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ABSTRACT

AUTOMATIC SPEECH RECOGNITON USING LP-DCTC/DCS 
ANALYSIS FOLLOWED BY MORPHOLOGICAL FILTERING

Penny Hix 

Old Dominion University, 2006 

Director: Dr. Stephen A. Zahorian

Front-end feature extraction techniques have long been a critical 

component in Automatic Speech Recognition (ASR). Nonlinear filtering 

techniques are becoming increasingly important in this application, and are often 

better than linear filters at removing noise without distorting speech features. 

However, design and analysis of nonlinear filters are more difficult than for linear 

filters. Mathematical morphology, which creates filters based on shape and size 

characteristics, is a design structure for nonlinear filters. These filters are limited 

to minimum and maximum operations that introduce a deterministic bias into 

filtered signals.

This work develops filtering structures based on a mathematical 

morphology that utilizes the bias while emphasizing spectral peaks. The 

combination of peak emphasis via LP analysis with morphological filtering results 

in more noise robust speech recognition rates.

To help understand the behavior of these pre-processing techniques the 

deterministic and statistical properties of the morphological filters are compared 

to the properties of feature extraction techniques that do not employ such
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algorithms. The robust behavior of these algorithms for automatic speech 

recognition in the presence of rapidly fluctuating speech signals with additive and 

convolutional noise is illustrated. Examples of these nonlinear feature extraction 

techniques are given using the Aurora 2.0 and Aurora 3.0 databases. Features 

are computed using LP analysis alone to emphasize peaks, morphological 

filtering alone, or a combination of the two approaches. Although absolute best 

results are normally obtained using a combination of the two methods, 

morphological filtering alone is nearly as effective and much more 

computationally efficient.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



V

To my husband Steve Hix and Tom Wolters my friend, colleague, and technical 
advisor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



v i

ACKNOWLEDGEMENTS

First I would like to thank my dissertation adviser, Dr. Stephen A. Zahorian 

for invaluable patience and advice throughout the research work. His expertise in 

the area of speech processing allowed me to expand my knowledge during the 

course of my working in the ECE Speech Communications Lab.

I would also like to thank Dr. Oscar Gonzalez, Dr. Charlie Cooke, and Dr. 

David Streight for serving on my dissertation committee and for their time and 

assistance, with a special thank you to Dr. Gonzalez for making sure I had the 

equipment I needed during the final weeks of my research work.

I would like to thank everyone in the Speech Communications Lab for 

establishing a nice working environment, with special thanks to Wei Wang for 

maintaining the fine computer systems in the lab. Even after his graduation, his 

continued assistance enabled my experiments to run smoothly.

My deepest thanks go to my husband, Steve, for his hard work, 

encouragement and perpetual patience, to Thomas Wolters whose technical 

insight, advice, and support have been invaluable, and to my sister Patricia 

Powers who provided the art work in Figure 3.

Finally, thank you to Dr. Jon Jonsson of NASA Langley Research Center 

for supporting my research, and for his professional guidance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



v i i

TABLE OF CONTENTS

Page

LIST OF TABLES.................................................................................................................x

LIST OF FIGURES.............................................................................................................xii

CHAPTER I INTRODUCTION...........................................................................................1

1.1 O VER VIEW ......................................................................................................... 1
1.2 RELATED W O R K ...............................................................................................6
1.3 SCOPE OF DISSERTATION...........................................................................8
1.4 OUTLINE OF DISSERTATION....................................................................... 9

CHAPTER II SPEECH SIGNAL REPRESENTATION..............................................11

2.1 INTRODUCTION.............................................................................................. 11
2.2 SIGNAL MODELING TECHNIQUES: AN OVERVIEW ............................14

2.2.1 FILTER BANK ANALYSIS....................................................................... 14
2.2.2 MEL-FREQUENCY CEPSTRAL ANALYSIS.......................................15
2.2.3 LINEAR PREDICTION ANALYSIS.......................................................15

2.3 GLOBAL SPECTRAL SHAPE ANALYSIS: DCS ANALYSIS................. 18
2.4 PEAK DETECTION.......................................................................................... 25
2.5 ENVELOPE SM O O TH IN G ............................................................................. 28
2.6 CHAPTER CONCLUSION............................................................................. 31

CHAPTER III TASK AND DATABASE......................................................................... 32

3.1 INTRODUCTION.............................................................................................. 32
3.2 AURORA 2.0 DATABASE............................................................................. 33

3.2.1 TRAINING DATA.......................................................................................35
3.2.2 TEST DATA................................................................................................ 37
3.2.3 ETSI RESULTS FOR AURORA 2.0 DATABASE............................. 38

3.3...... AURORA 3.0 DATABASE..............................................................................39
3.3.1 SPANISH SPEECH-DAT........................................................................41
3.3.2 DANISH SPEECH-DAT.......................................................................... 42
3.3.3 FINNISH SPEECH-DAT.........................................................................43
3.3.4 GERMAN SPEECH-DAT........................................................................43
3.3.5 ETSI RESULTS FOR EACH DATABASE........................................... 43

3.4 KEY STUDIES USING AURORA 2.0 AND 3 .0 ..........................................44
3.5 HIDDEN MARKOV MODEL ARCHITECHTURE...................................... 47
3.6 CHAPTER CONCLUSIONS..........................................................................48

CHAPTER IV STATISTICAL MODELING OF SPEECH PARAMETERS............. 50

4.1 INTRODUCTION.............................................................................................. 50
4.2 ARTFICIAL NEURAL NETW O RKS............................................................. 51
4.3 HIDDEN MARKOV MODELS: INTRODUCTION.......................................53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



v i i i

4.3.1 HIDDEN MARKOV MODEL O VER VIEW ............................................ 55
4.3.2 DEFINITION OF HIDDEN MARKOV M ODELS..................................58
4.3.3 FUNDAMENTAL HMM DESIGN PROBLEMS.................................... 59

4.4 THE HIDDEN MARKOV MODEL TOOLKIT (HTK).................................... 60

CHAPTER V CONNECTED DIGIT RECOGNITION WITH LP SPECTRAL 
ANALYSIS..........................................................................................................................64

5.1 INTRODUCTION...............................................................................................64
5.2 LP SIGNAL PR O CESSING ............................................................................ 68
5.3 CONTROL EXPERIMENTS............................................................................72

5.3.1 MFCC FEATURES...................................................................................73
5.3.2 FFT BASED DCTC/DCS SPECTRAL FEATURES............................ 75

5.4 LP BASED DCTC/DCS SPECTRAL FEATURES...................................... 80
5.4.1 LP-DCTC/DCS SPECTRUM: FIXED BLOCK LEN G TH ...................81
5.4.2 LP SPECTRUM: VARIED BLOCK LENGTH.......................................83

5.5 MFCC SIGNAL REPRESENTATION: VARIED BLOCK LENGTH 91
5.6 CHAPTER CONCLUSIONS........................................................................... 94

CHAPTER VI MORPHOLOGICAL FILTERING IN THE SPECTRAL
DOMAIN.............................................................................................................................. 96

6.1 INTRODUCTION...............................................................................................96
6.2 MATHEMATICAL MORPHOLOGY................................................................99
6.3 MORPHOLOGICAL FILTER SIGNAL PROCESSING............................ 109
6.4 FFT BASED DCTC/DCS FEATURES:MORPHOLOGICAL
SM O O THING .............................................................................................................. 110

6.4.1 MORPHOLOGICAL FILTERED FFT-DCTC/DCS:
AURORA 2.0 MULTI-CONDITION TRAINING................................................. 112
6.4.2 MORPHOLOGICAL FILTERED FFT- DCTC/DCS:
AURORA 2.0 CLEAN TRAINING........................................................................ 115

6.5 LP BASED DCTC/DCS: MORPHOLOGICAL FILTERING..................... 116
6.5.1 MORPHOLOGICALLY FILTERED LP-DCTC/DCS
SPECTRUM: MULTI-CONDITION TRAINING................................................. 117
6.5.2 MORPHOLOGICALLY FILTERED LP-DCTC/DCS
SPECTRUM: CLEAN-CONDITION TRAINING................................................ 119

6.6 MORPHOLOGICAL FILTER TY P E S .......................................................... 121
6.7 RECOGNIZER ARCHITECTURE: INCREASED COMPLEXITY 126

6.7.1 NEW HMM RECOGNIZER CONFIGURATION................................ 126
6.7.2 EXPERIMENTS: THE NEW HMM CONFIGURATION....................127

6.8 MORPHOLOGICALLY FILTERED SPECTRA:
THE AURORA 3.0 DATABASE............................................................................... 128
6.9 CHAPTER CONCLUSIONS......................................................................... 131

CHAPTER VII CONCLUSIONS AND FUTURE W O R K ......................................... 133

7.1 CONTRIBUTIONS...........................................................................................133
7.2 FUTURE W O R K .............................................................................................. 137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ix

REFERENCES.................................................................................................................138

APPENDIX A HTK COMMANDS................................................................................ 147

HCOPY: SIGNAL ANALYSIS...................................................................................147
HCOMPV: HMM INITIALIZATION...........................................................................148
HEREST: ITERATIVE TR A IN IN G ...........................................................................149
HHED: EDITING HMM M O DELS............................................................................151
HVITE: VITERBI BASED RECOGNITION.............................................................151
HRESULTS: PERFORMANCE EVALUATION.....................................................153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



X

LIST OF TABLES

Table Page

Table 1 ETSI Published Results for Aurora 2.0 Multi-Condition Training..............39

Table 2 ETSI Published Results for Aurora 2.0 Clean Training.............................. 39

Table 3 Word Accuracy for Spanish SDC Database................................................. 43

Table 4 Word Accuracy for Danish SDC Database................................................... 44

Table 5 Word Accuracy for Finnish SDC Database...................................................44

Table 6 Word Accuracy for German SDC Database................................................. 44

Table 7 Key Study Results for Aurora 2.0 using Multi-Condition Training.......45

Table 8 Key Study Results for Aurora 2.0 Clean Training Data.........................46

Table 9 Key Study Results for Aurora 3.0 Database............................................ 47

Table 10 Word Accuracy for MFCC Analysis. Multi-Condition Training............... 75

Table 11 Word Accuracy for MFCC Analysis. Clean-Condition Training............. 75

Table 12 Word Accuracy for DCSC/DCT Analysis. Block Length 10....................78

Table 13 Word Accuracy achieved by recognizer determined with LP
order 25 with block length 10. Multi-Condition Training........................................... 82

Table 14 Word accuracy for recognizer determined by LP order 25
with block length 11...........................................................................................................89

Table 15 Word Accuracy obtained with (dilation) filter length 109 Hz
and block length 11. Multi-Condition Training........................................................... 113

Table 16 Word Accuracy obtained with (dilation) filter length 125 Hz
and block length 13. Clean-Condition Training......................................................... 116

Table 17 Word Accuracy obtained with (dilation) filter length 109 Hz
and block length 11. Multi-Condition Training........................................................... 119

Table 18 Evaluation of the recognizer determined with the dilator
operator with morphological filter length 78 Hz, LP order 25, block
length 13, and the Spanish language database........................................................129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



x i

Table 19 Evaluation of the recognizer determined with the dilator
operator with morphological filter length 109 Hz, LP order 25, block
length 13, and the Finnish language database........................................................ 129

Table 20 Evaluation of the recognizer determined with the dilator
operator with morphological filter length 109 Hz, LP order 0, block
length 13, and the Danish language database.........................................................129

Table 21 Evaluation of the recognizer determined with the dilator
operator with morphological filter length 125 Hz, LP order 75, block
length 11, and the German language database.......................................................130

Table 22 Key Study Results for Aurora 3.0 Multi-Condition Training...........131

Table 23 Key Study Results for Aurora 2.0 using Multi-Condition
Training.............................................................................................................................. 134

Table 24 Key Study Results for Aurora 2.0 using Clean Training................ 134

Table 25 Best performances achieved with when evaluating with
multi-condition training data...........................................................................................135

Table 26 Best performances achieved with LP Order = 50 when
evaluating with clean-condition training data.............................................................135

Table 27 Best performances achieved with LP Order = 0 when
evaluating with multi-condition training data.............................................................. 136

Table 28 Best performances achieved with LP Order = 0 when
evaluating with clean-condition training data.............................................................136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure Page

Figure 1 The first three DCTC basis vectors, with a warping factor of
0.45 (Zahorian and Nossair) [18]................................................................................. 223

Figure 2 The first three DCSC basis vectors, with a coefficient of 5
for the Kaiser warping function (Zahorian and Nossair) [17]....................................24

Figure 3: The human speech production system....................................................... 25

Figure 4 Illustration of envelope smoothing via LP analysis and 
morphological filtering.......................................................................................................30

Figure 5 G.712 filter frequency response...................................................................346

Figure 6 MIRS filter frequency response....................................................................356

Figure 7 Artificial Neural Network...................................................................................52

Figure 8 Six State Left-to-Right HMM........................................................................... 56

Figure 9 Hidden Markov Model training sequence.....................................................61

Figure 10 The spectrum of one frame of the clean digit string “75”
compared with the spectrum of the same frame with additive noise
at SNR 15 dB and SNR 10 dB, and with convolutional noise................................677

Figure 11 Word accuracy for the recognizer determined by varying
the block length from 3 to 25 blocks per frame........................................................... 77

Figure 12 Word accuracy for varying the block length evaluated with
clean training data............................................................................................................. 79

Figure 13 Word Accuracy for block length 10 and varying the number
of LP Coefficients, evaluated with multi-condition training data.............................. 82

Figure 14 Word Accuracy for varying LP order and varying block length............. 85

Figure 15 Word accuracy determined by varying the LP Order over 
0 to 25, and varying the block length over the range from 9 to 15..........................87

Figure 16 WI007 front-end with varying window length for computation
of the dynamic coefficients.............................................................................................. 93

Figure 17 WI007 front-end with varying block length for computation
of the dynamic coefficients.............................................................................................. 94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



xiii

Figure 18 Example of Minkowski set addition and Minkowski set
subtraction.........................................................................................................................101

103Figure 19 The graph of the structuring function g, and its umbra.
The function g is the parabola in the range [-4,4] and is zero elsewhere.
The umbra of g is indicated by the solid lines extending downward in the 
range [-4,4]........................................................................................................................103

105Figure 20 Dilation of one frame of the spectrum with g....................................105

Figure 21 One frame of the spectrum of digit string “008” eroded with g............ 106

Figure 22 One frame of the spectrum of the digit string “008” after 
open-close by g................................................................................................................107

Figure 23 One frame of the spectrum of the digit string “008” after
close-open by g................................................................................................................108

Figure 24 Word Accuracy as a function of filter length (dilation operator).
The recognizer was trained with multi-condition data..............................................113

Figure 25 Performance of recognizers determined by varying the 
morphological filter length (BL=13), and evaluated with clean-condition 
training................................................................................................................................116

Figure 26 Performance of recognizers determined by varying the LP
order and the morphological filter length (dilation operator), and evaluated
with multi-condition training........................................................................................... 118

Figure 27 Performance of recognizers determined by varying LP
order and morphological filter length (dilation operator), and evaluated
with clean-condition training data.............................................................................. 1208

Figure 28 Erosion operation, varying LP order and varying filter length.
Evaluation was performed with multi-condition training.......................................... 122

Figure 29 Open operation, varying LP order and varying filter length.
Evaluation performed with multi-condition training.................................................1220

Figure 30 Close operation, varying LP order and varying filter length.
Evaluation performed with multi-condition training.................................................1231

Figure 31 Open-close operation, varying LP order and varying filter
length. Evaluation performed with multi-condition training..................................1242

Figure 32 Close-open operation, varying LP order and varying filter
length. Evaluation performed with multi-condition training.................................... 125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



x iv

Figure 33 Recognizer performances for the close-open operation
with window length 79 Hz, varying block length. The evaluation
was performed with multi-condition training...............................................................128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1

CHAPTER I 
INTRODUCTION

1.1 OVERVIEW

Machine signal processing that allows a computer to detect and identify 

specific words spoken into a microphone or telephone is normally referred to as 

Automatic Speech Recognition (ASR). Speech recognition systems frequently 

use recorded speech for training (also referred to as learning). Recorded speech 

samples are decoded via a combination of signal processing and pattern 

recognition techniques.

