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CHAPTER I 

INTRODUCTION

1.1. Introduction

The study o f the self-assembly and self-organization of nanostructures in 

heteroepitaxial systems is necessary for a fundamental understanding o f the properties of 

reduced-size condensed matter systems and for the development o f quantum dots (QD)- 

based devices [1,2]. From a basic physics point o f view, Ge/Si is a model system for 

studying the growth dynamics o f the Stranski-Krastanow (SK) mode. In such a system, 

growth starts by the formation o f a two-dimensional (2D) wetting layer where the Ge film 

lattice constant adapts to that of the Si substrate [1,2]. However, due to the lattice 

mismatch o f 4.2% between the film and the substrate, an elastic strain arises in the 

wetting layer, which increases linearly with the increase of the film thickness. When the 

thickness o f the wetting layer reaches a critical value, which is estimated to be 4-6 

monolayers (ML) (1 ML = 6.24x1014 atoms/cm2), the film relieves its internal strain by 

three-dimensional (3D) nucleation [2],

The growth dynamics o f Ge QDs on Si(100) was intensively studied for growth 

by molecular beam epitaxy (MBE) [3-8], chemical vapor deposition (CVD) [9,10], and 

liquid phase epitaxy (LPE) [11,12]. For the cases o f  M BE and CVD, 3D nucleation starts 

by the formation of {105}-faceted hut or pyramid clusters [2]. As the film coverage 

increases, multi-faceted domes, faceted by {113} and {102} planes, develop at the 

expense o f the hut clusters. With further increase in thickness, large clusters or super­
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domes start to appear. The shape o f the QDs depends on the deposition technique as well 

as the deposition conditions. When Sb was used as a surfactant in the MBE growth of 

Ge/Si(100), the initial island shape changed from {105}-faceted to {117}-faceted [13]. 

When Ge was grown by liquid phase epitaxy, {115}-faceted islands were first observed 

instead of the {105}-faceted ones. As the coverage was increased, { lll}-faceted 

pyramids were formed [11,12]. However, detailed study of the growth of such a system 

by pulsed laser deposition was not presented before the current work.

PLD is a powerful technique for growing thin films from the vapor phase. A high 

power pulsed laser is focused onto a target of the material to be grown. As a result, a 

plume of vaporized material is emitted and then collected on the substrate. Among the 

interesting features o f PLD are

(i) the high preservation of stoichiometry [15-17];

(ii) its adaptability to grow multicomponent or multilayered films [18,26];

(iii) the ability to grow a thin film out o f any material regardless o f its melting 

point;

(iv) the high energy of the ablated particles may have beneficial effects on film 

properties;

(v) PLD consists o f periods of high deposition rate (on the microsecond time 

scale) followed by periods of no deposition (on the millisecond to the 

second time scale), allowing for surface relaxation that may lead to 

producing smoother films [19].
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The major drawbacks that delay its use in industry are the difficult techniques to achieve 

large area devices. However, some experimental recipes o f producing large-area wafers 

by PLD have been reported [20,21].

From the application point o f view, Ge QDs have interesting mid-infrared optical 

properties [22,23]. Therefore, they have been used in fabricating devices such as mid- 

infrared photodetectors [23-26], thermoelectric devices [27], and enhanced performance 

Si solar cells [28-30]. It was shown that the photo luminescence peak of a single Ge QD 

dot layer changes from 1.3 to 1.6 pm with increasing thickness from 5 to 9 ML [22], 

Such wavelength tunability is one o f the reasons behind the great interest in Ge QD-based 

devices. Generally, QD-based devices consist of tens o f multilayers o f doped or undoped 

QDs separated by spacing layers. Apparently, the first two features o f PLD make it a 

strong candidate for growing multilayered devices. In this case, only targets o f different 

materials in the desired stoichiometry and doping are required without the need for 

residual gases or doping sources. In order to design efficient Ge QD-based devices by 

PLD, a clear understanding of how to control their physical properties through 

controlling the deposition parameters is required. The physical parameters o f QDs depend 

strongly on their shape and size distribution, while the device quantum efficiency is 

affected by the density and spatial distribution o f the QDs. Besides the substrate 

temperature, laser parameters (fluence, repetition rate, and wavelength) are unique 

controlling parameters o f PLD. The density and size distribution o f QDs are mainly 

controlled both by the deposition rate and adatoms’ kinetic energy, which affects surface 

diffusion [31]. In the case o f PLD, adatom surface diffusion is controlled both by the 

substrate temperature and the laser fluence, while deposition rate is mainly controlled by
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the laser fluence and the repetition rate. The spatial distribution depends on the 

homogeneity o f the atomic flux, which is governed by the laser fluence.

