
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Information Technology & Decision Sciences
Faculty Publications Information Technology & Decision Sciences

2022

Estimating Efforts for Various Activities in Agile Software Estimating Efforts for Various Activities in Agile Software

Development: An Empirical Study Development: An Empirical Study

Lan Cao
Old Dominion University, lcao@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/itds_facpubs

 Part of the Data Science Commons, Software Engineering Commons, and the Technology and

Innovation Commons

Original Publication Citation Original Publication Citation
Cao, L. (2022). Estimating efforts for various activities in agile software development: An empirical study.
IEEE Access, 10, 83311-83321. https://doi.org/10.1109/ACCESS.2022.3196923

This Article is brought to you for free and open access by the Information Technology & Decision Sciences at ODU
Digital Commons. It has been accepted for inclusion in Information Technology & Decision Sciences Faculty
Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/itds_facpubs
https://digitalcommons.odu.edu/itds_facpubs
https://digitalcommons.odu.edu/itds
https://digitalcommons.odu.edu/itds_facpubs?utm_source=digitalcommons.odu.edu%2Fitds_facpubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.odu.edu%2Fitds_facpubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fitds_facpubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=digitalcommons.odu.edu%2Fitds_facpubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/644?utm_source=digitalcommons.odu.edu%2Fitds_facpubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ACCESS.2022.3196923
mailto:digitalcommons@odu.edu

Received 20 June 2022, accepted 2 August 2022, date of publication 5 August 2022, date of current version 11 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3196923

Estimating Efforts for Various Activities in Agile
Software Development: An Empirical Study
LAN CAO
Department of Information Technology and Decision Sciences, Old Dominion University, Norfolk, VA 23529, USA

e-mail: lcao@odu.edu

ABSTRACT Effort estimation is an important practice in agile software development. The agile community
believes that developers’ estimates get more accurate over time due to the cumulative effect of learning
from short and frequent feedback. However, there is no empirical evidence of an improvement in estimation
accuracy over time, nor have prior studies examined effort estimation in different development activities,
which are associated with substantial costs. This study fills the knowledge gap in the field of software
estimation in agile software development by investigating estimations across time and different development
activities based on data collected from a large agile project. This study investigated effort estimation
in various development activities, including feature development, bug fixing, and refactoring in agile
software development. The results indicate that estimation of agile development does not improve over
time, as claimed in the literature. Our data also indicate that no difference exists in the magnitude of
estimation errors between feature tasks and bug-fixing/refactoring tasks, while bug-fixing and refactoring
tasks are overestimated more frequently than feature tasks. This study also contributes to our knowledge
about overestimation and underestimation patterns in agile software development.

INDEX TERMS Agile software effort estimation, bug-fixing effort estimation, refactoring effort estimation.

I. INTRODUCTION
The estimation of development effort is a critical activity
in software development [1], [2]. Effort estimates guide the
planning, budgeting, resource allocation, and monitoring of
software development processes [3]. Inaccurate effort esti-
mation may lead to various development problems and even
cause project failure [4], [5]. Underestimating development
efforts leads to schedule pressure [6] and project overruns [4],
while overestimating leads to wasted resources [7].

Effort estimation in agile software development has
received significant research attention since 2014 [8]–[11].
This is an important practice in agile planning, enabling
the software development team to approximate task sizes
and allocate workloads for an iteration [12]. Estimations are
used to calculate an iteration’s team productivity, helping the
team create a reliable iteration plan to deliver the product
increment.

The associate editor coordinating the review of this manuscript and

approving it for publication was Laxmisha Rai .

While some studies focus on improving estimation-
learning processes through formal models, such as machine
learning [2], [3], [15], expert-based methods are the domi-
nant approach used in agile software development [9]. The
agile community believes that the agile development pro-
cess facilitates developers’ learning from short and frequent
feedback loops [16]. Developers continuously adjust their
estimation based on feedback from previous iterations [17].
As a result, the estimates become more accurate over time
due to the cumulative effect of learning [10], [32], [33].
However, despite the vast number of studies on agile soft-
ware effort estimation, there is a lack of empirical evidence
on the improvement of estimation accuracy over time in
agile development. Studies on effort estimation of software
development, on the other hand, report that experts’ previous
experience in estimation does not lead to better judgment on
similar tasks [4], [18], [35], [36]. As most of these studies
are based on lab experiments with a small number of esti-
mation tasks, there is a call for research to collect more data
[19] to investigate estimation-learning processes. Examining

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 83311

• • •

• • •

IEEEAccess·
Multidisciplinary : Rapid Review l Open Access Journal

https://orcid.org/0000-0002-3860-7639
https://orcid.org/0000-0003-1494-1138

L. Cao: Estimating Efforts for Various Activities in Agile Software Development

whether learning happens over a longer period of time with a
large amount of data from a real agile project would provide
a nuanced understanding of the estimation process.

Bug fixing and refactoring are associated with substantial
costs [6], [38] and estimating the efforts of these activities is
critical for agile software development. While much empha-
sis has been placed on estimating general development efforts
[8], estimating efforts in bug fixing and refactoring remain
underexamined [20], [21]. Extant studies on bug fixing have
focused on the development of predictionmodels that support
a cost-benefit analysis of bug fixes. For example, one study
[21] analyzed factors that affect the effort needed to fix a bug
and the ability to predict the fix implementation effort using
data from a NASA mission. To the best of our knowledge,
no empirical studies have been conducted to investigate bug
fixes or the estimation accuracy of refactoring tasks. One
reason might be the difficulty in obtaining data on such activ-
ities. Even though most software development projects use
some sort of bug-tracking system, the effort-estimation data
is usually not well maintained. In many cases, information
about bug fixes is hidden in the version control system that
records changesmade to the source code. The system does not
identify whether a change involves bug fixing, refactoring,
or implementing a new feature(s).

These gaps in effort estimation in agile software devel-
opment motivated this study, which aims to answer the
following research questions: 1) Do effort estimations in
agile software development becomemore accurate over time?
2) Are bug-fixing and refactoring effort estimations less accu-
rate than feature development effort estimations?

To answer these questions, we conducted a field study
using data collected from a large agile software develop-
ment project. The remainder of this paper is organized as
follows: Section 2 describes the previous research on agile
software effort estimation and themeasures used in this study;
Section 3 presents the hypotheses; Section 4 describes the
research design; and the results are presented in Section 5.
Section 6 provides a discussion of the findings, and Sec-
tions 7 and 8 discuss the study’s limitations and conclusions,
respectively.

II. RELATED WORKS
A. EFFORT ESTIMATION IN AGILE SOFTWARE
DEVELOPMENT
Software effort estimation methods can be categorized as
model-based, which are derived from prediction models;
expert-based, which rely on human judgment; and hybrid
methods that combine model-based and expert-based meth-
ods [22]–[25]. In agile software development, expert-based
estimation techniques such as planning poker, expert judg-
ment, and story points are the major strategies used [9],
[26], while new techniques based on the intensive use of
data and algorithms, such as machine learning, have been
proposed [27].

Early research on effort estimation has focused on predict-
ing the effort required to complete a software project that

follows a traditional plan-driven development approach [2].
Traditional software development usually makes estimates
only at the beginning of a project based on the features iden-
tified in the requirement specifications [28]. However, agile
software development does not have an upfront requirement
analysis phase, with features emerging and evolving through-
out the entire development process. Software is developed
through repeated small cycles, allowing for adaptation to
changing requirements at any point during development.

