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ABSTRACT 

EFFECTS OF 11 YEARS OF C02 ENRICHMENT ON ROOT BIOMASS AND 
SPATIAL DISTRIBUTION IN A FLORIDA SCRUB-OAK ECOSYSTEM 

Rachel Eilenfield Schroeder 
Old Dominion University, 2011 

Director: Dr. Frank P. Day 

A Florida (USA) scrub-oak ecosystem was exposed to elevated atmospheric CO2 

in open-top chambers from 1996-2007. Minirhizotrons and ground-penetrating radar 

(GPR) were used to measure fine root (< 2 mm diameter) and coarse root (> 5 mm 

diameter) biomass, respectively. After 11 years of CO2 enrichment, there was a trend of 

greater total root biomass under elevated CO2. Fine root biomass exhibited a pattern of 

recovery and steady state throughout the study, with significant CO2 stimulation observed 

only after disturbance. Greater root biomass under elevated CO2 during recovery periods 

could result in greater carbon inputs belowground, alteration of the soil carbon cycle, and 

faster ecosystem recovery. At the end of the study, a greater proportion of fine root 

biomass was found deeper in the soil in plots exposed to elevated CO2. The shift of 

biomass deeper in the soil and pattern of recovery and steady state suggest a limit on the 

soils' capacity to support fine roots. The dominant plants were not limited by water or 

nutrients, indicating that root responses to CO2 enrichment were likely constrained by 

soil resource space. 

At the end of the study in May 2007, all aboveground vegetation was harvested 

from the study plots. One month after harvest, neither fine root length density (RLD) nor 

biomass showed a significant decrease from pre-harvest levels. Ten months after harvest, 

fine root biomass increased more in plots formerly exposed to elevated CO2 than in those 



exposed to ambient CO2, suggesting a CO2 "legacy" effect on fine root growth. The 

effects of complete aboveground vegetation removal on fine roots were different from 

those observed after natural disturbances such as fires and hurricanes. 

After the study plots were cleared of aboveground vegetation, they were scanned 

intensively with GPR in order to create 3-dimensional images of coarse root spatial 

distribution. Top-down views of root horizontal distribution (or root "cover") were 

quantified using pixel counts; no significant difference was found between CO2 

treatments. Belowground plant structures provide a critical carbon reservoir essential for 

plant recovery after disturbance in this natural ecosystem. High belowground biomass 

was revealed with soil cores, pit excavations, minirhizotrons, and GPR imaging. 

Minirhizotrons and GPR are fast and effective methods for collecting data on 

belowground plant structures without having to excavate the root system, which is 

essential in studies carried out over multiple years where nondestructive sampling 

methods are necessary. 
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CHAPTER 1 

INTRODUCTION 

Background 

Atmospheric carbon dioxide (CO2) concentrations are increasing due to human 

activities, and this will have a direct effect on plant growth as more CO2 is available for 

photosynthesis. The overall effects on plant growth will depend on many factors, such as 

whether other necessary resources are available (i.e. light, water, nutrients, space). If 

photosynthesis is stimulated by elevated CO2, plants may respond by allocating more 

biomass to roots in order to acquire additional water and nutrients to support growth. 

Excess photosynthate may also be stored belowground in roots and other structures, 

providing an important sink for increasing atmospheric carbon. 

This research was conducted in a natural scrub-oak ecosystem on Merritt Island, 

Florida to investigate the response of plants in this ecosystem to increasing atmospheric 

CO2 and to explore the use of nondestructive methods for measuring roots. Roots are an 

important component of this ecosystem because the dominant scrub-oak species have 

high belowground biomass. Coarse roots, rhizomes and lignotubers contain carbohydrate 

reserves and bud banks that allow the plants to resprout after fire, which is a frequent 

ecosystem disturbance. 

Atmospheric CO2 Concentrations 

CO2 concentrations in the atmosphere remained relatively stable in the range of 

275-284 ppm (parts per million) for at least a thousand years prior to the Industrial 

The journal model for this dissertation is Ecology. 



Revolution (Etheridge et al. 1996). Since the 1700's, industrialization and rapid human 

population growth resulted in increased CO2 emissions (Neftel et al. 1985) from 

deforestation and fossil fuel burning. Current concentrations are higher than at any time 

during the past 800,000 years (Liithi et al. 2008) and possibly the past 23 million years 

(Pearson and Palmer 2000). The longest continuous direct measurements of atmospheric 

CO2 have been made at Mauna Loa Observatory in Hawaii since 1958 (Fig. 1). CO2 

concentrations measured at Mauna Loa increased from 316 ppm in 1959 to 385 ppm in 

2008, representing an average annual increase of 1.4 ppm (Keeling et al. 2009). 

FIG. 1. Atmospheric CO2 concentrations at Mauna Loa, Hawaii from 1958 to 2008 

(Keeling et al. 2009). This data series is known as the Keeling Curve. 



The mean global CO2 concentration for December 2010 was 390 ppm, measured 

from a globally-distributed network of sampling sites (Tans 2011). Each year the CO2 

concentration peaks in May and is at its lowest point in October (Fig. 2, Tans 2011), 

demonstrating an annual cycle that is controlled by the northern hemisphere growing 

season of terrestrial plants. The lowest annual CO2 concentrations correspond to the time 

of year when there is the most photosynthesis, resulting in a distinctive saw-tooth pattern 

in CO2 records. 

RECENT GLOBAL MONTHLY MEAN C02 

2006 2007 2008 2009 2010 2011 
YEAR 

FIG. 2. Mean global monthly CO2 concentrations averaged over marine surface sites 

from 1996-2010 (Tans 2011). The dashed line with diamond symbols represents data 

points for each monthly mean, while the solid line with square symbols represents the 

same data after correction for seasonal variation. 
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CO2 is important because it is the second most abundant "greenhouse gas" (after 

water vapor) and is highly effective at absorbing thermal radiation from the Earth's 

surface, which results in warming of the lower atmosphere. Natural sources of CO2 

include volcanoes, combustion of organic matter, microbial decomposition, and cellular 

respiration. Anthropogenic sources of CO2 include the use of fossil fuels for 

transportation and power generation, deforestation and decay of plant material, cement 

production, and biomass burning. Emissions from fossil fuel burning for energy use, 

which is the largest source of anthropogenic CO2, are expected to increase 40-110% 

between the years 2000 and 2030 (IPCC 2007). 

Effects of Increasing CO 2 on Plants 

Increasing atmospheric CO2 may stimulate growth in plants that utilize the C3 

photosynthetic pathway of carbon fixation, which is the photosynthetic system found in 

most terrestrial plants including trees and many crops. The primary plant responses to 

elevated CO2 concentrations are increased photosynthesis and reduced stomatal 

conductance (Ainsworth and Rogers 2007). Additionally, plants grown under elevated 

C02 may have increased resource use efficiency (Drake et al. 1997, Leakey et al. 2009). 

The overall effect of these primary responses is often an increase in plant biomass 

and productivity. In a meta-analysis of more than 500 studies on trees grown in chambers 

or greenhouses, net CO2 assimilation and total biomass were shown to significantly 

increase at twice-ambient CO2 regardless of growth conditions (Curtis and Wang 1998). 

In intact forests under Free-Air CO2 enrichment (FACE), net primary productivity was 

stimulated by 23% across four experimental sites with a broad range of species 
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characteristics and environmental conditions (Norby et al. 2005). A meta-analysis of 

FACE and open-top chamber (OTC) experiments showed that elevated CO2 stimulated 

above- and belowground plant biomass by an average of 22% and 28% respectively (de 

Graaffetal. 2006). 

Elevated CO2 and Roots 

Photosynthetic response to elevated C02 is greatest under high levels of other 

resources such as light, water, and nutrients (Bazzaz 1990, Field et al. 1992). Progressive 

nutrient limitation has been proposed as a regulator of long-term plant response to 

elevated C02 (Johnson 2006, Luo et al. 2004). For example, the soil nitrogen supply may 

constrain vegetation responses to elevated CO2 if the nitrogen needed to support 

increased plant growth is not available (Reich et al. 2006, Oren et al. 2001). In limiting 

soil conditions, plants may allocate more biomass to roots in order to increase water and 

nutrient uptake (Poorter and Nagel 2000). Low soil fertility was found to increase the 

fraction of root to total plant biomass for plants grown under either ambient or elevated 

C02 (Wang and Taub 2010). 

Even when nutrient availability is high, root biomass may increase in plants 

grown under elevated CO2 (de Graaff et al. 2006). Early studies on individual plants 

grown under elevated CO2 have shown increased root length and diameter (Pritchard et 

al. 1999) and biomass (Rogers et al. 1994). Recent studies on woody plants in field 

conditions have also shown increased root production (Lukac et al. 2003, Norby et al. 

2004, Pritchard et al. 2008), turnover (Lukac et al. 2003), standing crop (Jackson et al. 

2009, Iversen et al. 2008, Runion et al. 2006, Pregitzer et al. 2008), and mortality 
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(Iversen et al. 2008, Pritchard et al. 2008). CO2 enrichment of forests has also been found 

to result in deeper rooting distributions of fine roots (Iversen 2010). 

Root Quantification in Long-term Studies 

Assessing the impacts of elevated CO2 on roots has been constrained by 

methodological limitations. Studies that are carried out over multiple years pose a 

challenge for vegetation sampling if the goal is to keep plants intact over the duration of 

the study. While nondestructive methods can be employed fairly easily to collect data 

about the aboveground portion of plants, it is much more difficult to collect belowground 

data without disturbing the system. Traditionally, root parameters were measured 

destructively with soil cores, excavations, soil profile walls, or ingrowth bags and cores 

(Atkinson 2000, Neumann et al. 2009). 

Nondestructive methods have been employed with varying success. One of the 

most widely-used indirect methods for studying fine roots is the minirhizotron technique 

in which a clear tube is inserted into the ground and images of roots growing along the 

outside of the tube are recorded (Vogt et al. 1998). Other nondestructive methods used to 

study roots include multi-electrode resistivity imaging (Amato et al. 2008), computer-

assisted tomography (CT), magnetic resonance imaging (MRI) (Asseng et al. 2000), X-

ray imaging (Pierret et al. 2005), and ground-penetrating radar (Butnor et al. 2003). 

Study Objectives 

In the present study, a fire-prone scrub-oak ecosystem on the east coast of Florida 

was exposed to 11 years of elevated atmospheric CO2 using OTCs following a controlled 
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burn in 1996. Two nondestructive methods were employed to study roots exposed to 

ambient and elevated CO2 treatments: minirhizotron imaging to quantify fine roots (< 2 

mm diameter) and ground-penetrating radar to quantify coarse roots (> 5 mm diameter). 

The specific objectives of this study were to 1) determine the effect of 11 years of CO2 

enrichment on fine and coarse root biomass, 2) determine the potential CO2 legacy effects 

of aboveground vegetation removal on fine root abundance and biomass, and 3) explore 

the use of GPR to image coarse root spatial distribution at the study site. 

Study Site Description 

The study site was located at Kennedy Space Center on Merritt Island National 

Wildlife Refuge (28°38'N, 80°42'W) on the east coast of Florida, USA (Fig. 3). The 

140,000 acre refuge was established in 1963 on NASA's Kennedy Space Center and is 

managed by the U. S. Fish and Wildlife Service (USFWS 2006). Elevation is 0-3 m 

above mean sea level on the interior of Merritt Island. The sandy soils are acidic, well-

drained, and characteristically nutrient-poor; the bulk of nutrients in this system are found 

in live and dead vegetation instead of the mineral soil (Schmalzer and Hinkle 1987). 

