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The high-energy behavior of QCD amplitudes can be described in terms of the rapidity
evolution of Wilson lines. I present the hierarchy of evolution equations for Wilson lines
in the next-to-leading order.
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1. Introduction

A well-known general feature of high-energy scattering is that a fast particle moves
along its straight-line classical trajectory and the only quantum effect is the eikonal
phase factor acquired along this propagation path. In QCD, for the fast quark or
gluon scattering off some target, this eikonal phase factor is a Wilson line - the
infinite gauge link ordered along the straight line collinear to particle’s velocity.
This observation serves as a starting point in the analysis of high-energy amplitudes
by operator expansion in Wilson lines developed in Ref. [1].

This approach is based on factorization in rapidity2 and the cornerstone of the
method is the evolution of Wilson-line operators with respect to their rapidity. In
a few sentences, the basic outline of this approach is the following (for reviews, see
Refs. [3, 4]. First, we introduce a “rapidity divide” η between rapidity of the projec-
tile YP and rapidity of the target YT and separate all Feynman loop integrals over
longitudinal momentum (≡ rapidity) in two parts: in coefficient functions (called
impact factors) with Y > η and matrix elements of Wilson-line operators with
Y < η. As we mentioned above, interaction of fast particles with the slow ones can

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.
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be described in the eikonal approximation so the relevant operators are Wilson lines.
Second, we find the evolution equations for these Wilson-line operators with respect
to our rapidity factorization scale η. Third, we solve these equations (analytically
or numerically) and evolve the Wilson-line operators down to the energies of few
GeV at which step we need to convolute the results with the initial conditions for
the rapidity evolution. If the target is can be described by perturbative QCD (like
virtual photon or heavy-quark meson) these initial conditions can be calculated in
pQCD. If the target is a proton or nucleus, the initial conditions are usually taken
in the form of Mueller-Glauber model.

The most well-studied part is the evolution of the “color dipole” (the trace of
two Wilson lines) which has a great number of phenomenological applications. The
evolution of color dipoles is known both in the leading order (the BK equation [1, 5])
and in the next-to-leading order (NLO) [6, 7] and the solutions of the BK with run-
ning αs [8, 9] are widely used for pA and heavy-ion experiments at LHC and RHIC.
However, recently it was realized that many interesting processes are described by
the evolution of more complicated operators such as “color quadrupoles” (trace of
four Wilson lines) [10]. To describe such evolution the NLO BK must be general-
ized to the full hierarchy of Wilson-lines evolution. In this publication I present the
final results for the kernels and the example of the NLO kernel for the most simple
non-dipole operator - the “color tripole” relevant for baryon scattering.

2. High-Energy OPE and Rapidity Factorization

Consider an arbitrary Feynman diagram for scattering of two particles with
momenta pA = p1 + p2

A

s p2 and pB = p2 + p2
B

s p1 (p2
1 = p2

2 = 0). Following standard
high-energy OPE logic we introduce the rapidity divide η which separates the “fast”
gluons from the “slow” ones. As a first step, we integrate over gluons with rapidi-
ties Y > η and leave the integration over Y < η to be performed afterwards. It
is convenient to use the background field formalism: we integrate over gluons with
α > σ = eη and leave gluons with α < σ as a background field, to be integrated
over later. Since the rapidities of the background gluons are very different from the
rapidities of gluons in our Feynman diagrams, the background field can be taken
in the form of a shock wave due to the Lorentz contraction. The integrals over
gluons with rapidities Y > η give the so-called impact factors -coefficients in front
of Wilson-line operators with the upper rapidity cutoff η for emitted gluons. The
Wilson lines are defined as

Uη
x = P exp

[
ig

∫ ∞

−∞
du pµ

1Aσ
µ(up1 + x⊥)

]
,

Aη
µ(x) =

∫
d4k θ(eη − |αk|)eik·xAµ(k)

(1)

where α is Sudakov variable (p = αp1 + βp2 + p⊥).
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The result for the amplitude can be written as

