) 7 , 0 /  ( - z / 2 ) ]  ,

^ i ^ l O )  =  0 /  (~z/2)  7„750/ (z/2) +  0 /  (z/2) 7„760 /  ( - « / 2)] , (91)

and accordingly, Eq. (90) turns into

>r{,7£M (* /2 )./£M (-* /2 )}  =  ^ 7 E 0 / { sW‘'’’Oi ^ | 0 ) + « ,“‘'’'O i , ( Z |0 )} .

(92)

The string operators in Eq. (91) do not have a definite twist. To isolate 

their twist-2 part one uses a Taylor series expansion of O f ( z  |0) and (z |0) in 

the relative coordinate z. This gives local operators, 0 /  (0) 'yTID lil...Dtln'ipf (0) and 

0 /  (9) % 7^DPl...Dlln0 /  (0), where Dp is the covariant derivative, which are not sym­

metric in their indices. To get the twist-2 contribution, one should keep only the 

totally symmetric traceless parts of the coefficients in the expansion. As it was shown 

in Ref. [78], the totally symmetric parts can be carried out by the following operation

0,7*10)1 =  a , dff
I J s y m  ’ J o

x [0/ ( ~ 0 z / 2) jSi/jf (Pz/2) -  0 /  (Pz/2) / 0 /  ( - p z / 2)] ,

(z |0)1 =  dn f  dp
s y m  Jo

x [ 7  ( - “z/2) (Pz/2) + 1Pi (Pz/2)  /7 5V>/ ( - f i z / 2)] ,

(93)

where dv =  d / d z 71 is the derivative with respect to the relative coordinate. It becomes 
clear now why the term string is used: the argument of 0 /  and 0 /  takes all the values 

on the string from —z/2  to z/2.  The subtraction of traces can be achieved by imposing 

the harmonic condition on the contracted vector and axial vector string operators,

O f + (z) =  z^O* ( z |0 ) =  [0 /  (~z/2)  t y f  (z/2) +  (z -¥ - z ) ]  ,

0 { ~  (z) = z nO{v (z |0) =  [0/ (~z/2)  ^750/ (z/2) -  (z -> - z ) ]  , (94)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3 8

which appear on the right-hand-side of Eq. (93). In other words, these two operators 

should satisfy d ’Alembert equation with respect to 2

92 [ ° / + w L , «  -  °> <95>

and similarly for the twist- 2  part of 0[~  (2 ). Note that we have assigned an extra 

superscript ±  to the operators (94) because they possess the symmetry with respect 

to the change 2 -4 —2 .

To compute the amplitude (83), the contracted twist-2 operators have to be sand­

wiched between the initial and final nucleon states, and ultim ately integrated over 

2 . Thus we need to construct a parametrization for these nonforward nucleon ma­

trix elements. The most convenient way is a decomposition into plane waves, i.e. a 

spectral representation, where the relevant spectral functions correspond to GPDs (to 

be specific, here and in the following, we use the off-forward parton distributions). 

In principle, we need to provide a parametrization valid everywhere in z since the 

coordinate 2  runs over the whole four-dimensional space. However, it turns out that 

the inclusion of the z2 terms in the matrix elements generate M 2/q2 and t / q2 correc­

tions to the amplitude (such corrections are analogous to the well-known target mass 

corrections in DIS [90, 91]) and hence will be neglected. It is, therefore, sufficient to 

provide a parametrization only on the light-cone [83], namely,

(N  (P2, s2)| O f+ (2 ) \N  (pi, Si))z2=0 =  u (P2, 82) i n  (pi, Si)

x J ^ d x e ix{p'z)Hf  (x,S,t)

(P2, 82) ^  (P1’ S l)

x J 1 dx eixip̂ E f  (x,Z, t) ,

( N ( p 2, s2) \ O fh~ (2 ) \ N ( p U 8i))g2=0 = u (p2, s 2) ^7 5 « (P l,« l)

x J ^ d x e ix̂ z)H j  (x,&t)

( t  • Z}
-U{P2,S2) -2 j^ 7 5 « (P l,S l)

x J 1 dx eix^ E +  ( x , f , t ) . (96)

The flavor dependent OFPDs in the parametrization (96) refer to the corresponding 

quark flavor /  in the nucleon N. Apart from the scale Q2 = —q2, there are three 

variables necessary to specify OFPDs, namely, the usual light-cone momentum frac­

tion x, the invariant momentum transfer t to the target and the skewness parameter
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f , which corresponds to the light-cone momentum fraction transferred to the target 

and characterizes the momentum asymmetry. Recall that the variables x and £ only 

define the longitudinal momenta of the partons involved, th a t is their plus compo­

nents. Schematically, the parton going out of the parent nucleon in Fig. 12 carries 

the fraction (x + £) of the average nucleon momentum p while the momentum of the 

returning parton is {x — £)p.

tion III.5, parametrize the m atrix elements of operators xjjf {—z/2) /zijjf {z/2) and 

ij)f {—z/2) fasipf {z / 2 ), do not have symmetry with respect to the change x  —> —x. 

In particular, the function Hf {x )  in the forward limit, see Eq. (69), corresponds 

for positive x  to the quark distribution while for negative x,  it corresponds to the 

minus antiquark distribution. On the other hand, the plus distributions, introduced 

through the m atrix elements of (anti)symmetrized operators given by Eq. (94), do 

have well defined symmetry properties with respect the scaling variable x. Simply by 

transforming z  —> — z  and x  —> —x  in Eq. (96), we can establish the following

It is easy to notice that the plus OFPDs are determined by the sum of quark and

sea contributions, and further the antiquark distribution only the sea contribution, 

the plus distribution turns into the sum of the valence and twice the sea quark dis­

tributions.

After substitution of Eq. (96) into the right-hand side of Eq. (93), we first take 

the derivative with respect to z. Then we perform integration by parts over the 

parameter /? and keep only the surface terms with the arguments 't/if (± 2 / 2 ) and 

xfrf (± 2 /2 ). Finally, the integral over z is carried out with the help of the inversion 

formula for jS (2 ),

Here the momentum I is given by I =  {xp + q), so tha t I2 in the denominator of Eq.

The OFPDs Hf  {x, £, t), E f  {x, f , t), H f  {x, £, t) and Ef  {x, £, t), introduced in Sec-

H f ( x )  = - H f { - x ) ,  

B } ( x )  =  - E f ( - x ) ,  

H f ( x )  = H f ( - x ) ,  

E } ( x )  = E f l - x ) . (97)

antiquark distributions. Since the quark distribution includes both the valence and

(98)
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(98) becomes P =  2 (p • q) (x — £). The expression for the reduced VCA reads

1 ^  f l dx
i f

pi/
E M t w i s t —2 2 ( p - q ) f  f J - i ( x - £  +  iO)

x j i ? /  (x , t , t )  [Pu(p2, s 2)'y,'u(p1, s 1) 

+ P u  (p2, s2) 7 (pi, si) -  g ^u  (p2, s2) / u (pu si)] 

+ # /  {x,Z,t)
y v y— /v*

P u  (p2, S2) -----— ---- U (pi,8i)
4M

+P u  (p2, s2) -  (pi, si) -  g ^ u  (p2, s2) ^  ^  ^ u (p1; si)
4M 4 M

- i P vm H f  (x , £, t )  lpu  (p2, 52) 7r)75u  (pi, s i )  

“ £ /  ( x , L t ) l p U( p 2 , S2) ^ j 7 5 m ( P 1 , S i )  f , (99)

and can be further simplified as follows. Let us perform the light-cone decomposition 

of 7 -matrix,

7^ =  +  IP fl2 +  7^. (100)

The four-vectors ni  and n2 in Eq. (100) are light-like, n\  =  nl  =  0, and satisfy the 

condition (m  • n2) = 1. Identifying n x —>■ p, n2 -¥ q2 and neglecting the transverse 

component 7 ^, since it corresponds to the higher-twist contributions, Eq. (100) takes 

the form

1
(1 0 1 )

(p • (h)

Using the above decomposition, the Dirac equation, f t iu (p i , s i )  = f t2u(p2, s 2) = 0 

(recall tha t we neglect the nucleon mass), and the fact th a t H f  and E f  are odd 

functions in x, the reduced VCA in the leading twist transforms into

dx> r v i / ------
(p • q) f

1

T £ Mtwist-2 2 ( ) E  Q f  j _ x (x _

+ E f ( x , £ , t )

x {  H f ( x , Z , t )  

1

( p  • 92) 

( p ^ + « ) - < T  

1

(P • f t )

- H f ( x , £ , t )  

1

u(p2, s 2)

( x - £  + iO) 

u (p 2, s 2) fau (pi, Si) 

(42 i -  i  4-2),
- w ( p i , « l )

. (p -92)
ie^q .pPr ,

AM

u(p2, s 2) ^ 7 5 «(p i,S i)

+ £ /  (a:,?,*)
.(P- ft)

(q2 -r)  
2  M (P2,s2) 7 S « ( P i >«i ) U (102))
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The amplitude has both real and imaginary parts. Since OFPDs are real functions, 

the imaginary part of the amplitude comes only from the singularity of the expression 

1/ (x — £ + iO). The la tter can be calculated by applying the formula

( i l b o )  s  * > ( ; ) *  « * « ( * ) ,  ( 103 )
where P  denotes the principal value. Thus the real part of is obtained using the 

principal value prescription. The imaginary part, on the other hand, generates the 

delta function 8 (x — £), which assures taking OFPDs at the specific point, x  =  £. In 

other words, the imaginary part of the amplitude is directly proportional to OFPDs 

evaluated along the line x  =  £. Moreover, from the tensor structure of the VCA in 

Eq. (102), it is easy to see th a t the amplitude exactly satisfies the electromagnetic 

gauge invariance with respect to the final real photon,

Q̂ Ii Te  Mtwist—2 =  (104)

The gauge invariant condition with respect to the initial virtual photon that has the 

momentum qi„ = q2v — rv will only be satisfied if Tj^Mtwist-'P'v =  0. However, for the 

part of T]EMtwist-2i which is symmetric with respect to /i ■<-» i/, we find with the help 

of Eqs. (84) and (85),

r ~  ^  ^  rp
'  E M t w i s t - 2 ( s y m )  v  ( p  '  q 2 j

= -  O ( r2) j f .  (105)

Since the components of A are all of the order see Ref. [83], it follows tha t 

the leading-twist VCA is gauge invariant to accuracy This violation of

electromagnetic gauge invariance is a higher-twist (i.e. twist-3) level effect.

IV.3 KINEMATICS

In the generalized DVCS process,

h (k) +  Ni (py) — > l2 (k') + N 2 (p2) + 1 (q2) ,  (106)

there are a lepton li with the four-momentum k and a nucleon Ni  (pi) in the initial 

state, and a lepton l2 (A/), a nucleon N 2 (p2) and a real photon 7  (q2) in a final state. 

The process has two contributions tha t are represented by two types of diagrams, see 

Fig. 11. The DVCS diagram corresponds to the emission of the real photon from
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the nucleon blob. In the Bethe-Heitler diagram, the real photon is emitted from a 

lepton leg. We denote the four-momenta as k = (u,!?), p\  =  ( m ,  o), k' =  (a 

p2 = (E2,p2) and q2 =  (^2 , 9*2)- The differential cross section for lepton scattering off 

a nucleon, to produce a final state with a lepton, nucleon and a real photon is

j  1 1 12 1 W4W1 , »' \ d*k ' d3p2d3q2
da  =  ^ |T|  { k + P l - k ~ P2 - q2) ^ m ^  (107)

where T  represents the scattering amplitude. It contains both the Compton and 

Bethe-Heitler contributions,

T =  T c +  T b„ . (108)

In the laboratory frame, as the target rest frame, the total lepton-nucleon center-of- 

mass energy squared is s =  (k + P1)2 =  2u M  +  M 2. Note tha t in the following, we 

neglect both lepton masses. Integrating Eq. (107) over the photon momentum gives

1 irp|2 1 s \n  , ,/ ^ u ' d u ' d Q !  dzp2 , inn^
^  =  ; U T i i ^ s Vk + f‘' - k - » ) .  (109)

i_  |TI2 —
2s 1 (27r)t

The delta function in the cross section (109) provides the constraint s +  M 2 —

2 [(ui -I- M) E 2 — qi • p2] = 0, where the invariant s = (pi + q{)2 and q\ =  k — k' =

iyi,qi)  is the four-momentum of the virtual photon. Furthermore, we choose the 

coordinate system so th a t the z-axis is in the direction of the incident lepton in the 

plane formed by the lepton momenta. After integrating Eq. (109) over the magnitude 

of p2, the differential cross section reads

1 ' I ^ I2
d(T = ----- ;— r-g- |L , F  —r |T |2 dcj'dQ.'dQ,2, (110)

16s (2 tt) |(^i +  M ) \p2\ — \qi\ ^ c o s ^ ^ l

where <j>i2 is the angle between vectors q\ and p2.

Alternatively, one can choose the coordinate system depicted in Fig. 13, in which 

the virtual photon four-momentum has no transverse components, qi =  (iq, 0 , 0 , |<fi|), 

and the incoming and outgoing lepton four-momenta are k =  ui (l,sin<^, O,cos0) and 

k' — uj' (1, sin (/>', 0 , cos <̂ /), respectively. In this reference frame, the azimuthal angle 

of the recoiled nucleon corresponds to the angle ip between the lepton and nucleon 

scattering planes. Using now the delta function 6 [(/c + p i  — k' —P2)2 in Eq. (109) 

to integrate over the polar angle (j)2 of the outgoing nucleon, we find

1 _  2 E 2 (u -  u/ )  - q f (  1 -  l / x B) -  t
cos (p2-------------- ,-------------- ,--------- —------  , (H I)

2^E% — M 2 y  (cu — a; ' ) 2 -  q2x
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FIG. 13: Kinematics of the generalized DVCS process in the target rest frame.

and the cross section assumes the form

da =  - jp  [T]2 *. 4 , U' duj'dE2d (cos # )  dip, (1 1 2 )
1 6 s  ( 2t t )  y/(u -  w ' )  -  ql

with the angle f t  denoting the polar angle of the scattered lepton.

Instead of the kinematical variables u ' , E 2 and cos f t ,  it is convenient to express 

the differential cross section in terms of the invariant variables, e.g. ( y , t , x s )  or 

(Qi, t, x B), where Qj = - q f  and y = ( p i -  qi) /  (pi • k). In the laboratory frame, these 

invariants are given by

2MujyxB,
UJ — U)'

Ld ’
2M 2 -  2M E 2. (113)

The last invariant can also be written as t = (qi — q )̂2 =  — Q\ —

2v2 ( u y  -  i f u 2y2 + Ql  cos , where the energy of the outgoing real photon is given 

by the energy conservation, i/2 = M  +  toy — E 2. By combining both expressions for 

t, we can express it as a function of the angle 0 77 between the incoming virtual and

Ql =  

y  =

t =
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outgoing real photon, namely,

2 M 2 +  Q\ + 2  (M  +  wy) ^u;y — \jco2y2 +  Ql  cos 077 j
t =  2M — M

M  + coy — \Jco2y2 +  <3? cos 077

(114)

Moreover, from the three-momentum conservation, qi = k — k', and alternative 

expression for the invariant Q\  in the laboratory frame, Q\ = — (k — k ')2 =  

2 ww' (1  — cos <t>iep) > we get for the polar angles of the incoming and scattered leptons,

cos

and

<t> = ^  ('y /u2y2 +  Qi +  w (1 -  y) cos <ff  ̂ (115)

x, 2 w2y (1  -  y) -  Q\ 
cos<p =  ---------------- ,  =, (116)

2 w (1  -  y) sjufiy2 +  Q?

respectively. The Jacobian is then equal to

J  =
d (to1, E 2, cos (j)1) uPy2 (a; +  M x b )

2 ( 1  -  y) (w2y2 +  Q? ) 3/2d ( y , t , x B)

and accordingly, the differential cross section turns into

d4a _  d4a
dxBdydtd<p d (cos (j)1) du'dE2d(p

1 1 1 + x b ( M / u )

(117)

32s (27r)4 [y +  2 x b  (M/uj)}2 

Note tha t using the invariant Ql  instead of y yields

dAa  1 1 1 +  x B ( M / uj)

\T\2 . (118)

T |2 . (119)
dxBdQ\dtdip 64s (27r)4 M loxb  [y +  2xB (M / uj) ]2

In the following, we determine the kinematically allowed region for the generalized 

DVCS process. In other words, one needs to find the upper and lower limits o n x B, 

y and t. We require the following constraints:

•  The energy of the incoming lepton beam is fixed. In particular, we consider two 

examples tha t are both relevant to Jefferson Lab, namely, u> = 5.75 GeV and 

to =  11 GeV.

• The invariant mass of the virtual photon-nucleon system should be above the 

resonance region, s =  (pi +  yi) 2 >  smjn =  4 GeV2.
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•  The virtuality of the incoming photon has to be large enough to secure the 

light-cone dominance, Q\ > Q\min =  2.5 GeV2.

•  The momentum transfer squared to the nucleon should be kept as small as 

possible, t /q2 <C 1 .

The second constraint, M 2 — Ql  (1 — 1/xb)  >  smin, together with Ql = XbV (s — M 2) 

implies tha t

  Smin ~  M 2 1̂0n^
Vmt" ~  ( s - M 2) ( l - x fl) ’ ( 0)

On the other hand, the scaling variable y reaches its maximum value,

W  -  ( l  +  ^ L ) ' \  (1 2 1 )

when the incoming lepton is aligned along the z-axis at the angle 4>iep =  180°. If one 

plots the region in the xbV plane, as illustrated in Fig. 14, then Eqs. (120), (1 2 1 ) 

and y = Qlmin/xB (s — M 2) (the latter comes from the third constraint) correspond 

to its boundaries. Next, both lower and upper limits of the invariant t can be found 

if we go in the virtual photon-nucleon center-of-mass frame. In this particular frame, 

at the scattering angles between the initial and final nucleons equal to 0 ° and 180°, 

the invariant momentum attains, up to relative corrections of the order x b M 2/ Q l , 

its kinematical limits,

- M 2x \
1 — xb (1 — M 2/Q l )  ’
M 2x% -  2 M 2xb  +  Ql (xB ~  1) / x b

(122)
1 -  x„ (1 -  M 7Q(j

They are presented, within the kinematically allowed regions, in Table I. Since we 

require small t, the upper limit becomes irrelevant. In addition, having small t yields 

a low-energy nucleon with E2 =  M  (1 — t / 2 M 2) and a high-energy real photon in the 

final state.
Finally, for each lepton energy we pick one kinematical point within the allowed 

region in the x s y  plane. In particular, we take Ql = 2.5 GeV2 for the virtuality of 

the initial photon and xb  = 0.35. In Fig. 15, the invariant t is plotted against the 

angle 077. It is customary to present the plot for the values of t up to — 1 GeV2, which 

happens at 0 77 ~  1 2 °, even though we require tha t, in principle, —t should be much 

smaller than Ql. The values of t vary from —0.15 GeV2 to —1.433 GeV2 for angles
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FIG. 14: Kinematically allowed region for s >  4 GeV2 and Q\ >  2.5 GeV2 with 
co =  5.75 GeV (solid line) and oo =  11 GeV (dashed line) lepton beam.

TABLE I: Lower and upper limits of the invariant momentum transfer t  within the 
kinematically allowed region illustrated in Fig. 14 for two different lepton beam 
energies co.

co [GeV] - t m i n  [GeV2 t m a x  GeV

5.75 0.058 10.019

11 0.014 19.853
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FIG. 15: Invariant momentum transfer t  plotted as a function of the angle 077 between 
the incoming virtual and outgoing real photon in the target rest frame for Q\  =  
2.5 GeV2 and xb  =  0.35.

TABLE II: Polar angles 4> and qV of the incoming and scattered leptons, respectively, 
in the target rest frame for Q\  =  2.5 GeV2 and x b  = 0.35 with two different lepton 
beam energies cu.

u  [GeV] (j) [deg.] 4>' [deg.]

5.75 1 2 .6 39.9

11 18 28.2
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between 0 <  077 <  15°. Note tha t by fixing Q\  and x#, the product ujy =  Q I /2 M x r , 

which appears in Eq. (114) is also fixed and accordingly, we end up with the same 

077-dependence for both beam energies. For convenience, we set the angle between 

the lepton and nucleon scattering planes to ip — 0 , and arrive at the so-called in-plane 

kinematics. The polar angles of both incoming and scattered leptons are then fixed 

and given in Table II.

IV.4 TOY MODEL

Our simple model has the following properties:

•  We assume tha t the sea quark contribution is negligible. For tha t reason, the 

plus OFPDs in the parametrization (96) are equal to the valence OFPDs, H f  =  

Hyal and H f  = H j al, with the quark flavor /  =  it, d, and similarly for E f  and 

E f  distributions.

•  We assume tha t for all distributions the t-dependence factorize from the depen­

dence on other two scaling variables. The dependence of GPDs on the invariant 

t is then characterized by the corresponding form factors.

•  The ^-dependence of OFPDs appears only in the E f  distribution.

The parametrization of the unpolarized quark OFPDs is taken from Ref. [92]. 

Namely,

In particular, for the proton target the unpolarized valence quark distributions in the 

proton are given by [38]

H ’/ ( x , ( , t )  =  <  (x) F,„ («) /  2 , 

=  d f f ( x ) F u (t),

E T 'fo fc t)  =  <  t o  F2u (t) A  
E°/(x,Z, t)  =  d t f (x)Fu (t). (123)

u^11 (x) = 1.89a; 0-4 (1 — a: )3'5 (1 +  6 a;), 

dff1 (x) =  0.54a;- 0 '6 (1 — x )4'2 (1 +  8x ) . (124)

They closely reproduce corresponding GRV parametrizations [93] at a low normaliza­

tion point, — q\ ~  1 GeV2 [94].
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The u- and d-quark form factors in Eq. (123) can be extracted from the proton 

and neutron Dirac and Pauli form factors according to Fip(n) = QuF\_u(d) +  QdFid(u) 

and F2p(n) = QuF2U(d) +  QdF2d{u)- Furthermore, the proton and neutron form factors 
are related to the Sachs electric and magnetic form factors, see Eqs. (54) and (55), 

through

where the nucleon mass is M  ~  0.94 GeV. In the region of small t, both Sachs form 

factors are well described by a dipole fit,

with the param eter A2 =  0.71 GeV2 and kp =  1.793 and Kn = —1.913 are the proton 

and neutron anomalous magnetic moments, respectively. In the polarized case, we 

take for the valence distributions [95]

with the mass param eter m A =  1.03 GeV. The it-dependence in Eq. (127) corresponds 

to the ratio gA (t) / qa (t =  0). The polarized valence quark distributions in the proton 

can be expressed in terms of the unpolarized distributions in the following way [96]

where cos 9d =  [1 +  H0 (1 — x2) / y / x  ] 1 with H0 =  0.06. Finally, for the E f  distribu­

tion we accept the pion pole dominated ansatz,

G m p(ti) (t) ( 1

G mp (t)  Gmu (t) and GEn (t ) = 0, (126)

(127)

(128)

K al( x , U )

E p i x A . t )  =

The function F„ (/.) is taken in the form valid for —t M 2 [97],

(1 2 9 )

F*(t) = AgA (t =  0) M 2
(ml  -  t) /G eV 2 (1  -  t f  2 GeV2)2. ’
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where m v a  0.14 GeV denotes the pion mass and gA {t =  0) =  1.267. For the pion 

distribution amplitude in Eq. (129) we choose, for simplicity, its asymptotic form

f a  (u ) =  6 « (1  — u ) . (131)

IV.5 CROSS SECTION

Having defined the kinematics and described the simple model, in the following we 

compute separately the unpolarized cross sections for the Compton and Bethe-Heitler 

contributions to the DVCS process on a proton target using an electron beam. In 

fact, since the scattering amplitude consists of two parts, see Eq. (108), its modulus 

squared (and, accordingly the cross section) is given by the sum of three terms, 

namely, the Compton term, the Bethe-Heitler term and the interference term. Here 

we only consider the first two terms. Their cross sections are plotted for the in-plane 

kinematics against the angle 077 by taking the same kinematical point, Q\ =  2.5 GeV2 

and xb  =  0.35, however, for two beam energies, u  =  5.75 GeV and 11  GeV.