Climate is subtropical with a wet season between late June and October and a dry season 

between April and early June. Sixty percent of the annual precipitation occurs during the 

wet season, and lightning associated with thunderstorms is responsible for igniting 

wildfires (USFWS 2006). While fire is the dominant ecosystem disturbance at the study 

site, other natural disturbances include periodic drought and severe weather from tropical 

storms and hurricanes. 
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Scrub-oak shrublands occupy over 15,000 acres of Merritt Island NWR, and fire 

is essential for maintaining the vertical and horizontal structure of the plant community 

(USFWS 2006). The scrub-oak vegetation is dominated by woody evergreen species that 

have extensive belowground storage organs such as lignotubers and rhizomes that allow 

the plants to re-sprout after fire (Schmalzer and Hinkle 1992a, Menges and Kohfeldt 

1995). Quercus myrtifolia Willd. (myrtle oak) and Quercus geminata Small (sand live 

oak) are the two co-dominant species; other woody species include Quercus chapmanii 

Sargenti (Chapman oak), Serenoa repens (Bartram) Small (saw palmetto), Lyonia 

ferruginea (Walter) Nutt. (rusty staggerbush), and Morella cerifera (L.) Small (wax 

myrtle) (Schmalzer and Hinkle 1992b, Seiler et al. 2009). Voucher specimens of the 

dominant plant species are kept at Kennedy Space Center, with duplicates at the 

University of Florida herbarium and the University of South Florida herbarium. The 

effects of fire on Merritt Island scrub-oak communities were studied since the 1980s in an 

effort to characterize the composition and structure of the ecosystem for conservation 

purposes (Schmalzer and Hinkle 1987, 1992a, 1992b). 

CO2 Enrichment Experiment 

In 1992, a preliminary CO2 enrichment study was initiated with funding from 

NASA. Six open-top chambers were used in the pilot study, which was a precursor to the 

experiment discussed here. Initial findings of the early study prompted an expansion with 

funding from the U.S. Department of Energy. The larger-scale CO2 enrichment 

experiment that is the subject of this research began with a prescribed burn in late 1995 

and again in early 1996. Any unburned aboveground vegetation was clipped to ground 
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level, and 16 plots were selected and grouped based on pre-burn vegetation into eight 

blocks and assigned treatment of ambient or elevated CO2. 

Sixteen open-top chambers (OTCs, Fig. 4) were constructed for the CO2 

treatments (Drake et al. 1985). Chamber frames were made with 4-inch diameter PVC 

pipe in an octagonal design. The sides were rectangular removable panels covered with 

sheets of clear Mylar film. Chambers enclosed 9.4 m2 of ground area and were 2.5 m tall 

and 3.5 m wide at parallel sides. A frustum was constructed on each chamber to minimize 

wind intrusion, but the top of the chamber was open to the atmosphere. CO2 addition 

began in May 1996 and was maintained at 350 ppm above ambient throughout the 

experiment, except for brief periods in 1999 and 2004 during repairs to the chambers 

after damaging storms. Ambient CO2 was -350 ppm in 1996 and had increased to -380 

ppm in 2007. Treatment CO2 concentrations were maintained 24 hours a day, and each 

chamber had an independent blower system that circulated air continuously. Air samples 

from each chamber were collected and analyzed with a computer-automated system, and 

CO2 addition was adjusted to maintain concentrations within the desired range. CO2 

addition ended in May 2007, and all chambers were removed. 

Throughout the 11 years of the study, numerous measurements were taken of 

various ecosystem parameters. These included, but were not limited to: photosynthesis by 

dominant plant species, net ecosystem exchange, aboveground biomass (from 

nondestructive allometric relationships), shoot density, leaf area index, soil organic 

matter content, soil microbial activity, nutrient dynamics (specifically nitrogen), 

evapotranspiration, and insect herbivore activity. Additionally, environmental data such 

as air temperature, precipitation, and soil water content were collected. 
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FIG. 4. Photograph of one experimental chamber and surrounding scrub-oak 

vegetation. Sixteen chambers were used, 8 with ambient CO2 and 8 with elevated 

(ambient + 350 ppm) CO2. 

Overall, the dominant oaks responded differently to C0 2 enrichment throughout 

the study. Stomatal conductance and transpiration were reduced under elevated CO2 

(Hungate et al. 2002, Li et al. 2003), and both oak species had increased rates of leaf net 

photosynthesis (Li et al. 2007a, Hymus et al. 2002, Ainsworth et al. 2002). However, 

stimulation of photosynthesis in Q. myrtifolia (63%) was approximately twice that of Q. 

geminata (35%). Also, Q. myrtifolia had a strong C02 response in aboveground biomass 

throughout the study while Q. geminata showed no significant CO2 effect (Seiler et al. 

2009, Fig. 5). At the end of the study, total aboveground biomass was 67% higher in 
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elevated CO2 chambers, driven mainly by the 128% increase in Q. myrtifolia biomass 

under elevated C02 (Seiler et al. 2009). 

After the fire in 1996, the C02 effect on aboveground community biomass 

increased steeply for 3 years but was stable for the remainder of the experiment (Seiler et 

al. 2009), which was similar to the observed effect on fine root length (Day et al. 2006). 

Aboveground growth was correlated with annual rainfall, and shoot density dropped 

anomalously in 2000 following a period of drought (Li et al. 2007a, Seiler et al. 2009). In 

2005, an abrupt increase in shoot density was associated with recovery after hurricane 

disturbance (Li et al. 2007b, Seiler et al. 2009). 
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Figure is from Seiler et al. 2009. 
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Root Methodologies Employed 

Fine Roots - Minirhizotrons 

Minirhizotrons were installed in the study plots in 1996 after the fire but prior to 

chamber construction. Minirhizotrons were clear cellulose acetate butyrate tubes, 5.7 cm 

in diameter, with a series of numbered 9x13 mm frames etched along one side of each 

tube. Two minirhizotrons were installed in each chamber plot at a 45° angle from the soil 

surface to a depth of ~ 1 m (Fig. 6). The portion of the minirhizotrons protruding above 

the soil surface was painted, taped, and capped. This procedure ensured that water and 

light could not enter the tubes and affect roots growing along the minirhizotrons. 

FIG. 6. Diagram of a minirhizotron installed below a shrub with camera inserted for 

viewing and recording root images. 
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To measure fine roots, a minirhizotron camera (Bartz Technology Co., Santa 

Barbara, CA, USA) was inserted into each tube, and images of roots within the etched 

frames were recorded using Hi8 videotape. Minirhizotron recordings were obtained 

approximately every 3 months throughout the study. In this dissertation, minirhizotron 

data collected in March 2007 (two months before the final aboveground harvest), August 

2007 (one month after harvest), and May 2008 (10 months after harvest) are presented. 

Images were converted to digital jpeg files (Fig. 7) for every fifth frame, totaling 

32 frames per tube. Root lengths and widths were digitally traced for each root within the 

frames using the MSU Roots Tracer Program version 2.2 (Michigan State University 

Center for Remote Sensing and GIS, East Lansing, MI, USA). Images that were blurry, 

dark, filmed incorrectly, or were of frames showing incomplete soil contact with the 

minirhizotron tube were not included. The primary metric calculated was root length per 

frame area (mm/cm ), known as root length density (RLD). Individual roots digitized 

from each minirhizotron image were categorized into the following size classes based on 

root width (diameter): <0.25 mm, 0.25-1 mm, 1-2 mm, and >2 mm. 

Coarse Roots - GPR 

Ground-penetrating radar (GPR) is a geophysical tool that has recently been used 

to study large belowground plant structures (Butnor et al. 2003, Dannoura et al. 2008, 

Barton and Montagu 2004, Hruska et al. 1999). With this method, an electromagnetic 

wave is radiated from a transmitting antenna. When the wave encounters a material with 

a different permittivity from that of the initial transmission, a portion of the signal is 

scattered and reflected back to a receiving antenna (Daniels et al. 2008). The use of GPR 



15 

to detect tree roots is illustrated in Fig. 8. GPR signal reflection and root biomass 

exhibited a significant linear relationship at the Florida site (Stover et al. 2007), providing 

a non-destructive method for estimating coarse root biomass in this system. 

FIG. 7. Sample jpeg image showing soil and fine roots from recordings collected from 

minirhizotrons. Rectangular frames, each measuring 9 x 1 3 mm, are etched along the 

inside of each minirhizotron tube. Black dots demarcate corners of one frame. 

After CO2 addition ended and the chambers were removed, all aboveground 

vegetation was clipped to the soil surface and removed from the plots for analysis. In late 

June and early July 2007, less than one week after aboveground vegetation in the 

experimental plots was harvested, GPR was used to image roots in all experimental plots 

with a Subsurface Interface Radar (SIR-3000) control system and 1500 MHz (model 

5100) antenna (Geophysical Survey Systems, Inc., North Salem, NH, USA). 
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FIG. 8. Diagram of ground-penetrating radar used for detection of coarse roots. Figure 

is from Stover et al. (2007). 

Prior to data collection, a 2 x 2 m fiberglass frame (Fig. 9) was constructed with 

holes drilled every 2 cm along each side of the frame. In the field, the frame was 

positioned within the footprint of each experimental plot. A 2-m long fiberglass beam 

with a freely-moving shuttle and adjustable arm was positioned on the frame using the 

numbered holes drilled along parallel sides. The radar antenna (with calibrated survey 

wheel) was attached to a plate on the shuttle arm with Velcro, and the beam and shuttle 

mechanism assisted with guiding the antenna along multiple 2-m transects. Plots were 

scanned either every 16-cm in both an x- and y-direction (resulting in a total of 26 scans 

per plot), or every 2-cm in both directions (totaling 200 scans per plot). Plots with fewer 
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scans were used strictly for estimating biomass, while those with greater scans were used 

for biomass as well as 3-dimensional imaging to evaluate root spatial distribution. 

Individual 2-m long GPR scans were processed post-collection with Radan software as 

described in Chapters 2 and 4. 

FIG. 9. Fiberglass frame constructed for scanning 2 m x 2 m plots with ground-

penetrating radar. The radar antenna is the small box resting on the ground surface in the 

upper left quadrant of the 2 x 2 m grid. 
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CHAPTER 2 

ROOT BIOMASS AFTER 11 YEARS OF C02 ENRICHMENT 

Introduction 

While many CO2 enrichment experiments have been performed, few have been 

maintained continuously over multiple years. Within the handful of long-term enrichment 

studies of woody plants in field conditions, the effects of elevated CO2 on root biomass 

have been mixed. A regenerating longleaf pine community had 49% greater total 

belowground biomass in C02-enriched plots after three years (Runion et al. 2006). 

Similarly, a poplar plantation in Italy had a 47-76% (depending on species) increase in 

standing root biomass after three years of FACE treatment (Lukac et al. 2003). A decade 

of C02 enrichment in a temperate loblolly pine forest doubled biomass of coarse roots 

and caused a 24% increase of fine roots in the top 15 cm of soil (Jackson et al. 2009). 

