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markings of the triggering mote position, as well as the velocity independently determined from 

known distance and time stamp measurements. We conclude that radar measurements determine the 

range and velocity with good accuracy in all experiments. There is an increased error in the case of the 

lowest velocity value of 0.4 m/s, which is attributed to the actual variation and of the train movement 

during slower lower velocities.  

3.3. Target Tracking 

We tested the integrated wireless Doppler radar system to track a target moving within the field of 

view of the radar transceiver. We checked whether the radar can track the changes in range and 

velocity dynamically. In a specific experiment, we started to track the target starting at a distance of 

2.3 m from the receiver. The velocity of the train was 0.74 m/s, i.e., the max velocity corresponding to 

dial position D = 100. We captured four snapshots while the train was moving at the given velocity 

toward the radar mote.  

Figure 7. Range and velocity intensity plots for target tracking experiment: (a) Capture 1; 

(b) Capture 2; (c) Capture 3; (d) Capture 4. 
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The results are illustrated on the range-velocity intensity plots in Figure 7. Based on the Doppler 

signatures, the range and velocity has been estimated, see Table 5. Except for the first capture, the train 

is moving toward the radar at a velocity close to the expected constant value (0.75 m/s). The range is 

in general decreases at a constant rate, except for the first capture. The velocity in capture 1 is lower 

than the other snapshots. This discrepancy is attributed to the fact that during the first capture the train 

was moving at the curved section of the track, and had lower speed. These preliminary results of 

tracking are encouraging and further elaborate tracking experiments are underway. 

Table 5. Range and velocity estimation during tracking experiment. 

Velocity (m/s) Range (m) 

0.65 2.32 
0.75 1.90 
0.75 1.79 
0.75 1.67 

4. Integration of Multi-Sensory Information for Target Identification 

4.1. Classification Algorithms 

Multiple Signal Classification (MUSIC) algorithm is used for spectral density estimation of all 

sensory modalities to allow for a unified data processing and data integration.  

MUSIC estimates the eigenvectors of the sample correlation matrix and it uses the pseudo-spectrum 

estimate of the mean corrected input signal for each sensor at normalized frequencies at which the 

pseudo spectrum is evaluated [11–13]. After applying the MUSIC algorithm for signal processing, we 

classify the estimated power spectra. 

To demonstrate the classification capability of our system, we use Weka [14] as a classification tool 

on the collected data. We run our data through three classifiers: Support Vector Machines, Multi-Layer 

Perceptron, and Random Forest:  

 Support Vector Machines (SVMs) are a set of supervised learning methods used for 

classification and regression analysis.  

 Multi-Layer Perceptrons (MLPs) are feed-forward neural networks that are trained with the 

standard back propagation algorithm. MLPs are widely used for pattern classification.  

 Random forest is an ensemble classifier. It consists of many decision trees and outputs the 

classification that has the most votes over all the trees. It maintains good accuracy when 

portion of data is missing. However, it is prone to over fitting in some cases.  

4.2. Results of Classification Using Vibration, Acoustic and Radar Data 

In this section, results of classification are presented using vibration, acoustic and radar data. We 

process power spectral densities of sensor data obtained by MUSIC algorithm using normalization and 

Principal Component (PC) filters in Weka software package [14]. We compared three classifiers: 

Random Forest, MLP and SVM. Weka produces a number of metrics for evaluating the performance 

of the classifiers used. The “Correctly Classified” metric is self-explanatory. The ROC curve is a plot 
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of the true positive rate against the false positive rate for the different possible cut points of a 

diagnostic test. It shows the tradeoff between sensitivity and specificity. The area under the curve 

(ROC area) is a measure of test accuracy. Kappa statistics indicate whether predictions and actual 

classes are correlated. 

In Table 6, the performance of the acceleration (vibration) sensor is presented. From Table 6 it is 

seen that for all three experiments the classifiers were able to distinguish with good accuracy between 

different trains, different speeds, as well as between single train or a train with multiple railcars. This 

conclusion is true with the exception of SVM for the multiple cars experiment, where only 60% 

classification accuracy is obtained with SVM. The observed degradation of the performance is most 

likely due to the small data set being used (40 experiments). The ROC Area shows that in general there 

is high test accuracy for vibration data. Kappa statistic shows that the predictions provided by vibration 

data are stable, with the exception of SVM for multiple cart experiments. 

Table 6. Classification results using vibration data. 

Classes 
Number 
of Runs 

Classifier 
Correctly 

Classified (%) 
ROC 
Area 

Kappa 
Statistics 

Train A 
Train B 

[0.56 m/s] 
240 

Random Forest 92.5 0.99 0.85 

MLP 97.5 1.00 0.95 

SVM 93.6 0.93 0.96 

Three 
velocities 

1,200 

Random Forest 91.6 0.98 0.88 

MLP 87.6 0.96 0.82 

SVM 92.6 0.94 0.89 

Multiple 
Railcars 

40 

Random Forest 92.5 0.98 0.85 

MLP 97.5 0.98 0.95 

SVM 60.0 0.60 0.20 

 

We present the results of acoustic classification in Table 7. Two observations can be made from this 

Table. First, we can successfully classify two different trains when they are moving, as the trains 

create different acoustic signals. Second, we can also classify different speeds of the moving trains. 