A(pA, pB) =
∑

Ii(pA, pB, z1, . . . zn; η)〈pB|Uη(z1)....U †η(zn)|pB〉 (2)

where the color indices of Wilson lines are convoluted in a colorless way (and
connected by gauge links at infinity). As in usual OPE, the coefficient functions
(“impact factors” Ii) and matrix elements depend on the “rapidity divide” η but
this dependence is cancelled in the sum (2). It is convenient to define the impact
factors in an energy-independent way (see e.g. Ref. [11]) so all the energy depen-
dence is shifted to the evolution of Wilson lines in the r.h.s. of Eq. (2) with respect
to η.

To find the evolution equations of these Wilson line operators with respect to
rapidity cutoff η we again factorize in rapidity. We consider the matrix element
of the set of Wilson lines between (arbitrary) target states and integrate over the
gluons with rapidity η1 > η > η2 = η1 − ∆η leaving the gluons with η < η2 as a
background field (to be integrated over later). In the frame of gluons with η ∼ η1

the fields with η < η2 shrink to a pancake and we obtain four diagrams of the type
shown in Fig. 1. The result of the evolution of Wilson lines can be presented as
infinite hierarchy of evolution equations for n-Wilson-line operators. This hierarchy
of equations can be constructed from finite number of “blocks” with this number
equal to the order of perturbation theory.

It should be mentioned that an alternative approach to high-energy scattering in
the dense QCD regime is to write the rapidity evolution of the wavefunction of the
target which is governed by the JIMWLK equation.12 The JIMWLK Hamiltonian
summarizes the hierarchy of evolution equations for Wilson-line operators. As it
was shown recently in Ref. [13], the hierarchy of equations presented in the next
Section can be represented as the NLO correction to JIMWLK Hamiltonian.

3. LO Hierarchy

In the leading order the hierarchy can be built from self-interaction (evolution of
one Wilson line) and “pairwise interaction”.

The typical diagrams are shown in Fig. 1 and the equations have the form1

d

dη

{
(U1)ij

(U †
1 )ij

}
=

αs

π2

∫
d2z4

z2
14

(Uab
4 − Uab

1 )
{

(taU1t
b)ij

(tbU †
1 ta)ij

}
(3)

Fig. 1. LO diagrams.
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for the self-interaction diagrams of Fig. 1a type and

d

dη




(U1)ij(U2)kl

(U1)ij(U
†
2 )kl

(U †
1 )ij(U

†
2 )kl


 =

αs

2π2

∫
d2z4

[
2U4 − U1 − U2

]ab (z14, z24)
z2
14z

2
24

×




(taU1)ij(U2t
b)kl + (U1t

b)ij(taU2)kl

−(taU1)ij(tbU
†
2 )kl − (U1t

b)ij(U
†
2 ta)kl

(U †
1 ta)ij(tbU

†
2 )kl + (tbU †

1 )ij(U
†
2 ta)kl


 (4)

for the “pairwise” diagram shown in Fig. 1b. Hereafter we use the notation Ui ≡ Uzi

and the integration variable is called z4 for uniformity of notations in all Sections).
All vectors zi are two-dimensional and (zi, zj) is a scalar product.

The evolution equations in this form are correct both in the fundamental repre-
sentation of Wilson lines where ta = λa/2 and in the adjoint representation where
(ta)bc = −ifabc. In the adjoint representation U and U † are effectively the same
matrices (U †

ab = Uba) so the three evolution equations (4) are obtained from each
other by corresponding transpositions. (One should remember that (ta)bc = −(ta)cb

in the adjoint representation). Since the color structure of the diagrams in the fun-
damental representation is fixed one can get the kernels by comparison with adjoint
representation. Effectively, since our results will be always presented in the form
universal for adjoint and fundamental representations the NLO results for the evo-
lution of U ⊗ U † and U † ⊗ U † can be obtained by transposition.