Increased root biomass was found throughout 10 years of C02 enrichment in mixed 

deciduous tree communities (Pregitzer et al. 2008). In contrast, a 30% reduction of fine 

root biomass was found in mature deciduous forest trees in central Europe after five years 

of C02 enrichment, with no detectable C02 effect after 7 years (Bader et al. 2009). No 

stimulation of root growth was seen during four years of FACE treatment in a long-term 

afforestation site at treeline in the Swiss Central Alps (Handa et al. 2008). 

Early findings on the effects of CO2 enrichment on roots at this study site were 

presented in previous publications examining fine root abundance, production, and 

mortality (1996-1997 in Dilustro et al. 2002; 2002-2004 in Stover et al. 2010); fine root 

abundance (1996-2004) and depth distribution (1997 in Day et al. 2006); fine root 

biomass (2002 core data in Brown et al. 2007; 1996-2006 minirhizotron data in Brown et 
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al. 2009); and coarse root biomass from GPR measurements (2005 in Stover et al. 2007). 

The studies by Brown et al. 2009 and Stover et al. 2007 demonstrated the effective use of 

minirhizotrons and GPR at this study site for estimating fine and coarse root biomass, 

respectively. 

A key finding from previous work showed that fine root length density was 

significantly greater under elevated CO2 only during the first 3 years of the study. The 

subsequent loss of CO2 treatment effect was attributed to root closure (Day et al. 2006). 

Root closure was considered to be a dynamic equilibrium between root production and 

mortality. One year into the study, fine root production, mortality and turnover were 

higher under elevated CO2 (Dilustro et al. 2002). Nine years after CO2 treatment was 

initiated, there was no longer a treatment effect on these root parameters (Stover et al. 

2010). And as in other long-term CO2 enrichment studies, a shift in fine root distribution 

to deeper in the soil profile was seen over time (Stover et al. 2010). The results presented 

in this chapter provide updates to the long-term dataset and represent the final 

measurements of belowground biomass of this 11-year study. 

Objectives 

Following protocols that had been established previously for quantifying roots at 

this study site, fine (< 2 mm diameter) root biomass was measured using minirhizotrons 

and coarse (> 5 mm diameter) root biomass using ground-penetrating radar. These values 

were also compared to root biomass estimates from soil cores. Roots > 2 mm diameter 

could not be adequately sampled using minirhizotrons, but GPR may have detected roots 

< 5 mm diameter. It was hypothesized that 1) vegetation exposed to elevated C02 for 11 
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years would have greater fine and coarse root biomass than vegetation exposed to 

ambient CO2, 2) greater fine root biomass would be found deeper in the soil under 

elevated CO2, and 3) root biomass in 2007 would be at a low point in both treatments due 

to the observed trend of decreasing biomass over the previous two years. 

Methods 

Fine Roots 

Images from minirhizotrons installed in the chamber plots were collected in 

March 2007 using the methods described in Chapter 1. Digital jpeg images were captured 

from the video recordings, and roots were then digitized from the images. Fine root 

biomass was calculated from root length and width values for all roots < 2 mm diameter 

following the methods detailed by Brown et al. (2009). The principles behind this method 

are described by Johnson et al. (2001) and Hendrick and Pregitzer (1996), and 

minirhizotrons have been used similarly to estimate fine root biomass in other studies 

(e.g. Jose et al. 2001, Noguchi et al. 2004, Tingey et al. 2005, Kalyn and Van Rees 2006). 

In brief, fine root biomass and length from destructive cores collected from the 

experimental plots in 2002 were used to calculate specific root length (SRL) by dividing 

total root length by total mass of each size class. The SRL values were then applied to 

total root length data for the same size classes to estimate biomass from the minirhizotron 

images. A 2 mm depth-of-field was used to convert the area of the minirhizotron image to 

a volume for mass estimation (Brown et al. 2009, following Taylor et al. 1970). 
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Coarse Roots 

A correlation was established between GPR signal reflection strength and 

belowground biomass using 15-cm diameter cores outside of the chambered plots in 

2005. Twenty core locations were selected and scanned with 15-cm long scans in the x-

and y-directions with a 1500 MHz GPR antenna. Cores were then excavated and root 

biomass was measured, and the average signal reflection area of the GPR data was 

plotted against the biomass of each core. The resulting correlation equation was then 

applied to GPR data collected in the experimental plots in June and July of 2007. 

Individual 2-m long GPR scans were processed using Radan version 6.5 

(Geophysical Survey Systems, Inc., North Salem, NH, USA). The processing protocol 

was similar to that used in Stover et al. (2007). GPR has similarly been used to estimate 

root biomass at other sites (e.g. Butnor et al. 2001, Butnor et al. 2003, Butnor et al. 2005, 

Samuelson et al. 2008). Processing steps included horizontal stretch by a factor of 2 to 

normalize the size of the scan file, range gain applied on a per-plot basis, background 

removal (FIR, boxcar type), Kirchoff migration, and Hilbert transformation (Fig. 10). The 

background removal processing step is designed to remove high-frequency noise by 

performing a simple running average on the data. Kirchoff migration is a processing 

method that removes signal diffraction and compresses hyperbolas to increase accuracy 

of reflector locations. The Hilbert Magnitude Transform further compacts reflection 

hyperbolas to accurately represent the size of the reflector. 

For each experimental plot, 25 random intersections from the grid of 2-m long 

GPR scans in the x- and y-directions were selected. After digital processing of the 

corresponding scan, a 15-cm wide section was cropped at each intersection. This was 
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equivalent to the size of the cores used to establish the relationship between GPR signal 

intensity and root biomass (Stover et al. 2007). Cropped GPR images were converted to 

bitmaps using Radan to Bitmap Conversion Utility 2.1 (Geophysical Survey Systems, 

Inc., North Salem, NH, USA) and converted to 24-bit grayscale with SigmaScan Pro 

Image Analysis software version 5.0 (SPSS Inc., Chicago, IL, USA). Pixels within an 

intensity range of 70-227 were counted for each image. Pixel counts were applied to a 

regression equation relating pixel number and root biomass, where coarse root biomass = 

0.1262 x pixel count (R = 0.47); this equation is a revision of the one published in Stover 

et al. (2007). Biomass was extrapolated to g/m based on 15-cm diameter core area. 
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FIG. 10. Sample ground-penetrating radar data viewed with Radan software program. 

Top left image shows a sample unprocessed 2-m scan and bottom right image shows the 

same scan after processing. 
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While processing GPR data for the current study, it was necessary to correct the 

dataset presented by Stover et al. (2007). This correction produced an updated regression 

equation to calculate coarse root biomass estimates from data collected in 2005 from the 

experimental chambers. The new equation (y = 0.3416x, where x = # GPR pixels within 

threshold of 70-227, R2 = 0.50, N- 25) resulted in a change in the biomass estimates 

from that sampling date: 8010 ± 796 g/m2 and 6129 ± 1010 g/m2 for elevated and 

ambient CO2 chambers, respectively (P = 0.12). At the time those data were collected, the 

experimental chambers and aboveground vegetation were intact; sampling consisted of 

five 15-cm long GPR scans per chamber selected with a stratified-random approach to 

exclude existing vegetation and instruments installed in the chambers. In the current 

study, all chambers, instruments, and aboveground vegetation were removed and 

thorough GPR scans were performed. 

To validate the GPR biomass estimation method, a 2 x 2 m plot separate from the 

experimental plots was cleared of aboveground vegetation and scanned with the 1500 

MHz GPR antenna using 13 scans in the x- and y-directions in July 2007 (Fig. 11a). 

Then, a 1 x 2 m pit in half of the scanned area was excavated to 60 cm depth (Fig. 1 lb). 

Roots from the soil cores and pit were extracted on site using a 6-mm mesh sieve. Root 

samples were transported back to Norfolk, Va., washed, dried, and weighed. 

Soil Cores 

Five soil cores were collected in each chamber plot with a 7-cm diameter soil 

corer in June/July 2007 by multiple researchers led by Bruce Hungate and Pat Megonigal. 

The cores were collected to the depth of the water table (~ 200 cm) and separated into the 



following depth increments: 0-10 cm, 10-30 cm, 30-60 cm, 60-100 cm, 130-160 cm, 

160-190 cm, albic and spodic (often > 200 cm). An additional five cores were taken for 

the 0-10 cm depth in each plot. Core samples were sieved with a 2 mm mesh sieve 

followed by a 1 mm sieve to separate roots from soil. Roots were frozen until processed 

at Northern Arizona University. Roots were dried at 60°C for 24 hours and sorted by 

hand as either fine (< 2 mm diameter) or coarse (> 2 mm diameter). Total biomass per m 

for each depth interval was calculated by summing the root mass for all cores of a given 

depth per plot and dividing by total core area. 

FIG. 11. GPR biomass validation pit: scanning the 2 m x 2 m plot after aboveground 

vegetation was cleared (a) and excavation of a 1 m x 2 m pit to 60 cm depth (b). 

Statistical Analyses 

C02 treatments were replicated using 16 experimental chambers (« = 8 for each 

treatment). For measurements that included subsampling within experimental plots, the 

model residuals were tested for normality (using Shapiro-Wilk test) and homogeneity of 
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variances (using Levene statistic) with PASW Statistics 17.0 (SPSS, Inc., Chicago, IL, 

USA). In all cases, model residuals for the raw data failed tests for normal distribution 

and variance homogeneity, so the data were transformed and the residuals of transformed 

data then met assumptions for ANOVA statistical tests. Data with subsampling included 

minirhizotron biomass data (log transformed), GPR data (square root transformed), and 

soil core data by depth (square root of biomass + 1 transformed). 

Fine root biomass estimated using minirhizotrons was tested with a 3-factor 

mixed-model nested ANOVA using SAS Proc GLM (SAS version 9.1, SAS Institute 

Inc., Cary, NC, USA), with chamber as the random effect and CO2 treatment and depth as 

fixed effects. Least-squares multiple-comparison tests (SAS Proc GLM) were used to 

determine differences among depths within each C02 treatment. An ANOVA was also 

performed for each depth interval separately to test for C02 treatment differences. GPR 

data were tested with SAS Proc GLM using a 2-factor nested ANOVA with 25 

subsamples per chamber; chamber was assigned as the random effect and CO2 treatment 

as the fixed effect. 

Data that did not have subsampling included total root biomass from combining 

GPR and minirhizotron estimates, root biomass from cores, aboveground biomass, and 

root-to-shoot ratios. Non-parametric tests were run using SAS Proc NPAR1 WAY on 

these data to test for differences between C02 treatments. All results were considered 

significant at a < 0.05, but trends were recognized at 0.05 < a < 0.15 (following Runion 

et al. 2006). 
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Results 

Fine Root Biomass 

Biomass of fine roots estimated in March 2007 with minirhizotrons was not 

significantly greater under elevated C02 (1942 ±168 g/m ) than under ambient CO2 

(1644 ±173 g/m )(P = 0.31). The roots identified by this method were separated into 

size categories based on root diameter, with biomass partitioned as follows: 70% and 

67% in <0.25 mm diameter, 18% and 17% in 0.25-1 mm diameter, and 12% and 16% in 

1-2 mm diameter roots for ambient and elevated C02 respectively. Using minirhizotrons, 

there were no roots observed in the ambient C02 plots with diameter > 2 mm for this 

sampling date and there were only two roots observed in the elevated plots. These roots 

were not included in total biomass measurements since they were not adequately 

sampled. 