A distinct characteristic of agile development is its mul-
tiple levels of planning and short feedback loop [12]. Agile
planning generally includes release planning and iteration
planning. Release planning includes identifying features that
will be developed for a release and estimating the effort
needed to develop features. Iteration planning defines a tacti-
cal development plan for an iteration. Selected features for the
iteration are divided into stories, each of which is discussed,
covering relative difficulties, size, complexities, uncertain-
ties, technical challenges, and acceptance criteria [7]. Effort
estimation at the iteration level involves estimating the effort
needed to complete a backlog item, such as a user story.
The iteration plans contain other types of items, such as bug
fixes, and these are sometimes estimated as well. Estimates
are adjusted continuously based on feedback throughout the
development process [12].

Stories are typically subdivided into smaller units, termed
tasks, during the iteration planning process. Developers then
discuss approximately how long a task will take and its
dependencies on other tasks or stories. Most prior studies
on estimation in agile software development have been con-
ducted using estimation data at the story level [9].While some
lab experiments have investigated estimation accuracy at the
task level [9], to the best of our knowledge, no study has
examined effort estimation at the task level using real project
data.

Prior studies on effort estimation in agile software devel-
opment have been summarized in several systematic review
papers [9], [26], [29], [30]. These reviews investigated
techniques used for effort or size estimation in agile soft-
ware development, effort predictors used, characteristics of
the data set used, and estimation accuracy. According to
the reviews, these studies pursued very similar research
questions, while the knowledge of effort estimation in agile
software development remains dispersed [9]. The estima-
tion accuracies in these studies are inconsistent and poorly
reported, with many studies reporting inadequate accuracy
results, making comparisons unreliable. These reviews point
out the lack of empirical knowledge on effort estimation in
agile software development [29], [30]. The data used in the
empirical studies are limited for several projects, as well as
estimation levels. Usman et al. [26] reports that most of the
techniques have not attained acceptable prediction accuracy
values (e.g., MRE < 25%) regarding how close the estimated
values are to actual values. The authors conclude that practi-
tioners would find little guidance from the current literature
on effort estimation in agile software development.

83312 VOLUME 10, 2022

L. Cao: Estimating Efforts for Various Activities in Agile Software Development

Moreover, the development activities involved are usually
not made explicit in prior studies [9]. No comparisons
between different development activities (e.g., feature devel-
opment, refactoring, or bug fixing) regarding estimation
accuracy have been conducted. This study aims to address
these gaps by investigating effort estimation for feature devel-
opment, bug fixing, and refactoring using extensive task-level
data collected from a large agile project. Table 1 summarizes
the differences between prior studies and this study.

TABLE 1. comparison of prior studies and this study.

B. MEASURES
Myriad estimation accuracy measures have been used in
the software engineering literature, none of which has been
endorsed across the whole community. To reduce concerns
over measurement bias, this study uses multiple measures,
including Magnitude of Relative Error (MRE), Relative
Error (RE), Balanced Relative Error (BRE), and Balanced
Relative Error Bias (BREbias). MRE and BRE are used to
measure estimation accuracy, and RE and BREbias are used
to measure estimation error toward optimism (underestima-
tion) or pessimism (overestimation). A positive RE/BREbias
indicates a tendency toward underestimation, a negative RE
indicates a tendency toward overestimation, and a zero RE
means unbiased estimates.

Magnitude of Relative Error (MRE) = |actual effort -
estimated effort|/actual effort

Relative Error (RE) = (actual effort - estimated
effort)/actual effort

Balanced Relative Error (BRE)= |actual effort - estimated
effort|/min (actual effort, estimated effort)

BREbias = (actual effort - estimated effort)/min (actual
effort, estimated effort)

Prior research has pointed out the limitations of MRE
(and RE) [31]. One concern is that MRE rewards under-
estimation [32], [33], with much less weight placed on
underestimation than on overestimation [34]. The insufficient

weight on underestimation can be illustrated by an example
that entails two stories. Stories 1 and 2 have the same esti-
mated effort: to be 10 ideal hours. Story 1 has been overesti-
mated, with the actual effort at five hours, while Story 2 has
been underestimated, with the actual effort at 20 hours. The
MRE overestimation measure of Story 1 is |5− 10|/5 = 1.0,
while the MRE underestimation of Story 2 is |20− 10|/20 =
0.5. This uneven weighting may be misleading because with
practice estimation, performance is often rated relative to the
estimated effort in software development [34]. To address this
issue, this study also used more balanced accuracy measures,
as prior studies have suggested [34]: BRE and BREbias. BRE
evenly balances overestimation and underestimation. For the
previous example, the BREs for both Stories 1 and 2 are 1.0.

To examine whether the estimation accuracy is acceptable,
this study reports prediction-level PRED (25), which mea-
sures the percentage of MRE values within 25 percent of the
total number of tasks. PRED (25)≥ 75% is generally viewed
as acceptable [9].

A concern exists that MRE and RE outliers may impact
mean MRE and mean RE strongly [33]. Following a prior
study’s [4] suggestions, we also report more outlier-robust
MRE and RE medians.

III. RESEARCH HYPOTHESES
Agile planning uses the analogy of ‘‘yesterday’s weather’’
(i.e., today’s weather can be predicted to be the same as
yesterday’s) to estimate productivity [17], [35]. Data from the
preceding iterations are used to predict how much work can
be finished in the coming iteration with adjustments. Even
though this concept concerns the estimation of team capacity,
it implies that developers learn from previous experiences and
improve their efforts at estimation as a project progresses.
Agile software development provides a learning environ-
ment in which developers frequently adjust their actions[16]
and continuously self-correct [17]. This continuous adjust-
ment quickly improves the estimates [12]. It is believed
that uncertainty decreases significantly as developers obtain
more knowledge about the project. As a result, the estimates
become very accurate after a few iterations [12], [17], [35].

While the agile development literature has contended that
estimation accuracy improves over time, some researchers
have put forth different opinions. Jørgensen and Gruschke
[4] argue that humans’ capabilities for improving their
own expert judgment are poor. One study found that
experts’ ability to learn from prior estimation experience
is ‘‘disappointingly low’’ in both software maintenance and
development [36]. Jørgensen and Sjøberg [37] conducted a
study of 54 software professionals’ work on extending and
maintaining large administrative applications, finding that the
amount of application-specific experience from a previous
estimation task does not lead to more accurate assessments
of a similar task. Feedback from previous tasks is difficult
to apply properly for estimation purposes. Similarly, a study
of six software project leaders’ estimates over a period of
three years found no significant improvement [18]. A few

VOLUME 10, 2022 83313

Prior studies This study
Focus Estimation accuracy Improvement of

[9, 26, 29, 30] accuracy overtime;
Cost drivers [29] patterns of

underestimation vs
overestimation

Estimation Planning poker, Expert judgment
Techniques story points, expert

judgment [9, 26]
machine learning
[27]

Estimation Release/iteration [9] Task level and
Levels aggregated story/

iteration level
Datasets Lab experiments, Real project, large

Industry data (most amount of data
studies are limited)
[9]

Development Not explicit, general Feature development,
Activities development [9, 26, bug fixing,

29, 30] refactoring

L. Cao: Estimating Efforts for Various Activities in Agile Software Development

empirical studies have tested the learning effect with different
results [7], [38]. To sum up, learning estimation skills from
feedback is a difficult task, and empirical studies suggest
that, generally, estimation does not improve over time. This
inconsistency motivated us to test the following hypothesis:
Hypothesis 1. Estimation accuracy improves over time in

agile software development.
Bug fixing is an important activity in agile software devel-

opment [6], but prior studies on agile software development
estimation have not examined effort estimation accuracy in
bug fixing [9], [26]. It is believed that estimating the effort
for bug fixing is more challenging than estimating the effort
for feature development because estimating what is needed
to fix a bug involves investigating the issue, looking into the
source code, and isolating the problem [20]. Some developers
believe that estimating bugs is a waste of team effort, because
it may take longer than just fixing the bug. A common
practice is to prioritize bugs and assign them to the iteration
backlog, while each iteration is allocated a certain amount of
time for bug fixing.