4. NLO Hierarchy

In the next-to-leading order (NLO) the hierarchy can be constructed from self-
interactions, pairwise interactions, and triple interactions. The typical diagrams are
shown in Fig. 2 ab, Fig. 2 cd, and Fig. 2 ef, respectively.

4.1. Self-interaction

The most simple part is the one-particle interaction (“gluon reggeization” term).
The typical diagrams are shown in Fig. 2 a,b and the result has the form

d

dη
(U1)ij =

α2
s

8π4

∫
d2z4d

2z5

z2
45

{
Udd′

4 (Uee′
5 − Uee′

4 )
([

2I1 − 4
z2
45

]
fadef bd′e′

(taU1t
b)ij

+
(z14, z15)
z2
14z

2
15

ln
z2
14

z2
15

× [
ifad′e′

({td, te}U1t
a)ij − ifade(taU1{td′

, te
′})ij

])

+ 4(taU1t
b)ijnfIf1tr{taU4t

b(U †
5 − U †

4 )}
}

+
∫

d2z4

z2
14

α2
sNc

4π3

× (Uab
4 − Uab

1 )(taU1t
b)ij

{
11
3

ln
z2
14µ

2

4
+ 2C +

67
9

− π2

3
− nf

Nc

×
[
2
3

ln z2
14µ

2 +
10
9

]}
, (5)
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Fig. 2. Typical NLO diagrams.

where nf is the number of active quark flavors and µ is the normalization point.
(The quark diagrams are similar to those in Fig. 2 a-d with the gluon loop replaced
by the quark one). Hereafter we use the notations

I1 ≡ I(z1, z4, z5) =
ln z2

14/z2
15

z2
14 − z2

15

[z2
14 + z2

15

z2
45

− (z14, z15)
z2
14

− (z14, z15)
z2
15

− 2
]
, (6)

I2 ≡ I(z2, z4, z5), and

If1 ≡ If (z1, z4, z5) =
2

z2
45

− 2(z14, z15)
z2
45(z

2
14 − z2

15)
ln

z2
14

z2
15

. (7)

(The integration variables are called z4 and z5 for uniformity of notations in all
Sections).

The result in this form is correct both in fundamental and adjoint representa-
tions. (For quark contribution proportional to nf one should replace ta by adjoint
representation matrices only in taU1t

b and leave the fundamental ta and tb in the
quark loop). As we discussed in previous Section, this means that the results for the
evolution of U † can be obtained by transposition. We have checked the “transposing
rule” by explicit calculation.

4.2. Pairwise interaction

The typical diagrams for pairwise interaction are shown in Fig. 2 c,d (and the full
set is given by Fig. 6 in Ref. [6]). In this letter we present the final result, the details
would be published elsewhere. The evolution equation for U ⊗ U has the form

d

dη
(U1)ij(U2)kl =

α2
s

8π4

∫
d2z4d

2z5(A1 + A2 + A3) +
α2

s

8π3

∫
d2z4(B1 + NcB2) (8)

1560056-5
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where the kernels Ai(z1, z2, z4, z5) corresponds to diagrams of Fig.2 a,c type and
Bi(z1, z2, z4) to Fig.2 b,d type. The explicit expressions are

A1 =
[
(taU1)ij(U2t

b)kl + (U1t
b)ij(taU2)kl

] [
fadef bd′e′

Udd′
4 (Uee′

5 − Uee′
4 )

×
(
−K − 4

z4
45

+
I1

z2
45

+
I2

z2
45

)
+ 2nf

(
If1

z2
45

+
If2

z2
45

+ Kf

)

× tr{taU4t
b(U †

5 − U †
4 )}

]