Historically, the primary goal of ASR research has been to obtain 100% 

accuracy in real-time without constraints. The ideal ASR might be thought of as 

a speaker independent ASR system with unlimited vocabulary size which is noise 

robust and that can adapt to changing speaker characteristics. For example, it is 

quite normal for a speaker to raise the pitch of their voice when they are 

speaking under stressful conditions. This is one example of what is referred to 

as the Lombard effect. The ASR systems of today have yet to achieve this ideal. 

After more than four decades of ASR research, the improved accuracy in quiet or 

clean speech environments has resulted in only modestly improved performance 

of ASR in noisy environments. Unfortunately, improvements have not been 

significant enough to yield recognition accuracy which competes with human 

performance. The demand for improved ASR systems has driven research to 

focus on improving Automatic Speech Recognition systems that are noise robust. 

In quiet environments people are already using ASR dictation systems, and the
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United States Government is currently implementing ASR systems to improve 

and increase the speed of language acquisition for military and government 

personnel.

Most ASR systems experience performance degradation when attempting 

to recognize speech in changing environments. Background noise such as room 

chatter, road noise, or channel noise frequently causes an ASR system to fail 

dramatically. When recognition performance in noisy environments is improved 

to above 98%, ASR systems will likely find common applications in command 

and control systems as well as in many embedded applications. Although the 

performance of ASR systems in noise has improved, this improvement is most 

significant only when the recognition task is constrained in some way. 

Performance is directly dependent on the type of constraint. For instance, 

accuracy greater than 97% has been achieved on recognition of continuous 

digits over a microphone channel with no background noise. Performance is 

even higher for isolated word recognition tasks. In these systems the word to be 

recognized is surrounded by silence. Therefore, word boundaries are clearly 

defined and coarticulation effects, which degrade the performance of continuous 

digit recognition systems, do not contribute to decreased accuracy. Continuous 

and isolated word recognition tasks are examples of small vocabulary speech 

recognition systems, and are currently being implemented in clean and noisy 

environments.

One technique for isolated word recognition is to attempt to recognize 

whole words. Phonemes are the basic speech unit, but they can be difficult to
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recognize. Therefore, some isolated word recognition systems treat each whole 

word as a basic speech unit. When an ASR system attempts to recognize 

continuous speech coarticulation effects blur the word boundaries, thus 

increasing the difficulty level. The Lombard effect adds additional challenges for 

an ASR system. Speaker accents also introduce variations to which ASR 

systems have difficulty adapting. These speaker variations combined with 

environmental differences further increase the challenge of the recognition task.

Speaker dependent systems are trained to recognize voice characteristics 

of individual speakers. Current speaker-dependent systems normally require 

approximately 15 minutes of training speech from each speaker; the speaker- 

specific speech is in addition to the potentially several hours of training speech 

used to develop the baseline recognizer. During the speaker-specific 

“enrollment” period, the speaker is placed in a quiet environment and is directed 

to speak a specific set of words or sentences. The recorded speech samples are 

then used to train the system to adapt to the voice characteristics of the specific 

speaker. With this type of system, larger vocabularies are possible but 

performance is normally degraded to a range of 90% to 95% word accuracy. On 

the other hand, as an indication of progress that has been made in ASR 

research, speaker-independent systems such as Large-Vocabulary Continuous 

Speech Recognition (LVCSR) systems perform quite well in a laboratory. They 

use a large vocabulary and are trained on a large set of speakers. As a result, 

individual speakers are not required to provide speech samples for training the 

recognizer. System complexity and computational demand are directly dictated
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by the size of the vocabulary, as is the recognition accuracy. Even with 

improvements, accuracy in real environments is frequently no greater than 87%  

[1], and is further degraded in noisy environments. An additional challenge for 

LVCSR systems is processing time, which can be hundreds of times greater than 

real-time.

Clearly current Automatic Speech Recognition still presents many 

challenges. Noisy speech is one of the many unresolved problem areas for 

Automatic Speech Recognition systems. Even if speech processing is limited to 

focusing only on the noise in speech, it is impossible to consider all combinations 

of types and levels. This continuum causes major performance issues for ASR 

systems. One of the critical problems in this area occurs when acoustic 

information learned through training is mismatched with the test set. The result is 

seriously degraded ASR performance. Environmental acoustic mismatch is 

caused by differences in background noise. On the other hand, channel 

mismatches occur when transmission conditions vary. The speaker himself can 

be the source of other types of mismatch depending upon the stress conditions 

imposed on him or her. As mentioned previously, speakers have a tendency to 

speak louder, or raise their pitch, in order to compensate for local conditions. 

Numerous researchers have attempted to build systems that compensate for 

speech variability [2, 3]. A significant portion of research has also focused on 

adapting models to noisy speech before the recognition phase; this approach 

attempts to address variability in the environment. Limited data for adaptation, 

noise that is highly non-stationary, and insufficient computing power for
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adaptation are some of the limitations that must be addressed when recognizer 

adaptation is performed. Other research attempts to determine less noise- 

sensitive features. One such approach is the use of root-cepstrum coefficients 

(RCC). They have been shown to be more immune to noise and lead to faster 

decoding [4]. Root cepstrum coefficients differ from the more standard Mel- 

frequency cepstrum coefficients in that the square root is taken rather than the 

logarithm. Matched training is yet another approach used to obtain noise robust 

features. While perfect performance has not yet been achieved, these methods 

are generally more computationally efficient than model adaptation, and often 

perform better. It is thought that if acoustic mismatch between trained models 

and test data could be completely eliminated, ASR performance would improve, 

even for low signal-to-noise ratio (SNR) levels.

Speech signal processing algorithms that extract speech characteristics, 

usually called features, are referred as the front-end of an ASR system. Front- 

end processing is a critical component of a speech recognition system. However 

information extracted in the front-end processing is unable to capture all 

necessary speech characteristics for accurate classification. There are currently 

no feature extraction methods that can fully separate every category of speech. 

Therefore some form of higher-level speech modeling is necessary. This higher 

level modeling is normally accomplished with either a Neural Network (NN) 

and/or a Hidden Markov Model (HMM). This stage of automatic speech 

recognition is referred to as the back-end. Because of its ability to model 

variability in speech durations, the Hidden Markov Model has been a primary
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choice for the back-end of statistical speech recognizers for over 20 years. 

Hidden Markov Models do have certain limitations. One is that they are unable 

to model temporal information within states. For the sake of tractability, the 

assumption is made that the probability of the current symbol being generated is 

independent of any previously generated symbols. This assumption of 

independence is not strictly correct [14], [58], but does hold approximately. It has 

been shown that the inclusion of temporal information greatly improves the 

performance of automatic speech recognition systems [5], [6], [7].

1.2 RELATED WORK

This work focuses on improving feature extraction via Linear Predictive 

Coding with morphological filtering. Although Linear Predictive coding methods 

have previously been implemented in speech recognition this approach 

incorporates smoothing of the LP spectral envelope via new morphological 

filtering. Using Linear Predictive Analysis, static information is extracted from the 

acoustic sample over short time intervals on the order of 35ms. The envelope is 

smoothed with morphological filtering. Dynamic, or temporal, information is then 

obtained from the resulting feature vector containing static speech information.

Some researchers believe that more useful speech information is 

contained within the peaks of the envelope especially when noise or distortion is 

present. Peak detection is also an important component of pitch tracking 

algorithms. Thus, a significant amount of effort has been spent trying to improve 

ASR by emphasizing peaks and de-emphasizing valleys in the envelope. Speech 

information that has been overwhelmed by noise is often referred to as missing
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data. Two approaches to achieving noise robust speech recognition with missing 

data have recently been under investigation. One approach has been to improve 

Hidden Markov Models via model adaptation to ignore missing speech 

information. Another has been to modify the front-end analyzer to better capture 

the speech information by ignoring speech segments overwhelmed by noise. 

Lippman and Carlson showed that, when channel variability and noisy conditions 

exist, missing feature compensation can be used to adapt the recognizer to 

reduce mismatch between training and test conditions and improve the accuracy 

of automatic speech recognition [8]. Missing feature compensation dynamically 

modifies the probability computations of HMM recognizers to better represent 

corrupted utterances. Even with severe environmental variability, missing feature 

adaptation provides high-performance speech recognition. Two components of 

missing data techniques can be applied to traditional ASR systems. Identifying 

corrupted portions of the speech spectrum is the first task. The second is 

modifying the ASR models to account for the missing signal components [9]. 

Additionally, significant performance improvements have been obtained in 

simulated noisy environments using a bounded marginalization approach for 

incorporating reliability evidence in frequency bins, with the potential for greater 

performance gains through better estimates of frequency dependent background 

noise levels [10]. Currently none of these methods has achieved the ideal 

performance.
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1.3 SCOPE OF DISSERTATION

This dissertation investigates the use of spectral peak enhancement and 

peak envelope smoothing as an attempt to reduce feature variability, thereby 

achieving noise robust features for improved ASR performance. Specifically, 

spectral peak enhancement via LP analysis with discrete cosine transformation, 

followed by spectral envelope smoothing via morphological was developed and 

applied to the Aurora 2.0 and Aurora 3.0 speech databases. The idea of the 

morphological filtering is to use the shape-based organization of morphology and 

to expand the morphological filtering operator beyond the standard maximum 

and minimum operators. An important property of morphological filters is their 

resistance to outlying values and impulsive noise. With respect to this property, 

our goal was to suppress noise without introducing deterministic bias that would 

adversely affect recognition performance. Morphological filtering is expected to 

work well and be shown appropriate for speech signal enhancement.

The method was implemented with matched and mismatched training and 

the new features were compared with results from established techniques for 

each modality. Linear prediction analysis was used to obtain the first spectral 

representation of the speech signal. The LP spectral envelope was then 

smoothed with morphological filtering. Morphological filtering was used to 

enhance the peak regions of the envelope and reduce the valleys, where noise is 

presumed to predominate. DCTC features extracted from a DCT of the log 

magnitude spectrum were used as static features. A Hidden Markov Model 

framework with standard training and recognition algorithms was used
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throughout to statistically model the speech. A second, more complex HMM 

framework was also used and compared to the first statistical speech model. 

The primary objective of this work was to investigate spectral envelope 

smoothing and peak enhancement for the purpose of improving ASR. Placing 

this work in a mathematical framework such as finding and removing corrupted 

speech segments and minimizing a global mean square error representation is 

normally too general and may or may not lead to improving ASR accuracy. 

Ultimately, it is system performance in actual environments that is critical. 

Therefore, the goal of this dissertation is to contribute some knowledge in the 

field which could later be added to achieve additional performance 

improvements. The specific objectives of this work are:

• Develop a morphological filter structure encompassing linear and 

nonlinear operations for envelope smoothing, which helps to overcome 

the deterministic bias problems of standard morphological filtering.

• To provide analyses of the behavior of the new morphological filter, and 

illustration of its success as regards noise reduction for automatic 

speech recognition systems.

• Integration of morphologically based spectral envelope smoothing, and 

linear predictive coding front-end processing algorithms that yield a set 

of noise robust features and improved automatic speech recognition.

1.4 OUTLINE OF DISSERTATION

Chapter 2 contains a brief review of digital signal processing for automatic 

speech recognition, including filter bank analysis, computation of Mel-frequency 

cepstral coefficients (MFCC), and comparison of discrete cosine transform series
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coefficients with subsequent discrete cosine series (DCTC-DCS) based cepstral 

coefficients with MFCCs. This comparison points out the benefits of DCTC-DCS 

coefficients for automatic speech recognition and motivates additional processing 

to enhance the speech signal before computing statistical models for automatic 

speech recognition. Feature computation techniques based on linear predictive 

analysis with subsequent envelope smoothing via morphological filtering length 

are also presented. Chapter 3 discusses the Aurora Distributed Speech 

Recognition (DSR) task and the Aurora 2.0 & 3.0 databases. Basic concepts of 

HMMs are summarized in Chapter 4. The Hidden Markov Tool Kit (HTK), used 

to implement HMMS for speech recognition reported in this work, is included in 

the discussion of HMMs. Chapter 5 describes the control experiment defined 

and reported on by the Aurora working group. A second control experiment 

using the Old Dominion University Speech Communications Laboratory FFT- 

derived DCTC/DCS signal model, and spectral modeling with LP-derived 

DCTC/DCS coefficients are also discussed in this chapter. Morphological 

filtering is introduced and discussed in Chapter 6. Subsequently, spectral 

envelope smoothing via Morphological Filtering is presented, followed by the 

experiments conducted using proposed morphological filtering of signal models. 

Finally, Chapter 7 presents conclusions of the dissertation and suggestions for 

future work.
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CHAPTER II 
SPEECH SIGNAL REPRESENTATION

2.1 INTRODUCTION

In order to implement an automatic speech recognizer, the analog speech 

signal must be sampled and converted to its digital representation. This first 

stage is usually handled by the system hardware, i.e. an analog to digital signal 

processing board. The speech data used in this work was created from the Tl- 

digits database, which was “collected at Tl in 1982 in a quiet acoustic enclosure 

using an Electro-Voice RE-16 Dynamic Cardiod microphone, digitized at 20 kHz.” 

[54], using 12 bit quantization for the analog to digital (A/D) conversion [86]. 

Although the (A/D) conversion process can have a significant impact on the 

performance of an ASR system only existing databases were used. Therefore, 

no new A/D techniques were employed during the course of this research. Thus, 

the analog-to-digital conversion process is not addressed in this dissertation. 

The second stage is to parameterize the digital signal to obtain a parametric 

representation that emulates observed human auditory and perceptual systems.

Speech signal modeling is the process of converting digital sequences of 

speech samples to observation vectors. Unfortunately, speech signals contain a 

significant amount of information that is not useful for automatic speech 

recognition. Therefore, speech signal modeling algorithms are designed to 

parameterize salient spectral energies of the speech sample, which are then 

helpful in maximizing automatic speech recognition performance, while 

minimizing the dimensionality of the speech representation vectors. Additionally,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

signal modeling attempts to achieve parameterizations that are robust to noise as 

well as speaker and channel variations. The final requirement is to capture 

spectral dynamics in the signal parameterization.

Speech information is assumed to be the convolution of the input, or 

excitation, and the vocal tract or impulse response [14]. For speech recognizers 

the vocal tract imparts more useful information than the excitation source. A 

primary goal then is to separate and preserve vocal tract information for the 

determination of the fundamental units of speech while ignoring the effects of 

speaker differences, channel distortion, and background noise. Thus, in order to 

analyze the speech signal it must be de-convolved.

Analysis of a speech signal naturally includes de-convolution of the source 

and signal. Along those lines there are two approaches to signal modeling. 