Similarly, prior research on refactoring reveals that soft-
ware developers associate refactoring with substantial costs
[39], and they usually cannot estimate the effort required
for refactoring [40]. Refactoring effort is difficult to esti-
mate because estimating the effort needed to understand the
original code and the effort needed to test and remove bugs
introduced by refactoring is difficult. As a result, estimations
of bug fixes and refactoring are less accurate than estimations
of features. Thus, we propose the following:
Hypothesis 2. Estimation accuracy for bug fixing is lower

than for feature development.
Hypothesis 3. Estimation accuracy for refactoring is lower

than for feature development.
Prior studies have suggested that cost and schedule over-

runs are common risks in software projects [2]. For example,
Molokken and Jørgensen [41] found that most (60–80%)
software projects encounter effort overruns. Another study
[5] found that one out of every six projects incurs a cost
overrun of 200% and a schedule overrun of almost 70%.
Another study reported that, on average, large software
projects run 66 percent over budget and 33 percent over
time [42]. These findings suggest that software develop-
ment efforts tend to be underestimated more frequently than
overestimated [43], [44].

One reason for the less frequent overestimation might
be Parkinson’s law, which says that the development team
expands work to fill the time available for its completion [45].
Thus, even when a task is estimated to take longer than neces-
sary, the developer may work in a way so that the actual time
expended is close to the estimated time and does not report
overestimation. Another possible reason for the difference
between the frequencies of overestimation and underestima-
tion is that they impact project management differently [46]
and may be evaluated differently. For example, underestima-
tions are more ‘‘expensive’’ than overestimations if the team

must compensate the customer for potential delayed delivery
of the product.

While prior studies suggest that software development
efforts tend to be underestimated [43], an interesting review
found that estimation is affected by several factors. For
example, underestimation is reported more frequently than
overestimation in studies from the engineering and manage-
ment literature, but not in psychology literature [47]. The
review also reports the correlation between the magnitude of
tasks and frequency of under or overestimation. Larger tasks
(e.g., projects in person-months) elicit underestimation, while
smaller tasks (e.g., lab studies with task sizes in hours) elicit
overestimation or unbiased estimates [47]. Similarly, another
study [18] finds that small software development tasks are
more likely to be overestimated. Considering that iteration
planning of agile software development involves estimating
small pieces of tasks [12], we hypothesize that the frequency
of overestimation is higher. Thus, we propose:
Hypothesis 4. The frequency of overestimation is higher

than the frequency of underestimation in agile iteration
planning.

While prior studies have revealed task size, complexity,
and difficulty could impact estimation [47], the difference
between the magnitude of errors for underestimation and
overestimation has not been reported. Thus, we propose the
following:
Hypothesis 5. No difference exists between the magnitude

of errors for underestimation and overestimation in agile
iteration planning.

IV. RESEARCH METHOD
A. CASE DESCRIPTION
To test the hypotheses, we selected a case based on the follow-
ing criteria: 1) the project uses the agile software development
approach, 2) both estimated and actual data are recorded for
multiple iterations over a period of time, and 3) estimation
data for bug fixing and refactoring are available. A software
development company involved in developing a project man-
agement system for managing agile software development
processes was chosen based on those criteria. The project
provides a rare opportunity for this study.

First, the product itself is an agile software project manage-
ment tool that aims to integrate business and technical teams
in a collaborative environment to define, plan, and test soft-
ware releases. The product includes capabilities for release
and iteration planning, scheduling and tracking, project sta-
tus and team velocity tracking, requirement management,
test management, and bugs and issue management. Second,
the team uses its own product to manage its development
process, with a goal of testing the product’s functionalities.
With this goal, the team is committed to recording detailed
data on the process, including estimated and actual efforts
of feature tasks, bug fixes, and refactoring tasks, as well
as task assignments. In most organizations, recording these
data is viewed as a burden, so it is rarely done. Finally,

83314 VOLUME 10, 2022

L. Cao: Estimating Efforts for Various Activities in Agile Software Development

this project has taken an agile approach, following combined
Extreme Programming (XP) and Scrum practices such as
daily stand-up meeting, co-located team, on-site customer,
pair programming, review meetings, and retrospective meet-
ings. The development process is iterative, and each iteration
takes two weeks. This project planned its product releases
in two-month cycles, but formally announced new releases
only four times a year. The project was on Release Five at
the time of data collection. The releases were sequential—a
new release was started only when the previous release was
finished. New stories were implemented with each release,
and a different team handled the maintenance of previous
releases. Altogether, 15 developers had been working on the
project during its first 34 iterations. For Iterations 35 to 46,
some developers were removed from the project, with only
five developers remaining (including a new developer who
joined the project from Iteration 35).

B. DATA DESCRIPTION
The project data were captured by the team from iterations
corresponding to the five releases. As the data from the first
release were not complete, data from Releases 2, 3, 3.5, and
4 were used to test the hypotheses. The four releases included
data from 46 two-week iterations (more than 21 months).
The data included the estimated and actual efforts for feature,
bug-fixing, and refactoring tasks; task assignments; task and
story priorities; and status (incomplete, viewed as complete
by developers/customers).

In addition to analyzing the recorded data, we conducted
four interviews about estimation practices and challenges
with the product owner, two developers, and the president of
the company. The four informants were highly experienced
in agile software development. We also participated in one
iteration planning meeting to observe the estimation process.
The meeting lasted about two hours, and the discussions
among team members (product owner, scrum master, and
other members) were recorded. The data collected during this
meeting were compared with information collected from the
interviews for triangulation.

Due to the product’s unique nature (agile project manage-
ment tool), the team was diligent in tracking its processes
and recording all the estimated and actual effort data from
all activities. During the iteration planning meetings, each
story planned for the next iteration was subdivided into tasks
and estimated at the task level by the developers. Developers
signed up to tasks based on those estimations. At the end of
an iteration, the actual effort of each task and whether the task
was complete were recorded by the developers.

Estimation for this project was conducted only at the task
level. Story-level and iteration-level estimations and actual
effort data were aggregated from task-level data. The team
did not conduct independent estimations for stories and iter-
ations. The aggregation of data significantly impacts the
results from data analysis. Depending on the aggregation
level and approach, we can elicit very different results on
estimation accuracy for exactly the same data set.

At the story level, when examining aggregations over sev-
eral tasks, the estimation bias measures (RE and BREbias) do
not always reflect estimation quality. When aggregating data
from the lower level, the effect of larger volumes dampens
random variation’s impact. For example, a story contains four
tasks with estimated/actual efforts of 1/1, 6/5, 3/2 and 4/7.
Even though the MREs for three tasks are quite large (0.2,
0.5, and 0.43), the story-level MRE calculated by comparing
actual aggregated story-level effort (14) with story-level esti-
mation (15) is only 0.067. Thus, estimations using aggregated
data have lowerMREs and REs than the estimations using the
disaggregated data.

