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Computational Urban
Science

Automating intersection marking data 
collection and condition assessment at scale 
with an artificial intelligence‑powered system
Kun Xie1*   , Huiming Sun2, Xiaomeng Dong1, Hong Yang3 and Hongkai Yu2 

Abstract 

Intersection markings play a vital role in providing road users with guidance and information. The conditions of inter-
section markings will be gradually degrading due to vehicular traffic, rain, and/or snowplowing. Degraded markings 
can confuse drivers, leading to increased risk of traffic crashes. Timely obtaining high-quality information of intersec-
tion markings lays a foundation for making informed decisions in safety management and maintenance prioritization. 
However, current labor-intensive and high-cost data collection practices make it very challenging to gather intersec-
tion data on a large scale. This paper develops an automated system to intelligently detect intersection markings 
and to assess their degradation conditions with existing roadway Geographic information systems (GIS) data and aer-
ial images. The system harnesses emerging artificial intelligence (AI) techniques such as deep learning and multi-task 
learning to enhance its robustness, accuracy, and computational efficiency. AI models were developed to detect 
lane-use arrows (85% mean average precision) and crosswalks (89% mean average precision) and to assess the deg-
radation conditions of markings (91% overall accuracy for lane-use arrows and 83% for crosswalks). Data acquisition 
and computer vision modules developed were integrated and a graphical user interface (GUI) was built for the sys-
tem. The proposed system can fully automate the processes of marking data collection and condition assessment 
on a large scale with almost zero cost and short processing time. The developed system has great potential to pro-
pel urban science forward by providing fundamental urban infrastructure data for analysis and decision-making 
across various critical areas such as data-driven safety management and prioritization of infrastructure maintenance.

Keywords  Intersection markings, Artificial intelligence, Data acquisition, Degradation condition assessment, 
Infrastructure management

1  Introduction
Intersection markings play a vital role in providing road 
users with guidance and information. Maintaining an 
accurate inventory of intersection markings is essential 

for effective transportation management. According to 
the Federal Highway Administration’s (FHWA’s) program 
on the Model Inventory of Roadway Elements (MIRE), 
roadway data, including intersection elements, are criti-
cal to data-driven highway safety management (Lefler 
et al., 2017). Specifically, MIRE’s gap analysis has identi-
fied that existing roadway inventories have large gaps 
in intersection descriptors such as type and number of 
exclusive left turn lanes, right turn channelization, and 
presence of crosswalk (Mallela et  al., 2012). Meanwhile, 
the conditions of intersection markings will be gradually 
degrading due to vehicular traffic, rain, and/or snow-
plowing. Degraded markings can confuse drivers, leading 
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to increased risk of traffic crashes. Timely obtaining 
high-quality information of intersection markings lays a 
foundation for making informed decisions in safety man-
agement and maintenance prioritization.

However, many states do not process an up-to-date 
statewide inventory and condition information of traf-
fic assets because the high cost of data collection off-
sets the benefit of having such information (Balali et al., 
2015). Traffic asset data are generally collected either by 
field investigation or computer-based manual extraction 
from aerial images, street views and video logs, and both 
of these data collection approaches are cost prohibitive 
(Proulx et  al., 2015). Current labor-intensive and high-
cost data collection practices make it very challenging 
to gather intersection data on a large scale (Fiedler et al., 
2013). Road markings are among the traffic assets that 
can easily deteriorate over time, making it even more 
costly to keep track of their latest conditions. To collect 
statewide marking data and to prioritize the replacement 
need have created a demand for a cost-effective and scal-
able tool that can efficiently and accurately track the clas-
sifications, geographic locations, and conditions of road 
markings.

This study aims to develop an automated and scalable 
system powered by artificial intelligence (AI) for urban 
infrastructure data collection. The system can fully auto-
mate the processes of marking data collection and con-
dition assessment on a large scale with almost zero cost 
and short processing time (e.g., in a preliminary test, the 
processing time per intersection is less than 2 s). Urban 
science is a multidisciplinary domain centered around 
leveraging data, technology, and analytical methods to 
tackle complex urban challenges. In this context, the 
study holds significant potential for advancing urban sci-
ence by introducing innovative methodologies for col-
lecting urban infrastructure data. The system’s ability to 
generate extensive datasets in a cost-effective manner 
can profoundly impact urban science in multiple critical 
areas:

1.1 � Improves the inventory of roadway data elements
The system offers a highly cost-effective tool to enhance 
current roadway inventory databases while supplying 
fundamental data elements crucial for advancing urban 
science.