Articulation-based signal representations for speech recognizers that attempt to 

model speech signal properties that reflect the shape of the vocal tract, rather 

than the excitation source, comprise the first approach. The second approach 

uses perceptually-based signal representations in an attempt to model the 

frequency response of the human ear, which is essentially insensitive to phase 

effects. In both cases a signal representation that ignores short time phase 

effects is desirable. One example that ignores short time phase effects is the 

short-time power spectrum. In the log-power domain the source and vocal tract 

become additive components and are therefore easier to separate. An important 

property of the log power spectrum is that its shape is invariant to gain applied to 

the speech signal. The spectrum is translated up or down by the applied gain,
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but not distorted. Another important characteristic of the log-power spectral 

representation is that effects of channel distortion from communications channels 

are additive constants in the log-power domain. In the time domain these 

components are multiplicative. Additive noise presents a more challenging 

problem.

Extraction and preservation of speech information is critical but a speech 

recognizer also needs to be robust in its ability to ignore the effects of 

background noise, channel distortion, and speaker differences. Additionally, 

speech signal representations need to be as compact as possible so that large 

data sets can be processed in reasonably short time periods, with as little 

computational demand as possible. Many efficient representation methods use 

short-time time or spectral analysis methods to model either the function of the 

human ear or the vocal tract. Although only Linear Prediction Analysis and 

Global Shape Analysis (DCTC/DCS) are investigated in this work, some of the 

historically important modeling techniques for speech are described below. For 

further reading on this subject refer to “Signal Modeling Techniques in Speech 

Recognition,” [15], a readable yet comprehensive introduction to this topic.

The remainder of this chapter is organized as follows. Historically 

important signal modeling techniques used in speech processing are described 

in Section 2.2. Section 2.3 presents The Old Dominion University modeling 

technique called Global Spectral Shape Analysis. Section 2.4 provides an 

overview of speech signal peak detection, and spectral envelope smoothing is 

discussed in Section 2.5. Chapter conclusions are given in Section 2.6
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2.2 SIGNAL MODELING TECHNIQUES: AN OVERVIEW

Although numerous modeling techniques have been attempted, with 

varying degree of success, only the signal representation methods with the most 

historic significance are presented in this overview. Thus, this section provides a 

brief discussion of Filter bank analysis, Mel-frequency Cepstral Analysis, and 

Linear Predictive Analysis.

2.2.1 FILTER BANK ANALYSIS

One of the first speech signal representations used for ASR was 

implemented with a filter bank. The filter bank was originally constructed as a set 

of overlapping triangular shaped band-pass filters which typically covered a 

frequency range of 0 Hz to 5 kHz. This was originally accomplished with analog 

circuitry. However, the availability of desktop computers and efficient digital 

signal processing has made it much easier to realize filter banks with software. 

Additionally, software modeling is easier, and less expensive to adapt to 

changing demands. Filter banks are designed to model the nonlinear frequency 

perception of the human ear. As a result they fall into the class of perceptually- 

based speech modeling methods. Filter bank spacing is commonly determined 

using the Mel scale, proposed by Stevens, Volkman, and Newman in 1937, to 

emulate the nonlinear frequency perception of the human ear.

The Mel scale is a perceptual scale of pitches judged by listeners to be 

equal in distance from one another [16]. Another psycho-acoustical (perceptual) 

scale, called the Bark scale, ranges from 1 to 24 Barks. The barks correspond to 

the critical band of human hearing, and range from 0 Hz to 15.5 kHz.
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2.2.2 MEL-FREQUENCY CEPSTRAL ANALYSIS

Mel-Frequency Cepstral Coefficients (MFCCs) are perceptual-motivated 

coefficients derived from the Inverse Fourier Transform of the log spectrum. The 

MFCCs approximate the human auditory response by logarithmically positioning 

frequency bands on the Mel scale, rather than the linearly spaced frequency 

bands obtained with the Fourier Transform. MFCCs are computed, on a frame 

by frame basis, as follows: The Fourier Transform of overlapping speech

segments is computed. Next the transformed signal is squared to obtain the 

spectral magnitude, and then summed to obtain filter outputs. Frequency bands 

are formed by grouping neighboring coefficients. This grouping also induces the 

Mel frequency scale and reduces fine harmonic structure at multiples of the 

fundamental frequency, F0.

The Discrete Cosine Transform (DCT) of the log energy of each filter 

reduces correlation in adjacent energy levels, induced by the vocal tract, and 

gives the final Mel Frequency Cepstral Coefficients. MFCCs preserve important 

information while reducing the number of required coefficients for subsequent 

statistical modeling. The first cepstral coefficient is a measurement of the shape 

of the log spectrum and is called Co- The second coefficient, Ci, gives a 

measure of the balance between the two halves of the spectrum. Higher order 

coefficients provide information regarding the finer features of the spectrum.

2.2.3 LINEAR PREDICTION ANALYSIS

The human vocal tract can be modeled as a lossless acoustic tube with 

plane-wave sound propagation along the tube. As a result, the impact of the
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vocal tract on the excitation signal is that of a series of resonances [17]. 

Consequently the vocal tract can be roughly modeled as an all-pole filter. Linear 

prediction (LP), also known as auto-regressive (AR) modeling, is a least mean 

squared error algorithm that fits the parameters of an all-pole filter to the speech 

spectrum. The estimated speech signal is determined by a linear combination of 

past samples. The relationship is given by the following equation,

x[n] = Y jakx{n-k],  (2 .1)
k=1

where jc[«] is the estimated speech signal and x[n  -  k]  are the past samples. 

Using Z-transform notation the transfer function of the linear prediction filter is 

obtained from equation 2.1 and is given in equation 2.2.

» W = - r ^ — • <2 -2 )
z X z-i
*=0

where G is the gain, ao = 1, p is the number of poles and is referred to as the 

order of the LP analysis. Spectral peaks are located at the roots of the 

denominator. From equations 2.1 and 2.2 it can be seen that LP analysis 

predicts the current sample as a linear combination of the past p samples. 

Choosing the order of LP analysis can be difficult and, in many cases, is 

empirically determined. Generally higher order results in lower prediction errors. 

Unfortunately, when the order becomes too large the model fits individual 

harmonics and the separation of the vocal tract and excitation is not very good.

In equations 2.1 and 2.2 the {ak} are filter coefficients selected to 

minimize the mean squared error over the analysis frame. Short time analysis is
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used to estimate the coefficients. For each segment the squared error is 

computed and minimized by setting the derivative equal to zero. W e can express 

the error for each segment as a set of p linear equations as follows:

En = Y j e2n[m] = Y j (xn[m ] - x mf  = Y j (xn[m ] -J ^ a kxn[m - k ] ) 2, (2.3)
m=0 m=0 m= 0 k= \

where N is the length of the analysis frame. Minimizing the mean squared error 

results in the Yule-Walker equations:

E t - l  a P̂rn [i> k] = <Pm U, 0], (2 -4)

where the q>m are covariance functions and the ak are the prediction coefficients.

There are numerous methods for solving the Yule-Walker matrix 

equations. However, due to the symmetric windowing of the speech samples, 

and the resulting short time nature of the speech segments or frames, the 

autocorrelation matrix is Hermitian and has the Toeplitz property. Thus the 

parameters can be estimated using Levinson-Durbin recursion. Since this 

method is always stable, it has been become one of the most common 

approaches for speech recognition. The Covariance method using Cholesky 

matrix decomposition has also been used to compute the filter coefficients. It 

introduces the least amount of bias but the method does not always result in 

stable filters. Therefore, it is not commonly used in speech recognition. The 

Covariance method is also known to reduce the amplitude of spectral peaks 

which is contradictory to the goal of emphasizing peaks in noisy speech. Thus, 

the method was not a good candidate for this dissertation work. Another
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alternative is the Lattice method, which is equivalent to Levinson-Durbin 

recursion. This method can be highly computationally demanding but is 

sometimes preferable because it also results in stable filters.

2.3 GLOBAL SPECTRAL SHAPE ANALYSIS: DCS ANALYSIS

Historically, ASR systems have relied on FFT-based spectral analysis. 

The FFT of the speech signal is taken and filter bank analysis is applied to the 

compute Mel-frequency Cepstrum (MFC) and Mel-frequency Cepstral 

Coefficients (MFCC). The Old Dominion University Speech Communication Lab 

uses a technique for feature extraction based on the encoding of global spectral 

shape [18], [19], [20]. While MFCC analysis applies the DCT to the energy of the 

spectrum across all filter bands, the method used in this research applies the 

DCT directly to the log magnitude spectrum. W e refer to the resulting features as 

Discrete Cosine Transform Coefficients (DCTCs). A modified DCT is used to 

model the non-linearity of the human ear in speech perception. This modification 

is achieved via a bilinear warping of the basis vectors of the standard DCT [18]. 

The effect achieved by the warped basis vectors is more resolution at low 

frequency and less resolution at high frequency. This concept is similar to the 

non-uniform distribution of the filters in Mel-scale filter bank analysis, and 

emphasizes the lower frequency regions of the speech signal while de­

emphasizing the higher frequency regions.

It has been shown that the addition of spectral-temporal information 

derived from time derivatives can greatly improve the performance of automatic 

speech recognition systems [5]-[8]. The objective is to capture the temporal
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changes of each feature component from frame to frame. Vector components 

containing spectral-temporal information from time derivatives are commonly 

referred to as dynamic features. Several adjacent frames are used to extract this 

dynamic information. First order time derivative components, Dt, are called delta 

coefficients, where t represents the signal sample at time t. They can be 

computed with the following regression formula

w

S  i C ...
= ^ ---------- , (2.5)

I ' "
i=-W

Ct are the corresponding static coefficients and W is the time span, in number of 

frames, in each direction around the center time t.

Second order time derivatives, or acceleration coefficients are computed 

using equation 2.5 with the delta coefficients; in some cases the window size for 

delta-delta coefficients is different than the window size for delta coefficients. A 

window size of 3 is frequently implemented [21], but there are systems that use a 

much longer window size [22], [23]. Since the delta and acceleration coefficients 

are concatenated to the static feature vectors the resulting vectors are higher in 

dimensionality than the static feature vectors. For this reason it is sometimes 

necessary to perform vector transformation to reduce the dimension of the 

feature space before proceeding with statistical modeling.

At The Old Dominion University Speech Communications Laboratory the 

spectral-temporal features are determined using a Discrete Cosine Series 

Expansion over time. Actually the DCT is applied over a block of frames each of
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which represents one time instant. The resulting parameters are called Discrete 

Cosine Series Coefficients (DCSCs). An important difference between DCSCs 

and MFCCs with delta and delta-delta terms is that the first DCSC is the 

smoothed version of the corresponding DCTC, resulting in a final signal 

representation that is more noise robust but which does not represent the fine 

detail of the speech signal.

Zahorian and Nossair first presented the following equations [18] to show 

the derivation of DCTC and DCSC parameters. For completeness the details are 

provided here. First, let X(f) be the magnitude squared spectrum represented with 

linear amplitude and frequency scales and let X'(f) be the magnitude spectrum as 

represented with perceptual amplitude and frequency scales. Let the relations 

between linear frequency and perceptual frequency, and linear amplitude and 

perceptual amplitude, be given by:

/ '  = gd), < r  = ̂ < V , X'=!og(X).  (2.6)
df

For convenience of notation in later equations, f and f' are also normalized 

to the range [0,1]. The acoustic features for encoding the perceptual spectrum 

are computed using a cosine transform,

1
{D C TC \ = \x '( f )  cos(itif)d f, (2.7)

o

where {DCTC}. is the i-th feature as computed from a single spectral frame.

Equation 2.8 can be obtained from equation 2.7 by substituting equation 2.6 into 

equation 2.7.
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{DCTC}i = Jlog(X(fi) cos[mg(f)J ^  d f. (2.8)
0 J

We therefore define modified basis vectors as

<t>i(j) = cos[mg(f)] (2.9)

and rewrite the equation as follows:

(2.10)

Thus, using the modified basis vectors, all integrations are with respect to linear 

frequency. In practice, equation 2.10 can be implemented directly as a sum using 

the squared spectral magnitude of the FFT. Any differentiable warping function 

can be precisely implemented, eliminating the need for the triangular filter bank. 

The DCTC terms computed with equation 2.10 are very similar to cepstral 

coefficients. However, to emphasize the underlying cosine basis vectors and the 

calculation differences relative to most cepstral coefficient computations, we call 

them the Discrete Cosine Transform Coefficients (DCTCs). This is consistent with 

terminology in previous related work [17] [20].

In this dissertation, DCTC parameters were computed with equation 2.9 

using a logarithmic amplitude scale and the bilinear warping function given in 

equation 2.11, with warping coefficient a.

a  sin(2n f)
1 -a  cos(2nf)

(2 .11)
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The value of a  is chosen in order to emphasize the lower frequency region, where 

more speech information is present, and to de-emphasize the higher frequency 

region where there is less speech information.

The first three basis vectors, incorporating the bilinear warping, are shown 

in Figure 1. DCSC features were computed so as to encode the trajectory of the 

short-time spectra. Using the processing as described above, P DCTCs (P=13 is 

used in this work) were computed for equally-spaced frames of data spanning a 

segment of each token. Each DCTC trajectory was then represented by the 

coefficients in a modified cosine expansion over the segment interval.

0.04

0.03
BVO

0.02

■ o  0.01

- 0.01

BV1
- 0.02

BV2

-0.03
2 60 1 3 4 5

Frequency (kHz)

Figure 1 The first three DCTC basis vectors, with a warping factor 
of 0.45 (Zahorian and Nossair) [18].

The equations for this expansion, which are of the same form as equation 2.8, 

allow non-uniform time resolution as follows.

Let the relation between linear and perceptual time be given by

t' = h(t), (2.12)
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where h(t) is a Kaiser window, chosen such that its derivative, dh/dt determines 

the resolution for t ' . For convenience, t and t' are again normalized to the range 

[0,1]. The spectral feature trajectories are encoded as a cosine transform over 

time using

1
{{.D C T C }/ } . = J D C T C '( i , t ' )co s (p jt ')d t ' . (2.13)

0

The DCSC(i,j) terms in this equation are taken as the new features which 

represent both spectral and temporal information over a speech segment. Making 

the substitutions

t '  = h(t),

D C T C '( i j ' )  = D C T C ( i , t ) ’ (2.14)
, , dh , 

dt = —  dt 
dt

equation (2.13) can be rewritten as

I  71

{{DCTC}.} . -  \ D C T C ( i , t ) c o s [ n jh ( t ) ]  — dt. (2.15)
0

We again define modified basis vectors as

e (t )  =  cos[ 7Tjh(t)] (2.16)
dt

and rewrite equation 2.15 as

1
{{DCTC}. } .=  |  DCTC(i, t) 0 / t )  dt. (2.18)

0

Using these modified basis vectors, feature trajectories can be represented using 

the static feature values for each frame, but with varying resolution over a 

segment consisting of several frames. To emphasize the underlying cosine basis 

vectors and to differentiate between expansions over time (DCSC) versus
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expansions over frequency DCTC the terms computed in equation 2.18 are 

referred to as Discrete Cosine Series Coefficients (DCSCs). In general, each 

DCTCi was represented by a multi-term DCSCj expansion.