A2 = 4(U4 − U1)dd′
(U5 − U2)ee′

{
i
[
fad′e′

(tdU1t
a)ij(teU2)kl

− fade(taU1t
d′

)ij(U2t
e′

)kl

]
J1245 ln

z2
14

z2
15

+ i
[
fad′e′

(tdU1)ij(teU2t
a)kl

− fade(U1t
d′

)ij(taU2t
e′

)kl

]
J2154 ln

z2
24

z2
25

}

A3 = 2Udd′
4

{
i
[
fad′e′

(U1t
a)ij(tdteU2)kl − fade(taU1)ij(U2t

e′
td

′
)kl

]
×

[
J1245 ln

z2
14

z2
15

+ (J2145 − J2154) ln
z2
24

z2
25

]
(U5 − U2)ee′

+ i
[
fad′e′

(tdteU1)ij(U2t
a)kl − fade(U1t

e′
td

′
)ij(taU2)kl

]
×

[
J2145 ln

z2
24

z2
25

+ (J1245 − J1254) ln
z2
14

z2
15

]
(U5 − U1)ee′}

(9)

for Ai kernels and

B1 = 2 ln
z2
14

z2
12

ln
z2
24

z2
12

{
(U4 − U1)abi

[
f bde(taU1t

d)ij(U2t
e)kl

+ fade(teU1t
b)ij(tdU2)kl

]
[
(z14, z24)
z2
14z

2
24

− 1
z2
14

]
+ (U4 − U2)abi

[
f bde(U1t

e)ij(taU2t
d)kl

+ fade(tdU1)ij(teU2t
b)kl

][ (z14, z24)
z2
14z

2
24

− 1
z2
24

]}
(10)

B2 =
[
2Uab

4 − Uab
1 − Uab

2

]
[(taU1)ij(U2t

b)kl

+ (U1t
b)ij(taU2)kl]

{
(z14, z24)
z2
14z

2
24

[(
11
3

− 2nf

3Nc

)
ln

z2
12µ

2

4
+ 2C +

67
9

− π2

3

− 10nf

9Nc

]
+

(
11
3

− 2nf

3Nc

) (
1

2z2
14

ln
z2
24

z2
12

+
1

2z2
24

ln
z2
14

z2
12

) }
(11)
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for Bi kernels. Here we used the following notations

J1245 ≡ J(z1, z2, z4, z5) =
(z14, z25)
z2
14z

2
25z

2
45

− 2
(z15, z45)(z15, z25)

z2
14z

2
15z

2
25z

2
45

,

J1245 ≡ J (z1, z2, z4, z5)

=
(z24, z25)
z2
24z

2
25z

2
45

− 2(z24, z45)(z15, z25)
z2
24z

2
25z

2
15z

2
45

+
2(z25, z45)(z14, z24)

z2
14z

2
24z

2
25z

2
45

− 2
(z14, z24)(z15, z25)

z2
14z

2
15z

2
24z

2
25

,

K =
1

z4
45

[z2
14z25

2 + z15
2z2

24 − 4z2
12z

2
45

z2
14z

2
25 − z2

15z
2
24

ln
z2
14z

2
25

z2
15z

2
24

− 2
]

+
1
2

( z4
12

z2
14z

2
25 − z2

15z
2
24

[ 1
z2
14z

2
25

+
1

z2
24z

2
15

]

+
z2
12

z2
45

[ 1
z2
14z

2
25

− 1
z2
15z

2
24

])
ln

z2
14z

2
25

z2
15z

2
24

and

Kf =
1

z4
45

[
− 2 +

z2
14z

2
25 + z2

15z
2
24 − z2

12z
2
45

z2
14z

2
25 − z2

15z
2
24

ln
z2
14z

2
25

z2
15z

2
24

]
. (12)

The conformally invariant kernels K and Kf are parts of the NLO BK equation for
dipole evolution.

Again, the result in this form is correct both in fundamental and adjoint repre-
sentations so the evolution of U ⊗U † and U †⊗U † can be obtained by transposition
of Eqs. (9–11). If one transposes Wilson line proportional to U2 in the l.h.s and
r.h.s. of Eq. (8), takes trace of Wilson lines and adds self-interaction terms for U

and U †, one reproduces after some algebra the NLO BK equation from Ref. [6]. (In
doing so one can use the integral (15) below with replacements z3 → z1, z1 → z2 so
that J22145 = J1245 and z2 → z1, z3 → z2 which gives J12145 = J1245.) It should be
noted that, although we calculated all diagrams anew, the results for two Wilson
lines with open indices can be restored from the contributions of the individual dia-
grams in Ref. [6] since color structure of these diagrams is obvious even with open
indices.