Coarse Root Biomass 

-\ 2 

Coarse root biomass was 5830 ± 487 g/m under elevated and 5105 ± 418 g/m 

under ambient C02, and was not significantly different between treatments (P = 0.26). 

Biomass of roots > 2 mm diameter could not be accurately determined using 

minirhizotrons, but GPR may have detected a portion of the roots < 5 mm diameter. 

Dense mats of near-surface fine roots and clusters of fine roots may be captured by GPR. 

High coarse root biomass in this system and the validity of GPR biomass estimates were 

confirmed by the validation plot with an estimate of 7770 g/m roots using GPR, 

compared to an actual biomass of 8222 g/m to 60 cm depth. It is likely that the 
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difference between actual biomass and the GPR estimate was due to fine roots not 

detected by GPR. 

Total Root Biomass 

Combining the minirhizotron estimate of fine root biomass measured in March 

2007 (prior to the harvest) and the GPR estimate of coarse root biomass from June 2007, 

total root biomass for plots exposed to elevated C02 was 7772 g/m , compared to 6749 

2 

g/m for ambient plots (P = 0.11; Table 1). The combined total root biomass from these 

two methods is likely an underestimate given the possible methodological gap in 

detecting roots between 2 and 5 mm diameter. 

Live aboveground biomass at the end of the study was significantly greater (P < 

0.01) under elevated C02 (2103 ± 184 g/m2) than ambient C02 (1257 ± 107 g/m2), 

representing an 846 g/m difference (Seiler et al. 2009), comparable to the observed 

difference of 1023 g/m in root biomass estimated from minirhizotron and GPR methods. 

Root-to-shoot ratios averaged 3.9 ± 0.4 for elevated C02 plots, significantly less than the 

average of 5.5 ± 0.5 for ambient C02 plots (P = 0.02, Fig. 12). 

Biomass Estimated From Cores 

Total root biomass estimated using cores was lower than the combined total from 

the minirhizotron and GPR sampling methods (Table 1). The C02 effect on total root 

biomass to a depth of 100 cm estimated from cores was not significant (P = 0.27), but the 

870 g/m difference in means between treatments was comparable to that observed for 
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minirhizotrons and GPR (Table 1). The majority of root biomass from cores consisted of 

coarse roots > 2 mm diameter (74% in ambient and 77% in elevated C02). 

TABLE 1. Root biomass (g/m ; means ± SE) measured using three sampling methods: 

minirhizotron image analysis, ground-penetrating radar (GPR), and 7-cm diameter 

soil cores. P-values represent results of non-parametric or ANOVA tests for 

difference in biomass between ambient and elevated C02 plots. 

Ambient C 0 2 

Elevated C 0 2 

Ambient C 0 2 

Elevated C 0 2 

Fine roots 
(< 2 mm diameter) 

Minirhizotron 

1644 ±173 

1942 ±168 

P = 03l 

Fine roots 
(< 2 mm diameter) 

Coarse roots 
(> 5 mm diameter) 

GPR 

5105±418 

5830 ±487 

P = 0.26 

Coarse roots 
(> 2 mm diameter) 

7-cm diameter cores 

1230±170 

1258 ±359 

P = 0.94 

3414 ±168 

4255 ±721 

P = 0.28 

Total 

6749 ± 422 

7772 ± 422 

P=0 .11 

Total 

4643 ±280 

5513 ±697 

P = 0.27 



29 

3000 -i 

2000 -

1000-

n 

oj -1000 -
tfi 
</> 
« -2000 -
E 
o 
m -3000 -

-4000 -

-5000 -

-6000 -

-7000 -

T 

T 
1 

Ambient C0 2 

• - •V . IVJ 

-,:•• :••, Ele> 

- . T -
1 

R:S = 5.5±0.5 

T 
1 

D Live aboveground 

E3 < 2mm roots 

a > 5mm roots 

T 
1 

/ated C02 

] R:S = 

^ 5 

> 
r I 

1 ; 
i 

< 

f I 

1 
3.9 ±0.4 

FIG. 12. Live aboveground biomass (above the horizontal line) and root biomass 

(below the horizontal line) in g/m2 ± SE for the CO2 treatments. Root-to-shoot ratios 

(R:S) are also listed for each treatment. 

Fine Root Biomass Depth Profiles 

Minirhizotron biomass estimates for roots < 2 mm diameter showed no significant 

difference among depths within either CO2 treatment with the exception of the 0-10 cm 

depth (Fig. 13). The biomass estimates for the 0-10 cm depth were significantly lower 

than all other depths, and this is most likely due to the ineffectiveness of the 

minirhizotron method in quantifying roots near the soil surface. There was a significant 

C02 treatment effect observed in the 38-48 cm (P = 0.04) and 76-86 cm (P = 0.05) depths 

with greater biomass under elevated C02 (Fig. 13). 
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FIG. 13. Fine root biomass (mean + SE) of roots < 2 mm diameter estimated from 

minirhizotron observations and categorized by depth. * denotes P < 0.05 result in 

ANOVA test for difference in mass between CO2 treatments for given depth. 

Root biomass estimated from cores was not significantly different among the 

depth categories 0-10 cm, 10-30 cm, 30-60 cm, and 60-100 cm for either C02 treatment 

(Fig. 14). However, biomass abruptly decreased to almost zero below 100 cm in both 

treatments (Fig. 14). For roots > 2 mm diameter, there was a trend (P < 0.15) of greater 

biomass in ambient C02 plots at the 0-10 cm depth, but greater biomass in elevated C02 

plots at 30-60 cm and 60-100 cm depths (Fig. 14). There were no treatment effects 

observed for roots < 2 mm diameter in the core depth data. 
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FIG. 14. Root biomass (mean + SE) for chambers under ambient and elevated C02 

estimated from cores and categorized by depth. Cores were collected and processed by a 

team from Northern Arizona University led by Bruce Hungate. ** denotes P < 0.15 result 

in ANOVA test for difference in mass between C02 treatments for given depth. 

Fine Root Patterns over the Course of the Study 

Fine root biomass over the 11 -year study period estimated from minirhizotron 

measurements showed a pattern of recovery and steady state following disturbance (Fig. 

15). Fine root abundance (Day et al. 2006) and biomass increased in both CO2 treatments 

during the first three years of the study as the ecosystem recovered from fire. A strong 

CO2 stimulation was observed 1 to 3 years after CO2 enrichment began with a peak in 
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late 1997, but by 2000, fine root biomass under elevated CO2 had declined to ambient 

treatment levels and no treatment effect was seen over the next 4 years. 
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FIG. 15. Fine (< 2 mm diameter) root biomass to 100 cm depth estimated using 

minirhizotrons over the 11-year study period. Values are means ± SE. Results presented 

are revised from those previously published by Brown et al. (2009). Disturbance events 

are also noted; asterisks denote years with low or atypical precipitation. 

After a severe drought in 1998 and low summer precipitation in 1999-2000, there 

was a substantial decline in fine roots in both treatments, followed by a recovery period 

from 2002-2004. The drought also caused a significant decrease in shoot density in 2001 
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followed by recovery over the next 4 years (Li et al. 2007a, Seiler et al. 2009). In fall of 

2004 three hurricanes impacted the study site, the strongest of which was Hurricane 

Frances, which resulted in significant defoliation and a 21% reduction in leaf area index 

(Li et al. 2007b). In 2005, there was again a large CO2 stimulation of fine root biomass, 

which coincided with increased shoot density under elevated CO2 (Seiler et al. 2009). 

The response may be at least partially attributed to a pulse of water (precipitation) and 

nutrients (from defoliation/litterfall) as a result of the hurricanes (Seiler et al. 2009, Li et 

al. 2007b). One year later the CO2 treatment effect was no longer evident, and fine root 

biomass in both treatments declined until the end of the study in 2007. 

Discussion 

Fine Root Biomass 

Although the absolute value for fine root biomass was greater for elevated CO2 

plots at the end of the study in 2007, there was no significant CO2 treatment effect. This 

was not entirely unexpected because strong treatment effects were only seen at the 

beginning of the study and again in 2005 (Fig. 15). The minirhizotron method was not 

suitable for sampling roots greater than 2 mm in diameter, and the vast majority of roots 

sampled were less than 0.25 mm diameter. 

Coarse Root Biomass 

While fine root biomass was monitored throughout the study, coarse root biomass 

was only measured after 2005. Limits on destructive sampling at long-term study sites 

may affect observed CO2 stimulation of root biomass; for example, the doubling of 
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coarse roots under elevated C02 presented by Jackson et al. (2009) was not observed 

until pits were dug in 2008. This poses a significant problem for biomass estimates 

because belowground biomass, particularly coarse roots, constituted the majority of total 

plant biomass at the Florida site (84% in ambient and 79% in elevated C02 plots). 

The validation pit dug near the study plots yielded over 8 kg/m of root biomass 

to a depth of 60 cm. This is considerably higher than the upper range of 5 kg/m of root 

biomass in global biomes analyzed by Jackson et al. (1996). Studies in systems with large 

belowground structures such as rhizomes and lignotubers have found high root biomass 

similar to the Florida site, e.g. the scrub-oak of the garrigue in southern France in which 

large belowground structures (> 5 mm diameter) constituted 85% of the 7200 g/m total 

root biomass (Kummerow et al. 1990). 

Robinson (2007) suggested that most global carbon models substantially 

underestimate the size of the root component. Data presented here and collected from the 

site previously indicate that coring techniques, especially those using small diameter 

corers such as the 7-cm one used in this study, likely under-sample coarse roots, hi a 

study comparing actual (using whole-tree harvest extraction) and estimated (using 5-cm 

diameter soil cores) lateral-root density measurements, soil cores consistently 

underestimated root density, at times by half the actual value (Retzlaff et al. 2001). 

GPR-based estimates of coarse root biomass were considerably greater than those 

obtained from coring, but comparable to coarse root biomass directly sampled in the 1x2 

m validation pit. Thus, the GPR data accurately reflect destructive sampling on larger 

spatial scales (2 m ) and suggest that the smaller areal coverage of cores (~ 0.02 m ) 

underestimated coarse root biomass. Additionally, low frequency encounter of large roots 
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during coring biases the data toward values of "zero" that may lead to underestimation of 

coarse root biomass (B. Hungate, unpublished data). 

Aboveground vs. Belowground Responses 

Elevated C02 stimulated production of aboveground biomass throughout the 

duration of the study; however, this response was species-specific with Q. myrtifolia 

increasing in aboveground biomass by 128% and Q. geminata displaying no significant 

treatment effect after 11 years of enrichment (Seiler et al. 2009). The absolute difference 

between elevated and ambient C02 plots in belowground biomass was 1023 g/m , 

comparable to the absolute difference of 846 g/m in live aboveground biomass, although 

the treatment effect for belowground biomass was only marginally significant. 

At the end of this study, average root-to-shoot ratio was higher in plots exposed to 

ambient C02. This does not support the hypothesis that elevated C02 would result in 

increased root-to-shoot ratio in order to enhance acquisition of belowground resources to 

support increased growth. The contrasting responses of the dominant oaks to C02 

enrichment may have affected the patterns of biomass allocation above- and 

belowground. Because roots were not quantified by species, the direct contribution of 

each species to root biomass cannot be determined, but it is possible that differences in 

biomass partitioning could have affected total root biomass at the end of the study. 