This study used both disaggregated and aggregated data
in the analysis. For example, the story-level MRE was
calculated as:

Story-level MRE = |actual story effort – estimated story
effort|/actual story effort
actual story efforts =

∑i=n
i=1 (actualtaskeffort)

estimated story efforts =
∑i=n

i=1 (estimatedtaskeffort)
with n as the number of tasks in the story.
Similarly, iteration-level MRE was calculated using the

aggregation of estimated story efforts and actual story efforts.
At the task level, about 7,000 estimates and actual effort

data were collected on features, bug fixes, and refactoring
tasks. These data were aggregated into data at the story level,
eliciting more than 1,000 units of story-level data, which
were examined and cleaned up carefully. First, some data
contained missing information. To deal with the missing-data
issue, we removed tasks with missing data on either task
estimation or actual time. Second, we removed data from
tasks marked incomplete. If a task was marked incomplete,
the actual effort recorded was the actual effort spent on the
task but does not reflect the actual real effort needed to finish
the task. Altogether, 1,972 tasks remained after the cleanup,
among which 1,282 were feature tasks, 377 were bug fixes,
and 313 were refactoring tasks. These data were used for the
analysis. Table 2 provides the descriptive statistics of tasks
(actual sizes).

Among the 46 iterations, two were dedicated to bug fixes
(one was missing all estimation data), 12 were dedicated
to refactoring (also termed ‘‘hardening’’ iterations), and one
contained only actual effort data and lacked any estimation
data. As a result, 31 iterations contained both feature and
bug-fixing data, including 304 stories that contained 1,282
feature tasks. The story-level and iteration-level data were
aggregated from the task-level data, which were also used
for the analysis. However, considering that we removed a
large portion of incomplete data, the sizes of stories and
iterations were smaller than the original stories and iterations.
The descriptive statistics on the stories and iterations were not
included in Table 2 to avoid misunderstandings.

V. RESULTS
A. HYPOTHESIS 1
To test Hypothesis 1, we examined whether estimation
accuracy improved over the 21 months from Iteration 1 to

VOLUME 10, 2022 83315

L. Cao: Estimating Efforts for Various Activities in Agile Software Development

TABLE 2. Descriptive statics of feature, bug fixes and refactoring tasks.

Iteration 46. To compare estimation accuracy across iter-
ations, task estimates were aggregated into iteration-level
estimates. The iteration-level MREs over 31 iterations
(iterations 14, 21, and 22 do not include complete data or
feature data) are provided in Figure 1a.

Considering that the aggregation may result in the loss of
significant information, we also examined the median MRE
and BRE of each iteration’s stories. Medians were used to
reduce the impact of ‘‘outliers.’’ Figures 1b and 1c show the
medians of story MRE and BRE for each iteration. These
figures indicate that even though iteration-level estimation is
more accurate than story-level estimation because of aggre-
gation, the effort estimations on both levels do not improve
over time.

To further check whether estimation accuracy improves
over time, we grouped the story-level estimation data into
three phases: early phase (Iterations 1–9; 106 stories); mid-
dle phase (Iterations 10–26; 99 stories); and late phase
(Iterations 27–34; 99 stories). A Kruskal-Wallis test on MRE
found no significant differences among the three phases. (The
p-value is .0599, and the H statistic is 5.63 [2, N = 304].)
Further comparisons of BRE, RE, and BREbias between
the three groups (early/middle, middle/late, and early/late)
show no significant differences either (Table 3). Thus, esti-
mation accuracy does not improve over time (i.e., H1 is not
supported).

TABLE 3. Estimation accuracy on early, middle, and late phases of
development.

While the data show that the estimation accuracy does
not improve overtime, our interviews with the developers
elicit surprising findings on their overconfidence and the gap
between reality and developers’ perceptions about learning.
Overconfidence in the accuracy of effort estimates’ typically
means that the developers have made unrealistic assessments
of the estimations’ underlying uncertainties [4]. Many devel-
opers believe that they have learned along theway and that the
experiences they have gained improve their estimates. One
developer emphasized the role of experience: ‘‘Experience is
the biggest factor.. . . As we had been working on this project

FIGURE 1. a. Iteration feature MRE overtime. b. Median MRE of feature
story overtime. c. Median BRE of feature story overtime.

for a while, and we had more agile experience and knew the
code base very well, we got very accurate [on estimation].’’

83316 VOLUME 10, 2022

I EEEAccess·

Number of tasks
Average size (hours)
SD
Median size (hours)

MRE

BRE

RE

BREbias

Feature

1282
4.5
5.5
3

p

0.1058

0.0625

0.8086

0.8375

Bug

377
4.3
5.5
2

Refactoring

313
3.2
3.7
2

H (2,304)

4.49

5.50

0.42

0.35

0.7

0.6

w 0.5 a:
~
C 0.4
0

·.;:::;
0.3 ro ,_

Qi
.:!= 0.2

0.1

0

0.7

0.6
w
a:
~ 0.5

~ o 0.4
Vl
C 0.3
.!!!
""C 0.2 Qi

~
0.1

1.4

1.3

1.2

1.1

w 1
ffi 0.9
> 0 0.8

0

• •
• • .. -

-•----- • • • ••• • • •• ••
•• • • • ••

• • • •
1 4 7 10 13 16 19 22 25 28 31

Iterations

(a)

•
• •

• -.--. .. ··•-·--••-• --•--•· • • • • ----•-----• •
•

1 4 7 10 13 16 19 22 25 28 31

Iterations

(b)

----·--------

-•-------•---
•

~ 0.7
C •
.!!! 0.6 . - • •
] 0.5 - • - - --- e e •••
~ 0.4 • • • •••

0.3 e --·--·. e
0.2 - --------"

0.1

0
---•--.------

1 4 7 10 13 16 19 22 25 28 31

Iterations

(c)

L. Cao: Estimating Efforts for Various Activities in Agile Software Development

Another developer expressed a similar view: ‘‘After several
iterations into the project, there was good understanding of
what could be accomplished. Experience with Scrum and
XP improved accuracy as time went by.. . . It took several
iterations to get good accuracy.’’

When asked about estimation challenges, developers
pointed out that the task’s unknowns make prior experience
irrelevant. As the developer explains: ‘‘How long will it take
to implement the features? Sometimes I don’t want to answer
this question because it is extremely difficult to estimate how
long it will take to implement a software feature. The problem
is that there are far toomany unknowns and [I] have noway to
extrapolate from previous experience. [For]) some features,
I can provide a number [of hours for implementing a feature],
and [for others], I have no idea.’’

B. HYPOTHESIS 2
Next, we compared bug fixing and feature development’s
estimation accuracies. The comparison was conducted at the
task level because most of the bug data were recorded only at
the task level. The data on bug fixes contained more missing
estimations (many were not estimated, and only the actual
effort data were available) and are scattered across iterations.
Altogether, 377 bug-fixing tasks were used for the analysis.

As the data are not normally distributed, we used theMann-
Whitney U test (Wilcoxon signed-rank test), which is more
robust than the t-test because it compares the sums of ranks.
Surprisingly, the results indicated no significant difference
between estimation accuracy in the bug fixes and feature
tasks. There were 377 bug-fixing tasks MRE (mean = 0.70,
median = 0.45, SD = 1.41) compared with 1,282 feature
tasks MRE (mean = 0.63, median = 0.40, SD = 1.46),
indicating no significant difference. The z-score was −1.21,
and the p-value was 0.23. Likewise, further comparisons of
BRE, RE and BREbias between feature tasks and bug-fixing
tasks found no significant difference (Table 4). Thus, the
estimation accuracy for bug fixing is not lower than feature
development (i.e., H2 is not supported).