1.2 � Advances intersection safety management
The system can provide transportation agencies demand-
ing data for Highway Safety Improvement Program 
(HSIP). The availability of large-scale intersection mark-
ing data (e.g., presence of crosswalks, dedicated left-turn 
lanes, etc.) enables agencies to use the analytic methods 
provided in the American Association of State Highway 

and Transportation Officials’ (AASHTO’s) Highway 
Safety Manual (HSM). It helps bridge the gaps in cur-
rent modeling practices by offering critical data to sup-
port safety decision making in hotspot identification and 
before-after safety evaluation.

1.3 � Enables infrastructure maintenance prioritization
It is estimated that state agencies spend more than $1 bil-
lion annually in maintaining road markings in the United 
States and Canada (Zhang & Ge, 2012). The developed 
system can allow agencies to monitor the conditions 
of a large number of markings for better allocation of 
resources and timely maintenance.

1.4 � Augments intelligent transportation systems (ITS)
The developed system can produce detailed intersection 
profiles for supporting ITS applications such as the devel-
opment of high-resolution digital maps, driver-assistance 
systems, and safety warning systems.

1.5 � Supports transportation planning modeling
The generated intersection data can help transporta-
tion planners develop more accurate planning models 
by incorporating detailed information on intersection 
configurations.

2 � Literature review
Though road marking data are generally collected man-
ually in practice, there are research efforts devoted to 
automating the process. Image processing techniques 
were widely used to identify road markings such as image 
segmentation (Senlet & Elgammal, 2012), geometric 
parameter optimization (Foucher et  al., 2011) and edge 
detection (Ahmetovic et al., 2015). The template match-
ing method (Liu et al., 2012; Wu & Ranganathan, 2012) 
was also used for road marking recognition. Despite 
the fast speed image processing and template matching 
methods can offer, their decisions rely on empirical func-
tions, which are difficult to be generalized in a changing 
environment (Chen et  al., 2015; Vokhidov et  al., 2016). 
More adaptive methods are learning-based such as 
k-nearest neighbors (KNN) (Rebut et al., 2004), support 
vector machine (SVM) (Greenhalgh & Mirmehdi, 2015; 
Sukhwani et al., 2014), random forest (Smith et al., 2013) 
and artificial neural network (ANN) (Máttyus et al., 2016; 
Yamamoto et al., 2014).

More recent advances include the exploitation of 
deep learning methods that have capability to autono-
mously learn discriminative features from image data. 
For instance, Vokhidov et al. (2016) found convolutional 
neural network (CNN) could better recognized lane-use 
arrows in various environments. Wen et  al. (2019) also 
used CNN to classify different types of road markings 
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with considerable differences. R-CNN (Region-based 
Convolutional Neural Network), proposed by Girshick 
et  al. (2014), can not only recognizing what objects are 
present but also determining their precise locations 
by drawing bounding boxes around them. It combined 
selective search for region proposals and a CNN for fea-
ture extraction. R-CNN achieved impressive accuracy 
but was computationally expensive due to its sequential 
processing of regions, making it impractical for real-
time applications. R-CNN was utilized by Tian et  al. 
(2020) to detect lane-use arrows and while/yellow lane 
lines. Their results showed that R-CNN could robustly 
extract road markers under various complex traffic scene. 
Fast R-CNN (Girshick, 2015) addressed the computa-
tional inefficiency of R-CNN by introducing the concept 
of region-of-interest (ROI) pooling. It allowed feature 
extraction from the entire image in a single forward 
pass, significantly speeding up the process. Fast R-CNN 
demonstrated improved accuracy and efficiency over 
its predecessor, making it more practical for real-world 
applications. Qian et al. (2016) employed Fast R-CNN to 
detect road surface traffic signs including lane-use mark-
ings to assist automated driving.