This dissertation is based on the journal publications [14,26,32-34] and is 

organized as follows. Chapter II presents an overview of PLD as a thin film deposition 

technique. The chapter also addresses the laser ablation o f matter, the plume 

characteristics, and the problem of particular formation. Elements o f reflection high- 

energy electron diffraction (RHEED), both theoretical and experimental, are discussed in 

chapter III. This chapter also contains detailed calculations o f the Si(100) and Ge(100) 

reciprocal lattices and the indexing of the electron transmission pattern resulting from 

diffraction through the Ge QD formed by PLD. In chapter IV, the growth dynamics of the 

self-assembly of Ge QD on Si(100) by pulsed laser deposition is studied by in situ 

RHEED and ex situ APM. The effects o f the substrate temperature and laser on the 

growth dynamics and the morphology o f the QD are studied. Chapter V presents the 

fabrication, by PLD, and the testing o f a mid-infrared photodetector, consisting o f layers 

o f Ge QD embedded in successive layers o f Si. In chapter VI, the effects o f laser-induced 

electronic excitations on the self-assembly of Ge quantum dots on Si(100)-2xl grown by 

pulsed laser deposition is discussed. Chapter VII presents an in situ UHV STM study on 

the initial formation o f Ge QD huts grown by PLD on Si(100). Each chapter will be self- 

contained, having its own introduction, conclusion and list of references.
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CHAPTER II 

PULSED LASER DEPOSITION 

II. 1. Introduction

Pulsed laser deposition (PLD) is a powerful technique for growing thin films from 

the vapor phase. In PLD, a high-power pulsed laser beam is focused onto a target of the 

material to be grown. As a result, a plume of vaporized materials (atoms, ions, molten 

droplets and even particulates) is emitted and then deposited on the substrate to grow the 

film [1,2]. PLD has proved to be a powerful technique for growing high quality films of 

superconductors [3-6], magnetoresistant materials [7-10], semiconductors [11-15], 

ferroelectrics [16-19] and many others. The following are some of the unique and 

interesting features o f PLD:

(1) Conceptually, it could be used to grow a thin film out o f any material, regardless 

o f its melting point.

(2) In most systems, the stoichiometry o f the grown film is highly preserved [20-21].

(3) The high energy o f the ablated particles may have beneficial effects on the film 

properties. Each type o f the different emitted species has an energy distribution 

depending on the nature o f its particles. Generally, the average energy increases 

as the laser fluence increases; however, such dependence is not yet fully 

understood. The energy could range from <0.1 eV for neutrals thermally desorbed 

at low fluences to 1 keV for ions emitted at higher fluences [22-24],
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(4) It could be easily employed to grow multicomponent/multilayer films and devices 

[25,26] as will be demonstrated in chapter VI.

(5) Most importantly, it consists o f periods o f high deposition rates (1-20 ps) 

followed by periods o f no deposition (on the millisecond or the second scale), 

allowing for surface relaxation that may lead to enhancement o f the properties of 

the grown film [27],

II.2. Laser Ablation o f  Matter

Materials ablation by lasers falls on a continuum between two extremes: thermal 

and non-thermal ablations. In thermal ablation, laser photons are absorbed and the 

resulting heat melts and vaporizes the material. For metal targets, laser absorption by free 

electrons takes place via an inverse Bremsstrahlung mechanism. Thermalization of these 

hot electrons takes place through (i) heat transport into the bulk by thermal diffusion and

(ii) electron-phonon coupling by transferring their energy to the lattice, Fig. 2.1. The 

main parameters o f interest in such an absorption mechanism are the peak surface 

temperature and the volume o f the heated region, both of which are governed by the 

optical properties (reflectivity, R, and absorption coefficient, a), the thermal properties of 

the target (specific heat, C, the vaporization energy, and thermal conductivity, K ), and the 

laser peak intensity, Ip. The rise in the substrate temperature, AT, is calculated using the 

heat diffusion equation:
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A T ^ l )  _  ^  A f(z 0 + Az) A7\z„) + exp [-az].exp [-4 ] ■ (2.1)
Ar (Az) r

with

t  =  —^ L h whm ,  ( 2 . 2 )
V(4*log(2)

where is the FWHM of the laser pulse. Ablation takes place when the laser energy

dumped into the system exceeds a certain threshold to melt and vaporize the target.

Laser

lectrons Lattice

C o u p lin g

D iffusion into solid

‘K r'-

■4t (- *•
** "  -S . * -*

FIG. 2.1. A schematic summarizing the thermal ablation of solid surfaces
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In the other extreme, non-thermal ablation takes place by a variety o f ways, 

depending on the properties o f the laser and those o f the substrate. Examples o f the non- 

thermal ablation processes are:

(1) Desorption induced by electronic transitions (DIET): Photon absorption takes 

place by valance electrons, which causes their excitation into anti-bonding states. 

This results in the emission of atoms, molecules and ions [28,29].

(2) Collisional sputtering: This is an indirect process, in which plasma formed by 

laser interaction with mater bombards and sputters the surface o f the material

[30].