Biomass partitioning under CO2 enrichment does not seem to follow a predictable 

pattern. Although a meta-analysis by Luo et al. (2006) showed slightly higher root-to-

shoot ratios in plants grown under elevated CO2, there are many studies where that is not 

the case. Stulen and den Hertog (1993) thought that determination of root-to-shoot ratios 
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was highly susceptible to experimental error, such as the subjectivity surrounding the 

point at which shoots end and roots begin. The lack of a consistent pattern in biomass 

partitioning found in a literature review by BassiriRad et al. (2001) was attributed to 

variations in experimental protocol and/or interspecific differences. Wang and Taub 

(2010) found that abiotic stresses (i.e. drought or exposure to ozone) had a greater effect 

on the fraction of root to total biomass than did exposure to elevated CO2. 

Soil Resources 

It does not appear that low water availability limited plant growth over the long-

term as the dominant oak species under elevated CO2, Q. myrtifolia, had reduced 

transpiration (Li et al. 2003), and both dominant oaks were found to take up most of their 

water from the water table (Hungate et al. 2002). Although progressive nitrogen 

limitation was initially thought to affect plant response to CO2 in this system (Hungate et 

al. 2006), analysis of soil cores at the end of the study showed increased nitrogen 

mineralization in the 10-30 cm depth under elevated C02, which may have increased 

nitrogen availability (Langley et al. 2009). A considerable amount of nitrogen in deep 

soils at the water table was also thought to provide a source of nitrogen for plant uptake 

in this system (McKinley et al. 2009). 

Soil nutrient measurements after five years of CO2 enrichment indicated that 

nutrients such as potassium, calcium and magnesium may have also been taken up by 

plants from groundwater or deep soil horizons (Johnson et al. 2003). Because water and 

nutrient availability did not appear to be long-term controlling factors in plant growth and 

biomass storage above- and belowground, alternative mechanisms must have been 
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responsible for the observed higher root-to-shoot ratio under ambient C02. 

Fine Roots with Depth 

A change in the vertical distribution of fine roots was observed for plots under 

elevated C02. A review of root biomass studies showed an average of 67% of root 

biomass in the upper 30 cm of soil for sclerophyllous shrublands (Jackson et al. 1996). 

Minirhizotron data showed an increase in biomass of roots < 2 mm diameter down to 90 

cm under elevated C02 (Fig. 13). A pilot study conducted in 1992-1993 at this site 

showed an increase in fine root abundance at 50-60 cm depth under elevated C02 (Day et 

al. 1996). Other long-term C02 enrichment studies have also reported deeper rooting 

distributions under elevated C02 (Iversen 2010, Norby et al. 2004, Pritchard et al. 2008). 

Possible causes for increased root abundance and proportion of biomass deeper in 

the soil under elevated C02 may include: increased demand for nutrients and water as 

plant production is stimulated that leads to mining for deeper soil resources (although this 

does not appear to be the case in the Florida scrub-oak system), increased carbon 

allocation belowground to support new root growth, and increased competition for 

resources in shallower soil depths (Iversen 2010). Occupation of soil space is of primary 

importance in belowground competition (Casper and Jackson 1997). 

In the Florida study, the estimate of fine root biomass in the 0-10 cm depth using 

minirhizotrons is likely an underestimate. Coring and pit excavations at the site yielded 

abundant fine roots (often including the presence of a "root mat", a dense layer of fine 

roots immediately below the soil surface) at this depth compared to lower depths. After 

long-term deployment in the field, minirhizotron frames located in the upper 10 cm of 
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soil can become occluded with organic matter, making root identification more difficult 

for these frames and leading to lower biomass estimates. The discrepancy between fine 

root data quantified with minirhizotrons in the top portions of the soil profile compared to 

other sampling methods was documented in other studies (e.g. Franco and Abrisqueta 

1997, Samson and Sinclair 1994, Wiesler and Horst 1994, Ephrath et al. 1999). 

Patterns of Root Response over Time 

Stimulation of root biomass as a result of C02 enrichment may decrease over 

time, and this phenomenon could be due to a number of factors including acclimation of 

photosynthesis to elevated C02, increased resource use efficiency, or limits on soil 

resource space. A decrease in fine root response after long-term C02 enrichment has been 

observed in other studies as well. In the study by Bader et al. (2009), the loss of a 

treatment effect after 7 years of enrichment was attributed to increased soil moisture 

(through reduced transpiration) under elevated C02 that may have caused the trees to 

reduce biomass allocation to fine roots. The lack of CO2 stimulation of root growth 

reported by Handa et al. (2008) was thought to be evidence that mature ecosystems may 

not show a belowground treatment effect as much as an expanding or early successional 

community. The idea that vegetation responses to elevated CO2 are strongly controlled by 

ecosystem successional state and plant demography was explored by Korner (2006). 

In contrast, some long-term C02 enrichment studies have shown sustained root 

biomass stimulation under elevated CO2 over more than a decade of C02 enrichment, e.g. 

Jackson et al. (2009). Fine root peak standing crop was approximately doubled across all 

years in a 9-year FACE study in a sweetgum plantation (Iversen et al. 2008, Norby et al. 
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2004). Averaged over six years of FACE treatment in a loblolly pine plantation, root 

standing crop was increased by 23% (Pritchard et al. 2008). 

Also, fine roots are temporally dynamic; root biomass, production and mortality 

vary seasonally (McClaugherty et al. 1982, Hendrick and Pregitzer 1992) and inter-

annually (Lopez et al. 2001, Espeleta and Clark 2007). In C02 enrichment studies, the 

C02 treatment effect on fine root biomass can vary over the course of a year (Norby et al. 

2004, Jackson et al. 2009) and between years (Norby et al. 2004). Natural variations in 

root biomass over time may complicate the evaluation of C02 treatment effects in long-

term studies. 

At the end of the Florida study, fine root biomass was lower than it had been at 

any time since the beginning of the study; thus, the biomass values and differences 

between treatments from 2007 represent a point in time when a C02 effect was not 

apparent and when biomass was low. Conclusions based on fine root "lows" may differ 

from those based on the "highs" as the C02 effects were strongest during periods of 

recovery. The difference between root estimates measured using GPR from 2005 and 

2007 indicates a decrease in coarse root biomass over that time period; it is possible that 

this also included a decrease in fine roots that may be detected by GPR. Fine roots 

observed using minirhizotrons decreased substantially during this period. 

The largest C02 effects on fine root biomass occurred at the beginning of the 

Florida study during recovery from fire, and again in 2005 following a drought-recovery 

period and a major hurricane. Day et al. (2006) proposed that fine roots reached dynamic 

equilibrium in the study system three years after the experiment began, and that this root 

closure was reached shortly before canopy closure. Disturbances such as fire or drought 
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appear to reduce fine roots to levels below their carrying capacity. During the recovery 

phase, fine roots are capable of responding to C02 fertilization. One important 

implication of this finding is that elevated CO2 may result in greater carbon inputs to soils 

following disturbance. After root closure, limited resource space results in equilibration 

and loss of the fertilization effect. 
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CHAPTER 3 

EFFECTS OF DISTURBANCE AND C0 2 

TREATMENT LEGACY ON FINE ROOTS 

Introduction 

Severe ecosystem disturbances such as fires, hurricanes, herbivory, disease 

outbreaks or land clearing may result in damage to or removal of aboveground 

vegetation. Following severe injury, woody plants may either be killed or may re-sprout 

from vegetative tissue, and plants that can re-sprout after disturbance are favored where 

disturbance is frequent (Bond and Midgley 2003). Plants that re-sprout following 

disturbance mobilize belowground nutrient stores to support fine roots during initial re-

establishment instead of allocating "new" photosynthate to root growth (Fig. 16, Langley 

et al. 2002). This allows plants to regenerate quickly and not be constrained by low or no 

photosynthesis immediately after the disturbance. In ecosystems subjected to periodic 

disturbances, plants store resources in areas of the plant least likely to be damaged. 

Belowground organs such as lignotubers, burls and rhizomes are woody structures that 

contain dormant buds, carbohydrates and nutrients for the primary function of sprouting 

(James 1984, Canadell and Lopez-Soria 1998). 

While large belowground storage structures are capable of surviving disturbance, 

fine roots may be negatively impacted, depending on the severity of damage to the plant. 

For example, experimental gap creation from removal of aboveground vegetation in a 

wet subtropical forest resulted in a 40% decline in live fine roots two months after 

disturbance (Silver and Vogt 1993). In the same study, a major hurricane affecting the 

study site resulted in a significant and sustained decrease in live fine roots in both 
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experimental gap plots and control plots (Silver and Vogt 1993). Gap creation in a 

temperate hardwood forest caused a reduction in fine root biomass in the top 15 cm of 

soil late in the growing season following canopy gap formation (Wilczyinski and Pickett 

1993). Fine root recovery after disturbance differs among ecosystems. In a wet tropical 

forest, fine root systems had almost complete recovery one year after forest felling (Raich 

1980). Fine root biomass in a northern hardwood forest with experimental clearcutting 

recovered to almost 71% of pre-disturbance levels after 4 years of regrowth (Fahey and 

Hughes 1994). 
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FIG. 16. Hypothesized effects of aboveground disturbance (arrow) on shoot and root 

biomass and photosynthate allocation. Even though allocation of photosynthate to roots is 

low after disturbance, root biomass remains greater than shoot biomass. Graph is from 

Langley et al. (2002). 
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The type of disturbance impacting an ecosystem affects its eventual recovery 

(Turner et al. 1997). Fires, depending on their severity, may result in partial to complete 

combustion of aboveground vegetation, roots, and soil organic matter. Fires release 

nutrients back into the system and are essential for germination of some fire-adapted 

plant species. Similarly, hurricanes are also short-term disturbances that vary in the 

amount of damage to vegetation, ranging from defoliation to complete uprooting of 

plants. Litterfall from hurricane defoliation may also result in a pulse of nutrients to the 

system as well as short-term water inputs from heavy rainfall (Seiler et al. 2009). In 

contrast to the natural disturbance regimes of fires and hurricanes, complete vegetation 

removal by harvest does not result in a pulse of nutrients or changes in water availability. 

Disturbance at the Study Site 

Florida scrub-oak communities are controlled by intense, stand-replacing 

wildfires with a natural fire return interval between 5 and 7 years (Adrian 2006). The 

dominant oak species {Quercus myrtifolia and Q. geminata) are fire-adapted and 

regenerate from sprouting and clonal spreading rather than seeds (Menges and Kohfeldt 

1995). Vegetation at the Merritt Island study site recovered following a burn in 1986 with 

little change in species composition or species richness post-fire (Schmalzer and Hinkle 

1992a). After the study site was burned in 1996 and CO2 enrichment treatments began, 

fine root biomass and root length density (RLD) increased in both treatments for 3 years 

post-fire (Fig. 15, Day et al. 2006). During this initial recovery phase after fire and 

complete aboveground vegetation removal, fine root biomass and RLD were significantly 

greater under elevated CO2 (Fig. 15, Day et al. 2006, Brown et al. 2009). 
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Objectives 

When aboveground vegetation was harvested in July 2007, it was hypothesized 

that fine root biomass and abundance (RLD) would initially decline and then recover in 

the former experimental plots regardless of CO2 treatment. Additionally, at the time of 

the harvest there was a trend of greater total root biomass under elevated CO2. After 

aboveground disturbance, plants with greater belowground carbohydrate and nutrient 

stores should be able to recover faster than those with less root biomass. Using carbon 

isotope labeling from CO2 addition at the study site, it was determined that in the first 3 

years post-fire, oak roots received < 20% of their carbon from recent photosynthesis and 

that an estimated half of their carbon was residual from "old" roots (Langley et al. 2002). 