TABLE 4. Feature and bug fix estimation accuracy (task level).

C. HYPOTHESIS 3
We then compared the estimation accuracies in refactoring
and feature development. The continuous refactoring efforts
were not recorded, and instead, the project recorded 84 refac-
toring stories (313 refactoring tasks) in 12 iterations dedicated
to refactoring.

At the task level, the Mann-Whitney U test found no sig-
nificant difference in MRE between the 313 refactoring tasks

(mean = 0.43, median = 0.43, SD = 1.53) and the 1,282
feature tasks (mean= 0.63, median= 0.40, SD= 1.46). The
z-score was -0.91, and the p-value was 0.45. Moreover, BREs
were not significantly different, but RE and BREbias were
significantly different between feature tasks and refactoring
tasks (i.e., the directions of estimation bias were opposite,
and refactoring was more overestimated). However, the effect
sizes were very small. A summary of all measures’ results is
presented in Table 5.

TABLE 5. Feature and refactor estimation accuracy (task level).

Considering that refactoring tasks were grouped as stories,
we also ran the Mann-Whitney test at the story level, and the
results were the same as the task-level results. No significant
difference in MRE (or BRE) was found between the 84 refac-
toring stories (mean = 0.71, median = 0.32, SD = 1.58) and
the 304 feature stories (mean = 0.48, median = 0.34, SD =
0.63). The z-score was −0.81, and the p-value was 0.42. The
RE and BREbias were significantly different, indicating that
refactoring was more overestimated. The effect size was 0.16
(small). A summary of the results was presented in Table 6.
Thus, the estimation accuracy for refactoring was not lower
than for feature development (i.e., H3 is not supported).

While the data showed that estimation accuracies for bug
fixings and refactoring were not lower than for feature devel-
opment, our interviews found that developers often perceive
estimations on feature tasks more accurately: ‘‘We should
spend more time on estimates of bugs. Our estimates of
features are more accurate. The team in general had a pretty
good feel for the estimate [of features], but not for the bugs,
particularly bugs that are not able to be reproduced, or those
that would require a lot of effort to trace.’’

TABLE 6. Feature and refactor estimation accuracy (story level).

D. HYPOTHESIS 4
We then compared the frequency of overestimates and under-
estimates in all development activities (feature, bug fixing,
and refactoring).

1) FEATURE DEVELOPMENT
At the task level, the frequencies of underestimates and over-
estimates of feature tasks are almost the same. Among the

VOLUME 10, 2022 83317

Mean Meaian p z Effect

Ft Rt Ft Rt score size
MRE 0.63 0.83 0.40 0.43 0.36 -0.91 0.023
BRE 0.93 1.02 a.so a.so 0.92 -0.10 0.0025
RE -0.29 -0.59 0 0 0.003 3.00 0.075
BREbias 0.01 -0.40 0 0 0.003 3.00 0.075

Ft= feature task (n = 1282), Rt= refactor task (n = 313)

Mean Median p z Effect size

Ft Bt Ft Bt score Mean Median p z Effect

Fs Rs Fs Rs score size

MRE 0.63 0.70 0.40 0.45 0.23 -1.21 0.03 MRE 0.48 0.71 0.34 0.32 0.42 -0.81 0.04

BRE 0.93 1.00 a.so a.so 0.40 -0.85 0.02 BRE 0.75 0.87 0.48 0.33 0.20 1.29 0.07

RE -0.29 -0.38 0.00 0.00 0.21 1.24 0.03 RE -0.05 -0.47 0.11 -0.02 0.0012 3.24 0.16

BREbias -0.01 -0.09 0 0 0.20 2.29 0.03 BREbias 0.23 -0.31 0.13 -0.02 0.0012 3.24 0.16

Ft= feature task (n = 1282), Bt = bug fix task (n = 377) Fs = feature story (n = 304), Rs= refactor story (n = 84)

L. Cao: Estimating Efforts for Various Activities in Agile Software Development

1,282 feature tasks, 456 were overestimated, while 453 were
underestimated (373 had zero RE; i.e., no bias). Next,
story-level data were compared. Considering that the story
data were aggregated from task-level data, we expected the
story-level to reveal no difference between overestimate and
underestimate frequency. However, the story-level data indi-
cated that underestimates were more frequent (171 stories)
than overestimates (100 stories). Through a careful examina-
tion of the data, we found that one reason for more frequent
underestimates at the story level was ‘‘scope creep,’’ in which
some tasks that are not initially identified emerge during
the implementation of the story. These tasks are marked as
‘‘non-initial tasks’’ (i.e., they are not initially identified in
the iteration planning). As a result, the story-level estimates
did not include estimates of these tasks. The estimated and
actual efforts of the newly emerged tasks were recorded after
they were identified and implemented. As a result, a story’s
actual effort included both the initially identified tasks and
newly emerged tasks, while a story’s estimated effort did not
include new tasks. This gap causes more underestimation at
the story level; thus, underestimation was more frequent than
overestimation at the story level for feature development.

2) BUG FIXING
The frequencies of underestimation and overestimation of
bug fixes were examined only at the task level. Among the
377 bug-fixing tasks, overestimation (151) wasmore frequent
than underestimation (125), with 101 bug-fixing tasks esti-
mated accurately (RE = 0). Thus, overestimation was more
frequent than underestimation at the task level for bug fixing.

3) REFACTORING
The frequencies of underestimation and overestimation of
refactoring were compared at both the task and story levels.
Among the 313 refactoring tasks, overestimation (129) was
more frequent than underestimation (91), with 93 refactoring
tasks estimated accurately (RE = 0). At the story level,
among the 84 refactoring stories, overestimation (42) was
more frequent than underestimation (31), with 11 stories esti-
mated accurately. Thus, overestimation was more frequent
than underestimation for refactoring.

To sum up, H4 was partially supported. Bug fixing and
refactoring were overestimated more frequently. For feature
tasks, the chances of underestimated or overestimated were
the same at the task level. At the story-level, features were
underestimated more frequently due to scope creep. This
explains why large tasks were underestimated more than
small tasks (Table 7).

E. HYPOTHESIS 5
Finally, we compared the magnitudes of error for overestima-
tion and underestimation in all development activities (feature
development, bug fixing, and refactoring). Considering that
this comparison is sensitive to the balance between the
weight on underestimation and overestimation, we used BRE
because MRE puts insufficient weight on underestimation.

TABLE 7. Frequency of overestimation and underestimation.

1) FEATURE DEVELOPMENT
At the task level, the Mann-Whitney U test between the
BRE of the 456 overestimates (mean = − 1.29, median =
−1.00, SD = 1.42) and 453 underestimates (mean = 1.32,
median = 1.00, SD = 1.64) found no significant difference
(p = 0.44, z-score = 0.77). The BRE at the story level was
similar to that of the task level, with the 100 overestimate
stories (mean = -0.81, median = − 0.50, SD = 1.00) and
171 underestimate stories (mean = 0.87, median = 0.50,
SD = 0.99) indicating no significant difference (p = 0.50,
z= 0.68). Thus, no difference existed between the magnitude
of errors for underestimation and overestimation for feature
development.