4.3. Triple interaction

The diagrams for triple interaction are shown in Fig. 2 e,f (plus permutations). The
result is

d

dη
(U1)ij(U2)kl(U3)mn

= i
α2

s

2π4

∫
d2z4d

2z5

{
J12345 ln

z2
34

z2
35

f cde
[
(taU1)ij(tbU2)kl

1560056-7
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× (U3t
c)mn(U4 − U1)ad(U5 − U2)be

− (U1t
a)ij(U2t

b)kl(tcU3)mn(U4 − U1)da(U5 − U2)eb
]

+J32145 ln
z2
14

z2
15

fade
[
(U1t

a)ij(tbU2)kl(tcU3)mn

× (U4 − U3)cd(U5 − U2)be

− (taU1)ij ⊗ (U2t
b)kl(U3t

c)mn(Udc
4 − Udc

3 )(Ueb
5 − Ueb

2 )
]

+J13245 ln
z2
24

z2
25

f bde
[
(taU1)ij(U2t

b)kl(tcU3)mn

× (U4 − U1)ad(U5 − U3)ce

− (U1t
a)ij(tbU2)kl(U3t

c)mn(U4 − U1)da(U5 − U3)ec
]}

, (13)

where

J12345 ≡ J (z1, z2, z3, z4, z5) = −2(z14, z34)(z25, z35)
z2
14z

2
25z

2
34z

2
35

− 2(z14, z45)(z25, z35)
z2
14z

2
25z

2
35z

2
45

+
2(z25, z45)(z14, z34)

z2
14z

2
25z

2
34z

2
45

+
(z14, z25)
z2
14z

2
25z

2
45

. (14)

As usual, the results for the evolution of U ⊗ U ⊗ U † etc. can be obtained by
transposition of color structures in Eq. (13)

The terms with two and one intersections with the shock wave coincide with
Ref. [14]. When comparing the results for the diagrams with one intersection (of
Fig. 2e type) to that in Ref. [14] the following integral is useful:∫

d2z5

π
J12345 ln

z2
34

z2
35

=

{
(z14, z24)
2z2

14z
2
24

ln
z2
23

z2
24

ln
z2
23

z2
34

− z2 ↔ z3

}

+

{ [
(z14, z24)(z24, z34)

z2
14z

2
24

− (z14, z34)
z2
14

]
1

iκ23

×
[
Li2

((z24, z34) + iκ23

z2
24

)
− Li2

((z24, z34) − iκ23

z2
24

)

+
1
2

ln
z2
24

z2
34

ln
(z23, z24) + iκ23

(z23, z24) − iκ23

]
+ z2 ↔ z3

}
(15)

where κ23 ≡ √
z2
24z

2
34 − (z24, z34)2 and Li2 is the dilogarithm (which cancels in the

final result (13)).
Note that we calculated the evolution of Wilson lines in the light-like gauge

pµ
2Aµ = 0. To assemble the evolution of colorless operators one needs to combine
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these equations and connect Wilson lines by segments at infinity. These gauge links
at infinity do not contribute to the kernel both in pµ

2Aµ = 0 and Feynman gauge
(note, however, that their contribution is the only non-vanishing one in pµ

1Aµ = 0
gauge). Indeed, in the leading order it is easy to see because gluons coming from
gauge links have a restriction α < eη so the gluon connecting points x, y with
x+ = L → ∞ and z+ = 0 (inside the shockwave) will contain the factor exp

(
i

p2
⊥

αs L
)

which vanishes for L → ∞ and α restricted from above. Similarly one can prove
that gauge links at infinity do not contribute to the NLO kernel and therefore the
description of the evolution in terms of separate Wilson lines in the pµ

2Aµ = 0 gauge
does make sense.