After harvest, it was also hypothesized that a CO2 treatment "legacy" effect would be 

apparent with greater fine root growth under plots that had been exposed to elevated CO2 

for 11 years, and that plots previously treated with elevated CO2 would continue to have a 

greater proportion of roots deeper in the soil. 

Methods 

Root Measurements 

Images from minirhizotrons installed in the former chamber plots were collected 

in August 2007 (~ 1 month after aboveground vegetation removal) and May 2008 (~ 10 

months after removal) using the methods described in Chapter 1. Digital jpeg images 

were captured from the video recordings. Fine root abundance (RLD, mm/cm2) was 

calculated as the total root length per area of an individual frame, averaged over all 

frames in each minirhizotron tube. Fine root biomass (g/m2 to a meter depth) was 
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calculated from root length and width values for all roots < 2 mm diameter following the 

methods detailed by Brown et al. (2009) and described in Chapter 2. GPR measurements 

of coarse roots were attempted in May 2008, but due to technical problems, the GPR data 

were unusable. 

Statistical Analyses 

C02 treatments were replicated using 16 plots (n = 8 for each former CO2 

treatment). Model residuals were tested for normality (using Shapiro-Wilk test) and 

homogeneity of variances (using Levene statistic) with PASW Statistics 17.0 (SPSS, Inc., 

Chicago, IL, USA). The data were log-transformed to meet the assumptions for ANOVA 

statistical tests. Fine root biomass and RLD were tested with a 4-factor repeated measures 

ANOVA using SAS Proc GLM (SAS version 9.1, SAS Institute Inc., Cary, NC, USA), 

with plot as the random effect and CO2 treatment, depth, and date as fixed effects. A 3-

factor nested ANOVA was run on each individual date to test for CO2 treatment effects; 

plot was the random effect and treatment and depth were fixed effects. An ANOVA was 

also performed for each depth interval separately for each sampling date to test for C02 

treatment differences. All results were considered significant at a < 0.05, but trends were 

recognized at 0.05 < a < 0.15 (following Runion et al. 2006). 

Results 

Fine Root Abundance 

Fine root abundance (RLD) in ambient CO2 plots was 13.43, 13.31, and 14.90 

mm/cm2 for March 2007, August 2007, and May 2008, respectively (Table 2). In elevated 
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C02 plots, RLD was 14.05, 13.42, and 15.40 mm/cm2 for the same time series (Table 2). 

Within each individual sampling date, no statistically significant CO2 treatment effect 

was detected. 

TABLE 2. Fine root abundance (RLD, mm/cm2; means ± SE) for sampling dates before 

and after complete aboveground vegetation removal. P-values represent results of 

ANOVA test for difference in RLD between ambient and elevated C02 plots. 

RLD 

Ambient C02 

Elevated C02 

March 2007 

13.43 ±1.08 

14.05 ±1.13 

P = 0.83 

August 2007 

13.31 ±0.92 

13.42±1.11 

P = 0.83 

May 2008 

14.90 ±0.97 

15.40 ±1.39 

i> = 0.98 

When the data from all 3 dates were pooled for analysis there was no significant 

CO2 treatment effect observed {P = 0.84), but RLD values were consistently higher in 

plots previously under elevated CO2 for all 3 sample dates. There was no interaction 

between treatment and date {P = 0.47), but there was a significant difference among the 3 

sampling dates (P < 0.0001). RLD was not significantly different 1 month after 

aboveground harvest compared to 4 months prior to the harvest (Fig. 17). However, 

changes in fine root abundance during the 5-month sampling interval may have obscured 

immediate responses to vegetation removal. One year after harvest, RLD was higher in 
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plots formerly exposed to both ambient and elevated CO2, indicating similar fine root 

growth regardless of previous CO2 treatment (Fig. 17). 
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FIG. 17. Fine root abundance (RLD, mm/cm ) estimated using minirhizotrons for 

sampling dates before and after complete aboveground vegetation removal. Values are 

means + SE. 

Fine Root Biomass 

Biomass of fine roots in ambient CO2 plots was 1644, 1620, and 1687 g/m2 for 

March 2007, August 2007, and May 2008, respectively (Table 3). In former elevated C02 

plots, fine root biomass was 1942, 1852, and 2078 g/m2 for the same time series (Table 

3). As with RLD, no statistically significant CO2 treatment effect was detected within 
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individual sampling dates, although there was a tendency toward higher biomass under 

elevated CO2 for all three dates (Fig. 18). 

TABLE 3. Fine root biomass (g/m ; means ± SE) for sampling dates before and after 

complete aboveground vegetation removal. P-values represent results of ANOVA 

test for difference in biomass between ambient and elevated C02 plots. 

BIOMASS 

Ambient C02 

Elevated C02 

March 2007 

1644 ±173 

1942 ±168 

P = 0.31 

August 2007 

1620 ±133 

1852 ±163 

P = 0.57 

May 2008 

1687 ±133 

2078 ± 205 

P = 0.39 

Pooling the fine root biomass data from all 3 dates, no significant CO2 treatment 

effect was observed (P = 0.56) and there was no significant interaction between treatment 

and date (P = 0.59). There was a significant difference among dates (P < 0.0001), 

although this was not apparent in plots formerly exposed to ambient CO2. In elevated 

CO2 plots, however, biomass appeared to decrease slightly 1 month after aboveground 

harvest and then increase significantly 10 months later (Fig. 18). 
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FIG. 18. Fine root biomass (g/m ) to 100 cm depth estimated using minirhizotrons for 

sampling dates before and after complete aboveground vegetation removal. Values are 

means + SE. 

Fine Root Parameters With Depth 

Fine root abundance (RLD) was significantly greater under elevated CO2 in the 

38-48 cm depth in March 2007 (P = 0.05) and August 2007 (P = 0.02), but not in May 

2008 (P = 0.19) (Fig. 19). Fine root biomass was greater under elevated C02 in the 38-48 

cm depth for all three sampling dates (March 2007, P = 0.04; August 2007, P = 0.02; 

May 2008, P = 0.08) (Fig. 20). It was also higher under elevated C02 in the 76-86 cm 

depth in March 2007 (P = 0.05). There were no treatment differences at any other depth 

in either biomass or RLD. 
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indicating greater fine root abundance at that depth under elevated CO2. 
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Discussion 

It was initially hypothesized that disturbances such as fire, hurricanes and 

aboveground vegetation removal would all result in initial decreases in fine root biomass 

and abundance followed by recovery of these parameters. At the beginning of the study 

in 1996, fine root biomass and RLD were low, indicating that fire and the resulting shoot 

removal had reduced fine roots substantially prior to the start of the experiment. Fine 

roots increased dramatically over the first 3 years post-fire and there was a significant 

CO2 stimulation of root growth during that time. These observations indicated that fine 

roots recovered after fire until root closure was reached, and it is possible that nutrients 

made available from the fire supported this recovery. 

A significant CO2 treatment effect on fine root biomass was observed only at one 

other point during the study, which was after the hurricane that occurred in September 

2004. This coincided with a spike in aboveground shoot density (Seiler et al. 2009) that 

was attributed to nutrient input from litterfall during the hurricane. However, there was 

no CO2 stimulation of RLD at any point after the first 3 years of the experiment; patterns 

in RLD after 1999 were similar in ambient and elevated CO2 plots (Day et al. 2006). 

It is puzzling that neither the hurricane (resulting in severe defoliation) nor the 

harvest at the end of the study resulted in a significant decrease in fine root biomass or 

RLD. It is possible that there was a decrease in fine roots immediately after disturbance 

followed by a quick recovery that was masked by the 5-month interval in sampling. It is 

also possible that fine root abundance and biomass were higher immediately before 

harvest than they were in March, and they subsequently decreased back to the March 

levels following the harvest. 



Ten months after complete vegetation removal, fine root abundance was higher 

than it had been pre-disturbance in both CO2 treatments indicating no significant effect of 

previous CO2 treatment ("legacy") on RLD. In 2005 after the hurricanes, there was also 

no CO2 treatment effect on RLD (Day et al. 2006). In contrast, plants in former elevated 

CO2 plots had greater fine root biomass one year after vegetation removal. The increase 

in fine root biomass in former elevated CO2 plots after harvest was not nearly as dramatic 

as the spike in biomass following the hurricanes or 2 years post-fire (Fig. 15). This 

suggested that CO2 stimulation of fine roots after fire and hurricanes was bolstered by 

nutrient inputs as a result of those events and the lack of a nutrient pulse after harvest 

prevented a similar response. In this way, complete aboveground harvest did not 

accurately represent a natural disturbance, which could explain why fine roots did not 

respond as expected. 

The eventual increase in fine root biomass after fire, hurricanes, and harvest was 

probably also due to biomass not being at maximum levels at the time the disturbances 

occurred. Day et al. (2006) attributed the loss of the CO2 stimulation of root growth early 

in the experiment to root closure, which can be thought of as the carrying capacity of the 

soil for fine roots. As discussed in Chapter 2, root growth can only be stimulated until 

soil capacity is reached. If root biomass was already at capacity at the time of 

disturbance, it is likely that the observed increases would not have been possible. 

With regard to fine root depth distribution, the only statistically significant CO2 

treatment effect on fine roots for the 3 sampling dates presented in this chapter was 

greater biomass and RLD in elevated CO2 plots at the 38-48 cm depth, which seemed to 

diminish by May 2008. The significantly greater biomass and abundance of fine roots 
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under elevated CO2 at that depth may have been due to increased competition at 

shallower depths that caused roots to grow deeper in the soil (Iversen 2010). There was a 

tendency toward greater fine root biomass in elevated CO2 plots at almost all depths for 

the 3 sampling dates (Fig. 20), but there was no clear trend indicating a change in depth 

distribution following aboveground harvest. 
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CHAPTER 4 

COARSE ROOT SPATIAL DISTRIBUTION 

IMAGED WITH GROUND-PENETRATING RADAR 

Introduction 

In studies that involve plant root measurements, parameters of interest may 

include root mass, abundance, surface area, length, branching pattern, and vertical and 

horizontal distribution. Root spatial distribution is one factor that affects plant acquisition 

of soil resources such as water and nutrients as well as the ability to compete with other 

plants for those resources (Casper and Jackson 1997). The distribution of large 

belowground structures such as coarse roots, rhizomes, and lignotubers may be controlled 

by space availability as well as soil type, moisture, and depth to water table. 

Traditionally, root distribution was studied by excavation methods that were destructive 

and not suitable for long-term projects where minimal disturbance to the study system 

was necessary. Ground-penetrating radar (GPR) is a nondestructive method for assessing 

root spatial distribution in the field. 