Compared with marking recognition, much less 
research focused on the automatic assessment of mark-
ing conditions. Burrow et  al. (2000) determined the 
extent of erosion by comparing present road markings 
with the “ideal” ones. Both Zhang and Ge (2012) and Lin 
et al. (2016) used image processing techniques to capture 
characteristics of markings such as geometric deformity, 
colors and edge lines and then to determine the quality 
level of markings.

There are several limitations of existing studies. Firstly, 
most learning-based methods for marking recognition 

are customized for driving assistance instead of inventory 
management, so they use small and local datasets and 
are not suitable for large-scale data collection. Secondly, 
most existing approaches for marking recognition are 
still sensitive to noises on road markings such as occlu-
sion, illumination variations and worn-out conditions. 
Thirdly, condition assessment of markings is still under-
examined. Existing methods rely on image processing 
techniques and more robust and adaptive methods are 
needed. Fourthly, previous studies either focus on mark-
ing recognition or condition assessment, there is no inte-
grated method available which can optimize the whole 
data collection process and reduce computation time. 
Thus, there is an immediate need to develop a more opti-
mal and economical solution for marking data collection 
on a large scale.

3 � Methodology
3.1 � An overview of the system
This section presents an overview of the AI-powered 
system for intersection marking data collection. You 
can find a demonstration of the system at the follow-
ing link: https://​youtu.​be/​fvHf1​H7i8Wo. Figure  1 
illustrates the conceptual design of the system. The 
system focuses on two types of markings at intersec-
tions – lane-use arrows and crosswalks, while it has 
the flexibility to be extended to cover other road mark-
ings as well. The system economically utilizes roadway 
geographic information systems (GIS) data and aerial 
images as inputs, which are commonly available from 
transportation agencies or open sources. The use of 
GIS data enables fast indexing and identification of 
intersections and accelerate the process of aerials image 
data extraction, making the proposed approach truly 

Fig. 1  Conceptual illustration of the automated system for intersection marking data collection
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scalable and computationally efficient. The synthesis 
process entails the matching of geographic coordinates 
between the intersection GIS data and aerial images, 
allowing for auto-extraction the corresponding inter-
section images. The extracted intersection image data 
were used to train a novel computer vision model for 
detection, characterization, and condition assessment 
of intersection markings. Emerging AI techniques were 
harnessed to improve accuracy, robustness, and com-
putational efficiency of the system. This system will be 
the foundation of future expansions to collect other 
roadway features such as medians and driveways to 
support additional data needs.

The system has innovatively addressed the limitations 
of existing data collection approaches from the following 
aspects:

1.	 Seamless integration of spatial analytics with AI tech-
niques. With the help of existing intersections’ loca-
tions, AI techniques can easily have the advantages 
in recognizing visual patterns. Spatial analytics helps 
pinpoint intersections in the target area and auto-
extract their aerial images. Incorporating the spatial 
information can be the catalyst to greatly reduce the 
efforts in image segmentation and object recognition, 
and thus it makes the data collection process truly 
scalable and computationally efficient.

2.	 Smart application of deep learning for condition 
assessment. Humans are sensitive to visual impair-
ments of markings, but it is very costly to apply 
subjective assessment on a large scale. The system 
leverages deep learning to generate quality scores 
consistent with human viewers. The multi-scale deep 
features of markings are fed into a regression sub-
network to produce quality scores to indicate their 
degradation conditions.

3.	 Multi-task learning for higher accuracy and compu-
tational efficiency. The system creatively performs 
the joint tasks of intersection marking detection, 
characterization, and condition assessment in an 
end-to-end deep learning model. Model can better 
learn a new task by transferring the knowledge it has 
acquired by learning a related task. The simultaneous 
accomplishment of multiple tasks ensures its com-
putational efficiency and inference performance for 
large-scale data collection practices.