W ith the help of the momentum-space Feynman rules for QED we can immediately 

write down the T-m atrix for the pure Compton process. Denoting the polarization 

vector of the final real photon by e* (q2), we have

i T c = u (k') (i \e\ 7 *) u (k) ( ~ e2) el  (Q2) em) > (132)

or

T c  =  ^ - u ( k ' ) ' y uu ( k ) e l ( q 2}T^M, (133)
Qi

where Te m  is given by the expression (102). Then one should average the square 

of Eq. (133) over the initial proton and electron spins, and further sum it over the 

final proton and electron spins and photon polarizations. Note tha t this particular 

summation is performed using the Feynman gauge prescription, i.e. one can replace

Z ) el(Q2)^a{Q2) --- > ~9na (134)
7 polar.

by virtue of the Ward identity. As a result, we get a factorized expression,

f j r p  =  (135)
Qi
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in terms of the electron and hadron tensors. Neglecting the electron mass, the electron 

tensor simply reads

= 2 Kk'g +  kpk'v -  gut3 (k ■ k') (136)

The hadron tensor requires some algebra, however, if we define the convolution inte­

grals of OFPDs as a new set of functions,

w ({,«) ^  £ < 8 £ £ 3 * ^ ? ( » , « , * ) ,

£+(?,<) -  Y L Q ) f _ l ¥ z f V i o ) V ( ^ > .

£ + (e.«) -  Y . Q )  J_ t ( x _ ? + i 0 ) * 7  (x^ ' r> (137)

and, in addition, neglect terms O (t/q\)  and O ( M 2/qf) ,  then H ’q can be written in 

a compact form as

rf"/?    ̂'T'/*" (‘j'P 'i *n C ~  ~  2  ’EMyiiEM)

=  “ { [ I 1 -  0  ( H + l« +l*) -  (?  + 4^ )  l£+

- £ 2t ^  \£+\2 -  2£29* (H+*£+ +  n+*£+)

q$q$ (138)
ip -q 2) v" "  ‘ (p-92?

The initial overall factor of 1/2 in Eq. (138) comes from averaging over the initial 

proton spin. Substituting now Eq. (135) into Eq. (119) gives the unpolarized dif­

ferential cross section for the Compton contribution to the standard electromagnetic 

DVCS process

dAOf or 1 + x B { M / uj)

dxBdQ2dtd(f 167rQf M 2uj2 [2 +  ( M / uj)] x b  [y +  2xB (M / uj)]
rC±jtloiln  •2±jp^11C

(139)

Its dependence on the angle 077 is shown in Fig. 16.

A part from the Compton part, the Bethe-Heitler contribution can be fully calcu­

lable in QED with the knowledge on the nucleon form factors. The amplitude, which
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dtcrdidcEf^dtdp) [ib/GeV*]

0.03
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0.01

12
Syy [dE&]

FIG. 16: Compton cross section oc  plotted as a function of the angle Q-n  between the 
incoming virtual and outgoing real photon in the target rest frame for Q \  =  2.5 GeV2 

and xb  =  0.35 with w =  5.75 GeV (solid line) and ui = 11 GeV (dashed line) electron 
beam.

in contrast to T c  is purely real, emerges from two Bethe-Heitler diagrams shown in 

Fig. 11,

i T BH = u (A;') (i \e\ ^ (q2) (* le l ' f ) u (k) ( ( ^ T T ^ j5)

x ( - i | e | ) ( p ( p 2 , s 2)| Je m (0 ) |p (p i,f t) )

+u  (A;') (i |e| 7 ") — y p  (* M Y )  el  (ft) u (k ) (
(k -  q2y

x ( - i \ e \ ) ( p ( p 2, s 2)\ Je m  (0 ) |p(pi , f t)>-
. (ft -  ft)"

(140)

Using the relations, u (k ') 7 M =  2u (A:') k'^ and fiy^u (k) = 2k^u  (p ), we simplify the 

numerators of both fermion propagators in Eq. (140), and obtain for the T-m atrix

13 V  f o f  +  W trf  , — rf  f c f  +  2? k F
T  b h  =  t f - e ; ( q 2 ) u ( k ' )

2 (k> ■ q 2 )

x  ip  (pa, f t ) l  J v M (o )  Ip (pi, f t ) )  •

+
- 2  ( k  • g2)

it (A:)

(141)

The m atrix element of the proton transition current, see Section III.2, is parametrized 

in terms of the usual Dirac and Pauli proton form factors,
-A"

(P (P 2 ,S2)| J v ( 0 ) | p ( p i , S i ) )  =  u { p 2 , S 2 ) Fip  (<) 7j/ -  F 2p (t) Wv \T
2 M

« ( p i , f t ) .
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(1 4 2 )

The spin-averaged square of Eq. (141) is again written in terms of two tensors,

(47Tq:) v q  B H
- J j o t t I I . .It 1 |2

I l b h  I - j p  J j B H r i vQ ■

Here the hadron tensor reduces to a simple expression, namely,

n ™  = \  Y ,  (p  (pa> S2)\ J„M (o) Ip (p i , si)) (p (pa, «2)l JfM (o) Ip (pu »i ))"

(143)

=  t

S i , 82

9vfi
r„rp

+4 P\v  +

t
r,

[fl» (*) +  (Of

2 .
, rf> Pie + j (144)

and the lepton tensor is

y  ^ 7 “ +  2k'“Y  7 -  4 ,l“ -  il"k“
2  (A:' • q2) 2  (A: ■ q2)

x ft 

2

7^ h i  a +  2 7 ^  7/i ^2 7  ̂ ~  2 V r*
2 (A:' • q2) 2  (A; • g2)

(k' ■ q2) 

d

'kuql + kP<& -  (k • q2)\ +  -  gv0 (k! • q2)]

(k ■ q2) [kvk'P +  k^k'v +  2 k ,vk ,f>]
(■k' ■ q2) (k ■ q2)

-  (k' • q2) [ikuk,f> +  k^k'u + 2kvkp]

+ {k ■ k!) [kvql  +  k?cf2 -  k'vq2 -  k '^ 2 +  2kv^  +  2k^k ,v\ 

+ 2 gvP (k ■ k1) p '  • q2) -  (k ■ q2) -  (k • A:')]] •

Finally, the unpolarized differential cross section reads 

d^C bh  Of* l~\-XB (M/ui)

(145)

dxBdQ\dtdqj 167rt2 M 2uj 2 [2 +  ( M / u j ) }  x B [ y  + 2xB ( M / u j ) }

T14/3 TTBH 
2 BH v/3 ■

(146)

The Bethe-Heitler contribution is illustrated on a logarithmic scale in Figs. 17 and 

18. We plot the la tter for a wider range in 077 to be able to see both poles a t the 

angles (j) and <j>', given in Table II. The poles corresponds to the situation, when the 

outgoing real photon is collinear either with the incoming or scattered electron. In 

Fig. 19, a logarithmic plot of both contributions together is shown for uj =  5.75 GeV. 

The comparison of the results shows tha t the Bethe-Heitler signal is well above the
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d,<TEHl(dt&}$dtdp) [rfj/GfeV4]
100

0.1

0.01

FIG. 17: Bethe-Heitler cross section a bh plotted as a function of the angle 077 between 
the incoming virtual and outgoing real photon in the target rest frame for Q\  =  
2.5 GeV2 and xb  =  0.35 with lo = 5.75 GeV (solid line) and co = 11 GeV (dashed 
line) electron beam.

Compton one. This is easy to see just by comparing the factorized expressions (135) 

and (143), and recalling tha t The presence of 1/t2 in the Bethe-Heitler part

enhances its contribution with respect to the Compton part, which is proportional to

One way to minimize the contamination with the dominating Bethe-Heitler pro­

cess is to find the kinematical regions, where the Bethe-Heitler contribution is sup­

pressed, or at least comparable with the Compton contribution. Another way is to 

exploit the interference between the two processes. This approach is based on the fact 

that T c  has both real and imaginary parts while T B h  is purely real. By incorporating 

the interference terms between the Compton and Bethe-Heitler amplitudes, we can 
disentangle K Tc and S T o  In particular, using the positron beam in addition to the 

electron beam, one can measure the so-called beam-charge asymmetry, which is sen­

sitive to the real part of Tc- Furthermore, measuring the single-spin (or alternatively 

the beam-spin asymmetry) by considering electrons with opposite helicities gives ac­

cess to the imaginary part of T c . First experiments of this kind were performed at 

Jefferson Lab [98] and at Hermes [99]. As a result, we can project out independently
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FIG. 18: Bethe-Heitler cross section obh plotted as a function of the angle 077 between 
the incoming virtual and outgoing real photon in the target rest frame for Q\  =  
2.5 GeV2 and xg  = 0-35 with oj =  5.75 GeV (solid line) and u  = 11 GeV (dashed 
line) electron beam.

Jo-K dcjfi& tdp)  [rfj/GsV4]

0.001

o.cum

FIG. 19: Compton cross section a c  (solid line) and Bethe-Heitler cross section o Bg  
(dashed line) plotted as a function of the angle 0 77 between the incoming virtual and 
outgoing real photon in the target rest frame for Q\  =  2.5 GeV2 and x B = 0.35 with 
u> = 5.75 GeV electron beam.
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both parts of the amplitude and accordingly, probe different linear combinations of 

OFPDs.
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CHAPTER V

INCLUSIVE PHOTOPRODUCTION OF LEPTON PAIRS

V .l INTRODUCTION

By the inclusive photoproduction of lepton pairs, see Ref. [100], we refer to the 

reaction, in which a high-energy real photon 7  (with the four-momentum q) scatters 

inelastically from a nucleon N  (F) emitting a pair of leptons (electrons or muons) 

with momenta k and k',

The process is shown in Fig. 20, where again X  labels a system of hadrons produced 

through inelastic processes. The reaction (147) is a crossed channel to inclusive virtual 

Compton scattering,

which was originally studied in the parton model in Ref. [101].

In the framework of the QCD parton model introduced in Chapter II, the elemen­

tary photon-parton scattering subprocess can be viewed in two different ways. The 

incident photon can either scatter off a parton or split into a lepton pair. Thus we 

have two contributions to the process at the amplitude level. According to the first 

scenario, known as the Compton contribution, a heavy time-like photon, 7 * (q') with 

q'2 > 0, is produced and decays eventually into a pair of leptons, as shown in Fig.

(147)

e + N  — 1 e +  7  +  X, (148)

y(q) m

t(k')

N(P)

FIG. 20: Inclusive photoproduction of lepton pairs.
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FIG. 21: Compton contribution to the inclusive photoproduction of lepton pairs in 
the parton model.

y(q)

y'(q-q')

qa(p) qa(p')

FIG. 22: Bethe-Heitler contribution to the inclusive photoproduction of lepton pairs 
in the parton model.

21. We discuss this particular subprocess (see also [102]) in Section V.2. The second 

scenario is illustrated illustrated in Fig. 22 and corresponds to the Bethe-Heitler 

mechanism. It will be studied in Section V.3. The real and virtual photons can be 

interchanged, and hence both the Compton and Bethe-Heitler contributions consist 

of two Feynman diagrams.

V.2 COMPTON SUBPROCESS

The invariant m atrix element for the Compton part comes from two Feynman dia­

grams shown in Fig. 21. Neglecting the parton masses by taking p2 = p'2 =  0, we 

have
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x {~iQa |e| 7 ") ev (q) u (p)

+u (k) (* \e\ 7 A) v (k') u (PO le l T") <7 (q)

x ( - i Q a | e | y * ) « ( p ) ,

* C 3»—

(P -  ?0
(149)

where (9 ) with g2 =  0  denotes the polarization vector of the initial real photon. 

By simplifying the numerator of each propagator in Eq. (149), we obtain for the 

T-matrix

M 3 QL-
r,r2 -u (k) (k') e„ (q) u (p')

Y  i * f  +  2 7 V  
2  (p-q)

- i v i Y  +  2 7 V u(p). (150)
- 2  ip' • q)

We will assume that both the nucleon target and the photon beam are unpolarized. 

Then the square of Eq. (150) has to be averaged over the initial parton and photon 

polarizations, and further summed over the final parton and lepton polarizations. It 

can be written in a factorized form in the following way

2 (47TOtfQi C ttW
2q« pp c  ■| T c r  =

The lepton tensor is

L — A
HP +  K K  ~  Sw  [(* • *') +  ] .

(151)

(152)

where m  denotes the lepton mass. The hadron tensor, on the other hand, is more 

complicated. In the Feynman gauge, it reads

HcP

Ac

Bc

=  2
A c  B c

I y . v 9  IXp-qf  (p'-qf (p-q)(p'-q)\  ’
( p  • q) \p,flqp+ p V *  -  f p ip' • ? ) ] ,
( p • q') \plp,pp +  p,pp>i\ +  ip' ■ q) \ppq'p +  Ppq'p -  2p /V ]

J ‘2

Cc =

+  (p • p') [2pppp -  j f q 'p -  ppq'p] +  —  [-p lfipp -  p'ppp +  gpp(p • p')}

-g™  (p • q') (p' • q' ) ,

ip  ■ q) \p,flq'p +  p'pqlfl -  p'lip p -  p ^ p X  +  ip' • q) [2p p'pp -  p pq'p -  p pq'p] 

+  ip  • p') [~ p tlqp -  Ppqp -  Ppq'p -  ppq'li]

+gpp [2 (p • p') ip • q') +  iq ■ q') (p • p') +  (p • q') ip' • q) -  (p • q) ip' • q')}.

(153)
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At this point, it is convenient to introduce the Mandelstam variables for the scattering 

subprocess at the parton level, namely,

s = (p + q)2 = ip' +  q ' f  ,

t = (p' -  p f  = (q' -  q f  ,

u = {q' ~  p f  =  {p' -  q f  ■ (154)

The four-momentum conservation implies that s +  t +  u =  q12. W ith the help of Eq.

(154) one can immediately verify the gauge invariance of the hadron tensor,

J2
q',q'PHc = 2

sq'~ — q'A — st + q'2t + qa u W 2 ~  &) (v t  +  q'2t j  — q'H

su (s — qa ) +  u 2 (q12 — u) — id  (q'2 — u)
su

=  2

=  0 .

—t — t  +  2t

(155)

In addition, by setting q12 = 0 in Eq. (153), in other words, the outgoing photon now 

becomes real, and also replacing the lepton tensor with the metric tensor —g^p, we 

easily recover the high-energy limit of the usual Compton scattering process,

u s
7 +  7  
S  U

(156)

To calculate the unpolarized scattering cross section, we should integrate Eq. 

(151) over the Lorentz-invariant phase space defined as

dU (27r)4 (p + q — p' — k — k')
d3p' r d3k ' d3k'

_(2tt)32 Ep> (27t)32u; (27t)32 uj'
(157)

in a specific frame of reference, and divide the result of integration by the flux factor. 

The latter is written in the invariant form as 2s. Since the brute-force contraction of 

tensors L^p and H^f  is somewhat tedious, we use a little trick instead. One notices 

that L pp depends only on the momenta of the final leptons. For tha t reason, we can 
first integrate the lepton tensor over k  and k', then contract it with H^f,  and finally 

perform integration over the remaining momentum p . Switching to the symmetric 

momentum variables (i.e. the lepton pair four-momentum, q' =  k+k' ,  and the relative 

four-momentum, k =  (k — k ') / 2 ) and, with the help of the formula

d?k
2u>

J  dAk <$+ {k2 — m 2) , (158 )
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where 5+ (k2 — m 2) =  S (k2 — m 2) 9 (kQ) , writing the three-dimensional Lorentz- 

invariant volume in the momentum space as the four-dimensional integral, we find

J  d4q' 5 ^  (p +  q — p' — q') j  J  dAK 5+ (q'/ 2 +  k )2 — m 2

x<5+ (q'/2 — k )2 — m 2̂ p-p (159)

The lepton tensor is now equal to

,/2

-q^qp -  2k i1k p -  gw  — (160)

The integral over the relative momentum on the right-hand-side of Eq. (159) has a 

tensor structure, and it can be constructed out of the tensors gpp and q' q' and scalar 

functions of the invariant mass of the lepton pair q'2. Moreover, the Ward identity 

implies th a t this integral must assume the form

f d+ [(5 '/2  + Kl2 -  m2] tr  \(q'/2 -  /c)2 -  m2] = <I> (q‘) [q"glv -  %q̂ \ ,
(161)

where the scalar function $  (q'2) is regular (i.e. it has no pole) at qa =  0. Next we 

calculate $  (q,2). It is a function of a Lorentz scalar and thus frame independent. As a 

reference frame, it is convenient to choose the center-of-mass frame of the lepton pair. 

In this particular frame, the symmetric momenta are simply given by q' =  (y/q®, o) 

and k =  (0, it). After contracting both sides of Eq. (161) with gW, then using

J  dx J  dy 6(x)S(y) — 2 J  dx J  dy 8(x + y)6(x — y), (162)

and finally integrating over k (the angular integration simply gives 47r), we get for 

the scalar function

$  (q^  [ ( ^ / 2  +  « ) 2 -  rn2] d>+ [(q'/2 -  k )2 -  m2] [3q,2/2  + 2/c2]

I  d (|/c|2) J  dKo S+ 2y/qV Ko 6+ [q12/ 2  +  2 /cg -  2  | £ | 2 -  2 m 2]

3 q 
IQtt 
3 qa

x |/c| [3^/2/2  +  2 /Cq — 2 \it\ 

2irq'2 +  2m 2
r/2

4m2
.,12 (1 6 3 )
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Note that the scalar function $  (q,2) < 0. For the sake of completeness, it is worth 
showing th a t generalizing the calculation of $  (qn ) < 0  to any reference frame indeed 

yields the same result. For instance, integration over kq gives

$  (</2) ~  J  d(  cos'd) J  d ( |« |2) |« |6 + <?/2/ 2  — 2  |/c|2 ^1  — q' cos2 — 2 ra2

x |3 <7'2 / 2  -  2  \FZ\2 ^ 1  — |q cos2 ’d /q ^ j (164)

where d  is the angle between vectors k and q'  in the lepton scattering plane. Further-
2more, integrating over |/c| together with the substitution z = q

the integral of the type
/ • | 9 ' | / < 7 o  (

•/-Io'I/Ga (  ̂ —

dz

cos,d/qlQ produces 

(165)
r\/-e, ( i - z 2f r‘

which leads to the same result for <E> (q12) given by Eq. (163).

Thus the double integral (159) reduces now to

/ tw / ^ c 7 (̂4)(p + q ~ p>~ k ~ k'')Lw =  J diq' 5(4)(p  + q - J - q')
x $  (qa ) [q’% p -  q ' ^ ]  . (166)

Contracting the tensor in the integrand with H^f  can be easily carried out. In terms 

of the subprocess Mandelstam variables, we obtain

2  qa t
q'29»P - q ' M H c  = V 2

u s 
t  +  t ! - s u su

(167)

Note tha t the second term on the left-hand side of Eq. (167) gives no contribution 

due to the condition (155). After combining the result of contraction with Eqs. (151) 

and (157) and using Eq. (158), this time for the momentum p', the unpolarized cross 

section for the Compton subprocess reads

2q'H]
: $  (qri ĵ 4q12 u s

~  +  T +
S  U S U

(168)

The delta function M4) (p + q — p' — q') can be trivially integrated over p'. The final 

integral over q' is performed in the photon-parton center-of-mass frame. Since we 

want the cross section <Tc to be differential in the invariant mass of the lepton pair, 

an extra substitution

J  d'q' = J  fi V  J  d M ^ ir S (V2 - (169)
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is being made. Then

o c  =  t t  J  dMpair j  d (cos 9cm) J  d ( |g ' |2)  J  dq'0 5+ (M 2air +  s  -  2y/S q'0)

x 8 (q% -

x *  ( K i r )

-  M:pair
i _ , | l  1 (4 i r a f Q i

s (2iry M 2 ■lv±pair

“ +  £  +  2Mp ^ t
s  u  s u

(170)

where 0cm is the angle between the directions of the incoming real and outgoing virtual

photons in the photon-parton center-of-mass frame. The center-of-mass energy E cm

is equally distributed between the photon and the parton and hence the invariant
2

s = E 2m. In the differential form, after integrations over q'Q and q , we have

(far

d M paird  (C0S 0cm)
7r

( s - M 2aiy  

^ 4s

$  ( m 2 ■ )\  pair J

1 1 (4tr a f Q l
8 (27T)5 K i r

“ +  £  +  2M Pair  ̂
s  u  SU

(171)

Finally, replacing cos 0cm by the invariant t  through the relation t =  M 2air — 

t/S (q'o -  \Jqo -  M 2air cos 6cm), where q'0 = (s +  M 2air} / 2y/§, we arrive at the par- 

tonic cross section

d f o r

d M pairdt

-  _  /r2 o W \  L  , 2 m 2

V 3 A  K a il

s 2 +  u 2 +  2 M 2aJ
h Am2

M 2 • s2M 2 ■lv±pair ° lv±pair

SU
(172)

We calculate now the cross section for photon-nucleon inelastic scattering with 

the help of the parton model master formula, see Section II.3. The process cross 

section is obtained by summing Eq. (172) over all types a of charged partons and 

all possible longitudinal momentum fractions x,  where the single summands must be 

weighted with the proper PDFs f a/N (a;)- Namely,

(173)

a [ 7 ( q ) N ( P ) ^ l - ( k ) l + ( k ' ) x }  = 

Y , J 0 dx f*/N (x ) °  7 (?) Qa (xP)  -> r  {k) l+ (k ') qa (p ')] ■

In addition, the subprocess Mandelstam variables are expressed in terms of the process 

variables. The invariant t  is identical to t = (q' — q)2 . Neglecting the nucleon mass, 

the invariant s  is simply given by s  =  x s ,  where s  =  (P + q)2- Accordingly, the
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Mandelstam invariant u =  M 2air — t — xs. Recall tha t by virtue of the vanishing 

mass of the scattered parton, p '2 =  {xP  +  q — q')2 = 0, the longitudinal momentum 

fraction coincides with the Bjorken scaling variable,

1  =  " 2 [ P • ( „ - „ ' ) ]  - I B ' (174)

Substituting Eq. (172) into Eq. (173) ultimately yields the Compton differential 

cross section for the inclusive photoproduction of lepton pairs in the parton model

d?ac ( r fN -> P l+ X )  
d M 2airdtdxB

= T  [  d x S ( x - x B) fa/N (x)
a J 0 

* \

M 2 •pair  >

i  -

4m2

x

2a3

M 2air (xs)2M 2air

(xs)2 +  ( M 2air - t - x s ) 2 +  2M 2airt 

xs  (xs  + t -  M 2air)

2m 2 \
1 + M 2 ■ \lv l "p a iT  /  \

4m2

Mpair (xBs) M 2â r

X
(xBs)2 +  (M 2ajr -  t -  x Bs) 2 +  2 M 2airt 

x Bs ( x Bs + t -  M 2air)

X Qtfa/N (xB) ■ (175)

V.3 BETHE-HEITLER SUBPROCESS

The Bethe-Heitler amplitude is calculated from the Feynman diagrams shown in Fig.

22. Adopting the notation of the preceding subsection, we write

i Tbh  =  u (p') ( iQa M 7A) u(p)  I 2 ) u (k) (i |e| 7 **)

x (t |e| Y )  ev (q) v (k ')
(q -  q'Y

+ u  (p') { - iQ a  \e\ 7 A) u (p) ( ^  2 ) u (k) (i |e| 7 ") eu (q)

(q — k') — m?