Ground-penetrating Radar 

With the GPR method, high-frequency electromagnetic energy is propagated from 

a transmitting radar antenna into the ground. When the transmitted wave intercepts 

material with a different electrical permittivity, part of the signal is transformed at the 

boundary. The transformation (scattering) and reflection of electromagnetic waves 

detected by a receiving radar antenna is used to locate buried objects and can be used to 

create a 3-dimensional pseudo-image of the subsurface (Fig. 21, Daniels et al. 2008). 
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FIG. 21. Process for using ground-penetrating radar to construct a 3-dimensional 

pseudo-image of a buried object. From Daniels et al. (2008). 

GPR has been used to study plant roots for over 10 years. Controlled experiments 

to explore the capabilities of the GPR method have shown that a twig as small as 0.25 cm 

diameter buried in sand can be detected with a 1500 MHz antenna (Wielopolski et al. 

2000). Tree roots 1-10 cm in diameter buried in a pit filled with damp sand were detected 

with radar antennas of various frequencies down to 155 cm depth (Barton and Montagu 

2004). Buried roots 1.1-5.2 cm in diameter were clearly detected in sandy granite soil 

with a 900 MHz antenna (Dannoura et al. 2008). Hirano et al. (2009) determined that root 

diameter, root water content, and the interval between roots were all important factors in 

GPR detection of roots under optimal sandy soil conditions. 
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Soils with high water, clay, or gravel content can be problematic for root 

detection (Zenone et al. 2008, Butnor et al. 2001). However, GPR has been used 

successfully in the field to study roots of pines and oaks in Florida (Butnor et al. 2008), 

pines in Georgia (Samuelson et al. 2008), peach trees in Georgia (Cox et al. 2005), oaks 

in Sobesice, Czech Republic (Hruska et al. 1999), and maples in Brno, Czech Republic 

(Cermak et al. 2000). GPR was used to recreate top-down and cross-sectional views of 

coarse tree roots growing in situ by Cermak et al. (2000), Hruska et al. (1999), and Stokes 

et al. (2002), although the exact method for drawing root systems from the GPR data was 

unclear. Previous work at the Merritt Island, Florida study site showed that GPR could be 

used to create top-down images in close agreement to the actual orientation of coarse 

roots from 0.25 m2 pits (Stover 2007). 

GPR was an ideal tool for imaging belowground plant structures at this site 

because a) all aboveground vegetation was removed from the study plots in order to 

measure standing biomass at the end of the 11-year CO2 enrichment study, allowing for 

intensive scanning of the study plots; b) it was necessary to leave the belowground 

biomass intact so that the plants could resprout after harvest for further research; c) the 

well-drained, sandy soils were ideal for use with GPR; and d) the size of the experimental 

plots was large enough to sample a wide distribution of roots but not so large as to make 

intensive GPR scanning impossible. 

Objectives 

A 4-m2 "validation" plot was used to explore the effectiveness of GPR in 

describing coarse root spatial distribution on a larger scale. Several approaches to 
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processing the GPR data were examined to determine the best processing protocol for 

imaging coarse roots. Additionally, GPR data collected from the CO2 treatment plots 

were used to create top-down GPR images of coarse roots; these images were then used 

to test for differences in the spatial extent and distribution of roots after 11 years of 

ambient or elevated CO2 treatment. 

Methods 

Data Collection 

To determine the effectiveness of using GPR to image coarse root spatial 

distribution, a 2 x 2 m plot separate from the experimental plots was cleared of 

aboveground vegetation and scanned with the 1500 MHz GPR antenna using 100 scans 

in the x- and y-directions using methods described in Chapter 1. All plant litter, fine 

roots, organic matter and soil were removed from the plot while leaving the coarse root 

system intact. Roots estimated to be less than 5 mm in diameter were clipped and 

removed. Soil was loosened with hand spades and removed with a Shop-vac down to a 

depth of 30 cm. Photographs were taken of the remaining roots. The photographs were 

compared to processed GPR images of the validation plot to determine whether GPR 

could be used to approximate the spatial distribution of coarse roots. Additionally, GPR 

data collected in the 16 experimental plots at the end of the study in 2007 were used to 

examine the spatial distribution of roots growing in the treatment chambers; 8 plots were 

scanned with 13 scans in the x- and y-directions (5 ambient and 3 elevated CO2 plots) and 

8 were scanned with 100 scans in each direction (3 ambient and 5 elevated CO2 plots). 
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Image Processing 

For each plot, a 3-d GPR file was created in Radan version 6.5 (Geophysical 

Survey Systems, Inc., North Salem, NH, USA). Individual GPR scans can be considered 

2- dimensional "cross-sections" of data collected along a transect with the z-dimension of 

depth. Multiple cross-sections in perpendicular directions (x- and y- scans) can then be 

combined to create a 3-dimensional image from the GPR data (Fig. 21). Once a 3-d file is 

created in Radan it can be enhanced with post-processing algorithms to optimize the 

appearance of belowground signal reflectors. For the validation plot, a series of separate 

processing treatments was performed on the raw 3-d file that included: 

- no processing 

- gain equalization 

- gain equalization + position correction 

- gain equalization + position correction + variable velocity migration 

- background removal 

- background removal + Hilbert Transform 

- background removal + constant velocity migration + Hilbert Transform 

- position correction + constant velocity migration + Hilbert Transform 

After each processing protocol was performed, the data were viewed using the 3-d mode 

in Radan from a top-down perspective. Each image was then converted to a bitmap and 

all areas of the image except the red high-reflectance areas were made transparent using 

Microsoft Photo Editor. The bitmaps were then converted to 24-bit grayscale with 

SigmaScan Pro Image Analysis software version 5.0 (SPSS Inc., Chicago, IL, USA). 

Pixels within an intensity range of 70-227 were counted for each image. 
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For comparison, roots were digitized from the validation plot photograph using 

Microsoft Paint by converting the jpeg image into a bitmap and manually tracing all 

coarse roots using the paintbrush function. The enhanced root image was then processed 

with SigmaScan Pro in the same manner as the GPR images to obtain pixel counts of the 

digitized root area. Pixel counts for each GPR processing protocol were compared to the 

pixel counts of digitized coarse roots from the validation plot photograph. Additionally, 

individual GPR images for each processing treatment were viewed as overlays on top of 

the enhanced root photograph to compare distribution of GPR signal reflections to actual 

root distribution from the validation plot. The GPR image that had closest agreement with 

actual root distribution and pixel count of coarse roots was chosen as the best protocol for 

this project. 

The gain equalization + position correction protocol had the best agreement. Gain 

equalization is a processing step recommended for correcting datasets that have gain 

differences from profile to profile; it removes visual artifacts (such as striping and 

mosaics) resulting from differences in gain between transects. Position correction is a 

process in which the user identifies the actual ground surface location in order for the 

program to accurately calculate the velocity of radar energy in the ground. 3-d files were 

then created in Radan for the 16 experimental plots and processed with this protocol to 

obtain top-down images of coarse root spatial distribution for each plot. Pixel counts 

were then obtained for each plot and compared between CO2 treatments and between 

scanning intensities (i.e. 26 vs. 200 scans per plot). Non-parametric tests were run using 

SAS Proc NPAR1 WAY on these data to test for differences. 
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Results 

Validation Plot 

The coarse root distribution for the 2 x 2 m validation plot is shown in Fig. 22. A 

large woody Hgnotuber measuring ~ 30 cm in diameter was present in quadrant C, along 

with other substantial belowground structures such as those located in quadrant D. While 

coarse roots were not identified by species, palmetto roots could be identified by the 

reddish-brown color and flaky texture. Roots were digitized from the photograph (Fig. 

23), which resulted in a pixel count of 34,443. An example of raw 2-m long GPR scans 

from the validation plot is shown in Fig. 24 with their scan locations indicated. Roots 

intercepted by the GPR signal created hyperbolic reflectors in the data, and the GPR 

processing software was used to identify all hyperbolas in the 3-d dataset (Fig. 25). 

After post-processing the collected data with gain equalization and position 

correction, strong signal reflections appeared as red "blobs" in the 3-d image (Fig. 26). 

Strong signal reflections were seen in the GPR data in areas where large roots or 

lignotubers were present, suggesting that GPR detected many of the large belowground 

structures present in the plot. The pixel count for the GPR image was 35,830; this was in 

close agreement to the number of pixels in the digitized roots from the photograph. 

Experimental Plots 

Qualitatively, there was a pronounced difference in GPR image resolution 

between scanning intensities. Plots that were scanned with 100 scans in each direction 

had greater signal resolution while those scanned with 13 scans in each direction had 

lower resolution and striping (Fig. 27). The 8 experimental plots that were intensively 
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scanned averaged 35,691 pixels per GPR image while those with fewer scans averaged 

32,606 pixels per image (P = 0.12). Within each scanning intensity, the number of pixels 

in ambient vs. elevated CO2 plots was not significantly different (intensively scanned 

plots, P = 0.95; partially scanned plots, P = 0.91) (Table 4). 

FIG. 22. GPR validation plot after scanning showing the intact coarse root system. Fine 

roots, organic matter and soil were removed to a depth of 30 cm, leaving large 

belowground structures intact for comparison with GPR images. 
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FIG. 23. Spatial distribution of coarse roots digitized for the 2 m x 2 m GPR validation 

plot. Woody oak roots are shown in blue and palmetto roots are shown in green. 

Discussion 

In this study, the potential use of GPR to image the spatial distribution of coarse 

roots and other large belowground structures was explored. Signal reflections from coarse 

roots were readily identifiable in both 2-d and 3-d GPR data. Processed 3-d images 

showed strong signal reflections that coincided with the location of large belowground 

structures in the validation plot. These images provided a view of the horizontal 



FIG. 24. Unprocessed 2-m long GPR scans from the validation plot with hyperbolas indicated with red dots. 
Hyperbolas are generated when a belowground object (such as a root) scatters part of the GPR signal back to the receiving antenna. 

OS 
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FIG. 25. Example screen from Radan GPR processing software showing 3-d view and 

auto target function to locate all hyperbolas in the 3-d dataset. Data shown are from the 

GPR validation plot with no post-collection processing. Images on right-hand side of 

screen show 2-d GPR scans corresponding to point location in 3-d cube on the left. 

distribution of coarse roots, which is similar to the concept of plant cover in aboveground 

plant measurements. "Root cover" is typically not measured due to the difficulty in 

sampling root systems over large areas. The pixel count method of comparing GPR 3-d 

root images provided a means of quantifying root "cover" in the study plots. This allowed 

for comparisons among plots, between treatments, and potentially over multiple sampling 

dates to detect changes over time. At the end of the 11-year study, no significant 

difference in pixel counts was seen between CO2 treatments. 



FIG. 26. Top-down view of 3-d GPR data file for the validation plot processed with 

gain equalization and position correction (a); red areas indicate strong signal reflections. 

The same GPR image set as a transparent overlay on top of digitized coarse root system 

from the validation plot (b). 
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FIG. 27. Sample top-down views of 3-d GPR files from the experimental plots: Plot 12 

(a) was scanned with 100 scans in the x- and y-directions while Plot 13 (b) was scanned 

with only 13 scans in each direction. Red areas indicate strong signal reflections. 

TABLE 4. Average pixel counts for GPR images created from either full (100 scans in the 

x- and y- directions) or partial (13 scans in the x- and y-directions) scans of the 

experimental plots. P-values represent results of non-parametric test for 

differences in pixel counts between ambient and elevated C02 plots. 