4.	 Enhanced system accessibility and reproducibility. 
Despite the equipped advanced spatial analytics and 
AI components, the system has no prerequisite of 
knowledge and skills in imaging processing and GIS 
tools, and therefore enables more users to access it. 
In addition, it provides objective measurements for 
reproducible data collection.

3.2 � Annotation of intersection aerial images
An annotation tool of Computer Vision Annotation Tool 
(CVAT) was tested and used to manually label the types 
of lane-use arrows (i.e., left, right, left & straight, right 
& straight, and straight) and crosswalks (i.e., transverse, 
zebra, and ladder) and their degradation conditions (i.e., 
low-quality and high-quality). Markings are categorized 
as high-quality if they are intact without any visible dam-
age. Conversely, if a marking exhibits any form of dam-
age or deterioration, it is classified as low-quality. Prior 
to data collection, all assessors underwent a thorough 
training session to become well-acquainted with both the 
annotation tool and the data collection protocol. Evalu-
ation was conducted initially to ensure the integrity and 
consistency of the collected data. An example of annota-
tion results is shown in Fig. 2.

3.3 � Lane‑use arrow detection
The Faster R-CNN (Ren et al., 2015) model is an object 
detection model that improves on Fast R-CNN by using 
a region proposal network (RPN) with the CNN model. 
The RPN shares full-image convolutional features with 
the detection network, enabling nearly cost-free region 
proposals. It’s a fully convolutional network that simulta-
neously predicts object bounds and objectness scores at 
each position. The RPN is trained end-to-end to gener-
ate high-quality region proposals, which are then used 
by Fast R-CNN for detection. As a whole, Faster R-CNN 
consists of two modules: a deep fully convolutional net-
work that proposes regions, and the Fast R-CNN detector 
that uses the proposed regions. The Faster RCNN model 
was used to detect and classify lane-use arrows (five cat-
egories: Left, Left & Straight, Straight, Right, Right & 
Straight) in the satellite images. The network structure is 
shown in Fig. 3. The backbone to extract image feature is 
the convolutional neural network with 16 layers (VGG16) 
(Simonyan & Zisserman, 2014).

3.4 � Crosswalk detection
The crosswalks were classified into three types accord-
ing to the Manual on Uniform Traffic Control Devices 
(MUTCD) standards as shown in Fig. 4.

Most crosswalk markings are arbitrary-oriented, 
horizontal bounding boxes used for the detection of 
lane-use arrows are no longer suitable. A deep learning 
model capable of detecting rotated objects is needed. 
The Box Boundary-Aware Vectors (BBAVectors) model 
(Yi et al., 2021) was used for oriented object detection 
in aerial images with Box Boundary-Aware Vectors. 
The BBAVectors model resulted in an outstanding per-
formance in the Large-scale dataset for object detec-
tion in aerial images (DOTA) dataset (Xia et al., 2018), 
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which is a benchmark dataset for oriented object 
detection in computer vision. The BBAVectors model 
is used for detecting arbitrary-oriented objects, such 
as crosswalk markings in this case. This model is built 
upon the CenterNet (Duan et  al., 2019), extending it 
for the oriented object detection task. The BBAVec-
tors use a simple yet effective strategy to describe the 

Oriented Bounding Box (OBB). They are measured in 
the same Cartesian coordinate system for all the arbi-
trarily oriented objects, achieving better performance 
than the baseline method that learns the width, height, 
and angle of the OBBs. The model is single-stage and 
anchor box free, which makes it fast and accurate. The 
network structure of BBA Vectors is shown in Fig. 5.

Fig. 2  Overall annotated image with land-use arrows, crosswalks, and degradation conditions labeled

Fig. 3  Faster RCNN model for lane-use arrow detection (modified based on Ren et al. (2015))
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Fig. 4  Examples of crosswalk markings (T1—Transverse Crosswalk: crosswalk marker with two parallel solid white lines; T2—Zebra Crosswalk: 
crosswalk marker with a series of closely spaced solid white lines; T3 – Ladder Crosswalk: crosswalk marker with solid white lines between two 
parallel solid white lines) (FHWA, 2009)

Fig. 5  BBA Vectors network structure (modified based on Yi et al. (2021))
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3.5 � Degradation condition assessment
Degradation conditions of markings were first manually 
annotated into two quality classes, i.e., low-quality and 
high-quality. If a marking (a lane-use arrow or crosswalk) 
is complete without any visible damage, it is classified 
as high-quality, otherwise it is classified as low-quality. 
Examples of low-quality and high-quality markings are 
presented in Fig. 6.