2) BUG FIXING
The Mann-Whitney U test found no significant difference
(p= 0.68, z-score= 0.42) between the BRE of overestimated
bug-fixing tasks (mean = −1.36, median = −1.00, SD =
1.46) and underestimated bug-fixing tasks (mean = 1.37,
median = 1.00, SD = 1.55). Furthermore, no difference was
found between the magnitude of errors for underestimation
and overestimation for bug fixing.

3) REFACTORING
At the task level, the Mann-Whitney U test found a signif-
icant difference (p = 0.001, z-score = 3.25, effect size =
0.22) between the BRE of overestimated refactoring tasks
(mean = -1,72, median = −1.00, SD = 2.06) and under-
estimated refactoring tasks (mean = 1.07, median = 0.75,
SD = 1.14). However, at the story level, the Mann-Whitney
U test found no significant difference between the BRE of
overestimated refactoring stories (mean = −1.19, median =
−0.45, SD = 1.99) and underestimated refactoring stories
(mean= 0.76, median = 0.5, SD = 1.02). The p value was
0.73, and the z-score was 0.35. Thus, the magnitude of error
for underestimation and overestimation for refactoring was
significantly different at the task level, but not at the story
level.

To sum up, for feature development and bug fixing, the
magnitude of estimation error for the overestimated and
underestimated tasks/stories was not significantly different.
Refactoring indicated different patterns: At the task level,
the overestimated refactoring tasks had a higher degree of
estimation error, while no difference existed at the story level
(Table 8). Thus, H5 was partially supported. Table 9 provides
a summary of the results of all hypotheses.

83318 VOLUME 10, 2022

Number of Number of
underestimations overestimations

Feature tasks 453 456
Feature stories 171 100
Bug fix tasks 125 151
Refactoring tasks 91 129
Refactoring stories 31 42

L. Cao: Estimating Efforts for Various Activities in Agile Software Development

TABLE 8. Bre of overestimation and underestimation.

TABLE 9. Summary of results.

VI. DISCUSSION
This study contributes to the research on effort estima-
tion in agile software development in multiple ways. First,
it examines the long-held assumption that agile software
development facilitates developers’ learning from short and
frequent feedback loops [16]. However, this study’s results
challenge this assumption. Our data indicate that the esti-
mation accuracy in agile software development does not
improve over time, even though timely feedback is provided
for each estimation. This finding corresponds with a previous
study’s results on non-agile projects [48], which found that
the uncertainty range was nearly identical throughout the
project, contradicting the conventional view of estimation
getting better as a project progresses.

This study supports the findings of a study on the lack of
learning from lessons-learned sessions in software develop-
ment [4]. In both software development and other contexts,
prior experience is unrelated to expert judgments’ [49] accu-
racy due to the lack of proper thinking and learning models.
One reason for learning failure in software development is
the difficulty of transferring experience from one context to
another [50]. In situations with high uncertainty and unstable
task relations, feedback is not sufficient for learning [51].
Some researchers [49] have suggested that outcome feedback
may even be detrimental to performance. While estimation
accuracy in agile development is not improved through learn-
ing from experience, this implies that other factors’ impact on

the estimation process is significant. Thus, future research is
needed to examine other factors, such as learning structures
and formal training in estimations.

While this study’s goal does not include comparing esti-
mation accuracy with that of other studies, our data reveal
some insights into effort estimation accuracy at the task
level, including that accuracy levels differ from developers’
perceptions (e.g., many developers believe that their estimates
are accurate with less than 5% error) [44]. A recent review
[9] reports that the MREs of studies using expert-based esti-
mation methods are 12% to 33%, but both the MMREs and
PRED (25) of feature tasks, bug fixing, and refactors in this
study are much higher (Table 10).

TABLE 10. Accuracy of effort estimation (task level).

Prior research has suggested reasons for inaccurate esti-
mation, including project management-related issues, team-
related issues, and task-related issues [44]. However, many of
these issues are not present in the focal project. For example,
during the 21-month development period, the team was quite
stable, with a low turnover rate. While some members were
more experienced than others, all members were competent
and helped each other. This project’s uniqueness comes from
the fact that the product was an agile tracking tool, so the
teams were committed to following agile practices. They also
diligently tracked their estimation and actual efforts, while on
most other agile teams, extensive tracking might be viewed as
work overload. The agile community believes that estimation
is easier for small tasks, but our data indicate that estimates
for very small tasks are not in an acceptable accuracy range
(e.g., with PRED [25] > 75%).
This aligns with the recent discussion on the value of

estimation in agile software development. A #NoEstimate
movement has been evolving since 2012, with proponents
arguing that estimates of backlog items do not directly add
value to the development process and merely put more pres-
sure on teams. This movement calls for developers to reduce
the estimation process or even eliminate it if possible [52].
One alternativewould be to use the average size of user stories
from historical data for planning.

The second contribution from this study concerns the
insights revealed on the estimation of various development
activities. The study, to the best of our knowledge, is the
first to examine various development activities’ estimation
accuracy in agile software development with empirical data—
specifically feature development, bug fixing, and refactoring.
Our analysis indicates that no difference exists in estimation
errors between feature tasks and bug/refactoring tasks at the
iteration planning level. This is quite surprising, because peo-
ple usually think that bug fixes and refactoring tasks involve

VOLUME 10, 2022 83319

Mean Median p z
underest overest underest overest score

Ft 1.32 -1.29 1.00 -1.00 0.44 0.77
Fs 0.87 -0.81 0.50 -1.00 0.50 -0.68
Bt 1.37 -1.36 1.00 -1.00 0.68 0.42
Rt 1.07 -1.72 0.75 -1.00 0.001 3.25
Rs 0.76 -1.19 0.5 -0.45 0.73 0.35

Ft= feature task, Fs = feature story, Bt = bug fix task, Rt= refactoring
task, Rs = refactoring story

Hl Not supported
Estimation accuracy does not improve overtime

H2 Not supported

No difference exists between estimation accuracy
for bug-fixing and feature development.

H3 Not supported

H4

HS

No difference exists between estimation accuracy
for refactoring and feature development

Partially supported

The frequency of overestimation is higher than the
frequency of underestimation for bug-fixing,

refactoring, and story-level feature tasks (No
difference for task-level feature task)

Partially supported
No difference exists between the magnitudes of

errors for underestimation and overestimation for
feature development, bug-fixing, and story-level

refactoring (higher magnitude of errors for the

task-level refactoring).

N

MMRE

PRED (25}

Feature Task

1282
0.63
0.37

Bug Task

377
0.70

0.35

Refactoring Task

313

0.83
0.41

L. Cao: Estimating Efforts for Various Activities in Agile Software Development

more uncertainties, as they require both software comprehen-
sion and modification [53].

This finding may be attributed to the early identification
and prompt fixing of bugs in agile software development.
Bugs detected during a sprint are usually analyzed imme-
diately, and a course of action is determined. One course
of action is to try to fix the bug within the current sprint;
otherwise, a work item related to the affected user stories
is created and placed in the product backlog, where it is
scheduled to be completed during the next sprint or any other
future sprint [6].

In agile software development, refactoring is an important
activity that is performed continuously to improve software
design and quality. Our focal project did does not record the
continuous refactoring effort. The data from 12 centralized
refactoring iterations indicate that, compared with feature
development, refactoring is overestimated more frequently.
One possible reason is technical debt, which is a metaphor
used to discuss the consequences of sub-optimal design deci-
sions taken when short-term goals are prioritized [54]. These
refactoring tasks are from dedicated iterations (e.g., before
a release) that have already had the technical debt when
performed. Realizing the technical debt, developers may add
extra buffers for the debt interests when they estimate the
needed effort.