By varying the Kaiser Beta parameter for h(t), the resolution can be 

changed from uniform over the entire interval (beta = 0) to much higher resolution 

at the center of the interval than the endpoints (beta values of 5 to 15). Figure 2 

depicts the first three DCSC basis vectors, using a coefficient of 5 for the Kaiser 

warping function. The motivation for these features is to compactly represent 

both spectral and temporal information with considerable data reduction relative 

to the original features. For example, if 4 DCSC basis vectors are used for each 

expansion, then 12 DCTCs computed for each of 50 frames (600 total features) 

can be reduced to 48 features.
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Figure 2 The first three DCSC basis vectors, with a 
coefficient of 5 for the Kaiser warping function (Zahorian 
and Nossair) [17].
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2.4 PEAK DETECTION

The all-pole assumption of LP analysis is essentially invalid and real 

speech is not periodic. However, the non periodic nature of speech is frequently 

addressed by the use of short time analysis, which allows quasi-periodicity of 

speech signal to be assumed. The all-pole assumption does not completely 

represent real speech because the human speech production system has many 

branches. For example, the nasal cavity and the mouth cavity are both part of 

the total speech production system, and are connected to the vocal tract. The 

opening and closing of the velum can change the tone of the produced speech.

Figure 3: The human speech production system.

The zeros introduced by such branches are clearly not represented by the 

all-pole representation. However, the model has been shown to give a signal 

representation method which results in good Automatic Speech Recognition
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performance. Figure 3 provides a view of the major parts of the human speech 

production system [83].

Part of this research involves the hypothesis that by using pitch 

synchronous analysis, we can potentially obtain further improvements in machine 

recognition performance. Phonemes are sometimes distinguished by 

fundamental frequency properties. Thus, the fundamental frequency itself can be 

an important parameter to improve recognition accuracy. Additionally, pitch 

characteristics are the most widely considered acoustic characteristics for stress 

evaluation [23]. As a result, accurate, robust estimation of the fundamental 

frequency, Fo, has long been an important problem in speech processing. In 

1976 Rabiner proposed spectral peak extraction for fundamental frequency 

estimation [24]. More recently, De Chaveigne [25], Shimamura [26], and others 

[27]-[38] have proposed methods for the use of spectral peaks in improving 

recognition accuracy and/or increasing noise robustness. In this dissertation a 

form of peak detection is implemented as a means to improve spectral envelope 

smoothing as discussed in the next section. The motivation for the use of peak 

detection in envelope smoothing came from previous work in pitch tracking. 

Therefore, a brief overview of fundamental frequency estimation is given here.

In speech recognition pitch trackers are generally implemented in an 

attempt to estimate the fundamental frequency, which is an inherent property of 

periodic signals. Of course speech is not periodic but in short-time analysis short 

enough segments are taken so that quasi-periodicity can reasonably be assumed 

for each segment. To be more precise, pitch itself is a perceptual phenomenon,
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a nonlinear function of the temporal and spectral energy distribution of the sound, 

and is not directly measurable from the speech signal. To be rigorously correct, 

the term pitch should be used to refer to the auditory perception of tone [28]. 

However, it is then important to note that pitch trackers actually attempt to track 

Fo because it approximately correlates with perceived pitch [29].

In the time domain the fundamental frequency is frequently estimated via 

auto-correlation of the input signal. Spectral methods of Fo estimation rely more 

often on spectral peak detection. Thus, in the spectral domain a pitch tracker is 

essentially searching for the smallest true p erio d ,^ , for each short time interval

analyzed. Upon determination of this smallest period the fundamental can be 

taken as — . Estimation of the fundamental normally includes three primary

phases: signal conditioning or pre-processing to remove noise and DC offset, 

estimation of candidates, and post-processing to select the best candidates for 

the fundamental, F0. Naturally, the second and third stages depend heavily on 

the location of spectral peaks.

The ability to locate the fundamental frequency is influenced by many 

factors, such as low frequency, and DC components in the speech signal. As a 

result, each of the three components mentioned in the previous paragraph must 

be designed to contend with a large degree of sensitivity in the parameter being 

estimated. The reason for this is that in order to produce the rich variety in 

human speech sounds the vocal tract takes on a huge range of shapes. As 

mentioned earlier, there are many components of the vocal tract. For example,
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two other components that contribute to deviation in the fundamental frequency 

are the human glottis, which can exhibit time-dependent chaotic behavior [85], 

and vocal chords covered in a mucus membrane that frequently redistributes 

itself [29]. Other factors that increase the difficulty of estimation of Fo are spectral 

distortion caused by microphones and telephone handsets which can completely 

remove the fundamental frequency and background noise that in some cases 

overwhelm the fundamental frequency. For more information regarding the 

human sound production system the reader is referred to [9], [14], [16].

2.5 ENVELOPE SMOOTHING

Although the objectives are different, signal representation is important for 

both speech analysis and speech synthesis. In speech synthesis the goal is to 

produce natural speech sounds from a given representation. As with speech 

recognition the signal representation has a significant impact on the quality of the 

final system output. As already stated, the speech recognition goal in this 

dissertation is to find a speech signal representation that can be used to improve 

machine recognition of noisy speech.

Researchers interested in speech synthesis have traditionally used signal 

representations similar to those used for speech analysis and recognition. For 

example, envelope smoothing has recently been investigated for the purpose of 

reducing the perceptible buzz in synthesized speech [39]. Linear predictive 

coding is another one of the many methods that have been investigated for 

speech synthesis. It has been shown that random variations in spectral 

representations, which are due to local periodicity in the signal, can be observed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

in LP models. Although human voiced sounds are perceived to be smoother 

than unvoiced sounds the local periodicity can cause errors in the estimation of 

the fundamental. Thus, a spectral representation with no periodicity is desirable 

and would allow for a method of Fo estimation that provides a smooth trajectory.

The use of envelope smoothing in speech synthesis was a motivating 

factor in this work towards noise robust speech recognition via LP modeling with 

subsequent morphological envelope smoothing. Smoothing is implemented in 

the frequency domain rather than the time domain as is done in many of the 

speech synthesis systems. The LP parameterization provides a good spectral 

representation for addressing problems related to local periodicity. However, the 

LP model assumes the source of the periodic component is a regular pulse train 

[40]. This assumption is not valid for human speech because it represents only 

poles, also referred to as auto-regressive components. The moving average 

components, which would be represented by zeros, are not represented by the 

envelope of the LP model. Thus, the model is based on only partial information 

and is not completely representative of natural speech. The goal was to 

compensate for this by smoothing of the spectral envelope via morphological 

filtering. Since the signal is filtered on a frame-by-frame basis the smoothing is 

achieved on a local level.

The first attempt for envelope smoothing was to first explicitly locate 

spectral peaks. However, noisy speech has natural as well as induced 

fluctuations making spectral peak identification numerically fragile. In contrast, 

morphological filtering is a convolution operation based on dilation and opening
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of the signal, and results in a stable approach to peak enhancement. The filtering 

can be implemented to emphasize and broaden peaks, but no explicit peak 

identification is required. Figure 4 illustrates the smoothed spectral peak 

envelope (the dotted line), obtained via a combination of LP analysis, 

morphological filtering, and signal thresholding. The solid line is the original 

spectrum. More details of this signal processing are given Chapter 6. In this 

dissertation morphological filtering is implemented in the front-end and introduces 

no significant loss of computing speed in the recognition phase. However, there 

is an increase in computational demand in the front-end algorithm which is an 

attempt to determine a signal representation that is robust to additive and 

convolutional noise.

Signal Spectrum -  Solid Line 
Morphologically Filtered Spectrum -  Dotted Lin

m"D

Co>CO
S

Frequency (Hz)

Figure 4 Illustration of envelope smoothing via LP analysis and 
morphological filtering.
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2.6 CHAPTER CONCLUSION

This chapter gave a brief overview of several historically important signal 

modeling techniques used in speech processing, and presented the Global 

Spectral Shape Analysis developed for speech signal representation by the Old 

Dominion University Speech Communications Laboratory. Speech signal peak 

detection and spectral envelope smoothing were discussed as motivating factors 

for the work presented in this dissertation. Experiments presented in Chapters 5 

and 6 support the hypotheses that enhancement of spectral peaks via LP 

spectral modeling and morphological filtering improves Automatic Speech 

Recognition performance in noisy conditions.
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CHAPTER III 
TASK AND DATABASE

3.1 INTRODUCTION

Historically speech recognition has taken place in a closed system where 

speech analysis and recognition are performed on the same machine. In 

Distributed Speech Recognition (DSR) collection, digitization, and 

parameterization of the speech sample is performed in a handset, either fixed or 

mobile, and the recognition phase is accomplished in a central location in a 

telecommunications network. As a result, the ETSI STQ-AURORA DSR Working 

Group [59] has been developing standards for Distributed Speech Recognition 

(DSR). Noisex-92 was the original database used in the evaluation of Distributed 

Speech Recognition systems but its use is restricted to isolated word recognition 

tasks. Therefore, there was a need for a database designed so that the 

performance of recognition algorithms for continuous speech in noisy conditions 

could be evaluated, and results from various research groups compared. The 

Aurora 2.0 database was the first database designed to meet this requirement 

and was contributed by the DSR working group [57]. This database can be 

obtained through the Evaluations and Language Resources Distribution Agency 

(ELDA).

The remainder of this chapter is organized as follows. Section 3.2 

provides a detailed description of the signal processing used to create the Aurora

2.0 database. This section also presents the organization of the Aurora 2.0 

training and test data, and finally gives a listing of experimental results obtained
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using the database, published by the ETSI working group. Section 3.3 gives a 

similar description of the Aurora 3.0 database along with results published by the 

respective groups who created the individual databases which make up the 

Aurora 3.0 database. A brief description of some key studies using Aurora 2.0 

and 3.0 are also provided in Section 3.4. This is followed by results published by 

the research groups who conducted the key studies. Chapter conclusions are 

discussed in section 3.5.

3.2 AURORA 2.0 DATABASE

Aurora 2.0 waveforms were created from the Tl-digits database by digitally 

adding 8 different real-world background noises to 8440 utterances of connected 

digit strings taken from the Tl-digits database. Each utterance was spoken by 

adult male and female American English speakers and consists of digit strings 

ranging from one to seven digits.

The original Tl-digits database was recorded at 20,000 samples per 

second. In order to simulate band limited speech signals in a 

telecommunications system the original Tl-digits database was down-sampled to

8,000 samples per second after filtering with a low pass filter with a bandwidth of 

0 to 4,000 Hz. Artificial noise was added after the low-pass filtering. After down- 

sampling the digit sequences were filtered with a G.712 filter, defined by the 

International Telecommunications Union (ITU), to simulate frequency 

characteristics of telecommunications handsets and equipment [60]. The 

frequency response of the G.712 filter is given in Figure 5, which was taken from 

the ITU Recommendation G.712, “Transmission performance Characteristics of
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Pulse Code Modulation Channels” [60]. For simulating the behavior of a 

telecommunication terminal the ITU defined the MIRS filter with the frequency 

response depicted in Figure 6, which was taken from the ETSI-SMG technical 

specification, “European Digital Cellular Telecommunication system GSM03.50 

[71].
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Figure 5 G.712 filter frequency response.
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Figure 6 MIRS filter frequency response.
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The purpose of the MIRS filter is to facilitate comparison of recognition 

performance when the frequency characteristic at the input differs [57]. 

Therefore, all of the training and test data were filtered with the G.712 filter while 

only one subset of test data was filtered with the MIRS filter.

Selection of noise types was determined by attempting to represent 

environments where the use of mobile handsets would be most likely. Thus, 

noises were recorded in the following types of locations:

•  Suburban Train

•  Babble

•  Car

•  Exhibition Hall

•  Restaurant

•  Street

•  Airport

•  Train Station

Each of the noise types was added to the down-sampled, filtered digit 

sequences at signal-to-noise (SNR) ratios ranging from -5 dB to 20 dB in steps of 

5. This resulted in speech samples with seven different signal-to-noise ratios 

plus the original clean data.

3.2.1 TRAINING DATA

Training can be performed on clean data only or on clean and noisy data. 

When clean and noisy data are used for training the data is referred to as multi­

condition data. To date multi-condition training has invariably yielded the best
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performance when testing with noisy data matching the noise in the training data. 

It is thought that models derived from only clean training data contain no 

information relating to noise and channel distortion. This mismatch between the 

training and test data generally results in degraded performance. However, 

since it is often not possible to insure that noise conditions are matched between 

training and testing, results obtained using clean training data and noisy test data 

are of great interest.

Clean training data was produced by taking 8440 utterances from the 

training data in the Tl-digits database and filtering them with the G.712 filter and 

ensuring that no noise was added. The Aurora 2.0 multi-condition training data 

was created using the same 8440 sentences taken from the Tl-digits training 

data. These sentences were G.712 filtered, and split into subsets containing 422 

sentences. The following four noise types were then added:

•  Suburban Train

• Babble

•  Car

•  Exhibition Hall

Each of the noise types was added at signal-to-noise ratios ranging from 5 

dB to 20 dB in steps of 5. For each noise type there is also a clean set that has 

not had noise added. The result of this procedure is the multi-condition training 

data consisting of 20 subsets, each containing 422 sentences.
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3.2.2 TEST DATA

A total of 4004 utterances from the Tl-digits test data were used to create 

the Aurora 2.0 test data. There were 52 male and 52 female speakers. First the 

utterances were split into 4 subsets of 1001 utterances per subset. Each subset 

contains recordings of each of the 104 speakers. As with the training data the 

entire set of test utterances was filtered with the G.712 filter, then one noise 

signal is added to each subset at signal-to-noise ratios ranging from -5 dB to 20 

dB in steps of 5. Thus, for each of the four primary subsets there are six signal- 

to-noise ratios and one set of clean utterances.

Suburban train, babble, car, and exhibition hall noises were added to 

create Test Set A. These noise signals are the same as the noise added to the 

training data. Thus, the highly matched noise characteristics between the 

training data and this test set lead to higher recognition results with this test set 

than for the other two test sets. With seven noise levels and four noise types this 

test set has a total of 28,028 digit strings.

Restaurant, street, airport, and train station noise were added to create 

Test Set B. The added noise types differ from the noise types added to the 

training data, creating a mismatch in the noise characteristics of this test set and 

those of the training data. Test Set B also consists of a total of 28,028 test 

utterances.

Only suburban train and street noise were added to Test Set C. Thus, the 

test set contains only 14,014 test sentences. However, the utterances were 

filtered, before noise addition, with the MIRS filter.
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3.2.3 ETSI RESULTS FOR AURORA 2.0 DATABASE

The results in Tables 1 and 2 were published by the ETSI working group 

that created the database [57], Where recognizer performance was evaluated by 

its percent word accuracy, which is determined by the following equation:

%Aocunacy=iN-D-I)/M100 (3 .1)

where N is the total number of number of labels in the reference transcriptions, D 

is the number of deletion errors, and I is the number of insertions [83].

These results are considered as the original “baseline” for Aurora 2.0, and 

were obtained using the WI007 front-end described in Chapter 5 Section 5.3.1 

and the baseline HMM back-end, described Section 3.5. Also note that the 

average results were obtained with the following weight function,

W=0.4*7SA+Q35*7$B+Q25*7SC (32)

where TSA, TSB, and TSC are the average word accuracies of the individual test

sets A, B, and C. Each test set average is computed from the individual

averages, excluding SNR -5, unless otherwise mentioned this method was used 

for reporting all results mentioned in this dissertation.
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Table 1 ETSI Published Results for Aurora 2.0 Multi-Condition Training.