Kang et  al. (2014) used a convolutional neural net-
work for image quality assessment. A deep convolutional 
neural network model VGG16 (Simonyan & Zisserman, 
2014) was developed for quality assessment. The qual-
ity score, which represents the estimated probability of a 
marking belonging to the high-quality category as deter-
mined by VGG16, was utilized to assess marking condi-
tions. Quality scores range from 0 (indicating the lowest 
quality) to 1 (indicating the highest quality), providing a 
measure of marking degradation levels. VGG16 has great 
flexibility to learn the perception of human viewers on 
degradation conditions. The structure of VGG16 is pre-
sented in Fig. 7.

4 � System development
4.1 � System structure
Figure 8 illustrates the architecture of the system, which 
consists of two main components: the backend and the 
frontend. The backend is responsible for deploying a 
system that facilitates the transmission of results from 
the vision component to the frontend. Conversely, the 

frontend is designed to display the outcomes and pro-
vide a user interface for seamless interaction.

4.2 � Backend
The FastAPI (Lathkar, 2023) framework was selected as 
the foundation for constructing the backend system. 
FastAPI is a contemporary, efficient, and web-based 
framework designed for creating Application Program-
ming Interfaces (APIs) using Python 3.6 + and relies on 
standard Python type hints. In the backend, intersection 
images serve as input and are processed through a com-
puter vision module and an output module. The com-
puter vision module performs the detection of lane-use 
arrows and crosswalks while assessing their degradation 
conditions. The resulting outputs consist of labeled inter-
section images and.csv files containing comprehensive 
marking information.

4.3 � Frontend
The frontend of the web-based system was developed 
to provide users with a graphical user interface (GUI) 
for viewing and interacting with the system. JavaS-
cript was utilized to create dynamic elements on static 
Hyper Text Markup Language (HTML) web pages. The 
Mapbox API was employed to retrieve aerial images 
of intersections based on the coordinates provided by 
users. The interface features four buttons: Input, Start, 
End, and Output. The Input button allows users to 
enter the location of the intersections, the Start button 

Fig. 6  Examples of low-quality (a) and high-quality (b) degradation conditions

(a) Low-quality 

(b) High-quality 
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Fig. 7  The VGG16 network structure for image quality assessment (modified based on Simonyan and Zisserman (2014))

Fig. 8  System structure
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initiates the processing, the End button halts the pro-
cess, and the Output button enables the export of data.

4.4 � Input, graphical user interface, and output
The input data contains intersection coordinate informa-
tion and is tabulated in common.csv format. An example 

of the input data derived from LRS Road Intersections 
(VDOT, 2017) is shown in Table 1. There are three col-
umns including Intersection_ID, Latitude, and Longitude.

The graphical user interface of the system prototype is 
shown in Fig. 9. You can find a demonstration of the sys-
tem at the following link: https://​youtu.​be/​fvHf1​H7i8Wo.

A sample output file in.csv format is presented in 
Fig.  10, with its field description listed in Table  2. The 
users have the option to output labeled images data for 
verification purposes as shown in Fig. 11.

4.5 � Programming packages and analytical tools
For programming packages, the vision algorithm was 
made use of PyTorch (Paszke et  al., 2019), a popu-
lar deep learning framework, to build and train the AI 
models. PyTorch provides a flexible and efficient plat-
form for developing neural networks and conduct-
ing deep learning tasks. Additionally, other essential 