01 -  q'Y
x (i | e| Y )  v (k')

i ( ) i -  4 + m )  

(k — q)2 — m 2 
(176)

or

T  bh =
|e|3 Qa

U (p ') lp,u (p) 61/ (q) u (k) Y  4 Y  -  2 Y k ' v 
~ 2 ( k ' - q )

- Y  i Y  +  2kvY
- 2  (k • q)

v ( k'). (1 7 7 )
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Again, after averaging \Tbh |2 over the polarization states of the initial particles and 

summing over the polarization states of the final parton, we have for the spin-averaged 

square of the amplitude

t W  =  (178)

A straightforward calculation of traces gives 

. A b h  B b h  Cbh
~  [ ( k - q f  ( k ' - q f  ( k - q ) ( k ' - q ) \ ’

A Bh =  (k - q ) [k,pqp +  k'pqp -  gpp ( A '  - 9 ) ]  -  m 2 [ M *  +  kpk'p -  gpp (A  - A:')]

+ m 2 [k'p‘qp +  k!pqp — gw  ( k' - <?)] — m 2 (k - q) gpp +  m 4gpp,

B bh =  ( A '  ■ q) [kpqp +  kpqp -  gpp (k ■ ? ) ]  -  m 2 [kpk'p +  kpk!p -  gpp (A  ■ k')}

+ m 2 [kpqp +  kpqp — gpp (k • 9) ]  — m 2 ( k' - q) gpp +  m 4gp‘p,

C bh =  2 (A  - k') [kpk'p +  kpk'p -  gpp (A  ■ k')} - ( k - q )  [kpk'p +  kpk'p -  2 k'pk'p]

-  (k! ■ q) [kpk,p +  kpk'p -  2 kpkp] -  (k ■ k!) [kp‘qp +  kpqp +  A V  +  A V ]  

+ 2gpp (k ■ k') [ ( A  • q) +  (k' ■ q) -  m 2} -  2m 2qpqp (179)

for the lepton tensor and

h Ip = 2  [puP'p + PpP^ -  gpp (p ■ p')] (180)

for the hadron tensor.

Recall now th a t the expression (178) has to be integrated over the final-state

momenta constrained by a four-momentum delta function, see Eq. (157). However,

before contracting tensors, we perform integration of L^H over both lepton three- 

momenta. One defines this particular integral as

« - k - k r L ° « '  (181)

which, with the help of the formula (158), turns into

C bh  =  J  d4k J  d4k' 6^  (q' — k — k!) 5 +  ( A 2 — m 2 )  (k'2 — m 2 )  L^H.

(182)

We evaluate C ^ n in the center-of-mass frame of the lepton pair. Unfortunately, due 

to presence of a large number of terms in the lepton tensor, the calculation requires
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more algebra. Let us demonstrate the method by calculating only the integral of the 

first term in the tensor (179), namely,

=  J  J  d4k' 5 ^  (q1 — k — k') S+ (k2 — ra2) <5+ [ka — m 2')

Integration over k' leads to

=  J  d4k 8+ (k2 — ra2) 5+ (q1 — k )2 — m 2

—4qp J  d4k 8+ (k2 — m2j 6+ (q' — k)2 — rri

Ak'^qP
(k-q).

(183)

. (^•9) .
jfe"

(k ■ q)
(184)

For simplicity, we choose the incident photon momentum along the 2 -axis so tha t 

q =  (<7o ,0 , 0 , q0). The four-momentum of the outgoing lepton is k = (jco,k±,kz ĵ.

Accordingly, the calculation of the first integral in Eq. (184) (we will call it the

function / 0 for later convenience) goes as follows

70 =  7r J  dkz J  d ^ k ±   ̂J  dk0 8+ (k% — k± — k2z — m 2  ̂ 5+ (q12 — 2\fq® A;0̂

x
9 o  %  ~ K )

1r /V*?'2/4-—  fT5  On J-
dk.

ZVT1 ?o ■'-vV 74-m2 kz -  y / (p /2

7T
2 (q-q')

In
1 +  ^ 1  — 4 m 1/qn 

1 — \ / l  — Am2/q'2
(185)

Note that we have expressed the initial photon energy in the invariant form, q0 = 
(q - q') / y/q71. The integral over k in the second term of Eq. (184) has a Lorentz 

vector-like structure and can be, in general, written as

J  d4k 5+ (k2 — 77i2) 5+ (q' — k)2 — m 2 = h f f  + h q * .  (186)
. (k-q)

The scalar functions IY and I2 are determined by solving the system of two equations,

J  d4k 6 + (k2 — m 2) 5+ [(</ — k )2 — m 2] =  (q • q') / 2, 

j a 'k  s' (k2 -  m2) (5+ [(>/ -  k f  -  m2] =  [(«•«')U +  <Ph

(1 8 7 )
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obtained from contracting both sides of Eq. (186) with qM and q' ,̂ respectively. After 

some algebra we find

h  =

7r
2 ( « •« ' )

' 1 -
4m2

77T >

2 («•?')
[4  -  2/*]

7T̂ ,/2

In
1 +  \ / l  — Am2/q1 

1 — ^/l — Am2/q'2
- 2 a I -

4 (g • g' ) 2

The term  (183) now becomes equal to

£Sir(i) = - 4 W  +  4 ( / „ - / 2) 9V -

4m2
(188)

(189)

We repeat this procedure for all the remaining terms in the lepton tensor (all the 

integrals with the corresponding scalar functions are presented in Appendix B), and 

combine them together according to their structure. The final expression for the 

lepton tensor then reads

27T
^  ^  [AbhQ^Q^ +  &BHqltJQ>p + Cbh (qpq'p +  q'pQp) + 'DBh9p‘p] ,

(190)

where the coefficients 

2  qn
A b h  —

,/6

+
8  m 2q‘ Am4q12 6  m 2q14 Am2

U « ' « ' )  ( 9 ' 9 ' f  ( 9 '9 ' ) 3 ( 9 ' 9 ' ) 2 (9 •9')3 ( 9 -9 ' )3 ( 9 ' 9 0 j

1 — J l  — Am2/q'2
x In ------ ,

1 +  y l  — Am2/q12

Aq16 2 m 2q'4 1
+ +

1(9-9')  ( 9 - 9 ' ) 2 " ( 9 - 9 ' ) 3 +  ( 9 -9 ' )3J

4m2
Bbh — 

Cb h  =

T -
4m2

■,12

(9 • 9') 

-2  +

In
1 — \J 1 — Am2/q'

1 +  ^ 1  — Am2/q'2_
+

2?'2

F T ) '
1

4m2 
n!2 ’

„/4 6 m 2qr2 Am 2 Am 4
2 77 Ia2 +  , _ ,N +  , ,N2

X In

+

( ^ • 9 ' )  (q-qf  (q-QT ( 9*90 (Q-Q1) .
1 — aJ i  — Am2/q'2 

1 +  — Am?/q12

6  q12 Aq'4
- 2  +

2  m 2q2 „/2 1

(9 -9 ' )  (9-9 ')  (9 • 9') .
f l -

4m2 
TIT’
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'Dbh — 2 { q - q ' ) - 2 q a +
2„>2

+
2mjSq Am

+ 2 ( q . q l) - A q ,2+ 7̂ w +

(■q-q0 (q-q') (q-q').
2 m 2q ^

In
1 -  \J 1 -  Am?/qn

1 +  ^ /l — Am2 /  qr2 _

'1  -
4m 2 
„/2 1 (1 9 1 )

(q - 9') (? • ?').

are scalar functions of the invariants m 2, qn and (q • q') =  (q12 —t ) / 2 .

For the sake of completeness, it is worth noting that the same method can be 

applied to compute the integral of the lepton tensor, Lpp = A [kpk'p + kpkp — g ^ q 12 /  2̂ , 

given by Eq. (152) (note tha t (k ■ k') +  m 2 =  q12/ 2), over the final lepton momenta 

for the Compton subprocess, namely,

Cpp =  J  d4k J  dAk' 6 ^  (q1 — k — k') (A;2 — m 2J S+ [k!2 — m? j  Lpp.

(192)

Using (q1 — k — k') to integrate over k' and then writing each term  separately we 

get

£%  = 49p J  dAk S+ (k2 -  7n2) 5+ [(?' -  k f  -  m2] kp

+Aq'fl J  dAk <5+ (k2 — m 2) 5+ (q' — k)2 — m 2 kp

—8 J  d4k 6+ (A;2 — m2) 5+ [(</ — k)2 — m 2 kpkp

^ g ^ q ' 2 J  d4k 6+ (k2 — ra2) 5+ (q' — k)2 — m 2j . (193)

These integrals can only be constructed out of a four-vector q' and a metric tensor, 

accompanied with the proper scalar functions of qn . One can immediately discard 

the first two integrals. They are both of the form q’pq'p and, since Eq. (155) holds, 

they give vanishing contribution, when contracted with H%f. Moreover, we write the 

third integral as

J  dAk 6 + (k2 -  m2) 6 + [(?' -  k)2 -  m 2] k^kp = N +  N 2gpp. (194)

Contracting both sides with q,flq,p and gpp and evaluating the integral, we find the 

solutions for the scalar functions

N x =  

N 2 =

7T
2q®

7T
~ g \

f l -
4m2

V2~ q12 ~
m

~,I2 (1 9 5 )
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Again, due to the gauge invariance of H qP only the term N 2gw  survives. Lastly, the 

final integral in Eq. (193) can be read off from Eqs. (187) and (188),

J  dAk <5+ {k2 — r a 2 )  5+ ( q' — k)2 — m 2

By collecting terms, Cpp reduces to

c% =  ( ~ m  -  2<f) gvp

7r 4m2
na  ■

(196)

(197)

which is identical, apart from the vanishing contribution q'pq'p, to the expression (161).

Next we contract Eq. (190) with the hadron tensor (180) and follow the steps 

from Eq. (168) to Eq. (172) leading to the Bethe-Heitler differential partonic cross 

section, expressed in terms of the subprocess Mandelstam invariants 

d?&BH * » 1
dMpairdt

-S/inns  +  T a u t (198)
s2t2 ( M 2air -  t)

The new coefficients are given by £BH =  A bu +  B bh + 2Cbh  and T bh =  2V Bh 
together with the replacement q'2 —» M 2air, namely,

£ b h  —
AM* ■ M 6 •p a i r  _|_ p a i r

16 m 2
+  7------rr +

{q ■ q' )  (q • q' )  (q • q1)

8  m 4

20m 2M 2air Am4M 2aiT | 6 m 2M 4air

(q • q'Y (q ■ q') (q ■ q')

Cq-q' )  ( q-q' ) 2 .
x In

1 -  -  4 m y  M lpair

F bh  =
9M 4

4 ( , V )  -  4M V  +  +

.1 +  sj  1 -  4m2/A7pQirJ

4 m 2M 2„,v 8 m 4“pair

x In

(ff • 9 0

1 - ^ 1 -  4m2/M 2air~ 

_ 1  +  ^ 1  -  4 m 2/ M 2air_

(9 • 9') (9 • 9')

+ 4 (9  • ?') -  8 M 2 ir +
4M 4 • 4m 2M 2 • 1

\
l  -

4m2 

M 2 • '
(199)

(« -« ') («•« ')

Finally, with the help of the master formula (173), we obtain the Bethe-Heitler con­

tribution to the inclusive photoproduction of lepton pairs in the parton model 

d3a BH ( jN l - l + X ) ,  1
dMpaird tdxB

— a
{ x B s f  t2 ( M 2a i r  -  t )  

x  \^ b h  ( x b s  +  t — MpaiYj x B s  +  

X ^ Q l f a / N i x B ) .  (200)
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V.4 INTERFERENCE TERMS

We turn our a tten tion  to  th e interference betw een  the C om pton  and B ethe-H eitler  

subprocesses. Four Feynm an d iagram s give rise to  eight interference term s. T hey  all 

are ca lcu la ted  in a sim ilar way. For illu stration , let us consider th e first tw o term s. 

Up to  a com m on factor we have

lT iI2 ~  ^ +  ^  ^  Tr ^  +  m) 7#x -  m ) lv  ^  + m  ̂7?] ’

|T 2 |2 ~  +  f ^ + m ) ^  .

(201)

A fter eva lu atin g  b oth  second traces in th e above expressions, we observe th a t th ey  

differ, apart from th e sign , by th e interchange k  <-»• k ' . T hus in tegratin g  th e sum  o f
■ 7*2 "j . 2
|T i| and |T 2 | over th e final lep ton  four-m om enta yields zero,

J  dAk j  d Ak'  (jxTj5 +  jT^j5)  =  0. (202)

B y  th e sam e token, th e rem aining six  interference term s m u tu ally  cancel each other, 

after b ein g  in tegrated  over k and k' .

In fact, there is a m ore elegant way (w ithou t cum bersom e and exp lic it ca lcu la tion  

o f traces) to  see th e cancellation  o f the interference term s. N ote  th a t one needs to  

com pare th e  follow ing two double integrals

J  dAk J  d Ak'  J(4) (g' -  k -  k')  * Tr [(# +  m)  ^  (# ' -  m)  7 „ ( j -  fC +  m)  7 *] ,

J  d Ak J  dAk'  5 (4) (q' -  k  -  k;') Tr [(# +  m)  7 ^ (jC - m ) r f  ( f t -  i  +  m )  7 „] .

(203)

D ue to  th e presence o f th e d e lta  function , one o f  th e  integrals, e.g. th e integral over 

k 1, can  be tr iv ia lly  carried out. In addition , u sing  the fact th at th e trace does not 

change under th e  cyclic perm utation , Eq. (203) can be rew ritten  into

/  [(g; - k )  - g ]1 * P ~  m ) P  +  +

I  d k̂ (A^g)1* ^   ̂ ^  7?  ̂+  7" ^  +  ' 2̂°4^
T ransposing now th e trace in th e first integrand, and then  perform ing th e  m om entum  

sh ift, k  =  q' — k,  th is integral turns into

J  d Ak  ^ 1 ^  Tr ( / -  ^ +  m ) T 7 fT ( ^ -  ^ +  m ) T 7 j ( ^ - m ) T 7 j  . (205)
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Using the property C j ^ C ^ 1 =  - 7 J ,  where C  =  r / 2j °  represents the charge conjuga­

tion operator, and further permuting the last two factors under the trace to

the left side, we convert the integral finally into the form

-  J  dAk  ^ - y Tr [7/i ( / -  ^  -  m ) ( j t -  m) 7 * ( j t  +  m )] . (206)

The latter is, apart from the sign, identical to the second integral of Eq. (204) and 

therefore, the two integrals exactly cancel each other. This result of cancellation is, in 

general, known as the Furry’s theorem. It states th a t Feynman diagrams containing 

a closed fermion loop with an odd number of photon vertices can be omitted in the 

calculation of physical processes [103]. It should be pointed out, however, tha t the 

cancellation of the interference terms happens only after integration over the momenta 

of the final leptons. These terms can still be accessed if one measures, for example, 

the angular distribution of the lepton pair.

V.5 KINEMATICS

As the Bjorken scaling variable xb  tends to zero, both the Compton and Bethe-Heitler 

differential cross sections, see Eqs. (175) and (200), become singular. Nevertheless, 

the following kinematical constraint

s - M 2pair > { q - q '  + P ) 2 >  M 2 (207)

holds, where M  stands for the nucleon mass. Thus, in the laboratory frame, where 

the real and virtual photon momenta are k = (ui,kj  and k' =  (oo',k^, respectively, 

and the nucleon momentum is P  = (M , o), the variable xb  satisfies

1 , X
xb  > ----- 7---------------------x— • (208)

1 -  (2 Mu> -  M ^ r) / t

For the invariant momentum transfer t we have

t  =  M pair -  2w ( y  -  -  M P^r COS 0r r )  > (209)

where 0 77 is the scattering angle, i.e. the angle between the directions of the initial 

and final photons.

We consider a proton target and the muons as the outgoing pair of leptons and 

thus we have M  ~  0.94 GeV and m  ~  0.106 GeV. In Fig. 23, the Bjorken scaling
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FIG. 23: Bjorken scaling variable xb  plotted as a function of the angle Q~n  between the 
incoming real and outgoing virtual photon in the target rest frame for u)' =  10 GeV 
and MpaiT =  3 GeV with co = 40 GeV photon beam.

variable given by Eq. (174), is plotted against the angle #77 for fixed values of the 

incoming photon beam energy, uj =  40 GeV, the energy of the outgoing virtual 

photon, u '  =  10 GeV, and the lepton-pair mass, Mpair =  3 GeV. We find 0.49 < 

xb  <  0.96 for the scattering angles 0 < 077 < 15°. In this region of x b , the valence 

quarks play the dominant role, in particular the u-flavor contribution, as shown in Fig. 

25. Next we plot the angular dependence of the invariant t for the same kinematics, 

see Fig. 24. Due to high energy of the photon beam, rather large values of t are 

expected, namely, 27.85 GeV2 <  — t  <  53.85 GeV2. It is im portant to note tha t 

our description is not limited only to the small invariant momentum transfer, like in 

the case of DVCS kinematics discussed in Chapter IV. In contrary, it works for any 

kinematically allowed value of t.

To estimate the cross sections, we use a simplified parametrization of the unpo­

larized valence quark PDFs in the proton, given by Eq. (124), together with the sea 
quark distribution,

sea(x)  =  0.5aT° '75 (1 — x)7 , (210)

taken from Ref. [38]. These are, however, the valence distributions for the u- and 

d-flavor components in the proton, respectively, and the sea distribution in the proton
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FIG. 24: Invariant momentum transfer t  plotted as a function of the angle 077 between 
the incoming real and outgoing virtual photon in the target rest frame for u/ =  1 0  GeV 
and Mpair =  3 GeV with uj =  40 GeV photon beam.

FIG. 25: Unpolarized valence quark distributions for u-flavor (bold solid line) and 
d-flavor (solid line), and the sea quark distribution (dashed line) in the proton.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7 4

dPa-UdM ^/M dxB) [ptyGeV4]
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FIG. 26: Compton cross section <Jc (solid line) and Bethe-Heitler cross section obh 
(dashed line) plotted as a function of the angle 077 between the incoming real and 
outgoing virtual photon in the target rest frame for co' =  10 GeV and M pair =  3 GeV 
with w = 40 GeV photon beam.

whereas the distributions, which appear in the cross section formulas (175) and (200) 

are the quark and antiquark proton PDFs. In fact, what one really needs is the sum 

of the quark and antiquark distributions,

E A /r W  = H [ f p ( x) +  fp(x)]- (2 n )
a  f

As noted in Section IV.2, sum (2 1 1 ) corresponds to adding the valence PDFs and 

twice the contribution from sea quarks.

The unpolarized cross section results are presented in Fig. 26. We observe tha t 

the Compton contribution dominates by a factor ~  3 in the forward direction, i.e. 

for d7-y <  3°, and falls off rapidly, even below the Bethe Heitler contribution for the 

scattering angles 077 >  1 0 °.
In summary, we have demonstrated the application of the QCD parton model to 

the high-energy photoproduction of lepton pairs. The Compton and Bethe-Heitler 

cross sections were estimated for a given simple parametrization of usual parton 

distributions in the proton. W ithout explicit calculation of the interference terms, 

we have shown their mutual cancellation, after being integrated over the final lepton 

momenta.
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CHAPTER VI

EXCLUSIVE PHOTOPRODUCTION OF LEPTON PAIRS

VI. 1 INTRODUCTION

Deeply virtual Compton scattering is considered to be theoretically the cleanest and 

simplest process, in which GPDs can be accessed. We can now slightly modify the 

process, simply by interchanging the two photons at the subprocess level,

7(Qi ) + N ( P i ) — > 7* (92) +  N  (pa) ■ (212)

Then one arrives at time-like Compton scattering (TCS) [104] which is, in principle, 

the inverse process to DVCS. In a specific kinematical regime, where the virtuality of 

the final-state photon is large, q\ —> 0 0 , TCS becomes a handbag dominated process 

and accordingly, it can be studied in same way as DVCS was studied in Chapter IV.

Time-like Compton scattering can be accessed through the physical process known 

as the exclusive photoproduction of lepton pairs. At this point, we need to draw a 

distinction between the exclusive and the inclusive photoproduction of lepton pairs. In 

the former case we detect, in addition to the lepton pair, also the scattered nucleon N  

(with the four-momentum P2 ), as illustrated in Fig. 27. Another im portant difference 

is tha t unlike the inclusive photoproduction, we are limited now to small invariant 

momentum transfer t = (px — p2)2 to the nucleon. Recall tha t the DVCS kinematics 

requires small t compared to the invariant q% (the DVCS scale Qf  is now replaced 

by the virtuality q%), and thus the terms 0 ( —t/q\)  in the amplitude can be safely 

dropped out. On the other hand, the common feature of both inclusive and exclusive 

photoproduction processes is the presence of two types of diagrams. In particular, for 

the exclusive photoproduction of lepton pairs, they are shown in Fig. 28.

In Section VI.2, we define the kinematics. In the next section, we compute the 
leading-twist amplitude for the Compton part. It can be easily derived from the 

result for VCA established in Section IV.2. The relevant integrals in the Compton 

and Bethe-Heitler cross sections can be evaluated simply by following the steps of 

Sections V.2 and V.3. Finally, the cross sections are estimated by using the same 

model for the nucleon GPDs as in the DVCS process.
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N(P,)

FIG. 27: Exclusive photoproduction of lepton pairs.

y (q) 

N(p,)

f(k)

m i

N(p2)

y '(9,-92)

N ( P t )

FIG. 28: DVCS (a) and Bethe-Heitler (b and c) diagrams contributing to the exclusive 
photoproduction of a lepton pair.

VI.2 KINEMATICS

In the laboratory reference frame, as the target rest frame, the photon and nucleon 

four-momenta are denoted by q\ =  (v\ , <fi), q2 =  (^2, 02), Pi =  {m ,  o) and p2 = 

(E 2,p2) where M  stands, as usual, for the nucleon mass. One rotates the coordinate 

system so tha t the z-axis is in the direction of the incident photon in the photon 

scattering plane, formed by the photon three-momenta <fi and q2. Similarly, the final 

leptons define the lepton scattering plane. We write their four-momenta as k = (ui,kj 

and k' =  (a/ ,£ ') ,  respectively. In this reference frame, the invariant momentum 

transfer can be expressed as a function of the angle 0T7 between the incoming real 

and outgoing virtual photon, namely,

t = (<?2 -  q i f  =  q \ -  2^i ( i t  ~  V̂ 2  -  <?2 cos077^ . (213)

On the other hand, the invariant t is also equal to

t = 2M  (u2 — u i ) , (214)
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which follows from the expression t  =  2M 2 — 2 M E 2 and the energy conservation, 

M  +  Vi = E 2 +  V2- Combining Eqs. (213) and (214) gives the quadratic equation in 

the energy of the virtual photon v2 with the solutions

A B  ±  ^ A 2 -  q2 (B2 -  1 )

The coefficients are

1/2 =   - g r r \  ' <218)

A  =  >  M,
COS 077

B  = (1 +  M M ) (216)
COS 077

where the scaling variable,

(217)

was introduced. It is an analog of the Bjorken scaling variable, xb  = <jf/ 2  (pi - qi), in 

the DVCS process. Since in the DVCS kinematics the invariant momentum transfer t 

is kept as small as possible, only the plus solution of Eq. (215) should be considered.

To illustrate the kinematics, we set the beam energy of initial photons to =  

5 GeV, and the invariant mass of the lepton pair to ql =  3 GeV2. Accordingly, the 

scaling variable (217) is fixed at x  =  0-32. The invariant momentum is plotted as a 

function of the scattering angle in Fig. 29. It covers the range 0.15 GeV2 <  — t < 

1.19 GeV2 for 077 up to 10°. For the same region in 077, we also plot the energy E 2 

of the final-state nucleon, see Fig 30, and obtain 1.019 GeV < E 2 < 1.574 GeV.