(3) Hydrodynamic sputtering: In this process, the target’s surface is melted by the 

laser energy forming small droplets. Pressure waves caused by the motion of the 

liquid in the surface result in the ejection o f such droplets from the surface 

[31,32],

(4) Fracto-emission: In this case, particles are emitted from freshly fractured surfaces 

by thermal or mechanical stresses [33],

These non-thermal processes, however, could not completely explain the ablation 

of matter by ultrafast lasers, e.g., femtosecond lasers. This is why this point currently 

receives a lot o f attention. The important parameters determining the effect o f the laser 

pulse length on the ablation process include: the heat diffusivity o f the material, velocity 

of sound and the time scale for electron-electron thermalization and electron-phonon 

coupling, which was shown to be on the order o f ~1 picosecond [34], The important 

thermal processes, which occur in laser ablation, have been shown to be greatly modified 

once the laser pulses are shortened to a picosecond or femtosecond time scale [35,36].
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FIG. B.22. Z regulation panel. FIG. B.23. XY scanner control.

FIG. B.24. Matrix remote box. FIG- B -25- TiP approaching the sample.

Attention: The software program must have already been started and the correct 

experiment loaded before starting any adjustment or tip approach! Otherwise, a tip crash 

may be the result. Also, make sure the PPM is at its lower limit, i.e. the coarse slider 

stage is unlocked.
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Attention: The apex of a good tip cannot be resolved in an optical microscope at "x 30" 

magnification, i.e. it is not visible with a CD camera. In other words, the tip is normally 

longer than it appears. If  you see the tip and its reflection from the surface touching, you 

have probably crashed the tip to the surface.

9. Use +Y/-Y buttons and adjust the tip position until the tip can be seen in front o f the 

sample on the CD camera screen. You have to carefully adjust the CD camera and light 

source such that the sample appears bright on the screen and the tip is dark. Note: this can 

be quite tricky! You have to play with the light source until you achieve that.

Attention: The tip reflection can only be seen on reflecting samples. For non-reflecting 

sample materials keep a safe distance.

10. When the tip is at a good distance from the surface, press AUTO to activate the auto 

approach. Always, set the SPEED to the max value o f 10 during the auto approaching 

process.

11. After a coarse approach the surface is only just in the reach o f the tip since the coarse 

step width (=0.2 pm) is smaller than the z-range o f the scanner (>1 pm). Hence the green 

tip shape o f the z-meter, Fig. B.21, in the MATRIX is close to the yellow region. In order 

to have piezo play in both directions during scanning the green tip shape in the software 

Z-meter display should be in the center between the red and yellow regions. To do that, 

follow the following steps:

i) On the remote box set SPEED to maximum.

ii) With the remote box in forward mode watch the software z-meter.

iii) If the green tip shape is closer to yellow, switch to BACKWARD and press 

APPR once.
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iv) If  the green tip shape is closer to red, switch to BACKWARD and press RETR 

once.

v) After each step switch to FORWARD and check the position o f the green tip 

shape.

vi) Stop this process when the green tip shape has reached a nearly central 

position between yellow and red, Fig. B.21. Now you are ready for data 

acquisition.

B.7. Starting the STM scanning and data acquisition

A continuous scan can be started after the tip is in tunneling distance o f the 

sample. Before you try to get small or atomic resolution you should start with large 

frames (> 300 nm x 300 nm) on flat samples.

1. In the scanner window choose the raster size (i.e. number o f points and lines) to be 

measured.

2. Select frame size, frame angle, frame position and raster period time.

3. In the regulator window select a current setpoint (consult table 9 on page 64 of 

Omicron manual for some guiding values).

4. Do not switch the range button with the tip in tunneling condition (FORW on remote 

box) as this causes preamplifier relays to switch. During switching the feedback loop is 

undefined, which may lead to a tip crash.

5. Set a loop gain setpoint (consult table 9 on page 64 o f Omicron manual for some
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guiding values).

6. In the Gap voltage window set a gap voltage (consult table 9 on page 64 o f Omicron 

manual for some guiding values).

7. Start a measurement.

8. Configure the online display to suit your needs.

9. Fine-tune the loop gain and possibly the current setpoint and gap voltage.

10. To start saving measurement data check the "Store" box in the Experiment Options 

window.

Useful rem arks:

If the obtained image does not match the expected surface structure, try adjusting 

the tunneling current by changing the feedback setpoint or polarity. Play with the 

parameters given on page 64 o f the Omicron manual. You may also want to try changing 

the scan area by adjusting the scanner’s X and Y Offset or even retracting and using the 

coarse motion drive.

The final solution may be changing the tip/tip material or the sample, or 

improving sample and tip preparation. Often additional methods along with UHV-STM 

operation are necessary for defining the surface condition.

STM imaging really needs patience. Sometimes, especially on relatively dirty 

samples, quality results are only obtained after a long period o f scanning and searching 

for a clean area o f the sample by adjusting the X and Y. Occasionally quality results are 

achieved at the first attempt. If this is not the case, leaving the instrument scanning a 

clean surface area unattended for a while may lead to a cleansing effect on the tip.
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