Table 1  Input data format

Intersection_ID Latitude Longitude

1,269,888 36.8201493 -75.99975

1,085,129 36.7805423 -76.141486

1,045,006 36.7744851 -76.133553

1,037,605 36.7802918 -76.142283

541,180 36.8372126 -76.159457

541,789 36.8785388 -76.141027

… … …

Fig. 9  Graphical user interface of the system prototype

Fig. 10  Sample of an exported.csv file

Intersection ID Latitude Lon2itude Markin2 ID Tvoe SubTvoe Location Qualitv Lenrth Width 
541355 36.81321 -76.125 1 Crosswalk Zebra (839, 354, 785, 385, 445, 69, 499, 37] 0.77 75.4 10.4 
541355 36.81321 -76.125 2 Crosswalk Ladder (839, 354, 785, 385, 445, 69, 499, 37] 0.75 75.4 10.4 
541355 36.81321 -76.125 3 Crosswalk Ladder (491, 933, 436, 966, 99, 673 , 153, 640] 0.99 72.6 10.6 
541355 36.81321 -76.125 4 Crosswalk Ladder (491, 46, 201, 587, 138,566, 427, 25] 0.72 102.7 10.8 
541355 36.81321 -76.125 5 Crosswalk Ladder (828, 392, 606, 967,546,952, 769, 376] 1 103.3 10 
541355 36.81321 -76.125 6 Arrow Left (183, 67, 183, 124, 222, 124, 222, 67] 0.98 
541355 36.81321 -76.125 9 Arrow Left (164, 103, 164, 151,206, 151, 206, 103] 0.99 
541355 36.81321 -76.125 10 Arrow Straight (788, 1004, 788, 1050, 845, 1050, 845, 1004] 0.99 
541355 36.81321 -76.125 11 Arrow Straight (227, 40, 227, 84, 271, 84, 271, 40] 0.99 
541355 36.81321 -76.125 13 Arrow Right (744, 1056, 744, 1098, 797, 1098, 797, 1056] 0.99 

1269888 36.82015 -75 .9998 14 Crosswalk Transverse (1127, 557, 1071, 560, 1022, 268, 1079, 264] 0.95 48.1 9.5 
1269888 36.82015 -75.9998 15 Crosswalk Transverse (630, 612,578,624,429,263, 481, 251] 1 63 .3 8.9 
1269888 36.82015 -75.9998 16 Crosswalk Transverse (1003, 234, 993,285,476, 252, 487, 200] 0.97 84 8.8 
1269888 36.82015 -75.9998 17 Crosswalk Transverse (1096, 612, 643, 676, 629, 630, 1082, 566] 0.83 76.6 7.8 

https://youtu.be/fvHf1H7i8Wo
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packages like NumPy, pandas, and JavaScript (JS) were 
employed. NumPy facilitated numerical computations, 
pandas enabled efficient data manipulation and analysis, 
while JS was used for creating dynamic elements in the 
frontend GUI.

4.6 � Experiment setting
For the experiment settings, both the Faster RCNN (Ren 
et  al., 2015) and BBAVectors (Yi et  al., 2021) networks 
were trained for 100 epochs using a learning rate of 1e-4. 
A confidence threshold of 0.2 was set to determine the 

detection. Additionally, the quality model was trained 
for 120 epochs for convergence. For the computational 
resources, the system is deployed on a 22.04 Ubuntu 
operating system with NVIDIA GeForce 3090 graphics 
card.

5 � Results
5.1 � Lane‑use arrow detection
The downloaded aerial images from Mapbox were 
divided into a training set to train computer vision 
models and a testing set to test the trained model for 

Table 2  Field description of the exported.csv data

Field Description Example

Intersection_ID ID of intersections from the input file 541,465

Latitude Coordinate that specifies the north–south position of an intersection 36.6830800700893

Longitude Coordinate that specifies the east–west position of an intersection 76.0231042794389

Marking_ID ID of markings started from 1 1

Type Marking types such as crosswalks or lane-use arrows Crosswalk

SubType Crosswalks have three subtypes, i.e., transverse, zebra, and ladder; lane-ues arrows have five subtypes, i.e., left, 
right, left & straight, right & straight, and straight

Ladder

Location Coordinates of four corner points of the detection bounding box. The Y-pixel coordinate increases from top 
to bottom and the X-pixel coordinate increases from left to right

[790, 282, 438, 313, 
425, 276, 777, 245]

Quality Measured as the probability of a marking belonging to the high-quality category. Describe marking degradation 
condtion, ranging from 0 (lowest quality) to 1 (highest quality)

0.89

Length The length of a crosswalk in feet 59.1

Width The width of a crosswalk in feet 6.4

Fig. 11  Sample of an exported.jpg file (Numbers outside of parentheses are quality scores, numbers within parentheses are widths and lengths 
of crosswalks)
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performance evaluation. Each aerial image is a 3-chan-
nel Red, green, and blue (RGB) color image with a 
rough resolution of 1354 × 967 pixels. The lane-use 
arrows of each image were also manually annotated. 