VI.3 CROSS SECTION

In general, the differential cross section for the photoproduction of lepton pairs is

j  1 |rp|2 1 jff 4W , / j ^ d ^ ^ k d ^ k '
d a  =  2 s  1 ^ S  ( 2 1 8 )

where the invariant s =  {j>i +  qi)2 =  2M vi  +  M 2. Similarly to the DVCS case, the 

invariant m atrix element consists of two contributions. Let us first investigate the 

Compton part.
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FIG. 29: Invariant momentum transfer t  plotted as a function of the angle 077 between 
the incoming real and outgoing virtual photon in the target rest frame for the invariant 
mass of the lepton pair q% = 3 GeV2 and x  =  0.32 with Vi =  5 GeV photon beam.

1 .5

1 .4

1 .3

1.2

1.1

FIG. 30: Energy of the scattered nucleon E 2 plotted as a function of the angle 077 

between the incoming real and outgoing virtual photon in the target rest frame for 
the invariant mass of the lepton pair q% =  3 GeV2 and x  =  0.32 with Vi =  5 GeV 
photon beam.
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VI.3.1 Compton Process

The T-m atrix of the Compton contribution is given by the diagram (a) in Fig. 28. 

Using e„ (<7i) to denote the polarization of the initial photon, we have
I _|3

92
(219)

where 7~tcs  the reduced VCA for time-like Compton scattering, namely,

7Tcs =  i f  <?z <?Wz) {N (ft, s , ) \ (z /2 ) J»em ( - z / 2)} |JV (ft, >,)).

(220)

In the twist-2 approximation, this amplitude is calculated from two (s- and u-channel) 

handbag diagrams illustrated in Fig. 12. Unlike the standard electromagnetic DVCS 

process, the incoming photon is now real, q\ =  0, and the outgoing photon is time­

like, q2 > 0. The final result for Tfics the twist-2 level in terms of OFPDs can be 

derived from the expression (102) for the reduced VCA in the DVCS process simply 

by replacing the final photon momentum with the initial one, q2 —> 9i, and changing 

the sign in the skewness param eter 77. Recall from Section IV.2 that the la tter is 

defined as 77 =  (r • q) /2  (p ■ q), where r  =  pi — p2 is the overall momentum transfer 

to the nucleon, and p = (p\ + P 2) /2  and q = (q\ +  q2) /2  are the average nucleon 

and photon momenta, respectively. As for DVCS 77 = x b /  (2 — xb)  in the DVCS 

kinematics, we have for TCS a similar relation, i.e. 77 =  x /  (2 —  x ) .  Moreover, the 

scaling variable £ =  —q2/ 2 (p • q) now coincides with — 77.

Substituting x  —> — x  and using the symmetry properties of OFPDs given by Eq. 

(97), we obtain the reduced VCA for TCS at the leading-twist level in the form

t 7*" =  * V  n 2 f 1'T C S tn iist—2 2  ^  V /  J ^

1

(x — 77 — zO)

+ E f  (x, v, t)

x \ H f  (x, 77, t) 

1

ip ■ qi)
+ H j  (x,r],t)

- E f  (x, 77, t) ' 1

> • 9 1)

1

u ( P 2 , s 2) 4 l U ( p U S i )

> • 9 2 )

_ , 4\) , ^
U ------4M ------

u(p2, s 2) ^i7 5« (p i,« i)i(Pvmqlppn

- l e ^ q ^ P , (gi ' T) 
2  M(p ‘ 9i) 'li^ 7,J 2M  fifo»s’)Tfcti(Pi,«i) j .  (221)

Since the photons in the amplitude (221) are interchanged compared to the standard 

VCA, the electromagnetic gauge invariance of Trcstwist-2 is now satisfied with respect
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to the initial photon, but violated in O  (r2) with respect to the final one. Similarly 

to the standard DVCS process, we introduce the following integrals

^TCS (’/> *) =  n _  j0) Hf(x,  7), () ,

S  ? ' /-i  (x -t - iO )^ + (X’ ’ ’()' (222)

^TCS (Vi t)

%TCS (V: t) 

£ T C S  (V> 0

They can be calculated with the help of Eq. (103). For illustration, we plot

in Figs. 31 and 32 the real and imaginary parts of the convolution integral

%tcs  (Vi t) = 'H-t c s (u) (Vi t) +  ^ rcs(d) (P^)- We present the u- and d-quark con­
tributions separately, using a GPD model from Section IV.4. To get rid of the

^-dependence, we divide by appropriate factors, F]u (t) /2  and Fld (t). Analogous 

plots for i-Lrcs (v>t) = %t c s (u) ( v ^ )  +  ^Tcs(d) (v>t) (here we divide by the factor 
qa (t ) ) qa (t =  0) to remove the dependence on t ), are given in Figs. 33 and 34. All 

four figures clearly show that, for the proton target, the valence u-quark contribution 

to the real and imaginary parts of the integrals 'Wrcs (Vi 'Htcs  (Vi 7S much

larger compared to the valence d-quark contribution.

We will restrict ourselves to the unpolarized incoming photon beam and the un­

polarized nucleon target. Then the spin-averaged square of the T-m atrix in the fac­

torized form is

(47TQ;)3
IT/7 I =

2<fe4
(223)

where the lepton and hadron tensors are

Tclict

H c*

=  4 [knka +  *0 ^  -  9m  [(A: ■ k') +  m 2 
1 
2

(n~ot \ * 
T C S  \ * i /T C S)

> - V ) ( u T C S + H T C S

—rj2 {V-t c s ^ tcs  +  Wtc s^ tcs  +  ^ t c s^ tcs  +  ^ t c s^ tc s ) 
t \v2 +AM2) &T C S - V

t

X
(p ■ Qi)

(p X + p V ) -

AM2 
M 2

( P  • Q i f

T C S ^ T C S

£ + 21 c T C S

(* AM2) QiQ? (224)
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Re

35 [ 

3 0  -

2 5  -

FIG. 31: Contributions from u quarks (solid line) and d quarks (dashed line) to the 
real part of H t c s ■ They are divided by Flu (t) /2  and Fid (t), respectively.

25

0,4

FIG. 32: Contributions from u quarks (solid line) and d quarks (dashed line) to the 
imaginary part of H t c s ■ They are divided by Fiu (t) /2  and F u  (t), respectively.
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0.2 0 .4 0 .6 0 .8

FIG. 33: Contributions from u quarks (solid line) and d quarks (dashed line) to the 
real part of H tcs  divided by gA (t ) / g A (t = 0).

h n

0.4 0 .6 0.8

-1

FIG. 34: Contributions from u quarks (solid line) and d quarks (dashed line) to the 
imaginary part of H tcs  divided gA (t) / g A (t = 0).
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with m  denoting the lepton mass. Note tha t H£a has the same structure as its DVCS 

partner given by the expression (138). To calculate the cross section, we integrate 

Eq. (223) over the Lorentz-invariant phase space. This is done exactly in the same 

way as in Section V.2 for the case of the inclusive photoproduction of lepton pairs. 

Thus first we integrate L cm  over the part of the phase space associated with both 

final leptons,

/  Iw /  ĉ7  (̂4) ^  + 91 ~ P2 ~ k ~ k  ̂L°a = /  di<l2 (̂4) ^  + qi~ P2~ ^
r  2  1 /  27T g f  - f -  2m 2  f  4r n 2 \

x [q2gm  ~  q^q2a\ ^ - y  ^  ^ 1  ~  ~ g f )  ’

(225)

and then contract the tensor [q2gm  — <72^ 92a] with H q *. It is easy to see that, after 

contraction, the first term is of the order q% while the second term is O  (M 2). The 

latter can be therefore ignored in the limit M 2/q\  —» 0. We are still left with two 

more integrations. One of them, e.g. integration over p2, is trivial due to the presence 

of the delta function (px +  qx — p2 — <72) on the right-hand side of Eq. (225). The 

cross section now turns into 
a 3 ql +  2m2

<?c
37T sq2

4m2
J  di q2 6+ [(pi + 9 1 -  q2f  -  M 2] \g»aH %*],

(226)

where the contraction in the square brackets reads

giiot cH r  = ( l  ~  V2) ^ W-TCS + TCS

—rj1 [H-t c s ^ t c s  +  H-t c s ^ t c s  +  H-t c s ^ t c s  +  H t c s £ t c s )

~  [ V + 4 M 2
f +CTCS 4 M 2 TCS (227)

The remaining integral in Eq. (226) is performed in the photon-nucleon center-of- 

mass-frame, in which the nucleon mass can be safely neglected. The final result for 

the unpolarized Compton differential cross section in the invariant form is 

d 2a c a 3 M 2air +  2m2
dMpairdt 6 s2M A ■a 1 xpair \

1 -
4m2

Mpair [g,aH r ]  ■ (228)

VI.3.2 Bethe-Heitler Process

The Bethe-Heitler amplitude,
|e |3

T b h  = — ev {q1)u{k )
Y  i x7 "  -  2 Y k 'u - Y  i x Y  +  2LkvY

- 2  {k ' ■ qx) - 2  {k  • 9 1 )
v (k ')
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x  {N (P2, s2) \ J » { 0 ) \ N  { p ^ s x ) ) , (229)

comes from the diagrams (b) and (c) in Fig. 28. Dirac and Pauli nucleon form factors 

parametrize the nucleon transition current m atrix element,
_A"

(N  (p2,S2) \ J n ( 0 ) \N  (py^!) )  = u{p2, s 2) Fi (t ) 7„ -  F2 (t )
\ r

2 M w (p i,» i).

(230)

After averaging and summing \ T b h \ 2 over the polarizations of the initial and final 

particles, respectively, one has

(231)

where both tensors have already been calculated. The hadron tensor is obtained by 

replacing the Lorentz indices v —> p  and f} —> a  in the expression (144),

inn |2 _  (4?r a )  Tfia u B H
l-tflffl — 2^2 L BHt l w  >

H B H
fia = t 9fia

r»ra
t

[F, (t) + F2 (()]'

+4 Pln + Pla + J F t  (t)
t

AM2n  (t)

and the lepton tensor by replacing the momenta q —> qx and indices p 

(179),

1

(232) 

a  in Eq.

[(* • f t)  [kPfi  +  k ,aqt -  g ^  (k1 • qi)]
{ ( k - q i ) 2 

- m 2 {k^k'a +  k V  -  g T  (k • k')}

+ m 2 [Jfe V  +  k'aqf  -  g>aa {k! • 9l)]

- m 2 (k - q i) gm  +  m V Q

+ 7 1 7 ^ 2  [<*' • «0 W  +  -  S '” (* ’ «i)l(*' ■ qi)
- m 2 [k»k'a + kak'^ -  gm  (k ■ k')]

+ m 2 [Wq? + kaqf  -  gva (k • 9l)]

—m 2 (k! ■ qi) g ^  +  m V Q]

+JT  V [2 (k ■ k') [k»k'a +  k ak »  -  g»a (k ■ k')]
\k • qi) (k • q\)

-  (k - q x) [ F k'a +  k V  -  2 k V ]

-  {k! ■ qx) [Af k ' a +  kak ,(i -  2 k»ka]

-  (k ■ k') [ P t f  + kaq{* +  k*<fi + k'aqf]

+ 2  g ^  (k ■ k') [(k • 91) +  (k1 ■ qx)} -  m 21 -  2  m 2q?qx \ . (233)
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The integral of L ^ H over the final lepton momenta is known from Section V.3, 

namely,

d3k r d3k'

27T
(■91 • 92)

[A.bh<1i<Ii +  BBHQ2 Q2 +  C b h  (<7f<72 +  Q2Q1 ) +  T^BHg^01] ,

(234)

where 

A b h  =
2 d + 926 8m? q^ 4m4^2 6m2^

( \ 2 3 2 3
.(9 1  • 9 2) (91 • 92) (91 • 9 2 ) (91 • 9 2) (91 • 92) (91 • 92)

4m2
In

1 -  yj\ -  4m2/ g

+

(9i - 92).

492
(9i • 92) (91 • q2f  ' (91 ‘ 92)3 ’ (9i • 92)

1 +  y / l -  4m?/ql_ 

+892  . 492 . 2m292+ <1 -
4m? 

92 ’

B bh  =

Cb h  =

4m2 

(9i • 9 2 )

- 2  + 

x In

In
1 — — 4m2/ 4.

1 +  y /l -  4m?/ql_
+ 291

(9i • 92)
' 1 -

4m2
9 ~  7

92

2922 92 6 m29 | 4m2 4m4
+  7 r +

+

(9i • 92) (91 • q2f  (91 • Q2)2 (9i • 92) (91 • 92)2.

1 — yjl — 4m2/ 9.

1 +  ^ /l — 4m? /q  

6 9l-2 + 491 2 m 29f

(9i • 9 2) (91 • 92) (9i • 9 2 ) .

BH  —
4m4

4m2
9~” J

92

+

«/■ \ ~ 9 92 2m2oI
2(91 ' ? 2 ) _ 2 f e  +  +

1 — yjl — 4m?/q- 

1 +  y j l -  4m?/ 9 I .

2 (?! • 9 2) -  4 9 I +  2?2

x In

+
2m q$ 

(9i-92) ' (9 1 - 92). 
The unpolarized Bethe-Heitler cross section is then 

1 1 (4'wa)3 7r ( s  -  Mpair

I I -
4m2

w
(235)

&BH
2s (2tt)5 212 2 V 2s )  /  < « £ * • /  rf(cos«„) [£& «•“ ] ,

(236)

and finally in the differential invariant form,

d?<?BH a 3 1
dMpairdt 471 s2t2

pllOL t jBH  
*^BH pa (237)
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The contraction in the square brackets of Eq. (236) gives

t ttBH
L'B H n pa

> <M p a z r

p a i r

+ 3 V b h m ^-LVAp a t r

+2 Cbh

M 1 M l ir t  t
s 2s ^ Mpair

M 2 M 2pair /  t W
s 2s \  M 2air/

M 2 M*pair (  t
s 2s \  M 2air

' M 2 ivi~air I t

^  {  K i r ,

^  M 2 /  3t V 
+ 4P B f f l r ( l + j S 5 j

p a i r  / .

(238)

Note tha t q% and (qi • q-z), which appear in the coefficients (235), should be replaced 

by K i r  and { K i r  ~  <) A  respectively.
In Figs. 35 and 36, we plot the Compton and Bethe-Heitler contributions using 

a toy model for the proton valence OFPDs described in Section IV.4. Both cross 

sections are shown together on a logarithmic scale in Fig. 37. We notice that, 

similarly to the standard DVCS, the Bethe-Heitler process is again the dominating 

contribution (i.e. ~  0.95) to the cross section.

We conclude with the remark that the cross sections presented here were inte­

grated over the angles of the final-state leptons. One may expect to get additional 

information of GPDs, by measuring the cross sections tha t are sensitive to the an­

gular distribution of final leptons. In particular, the interference terms between the 

Compton and Bethe-Heitler processes, together with the use of the polarized photon 

beam, may provide a new insight. This is an interesting subject by itself, and requires 

more attention in the future.
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FIG. 35: Compton cross section ac  plotted as a function of the angle 077 between the 
incoming real and outgoing virtual photon in the target rest frame for M 2air = 3 GeV2 
and x  =  0-32 with ui = 5 GeV photon beam.
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FIG. 36: Bethe-Heitler cross section gbh plotted plotted as a function of the angle 
077 between the incoming real and outgoing virtual photon in the target rest frame 
for M 2 ir =  3 GeV2 and x  =  0.32 with i>i = 5 GeV photon beam.
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FIG. 37: Compton cross section oc  (solid line) and Bethe-Heitler cross section obh 
(dashed line) plotted as a function of the angle 077 between the incoming real and 
outgoing virtual photon in the target rest frame for M'*air =  3 GeV2 and x  =  0-32 
with vx =  5 GeV photon beam.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

CHAPTER VII 

WEAK DEEPLY VIRTUAL COMPTON SCATTERING 

V II.l INTRODUCTION

Complementary to the standard electromagnetic DVCS process, different combina­

tions of quark flavors can be accessed by utilizing the weak current, which couples 

to quarks with strengths proportional to the quark weak charges. In analogy with 

DVCS, these can be studied in neutrino-induced virtual Compton scattering,

u(k)  + N  (p i ) — > v (k1) +  N  (p2) + 7 (ft) (239)

for the neutral current, and

u(k) + N ( Pl) — > p ± (k') + N ' ( p 2) + 1 (q2) (240)

for the charged current reactions (and similarly for antineutrinos). Note tha t in the 

case of the la tter the initial and final nucleons will be different. Because of the V-A 

nature of the weak interactions, one can probe C-odd combinations of GPDs as well as 

(7-even, where (7 is the charge conjugation operator, and thus measure independently 

both the valence and sea content of GPDs. The weak current also allows one to 

study flavor nondiagonal GPDs, such as those associated with the neutron-to-proton 

transitions in charged current reactions in Eq. (240). The use of weak currents can 

thus provide an im portant tool to complement the study of GPDs in more familiar 

electron-induced DVCS or exclusive meson production processes.

In this chapter, we study the weak deeply virtual Compton scattering processes 

given by Eqs. (240) and (239), and present a comprehensive account of the ampli­

tudes and cross sections in the kinematics relevant to future high-intensity neutrino

experiments [105]. In Section VII.2, we derive both the weak neutral and weak
charged VCAs using the nonlocal light-cone OPE, and introduce an appropriate set 

of off-forward parton distributions, which parametrize the weak DVCS reactions. The 

weak DVCS processes are analyzed in Section VII.3. Using a simple model for nu­

cleon OFPDs from Section IV.4 (recall th a t the model does not include the sea quark 

contribution), we estimate the cross sections and compare the respective rates in neu­

trino scattering with those in the standard DVCS process. In addition, for the sake
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of completeness, we also discuss the electron-induced DVCS process associated with 

the exchange of the weak boson Z°.

Deeply virtual neutrino scattering has been discussed recently in Ref. [106] for 

neutral currents and in Ref. [107] for charged currents. Also a preliminary report 

containing some of the formal results from Ref. [109] appeared in Ref. [108].

VII.2 WEAK VIRTUAL COMPTON SCATTERING AMPLITUDE

In this section, we discuss the amplitudes for the weak virtual Compton scattering 

process. Before turning to the specific amplitudes for the neutral and charged current 

cases, we review some general aspects that have been already discussed in Chapter 

IV.

At the subprocess level, in analogy with the photon-induced DVCS amplitude, 

the weak virtual Compton scattering amplitude can be obtained by simply replacing 

the incoming virtual photon with the weak boson B,

B  (qi) +  N  (pi) — ► t W  +  J V 'W . (241)

where B  is either Z° or W ± . Note tha t in the electromagnetic and weak neutral 

cases both the incoming and outgoing nucleons are the same, N  =  N ' . Similarly to 

the electromagnetic VC A introduced in Section IV. 2, for the weak process with an 

incoming W ± or Z°  boson and outgoing photon, one has

Tw  =  i J  <fx I  d 'y

x (N ‘ (P2 , s2) \ T  { r EM (y) JH, (*)} jJV (P l, Sl) ) , (242)

where corresponds either to the weak neutral current or the weak charged current. 

We will denote the currents by J ^ N and Jwci  respectively. Again, due to the current 

conservation

T%qlv = 0 and q2„T% =  0. (243)

In terms of symmetric coordinates, X  = (x + y) / 2 and z = y — x, and symmetric

momentum variables, q =  (qx + q2) /2  and p  =  {p\ + p 2) /2 , the weak VCA takes the

following form

T # ' =  { 2 'K f 5 ^ { p l + ql - p 2 - q 2)T%',  (244)
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FIG. 38: Handbag diagrams (s- and u-channel) in the weak virtual Compton scat­
tering amplitude.

with the expression for the reduced weak VCA

(245)

Recall that, in general, the initial and final nucleons may be different, pf  =  M /  and

p\ = M f. Accordingly, Eq. (81) is now replaced by

= + and (p ■ r) =  i  (m l2 -  M22) , (246)

however, it is recovered by neglecting the mass difference between the proton and 

neutron (we set M { =  M2 =  M).

Our starting point is the coordinate representation of the time-ordered product of

the weak and electromagnetic currents. The leading light-cone singularity is contained 

in the handbag contribution illustrated in Fig. 38. Note tha t the weak current couples 

to the quark fields through two types of vertices, qqZ° and qqW± . Therefore, the 

quark fields at coordinates ± z / 2  can carry either the same or different flavor quantum 

numbers. We study these two cases separately.

VII.2.1 Weak Neutral Amplitude

We start with the expansion of the time-ordered product of the weak neutral and 

electromagnetic current. Apart from an overall factor — \e\ g /  cos Ow (recall th a t g is 

the coupling constant of the weak interaction), we have

iT  {J%M {zf  2) rWN (-* /2 )}  =  i ' E Q f  (z/2) ^ i  (z) ?  ^  ~ 7sC^

xtpf ( - z / 2 )  + x/)f  ( - z / 2 )  Y  27sC4 ^ 

x i  $  ( - z )  Y ^ S  (z/ 2) |> (247)
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where Cy and are the weak vector and axial vector charges, respectively. They are 

given in the standard model by

cu,c,t _  \J2 — 2 <5 u,c,t sin2 9W, 

cd,s,b _  —i j 2  — 2<5d)Sjts in 2 9W,

cy , t  _

cd/ ’b = -1 /2 , (248)

where 9w is the Weinberg angle with sin2 9w — 0.23. After substituting the explicit 

expression for the free quark propagator in the coordinate representation, see Eq. 

(8 8 ), and using the formula (89), the expansion (247) can be written in a compact 

form in terms of the string operators

iT  {J e m  (z /2) J w n  ( ~ z / 2)} — 4ir2z 4 

X \ c y

H Q f

+ieWUTI

S'

f t  i ~ z / 2) 7n^i  (z/ 2 ) -  {z -> - z )  

f f  ( - * / 2) iz / 2 ) +  (*->■ - z )
J
CA

,HPV7) f t  {~z ! 2) T j j T s V ’Z  {z / 2 )  -  (z -» - z ) ]  

f t  {~z / 2) 7nf f  {z/2) + { z ^  -* )]]}  .

(249)

In contrast to the standard electromagnetic DVCS process, see Eq. (90), we end 

up with two additional terms. Namely, the presence of the axial part 7 5 C4  of the 

V-A interaction gives rise to a vector current symmetric in the Lorentz indices ft, v 

and to an axial vector current antisymmetric in //, v. The string operators here are 

accompanied either with QfCy or QfC^ rather than Q /. Also the denominator of Eq. 

(249) carries an extra factor of 2 due to the nature of the vertex qqZ°.

Accordingly, to obtain the twist-2 part of Eq. (249) we need, in addition to 

contracted string operators given by Eq. (94), two extra operators. One can conve­

niently write all four contracted vector and axial vector string operators under the 
same footing as

O f± (z) = |f f  { - z / 2 )  /ipf  {z/2) ± { z ^  - z ) ]  , 

Os* {z) = f f  { - z /2 )  / 7 5 V7  {z/2)  ±  {z - 4  - z ) ]  . (250)

They all should satisfy the harmonic condition (95). Furthermore, the parametriza- 

tion of the nonforward m atrix elements of these operators is performed by means of
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the relevant nonperturbative functions, namely, the off-forward parton distributions. 

A straightforward generalization of the parametrization (96) from Section IV.2 can 

be performed by introducing a new set of GPDs, i.e. the minus OFPDs. Then

( N ( p 2 , S 2) \ O f ±  (z) \ N ( p U S i ) ) gi=0 =  u ( P 2 , S 2) J u ( p U S i )

x j '  dx eix{p'z)H f ( x , Z , t )

+u (P2, S2) ^  ^ U Sl)

x J ^ d x e ix{p'z)E f ( x , ( , t ) ,

( N  (ps ,  s 2)| O p  (z ) |AT (pi, S i) )a2 =0 =  U (pa, s2) f a n  (pi, s i )

x J 1 dx eix<rg)H f ( x , Z , t )

[T  • Z )- u (p 2,S2) - ^ - 75U(pljS i)

J ^ d x e ix(p-z)E j  (x ,£ , t ) .  (251)

Note tha t O P  (z) has a superscript opposite in sign with respect to the corresponding 

tilde OFPD. While the standard DVCS process gives access only to the plus distribu­

tions (recall that they correspond to the sum of quark and antiquark distributions), 

scattering via the weak virtual boson exchange probes also the minus distributions. 