This study also contributes to our knowledge about over-
estimation and underestimation patterns in agile software
development. Empirical studies on software development
frequently report effort and schedule overruns [5], [41]. A sur-
vey of agile effort estimation studies [43], [44] reported
that the tendency to underestimate effort is greater than
the tendency to overestimate. However, our data indicate
that estimation tendencies are different for different levels
of data aggregation and for different development activi-
ties (feature development, bug fixing, and refactoring). For
example, the story-level estimates of feature development
have more underestimates than overestimates due to scope
creep, but at the task level, no difference exists between
underestimation and overestimation frequency. This explains
why large tasks are underestimated more often than small
tasks. Another interesting finding is that bug fixes (task level)
and refactoring (both task and story levels) are overestimated
more frequently. A potential explanation is that developers
add more buffers for software comprehension [53] before
making changes to the source code.

VII. LIMITATIONS AND FUTURE RESEARCH
We identified three limitations in this study. First, our data
were collected from a single project with 15 developers,
which may limit our results’ generalizability. Second. the
number of variables included in this study was limited. Data
on factors that may influence estimation changes) were not
available. Third, our data were recorded only at the task level.

Future research could investigate other agile software
development projects to verify the findings. Effort estimation
using various techniques, such as planning poker games and

story points, should be studied. Furthermore, future research
is needed to examine the impact of other factors on learning,
such as learning structures and formal training in estimations.
Effort estimates made at the story and release planning levels
should be examined.

VIII. CONCLUSION
This study investigates effort estimation in various develop-
ment activities, including feature development, bug fixing,
and refactoring in agile software development based on data
collected from a large agile project. The results indicate
that estimation of agile development does not improve over
time, as claimed in the literature. Our data also indicate that
no difference exists in the magnitude of estimation errors
between feature tasks and bug/refactoring tasks, while bug
fixes and refactoring tasks are overestimated more frequently
than feature tasks. This study builds on research concerning
software estimation in agile software development by inves-
tigating estimations across time and different development
activities.

REFERENCES
[1] T. DeMarco, Controlling Software Projects: Management, Measurement

and Estimation. New York, NY, USA: Yourdon Press, 1982.
[2] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and T.Menzies,

‘‘A deep learning model for estimating story points,’’ IEEE Trans. Softw.
Eng., vol. 45, no. 7, pp. 637–656, Jul. 2019.

[3] M. Jorgensen, ‘‘What we do and don’t know about software development
effort estimation,’’ IEEE Softw., vol. 31, no. 2, pp. 37–40, Mar. 2014.

[4] M. Jørgensen and T.M. Gruschke, ‘‘The impact of lessons-learned sessions
on effort estimation and uncertainty assessments,’’ IEEE Trans. Softw.
Eng., vol. 35, no. 3, pp. 368–383, Jan. 2009.

[5] B. Flyvbjerg and A. Budzier, ‘‘Why your IT project may be riskier than
you think,’’ Harv. Bus. Rev., vol. 89, pp. 23–25, Sep. 2011.

[6] L. Cao, B. Ramesh, and T. Abdel-Hamid, ‘‘Modeling dynamics in agile
software development,’’ ACM Trans. Manage. Inf. Syst., vol. 1, no. 1,
pp. 1–26, 2010.

[7] L. Cao, ‘‘Estimating agile software project effort: An empirical study,’’ in
Proc. Americas’ Conf. Inf. Syst., Toronto, ON, Canada, 2008, pp. 1–11.

[8] E. Dantas, M. Perkusich, E. Dilorenzo, D. F. S. Santos, H. Almeida, and
A. Perkusich, ‘‘Effort estimation in agile software development: An
updated review,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 28, no. 11n12,
pp. 1811–1831, Nov. 2018.

[9] M. Fernandez-Diego, E. R. Mendez, F. Gonzalez-Ladron-De-Guevara,
S. Abrahao, and E. Insfran, ‘‘An update on effort estimation in agile soft-
ware development: A systematic literature review,’’ IEEE Access, vol. 8,
pp. 166768–166800, 2020.

[10] M. Adnan and M. Afzal, ‘‘Ontology based multiagent effort estimation
system for scrum agile method,’’ IEEE Access, vol. 5, pp. 25993–26005,
2017.

[11] M. Hamid, F. Zeshan, A. Ahmad, F. Ahmad, M. A. Hamza, Z. A. Khan,
S. Munawar, and H. Aljuaid, ‘‘An intelligent recommender and decision
support system (IRDSS) for effective management of software projects,’’
IEEE Access, vol. 8, pp. 140752–140766, 2020.

[12] M. Cohn, Agile Estimating and Planning. London, U.K.: Pearson, 2005.
[13] H. D. P. De Carvalho, R. Fagundes, and W. Santos, ‘‘Extreme learning

machine applied to software development effort estimation,’’ IEEE Access,
vol. 9, pp. 92676–92687, 2021.

[14] M. S. Khan, F. Jabeen, S. Ghouzali, Z. Rehman, S. Naz, and W. Abdul,
‘‘Metaheuristic algorithms in optimizing deep neural network model for
software effort estimation,’’ IEEE Access, vol. 9, pp. 60309–60327, 2021.

[15] N. Rankovic, D. Rankovic, M. Ivanovic, and L. Lazic, ‘‘A new approach
to software effort estimation using different artificial neural network
architectures and Taguchi orthogonal arrays,’’ IEEE Access, vol. 9,
pp. 26926–26936, 2021.

[16] L. Cao and B. Ramesh, ‘‘Agile software development: Ad hoc practices or
sound principles?’’ IT Prof., vol. 9, no. 2, pp. 41–47, Mar. 2007.

83320 VOLUME 10, 2022

L. Cao: Estimating Efforts for Various Activities in Agile Software Development

[17] K. Beck, Extreme Programming Explained: Embrace Change. Boston,
MA, USA: Addison-Wesley, 2000.

[18] J. Hill, L. C. Thomas, andD. E. Allen, ‘‘Experts’ estimates of task durations
in software development projects,’’ Int. J. Project Manage., vol. 18, no. 1,
pp. 13–21, Feb. 2000.

[19] M. C. Ohlsson, C. Wohlin, and B. Regnell, ‘‘A project effort estimation
study,’’ Inf. Softw. Technol., vol. 40, no. 14, pp. 831–839, Dec. 1998.

[20] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, ‘‘How long will it
take to fix this bug?’’ in Proc. 4th Int. Workshop Mining Softw. Reposito-
ries, Minneapolis, MN, USA, May 2007, p. 1.

[21] M. Hamill and K. Goseva-Popstojanova, ‘‘Analyzing and predicting effort
associated with finding and fixing software faults,’’ Inf. Softw. Technol.,
vol. 87, pp. 1–18, Jul. 2017.

[22] M. Jorgensen and M. Shepperd, ‘‘A systematic review of software devel-
opment cost estimation studies,’’ IEEE Trans. Softw. Eng., vol. 33, no. 1,
pp. 33–53, Jan. 2007.

[23] M. Jørgensen, ‘‘A review of studies on expert estimation of software
development effort,’’ J. Syst. Softw., vol. 70, nos. 1–2, pp. 37–60, 2004.

[24] T. Mukhopadhyay, S. S. Vicinanza, and M. J. Prietula, ‘‘Examining the
feasibility of a case-based reasoning model for software effort estimation,’’
MIS Quart., vol. 16, no. 1, pp. 155–171, 1992.