5. Conclusion

We have calculated the full hierarchy of evolution equations for Wilson-line opera-
tors in the next-to-leading approximation. Two remarks, however, are in order.

First, our “building blocks” for evolution of Wilson lines are calculated at d = 4
(d⊥ = 2) so they contain infrared divergencies at large z4 and/or z5, even at the
leading order. For the gauge-invariant operators like color tripole or color quadrupole
one can use our d⊥ = 2 formulas since all these IR divergencies should cancel. If,
however, one is interested in the evolution of color combinations of Wilson lines
(like for octet NLO BFKL15) some of the above kernels should be recalculated in
d = 4 + ε dimensions.

Second, the NLO evolution equations presented here are “raw” evolution equa-
tions for Wilson lines with rigid cutoff (1). For example, in N = 4 they lead to
evolution equations for color dipole which is non-conformal. The reason (discussed
in Ref. [7]) is that the cutoff (1) violates conformal invariance so we need an O(αs)
counterterm to restore our lost symmetry. For the color dipole such counterterm
was found in Ref. [7] and the obtained evolution for “composite conformal dipole” is
Möbius invariant and agrees with NLO BFKL kernel for two-reggeon Green function
found in Ref. [16]. Thus, if one wants to use our NLO hierarchy for colorless objects
such as quadrupole in N = 4 SYM one should correct our rigid-cutoff quadrupole
with counterterms which should make the evolution equation for “composite confor-
mal quadrupole” Möbius invariant. We hope to return to the quadrupole evolution
in future publications. Another example is the evolution of the three quark Wilson
lines εmnlεm′n′l′U

mm′
1 Umm′

2 Umm′
3 (there are both pomeron and odderon contribu-

tions to this operator). After subtracting the Ref. [7] countertems the NLO evolution
equation for this operator17 becomes semi-invariant just as NLO BK in QCD. We
present the NLO result for this “color tripole” in the Appendix.
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Appendix: rapidity evolution of “color tripole”

As an example of application of NLO hierarchy let me present the result for the
evolution of three-Wilson-line operator. Similarly to the case of high-energy scat-
tering of a meson from some hadronic target described by the interaction of that
target with a color dipole corresponding to fast quark-antiquark pair, the energy
dependence of scattering of a baryon can be described in terms of evolution of a
three-Wilson-lines operator

B(z1⊥ , z2⊥ , z3⊥) = U1 · U2 · U3 ≡ εi′j′h′
εijhU i

z1,i′U
j
z2,j′U

h
z3h′ , (16)

where Ui ≡ U(zi⊥ , η) as usual. Similarly to the case of composite quasi-conformal
dipole discussed in Ref. [7] it is convenient to consider quasi-conformal “composite
tripole operator”

Bconf
123 = B123 +

αs

8π2

∫
d�r4

[ �r 2
12

�r 2
41�r

2
42

ln
(

a�r 2
12

�r 2
41�r

2
42

)

× ((U2U
†
4U1 + U1U

†
4U2) · U4 · U3 − 2B123) + (1 ↔ 3) + (2 ↔ 3)

]
, (17)

where we use shorthand notation Bmnl ≡ B(zm⊥ , zn⊥zl⊥). The evolution of this
composite operator has the form

∂Bconf
123

∂η
=

αs(µ2)
8π2

∫
dz4

{
(B144B324 + B244B314 − B344B214 − 6B123)conf

×
( z 2

12

z 2
41z

2
42

+
αs

4π

[(
11 − 2

3
nf

){( 1
z 2
14

− 1
z 2
24

)
ln

z 2
41

z 2
42

+
z 2
12

z 2
41z

2
42

ln
z 2
12

µ̃2

}

+
67
3

− π2 − 10
9

nf

])
+ (1 ↔ 3) + (2 ↔ 3)