It can be shown th a t the la tter correspond to the difference in quark and antiquark 

distributions, i.e.the valence configuration. Like the plus OFPDs, the minus distri­

butions have also symmetry with respect to the change x  —> —x. Let us summarize 

the symmetry properties in x  for both plus and minus OFPDs,

I l f  d )  =  + I l f ( - x j ,

E f ( x )  = * E f ( - x ) ,

H f ( x )  = ± H f { - x ) ,

E f ( x )  =  ± E f ( - x ) .  (252)

After following the steps described in Section IV.2, we arrive at the expression for 

the reduced weak neutral VCA in the leading-twist approximation

1 „  r l dx
T w N tw is t -2 4 (p . £  Qf  J_y _  £ +  i0)

x I c?v H f  (x, £, t) —  & < & + ? < & )  - r( p ' 9a)
u (P2,s2) 42u (p i , s x)
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4-cfv E t  (x, £, t)
.(P ’ ft)

- c { , H f  (X,£, t )

+cfv E f  (x ,Z,t)  

- c fAH j  (x ,£ ,t)

+cfAE j  (x,£, t )

+  M )  -  i T  

1

.(P ’ ft)

A f c  i -  i  fo) ,
U P̂2’ ------ 4 M   Sl

M (P2, f t )  ^275« (Pi, «1i ^ upT>q-2PPn

CP • ft)
ie^q ipPr ,

(ft • r) _ , . ,
- u ( p 2 , f t ) 7 5 «  ( p i ,a i2M

( ^ 2  +  « ) - < T

1
(P ' ft)

( p ^ + « ) - < T  

1

t t ( P 2 ,f t )  ^ 2 7 5 « (P l; Sl

+ c ^ £ /  (z ,£ ,t)

(p • ft)

(z ,£ ,t)

1

(ft • r) 
2M

(p ■ f t )
ie ^ f tp P i j

U i,P2, S2) JbU  { p i , S i

«(P2,ft) d2u (pi,«i

(P • ft)
idu'm q2ppn

 ̂ (& i -  i  fa) , N ]
“  (p2) 2'  4M  “ ^ 1; ^  | '

(253)

VII.2.2 Weak Charged Amplitude

Skipping an overall factor — |e| g/y/2,  the expansion of the time-ordered product of 

two currents in the weak charged sector reads

i T { J £ M ( z / 2 ) J w c ( - z / 2)}  = “ i f e  E{<2/'</7' (*/2) t V t "  0- - 7 s ) ^ / ( - * /2 )

- Q / ^ /  (—z/2) i '  (1 -  75)  7 P 7 #1̂ / '  ( z / 2) }  

£  { s ^ i Q / V V  ( - z /2 )  7„ ^ / /  ( z / 2)
47r 2z 4

-  ( /  <-► / ' , z  -« )]

+ 7 6 ^ ^  ( - z / 2 )  7, 75^  (z/2)

+  ( /  ++ f i z ~ z )\

- s ^ uri[ Q f ^ f  ( - z / 2 )  7 , 75^/' (z/2)

~ z ) ]

2) 7 , 75^  (z/2)

+  ( /  / ;, z  -*  - z ) ] | .

Here the sum over quark flavors is subject to an extra condition, Qf — Qp  =  1 or 

—1, due the fact tha t the weak virtual boson W ± carries an electric charge ±1 in 

units of |e |. For th a t reason, the initial and final nucleons are not the same particles 

anymore. Hence we are dealing either with the neutron-to-proton transition via the

(254)
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exchange of W +, or with the proton-to-neutron transition via the exchange of W~.  

One notices tha t the vector and axial vector string operators in the expansion (254) 

are not diagonal in quark flavor, i.e. they are accompanied by different quark flavors 

as well as by different electric charges. The corresponding contracted string operators, 

which appear when extracting the twist-2 part of Eq. (254), can be expressed as the 

linear combinations,

[Qftif (~z/ 2) M r  (z/2) ±  (/<->/'>* -► - z )  = Q±Off,+ (z) + QTO f f '~ (z ) ,

[Qf$f (- z /2 ) M M f  {z/2) ±  ( /  <->• / ' ,  2 -> - z )  = Q±O l f+  (z) + (z) ,

(255)

of operators,

Off>± (z)

O’/ H z )

f f  i - z / 2) Mf (z/2) ±  ( / < - > / ' ,  z -> -z)  

f f  { - z / 2) MMf {z/2) ± { f  f ' , z-* -z) (256)

with the coefficients Q± =  (Qf ± Q p )  /  2. The m atrix elements of these newly intro­

duced operators are parametrized iig te rn s  aif|the!iflav<iir| (̂Difnil(iaganiiail|OFlI)[Dsj||j |:| ininm

( N ’ (p2, s 2) \ O ff,± (z) |iV (p i,s i))z2=0 =  u(p2, s 2) M i P u S i )

x j l̂ d x e ix{p'z)H f f , {x,£,t)

+ U  (P 2 , S2) (P i ,  S i )

x  J ^ d x  eix^ E f f , ( x , U ) ,

(N ' (pa, s2)| O lr±  (z) |N  (pi, s i))z2=0 =  u (p2, s2) u (pi, si)

x J  dx elx(j>'z^Hjf, (x, £, t)

(Y . g)
~U(P2,S2) - ^ - 7 5 « ( P l ,« l )  

x y 1 dx eix{p-z)E j f , (x, £, t ) . (257)

Finally, with the help of Eqs. (255) and (257), the leading-twist reduced weak charged 

VCA can be easily obtained from the result for the weak neutral case with the proper 

replacements. We get

_ 1 r 1 dx
“*‘-2 ~~

q-HV
I VWCtwist- (x -  £ +  iO)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

( p ^ + « ) - < T u (P2,s2) 42u { p i , S i )

. ip -q 2)
(p*q2 +  pvq2) -  9

+ [Q+Efp f a t ’tf + Q- Ef f  (®>f>t)]
~ ( \ { i i  i ~  i 4 i )  ( s
u  v*2’ S2'  — 4m — u

-  [Q+Hfr  (x , £, t) +  Q - H J r  (*, t)

-ie^q^pPr,ip q ) 'i£pt'r> uip2>t>2) 4̂ u (p i>s i )
+  [Q + E f f  (x> £> t) + Q - E f f ,  (x , £, t)]

> • 92)

(g2 • r) 
2 M u{p2, s 2) ^ u  (pi,si)

~  [Q - H fr  (x , £, <) +  Q+Hf f , (x, f , t)

. ( P ‘ 9a)
w (P 2 , s 2) # j7 5 « ( P i ,« i )

(p • 92)
i ^ q 2 + p vq ^ ) ~ 9 ^

+  [<3-E/y, (a:, £, <) +  <5+^/// (a;, £, *)] 

-r)
2  M

-u(p2, s 2)'y5u (pi,si)

+  [Q-H f f  ix > £> <) +  <?+#//' (*, f  > 0

1   ' u{p2, s 2) ^ t t(p i ,3 i)- y vmq2pPn

(P • f t )
ie^pr,q2ppv

(P • 9z)

+  (®, f , <) +  Q +^7/' (®, f , <)_

M (P2» S2j  TTT « (Pi, Si) >4M (258)

VII.3 WEAK DVCS PROCESSES

In the following section, we discuss three examples of the weak DVCS processes. Their 

kinematics has already been analyzed in detail in Section IV. 3. The only difference 

is tha t the incoming virtual photon 7 * of the standard DVCS process is now being 
substituted by the virtual weak boson B. We use the OFPD model from Section 

IV.4. Note tha t by neglecting the sea quark contribution, the plus OFPDs become 

equal to the minus ones, and hence we write H j  =  H j  =  H j al, H j  = H j  =  H™1, 

E j  =  E j  = E j al and E j  =  E j  =  E j al. For the weak neutral current scattering 

process, we discuss neutrino-nucleon and electron-nucleon scattering. We present
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FIG. 39: DVCS (a) and Bethe-Heitler (b and c) diagrams in the weak deeply vir­
tual Compton scattering process. The incoming leptons can be either neutrinos or 
electrons.

the calculation by taking an unpolarized proton as a target nucleon. In the case 

of an unpolarized neutron target, one can simply use the isospin (i.e. the charge) 

symmetry to express the neutron GPDs in terms of the proton ones. In the weak 

charged current interaction sector, we consider neutrino scattering off a neutron via 

the exchange of a W + boson producing a proton in the final state. All three examples 

are illustrated in one figure, see Fig. 39. As in Section IV.5, the relevant cross sections 

are plotted against the scattering angle 6Bl between the directions of the incoming 

weak virtual boson and the outgoing real photon for one kinematical point with 

Q\  =  2.5 GeV2, x B = 0.35 and ip =  0, however, for two different lepton beam energies. 

We take co =  5 GeV and 20 GeV rather than uj = 5.75 GeV and 11 GeV. Similarly 

to the standard DVCS process, the Bethe-Heitler cross sections are presented on a 

logarithmic scale as well as the plots with both contributions. In addition, for given 

kinematical regions, 0.28 < x B < 0.3 with u  =  5 GeV and 0.26 <  x B <  0.28 with 

oj =  20 GeV, we estimate the orders of magnitude for the total cross sections, coming 

purely from the DVCS diagrams and compare them with the Compton contribution 

to the standard electromagnetic DVCS process. They are listed in Table IV at the 

end of this chapter.

VII.3.1 Weak Neutral Neutrino-Proton Scattering

The photon cannot be emitted by the neutrino, and thus in neutrino scattering from 

a proton via the exchange of Z°,  we only measure the Compton part. The T-m atrix 

of the process is given solely by the DVCS diagram, i.e. the diagram (a) in Fig. 39,

(g-> -  
« ? - M f 0
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(259)

with Tw n  computed in the handbag approximation from the diagrams shown in Fig. 

38. The vector and axial vector couplings of the vertex vvZ°  are dy =  (fA =  1/2. 

Furthermore, since M |0 Qf  and cos Qw = M w / M zo (recall that the Fermi constant 

is Gf =  g2/Ay/2Mw),  the amplitude turns into

T vp =  \/2 \e\ GpU (k1) 7 „ (1 — 7 5 ) «(/c)e* (9 2) 'Tw'n- 

Its spin-averaged square then reads

|Tj,p|2 =  8tt aG 2FL {$ H $ N.

The neutrino tensor is simply

kv kp kpku Qvp (k k  ) ~\~ iti/park k  j .

(260)

(261)

(262)

On the other hand, the weak neutral hadron tensor has a rather complicated expres­

sion. Nevertheless, in the DVCS kinematics, it reduces to

ijvP    ̂ ('t'P \  *n WN ~  ~  g >WN\ IfiWN)

-  4 { [ m 2) (
- ( W

%WN

f +°WN

+

+

u WN 
2

+ +

'WN

'Hw n

)  ~  (  J q AM2 V

H WN 
2

+ £1

w n ^ w n  +  'H-w n ^ w n  +  'H-w n ^ w n  +  'H-w n ^ w n )

AM2

-2?$ (n

*  ?  ~  ( V i )  & 4 + ^  + ( d w  (* -  ssO  * 4
+2 [( l — £2) ^  {ji\‘v n 'H'Wn  +  'Hw n 'H’Wn )

e + AM2 ^  {^w n ^ w n ) ~  {&WN&WN)

— {% w n ^ w n  +  Zw n 'H-w n  +  'H-w n &w n  +  ^ w n ^ - w n ) \

:ievPSXpSq2x
ip ■ 92)

where the integrals of OFPDs are conveniently defined as

* & ’ « . « )  =  E  Q d v w  £  {x  _ f +  m)  ( * ■  ( , 1) ,

t & V & t )  =  E  Q i 4 (a  1 / _ )  (x _ %  i 0 )  ( » .  « )  ■

(263)
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cfa-^idxgd^dtdp) [rb/GsV4]

10 12 14
OZy [<*»]

FIG. 40: Weak neutral DVCS cross section ovp plotted as a function of the angle 
between the incoming weak virtual boson and outgoing real photon in the target rest 
frame for Q\  =  2.5 GeV2 and xb  =  0.35 with u  =  5 GeV (solid line) and w =  20 GeV 
(dashed line) neutrino beam.

« & ’ ({,<) =  E Q A a ) f \  i x _ ^ + i a f P ~ d x , u ) ,

=  £  Q rc tw  j \  ix _ ^ +  m) (». f , t ) . (264)

After the substitution of Eq. (261) into Eq. (119), the unpolarized differential cross 

section for the weak neutral DVCS process on a proton target using the neutrino 

beam takes the following form

d4crvp = 1 a G 2F ____________1 +  x B (M/u)__________
dxsdQldtd^p (27r)3 16 M2co2 [2 + (M/u)\ xb [y +  2a;b (M/uj)]2 ^  WN’

(265)

The cross section is illustrated in Fig. 40.

VII.3.2 Weak Neutral Electron-Proton Scattering

In the electron scattering, one has to include both the Compton and the Bethe-Heitler 

contributions, T ep =  Tcep + ̂ BHep- The T-m atrix for the Compton part can be easily 

obtained from Eq. (259) by replacing the neutrinos with the electrons,

T cep = 2 \ / 2  \e\ Gf u (k ') 7 „ (cy -  7 5 ^ )  u(&)e* (q2) T&UN. (266)
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eraa^J^dqgdQdtdp) [ifc/GeV4]

&Zy [<*»]

FIG. 41: Compton cross section acep for the weak neutral DVCS process plotted as a 
function of the angle dBl between the incoming weak virtual boson and outgoing real 
photon in the target rest frame for Ql  =  2.5 GeV2 and x B = 0.35 with u  = 5 GeV 
(solid line) and u  = 20 GeV (dashed line) electron beam.

The couplings are now equal to Cy = —1/2 +  2 sin2 9w and ceA = —1/2. Note tha t the 

hadron tensor is the same as in the neutrino case. Due to averaging over the spin of 

incoming electrons, the electron tensor has an extra factor of 1/2,

L^l  =  2 |  [(c^)2 +  (c^)2] \kvk!p +  kpk'v -  gup (k ■ k!) -  2 c ^ i e ^ <7TA:orA:/T} .

(267)

The unpolarized Compton differential cross section for the weak neutral DVCS process 

with a proton target and an electron beam reads

d 4<rCep _  1 o iG 2F  1 +  x B ( M / c o ) (e) Tjvfi. t  u, 1j ,,q H]
dxBdQidtd(p (27t)3 4 M 2uj2 [2 +  ( M / oj)\ x B [y + 2xB (M/u)]2 WN’

(268)

and it is plotted in Fig. 41.

Next we investigate the Bethe-Heitler contribution to the process. Since incoming 

and scattered leptons are electrons, we have to include both Bethe-Heitler diagrams, 

see the diagrams (b) and (c) in Fig. 39. The Bethe-Heitler amplitude can be imme­

diately written down with the help of the expression (140) along with the following 

modifications:
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The vertex ee7  is replaced

i \e\ 7 " ->■ - i g Y  (cfy -  7 5 ceA) / 2  cos 9W.
by the vertex eeZ°,

•  The photon propagator is replaced by the weak boson propagator, 

- * W  (Qi ~  Q2)2 ->• ig v \ /M 2z0-

•  The coupling 7 p  is replaced by the coupling Z°p, —i \e\ -> —ig/  cosOyy.

•  The proton electromagnetic transition current is replaced by the proton weak 

neutral transition current, J ^ M (0 ) -» J ^ c  (0 ).

Hence

T BHep — 2 - \ /2  |e| Gfc*̂ (q2) u {k') 7M(# '+  A i ) l v ( c v ~ l5 C eA)

i v (4 f a r
{k -  q2 f

(.k1 +  q2)

u(k) (p(p2, s 2)\ J " c  (0 ) |p (p i,s i))

(269)

where the transition current,

0) =  i  [K "c (0) -  A r  (0)]

=  )  H  \cv'i’l  ((l) "V 'iy  (° )  -  c'â I  (0) 'v7 r,© / (0 )j . (270)

has both the vector V ^ c  and axial vector A ^ °  contributions. Their proton m atrix 

elements are parametrized in terms of the four form factors [42],

, A '
(p(P2,s2)\V„ (0) |p (p i,« i)) =  u(p2, s 2) F r  (t) Av ~  F2 {t)n c  n \  % a v \ r

2  M “ (P l.S l).

<P(pa,«a)| (0) Ip (p i,» i)>  =  u(p2 , s 2) 0 * c  f()'v„T5 -  G p C (!) u( p , , S i ) .

(271)

Each of the vector form factors can be further expressed as a linear combination 

of flavor triplet, octet and singlet form factors (they correspond to the proton 
matrix elements of the appropriate linear combinations of quark vector currents, 

(u'jvU — d'y„ctj /2 , (u^/uU +  d'jvd — 2s7 „s) and ( u j uu +  d^vd +  S7 „ s ) , respectively),

F $ 2) (t) = ( 1 - 2  Sin2 9W) [ f ? (2) (() +  i f f (2) («)] -  i f  °(2) ( t ) . (272)

Moreover, the axial and pseudoscalar form factors are expressed as the difference 

between the isovector and strangeness form factors (they correspond to the proton
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matrix elements of current combinations, {uyvy$u — dy„y5d^ /2  and (syuy^s), respec­

tively),

riNC
^A(P) (t) -  (J4(P) (t) ~  - G \ ( P )  (t) . (273)

If the sea quarks are neglected, they all simplify to

ri3 _
*1(2) -  g

T7l8 __  T?0 _
* 1(2) -  * 1(2) -

*l(2)u — F\{2)d 

*l(2)u +  *1(2 )d (274)

and

G T i t )  =
9 a  (t  =  0 ) 1 -

Gnp c (t)
G NAc (t) AM2

mi t
(275)

For the unpolarized Bethe-Heitler differential cross section we have 

d 4<7 BHep  _  1 OiG2p 1 + X b ( M / ui)

dxBdQ2dtd(f (27t) 4 M 2uo2 [2 +  (M/co)\ x B [y + 2xB {M/co)}
TUP J j B H  

2 BH vf) )

(276)

where the electron tensor is

-

JBH = - 2T rU >
(7** fk +  2 *"*) 7 * ( 4  -  7 5 ^ )  +  r ( 4  -  7 5 ^ )  ( ^  -  2 ^ )

x ft

2 (A' • ?2)

7^ (cy ~  7s<£) +  2A:p)
2 (k' • ®)

+

2 (A: • 92)

(7<i flk ~  2/cy) 7  ̂ (cy ~  7s<%) 
2 (k ■ q2)

(277)

and the hadron tensor is given by

= I y  (p (Pa,«2)|J „ c (0 ) | p (p i , sO) (p(ps , s2) | (0 ) |p (p i,s i) )* .
Sl,«2

(278)

The angular dependence of the cross section is shown in Figs. 42 and 43. The two 

poles at the locations (j) and </>' from Table III are clearly seen. In Fig. 44, both 

contributions are plotted together. Contrary what one might expect from the results 

on the standard DVCS, the Compton cross section in the weak neutral interaction 

sector is larger, or a t least comparable, with the corresponding Bethe-Heitler cross 

section for the scattering angles 0Zl <  8°, which gives the region 0.15 GeV2 < — t < 

0.572 GeV2 in the invariant momentum transfer, see Fig. 15, and hence the ratio 

- t / Q \  <  0.23.
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TABLE III: Polar angles 4> and (j)' of the incoming and scattered leptons, respectively, 
in the target rest frame for Q\  =  2.5 GeV2 and x n — 0.35 with two different lepton 
beam energies uo.

u  [GeV] (f) [deg.] <t>' [deg.]

5 10.3 47.9

20 20.2 25.3

C^craiplidxs/J^dtdp) [tb/GeV4]

FIG. 42: Bethe-Heitler cross section cBHep for the weak neutral DVCS process plotted 
as a function of the angle between the incoming weak virtual boson and outgoing 
real photon in the target rest frame for Q\  =  2.5 GeV2 and x b  =  0.35 with u  =  5 GeV 
(solid line) and u> = 20 GeV (dashed line) electron beam.
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cflcrifkpKfkBpiQjdtdp) [rb/GbV4]

0 10 20 30 40 £0

FIG. 43: Bethe-Heitler cross section an Hep for the weak neutral DVCS process plotted 
as a function of the angle 0b7 between the incoming weak virtual boson and outgoing 
real photon in the target rest frame for Q\  =  2.5 GeV2 and x b  = 0.35 with u  =  5 GeV 
(solid line) and u  = 20 GeV (dashed line) electron beam.

cfo-Kck&i&Mp) [nb/CfeV*!

bay [deg-]

FIG. 44: Compton cross section acep (solid line) and Bethe-Heitler cross section asHep 
(dashed line) for the weak neutral DVCS process plotted as a function of the angle 
0b7 between the incoming weak virtual boson and outgoing real photon in the target 
rest frame for Q\  =  2.5 GeV2 and x b  =  0.35 with uj =  5 GeV electron beam.
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VII.3.3 Weak Charged Neutrino-Neutron Scattering

The invariant m atrix element for the Compton contribution is

T cvn = \/2  \e\ Gpu (kr) 7 ^ (1  — 7 5 ) u (k) e* (q2) Twci (279)

where the amplitude Twc  is> in general, given by Eq. (258). However, in our simple 

model the quark flavors /  and f ’ in Eqs. (258) become d and u, respectively, and 

the coefficients are therefore equal to Q+ =  1/6 and Q - — 1 /2 . In the following, we 

relate the flavor nondiagonal GPDs to the flavor diagonal ones. This can be achieved 

by using the isospin symmetry. Through the isospin symmetry, the nucleon m atrix 

elements, (p (p2, s2) \O ud± (z ) |n (pu  si)) and (p (pa, s2)| 0%d± (z) \n (pi, si)) given by 
Eq. (256) th a t are nondiagonal in quark flavor, can be expressed in terms of the 

flavor diagonal nucleon m atrix elements [110]. Namely,

{p(p2, s 2) \O ud± (z) |n (p i,s i) )  =  {p{p2, s 2) \O u± {z)\p{pu s{))U ±

~ ( p ( P 2, s 2) \ 0  (z ) |p (p i ,s i ) ) ,  (280)

and similarly for (p (p2, s2)| 0%d± (2 ) \n (pi, Si)). Accordingly, the reduced weak 

charged VCA assumes the form

q-llV _
>wc —

1
4 ( p  • q) 
x

1

.(P-Q2)

'Hwcu (P2 , «2) (pi, Si) +  £ w c u (P2, s2) (Pu «l)AM

- U w c u (P2, Si) i 2l$U (pi, Si) +  &WC u ^ 2’S2) lbU 5 l)

.(p-Q2)
_ S +  (g2T )

C '\A W  -  -  -  W-K w c u (P2, Si) (pi, Si) -  £ ^ c  ’ U (pa, Si) 75U (pi, «l)

-K w c™  (pa, Si) fan (pi, s t ) -  £ ^ c u (p2 , s2) (Pi> s 0

(281)

with the convolution integrals

w t e ’ K . o  =  / /  (x _ f +  i0) [q-K-i K  -  g ; ) + q - w  K  -  « r ) ]  ■
£ i (o_) ( f ,«) =  / /  ( l _ f + i 0 )  [«+(-> (£ ,+ -  E } )  +  Q . m  (e ;  -  £ 7 )] ,
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-£/+(“ )
n w c { t t )  -  (ff«_ -  A O ] .

t y c '  ( f -*) =  /_ ' ( l _ 7 + i0 ) [g + '-> ^ “+ -  ^ +) +  ° - ' +> -  -*•<-)] ■
(282)

The weak charged hadron tensor, 
1

H V0
W C

_  ~srnv
~  r, ’ W C {Tj!wc)' 

) (-  r  + 4 M 2

+

+

f t wc + f t£w c + f t

' W C - e AM2

w c  
2

' W C

— 2£29? (H-w c ^ wc  +  'H-wc^'we +  ^ w c ^ w c  +  ^ w c ^ w c

? * - (p ■ 92)

+ 2  [ ( 1  -  e )  ® ( n p c u

{puq% + ? £ )  +

wc

t W C t 'W C

M 2 

(P • ?2)2 

+  ^ w c ^ -w c )

+  I^WC 

) ’

1 “  4A fO  * 2

-  f 2 + 4M 2 ^  (^WC^Wc) (^w c^w c)

— £29? {W wc^wc  +  t'we'H'we +  'H-wc^wc +  ^ w c ^ w c )]

x
1

-ie,'m psq2 a
(p . 9 2 ) '"  ^ Aj ’ (283)

has identical structure as the expression (263) for the weak neutral hadron tensor. 