Table  3 presents the distributions of the lane-use 
arrows in training and testing datasets.

After training the Faster RCNN model on the training 
set, the detection performance was evaluated on the test-
ing set. Examples of correctly detected and incorrectly 
detected (e.g., misclassification, missing) lane-use arrows 
are presented in Fig.  12. Average precision (a.k.a., Area 
Under the Precision-Recall Curve) was used to evaluate 
the performance of each lane-use arrow class. Average 
precision can indicate whether the model can correctly 
identify all the positive examples without accidentally 
marking too many negative examples as positive. The 
mean average precision reaches 85% on the testing set as 
shown in Table 3.

5.2 � Crosswalk detection
Over 3,000 aerial images of intersections with crosswalks 
were collected, which were subsequently divided into 
a training set to develop the deep learning model and a 

Table 3  Lane-use arrow data distribution and detection 
performance

Traffic Markers Total No No. in 
Training 
Set

No. in 
Testing 
Set

Average 
Precision on 
Testing Set

Left 4,089 3,248 841 92%

Left & Straight 522 446 76 71%

Straight 1,136 860 276 86%

Right 2,399 1,920 479 89%

Right & Straight 676 550 126 86%

Overall 8,822 7,024 1,798 85%

Fig. 12  Example of correctly detected and incorrectly detected lane-use arrows (Numbers indicate confidence levels)

(a) Correctly detected lane-use arrows 

(b) Incorrectly detected lane-use arrows 
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testing set to evaluate the model performance. All the 
crosswalks on these images were manually annotated. 
Table  4 Crosswalk data distribution and detection per-
formance Table 4 presents the distributions of the cross-
walks in training and testing datasets.

After developing the BBA Vectors model on the train-
ing set, the detection performance was evaluated on the 

testing set. Examples of correctly detected and incor-
rectly detected (e.g., misclassification, missing) cross-
walks are presented in Fig. 13. A mean average precision 
of 89% was achieved as shown in Table 4.

5.3 � Assess the degradation conditions of markings
A total of 6,396 lane-use arrows and 5,031 crosswalks 
were annotated by trained reviewers. Tables 5 and 6 pre-
sent the distributions of degradation conditions for lane-
use arrows and crosswalks. The majority of markings 
(85.4% for lane-use arrows and 69.4% for crosswalks) are 
in the high-quality category.

After training the VGG16 model, the classification 
performance was evaluated on the testing sets of both 
lane-use arrows and crosswalks. Examples of correctly 
classified and incorrectly classified markings are pre-
sented in Fig.  14. Accuracy (No. of corrected classified 
instances/total No. of instances) was used to evaluate 
the performance of conditions assessment as reported in 

Table 4  Crosswalk data distribution and detection performance

Crosswalk Type Total No No. in 
Training 
Set

No. in 
Testing 
Set

Average 
Precision on 
Testing Set

T1—Transverse 
Crosswalk

4,974 3,997 977 89%

T2—Zebra Crosswalk 2,437 1,947 490 87%

T3—Ladder Cross-
walk

1238 975 263 92%

Overall 8,649 6,919 1,730 89%

Fig. 13  Examples of correctly detected and incorrectly detected crosswalks (Numbers indicate confidence levels)

(a) Correctly detected crosswalks 

(b) Incorrectly detected crosswalks 
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Tables 5 and 6. The overall accuracies for lane-use arrows 
and crosswalks have achieved 91% and 83%, respectively.