}

− α2
s

32π3

∫
dz4

{
B443B412

[ z2
32

z2
43z

2
42

ln2
(z2

32z
2
14

�r2
13z

2
24

)
− z2

12

�r2
41z

2
42

ln2
(z2

12z
2
34

z2
13z

2
24

)]

+ (all 5 permutations 1 ↔ 2 ↔ 3)
}

− α2
snf

16π5

∫
dz4dz5

{([1
3
(U1U

†
4U5 + U5U

†
4U1) · U2 · U3 − 1

9
B123tr(U

†
4U5)

+(U1U
†
4U2) · U3 · U5 +

1
6
B123 − 1

5
(B413B442 + B441B423 − B412B443)

+ (1 ↔ 2)
]

+ (4 ↔ 5)
)
Lq

12 + (1 ↔ 3) + (2 ↔ 3)
}

− α2
s

8π5

∫
dz4dz5

{(
L̃C

12(U4U
†
5U2) · (U1U

†
4U5) · U3

+ LC
12

[
(U4U

†
5U2) · (U1U

†
4U5) · U3 + tr(U4U

†
5 )(U1U

†
4U2) · U3 · U5

− 3
5
(B155B235 + B255B135 − B355B125) +

1
2
B123

]
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+ MC
12[(U4U

†
5U3) · (U2U

†
4U1) · U5 + (U1U

†
4U2) · (U3U

†
5U4) · U5]

+ (all 5 permutations 1 ↔ 2 ↔ 3)
)

+ (4 ↔ 5)
}

where µ is a renormalization point in MS scheme and

LC
12 = L12 +

z2
12

4z2
41z

2
45z

2
25

ln
z2
42z

2
15

z2
45z

2
12

+
z2
12

4z2
42z

2
45z

2
15

ln
z2
41z

2
25

z2
45z

2
12

, (18)

L̃C
12 = L̃12 +

z2
12

4z2
41z

2
45z

2
25

ln
z2
42z

2
15

z2
45z

2
12

− z2
12

4z2
42z

2
45z

2
15

ln
z2
41z

2
25

z2
45z

2
12

, (19)

MC
12 =

z2
12

16z2
42z

2
45z

2
15

ln
z2
41z

2
42z

4
35

z4
43z

2
15z

2
25

+
z2
12

16z2
41z

2
45z

2
25

ln
z4
43z

4
45z

4
12z

2
25

z2
41z

6
42z

2
15z

4
35

+
z2
23

16z2
42z

2
45z

2
35

ln
z4
41z

2
43�r

6
25z

2
35

z2
42z

4
45z

4
15z

4
23

+
z2
23

16z2
43z

2
45z

2
25

ln
z2
42z

2
43z

4
15

z4
41z

2
25z

2
35

+
z2
13

16z2
43z

2
45z

2
15

ln
z4
42z

2
15z

2
35

z2
41z

2
43z

4
25

+
z2
13

16z2
41z

2
45z

2
35

ln
z4
42z

2
15z

2
35

z2
41z

2
43z

5
25

+
z2
43z

2
12

8z2
41z

2
42z

2
45z

2
35

ln
z2
41z

2
43z

4
25

z2
42z

2
45z

2
12z

2
35

+
z2
23z

2
12

8z2
41z

2
42z

2
25z

2
35

ln
z2
42z

2
12z

2
35

z2
41z

2
23z

2
25

+
z2
15z

2
23

8z2
41z

2
45z

2
25z

2
35

ln
z2
41z

2
45z

2
23z

2
25

z5
42z

2
15z

2
35

, (20)

Lq
12 =

1
z4
04

[z2
02z

2
14 + z2

01z
2
24 − z2

04z
2
12

2(z2
02z

2
14 − z2

01z
2
24)

ln
(z2

02z
2
14

z2
01z

2
24

)
− 1

]
. (21)

Similarly to the case of composite dipole, the evolution of this “composite tripole”
operator is a sum of the conformal part and running-coupling part explicitly pro-
portional to β-function of QCD.
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