Moreover, by neglecting the mass of the outgoing muon, one can substitute the so- 

called muon tensor L^  by the neutrino tensor L ^ ,  see Eq. (262). The unpolarized 

Compton differential cross section for the weak charged DVCS process on a neutron 

target using the neutrino beam is

dVcim 1 & G 2f  1 +  x b ( M / u )
dxBdQ\dtdip (27r)3 16 M 2oj2 [2 +  (M /u ) \  x B [y + 2xB (M /u ) \

T (A4) J J v PV ^ v ^ W C -

(284)

The cross section is presented in Fig. 45.

We turn  our attention now to the Bethe-Heitler background. It is given only 
by the diagram (b) in Fig. 39. At the angle 4>', when the outgoing real photon is 

collinear with the scattered muon, one should expect a pole. The amplitude of the 

Bethe-Heitler contribution reads

V ( # ' +  ^2)7I/(1 - 7 5 )T B H v n y/2\e\ GFel (q2)u (k ' )
(k' + q2y

u (k )

x (p(P2, s 2) \ J ° c  (0) \n (pi, s i ) ) . (285)
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JcrarJidcBd& kd?) [ifo/GeV4]

10 12 14
Qwt [deg]

FIG. 45: Compton cross section aCvn for the weak charged DVCS process plotted as a 
function of the angle 0 b7 between the incoming weak virtual boson and outgoing real 
photon in the target rest frame for Q\  =  2.5 GeV2 and xb  =  0.35 with u> =  5 GeV 
(solid line) and u  =  20 GeV (dashed line) neutrino beam.

The spin-averaged square of Eq. (285) is

|Tbhv„ | 2 =  8iraG2FL f HH ™ ,  (286)

with tensors

L *H =  ^  (k  ' «>) -  ’

=  5 51 0’ («!>>2)lJf C (0)|n(Pi.»1)>(p(Ri>»2)|J?c (0)|n(pi,»i))*.
Sl,S2

(287)

The m atrix element of the weak charged transition current Jf?c  between the nucleon 

states is defined as

(p (Pa, sa)| (0) |n {pu si)) =  (p (p2 , s2) \$ P (0) 7 ^  (1 -  7 5 ) ipn (0) \n (pu  s i ) ) .

(288)

Using the same isospin symmetry relation between the flavor nondiagonal and flavor 

diagonal nucleon m atrix elements, see Eq. (280), we parametrize the vector current
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part of the m atrix element in Eq. (288) in terms of the Dirac and Pauli form factors 

for each quark flavor,

{P {P2, s2)\ij>p (0) (0) |n (p i , si)) = (p {p2, s2)| $u (0) 7 ( 0 )  |n (p u  si))

=  (p(P2 ,«a)| ( o ) ( o )  |p(pi, si)) -  (p (p2, s2)| i>d (o) 7 (o) |p(pi, «0)

=  u (P2 , s2) j [ F lu (t ) -  Fid (*)] lv  ~  [F2u (t ) -  F2d (<)] u (pi, S i ) .

(289)

Furthermore, for the axial vector current part.we have

(p (p2, s 2)| $ P (0) 7„76V>n (0) W (Pi. s 0 )  =  «  (P2 > Sa) [&4 (*) 7*75

_ 5 f ^ 2 M  (29°)

where the f-dependence of the axial and pseudoscalar from factors is given by

9a (t) = 9a {t -  0) ^1 -  4 ^  ,

AM2
sp(t)  =  ;• (Ml)

m7T 1

Thus the unpolarized Bethe-Heitler differential cross section for the weak charged 

DVCS process is written in the form

d 4O B H v n  _  1 CtG2p ___________ 1 +  X b  (M /u )________________jjBH
dxBdQ\dtdip ~  (2?r)3 16 M 2uj2 [2 +  (M/u)] x B [y +  2xB {M/u)]2 BH vp '

(292)

Its dependence on dwy is plotted in Figs. 46 and 47, and together with the Compton 

cross section in Fig. 48. In particular, the plots in Fig. 48 reveal that, in the nearly 

forward direction, the Bethe-Heitler contamination is now suppressed by a factor 

~  1/10 compared to the Compton contribution.

To summarize, we gave a comprehensive review on neutrino-induced DVCS pro­
cesses. Through the weak interaction currents, these processes give access to two 

different sets of GPDs, namely, to the sum of quark and antiquark distributions and 

to their difference. Thus we can measure independently both the valence and sea con­

tent of GPDs. In addition, the weak charged current interaction probes GPDs that 

are nondiagonal in quark flavor, such as those associated with the neutron-to-proton 

transition.
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d t°'abrJ(fkBf1$dtdp) [ib/QsV4]
x lO

3 . x  10 "10

60 2 4 8 10 1412

FIG. 46: Bethe-Heitler cross section Obhvu f°r the weak charged DVCS process plot­
ted as a function of the angle between the incoming weak virtual boson and 
outgoing real photon in the target rest frame for Q\ = 2.5 GeV2 and xb  =  0.35 with 
cj =  5 GeV (solid line) and ui =  20 GeV (dashed line) neutrino beam.

[rb/GeV4]
x lO

1. X lO '11

0 10 20 30 40

FIG. 47: Bethe-Heitler cross section (Jbhuu for the weak charged DVCS process plot­
ted as a function of the angle #b7 between the incoming weak virtual boson and 
outgoing real photon in the target rest frame for Q\  =  2.5 GeV2 and xb  =  0.35 with 
ui = 5 GeV (solid line) and u  =  20 GeV (dashed line) neutrino beam.
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Jvlicbcgl& kdp) [rfc/QsV4]
1. xlO'

•9xlO'

FIG. 48: Compton cross section ocvn (solid line) and Bethe-Heitler cross section 
Ob Hun (dashed line) for the weak charged DVCS process plotted as a function of the 
angle 9b7 between the incoming weak virtual boson and outgoing real photon in the 
target rest frame for Ql  =  2.5 GeV2 and x B =  0.35 with u  = 5 GeV neutrino beam.

TABLE IV: Orders of magnitude (in nbarns) for the unpolarized total weak neutral 
<7„p, Compton weak neutral ocep, Compton weak charged oCun and Compton elec­
tromagnetic oCep cross sections for two different kinematical regions of the Bjorken 
scaling variable with two different lepton beam energies oj.

kinematical region u  [GeV] OuP(Z°) ° C e p  (Z°) O C u n  {W +) & Cep  (7 )

0.28 <  x B < 0.3 5 10“ u IQ -13 1 0-11 10“5

0.26 <  x B <  0.28 20 10"9 H-1 o 1 o 10"9 IQ"3
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CHAPTER VIII 

WIDE-ANGLE REAL COMPTON SCATTERING 

VIII. 1 INTRODUCTION

Standard electromagnetic Compton scattering provides a unique tool for studying 

hadrons. We have demonstrated in the previous chapter how the process can be ex­

tended into the weak interaction sector, in which the relevant Compton amplitude 

probes the hadronic structure by means of the quark electromagnetic and weak cur­

rents rather than two electromagnetic currents, and promise therefore a new insight. 

In the lowest QCD approximation, these currents couple to photons and weak bosons 

through point-like vertices. Moreover, in a specific kinematical regime, featuring the 

presence of a large momentum transfer, the behavior of both the standard and weak 

Compton amplitudes is dominated by the light-like distances. As a result the am­

plitudes are given in terms of the handbag diagrams. There are several situations, 

where the handbag contribution plays an essential role [38]:

•  Both initial and final photons are highly virtual and have equal space-like vir- 

tualities. This situation corresponds to the forward VCA. Its imaginary part 

determines the structure functions of DIS.

•  The condition on photon virtualities may be relaxed in a sense th a t the ini­

tial photon is still far off-shell but the final photon is real and the invariant 

momentum transfer to the hadron is small. The situation corresponds to the 

nonforward VCA. It is accessible through DVCS.

•  The configuration, in which both photons in the initial and final states are real 

but the invariant momentum transfer is large. The physical process correspond­

ing to this situation is known as wide-angle real Compton scattering (WACS).

The Compton amplitude of WACS is a subject of the study in the present chapter, 

which contains some of the formal results from Ref. [111]. An efficient way to study 

this amplitude is again to use the light-cone expansion of the time-ordered product of 

two electromagnetic currents in the coordinate representation. At moderately large 

values of Mandelstam invariants (s, —t, —u < 10 GeV2), the dominant reaction
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mechanism corresponds to the handbag contribution just as in DIS and DVCS. To 

the leading order, the amplitude is given by the s- and u-channel handbag diagrams, 

see the diagrams (a) and (b) in Fig. 49. On the other hand, for extremely large 

—t^>  10 GeV2 the purely hard contributions involving two-gluon exchange, such as 

the diagram (c) in Fig. 49, and having power-law behavior (i.e. ~  (—t)N), become 

dominant. In particular, at large values of t, the handbag diagrams are accompanied 

by the Sudakov form factor S  (t) ~  exp — Q!s ln2 (—t) /37r tha t drops faster than 

any power of —t. At moderate t, however, the hard contributions are numerically 

suppressed by a factor (as/ 7r)2 ~  1/100, and will not be considered here.

In Section VIII.2, we start from the formal light-cone expansion in terms of QCD 

string operators (with gauge links along the straight line between the fields which, 

for brevity, we do not write explicitly). In addition to the twist-2 string operators, 

we also include now the operators that are algebraically of twist-3 but given by the 

total derivatives of twist-2 operators. One refers to these as the kinematical twist- 

3 contributions, in order to distinguish them from the so-called dynamical twist-3 

contributions involving quark-gluon operators. The latter cannot be reduced to total 

derivatives [83]. Furthermore, for simplicity, we consider a spin zero (i.e. pion) target. 

For th a t reason, only the m atrix element of a vector-type string operator is needed. 

Its spectral representation is given in terms of double distributions. It is worth noting 

at this point th a t even though we restrict ourselves to the pion, our approach can be 

used in more realistic situation involving the nucleon target [112] as well as can be 

applied to the time-like region, in particular, to study the exclusive production of two 

pions in the two-photon collisions [113]. In Section VIII.3, we compute the Compton 

amplitude for the pion up to the twist-3 level, and inspect its transversality, in other 

words, the electromagnetic gauge invariance with respect to both initial and final 

photons. The physical amplitudes (or alternatively the photon helicity amplitudes) 

of the WACS process are obtained by projecting the Compton amplitude on different 

the polarization states of physical photons. We estimate these amplitudes and their 

corresponding cross sections by taking a simple model for the double distribution of 

the pion. The results are compared with the QED calculation.
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FIG. 49: Handbag contribution (a and b) and the configuration (c) with the exchange 
of two hard gluons.

VIII.2 TWIST DECOMPOSITION AND PARAMETRIZATION

We recall from Section IV.2 tha t the leading light-cone singularity of the time-ordered 

product of two electromagnetic currents is contained in the handbag contribution,

i T { r E U ( z i i ) r BM ( - , f t ) }  =  +

(293)

in which a highly virtual quark propagator connecting the two photon vertices is 

convoluted with the blob describing the long-distance dynamics. In Eq. (293) the 

tensor swl,TI =  gp'f)gl/p +  gm gpu — gpl/gpTI and the QCD bilocal operators with the flavor 

index /  and one open Lorentz index are

(z 1°) =  [i>f (~z/ 2) TtjVv { z / 2 )  -  $ f {z /2 ) 7 ^ /  ( - * / 2)] ,

OL, {z |0) =  [i>f  { - z / 2 )  7 , 7 5 ^ /  {z/2) +  $ f  {z/2) 7 ^ 5^ /  { ~ z / 2)] . (294)

The Taylor expansion of these operators in the relative distance £ involves covariant 

derivatives and yields local operators tha t are not symmetric in their indices. Never­

theless, it was shown in Refs. [83, 86] tha t O f  (z |0) and OlJ7] {z |0) can be expressed 

in a compact form in terms of the contracted operators 0 *  {z) = zvO /  (z jO) and 
0 [  (z) = z vO[Tj (z |0) tha t produce only symmetric operators, and quark-gluon string 

operators. Namely, the fully deconstructed vector and axial vector operators take the 

following form

O f { z  |0) = J  dv |  cos
I V K o , w  • dr, +  — sin

ZVK {z ■ V ) V T, — T>2Zr,
K
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i>f (—vz/2) jtipf {vz/2) -  0 ,  (vz/2) (~vz/2)]
x_ f 1 dv .

+£t)8k\Z T>k /  —  sin Jo K
0 /  (~vz /2 )  ^7 5 0 /  (vz/2) + 0 /  (vz/2) f a t p f  ( - v z j 2 )]

(z ■V)'Dr) — 'D2zT) 1
+  (quark—gluon operators),

1°) = JQ dv | cos
I V K

L 2 J
, W ■ 

°n +  y  sm
I V  K

2 J K

x [0 /  ( -vz /2 )  ^ 0 /  (vz/2) +  0 /  (vz /2 ) ^ 0 /  ( ~ v z / 2 )]

f_  r1 dv .
+^t,Sk\ z°Vk /  —  sm 

70 /C
dx

X [0, ( -vz /2 )  / 0 /  ( W 2) -  $ f  (vz/ 2) ( ~ W 2)]

+  (quark—gluon operators), (295)

where we use the notation v =  1 — v, dv =  d / d z n and

« =  y J ( z - V ) 2 -  z 2V 2, (296)

with X> =  d /5 X  being the total derivative. Neglecting z2 terms and ignoring quark-

gluon operators (note tha t they correspond to the dynamical twist-3 contributions,

which are not considered in our approach) the decomposition (295) gives [81, 83, 8 6 ]

0 > ( z  |0) =
iv (z • V) X ! W ■on —— sm

iv (z • T>)
2 J v 2 [ 2 J c .J  dv j  cos

x |'j>f ( -vz /2 )  jhl>f  (vz/2) -  0 /  (vz/2) / 0 /  (-vz/2)]

iv (z • V)
d>

c dv 
+e¥KxzSV K ^  sin

x [-0 /  ( - v z / 2 )  ^7 5 0 /  (vz/2) +  0 /  (vz/2)  ^ 0 /  ( - vz /2 )]  ,

O b , ( z  1°) =  JQ dv {cos
iv (z • V) a , w  ■ On +  — sin

iv (z ■ V)
2 j v 2 [ 2 J V n

x [0 /  (~vz/2) (vz/2) +  ipf (vz/2) ^7 5 0 /  ( - v z / 2 )]

f  ̂
+Zt)8k\ZS'Dk,

( z - V )
iv (z • V)

x [0 / (~vz /2 )  / 0 /  (vz/2) -  0 /  (vz/2)  / 0 /  (-v z /2 )] . (297)

For the pion, the m atrix element of the contracted axial vector operator vanishes and 

accordingly, the m atrix element of the time-ordered product (293) reduces to

J e m  (~ z /2 ) } \n ( Pl))
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27r2 z a  * dv ĉos
v (r • z)

dv +  -  sin

A *  [ '
Jo (r  ■(r - z )

sm

v (r • z) 
2

v (r • z)
d*

x (7r (pz) | 0 /  (~vz /2 )  i%j)f  (vz/2)  -  0 /  (vz/2) ( - v z / 2 )  |tt (pz)) ■ (298)

We have used the fact tha t under the m atrix element, the total derivative of the string 

operator turns into the momentum transfer, i d / d X K —> rK (recall tha t r =  p x — p2 is 

the overall momentum transfer to the pion target).

The next step is to parametrize the nonforward matrix element of the twist-2 part 

of the contracted vector string operator in Eq. (298). This is performed in terms of the 

spectral functions, namely, the double distributions. Thus one needs to construct the 

parametrization for the m atrix element of (z) satisfying the harmonic condition

d2 (-K(p2) \ O f  (z) |tt (pi))twitwist—2 - 0 . (299)

In general, the m atrix element can be regarded as a function of the variables (p ■ z), 

(r ■ z) and z 2, where p = (pi +P2) /2  is the average pion momentum. The stan­

dard way to parametrize it, is by the decomposition into plane waves, where one 

explicitly separates the (p • z) components from the (r • z) components, and hence 

use two spectral functions, f f ( (3 ,a , t )  and gf(j3 ,a ,t ) .  Alternatively, one can write 

the param etrization in the form

( n ( p - r / 2 ) \ O f  (z)\7r(p + r /2 ) ) twist_2 = - 2 i  (zada) T  (z,p, r ) , (300)

with

dp  / da e1̂ ' ^  \hf (fi, a , t )  + O  (fc2z2)l , (301)-1 J —1+|/8| \  / J

where the four-momentum k = /3p + ar/2 .  The la tter has the same

structure as tha t parametrizing the twist-2 part of the m atrix element 

(p — r/2\cj)(—z/2) (j>(z/2)\p + r/2)  in the scalar case. In particular, it satisfies 

d2T  (z,p, r) =  0. It is easy to see th a t for th a t reason

B2 (zad(T) T  (z, p, r) = (2 +  z ada) d2T  (z, p, r) 

=  0. (302)

Let us note at this point tha t in Appendix C, we consider the scalar parametrization 

JF (z ,p , r), which includes terms up to order O ( t f z 4). The inclusion of z2 and z A terms
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in the expansion is due to the fact th a t the fermion propagator has 1/ z A singularity, 

and besides the operator O f  (vz ) in Eq. (298) is differentiated with respect to z. 

Now, by taking only the first term in the z 2 expansion in T  (z , p , r ), the expression 

(300) turns into

/ I rl —1$|
dp /  . . .da ei{k‘z) 

x (k • z) h f  (P, a , t ) . (303)

The representation (303) is given in terms of only one double distribution hf  (/?, a, t) 

and corresponds to the so-called single-DD parametrization [88]. We observe th a t the 

original distributions are then expressed in terms of the single one as

f f (l3,a,t) = p h f (P ,a , t ) ,  

gf (P ,a , t ) =  a h f  (P, a, t ) . (304)

Moreover, we establish the symmetry properties of h f ( P , a , t )  with respect to pa­

rameters P and a. Since / /  (P ,a , t )  is odd in P and even in a  while for <?/ (P , a , t ) 

the situation is the other way around, it follows from Eq. (304) th a t the double 

distribution h f  (/3 , a , t ) is an even function in both variables P and a.

Finally, by substituting the single-DD parametrization (303) into the m atrix ele­

ment (298), one arrives at

(tt (p2)\ iT  {J%M (z/2) J VEM ( - z / 2 ) }  |tt (pi)) =

7r2£4

r 1 rl — \fi\ r 1 .
J  J da h f  (P ,a , t )  J  dv ew  ̂ ^

x  ̂s»pUTI i cos
v ( r  • z)

[kv -)- ivkv (k • z)\ +  - r n (k • z) sin
v (r • z)

5+ i e ^ pe7t&KXz°r
( r - z )

sm
v ( r  • z)

Â:a +  ivkx (k • z) (305)

To isolate the leading twist-2 contribution in Eq. (305), we integrate by parts over v 

the first kTI term  in the symmetric part (with respect to the Lorentz indices n  and v) 
of the m atrix element, and the first k x term in the antisymmetric part. We find

( t t  (p2)\ iT  {J%M (z/2) rEM ( - z / 2 ) }  | t t  (Pl)) =

7r2z4 E Q f  f  d@ [  1 1 da  hf  (P, a, t)
, J-1 •/—1+|/?|

kT}et('k’z') + ^  [rv (k- z) — kn (r ■ z)] J  dv vew k̂'z  ̂sin V ^  Z  ̂ j
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i
+  2

I '  dv veiv^  cos 
2 Jo

v ( r  • z)

(306)

where only the surface term in the symmetric part corresponds to the twist-2 con­

tribution (note tha t the surface term in the antisymmetric part vanishes). All the 

remaining terms are of the twist-3. We explicitly write

( t t  (p2) \ i T {J£m (z / 2 )  J VEM ( - z / 2 ) }  \ir (pi))tu;ist_2 =

£  Q ) s [ '  dj3 da h f  (0, a, t) (307)
TT Z  j  J — 1 J — 1 -J-1

for the twist-2 part. Now for the twist-3 part, after expressing the sine and cosine 

functions in Eq. (306) in terms of the exponentials and combining them with the 

overall exponential factor exp [iv (k • z)], we obtain

( tt (p2) \ i T  { J£m ( z / 2 )  J vem  ( -z /2 )}  \tt (pi))twist_3 =

x [r„ (k • z) -  kn (r • z)\ £  dv v -  eiv^ +i^ / 2'

+ e ^ TlpeTjsKXzsr Kkx £  dv v [e^ v z ) - i ( v z )/2 + ei»(*a.*)+<(r.*)/2] } ; (308)

where k\ = k + r /2  and k2 = k — r /2  are the momenta of the incoming (with respect

to the interaction with two photons) and outgoing quarks, respectively.

VIII.3 COMPTON SCATTERING AMPLITUDE

As a result of the twist decomposition of the m atrix element, see Eqs. (307) and 

(308), the Compton scattering amplitude,

T “  =  £ « /  /  <*** <ff t e ) |  iT  { (z/2) r EU ( - z / 2 ) }  |ff (p ,) ) ,

(309)

where q = (qx + q2) /2  is the average photon momentum, can be written in our 

approximation, as the sum of the twist-2 and twist-3 contributions,

q - f l V  _  q - H V  , Z J - / I V  / O l  f » \
> ~  Itwist-2  +  /twist-3- I0111!
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VIII.3.1 Twist-2 Amplitude

After integrating over z with the help of Eq. (98), the twist- 2  part of the amplitude 

reads

r r  /*1 1̂ 1
=  £  Q } ^  d / 3  /  d a h , ( p , a , t ) k ,

j  J TT Z J — 1 J — l + |p |

=  2 J 2 Q }  [  d$ \  ma da hf  ( a m ) ^f  7—i J—i+\p\ (A: +  9 )

x {2k*kv +  fc V  +  kvq? -  g r  [k2 + (k • 9 )]} . (311)

If the pion mass m „ is neglected then k2 = — (y32 — a 2) t / 4 and the denominator for 

the quark propagator results into

(.h + q f  = {ki + q i f  

=  (k2 +  Q2)2

=  s {/3 -  ^  [(i -  /J)2 -  a 2] } , (312)

where s — 2(p-  q) -  t /2  = 2 { p i - q i ) =  2  (p2 • <72) or, after writing ( 1 - / 3 ) 2 =

( l - | / 3 | ) 2 +  2( | / ? | - / 3) ,

/3s— (1 — /3) 2 — a 2] t/4  for /3 >  0
(A; +  Q) —

—fiu — (1 +  /3)2 — ex2] t/4  for j3 < 0

VIII.3.2 Twist-3 Amplitude

(313)

We compute now the twist-3 amplitude, which contains two contributions. First, the 

contribution from the sWVT) term in Eq. (308) is

,7-/11/
'  twist—3(1) =  5  e  f  w  r m da  k /  os. <)2 t J - i  ft-l+|/9|

x f d v v j  d4z [eiilvz) -  ei{h'z) ^ 4  [rv (k ■ z) — kr, (r • z ) \ ,

(314)

where the combined exponentials, li = qi + vk\ and l2 =  <72 +  vk2, correspond to 

the effective momenta flowing through the quark propagator, and qi = q — r /2  and 

q2 = q + r /2  are the momenta of the initial and final photons. We have two types of 

quark propagators here. Their denominators are given by

l\ = v [(/ci • qi) + vk2
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=  v

l l  =  V

=  V

(k +  q)2 -  vk\  

(k2 • 9 2) +  vkj  

(.k +  q)2 -  vkl (315)

where the incoming and outgoing quark virtualities are

k\  =  [—/32 +  (1 +  a )2] i/4 ,

= [- /?2 +  (! -  a ) ] V 4-

After the integral over z is carried out using of the formula

  9pal 2 lpl0
(P +  to)

f  e i « - ) — H - £ n _
J 27r2 (z2 — *0) 2 >

(316)

(317)

the expression (314) turns into

  r l  r l  — 1/91 r l

% Z s t - 3 d )  =  E  Q 2/  / _ 1 dP J _ l+W d a  h f  0 1 dv  v

x |  i  [ -  (ii • *) (if r -  +  if r - )  +  f t  • r) (if* - +  if*-)]

- - j  [ -  (h ■ k) ( if r-  +  if r - )  +  f t  • r) (if*- +  if* -)]!  . (318)

Next we study the second contribution to 7^^ist_3. It is due to the e,wr?p term  in the

m atrix element (308, and comes from the axial vector operator. We have

c , . «  =  \ ' E Q } £ l dP l ‘Z ld a h / { f l ' a ' t)

rl %Zp Z°
J 1 dv v J  d*z [e^1̂  +  e^h'z)]

r l  /"I —1̂ | r l
= E * 3 /  j  d/3 j  da h f  (/3,a,t) J  dv v

( I  [(ll • k) (Ifr- -  Ifr-)  -  (I, • r)  (If*- -  If*-)]

+ / i  [(I2 • *) (Ifr- -  Ifr-)  -  f t  • r) (if* - -  If*-)] J  . 