[25] M. Shepperd and C. Schofield, ‘‘Estimating software project effort using
analogies,’’ IEEE Trans. Softw. Eng., vol. 23, no. 11, pp. 736–743,
Nov. 1997.

[26] M. Usman, E. Mendes, F. Weidt, and R. Britto, ‘‘Effort estimation in agile
software development: A systematic literature review,’’ in Proc. 10th Int.
Conf. Predictive Models Softw. Eng., Turin, Italy, Sep. 2014, pp. 82–91.

[27] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, ‘‘Systematic literature review of
machine learning based software development effort estimation models,’’
Inf. Softw. Technol., vol. 54, no. 1, pp. 41–59, 2012.

[28] B. Ramesh, L. Cao, and R. Baskerville, ‘‘Agile requirements engineering
practices and challenges: An empirical study,’’ Inf. Syst. J., vol. 20, no. 5,
pp. 449–480, Nov. 2007.

[29] S. Bilgaiyan, S. Sagnika, S. Mishra, and M. Das, ‘‘A systematic review
on software cost estimation in agile software development,’’ J. Eng. Sci.
Technol. Rev., vol. 10, no. 4, pp. 1–14, 2017.

[30] T. Schweighofer, A. Kline, L. Pavlic, and M. H. ko, ‘‘How is effort
estimated in agile software development projects?’’ in Proc. Workshop
Softw. Quality Anal., Monit., Improvement, Appl., Budapest, Hungary,
2016, pp. 79–110.

[31] I. Myrtveit, E. Stensrud, and M. Shepperd, ‘‘Reliability and validity in
comparative studies of software prediction models,’’ IEEE Trans. Softw.
Eng., vol. 31, no. 5, pp. 380–391, May 2005.

[32] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki, ‘‘Robust regression
for developing software estimation models,’’ J. Syst. Softw., vol. 27, no. 1,
pp. 3–16, Oct. 1994.

[33] M. Jørgensen, T. Halkjelsvik, and K. Liestøl, ‘‘When should we (not) use
the mean magnitude of relative error (MMRE) as an error measure in
software development effort estimation?’’ Inf. Softw. Technol., vol. 143,
Mar. 2022, Art. no. 106784.

[34] K. Molokken-Ostvold and M. Jorgensen, ‘‘A comparison of software
project overruns–flexible versus sequential development models,’’ IEEE
Trans. Softw. Eng., vol. 31, no. 9, pp. 754–766, Sep. 2005.

[35] K. Beck and M. Fowler, Planning Extreme Programming. New York, NY,
USA: Addison-Wesley, 2001.

[36] M. Jørgensen, ‘‘A review of studies on expert estimation of software
development effort,’’ J. Syst. Softw., vol. 70, pp. 37–60, Feb. 2002.

[37] M. Jørgensen and D. I. K. Sjøberg, ‘‘Impact of experience on mainte-
nance skills,’’ J. Softw. Maintenance Evol., Res. Pract., vol. 14, no. 2,
pp. 123–146, Mar. 2002.

[38] P. Abrahamsson and J. Koskela, ‘‘Extreme programming: A survey of
empirical data from a controlled case study,’’ in Proc. Int. Symp. Empirical
Softw. Eng., 2004, pp. 73–82.

[39] M. Kim, T. Zimmermann, and N. Nagappan, ‘‘An empirical study of
RefactoringChallenges and benefits at Microsoft,’’ IEEE Trans. Softw.
Eng., vol. 40, no. 7, pp. 633–649, Jul. 2014.

[40] M. F. Zibran and C. K. Roy, ‘‘Conflict-optimal scheduling of prioritised
code clone refactoring,’’ IET Softw., vol. 7, no. 3, pp. 167–186, Jun. 2013.

[41] K. Molokken and M. Jørgensen, ‘‘A review of surveys on software effort
estimation,’’ in Proc. Int. Symp. Empirical Softw. Eng., Rome, Italy,
Sep. 2003, pp. 223–230.

[42] M. Bloch, S. Blumberg, and J. Laartz, ‘‘Delivering large-scale it projects
on time, on budget, and on value,’’ McKinsey Quart., vol. 27, pp. 2–7,
Jun. 2012.

[43] M. Jorgensen and K.Molokken-Ostvold, ‘‘Reasons for software effort esti-
mation error: Impact of respondent role, information collection approach,
and data analysis method,’’ IEEE Trans. Softw. Eng., vol. 30, no. 12,
pp. 993–1007, Dec. 2004.

[44] M. Usman, ‘‘Improving expert estimation of software development effort
in agile contexts,’’ Ph.D. dissertation, Dept. Softw. Eng., Blekinge Inst.
Technol., Karlskrona, Sweden, 2018.

[45] B. W. Boehm, Software Engineering Economics. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1981.

[46] N. Mittas and L. Angelis, ‘‘Overestimation and underestimation of soft-
ware cost models: Evaluation by visualization,’’ in Proc. 39th Euromicro
Conf. Softw. Eng. Adv. Appl., Santander, Spain, Sep. 2013, pp. 317–324.

[47] T. Halkjelsvik andM. Jørgensen, ‘‘From origami to software development:
A review of studies on judgment-based predictions of performance time,’’
Psychol. Bull., vol. 138, no. 2, pp. 238–271, 2012.

[48] T. Little, ‘‘Schedule estimation and uncertainty surrounding the cone of
uncertainty,’’ IEEE Softw., vol. 23, no. 3, pp. 48–54, May 2006.

[49] K. R. Hammond,Human Judgement and Social Policy: Irreducible Uncer-
tainty, Inevitable Error, Unavoidable Injustice. New York, NY, USA:
Oxford Univ. Press, 1996.

[50] K. Lyytinen and D. Robey, ‘‘Learning failure in information systems
development,’’ Inf. Syst. J., vol. 9, no. 2, pp. 85–101, Apr. 1999.

[51] N. Schmitt, B. W. Coyle, and L. King, ‘‘Feedback and task predictabil-
ity as determinants of performance in multiple cue probability learning
tasks,’’ Organizational Behav. Hum. Perform., vol. 16, no. 2, pp. 388–402,
Aug. 1976.

[52] V. Duarte, ‘‘No estimates: How to measure project progress without esti-
mating,’’ Create Space Independent Publishing Platform, Scotts Valley,
CA, USA, Tech. Rep., 2015.

[53] T. M. Shaft and I. Vessey, ‘‘The role of cognitive fit in the relationship
between software comprehension and modification,’’MIS Quart., vol. 30,
pp. 29–55, Mar. 2006.

[54] A. Martini, J. Bosch, and M. Chaudron, ‘‘Investigating architectural tech-
nical debt accumulation and refactoring over time: A multiple-case study,’’
Inf. Softw. Technol., vol. 67, pp. 237–253, Nov. 2015.

LAN CAO received the Ph.D. degree in computer information systems from
Georgia State University, in 2005. She is currently a Professor in information
technologies and decision sciences with Old Dominion University, Norfolk,
VA, USA. Her work appears in many journals, including Information Sys-
tems Research, Journal of Management of Information Systems, Journal of
Association of IS, European Journal of IS, Information Systems Journal,
Decision Support Systems, ACM Transactions on MIS, and IEEE Software
among others. Her research interests include agile software development and
software process simulation and modeling.

VOLUME 10, 2022 83321

IEEEAccess·

•••

	Estimating Efforts for Various Activities in Agile Software Development: An Empirical Study
	Original Publication Citation

	Estimating Efforts for Various Activities in Agile Software Development: An Empirical Study