Ambient C0 2 

Elevated C0 2 

Full GPR Scans 

35832 

35606 

P = 0.95 

Partial GPR Scans 

32713 

32427 

P = 0.91 
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Root excavations are labor-intensive and time-consuming, and not possible in 

systems where disturbance to the plants is detrimental. The GPR method eliminates the 

need for excavations and provides a non-destructive means for sampling root systems. 3-

d GPR imaging was also useful for determining the location of large roots and 

belowground structures, which would be beneficial for targeted sampling of these 

structures. Another potential use is for determination of the most appropriate places to 

collect soil cores if large roots need to be avoided. Due to the speed, ease of use, and non

invasive nature of data collection, GPR is an appropriate method for surveying coarse 

root systems in experimental, natural, and agricultural settings. The Florida study was 

ideal for testing the GPR method because all aboveground vegetation had been removed 

from the study plots. However, GPR can also be used around plant stems in areas where 

vegetation is not exceedingly dense; it has been used successfully to study roots in forests 

and tree plantations where scans were made around tree trunks (Butnor et al. 2003, 

Butnor et al. 2005, Zenone et al. 2008). 

This is the only study to use GPR to view intact root systems as a 3-d horizontal 

image and quantify the "cover" of roots in study plots. Previous research using GPR to 

study root systems was focused on testing the ability of GPR to detect roots (i.e. Barton 

and Montagu 2004, Cox et al. 2005, Dannoura et al. 2008, Hirano et al. 2009) or to 

determine root locations or biomass (Butnor et al. 2001, Butnor et al. 2005, Stover et al. 

2007, Samuelson et al. 2008). GPR has been used to map tree root systems by Hruska et 

al. (1999) and Cermak et al. (2000), but this was done by drawing the root system by 

hand from individual 2-d radar scan data. Zenone et al. (2008) analyzed 3-d top-down 

GPR images in relation to partially excavated root systems similar to the method used in 



69 

the Florida study. However, GPR scans were collected only every 25 cm and image 

resolution was low; images were also only compared qualitatively instead of 

quantitatively. 

Other than GPR, nondestructive methods for assessing root spatial distribution 

include high-resolution computed tomography ("CT") scanning and magnetic resonance 

imaging (MRI). CT and MRI methods are useful only for small potted plants due to size 

and cost constraints (Danjon and Reubens 2008), and therefore are not suitable for field 

applications. X-ray technology has been used to image intact root systems from soil 

monoliths collected in the field, but this is a destructive technique and does not allow for 

repeated measurements of the same roots (Pierret et al. 2005). Multi-electrode resistivity 

imaging is the only technique other than GPR that allows for non-destructive 

visualization of root systems in situ, and 2-d images were used to detect spatial variability 

of roots and quantify biomass in a tree stand in Italy (Amato et al. 2008). Zenone et al. 

(2008) used both electrical resistivity tomography (ERT) and GPR approaches to study 

tree roots in the field and found that ERT was more useful for measuring water content 

and soil parameters while GPR was capable of detecting distribution of tree roots with 

higher resolution than ERT. 

Off-the-shelf GPR post-processing software enables a wide range of processing 

options to view 3-d data. Further research into the best data collection settings, scan 

intensity regimes, and processing protocols would add to this field of knowledge. One 

limitation to this study was that not all plots were sampled with the intensive scanning 

regime due to time constraints and physical properties of some of the experimental plots. 

There was a noticeable difference in 3-d image quality depending on the intensity of 
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scanning; greater scan density yielded better image resolution. In future work, a greater 

scan density is recommended when possible. 

The top-down view of the 3-d GPR data was useful for examining coarse root 

horizontal distribution. With further exploration of the data collection and processing 

methods it may be possible to image root architecture more precisely from both top and 

side views. Specifically, the Gain, Scans Per Unit, and Range data collection settings 

should be carefully tested. Manual gain settings customized to the study site and soil 

dielectric properties will ensure consistent signal readings from plot to plot, and Gain is 

essential for accurate visualization of belowground objects. The Scans Per Unit setting 

controls the vertical signal density during data collection that in turn impacts scan 

resolution. The Range function determines the depth of signal penetration and should be 

customized to each study site in order to conserve bandwidth and not waste part of the 

signal on depths that are not important for study. Post-collection processing protocols 

may also be individually adapted to each site, and combinations other than those 

presented earlier in this chapter can be attempted to maximize the information return 

from GPR data. 
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CHAPTER 5 

CONCLUSIONS 

Summary of Results 

High root biomass in the natural Florida scrub-oak ecosystem provides a critical 

carbon reservoir essential for plant recovery after disturbance. Root biomass was 3 to 5 

times greater than aboveground biomass at the end of the study in 2007, and coarse roots 

constituted the majority of root biomass in this system. During 11 years of CO2 

enrichment, strong C02 effects on fine root biomass were seen only after disturbance 

during periods of recovery, followed by steady state where C02 effects diminished. 

Greater root biomass under elevated CO2 during recovery periods could result in greater 

carbon inputs belowground and an alteration of the soil carbon cycle. Over time, there 

was a shift in fine root biomass deeper in the soil under elevated C02. These findings 

suggest that fine roots reached closure or a limit to the soils' capacity to support 

additional fine roots. 

At the end of the study, there was a trend of greater total root biomass under 

elevated CO2. However, root biomass was at a low point in both CO2 treatments at that 

time. One month after all aboveground vegetation in the experimental plots was 

harvested, fine root abundance (RLD) and biomass did not significantly decrease. Ten 

months later, fine root biomass increased significantly in former elevated CO2 plots but 

not in former ambient CO2 plots. The observed effects of vegetation harvest on fine roots 

were different than those observed after fire and hurricanes. Complete removal of 

vegetation is different from natural disturbances at the site where damage to aboveground 

vegetation is also accompanied by a pulse of nutrients. 
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Ground-penetrating radar (GPR) was used successfully to image coarse root 

horizontal distribution in 4-m2 plots. No difference in root spatial distribution was 

detected between plots exposed to ambient or elevated CO2 for 11 years, although this 

was not entirely unexpected since there was not a significant difference in coarse root 

biomass between treatments at the end of the study. GPR proved to be a fast and effective 

method for collecting data on belowground plant structures without having to excavate 

the root system. 

Implications and Applications 

This study is unique because roots were measured for 11 years using non

destructive methods. Excavation of root systems is labor- and time-intensive and not 

feasible when it is necessary to keep the plants intact. Reliable methods for measuring 

root parameters indirectly are needed to advance current knowledge of this under-studied 

component of ecosystems. The Florida study site was ideal for minirhizotron and GPR 

methods because the soil was homogeneous, well-drained, and free of rocks and other 

belowground objects that would interfere with root measurements. 

One limitation of the minirhizotron method was that over time the viewing frames 

at 0-10 cm depth became stained dark by organic matter, leading to undersampling of 

roots at that depth. This is a common problem with long-term deployment of 

minirhizotrons, and the undersampling of roots at shallow depths is well-documented 

(e.g. Samson and Sinclair 1994, Ephrath et al. 1999). Also, roots > 2 mm diameter were 

not adequately measured using minirhizotrons. The GPR method may have detected 

clumps of fine roots, but the amount of sampling overlap for roots in the 2 to 5 mm 
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diameter range between the two methods was not investigated. 

This study is also novel because it was performed in a natural ecosystem that 

experienced periodic disturbances such as fire, drought, and hurricanes. No other CO2 

enrichment experiment has had a similar disturbance regime. The dominant plants in this 

system recovered quickly following disturbance and had a short maturation time 

(Schmalzer and Hinkle 1992a). An important finding of the study was that there was an 

upper limit to the amount of roots the soil can support (termed "root closure", first 

described in Day et al. 2006); disturbance may reduce root stocks below this capacity 

which then allows fine root recovery and eventual return to steady state. During recovery 

periods, elevated CO2 boosted fine root biomass which could lead to changes in the soil 

carbon cycle. This also indicated potential for faster ecosystem recovery after 

disturbances under future atmospheric CO2 concentrations. 

In the broader field of CO2 enrichment studies, the lack of a significant increase in 

fine root biomass under elevated CO2 at the end of the study is not unique (e.g. Bader et 

al. 2009, Handa et al. 2008), although there are examples of sustained stimulation over 

multiple years (e.g. Lukac et al. 2003, Jackson et al. 2009, Pregitzer et al. 2008). The 

quick maturation time of this system most likely limits the potential stimulation of plant 

biomass by elevated CO2. The idea that ecosystem response to CO2 enrichment is 

primarily affected by the ecological state of the system was discussed by Korner (2006); 

he postulated that plant-soil interactions were more important than plant-atmosphere 

coupling when analyzing ecosystem responses. In the Florida study, plants were not 

found to be constrained by long-term nutrient or water limitations (Hungate et al. 2002, 

Langley et al. 2009, McKinley et al. 2009, Johnson et al. 2003). Root responses to C02 
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enrichment were likely constrained by restrictions on soil resource space. 

Recommendations for Future Work 

Some root sampling could have been done differently to better address the 

research questions. First, minirhizotron measurements of fine roots would have been 

more informative immediately prior to the harvest (instead of 4 months before) and 

immediately post-harvest (instead of 1 month after). The long sampling interval may 

have masked changes in fine root abundance and biomass that were due to aboveground 

vegetation removal instead of some other factor. Also, if time had allowed, it would have 

been best to sample all experimental plots with the intensive GPR scanning regime at the 

end of the study. The GPR data collection settings used in 2007 also presented a 

challenge for comparison with previously-collected datasets that used different settings. 

Further testing of the GPR method will advance the study of coarse roots. The 

limitations of this method make it unusable in some field conditions such as waterlogged 

soils, soils with high clay or gravel content, and areas with closely-spaced stems or dense 

vegetation. However, in areas not limited by those conditions, GPR can be an invaluable 

tool for assessment of root parameters. As discussed in Chapter 4, site-specific testing of 

the best data collection and post-processing steps is essential to maximize the information 

obtained from GPR data analysis. Another important area that needs further testing is the 

determination of the degree to which GPR detects fine roots, as well as the minimum root 

diameter of individual roots that can be detected at each site. There was evidence at the 

Florida site that clumps of fine roots were detected by GPR, which could complicate root 

biomass estimates if used in conjunction with fine root estimates from other methods. 
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These findings can be applied to future work in several ways. First, belowground 

carbon budgets and predictions regarding the effect of increasing atmospheric CO2 on 

root biomass will need to take into account root closure as a limit on the amount of 

carbon that can be sequestered in mature ecosystems. Second, belowground biomass is 

temporally dynamic and undergoes natural cycles that are strongly affected by ecosystem 

disturbances. The change in root biomass over time means that one-time sampling may 

not give an accurate representation of root parameters over the long-term, and this must 

be taken into consideration. Third, elevated CO2 may enhance root growth following 

disturbance and potentially speed recovery and return to steady state, which has major 

implications for ecosystem recovery as a whole. Fourth, the minirhizotron and GPR 

methods for sampling root biomass and spatial distribution are not without limitations, 

but can be invaluable tools nonetheless. The successes and failures of these methods, as 

presented here, will hopefully guide future researchers in their efforts to quantify roots 

nondestructively. 
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