Finally, by adding Eqs. (318) and (319), the to tal twist-3 result reads

r l  r l  — 1/3| rl
V Z s t s  =  2  E  <2/ /  dP d a h f  (P>a > *) /  ^ u“  J y_i y-i+|/9| ./o

x { i  [ -  (ll • *) I f r -  +  (ll • r) If*-] +  i  [(l2 • *) I f r-  -  (l2 ■ r) If*-]

(319)
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with the following scalar products

( h - k )  =  (k +  q)2 /2  +  (v -  1/2) k\  +  (v -  va) t/4,

(l2 -k)  =  (k + q f / 2  + ( v  -  1/2) kj + ( v +  va) t /A ,

(h ' r) =  — (u — va ) t/2,

( k - r )  =  (v + va ) t /2 . (321)

Note tha t the second integral over v in the amplitude (320) is logarithmically di­

vergent, however, the coefficient for the divergent integral vanishes, when Twis ts  

contracted with the incoming and outgoing photon polarization vectors, tv (</i) and

VIII.3.3 Electromagnetic Gauge Invariance

The total Compton scattering amplitude (309) is transverse with respect to incoming 

and outgoing photon momenta

Let us check whether the gauge invariant condition (322) also holds for the ampli­

tude (310). We expand the contracted twist-2 and twist-3 amplitudes in terms of t / s  

and, for simplicity, keep only the lowest (zeroth) order corrections. A straightforward 

contraction, together with imposing the symmetry properties of the double distribu­

tion h f ( /3 ,a , t )  with respect to the variables a  and /3, yields for the leading-twist 

amplitude

T ^ q i u  = 0, 

tov'T* = 0. (322)

=  I 2Q* [  d@ [  ^  da  h f  05’ a ’ *) r V 2’y  J- 1 J - 1+|/9|

<h*TS*-, =  -Y ^ Q ) f  dP (323)
f  ■ '- 1  •/ - 1+|P|

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



121

while for the contracted next-to-leading twist amplitude we get
r l  / - l -

-1 + lf l
T £ , - . f c  =  - £ < 3 / /  dp f  dahl {p,a ,t)r>‘/2,I  J - i J - 1+101

9 2 „ 7 S ,.-3 =  £  Q) [ '  if> / 1H"' d a  h,  (A  a ,  t) r-72. (324)
f  •/ - 1+IP|

Clearly, even at the level O  (t /s)° , the amplitude Tt̂ uist_2 alone is not gauge invari­

ant. However, the electromagnetic gauge invariance at this level can be recovered by 

including the contribution from Tt^st-s- The la tter exactly cancels Eq. (323).

VIII.3.4 Helicity Amplitudes

We shall project the Compton scattering amplitude onto the polarization states t \ v =  

e„ (<71) and o2ll =  (g2) of the physical photons. In the Compton-like processes, these

two states can be written as the linear combination of two basic polarization four- 

vectors [114],

e A _  
e l —

eA _  WS 
e 2 — (325)

where

is in the reaction plane and

=  pX ~ ^ r - q X (326)

n 2 =  (327)

is perpendicular to it. Then, by construction (q • ei) =  (r • ei) =  0 and similarly for 

e2. The contracted twist-2 amplitude is

%wist-2€2peii' = Z ' E Q f  J  l d/3 J  da h f  (j3, a, t) ̂  ^

x {2p2 (p • d )  (p • e*2) -  (ei • e2) [<fc2 +  (k ■ q)] }

=  13  Q) f  dJ3 f  ] 1 da hf  (J3, a, t )
, 1 J-1 J - 1+10/

x - 1  +
(l32 — a 2 — 1) t /  4

(k + q f  .

2

6̂l ‘ e*) +  ; , 4f  £2 (P • e0  (p • C5)(k + q)
(328)
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and for the twist-3 part we find

rl r l — \(3\
T Z s t - s ^ i v  = £  Q) / _ 1 dP P2 / _ x da hf (Pi a > 0  (p • ci) (p • e2)

L
x dv <

v — va 1

\

U  +  D O !

[(A -I- q)2 -  vk\
2 +

(A: +  9)2 - uA:|]2 >
(329)

Furthermore, we introduce twist-2 and twist-3 photon helicity amplitudes by pro­

jecting the photon polarizations onto the basic vectors e\ and e2,

^ t w i s t —2(3) =  ^ t w s « - 2 ( 3 ) e l / i e i ^ ’

i r ( b 2) __ 'T'/tt' „* „
twist-2(3) '  tw is t-2(3) In 2vi

— 'T'^" <,* *>,
twist—2(3) ~  ' twist—2(3) 'in i-v i

^ t w i s t - 2(3) =  'l~twist-2(3)e i n e2 v '

Out of eight helicity amplitudes, only three are nonzero, namely,

r l - | |8 |

-1+1/31
n t1’.1)twist—2 =  H I ® 2 [  dP [  11 da hf  (Pia >f )t J - 1 J - 1+1/31

ff(2’2)
“  twist—2

j  (f32 — a 2 — 1) t 4/?2 u s '
X I (k + q f  4 +  (A: + q f  t ^

Y . Q )  [  dP [  M da hf  (Pia >*)V  - /- l  •/—1+|/3|

(^2 - « 2 - i ) n  
4 /*

/

x b
(A: +  g)'

r r ( l , l )
12 twist-3

  /»1 /-I—\0\
= - u s J 2 Q }  J  dP P 2 J  d a h f ( / 3 ,a , t )

fJo dv
v — va

+
v +  va

[(k + q)2 -  v kf\ {k + q)2 -  vkl

(330)

(331)

where we have used

(p -e i)2 =

t _
4 ~
us
T ‘

s' ^ ) 2
(3 3 2 )
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VIII.3.5 M odel

For the pion double distribution h f  (/3, a, t), we use a simple model in a factorized 

form [115],

hf (P, a,  t) =

The profile function is chosen to be infinitely narrow,

h(/3, a) = 6 (a ) .

(333)

(334)

Accordingly, the integral over a  in the helicity amplitudes (331) is trivial. Next, for 

the forward distribution we take

31-1/31

f W)  = 4 # i  ’

and the t-dependence is described by the following Regge ansatz

r ( p , t )  = \ p \ - w - w ) '

(335)

(336)

where the param eter a' = 1 GeV~2. The summation of quark flavors in Eq. (331) 

gives an overall charge factor of 5/9.

We calculate separately the s- and u-channel contributions in the helicity am­

plitudes. Using Eq. (313) and making the change in the variable /3 —f3 in the

u-channel, we have for the helicity amplitude ^

trl1’1) _  ^ f 1 JR 1 3 (1 — (3 ) aa'ItKl-ft)
-  9 J0 dP p  4 ^  P

5 f i JO 1 3 (1 — 0) i 
M y f t  P 
(/32 -  1) |t| /4

x 1 +
4/32u s /  \t\

+  9

x 1 +

f3s + (1 — /3)2 \t\ /4  fis + (1 -  /3)2 |i |/4 .

Jo /34
(/32 - l ) | f | / 4  4/32us/\ t \

f tu +  (1 — /3) |<| /4  (3u + ( l - p y \ t \ / l \
(337)

and after some manipulation

FfP’Pn  twist- 2 =  o o f  ^ ( l - / 3 ) / 3 - 1/2+Q'|t|(1-^2 JQ

(2a2 — 1) /3 +  a (2a2 — 1) /3 — a
/32 + 2aP + l P2 -  2ap + 1

(338)
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where the param eter a = 2s /  |t| — 1 >  1 depends only on the ratio s/  |t|. The first 

term in the square brackets of Eq. (338) corresponds to the s-channel contribution. 

For the moderate invariant momentum transfer, the term has no singularities in the 

region 0 <  <  1 , in other words, the s-channel contribution is real. The situation

is, however, different with the second term in the square brackets, which represents 

the u-channel contribution. Its denominator has the roots /3i ,2 =  a ±  y/a2 — 1 (in 

fact, the denominator is equal to f32 — 2 a/3 +  1 +  ie =  (f3 — /3i +  ie) (/3 — f32 — *e)) 

and, unlike the s-channel, there is one relevant pole at /3 = /32 + i. The u-channel 

contribution has therefore both the real and imaginary parts. They can be evaluated 

in the complex plane by making use of the residue theorem in the following way: one 

introduces a new variable, 7  =  f3 — 1 / 2 , which shifts the integration region from [0, l] 

to [—1/2,1/2]. Then by closing the contour in the lower half-plane we find

r - l / 2  __ __ p 2 i r

I
- 1 /2

with 7  =  (1/2) exp In summary, the helicity amplitudes Htwtl-s  îas both the 

real and imaginary parts, where the latter is generated solely by the corresponding 

u-channel contribution. In the similar way, we compute the remaining two helicity 

amplitudes,

r l /2 r2ir
/  , d j  {••■} = d j  {...}, (339)
J — 1 / 2  J 7T

— l/2+a'|t|(l-/S)

8 +  a /3 — a
+

and

/32 + 2afi + l  j82 -  2a/3 +  1

=  §3 (a2 — l )  j /  dj5 (1 — /?) ^ 1/2+Q'ltK1-

(340)

■0 )

1 1
,C52 +  2a/3 + l ) 2 +  (/32 -  2ap + l ) 2.

For the sake of simplicity, we have neglected terms k\  and /c| in the denominators of 

H tw i s t - 3 ) see Eq. (331). Then the integral over v  simply gives 1/ (k +  q)A. At present, 

we only consider the twist-2 helicity amplitudes. In Figs. 50 and 51, their real and 

imaginary parts are plotted against the center-of-mass scattering angle 6cm rather 

than against —t (recall tha t t = — ssin2 (9cm/2))  in the region of sufficiently large 

invariant s =  5 GeV2. We divide the amplitudes by 5/9 to remove the overall charge 

factor. Analogous plots are presented in Figs. 52 and 53 for s = 10 GeV2, and in Figs.

(341)
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8<m [dm.]

FIG. 50: Real part of the helicity amplitudes (solid line) and (dashed
line) plotted as a function of the center-of-mass scattering angle 9cm for the invariant 
s =  5 GeV2. The amplitudes are divided by the charge factor 5/9.

54 and 55 for s =  20 GeV2. Due to the presence of the term 4/32 (u s / t ) /  (k + q)2 in

the amplitude 2, one might naively expect tha t the real part of 2 would

dominate over the real part of H^ ] t_2. Both the 5-channel and the real part of the 

u-channel contributions in H ^ ] t_2 are indeed large, however, they come with the 

opposite signs, and as a result, the real part of the amplitude 2 diminishes, as

oppose to the amplitude 2, in which both terms add up. Another observation

is that the imaginary parts of the helicity amplitudes are suppressed with respect to 

their real parts.

We can now estimate the polarized differential cross sections in our simple model 

for the pion DD hf (/3, a, t). In the center-of-mass frame, we write

1

( i . i )

77T 1 77T
2Ei2uivrei

dp2

( 27r )4 5(4) {pi + q i ~ P 2 ~  Q2)

dq2 L2^-(Ai ,A2)| (342)
(2tr)3 2E2 (27r)3 2w2

Note tha t we multiplied the helicity amplitude with e2, which has been conveniently 

skipped in our analysis. Partially evaluating the integrals over the final-state mo­

menta, e.g. integration over q2 kills <5  ̂ (pi + q i ~ p 2 -  q2) and sets q2 = - p 2) yields
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FIG. 51: Imaginary part of the helicity amplitudes H ^ s\_2 (solid line) and H ^ } t_2 
(dashed line) plotted as a function of the center-of-mass scattering angle 9cm for the 
invariant s =  5 GeV2. The amplitudes are divided by the charge factor 5/9.

Re

FIG. 52: Real part of the helicity amplitudes H ^ t_2 (solid line) and # ^ ’,>1-2 (dashed 
line) plotted as a function of the center-of-mass scattering angle 9cm for the invariant 
s =  10 GeV2. The amplitudes are divided by the charge factor 5/9.
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FIG. 53: Imaginary part of the helicity amplitudes (solid line) and
(dashed line) plotted as a function of the center-of-mass scattering angle 9cm for the 
invariant s =  10 GeV2. The amplitudes are divided by the charge factor 5/9.

Re

Ocm [degd

FIG. 54: Real part of the helicity amplitudes (solid line) and (dashed
line) plotted as a function of the center-of-mass scattering angle 6 ^  for the invariant 
s =  20 GeV2. The amplitudes are divided by the charge factor 5/9.
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FIG. 55: Imaginary part of the helicity amplitudes (solid line) and
(dashed line) plotted as a function of the center-of-mass scattering angle 9cm for the 
invariant s =  20 GeV2. The amplitudes are divided by the charge factor 5/9.

at high energies (and thus vre\ = 2)

do{XlM) (77T+
7 7 r+ )  —

1 1 1
5 (2E x -  2E7) dE2dQ

(343)

where s — E%m and E x = E cm/ 2. The differential cross section can be further simpli­

fied into
t ) (^71-+ _> -y7r+)

which can be written in the invariant form as
dcr(^M) g4

647t2s
(344)

(345)
dt 167TS2

The 9cm-dependence of the twist-2 cross sections and are illustrated on a 

logarithmic scale for all three values of the invariant s in Figs. 56 and 57, respectively. 
Similarly to the situation with the nucleon target (see, e.g. [38]), the plots reveal a 

slight increase in both polarized cross sections at large scattering angles, 9cm >  130°. 

Moreover, by comparing their orders of magnitude, we find tha t the cross section 

is significantly suppressed compared to cr̂ 2,2\  Next, the angular dependence of 

the combination s 4,6da^2,2 /̂ d t  is shown in Fig. 58. The curves obey scaling behavior, 

i.e. they basically coincide up to 9cm — 100°.
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FIG. 56: Twist-2 cross section plotted as a function of the center-of-mass scat­
tering angle 9cm for the invariant s =  5 GeV2 (bold solid line), s =  10 GeV2 (solid 
line) and s =  20 GeV2 (dashed line).
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0.001

FIG. 57: Twist-2 cross section <r̂ 2’2̂  plotted as a function of the center-of-mass scat­
tering angle 9cm for the invariant 5 =  5 GeV2 (bold solid line), s =  10 GeV2 (solid 
line) and s = 20 GeV2 (dashed line).
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FIG. 58: Combination sAsda^2'2y d t  plotted as a function of the center-of-mass scat­
tering angle 9cm for the invariant s = 5 GeV2 (bold solid line), s =  10 GeV2 (solid 
line) and s = 20 GeV2 (dashed line).

VIII.4 COMPTON SCATTERING ON A PION IN QED

We compare the QCD results of Section VIII.3 with the QED calculation. Assuming 

that 7r+ is an elementary particle we have, in the lowest order in ocem, three relevant 

Feynman diagrams, see Fig. 59, namely, the s- and u-channel tree diagrams and the 

four-point contact interaction diagram. Adding them coherently, one finds for the 

T-m atrix

iT  = i \e\ (2p2 +  q2y
{Pi+Qi) ~ m l

+i \e\ (2p2 -  qi)

+ 2 i |e |V 1'

( P 2 - 9 i )  ~ m l  

*
eli'e2/z-

i\e\ (2pi + qiy  

i \e\ (2pi -  q2y

(346)

The expression in the brackets corresponds to the Compton scattering amplitude 

in QED. We can immediately check its gauge invariance and find

T ^ q lu = —ie
(2p2 + q2y  [2 (pi ■ qi) + qf\ , (2pi -  q2y  [2 (pa • qx) -  q̂ }

2 (pi • Qi) 
= —2ie2 (p2 +  q2 ~  Pi ~  qi)M

=  0.

+
- 2 ( p i  - qi)

(347 )
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Y (Q,) 

k Upj)

FIG. 59: Feynman diagrams for Compton scattering on a pion in QED.

Similarly, we prove tha t q_2p.'Tllv = 0.

Neglecting now the pion mass in Eq. (346) (recall that s , —t , —u^> m 2 and hence 

s + t + u = 2m2 ~  0), we get

'2 (pi • ei) (?2 • 4 )  , 2 (Pi ■ 4 )  (P2 ' ei)T  = - 2 e +
it

-  (ei • Cj) (348)

By writing the initial and final pion momenta as pi = p + r /2  and p? = p — r/2,  

respectively, and imposing (r • eQ =  (r • e2) =  0, we can express the T-m atrix in 

terms of the average pion momentum,

T  = -2e2 2  ( 1  +  1 )  (p • £i) (p ■ 4) -  ( f l  • 4 ) (349)

Finally, the projection of polarization vectors e\ and €2 onto e\ and &2 gives the 

following photon helicity amplitudes in QED

us#(M ) =  _2e2

=  2e2, 

t f (1>2) =  0,

F (2>1) =  0, 
Hm  = _ 2 e 2_

2  ( -  +  - )\ s  u ) t
+ 1

(350)

The QED helicity amplitudes and H^2’2̂  are opposite in sign but constant. By
fl ll (2 21comparing them to the real parts of the QCD helicity amplitudes Htwist-'2 an(l ^ gt_2 

(and, as usual, ignoring — e2), we can establish the effective form factor, which solely 

describes the underlying QCD dynamics.

In summary, we presented an improved treatm ent of the DD formalism to the case 

with the pion target. In addition to deriving the amplitude in the twist-3 approxima­

tion, the helicity properties were considered. We gave predictions for the polarized 

cross sections with the use of the simple model for the pion double distribution.
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CHAPTER IX 

CONCLUSIONS AND OUTLOOK

In this dissertation we have studied inclusive and exclusive Compton processes in 

quantum chromodynamics. Let us summarize our main conclusions.

First, we briefly reviewed the crown example of the hard (light-cone dominated) 

inclusive scattering process in QCD known as deeply inelastic lepton-nucleon scatter­

ing. We introduced the forward virtual Compton scattering amplitude and discussed 

its relation to DIS. We presented the cross sections results in terms of structure func­

tions for both the electromagnetic and weak probes. The last part of Chapter II 

was devoted to the QCD parton model. This simple model, which naturally emerges 

from the QCD operator product expansion, successfully describes the scaling prop­

erty of structure functions, and further allows to express them in terms of the parton 

distributions functions.

In Chapter III, we started with the systematic description of old phenomenologi­

cal functions (form factors, parton distribution functions and distribution amplitudes) 

that were used for years in the studies of hadrons. New phenomenological functions 

(generalized parton distributions) became necessary in order to generalize the Comp­

ton scattering amplitude in the region of nonforward (skewed) kinematics. They 

were introduced in various ways and under different names as nonperturbative func­

tions describing the soft (long-distance) part of the factorized scattering amplitudes 

in QCD. Generalized parton distributions accumulate the most complete informa­

tion about the hadronic structure, and as such combine the features of form factors, 

usual parton distributions and distribution amplitudes. We presented some of their 

theoretical aspects.

Generalized parton distributions have numerous applications to hard processes, in 

particular, to the exclusive ones. The pedagogical example in this respect is deeply 
virtual Compton scattering. In Chapter IV, we demonstrated the derivation of the 

amplitude at the leading twist-2 level in the DVCS kinematics, using the light-cone 

expansion in terms of QCD string operators in coordinate space. We investigated 

the electromagnetic gauge invariance of the amplitude. The la tter is violated with 

respect to the initial virtual photon and therefore, higher twist corrections have to 

be taken into account. Furthermore, we discussed the kinematics and introduced a
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toy model for the nucleon off-forward parton distributions, which did not include the 

contribution from the sea quarks. We estimated the unpolarized cross sections in 

the kinematical region relevant to Jefferson Lab, and observed tha t unfortunately the 

contamination from the Bethe-Heitler process predominated the pure DVCS signal. 

The way out is to exploit the interference between the two processes. This approach 

allows to project out independently both the real and imaginary parts of the DVCS 

amplitude and probe different linear combinations of GPDs.

In Chapter V, we studied the inclusive photoproduction of massive lepton pairs. 

The process was considered in the framework of the parton model at rather high pho­

ton beam energy. Again one deals with two types of subprocesses. We picked only 

the lowest order electromagnetic contributions and calculated both the Compton and 

Bethe cross sections. We found tha t in the forward direction the Compton contri­

bution was slightly larger than the Bethe-Heitler contribution, however, it decreased 

much faster. In addition, we illustrated tha t the interference terms cancel in pairs, 

after being integrated over the momenta of final leptons.

The inverse process to DVCS is known as time-like Compton scattering. It can 

be accessed through the photoproduction of a heavy lepton pair. In Chapter VI, we 

considered this particular reaction in the DVCS kinematics. The unpolarized cross 

section results revealed th a t the Compton contribution was significantly suppressed 

with respect to the Bethe-Heitler contribution. In analogy with the DVCS process, we 

expect tha t the interference terms between the Compton and Bethe-Heitler processes, 

in particular, from the experiments with the polarized photon beam, may play an 

im portant role in extracting new information on GPDs. Thus more future studies axe 

needed in this direction.

By utilizing the weak currents to probe the nucleon structure we are able to mea­

sure, due to the V  — A  nature of interaction, a different combination of generalized 

parton distributions as well as the distributions tha t are nondiagonal in quark fla­

vor. Hence neutrino-induced virtual Compton scattering, which has been studied 

in Chapter VII, provides an im portant tool to complement the study of GPDs in 

more familiar electron-induced DVCS or exclusive meson production processes. We 

derived the twist-2 amplitudes for the weak neutral and weak charged current in­

teractions, and gave predictions for the cross sections in the kinematics relevant to 

future high-intensity neutrino experiments. At small scattering angles, we observed 

that, unlike the standard electromagnetic DVCS process, the Compton contribution
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was somewhat comparable to the corresponding Bethe-Heitler contribution in the 

weak neutral interaction sector. Nevertheless, the Compton signal was well above 

the Bethe-Heitler one in the weak charged interaction sector. From the theoretical 

side, it is expected to use a more realistic model for the nucleon GPDs, and further 

check separately the contributions from the plus and minus distributions, in particu­

larly, the contribution coming from the pion pole, i.e. the E f  distribution. Moreover, 

one may estimate the contribution from the interference of the Compton with the 

Bethe-Heitler process, and extend the approach in order to include the twist-3 terms.

In the final chapter, the GPD formalism was applied to real Compton scattering. 