The ROC Area and Kappa Statistics also support these findings.  

Table 7. Classification results using acoustic data. 

Classes 
Number 
of Runs 

Classifier 
Correctly 

Classified (%) 
ROC 
Area 

Kappa 
Statistics 

Trains 
A and B 

240 

Random Forest 94.1 0.99 0.88 

MLP 96.7 0.99 0.93 

SVM 97.1 0.97 0.94 

Three 
Velocities 

920 

Random Forest 80.0 0.91 0.70 

MLP 80.6 0.92 0.71 

SVM 85.7 0.89 0.79 

 

Vibration or acoustic data do not allow us to differentiate among different reflectors, as those 

signals are not influenced by electromagnetic properties of the target. For that classification, we can 
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use radar data to complement other sensor modalities. We have obtained radar data using three 

different configurations, in which the target train moved with reflectors of different shape and material. 

For each of the three configurations, 640 runs were used for classification purposes.  

The results with radar data are presented in Table 8. In the first configuration, we used metal and 

paper reflectors of the tetrahedron shape to test if the radar can differentiate between different types of 

material. For this case, MLP produced the best classification result among the three classifiers. By 

applying MLP on the radar data, we were able to classify metal and paper reflectors correctly in 

87.66% of the runs. For the second configuration, we changed the reflectors to a rectangular shape 

made of metal or plastic. Again MLP produced the highest classification accuracy (81.06%). For the 

last configuration, we tried to classify between different shapes of the reflectors, so we selected 

tetrahedron and rectangular shape reflectors, both made of metal. MLP still produced the best 

classification result (82.2%). In summary, we are successful in classifying reflectors made of different 

material as well as two shapes of the metal reflectors. A more in-depth study of the radar’s capability 

in classifying different types of material can be found in [6]. 

Table 8. Classification results using radar data. 

Profile 
Number 
of Runs 

Classifier 
Correctly 

Classified (%) 
ROC 
Area 

Kappa 
Statistics 

Tetrahedron: 
Metal—Paper 

640 

Random Forest 85.2 0.91 0.70 

MLP 87.7 0.93 0.75 

SVM 84.1 0.84 0.68 

Rectangular: 
Metal—Plastic 

640 

Random Forest 80.1 0.89 0.60 

MLP 81.1 0.87 0.62 

SVM 80.0 0.80 0.60 

Metal: 
Tetrahedron— 

Rectangular 
640 

Random Forest 74.2 0.82 0.50 

MLP 82.2 0.86 0.64 

SVM 71.6 0.71 0.43 

5. Conclusions and Future Work 

In this work we have developed an experimental methodology for a distributed multi-modal system 

for surveillance and tracking using radar and supplementary sensor data. Our research goal is to 

develop a prototype sensor network using commercial off-the-shelf components and to provide 

innovative solutions for detecting, tracking and classifying different targets and events under 

conditions with high noise and clutter [15]. Our distributed system supports a pervasive sensor 

network approach and it consists of a suite of radar transceivers, supplemented with acoustic, 

vibration, and light sensors. Note the results presented in this work show the basic capabilities of 

different sensor modalities in an integrated wireless network platform. The experiments with our low-

cost sensors show the feasibility of detecting, tracking and classifying different types of targets. More 

specifically, with the integrated sensor network we are able to differentiate between the same model 

trains mounted with different reflectors (radar), two different model trains (vibration and acoustic), as 

well as the same model train with different loads (vibration). The major results of our studies are 

summarized as follows:  
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1. The introduced wireless radar sensor detects the range and velocity of targets with good 

precision, as confirmed by cross-validation measurements.  

2. Radar transceivers, in conjunction with vibration and acoustic sensors, can be used effectively 

to classify different types of objects. The radar can classify various types of material properties 

and shapes, while the acoustic and vibration sensors can differentiate among objects of 

different weight and movement characteristics. Acoustic and vibration sensors can indicate an 

approaching target even when it is not within the field of view of the radar or optical sensors. 

3. Integration of radar sensors with a range of wireless sensor motes is an innovative step toward 

building robust decision support based on a pervasive sensor network for surveillance and 

tracking in various practical scenarios. 

It is important future task to explore scenarios when the multi-modal aspects of the sensor system is 

properly harnessed [16]. In order to improve the portability and autonomy of our system, we are 

currently testing our radar-motes with on-board power and signal generation chips. In future research, 

we plan to experiment with more complex radar tasks and advance the described sensor fusion and 

target identification, as well as we will investigate the problem of tracking multiple objects. 
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