SNR Level Word Accuracy (%)
Test Set A Test Set B Test Set Average

Clean 98.54 98.54 98.56 98.54
SNR20 97.52 96.96 96.74 98.12
SNR 15 96.94 95.38 95.48 96.02
SNR 10 94.59 92.56 92.13 93.26
SNR 5 87.57 83.76 81.66 84.75
SNR 0 59.82 58.91 49.61 56.94

Average 89.16 87.69 85.70 87.77

Table 2 ETSI Published Results for Aurora 2.0 Clean Training.

SNR Level Word Accuracy (%)
Test Set A Test Set B Test Set C Average

Clean 99.02 99.02 99.05 99.03
SNR20 95.25 92.77 94.29 94.14
SNR 15 87.33 81.33 87.84 85.36
SNR 10 67.70 59.00 74.16 66.27
SNR 5 39.47 31.92 50.24 39.52
SNR 0 16.95 13.69 24.16 17.61
Average 67.62 62.96 71.62 66.99

3.3 AURORA 3.0 DATABASE

Aurora 2.0 was created for evaluating front-end algorithms in simulated 

noise environments. As such, it does not capture all of the characteristics of a 

real noise environment. The Aurora 3.0 database was created in order to 

provide standardized data for testing algorithms in real noise. Aurora 3.0 is 

comprised of five subsets with each recorded in a different language: Spanish, 

Danish, Finnish, German, and Italian. Original recordings used to create Aurora

3.0 were taken from the respective Speech-dat database.
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Each of the Aurora 3.0 subsets contains recordings from two types of 

microphones, close-talking (cO) and hands-free (c1). In each subset the same 

utterance was recorded by both a close-talking and hands-free microphone. 

Thus, each original recording contributed two recordings to the database. All five 

of the subsets are subdivided into the following three noise level categories, with 

all categories associated with automobiles:

•  Low -  town traffic with low speed rough road

• Quiet -  stop with motor running

•  High -  High speed with good road condition

Automatic Speech Recognition performance has been evaluated with the 

Aurora 3.0 database using three standard mismatches of the noise conditions 

(Well, Medium and High). Well-matched testing used both types of microphones 

and all three types of noise for both training and test data. Medium-mismatch 

testing used training data from the hands-free microphone data with quiet and 

low noise conditions, and test data from the hands-free microphone with only 

high noise conditions. The high-mismatch test took training data from the close- 

talk microphone and all noise types, and test data from the hands-free 

microphone with low and high noise conditions. For each database the training 

data consists of 70% of each of the female and male speakers such that the 

utterances of these speakers represent approximately 70% of the utterances for 

each condition. Test data is comprised of the remaining 30% of the sentences.
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Additionally, recordings in all subsets were conditioned with the following 

three steps:

•  DC offset removal to convert from unsigned integers to signed 

integers.

•  Down sampling from 16 kHz to 8 kHz using the ITU-T [72] software 

tools library

•  Removal of speaker synchronization by an automated process.

Each of the Aurora 3.0 subsets was created and tested by a different

research group and contributed to the Aurora DSR Working Group. Sections

3.3.1 through 3.3.4 provide a brief description of each of the subsets of the 

Aurora 3.0 Speech-dat database, and recognition results published by the 

respective research groups. The Italian database was not included in this 

dissertation. Therefore, the descriptions provided here do not include the Italian 

database.

3.3.1 SPANISH SPEECH-DAT

The Spanish SDC-Aurora database consists of 4914 recordings taken 

from the Spanish Speech-dat database, with the distribution of the utterances as 

follows:

• Quiet -  792 utterances

•  Low noise — 2422 utterances

• High noise -  1700 utterances
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These sentences are used in each of the well-matched, medium mismatch, and 

high mismatch experiment types. The number of sentences for each of the 

training and test data sets for each matching type is given below:

Match Type: 

Training data:

Test data:

Well-Matched

Quiet 532 

Low 1668 

High 1192

Quiet 260 

Low 754 

High 508

Medium-Mismatch High-Mismatch

Quiet 396 

Low 1211 

HighO

Quiet 0 

Low 0 

High 850

Quiet 266 

Low 834 

High 596

Quiet 0 

Low 377 

High 254

3.3.2 DANISH SPEECH-DAT

The Danish SDC-Aurora database consists of 4914 recordings taken from 

the Danish Speech-dat database, with the distribution of the utterances as 

follows:

•  Quiet -  792 utterances

•  Low noise -  2422 utterances

•  High noise -  1700 utterances

These sentences are used in each of the well-matched, medium mismatch, and 

high mismatch experiment types. The data is distributed 70% for training and 

30% for test data, as with the other databases.
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3.3.3 FINNISH SPEECH-DAT

The Finnish SDC-Aurora database consists of 4399 recordings taken from 

the Finnish Speech-dat database. The sentences are also sub-divided into quiet, 

low, and high noise types. As with the other databases, the utterances are used 

in each of the well-matched, medium-mismatch, and high-mismatch experiment 

types, where the data is distributed 70% for training and 30% for test data.

3.3.4 GERMAN SPEECH-DAT

The German SDC-Aurora database consists of 4914 recordings taken 

from the German Speech-dat database. The sentences are also sub-divided into 

quiet, low, and high noise types. As with the other databases, the utterances are 

used in each of the well-matched, medium-mismatch, and high-mismatch 

experiment types. This data is also distributed 70% for training and 30% for test 

data.

3.3.5 ETSI RESULTS FOR EACH DATABASE

The results reported in tables 3 through 6 were published by the 

respective group that created the database.

Table 3 Word Accuracy for Spanish SDC Database.

Spanish Speech-dat Car 
Matching Condition

Word Accuracy 
Adv DSR Front-end

Well-matched 86.85%

Medium-mismatch 73.74%

High-mismatch 42.23%

Average 67.61%
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Table 4 Word Accuracy for Danish SDC Database.

Danish Speech-dat Car 
Matching Condition Word Accuracy

Well-matched 77.8%

Medium-mismatch 47.4%

High-mismatch 31.9%

Average 52.3%

Table 5 Word Accuracy for Finnish SDC Database.

Finnish Speech-dat Car 
Matching Condition

Word Accuracy 
Adv DSR Front-end

Well-matched 95.04%

Medium-mismatch 77.70%

High-mismatch 68.76%

Average 80.5

Table 6 Word Accuracy for German SDC Database.

German Speech-dat Car 
Matching Condition

Word Accuracy

Well-matched 90.58

Medium-mismatch 79.06

High-mismatch 74.28

Average 81.31%

3.4 KEY STUDIES USING AURORA 2.0 AND 3.0

Experimental results from several research groups are reported in Table 

7. These results serve as comparisons for experimental results reported in this 

dissertation. The table presents results reported for the Aurora 2.0 database 

where column one re-states the ETSI average results reported in Table 1 and
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columns two through five were reported by various research groups with the lead 

author listed in the respective column. Analysis details of each method can be 

found in [57], [62], [63], [66], [73]. Each set of results was obtained using front- 

end algorithms designed to deal with noisy speech signals. Each of the 

algorithms was evaluated with either the Aurora 2 or 3 databases. While the 

algorithms do not use Linear Predictive Analysis or Morphological filtering, they 

serve as a reasonable comparison because they were evaluated with the same 

data.

The results in column one were obtained with the baseline MFCC features 

from the ETSI WI007 front-end, with no additional signal processing. Features 

evaluated and reported in column two were based on variable frame rate, peak 

isolation, peak-valley ratio locking and harmonic demodulation; features 

evaluated in column three were obtained using stereo-based piecewise linear 

compensation for environments (SPLICE). Features evaluated in column four 

were obtained using signal-to-noise dependent waveform processing, and

Table 7 Key Study Results for Aurora 2.0 using Multi-Condition Training.

Author Aurora
WI007

Cui, X. Droppo,
J.

Macho,
D.

Chen,
C.

Test Set
TSA 89.16 90.22 90.83 91.37 93.76
TSB 87.69 88.84 89.37 89.72 93.27
TSC 85.70 89.08 89.24 89.51 93.51
AVG 87.77 89.38 89.81 90.20 93.52

features in column five were computed by taking the mean and variance of the 

features and subsequently taking the auto-regressive moving average of the
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means and variances. Although results reported in columns two through five 

were used as comparisons, it is important to note the significance of the 

additional signal processing used to obtain the reported performance 

improvements. Results reported in this dissertation were achieved with 

Morphological filtering as the single additional signal processing step. Table 8 

presents results reported for Aurora 2.0 clean training data. Signal processing 

used to achieve these results were the same as those used to produce results 

reported in Table 7. Thus, these results were used as a comparison for results 

reported in this dissertation for evaluations with the Aurora 2.0 clean training 

data.

Table 8 Key Study Results for Aurora 2.0 Clean Training Data.

Author Aurora
WI007

Evans,
W.D.

Kim,
H.K.

Cui, X. Chen, C.

Test Set
TSA 67.62 76.01 81.26 85.48 87.58
TSB 62.96 72.60 82.6 85.77 88.41
TSC 71.62 79.16 83.07 84.10 87.05
AVG 66.99 75.61 82.18 85.27 87.74

Table 9 presents results reported for the Aurora 3.0 database where row 

one re-iterates the ETSI results reported in Table 1 and rows two through five 

were reported by various research groups with the lead author listed in the 

respective row. Analysis details of each method can be found in [65], [66], [68], 

[73]. As with Tables 7 and 8 each set of results were obtained using front-end 

algorithms designed to deal with noisy speech signals. Again, each of the 

algorithms was evaluated with the Aurora 3 database. Features evaluated in row
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two were obtained using variable sampling frequencies and features evaluated in 

row three were obtained with the same method used in column five of Table 7. 

Row four contains results which were obtained with the same algorithm 

evaluated in column three of Table 7. Finally, features in row five were obtained 

with TRAPs features based on multi-band and multi-stream approaches.

Table 9 Key Study Results for Aurora 3.0 Database.

Author Finnish Spanish German Danish

ETSI Published 68.76 67.61 81.31 52.3

Bauerecker, H. 84.78 86.78 NA 74.44

Chen, C. 96.36 91.41 86.86 80.25

Droppo, J. 91.22 92.64 90.03 86.00

Andre, A. 91.42 94.48 92.88 94.57

3.5 HIDDEN MARKOV MODEL ARCHITECHTURE 

The baseline HMM back-end

The baseline HMM architecture consisted of one 18 state word model for 

each digit, using a continuous density HMM with Gaussian probability density 

functions (referred to as mixtures) and a diagonal covariance matrix for each 

model. Specifically, there were 13 continuous density HMM models, one for 

each digit, an additional one to represent the “oh” pronunciation for zero, and two 

silence models. Each of the digit models was initialized with 18 states with 1 

Gaussian mixture per state. Initial transition probabilities were all equal except 

for the first transition, which had transition probability of 1, and variances were all 

floored to 0.01. Additionally, only left-to-right transitions, and self-transitions 

were allowed. After 16 iterations of training the resulting word models each
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contained 6 Gaussian mixtures, and the final silence model had 10 Gaussian 

mixtures.

Initialization of the word models was accomplished by segmenting the 

training utterances into equal lengths and estimating the global mean and 

variance for the entire training database. These global values were used to 

initialize each of the word models. The initial parameters were used to re- 

estimate the model parameters for each of the word models. Subsequently the 

silence model was initialized with 5 states, each with a single Gaussian mixture 

component. The second silence model was designed to model intra-word short 

pauses, and is called a short-pause model. It was created by adding transitions 

from states 2 to 4 and from states 4 to 2 in the silence model, then tying these 

transitions to state 3 in the silence model. Several more iterations of parameter 

re-estimation were performed, in which additional Gaussian mixtures were added 

to the word models and to the tied silence models.

When the final models were obtained, each test utterance was decoded 

using the Viterbi algorithm, which determines the model with the highest 

likelihood of matching each token in the test utterance. This standard HMM 

configuration is the same as that used in the published results for Aurora speech 

data.

3.6 CHAPTER CONCLUSIONS

This chapter began with a discussion of the reasons for the creation of the 

Aurora databases, followed by the detailed description of the creation and
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organization of each database. Finally, Section 3.5 gave a detailed description of 

the standard Hidden Markov Model architecture used for each experiment in 

Chapter 5 and all but the final experiment in Chapter 6. The remaining chapters 

present signal processing for LP derived DCTC/DCS signal representation and 

envelope smoothing via Morphological filtering. Experimental results from 

Automatic Speech Recognition experiments using our signal representation 

methods will be included in the chapters where the signal processing is 

presented.

In order to provide a basis for comparison of performance of the methods 

presented in this dissertation, the latter part of this chapter presented a short list 

of key studies in which either the Aurora 2.0 or the Aurora 3.0 database were 

used for training and evaluation of the signal representation methods 

implemented by the research groups who conducted the key studies.
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CHAPTER IV 
STATISTICAL MODELING OF SPEECH PARAMETERS

4.1 INTRODUCTION

The determination of similarity and dissimilarity between speech patterns 

is the primary problem in speech recognition. Similarities are typically used for 

classification of input or test patterns based upon a set of reference patterns. In 

order to classify a given speech observation the characteristics of the reference 

(training) speech patterns must be described by a well-defined mathematical 

model. There are several approaches to the modeling of speech signal 

characteristics. The Hidden Markov Model approach assumes that the speech 

signal can be well characterized as a parametric random process, and that the 

method of estimation of the parameters of the stochastic process is well-defined. 

Another approach is non-parametric and is implemented via Artificial Neural 

Networks.

Template matching was one of the first methods used in speech 

recognition. A template matching based acoustic-phonetic recognizer attempts 

to classify every analysis frame according to a defined set of features, such as 

flatness, compactness, and stress. Decisions are based on the presence of 

acoustic characteristics of the sample speech segment. Some typical acoustical 

parameters are spectral energy, duration, and formant location. Other possible 

methods are Dynamic Time Warping and Acoustic Segment Modeling. Each 

modeling technique makes specific assumptions regarding the signal. Therefore,
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the modeling method used to compare acoustic patterns must be highly 

dependent upon the particular speech recognition system to be implemented.

Artificial Neural Networks and Hidden Markov Models are currently the 

most widely used methods for ASR. Current acoustic-phonetic recognizers 

typically implement an Artificial Neural Network (ANN) classifier to apply a 

mathematical rule to make decisions regarding classification of given speech 

patterns. Artificial Neural Networks are considered to be discriminative 

classifiers. They generally classify reference patterns by attempting to partition 

the speech space. Speech patterns are determined by attempting to place them 

into equivalence classes within the partitioned space. Theoretically, each speech 

token will fit into a unique equivalence class, where a token is the base speech 

unit chosen for the recognition task (e.g. vowels and consonants). In reality, no 

one has been able to completely partition the space because speech signals 

contain overlapping pieces of information. For example, formants often overlap 

between various speech tokens. Because of its more robust capabilities the 

Hidden Markov Model Method was used in this research. However, a brief 

overview of Artificial Neural Networks will be given in the next section, followed 

by a more in depth discussion of Hidden Markov Models.

4.2 ARTFICIAL NEURAL NETWORKS

From the most basic perspective a neural network can be viewed as a set 

of decision functions, frequently called neurons, which map input feature vectors 

directly to a classification decision [14]. The general objective is to determine the 

dissimilarity or distance between a speech sample to be classified and a set of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

reference patterns, also referred to as categories or classes. The most common 

neural network architecture is a feed forward Multilayer Perceptron (MLP).

As mentioned previously, each component of a Neural Network is called a 

neuron. Multilayer Perceptron Neural Networks consist of an input layer, one or 

more hidden layers, and an output layer as depicted in Figure 7.