Again we used the same light-cone expansion technique as in Chapters IV and VII, 

however, in addition to the twist-2 operators we have also included a set of kinematical 

twist-3 operators. They appear as total derivatives of twist-2 operators. Unlike the 

previous chapters, we considered, for simplicity, the pion target. Instead of off-forward 

parton distributions, more general objects, namely, the double distributions were used 

to describe the nonperturbative stages of interaction. We obtained the expressions for 

the twist-2 and twist-3 Compton scattering amplitudes. It was shown, in the lowest 

order in the invariant momentum transfer, th a t the kinematical twist-3 contribution to 

the amplitude for pion was required to restore the tranversality. Next we found tha t a 

divergent part of the twist-3 amplitude had zero projection on the polarization vectors 

of initial and final photons, and calculated the photon helicity amplitudes, using a 

simple model for the pion double distribution. They were compared to QED helicity 

amplitudes. Finally, we estimated the relevant polarized cross sections, observed 

their approximate scaling behavior, and established the noncanonical powers. A 

straightforward generalization to the case with the nucleon target as well as the 

study of the exclusive production of two pions in two-photon collisions (the latter is 

a crossing process to Compton scattering on a pion) axe in progress.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



135

BIBLIOGRAPHY

[1] G. Zweig, Preprints CERN-TH 401 and 412 (1964).

[2] M. Gell-Mann, Phys. Lett. 8, 214 (1964).

[3] J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975 (1969).

[4] R. P. Feynman, Phys. Rev. Lett. 23, 1415 (1969).

[5] R. P. Feynman, Photon-Hadron Interactions, Reading, USA: W. A. Benjamin 

(1972).

[6] C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

[7] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).

[8] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

[9] H. D. Politzer, Phys. Rept. 14, 129 (1974).

[10] N. N. Bogolubov, B. V. Struminsky and A. N. Tavkhelidze, Preprint JINR 

D-1968, Dubna (1965).

[11] M. Y. Han and Y. Nambu, Phys. Rev. 139, B1006 (1965).

[12] Y. Miyamoto, Prog. Theor. Phys. Suppl. Extra Number (1965), 187.

[13] H. Fritzsch and M. Gell-Mann, in: Proceedings of  the X V I  International 

Conference on High Energy Physics, edited by J. D. Jackson and A. Roberts, 

Fermilab, 1972 Vol. 2, p.135, hep-ph/0208010.

[14] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B 47, 365 (1973).

[15] D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys. B 140, 54 (1978).

[16] D. Amati, R. Petronzio and G. Veneziano, Nucl. Phys. B 146, 29 (1978).

[17] S. B. Libby and G. Sterman, Phys. Rev. D 18, 3252 (1978).

[18] A. V. Efremov and A. V. Radyushkin, Theor. Math. Phys. 44, 573 (1980).

[19] A. V. Efremov and A. V. Radyushkin, Theor. Math. Phys. 44, 664 (1981).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



136

[20] A. V. Efremov and A. V. Radyushkin, Theor. Math. Phys. 44, 774 (1981)

[21] R. K. Ellis, H. Georgi, M. Machacek, H. D. Politzer and G. G. Ross, Nucl.

Phys. B 152, 285 (1979).

[22] A. H. Mueller, Phys. Rev. D 18, 3705 (1978).

[23] K. G. Wilson, Phys. Rev. 179, 1499 (1969).

[24] R. A. Brandt and G. Preparata, Nucl. Phys. B 27, 541 (1972).

[25] D. J. Gross and F. Wilczek, Phys. Rev. D 8, 3633 (1973).

[26] D. J. Gross and F. Wilczek, Phys. Rev. D 9, 980 (1974).

[27] H. Georgi and H. D. Politzer, Phys. Rev. D 9, 416 (1974).

[28] M. Lazar, Group Theoretical Analysis of Light-Cone Dominated Hadronic 

Processes and Twist Decomposition of  Nonlocal Operators in Quantum Chro­

modynamics, Ph.D. Thesis (2002), hep-ph/0308049.

[29] D. Muller, D. Robaschik, B. Geyer, F. M. Dittes and J. Horejsi, Fortsch. 

Phys. 42, 101 (1994), hep-ph/9812448.

[30] X. D. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249.

[31] X. D. Ji, Phys. Rev. D 55, 7114 (1997), hep-ph/9609381.

[32] A. V. Radyushkin, Phys. Lett. B 380, 417 (1996), hep-ph/9604317.

[33] A. V. Radyushkin, Phys. Lett. B 385, 333 (1996), hep-ph/9605431.

[34] A. V. Radyushkin, Phys. Rev. D 56, 5524 (1997), hep-ph/9704207.

[35] M. Vanderhaeghen, P. A. M. Guichon and M. Guidal, Phys. Rev. D 60, 
094017 (1999), hep-ph/9905372.

[36] K. Goeke, M. V. Polyakov and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 

47, 401 (2001), hep-ph/0106012.

[37] J. C. Collins, L. Frankfurt and M. Strikman, Phys. Rev. D 56, 2982 (1997), 

hep-ph/9611433.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

[38] A. V. Radyushkin, Phys. Rev. D 58, 114008 (1998), hep-ph/9803316.

[39] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Eur. Phys. J. C 8, 409 (1999), 

hep-ph/9811253.

[40] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Phys. Lett. B 460, 204 (1999), 

hep-ph/9903268.

[41] W. Greiner and A. Schafer, Quantum Chromodynamics, Berlin, Germany: 

Springer-Verlag (1994).

[42] A. W. Thomas and W. Weise, The Structure of the Nucleon, Berlin, Germany: 

Wiley-VCH (2001).

[43] R. L. Jaffe, hep-ph/9602236.

[44] J. D. Bjorken, Phys. Rev. 179, 1547 (1969).

[45] E. D. Bloom et al., Phys. Rev. Lett. 23, 930 (1969).

[46] M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969).

[47] J. I. Friedman and H. W. Kendall, Ann. Rev. Nucl. Part. Sci. 22, 203 (1972).

[48] G. Sterman, hep-ph/9606312.

[49] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, 

Reading, USA: Addison-Wesley (1995).

[50] C. G. Callan and D. J. Gross, Phys. Rev. Lett. 22, 156 (1969).

[51] T. Muta, Foundations Of Quantum Chromodynamics: An  Introduction to 

Perturbative Methods in Gauge Theories, World Sci. Lect. Notes Phys. 5, 1 

(1987).

[52] A. V. Radyushkin, Nucl. Phys. A 711, 99 (2002).

[53] A. V. Radyushkin, hep-ph/0409215.

[54] A. V. Radyushkin, hep-ph/0101225.

[55] M. Diehl, Phys. Rept. 388, 41 (2003), hep-ph/0307382.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

[56] A. V. Belitsky and A. V. Radyushkin, hep-ph/0504030.

[57] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) [Yad.

Fiz. 15, 781 (1972)].

[58] G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).

[59] Y. L. Dokshitzer, Sov. Phys. JE T P  46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73,
1216 (1977)].

[60] A. V. Radyushkin, hep-ph/0410276.

[61] A. V. Efremov and A. V. Radyushkin, Theor. Math. Phys. 42, 97 (1980)

[62] A. V. Efremov and A. V. Radyushkin, Phys. Lett. B 94, 245 (1980).

[63] G. P. Lepage and S. J. Brodsky, Phys. Lett. B 87, 359 (1979).

[64] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980).

[65] I. V. Musatov and A. V. Radyushkin, Phys. Rev. D 56, 2713 (1997), hep- 

ph/9702443.

[66] M. Burkardt, Phys. Rev. D 62, 071503 (2000) [Erratum-ibid. D 66, 119903 

(2002)], hep-ph/0005108.

[67] M. Burkardt, Int. J. Mod. Phys. A 18, 173 (2003), hep-ph/0207047.

[68] X. D. Ji and J. Osborne, Phys. Rev. D 58, 094018 (1998), hep-ph/9801260.

[69] J. C. Collins and A. Freund, Phys. Rev. D 59, 074009 (1999), hep- 

ph/9801262.

[70] B. Lampe and E. Reya, Phys. Rept. 332, 1 (2000), hep-ph/9810270.

[71] B. W. Filippone and X. D. Ji, Adv. Nucl. Phys. 26, 1 (2001), hep- 
ph/0101224.

[72] S. D. Bass, hep-ph/0411005.

[73] X. D. Ji, W. Melnitchouk and X. Song, Phys. Rev. D 56, 5511 (1997) hep- 

ph/9702379.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 3 9

[74] V. Y. Petrov, P. V. Pobylitsa, M. V. Polyakov, I. Bornig, K. Goeke and 

C. Weiss, Phys. Rev. D 57, 4325 (1998), hep-ph/9710270.

[75] A. V. Radyushkin, Phys. Rev. D 59, 014030 (1999), hep-ph/9805342.

[76] L. Mankiewicz, G. Piller and T. Weigl, Eur. Phys. J. C 5, 119 (1998), hep- 

ph/9711227.

[77] I. V. Musatov and A. V. Radyushkin, Phys. Rev. D 61, 074027 (2000), hep- 

ph/9905376.

[78] I. I. Balitsky and V. M. Braun, Nucl. Phys. B 311, 541 (1989).

[79] I. V. Anikin, B. Pire and O. V. Teryaev, Phys. Rev. D 62, 071501 (2000) 

hep-ph/0003203.

[80] M. Penttinen, M. V. Polyakov, A. G. Shuvaev and M. Strikman, Phys. Lett. 

B 491, 96 (2000), hep-ph/0006321.

[81] A. V. Belitsky and D. Muller, Nucl. Phys. B 589, 611 (2000), hep- 

ph/0007031.

[82] A. V. Radyushkin and C. Weiss, Phys. Lett. B 493, 332 (2000), hep- 

ph/0008214.

[83] A. V. Radyushkin and C. Weiss, Phys. Rev. D 63, 114012 (2001), hep- 

ph/0010296.

[84] N. Kivel and M. V. Polyakov, Nucl. Phys. B 600, 334 (2001), hep- 

ph/0010150.

[85] N. Kivel, M. V. Polyakov and M. Vanderhaeghen, Phys. Rev. D 63, 114014 

(2001), hep-ph/0012136.

[86] N. Kivel, M. V. Polyakov, A. Schafer and O. V. Teryaev, Phys. Lett. B 497, 
73 (2001), hep-ph/0007315.

[87] A. V. Belitsky, D. Muller, A. Kirchner and A. Schafer, Phys. Rev. D 64, 
116002 (2001), hep-ph/0011314.

[88] A. V. Belitsky and D. Muller, Phys. Lett. B 507, 173 (2001), hep- 

ph/0102224.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

[89] A. V. Belitsky, A. Kirchner, D. Muller and A. Schafer, Phys. Lett. B 510, 
117 (2001), hep-ph/0103343.

[90] 0 . Nachtmann, Nucl. Phys. B 63, 237 (1973).

[91] H. Georgi and H. D. Politzer, Phys. Rev. D 14, 1829 (1976).

[92] P. A. M. Guichon and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 41, 125 

(1998), hep-ph/9806305.

[93] M. Gluck, E. Reya and A. Vogt, Z. Phys. C 67, 433 (1995).

[94] I. V. Musatov, Virtual Compton Scattering Processes in Quantum Chromo­

dynamics, Ph.D. Thesis (1999), UMI-99-49834.

[95] A. V. Belitsky, D. Muller and A. Kirchner, Nucl. Phys. B 629, 323 (2002), 

hep-ph/0112108.

[96] M. Goshtasbpour and G. P. Ramsey, Phys. Rev. D 55, 1244 (1997), hep- 

ph/9512250.

[97] M. Penttinen, M. V. Polyakov and K. Goeke, Phys. Rev. D 62, 014024 (2000), 

hep-ph/9909489.

[98] S. Stepanyan et al. [CLAS Collaboration], Phys. Rev. Lett. 87, 182002 

(2001), hep-ex/0107043.

[99] A. Airapetian et al. [HERMES Collaboration], Phys. Rev. Lett. 87, 182001 

(2001), hep-ex/0106068.

[100] A. Psaker, Braz. J. Phys. 34, 944 (2004), hep-ph/0404181.

[101] S. J. Brodsky, J. F. Gunion and R. L. Jaffe, Phys. Rev. D 6, 2487 (1972).

[102] J. D. Bjorken and E. A. Paschos, Phys. Rev. D 1, 1450 (1970).

[103] W. Greiner and J. Reinhardt, Quantum Electrodynamics, Berlin, Germany: 

Springer-Verlag (1994).

[104] E. R. Berger, M. Diehl and B. Pire, Eur. Phys. J. C 23, 675 (2002), hep- 

ph/0110062.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



141

[105] D. Drakoulakos et al. [Minerva Collaboration], hep-ex/0405002.

[106] P. Amore, C. Coriano and M. Guzzi, JHEP 0502, 038 (2005), hep- 

ph/0404121.

[107] C. Coriano and M. Guzzi, Phys. Rev. D 71, 053002 (2005), hep-ph/0411253.

[108] A. Psaker, hep-ph/0412321.

[109] A. Psaker, A. V. Radyushkin and W. Melnitchouk, Weak Deeply Virtual 

Compton Scattering, work in progress.

[110] L. Mankiewicz, G. Filler and T. Weigl, Phys. Rev. D 59, 017501 (1999), 

hep-ph/9712508.

[111] A. Psaker, A. V. Radyushkin, Double Distributions, Feynman Mechanism 

and RCS on the Pion, paper under preparation.

[112] A. Psaker, A. V. Radyushkin, Double Distributions and Wide-Angle Real 

Compton Scattering on the Nucleon, paper under preparation.

[113] A. Psaker, A. V. Radyushkin, Exclusive Production of Pions in the Two- 

Photon Collisions in the Double-Distribution Approach, work in progress.

[114] V. B. Berestetskii, E. M. Lifshitz and L. P. Pitaevskii, Quantum Electrody­

namics, Pergamon Press (1982).

[115] A. Mukherjee, I. V. Musatov, H. C. Pauli and A. V. Radyushkin, Phys. Rev. 

D 67, 073014 (2003), hep-ph/0205315.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



142

APPENDIX A 

GLOSSARY

The following abbreviations are often used in a text:

DA ......................  distribution amplitude

DD ......................  double distribution

DIS ......................  deeply inelastic lepton scattering

DMP ......................  deeply exclusive meson production

DVCS ......................  deeply virtual Compton scattering

GPD ......................  generalized parton distribution

OPE ......................  operator product expansion

PDF ......................  parton distribution function

QCD ......................  quantum chromodynamics

QED ......................  quantum electrodynamics

TCS ......................  tim e—like Compton scattering

VC A ......................  virtual Compton scattering amplitude

WACS ......................  wide—angle real Compton scattering
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APPENDIX B

LIST OF INTEGRALS AND SCALAR FUNCTIONS 
THAT APPEAR IN THE BETHE-HEITLER 

SUBPROCESS OF THE INCLUSIVE 
PHOTOPRODUCTION OF LEPTON PAIRS

In Section V.3, we compute the double integral (182). The calculation is carried out 

through the following set of integrals:

/ ^ + o * + o _ ^

f t t s *  0 ^ 0 ^

J  d'k <5+ () i+  () JJ-

r W
dik  S+0 * + 0 / A H  -J ( q - q ' ) - ( k - q

J  dAk &+ () 5+ () ^

J  dAk 5+ () 6+ ()

I  dAk 6+ () (5+ ()

J  dAk 5+  ( )  <5+  ( )  

I  dAk 6+ () S+ ()

I  dAk 5+ () S+ ()

(k • q) [(q ■ q') ~  (k ■ q) 
(k  • q>)

(k • q) [(q • q') -  (k • q) 
(k ■ q ' f

(k • q) [(q • q') -  (k • q) 
(,k - q )

( q - q ' ) - ( k - q  
(k  • q') k p

= h,

=  h q ^  + h q ' r

= hq»qp +  W

+ h ( q W p + qpq'p) + h 9 pp, 

= Jo,

=  Jiq11 +  J2q

=  ,hqpqp +  JAq'pq,p

+Js  (qpq'p + qpq>tl) +  Jo9PP,

=  T T > (/o +  J o )’
„I2

H r V ) (/o +  Jo) ’

(k  • q) [(? • q') -  (k  • q)] 
(.k • q') k^kP 

(k ■ q) [(q • q') -  (k • q)]

-  M ^ ) llo + Jo)’

= (q • q') J2 ,

= K.qP + K ^ ,

=  K 3qPqP + K.q'Pq'P

+ K 5 (qpq'p + qpq'p) + K 6gPp,
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/ < m + () <5+ () - 1 - J  =  La, J (k • a)' f t  \ 2{k-q)

J d 4k S + Q S + Q (k ? )  [ {q. ^  _  { k . q)] 

j d ' k « +  ( ) <5+ ( )  ( k , q ) [ ( q . ^  _  ( k . q)]

=  I l9" +  W " ,

=  W j '  +  w

+ I 5 (9V '  + ?V ‘‘) + i6 9 w , 

=  +  M29"*,

=  M3g V  +  M49' V

+ m 5 (9V ' , +  9 V #1) +  m 6̂ .

(351)

The abbreviation 5+ () 5+ () =  <5+ (k2 — m 2) 5+ [(</' — k )2 — ra2 is being used together 

with the notation 6+ (k 2 — m 2) = 6 (k2 — m 2) 9 (k0), where m  labels the lepton mass. 

The coefficients on the right-hand side of Eq. (351) are scalar functions, which depend 

upon three invariants, i.e. m 2, q12 and (q ■ q') =  (q12 — t ) /2 , and can be derived by 

contracting both sides of Eq. (351) with the four-momenta qp and q'  ̂ of the initial 

real and final virtual photons, respectively, and with the tensors qpqp, q'pq'p, q'pqP and 

gpp. These functions can be further reduced to the expressions written in terms of 

only two scalar functions, i.e. I q and 12 . After some algebra we obtain

h  =

h  = 

h  = 

h  = 

h  = 

h  =

h  =  

Jo =

7T
2 (q-q>)

In
1 +  yjl  — 4 m 2/q'2 

1 — \ J l — 4m2/q'2
J2

2 (q ■ q')

7T
2 { q - q ' ) ‘

q'2

i , ,

' 1 -
4m2

J i -  ’

I  Zq'2IIo —

2(q-q ')  [
a122 r q  tm  I 0 — —12

1
2

h

n.12
m  I q -  '— h
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h

h

Ja

h

h

K\

K 2

k 3

k a

K ,

K 6

L0

U

U

L 3

La

l 5

Le

M l

M 2

~ ^ 7 ) l h ~ 2h]
h  ~  h i

„I2

2  (q-qf
, . - b „

2 (9 • q')

q'2 2\  3 q'2

( q12 +  m 2)  Io -  ^ - I 2

1
2
0,

m 2I0 -  %rh
£
2

„/2

2 (q-q')
9*

2  (q ■ q'f 
„/2

lOi

'« '2 M , -V2 ,- + m ) 2

2 (9 •«') [/° /j1.
9',/2

2(9-9')'

„/2

,/2

2 (9 -9 ')
„I2

tl'2
m 2I0 -  — 12

m 2 (q • 9 ')
„/2

(9 ■ 9*)

„/2

(9 ' 9')
~/4

4 (9  • 9 ')c

7° 2m2 72

6Ia~ ( h +s) h

(9 • 9')
„!2

J2

2(9-9 ' )
7T f t  -  2Ja] ,

=  0,

(9 • 9')
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M3

m 4

m 5

m 6

.,12 ,/2

(9 ' ?03

( T r t [/° “ / J  ’
1

(9 * Q0 
1

~/2 „/2
9 ”“ , 2 \  r  3 9  r

T  + J 0 “ ~ T  2

{q • q')
r/2

I  T  ^  Tm  I q -  —  h (352)
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APPENDIX C 

MODIFIED PARAMETRIZATION OF THE 
NONFORWARD MATRIX ELEMENT IN THE SCALAR 

TOY MODEL

We modify the scalar param etrization T  (z , p, r) of the nonforward m atrix element 

(p — rf2\ cj) (—z / 2 ) (j) [ z /2) |p  +  r/2),  introduced in Section VIII.2, by adding the sub­

leading O  (k2z2) and O (k4z4) terms. Namely,

(p — r/2\ (j> { - z /2 )  <j> {z/2) \p +  r /2 )  =  f  d@ [  d a e l<ykẑJ-1 J-1 + \B\
k2z 2 , .. k4z

- 1+1/81 
4

(353)hf  (fi, a, t) + — h2f (P, a, t) +  ~ ^ - h Af (P, a, t)

where k = Pp + ar/2 .  The function hf  (P , a , t ) is the original double distribution or 

the so-called parent DD. The new functions, known as the daughter DDs, h2f  (P, a, t ) 

and hAf  (P ,a ,t ) ,  are not independent but rather to be determined in such a way

that the m atrix element (p — r/2\(j) (—z/2) (j) {z/2) \p + r /2)  has only terms of the

certain twist. In particular, the twist-2 part of the m atrix element should satisfy the 

d ’Alembert equation with respect to z,

d2 (p - r /2 \ ( j ) { - z /2 ) ( j ) { z /2 ) \p  + r /2 ) twist_2 = 0. (354)

By imposing this condition on the right-hand side of Eq. (353), one can determine

both h2f  (P, a, t) and hAf  (P, a, t ). Thus in the lowest order in z2 we find

C  dp da ei{hz)k2
7_i  J - i+i^i

x [ - h f  ( P , a , t ) + i ( k  • z) h2f  ( P , a , t ) +  2h2f  (P,a,t)} = 0. (355)

The second term in the brackets can be written as

^  L Z d a  h t! <A () +“ J ;)  (356)
and further integrating it by parts and using the boundary conditions for h2f  (P, a , t) 

(note tha t, like the parent DD, both daughter distributions vanish at the boundaries 

of the support region), it takes the form

-  ^  t Z d a  (4 +q! H  ^  w, »•«■ <357>
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Substituting Eq. (357) back into Eq (355) leads to the partial differential equation 

for h2f  (P,a ,t) ,

( ^  + \ ) ft2/(̂ ,Q!’  ̂ = (358)
with the solution

/ OO

dr r h f  (t /3, ra ,  t ) . (359)

It is easy to see th a t this solution indeed satisfies Eq. (358) since

roo (  Q d \  n d
Ji dTT X t y 3 + a ~da) hf ( TP'Ta' t} =  Jl dTT Q^hf ( TP>Ta’t)

= ~ h f  {0, a,  t)
/ OO

dr r h f  ( r /3 ,  r a ,  t ) .

(360)

Similarly, in the next order in the z2 expansion, the harmonic condition (354) gives

the partial differential equation for the daughter DD hAf  ((3, a, t),

+ a i L  ~ * ) h i f  a , t ^ = ~ h v  ^  ■ 3̂61^

The solution is

/ OO

dr h2f ( j P , T a , t ) . (362)

It is worth noting at this point tha t to evaluate the twist-2 and twist-3 contribu­
tions to the Compton scattering amplitude using a modified param etrization (353), 

the inclusion of z 2 and z4 terms requires, in addition to Eqs. (98) and (317), four

more integrals over z. Here we present the list of all six integrals

f d 4z e ^ l'z) Zp -  ___J  a  Z e  ô i-2 ! -v2 A(\\ ~  no  ,
27T2 ( z 2  -  *0) (P -I- iO)5

f  d4z  e*6'zl_____ Zp -  lp
J  2rr2 ( ^ - r 0 ) 2 I2 + *0’

J  d^z ẐpZ(T =  j ®pa Â ~
2rr2 (z2 -  i0) (p + *0)

/" j4 i(l-z) i z pz a _  9p<rl2 ~
J  27t2 ( z 2  — iO)2 (/2 -H 0 )2 ’

f  j 4  i(l-z) z S z p z \  _  g  { 9 S p l x  d -  9 s \ l p  d~ 9 p \ h )  I  —  h l p l X

J Z 6 2ir2 (z2 -  i0) {P +  iO)4

/ j 4  i (l ' z)  z 6 z p Z \    n  ( 9 S p h  d -  9SX^p  d ~  9 p \ U )  I

Z e  2rr2 ( z 2  -  iO)2 ~  (P + W  '
(363)
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