6 � Conclusions
This paper develops an automated system that utilizes 
advanced AI techniques to detect intersection mark-
ings and assess their condition. The system that has 
been developed holds immense potential for driving the 
progress of urban science by offering essential urban 
infrastructure data in a cost-effective manner, which 
serves as a foundation for analysis and decision-making 
processes. A summary of the investigation results is as 
follows:

1.	 A Faster RCNN model was developed to detect lane-
use arrows. The mean average precision has achieved 
85% on the testing set.

2.	 Developed a BBAVectors model that can capture 
rotated objects to detect crosswalks and achieved a 
mean average precision of 89%.

3.	 A VGG16 model was developed to assess the degra-
dation conditions of markings. The overall accuracies 
for lane-use arrows and crosswalks achieved 91% and 
83%, respectively.

From the investigation, it is found that emerging AI 
techniques (e.g., deep learning) could deliver satisfac-
tory data products in terms of detection, characteriza-
tion, and condition assessment of intersection markings. 
The model performance could be further enhanced when 

additional data are used for model development. The 
seamless integration of spatial analytics and advanced 
computer vision techniques makes the system truly cost-
effective, scalable, and computationally efficient. The sys-
tem harnesses emerging AI techniques such as multi-task 
deep learning to enhance its robustness, accuracy, and 
computational efficiency. The system is very accessible 
to users of different technical skills through its graphical 
user interface.

Existing intersection marking data are generally col-
lected either by field investigation or computer-aided 
manual extraction from aerial images, street views, 
and/or video logs. These approaches cost prohibitive 
and only feasible for very limited data collection needs. 
In addition, their inherently subjective nature requires 
extensive training to reduce human errors. The system 
offers distinct advantages to innovate current practices: 
(a) extremely low cost, (b) extraordinary scalability, (c) 
timeliness and consistency, and (d) objective and high-
degree reproducibility. The system can automate state-
wide intersection marking data collection at almost 
zero cost and with machine-based objective measure-
ments. It can enhance timeliness and consistency of 
roadway inventory data by rapidly processing latest 
aerial image data periodically. It eliminates the expo-
sure of surveyors to hazards in field data collection. 
Unlike manual data collection, the system also provides 
objective measurements and a high-degree reproduc-
ibility of collected data.

The system can generate data elements highly 
expected by transportation agencies to support the 
Model Inventory of Roadway Elements (MIRE) pro-
gram and to advance Highway Safety Improvement 
Programs (HSIP). Current data collection practices 
require transportation agencies to invest millions of 
dollars in contracting very time-consuming data col-
lection services each year. By economically providing 
large-scale intersection marking data, this system will 
enable transportation agencies to empower analytic 
methods for data-driven safety management. The sys-
tem can also assess the degradation condition of iden-
tified markings, and thus timely assist maintenance 
prioritization for reinforcing intersection safety.

Although the system demonstrates promising per-
formance, it is essential to acknowledge the potential 
limitations and challenges associated with utilizing 
aerial photo data in certain geographic contexts. In 
rural and mountainous regions, the resolution of aerial 
data might be insufficient, leading to potential impacts 
on the accuracy of detection and quality assessment 
outcomes. Furthermore, the less frequent updates of 

Table 5  Degradation conditions of lane-use arrows and 
condition assessment performance

Quality Type Total No No. in 
Training 
Set

No. in 
Testing 
Set

Accuracy 
on Testing 
Set

Low-quality 1,154 923 231 80%

High-quality 6,765 5,412 1,353 94%

Overall 7,919 6,335 1,584 91%

Table 6  Degradation conditions of crosswalks

Quality Type Total No No. in 
Training 
Set

No. in 
Testing 
Set

Accuracy 
on Testing 
Set

Low-quality 1,327 1,061 266 81%

High-quality 3,009 2,407 602 85%

Overall 4,336 3,468 868 83%
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aerial data in these areas can result in outdated infor-
mation, posing challenges in accurately capturing the 
current conditions of the markings. It is important to 
remain cognizant of these factors when implementing 
the proposed system for data collection in such areas. 
Additionally, the performance of computer vision mod-
els can be further improved by including more data for 
training.
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