Input

Figure 7 Artificial Neural Network.

The layers themselves contain a set of linear discriminant functions 

followed by nonlinear functions. The nonlinearity is typically a sigmoid defined

where x is the input to the layer, and the linear discriminant functions are 

normally weight matrices. Training of an MLP involves adapting a weight matrix 

to associate an input with a target output. This process is achieved via the Error 

Back Propagation Algorithm using a steepest descent procedure that iteratively 

minimizes a cost function [41]-[47]. A Multilayer Perceptron with enough layers 

can be used to obtain an arbitrary mapping between the input and output layers.

Input

Input

Output

Output

by:

(4.1)
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Although Artificial Neural Networks are very fast at making correct 

classifications from unseen data, they do not provide high performance 

recognition with continuous speech. In contrast Hidden Markov Models have 

proven to yield significantly better recognition rates with continuous speech. In 

this dissertation all training and test data comes from the Aurora 2.0 and Aurora 

3.0 databases which consist of connected digit strings, which makes them 

observations of continuous speech. As such the recognition task must be 

implemented using techniques which can effectively address the characteristics 

of continuous speech. Therefore, the decision was made to use Hidden Markov 

Models for statistical modeling rather than Artificial Neural Networks. A brief 

introduction to Hidden Markov Models is given in the following section.

4.3 HIDDEN MARKOV MODELS: INTRODUCTION

Markov Model Theory has been known for over 80 years but the theory 

was not useful for speech recognition until methods became available for 

parameter optimization. In the latter half of the 1960’s such methods were 

proposed [58]. Hidden Markov Models were first implemented in speech science 

in the 1970’s and 1980’s [47]-[55], evolving from the search for effective 

statistical models of speech for speech synthesis. Hidden Markov Models 

address the stochastic behavior of the amplitudes of the feature vectors, and 

provide good characterization of the speech signal. They have proven to be 

quite useful because they generalize the pattern comparison process by 

determining statistical characterizations of spectral properties of the given 

reference categories, rather than making direct comparisons between reference
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patterns and specific samples to be classified [56], [57]. Models produced with 

the Hidden Markov Modeling technique typically outperform other types of 

recognition systems because they determine the statistical parameters from the 

data, thus allowing them to capture more of the intra and inter-speaker variability 

that cannot easily be determined through other modeling techniques. Due to 

their stochastic nature, Hidden Markov Models are well suited for representation 

of a sequence of words or sounds. Thus, they are currently the first choice for 

recognition of continuous speech.

In signal modeling the non-stationary behavior of speech is addressed 

using short time segments such that each piece, or frame, can be considered 

stationary. In essence, the time varying nature of speech is viewed as a 

concatenation of the short time segments. Thus, there is an implicit assumption 

that each of the short time segments is an individual unit with predetermined time 

duration. A basic problem with this assumption is that there is no well defined 

algorithm for determination of the duration so that the models are relevant and 

the assumption of stationarity is preserved. Consequently, the duration is 

empirically determined. A Hidden Markov Model system attempts to avoid this 

problem by using the same short time model for each of the steady state 

segments of speech samples, and a statistical characterization of how the signal 

changes from frame to frame. In short, an HMM does not incorporate temporal 

characteristics of the speech signal. The fact that Hidden Markov Models cannot 

effectively model temporal characteristics is a limitation of the method. Delta and
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delta-delta components of the feature vector evolved partly out of attempts to 

include dynamic information in HMM recognition systems.

4.3.1 HIDDEN MARKOV MODEL OVERVIEW

As mentioned earlier a Hidden Markov Model is a statistical model. In

order to discuss HMMs some basic concepts are provided here. Let x t e { x } ”l x 

be random variables representing the model states. The random variables can 

be said to form a Markov chain if the probability of the current variable xt

depends only upon the previous variable x M  i.e. the following equation is 

satisfied:

P(X, | X ,J  = P(Xt | X ^ X ^ X ^ X ^ ) .  (4.2)

Equation 4.3 is a useful consequence of equation 4.2:

P(XI,X 2,X 3l....Xi.1)  = P(Xt | X tJ .  (4.3)

The state sequence is directly visible to the observer in a regular Markov 

Model. This is not the case in a Hidden Markov Model. However, observable 

variables are visible and are influenced by the state variables. Each state

contains a probability distribution bj(ot)  where ot is the observation at time t

and bj(ot)  is the output probability distribution at state j. Thus, the hidden

parameters must be determined from the observable parameters. Figure 8 

provides a visual aid to understanding these basic concepts. The HMM in the

figure is a six state left-to-right HMM with observation symbols ot through o6 .
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Figure 8 Six State Left-to-Right HMM.

A more concrete understanding of the Markov Model concept can be 

achieved by considering a short example. One person is in a closed room. 

Another is in a room with six jars containing colored balls. The person with the 

jars uses a six sided die, or some other stochastic process, to determine a jar for 

selecting a colored ball. Only the color of the selected ball is reported to the 

person in the closed room. Thus, the observation symbols would be the colors of 

the selected balls. To the person in room one the sequence of jars is hidden. 

Thus, the hidden variables would represent the sequence of jars from which the 

colored balls were chosen. It should be clear that there are two stochastic 

processes taking place here. When this happens it is described a doubly 

stochastic process.

Without referring to speech patterns one could view a Markov Model 

scenario as follows: Given a sequence of observed symbols: A = {a, }", where i

is a time index and a sequence W  = which belongs to some larger

reference set V. The probability that W  was the input sequence is denoted by
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P(W|A). The objective of a Hidden Markov Model system is to pick the most 

likely sequence, W, given the observed symbols denoted by:

W = arg max P(W|A). (4.4)
w

In order to apply Markov Model Theory to word recognition we use the 

symbols from above to denote the system vocabulary, V, observed word

sequences, A = { a , , and word strings, W  = M " - i  . The words in the string are

elements of the vocabulary. Although Hidden Markov Model speech recognizers 

can model phonemes, syllables, or other sub-word units this work implements 

word models, specifically digits. Thus, each of the word strings, w, in W, is a

string of connected digits, where each digit within w. is in the vocabulary V, i.e.

W c  V . Thus, there must be one Hidden Markov Model for each word in the 

vocabulary. The word models are computed so that the probability of a particular 

speech sample being produced given a particular word model can be 

determined. In other words, the word model with the highest likelihood is 

selected as the model of the word that was observed.

The maximization in equation 4.4 is achieved by using Bayes’ Formula to 

express P(W|A) as follows:

m t-E vM rn .  ( 4 .5 )
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Since the observation sequence A is fixed it can be ignored during the 

maximization. Therefore equation 4.4 can be maximized by maximizing the 

equation,

W = arg max P(W)P(A \W). (4.6)
W

4.3.2 DEFINITION OF HIDDEN MARKOV MODELS

From the earlier example, the jars containing colored balls could be 

thought of as states and the observed colors as the possible outputs from that 

particular state. It should be clear that determination of the number of states can 

be quite difficult. As a result, in a real experiment this information is frequently an 

empirically determined parameter. In general a Hidden Markov Model selects 

and optimizes state transition probabilities, output probabilities for each state, 

and initial state probabilities in order to best explain an observed output 

sequence [58]. In order to implement Hidden Markov Models for speech 

recognition the following assumptions are normally made [58], [64]:

1. There are a finite number of states, N.

2. A new state is entered for each clock time, t. The state depends 

only on the previous state as determined by the state transition 

probability distribution. The transition may be from a state to 

itself.

3. An observation output symbol is produced after each transition.

The output observation probability depends only upon the 

current state. Thus, there are N output observation probability 

distributions.
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The essential framework of Hidden Markov Modeling provides a general 

overview but there are design problems which must be addressed before a real 

speech recognition system can be implemented with Hidden Markov Models. 

The three most fundamental implementation problems are discussed in the next 

section.

4.3.3 FUNDAMENTAL HMM DESIGN PROBLEMS

There are three fundamental problems that had to be solved before 

Markov Models could be implemented in real problems [48], [52], [54], [58]. The 

problems are listed below:

1. The Evaluation Problem: Given an HMM and an observation 

sequence compute the probability, or likelihood, of the 

observation sequence.

2. State Determination Problem: The determination of a best 

sequence of model states.

3. Training Problem: The optimization of the model parameters to 

best describe the occurrence of observation sequences.

The Baum-Welch algorithm is an iterative method for solving problem 

three and provides an efficient and elegant solution for obtaining optimal model 

parameters. Problem two can be solved with the Viterbi algorithm. Its solution 

results in knowledge of the state sequences which are required for segmenting 

the training sequences into states so that state occupation statistics can be used 

for improvement of model parameters. The forward-backward algorithm solves 

problem one. The probabilities computed with the forward-backward algorithm 

are used in performing recognition. The details of each of these algorithms can
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be found in texts on Markov Chains, and “Statistical Methods for Speech 

Recognition,” by Frederick Jelinek. This book gives a thorough introduction to 

Hidden Markov Modeling for speech recognition.

4.4 THE HIDDEN MARKOV MODEL TOOLKIT (HTK)

The HTK toolkit is a powerful software package which provides numerous 

modules, called tools, for building Hidden Markov Models [59]. It is widely used 

by researchers in automatic speech recognition. Although HTK is better known 

for its use in Hidden Markov Modeling the HTK package also has a tool for front- 

end analysis that is capable of computing several types of speech signal 

representations. Therefore, it can be used to create an entire automatic speech 

recognition system. The HTK front-end analysis tool, HCopy, was used to build 

the delta and delta-delta coefficients for the base line recognition system for this 

dissertation, using MFCC feature vectors computed with the WI007 front-end 

analysis tool.

While there is active research in the area of improving speech recognition 

by adapting Hidden Markov Models the main focus of this dissertation is in the 

extraction and shaping of speech signal information for the purposes of 

improving speech recognition in noisy conditions. Therefore, in order to 

concentrate on the front-end signal processing, the Hidden Markov Model Toolkit 

(HTK) was used for building word level Hidden Markov Models after our front-end 

produced representative feature vectors. In other words, the tools provided by 

the HTK package for computing HMMS was utilized but the HTK front-end 

analysis tool was replaced by a front-end analysis package created here at the
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Old Dominion University Speech Communications Laboratory. The only 

exception was for the baseline (WI007) recognition system for which the HTK 

analysis tool was used to compute the delta and delta-delta coefficients.

The real power of the HTK package comes from the tools for HMM 

initialization, training, and recognition. Each tool accepts a variety of 

configuration parameters, allowing the user to specify a seemingly infinite 

number of recognizers. The core HTK tools are listed below followed by a Figure 

9 which gives a flow chart for a typical training sequence.

•  HCopy for signal analysis
•  HCompV for HMM initialization
• HERest for iterative training
• HHed for editing of the models
•  HVite performs Viterbi based recognition
• HEResults is used for performance evaluation

HHed

HMM
Models

HMM
Training

HCompV

Unlabeled Utterances

J_______

Transactions

Figure 9 Hidden Markov Model training sequence.
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In the iterative training sequence depicted in Figure 9 the HCompV tool 

accepts a set of prototype HMMs along with the parameterized speech vectors, 

computes the global mean and variance, and initializes the state means and 

variances of each model equal to the global mean and variance. The initialized 

models have numerous states but normally each state consists of one Gaussian 

mixture component. At this point the iterative stage begins with HERest. 

Initialized HMMs are read by HERest along with the entire set of training 

sentences. The data is used to accumulate the statistics for state occupation, 

means, and variances for each HMM. After all of the training data has been 

processed the accumulated statistics are used to re-estimate the HMM 

parameters. The HMM definition editor HHEd clones models into context- 

dependent sets, applies parameter tying, and increments the number of mixture 

components in specified state distributions. The new models are sent then back 

to HERest for re-estimation of the parameters. As the model complexity 

increases the need for more data can become a problem. Parameter tying is a 

method of pooling the data so that shared parameters can be better estimated.

If the iterative training procedure converges the system outputs one model 

for each word in the system vocabulary. These models are then used by the 

HVite tool for recognition. HVite requires a word dictionary, a network of 

allowable word sequences, and the HMMs produced by the iterative training 

stage. In connected digit recognition the word networks are simple word loops in 

which any digit can follow any other digit. However, in more general continuous 

speech recognition the networks are directed graphs representing a finite-state
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task grammar. The dictionary defines the pronunciation for each word. HVite 

uses a modified Viterbi based algorithm called token passing to associate the 

appropriate HMM to each word instance, then performs recognition on the test 

data. The output is a set of transcriptions of the test set.

Finally, the transcriptions of the test set are compared with the reference 

transcriptions. HEResults performs this step and computes performance 

statistics based on the results. This is accomplished by aligning the reference 

and test set transcriptions and counting substitution, deletion, and insertion 

errors.
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CHAPTER V 
CONNECTED DIGIT RECOGNITION WITH LP SPECTRAL 

ANALYSIS

5.1 INTRODUCTION

Linear prediction has been widely used in many areas of science and 

engineering. Modern control problems, time series analysis, geophysics, and 

spectral estimation in signal processing are a small sampling of the wide 

applications of linear prediction. With respect to speech signal representation, 

parametric modeling techniques became popular in the early 1970’s [81]. 

Currently the main use of parametric modeling for speech is for compression 

algorithms and speech production rather than for speech recognition. 

Additionally, LP derived coefficients have more commonly been computed in 

association with perceptual linear prediction (PLP) and filter bank speech 

recognizers [81]. The linear predictive analysis used in this work differs in that 

the final feature vectors are computed using a Discrete Cosine Transform 

expansion of the entire spectrum rather than the typical filter bank derived 

coarsely-sampled spectrum, and in the use of long window durations combined 

with long block lengths used for computing spectral/temporal features.

Static spectral feature components are first computed in the typical 

manner using single frames of the windowed signal. The length of time over 

which each set of static components is valid is referred to as the frame duration 

and the time between successive parameter computations is called the frame 

spacing. Additionally, at the ODU Speech Communications Laboratory the 

dynamic components, which are determined from the static parameters, are
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computed using block processing, where a block consists of several adjacent 

frames. The combination window duration, frame spacing, and block length 

directly affect the ability of the signal model to capture spectral dynamics of the 

speech signal. This is particularly true in noisy environments.

In noisy environments parts of the speech spectrum are degraded by 

noise. For instance, in a telecommunications environment additive and 

convolutional noise are frequently present. Convolutional distortion is induced 

when the speech signal passes through telecommunications equipment such as 

mobile handsets and terminal equipment. Environmental noise is additive and 

varies depending on the location in which the speech is produced. In both cases 

machine recognition performance is degraded. Figure 10 illustrates noise in the 

spectrum of one frame taken from the digit string “75.” The spectrum of the 

same frame is used for each of the examples depicted in Figure 10. The first 

graph illustrates one frame of the spectrum of the clean digit string along with the 

spectrum of the same frame but with a signal-to-noise ratio of 15 dB. The 

second example shows the spectrum of the same frame where the SNR is 10 dB 

and the final plot shows the spectrum of the same frame with both additive noise 

and convolutional distortion, at a 15 dB SNR. The spectrum becomes 

correspondingly more corrupted as the signal-to-noise level decreases. As can 

be seen in the second and third examples, the spectrum is completely 

overwhelmed by noise in the higher frequency regions from around 2 kHz to 3.8 

kHz. Speech recognizers trained on clean speech typically exhibit poor 

performance when attempting to recognize sentences like those with the noise in
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Digit String "76"
Clean Speech - Dotted Line 
Noisy Speech - Dashed Line

18
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Noisy Speech 10dB - Additive Noise
M 20 - 
a
9  1 5 -  

nI !„}
u
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Noisy Speech 15 dB - Convolutional Noise
20

15

10

500  1000  1500  2000  2500  3000  3500  4000

Frequency (Hz)

Figure 10 The spectrum of one frame of the clean digit string “75” 
compared with the spectrum of the same frame with additive noise at SNR  
15 dB and SNR 10 dB, and with convolutional noise.

Figure 10. Even recognizers trained in similar noise to that present in the test 

data often do not perform with better than 93% accuracy [62], [63]. Figure 10
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shows examples where large portions of the low amplitude areas of the spectrum 

have been lost. Thus, those regions cannot be estimated with any high degree 

of confidence. With this in mind we hypothesized that performance would 

improve if the spectral peaks were not only preserved but also emphasized or 

enhanced. Therefore, the goal of this remainder of this chapter is to investigate 

ASR performance in noise with spectral peak enhancement achieved by LP 

signal analysis followed by representation with DCTC and DCS coefficients.

The remainder of this chapter provides a brief overview of LP analysis for 

speech processing and the details for LP derived DCTC/DCS based signal 

modeling for the connected digit recognition task described in chapter 3. The 

control experiment based on the speech signal representation produced by the 

ETSI WI007 front-end and the baseline experiment which used the signal model 

determined by FFT derived DCTC/DCS features are presented in Section 5.3. 

An evaluation of the LP based DCTC/DCS features is reported in Section 5.4, 

with performance compared to those of the control experiments. Finally, a more 

direct comparison of the WI007 MFCC and LP derived DCTC/DCS signal models 

was made using varying block lengths for computing the dynamic terms of the 

MFCC signal model. The experiment and performance results are presented in 

Section 5.5. Chapter conclusions are presented in Section 5.6.

The mean square error signal analyses for computing LP based 

DCTC/DCS coefficients are covered in the following section.
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5.2 LP SIGNAL PROCESSING

Let s(n) represent the speech signal. Then the error estimate can be

expressed as:

N

e(n) = s(n) + ^  lp(i) * s(n -  i)  (5.1)
i=7

Taking the Z transform of equation 5.1 gives:

N

E (Z )  = S(Z) +  ^  L P ( i ) *  S(Z) *  Z  "■
i = l

= S(Z)*(l  + f t LP«)*Z- ‘ ) (5.2)
1=7

N

= S(Z) * 2  L P ( i )  * Z  -1, LP(O)  =  1
i = 0

The second factor in equation 5.2 can be defined as the LP inverse filter:

H ( Z )  = j r  L P ( i ) *  Z 1, L P  ( 0 )  = 1 (5.3)
i =  0

and the signal model is

S(z) = —  (5.4)
H(z)

where G is the model gain. The solution of equation 5.3 gives the LP 

coefficients and provides the required components for the signal model to be 

determined.

Mean-square error minimization of equation 5.3 leads to the matrix 

equation:
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R J 1 2 ) RX(1,N)~ 'L P ( l)

R J2 ,l) RJ2.2) RJ2.1) LP(2)

R n ( k ) =
*

R J N j) RX(N,2) RJN.N) LP(N)

j  N - l - k

where R x ( i , k )  =  —  ^  s ( n  +  m -  i ) s ( n  +  m - k ) .  (5.5)
N  m = 0

Values outside of the summation range are considered to be zero, and the 

assumed stationarity of the signal results in the auto covariance fu n c tio n s ,(k),

being functions of time differences, tM -t.=  A t , and the major diagonal

components being equal to ^ ( 0 ) .  Noting these properties Rx can be rewritten

as:

'  RJO) RJDt) RJNDt)

RJDt) R,(0)

RJNDt) RJNDt) R /0 )  _

Such a matrix is said to be Toeplitz, which is a matrix in which each descending 

diagonal element from left to right is constant. This is beneficial because the LP 

coefficients can now be computed efficiently using the Levinson-Durbinson 

recursion [64]. Although the Levinson-Durbinson recursion method is well 

documented in the literature the equations are given here for completeness:

Initialization:
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(5.7)

^(O + Z^'^OXO'-y)
 y=!________________

Lpy J LP
iF">(/) = ru .O - l)

For 1 < i  <  N LP such that 0 < |rLP( i - 1)| < 1
(5.8)

L P \ j )  = L P (i X)( j )  + ^ ( i  -  -  j ) ,  where 1 < j  <  i -1  (5.9)

(5.10)

After the Levinson-Durbinson recursion the spectrum can be determined from the 

LP coefficients and the gain as follows:

After computing the LP coefficients and the LP spectrum, as described 

above, the LP spectrum can be used in place of the FFT spectrum for 

subsequent processing. In particular, the DCTC features can be computed from 

the LP spectrum. The resultant features are referred to as LP derived DCTC 

coefficients. They represent the static spectral information in the speech signal 

and are therefore also referred to as static feature vectors. In this work the 

temporal (or dynamic) changes in the spectrum were computed by a 3 term 

discrete cosine expansion (DCS) of the static feature vectors. Thus, the 

dimension of the final 39 component LP derived DCTC/DCS feature vector space

S(f) =
G

(5.11)N

g = 4e%>. (5.12)
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is higher than that of the 13 component LP derived DCTC static feature vector 

space.

The experiments described in this chapter were designed to investigate 

noise robustness of the LP based DCTC/DCS signal representation. Evaluations 

were performed using the Aurora 2.0 multi-condition training data and the clean 

training data. The performance of a recognizer trained with multi-condition data 

is typically better than that of a recognizer trained with clean data. This degraded 

performance is presumed to be due to the recognizers’ lack of knowledge of the 

noise characteristics in the test data. Additionally, as the signal-to-noise level 

decreases the recognizers’ performance rapidly degrades. The mismatch in the 

training and test data contributes to the decrease in recognizer performance. 

Mismatches in training and test data are meant to simulate a scenario in which 

signal noise is not known a priori. Thus, improved recognizer performance with 

clean training only, and the resulting mismatches in the training and test data, is 

an important goal in ASR.

Section 5.3.1 briefly describes the signal analysis performed by the WI007 

front-end algorithms developed by the ETSI working group and presents the 

performance, in terms of the word accuracy percentages, of the resulting 

automatic speech recognizer evaluated with the multi-condition and clean 

training data from the Aurora 2.0 database. As mentioned in Chapter 3 the 

WI007 front-end was designed for evaluation and comparison of front-end 

algorithms using the Aurora 2.0 speech data and a standardized HMM back-end 

which was also defined by the Aurora DSR working group [57]. In addition, the
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ODU baseline DCTC/DCS features were evaluated with the Aurora 2.0 database 

and results compared to the Aurora control experiments presented in Section 

5.3.1. An evaluation of the new LP based DCTC/DCS features is presented in 

Section 5.4. The performance of the new features is compared to those obtained 

from the control features and from the ODU baseline DCTC/DCS features. 

Additionally, the best parameters found in the experiments with the ODU 

baseline features were used as a starting point for finding the LP based 

DCTC/DCS signal representation which produced the best recognizer 

performance. The evaluations reported in Section 5.4 were also performed using 

the Aurora 2.0 multi-condition and clean training data. The experiments 

presented in section 5.5 were designed to make a more direct comparison to the 

WI007 MFCC signal model by varying the window lengths used to compute the 

dynamic coefficients from the WI007 MFCC static feature vectors. Chapter 

conclusions are reported in section 5.6.

5.3 CONTROL EXPERIMENTS

LP based DCTC/DCS signal processing was presented in the previous 

section. In this section, two control experiments are presented. The 

performance of the WI007 MFCC front-end has been used as a standard for the 

purposes of comparing evaluations of speech signal models using the Aurora 2.0 

speech data. Therefore the decision was made to use the same features for our 

first control method. Since the signal processing for the MFCC and LP based 

DCTC/DCS signal models are quite different the second control experiment was 

performed using the FFT based DCTC/DCS signal representation, which makes
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possible a reasonable comparison to the MFCC features in the first control 

experiment. The evaluation of the FFT based DCTC/DCS signal model also 

serves as a second baseline for the evaluation of the LP based DCTC/DCS 

features presented in section 5.4. Additionally, the optimal parameters obtained 

from the second control experiment were used as a starting point for the LP 

based DCTC/DCS features evaluated in section 5.4. Note that since the 

evaluation of the signal representation was the objective of each of the 

experiments presented in this dissertation the same Hidden Markov Model back­

end was used for the recognition phase for each evaluation. The HMM 

configuration was described in Section 3.2.3.

5.3.1 MFCC FEATURES

The Aurora DSR Working Group designed the WI007 front-end so that a 

baseline speech recognition system could be realized and used for comparison 

of the performance of front-end algorithms developed by different research 

groups. Therefore, this first control experiment used the standard MFCC feature 

vectors as defined by the Aurora DSR Working Group in task WI007 [59]. Since 

the WI007 front-end only produces 14 component vectors containing static 

speech information the HTK signal analysis tool was used to compute time 

derivatives (referred to as delta and delta-delta coefficients) from the MFCC 

derived static features. These dynamic coefficients were computed using the 

regression formula:
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©

(5.13)0=1
©

where dt is a delta coefficient at time t computed in terms of the corresponding 

static coefficients ct+̂  to ct̂ . The delta coefficients are used with equation 5.13

to compute the acceleration (or delta-delta) coefficients [84]. The standardized 

Hidden Markov Model recognizer determined by the final 39 component MFCC 

feature vectors served as our primary baseline for comparison purposes.

The Aurora WI007 front-end is a cepstral analysis (MFCC) scheme for 

which 14 feature components per frame are computed. A notch filter performs 

signal offset compensation, and pre-emphasis is performed with a factor of 0.97. 

Subsequently, the logarithmic frame energy and C0 coefficient are computed 

along with 12 Mel frequency cepstral coefficients [57]. These vectors were 

determined using a speech frame length of 25 ms with a 10 ms frame spacing 

and represent static information in the speech signal. As mentioned earlier the 

signal analysis tool in the HTK toolkit was used to compute the dynamic 

components from the static feature vectors. The zero-th cepstral term was used 

to compute the dynamic terms but was not included in the 13 component static 

feature vector. Table 10 and Table 11 give word accuracy rates for the 

recognizer determined by 13 MFCC terms augmented with 13 delta and 13 delta- 

delta terms. Word accuracy was computed using the formula:

% accuracy (5.14)
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where N is the total number of words in the reference transcription, D is the 

number of deletion errors, I is the number of insertion errors, and S is the number 

of substitution errors. Note that the results from this experiment were nearly 

identical to those reported by the ETSI working group, as given in Table 1 in 

Chapter 3. As noted in Chapter 3 for each set of results reported in this 

dissertation the averages are computed with the following weight function,

W=0.4*TSA+0.35*TSB+0.25*TSC (5.15)

where TSA, TSB, and TSC are the averages of the percent word accuracy for 

each of the test sets, respectively.

Table 10 Word Accuracy for MFCC Analysis. Multi-Condition Training.

Word Accuracy (%)

Test Set A Test Set B Test Set C Weighted
Average

89.16 87.69 85.7 87.77

Table 11 Word Accuracy for MFCC Analysis. Clean-Condition Training.

Word Accuracy (%)

Test Set A Test Set B Test Set C Weighted
Average

69.96 66.96 71.77 69.36

5.3.2 FFT BASED DCTC/DCS SPECTRAL FEATURES

The control experiments presented in this section were designed to 

evaluate the frame level FFT based DCTC/DCS features computed as described 

in 2.1.4. Thus, performance of these features is compared to the Aurora 

baseline produced by the W I007 front-end recognizer, and to the performance of
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LP based DCTC/DCS features computed and evaluated in section 5.4. The first 

experiment evaluated the signal model using the Aurora 2.0 multi-condition 

training data, followed by the evaluation using clean training.

For the first control experiment presented in this section the best signal 

model representation was determined by varying the block level processing of 

the frames over a range of 3 to 25 frames per block with all other parameters 

held fixed. Percent word accuracy for each of the block lengths are given in 

Figure 11. As can be seen in the figure the recognizer with a block length of 3 

yielded the worst performance, indicating that 55 ms of the speech signal is not 

sufficient for capturing relevant speech information. It is likely that slowly varying 

regions of the speech signal spectrum were not well represented by this 

recognizer. On the other extreme, the recognizer with block length 25 performed 

significantly better than the one with a block length of 3, but resulted in a word 

accuracy approximately 4% lower than the recognizers with block lengths of 9 

and 10. The performance of the recognizer with block length 25 indicates this 

recognizer’s inability to effectively represent rapid changes of the spectral 

dynamics as opposed to the problem encountered with the shorter block lengths.

The best performance achieved was 83.61%, accomplished with a block 

length of 10. Thus, the dynamic feature components were computed over 125 

ms segments of the speech signal, which is significantly longer than the typical 

length resulting from the more typical 25 ms window duration, 10 ms frame 

spacing, and 3 frames for computing dynamic features.
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Word Accuracy For Varying Block Length 
Evaluated with Multi-condition Training Data

3 5 7 9 10 11 13 15 17 19 20 25
Block Length

Figure 11 Word accuracy for the recognizer determined by varying the 
block length from 3 to 25 blocks per frame.

Figure 11 depicts the trend over the range of block lengths but does not 

provide details for the individual cases. Word accuracies for the best case, block 

length 10, are presented in Table 12, which shows that the performance for clean 

speech and SNR 15 are comparable to results achieved with the WI007 front- 

end. However, as the SNR decreases the word error rate (WER) of the FFT 

based DCTC/DCS recognizer increases, resulting in an average WER of 16.4% 

as compared to WI007 front-end word error rate of 12.2%. Thus, the baseline 

FFT based DCTC/DCS signal model is not as noise robust as the WI007 front- 

end model.
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Table 12 Word Accuracy for DCSC/DCT Analysis. Block Length 10.

SNR
Level Word Accuracy (%)

Test Set A Test Set B Test Set C Average
Clean 98.76 98.76 98.65 98.73
SNR20 97.59 96.73 96.67 97.06
SNR 15 96.29 93.69 94.43 94.92
SNR 10 92.41 87.43 87.83 89.52
SNR 5 80.57 72.08 70.12 74.99
SNR 0 52.72 44.80 38.69 46.44
Average 86.39 82.25 81.06 83.61

The second control experiment presented in this section is the evaluation 

of the FFT based DCTC/DCS signal model with the Aurora 2.0 clean training 

data. Due to the mismatch between training and test data the performance of the 

recognizers were expected to degrade when evaluated with the Aurora 2.0 clean 

training data. Also, from Figure 11 it can be seen that the best performance for 

the evaluation with the multi-condition data was for block lengths in the range of 

7 to 17. The performance of the recognizers trained with the clean data was not 

expected to exceed that of the recognizers trained with the multi-condition data. 

Therefore, the block length was varied within this range. All other parameters 

were the same as those used for the evaluation using the multi-condition training 

data. For block lengths 9 through 17 the word accuracies for this experiment are 

provided in Figure 12, which shows that the best performance was achieved with 

block length 13.
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Word Accuracy for Varying Block Length 
Evaluated with Clean Training Data
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Figure 12 Word accuracy for varying the block length evaluated with 
clean training data.

As mentioned earlier, there is a high degree of mismatch in the training 

and test data. Thus, the recognizer determined by clean training data does not 

“learn” about any of the types of additive noise in the test data. This assumption 

is supported by the performance of the recognizers trained with the clean data, 

which achieved a best performance achieved of 61.25% word accuracy, 

accomplished with block length of 13. Thus, there was a relative difference of 

26.74% between the performances of the recognizer determined by the multi­

condition training data and the one evaluated with clean-condition training data. 

The best performance of the recognizer determined by the WI007 front-end 

trained with clean data was 66.9% word accuracy. Thus, there was a relative 

difference of 8.45%.
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5.4 LP BASED DCTC/DCS SPECTRAL FEATURES

In the previous section two control experiments were described and 

results were reported. The first control experiment was conducted to reproduce 

the results achieved by the ETSI working group using MFCC features from the 

WI007 front-end analysis scheme. Performance of the WI007 recognizer was 

reported in [57]. In order to reproduce the ETSI published results the WI007 

front-end package was obtained by the ODU Speech Communications 

Laboratory, and the ETSI results reported in Table 10 were reproduced to within 

4 decimal points. The second control experiment used the ODU Speech 

Communications Laboratory FFT based DCTC/DCS signal representation 

method. Results from these control experiments show that there was a 4.2%  

difference in the word error rates achieved by the MFCC features from the WI007 

front-end and the baseline FFT based DCTC/DCS features.

In this section experiments performed to evaluate the LP based 

DCTC/DCS features are reported. The objective of this series of experiments 

was to systematically test the hypothesis stated in Section 5.1, that recognizer 

performance would improve if the spectral peaks were not only preserved but 

also emphasized or enhanced. The first of the following experiments was 

designed to evaluate the LP based DCTC/DCS features and compare them with 

the performance of the control experiments. In the first experiment the numbers 

of Linear Prediction coefficients were varied over a range of 0 to 100, where an 

LP order of zero really means that LP analysis was skipped and the results are 

from FFT based DCTC/DCS signal analysis. A fixed block length of 10 (as
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determined from the second control experiment using the multi-condition training 

data, described in the previous section) was used. Additionally, for the control 

experiments the recognizer performance was the highest for block lengths in the 

middle range. Therefore, for the second set of experiments with the LP based 

DCTC/DCS features, the block length was varied from 9 to 17 frames per block, 

and the LP order was again varied over the range of 0 to 100.

5.4.1 LP-DCTC/DCS SPECTRUM: FIXED BLOCK LENGTH

As previously stated the experiments presented in this section 

systematically tested the hypothesis that LP peak enhanced features determine a 

more noise robust signal model, and thus improve recognizer performance in 

noise. The first experiment reported in this section was an evaluation performed 

using the multi-condition training data. Therefore the block length was fixed to 10 

(determined in Section 5.3.2) and the LP order was varied. All other parameters 

used for experiments reported in this section were the same as those used for 

the experiments presented in the previous sections. Word accuracies for the 

evaluation using multi-condition data are presented in Figure 13. As can be seen 

in the figure, the best performance was obtained with an LP order of 25 resulting 

in a word accuracy of 87.65%. Details for this particular experiment are 

presented in Table 13, with word accuracy for each test set and at individual 

SNR levels provided.
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Figure 13 Word Accuracy for block length 10 and varying the number of 
LP coefficients, evaluated with multi-condition training data.

The recognizer determined by the LP based DCTC/DCS signal

representation achieved a 12.35% word error rate, which is a significant

improvement over the 16.39% W ER obtained by the FFT based DCTC/DCS

signal model.

Table 13 Word Accuracy achieved by recognizer determined with LP order 
25 with block length 10. Multi-Condition Training.

SNR Level Word Accuracy (%)
Test Set A Test Set B Test Set C Average

Clean 98.70 98.70 98.77 98.72
SNR20 97.74 96.89 97.57 97.40
SNR 15 96.97 94.74 96.41 96.05
SNR 10 94.45 90.75 93.15 92.83
SNR 5 86.16 80.20 81.88 83.00
SNR 0 63.89 56.73 50.04 57.92

Average 89.65 86.33 86.31 87.65

For the evaluation using the multi-condition training data the total 

improvement achieved by the LP based DCTC/DCS signal representation

Word Accuracy 
for Block Length 10 

Multi-condition Training Data

0 15 25 50 75 100
LP Order
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resulted in recognizer performance that is essentially equivalent to that of the 

Aurora WI007 front-end. Additionally, the 4.83% improvement (in word accuracy) 

over the FFT based DCTC/DCS features is quite significant. Thus, the results of 

this experiment support the hypothesis that noise robustness improves with 

speech feature enhancement using LP based DCTC/DCS features. These 

results indicate that for the multi-condition training data the spectral peak 

enhancement achieved by the LP based DCTC/DCS signal model preserves 

more speech signal information. Thus, the LP DCTC/DCS features result in a 

signal model that is more robust to noise than the FFT based DCTC/DCS model, 

and is essentially as noise robust as the WI007 front-end signal representation. 

In the next section this hypothesis was further tested by evaluation of the LP 

based DCTC/DCS signal representation using varying block lengths. In addition, 

the evaluation of the LP based DCTC/DCS features using clean training data is 

presented. This evaluation is performed by varying the block length and LP 

order.

5.4.2 LP SPECTRUM: VARIED BLOCK LENGTH

In the previous section experiments were performed using the LP based 

DCTC/DCS features and recognizer performance was compared to that of the 

MFCC and FFT based DCTC/DCS features in the two control experiments. For 

multi-condition training with LP order 25 and block length 10 the performance of 

the new features was found to be comparable to that of the MFCC features 

produced by the WI007 front-end. Experiments reported in this section were 

performed in order to further evaluate the noise robustness of the LP based
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DCTC/DCS signal model and to determine the LP order and block length that 

would maximize the robustness of the LP based DCTC/DCS signal features. 

Thus, in this set of experiments the evaluation of the LP based DCTC/DCS 

features with the multi-condition training data were computed with the number of 

LP coefficients varied from 0 to 100 and with the block length varied from 7 to 15 

frames for each LP order evaluated. The 39-component LP based DCTC/DCS 

feature vectors were computed as they were for the results in Section 5.4.1, 

except for varying the block lengths, and with all other conditions identical to 

those reported for Section 5.4.1. Recognizer performances for each LP order 

are presented in Figure 14. As can be seen from the figure, the performance of 

the recognizer increases until the LP order reaches 25, and for this LP order 

results achieved with block length 11 are slightly improved over recognizer 

performance obtained using block length 10. Note that LP order of 25 is 

somewhat higher than the order typically used in methods such as PLP that do 

not use long block length processing.

Word Accuracy with 
Varying Block Length and LP Order

0 15 25 50 75 100
LP Order

■  B L 7

■  B L 9

□  b l 1 0

□  B L 1 1

■  B L 1 3

■  B L 1 5

Figure 14 Word Accuracy for varying LP order and varying block length.
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Thus, in these experiments, the LP order and the block length were jointly 

varied. The improved performance from the recognizer determined using LP 

order 25 and block length 11 is an indication that the longer block length 

combined with the peak emphasis of the model produced more robustness in the 

signal model. Word Accuracy for the recognizer with LP order 25 and block 

length 11 are given in Table 14.

Table 14 Word accuracy for recognizer determined by LP order 25 with 
block length 11.

SNR Level Word Accuracy (%)

Test Set A Test Set B Test Set C Average
Clean 98.67 98.69 98.77 98.70

SNR20 97.70 96.83 97.62 97.38
SNR 15 96.83 94.82 96.35 96.01
SNR 10 94.42 90.57 93.2 92.77
SNR 5 86.44 79.93 82.92 83.28
SNR 0 65.74 57.20 55 60.07

Average 89.97 86.34 87.28 88.03

The second experiment presented in this section is the evaluation of the 

LP based DCTC/DCS signal representation using the Aurora 2.0 clean training 

data. The control experiment using the clean data resulted in degraded 

recognizer performance, as compared to that of the recognizer trained with the 

multi-condition data. Also, the best word accuracies achieved by recognizers in 

the previous experiments were for block lengths 10 and 11, and the LP order 

which resulted in the most noise robust features was LP order 25 with block 

length 11. These parameters were used to determine ranges for variation of the 

parameters for the evaluation using the clean training data. As a result, block 

length was varied from 9 to 15 and for each of the block lengths the LP order was
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varied from 0 to 25. Figure 15 shows the word accuracies achieved by the 

resulting recognizers, where the best performance was achieved with LP order 

15 and block Iength11.

o
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£

Word Accuracy 
Varying Block Length & LP Order 
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Figure 15 Word accuracy determined by varying the LP Order over
0 to 25, and varying the block length over the range from 9 to 15

The recognizer implemented with LP order 15, and block length 11, 

achieved 64.98% word accuracy using clean training data. Thus, there is a 

difference of 4.38% between the performances of the LP enhanced recognizer 

and the WI007 recognizer trained with the clean data.

The performance of the recognizer determined by using the improved 

signal model and training on the Aurora 2.0 speech data has been compared to 

the performance of the control experiment recognizer presented in Section 5.3.1, 

which was produced by using the WI007 front-end analysis scheme, also training 

on the Aurora 2.0 data. Thus, with respect to the multi-condition training data the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

LP based DCTC/DCS features have been shown to increase noise robustness in 

the signal representation and to perform as well as the MFFC signal 

representation method presented in the first control experiment. Additionally, 

evaluation of the improved signal representation using the Aurora 2.0 clean data 

also resulted in better recognizer performance. The following section presents 

the evaluation of the MFCC signal model with varying block lengths, and the 

performance of the resulting recognizer is compared with that of the LP based 

DCTC/DCS signal model.

5.5 MFCC SIGNAL REPRESENTATION: VARIED BLOCK 
LENGTH

As described in Section 5.3.1 the MFCC analysis scheme produces static 

feature components only. Therefore, determination of the dynamic coefficients 

was accomplished using the HTK toolkit and the static coefficients from the 

MFCC analysis. Recall from Section 5.3.1 that the window length used to 

compute the MFCC coefficients was 25 ms and the frame rate was 10 ms. As 

defined by the standard HMM configuration for the WI007 front-end, the window 

length used to determine the delta terms was 3, and the window length used to 

determine the delta-delta terms was 2. These parameters result in what is 

roughly equivalent to the ODU Speech Communications Laboratory block length 

processing using a block length of 3 with a 25 ms window and a frame rate of 10 

ms, or what amounts to 45 ms segments of the signal being used for 

computation of each set of dynamic coefficients. Note that in each of the other 

experiments presented in this dissertation the recognizers best performances
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with window length of 35 ms and block lengths of either 10 or 11. As mentioned 

earlier, this equates to the computation of each set of dynamic coefficients over 

125 ms and 135 ms, which is one of the unique aspects of the signal processing 

by the block method used at ODU. The WI007 front-end was designed to 

compute only the static coefficients with the expectation that the dynamic terms 

would be computed by the signal analysis tool in the HTK toolkit. Additionally, 

the HTK parameters were expected to be fixed. Thus, the performance of the 

MFCC features were expected to degrade if the dynamic information was 

encoded using longer windows, as compared to the block lengths used in the 

signal representation methods presented in this dissertation. Therefore, a set of 

experiments was performed in order to confirm the hypotheses regarding the 

MFCC front-end analysis scheme, as well as to make a more direct comparison 

between the two signal model methods.

In order to make the comparison discussed in the previous paragraph the 

experiments presented in this section were performed using the WI007 front-end 

algorithm to compute the MFCC static feature vectors. Note that the parameters 

were unchanged from the parameters used for the MFCC control experiment 

presented in Section 5.3.1. The HTK toolkit was then used to compute the 

dynamic coefficients from the MFCC static feature vectors. The only parameter 

varied in this experiment was the block lengths for the determination of the 

dynamic coefficients, which were varied over the range 3 to 11 frames.

The recognizer determined by the WI007 signal model and trained with 

the multi-condition data behaved as expected. Performance degraded as the
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window lengths were increased, and calculation of the dynamic coefficients with 

window length 11 resulted in the MFCC recognizer with the worst performance, 

which was 16.58% WER. This is a 27.74% relative decrease as compared to the 

best performance of 11.98% WER achieved with the LP based DCTC/DCS 

signal model. Figure 16 shows the WI007 recognizer performance degrading as 

the window lengths are increased.

MFCC Features Varying 
Window Length For Dynamic Coefficients 

Multi-condition Training Data

Window Length
Figure 16 WI007 front-end with varying window length for 
computation of the dynamic coefficients.

The MFFC recognizer was also evaluated using the Aurora 2.0 clean data, 

with all other parameters were held fixed from the evaluation using the multi­

condition data. In this case the performances achieved by the recognizers 

decreased until the block length reached 7 and then began to increase. A 

29.05% W ER was the best performance achieved (BL=10). This is a relative 

improvement of 12.0% W ER as compared to the best performance of 33.01%  

WER achieved by the MFCC control recognizer. Figure 17 shows the
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performances of the recognizers determined by the WI007 signal model, with 

varying block length used in the computation of the dynamic coefficients.

MFCC Features Varying Window Length 
For Dynamic Coefficients 

Clean Training Data
69
67 
65 
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59 
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Window Length

Figure 17 WI007 front-end with varying block length for
computation of the dynamic coefficients.

By varying the block length used to determine the dynamic coefficients the 

performance of the WI007 recognizer evaluated with clean-condition training data 

improved while the same approach resulted in decreased performance when 

evaluating with the multi-condition data. Without further analysis this behavior 

cannot be generalized. However, performance indicates that the signal model 

was optimized for multi-condition training with fixed block length of 3.

5.6 CHAPTER CONCLUSIONS

The LP based DCTC/DCS signal representation with 39 terms and the 

standard HMM recognizer results in recognizer performance of 11.97% W ER for 

the Aurora 2.0 database, as compared to the 12.23% W ER achieved by the
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WI007 front-end representation, and the 16.39% WER of the FFT based 

DCTC/DCS signal model. This represents a relative improvement of 2.13%  

W ER over the Aurora WI008 front-end features, and a relative improvement of 

26.97% W ER over our baseline features for the same database. Noise 

robustness was improved due to the signal representation obtained from the 

longer block length processing combined with the spectral enhancement of 

speech signal peaks determined from the LP based DCTC/DCT analysis. Thus, 

the LP based DCTC/DCS signal representation has been shown to be as robust 

to noise as the WI007 signal representation.

The primary contribution of the work reported in this chapter was the 

demonstration that when the LP order is suitably chosen the magnitude 

frequency response estimates the envelope of the signal spectrum, and the all 

pole nature of linear predictive coding produces a spectral envelope with sharp 

peaks that, when combined with long block length processing produces a signal 

representation which is more robust to noise. Thus, LP based DCTC/DCS 

features can capture speech information in spectral peaks resulting in improved 

performance in noise and channel distortion. The advantage of this method is 

that preservation of important speech information by emphasizing spectral peaks 

and ignoring valleys is accomplished with essentially no additional computational 

demand. Additionally, the LP based DCTC/DCT features are straightforward to 

implement, and are slightly more robust to noise and channel distortion than the 

more standard MFCC coefficients with additional dynamic coefficients.
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CHAPTER VI 
MORPHOLOGICAL FILTERING IN THE SPECTRAL DOMAIN

6.1 INTRODUCTION

Nonlinear filtering techniques have become increasingly important in 

signal processing, and are often better than linear filters at removing noise 

without distorting signal characteristics. Historically, homomorphic and 

polynomial filters have been the primary class of linear filters used by the signal 

processing community. Recently, order statistic and morphological filters have 

been receiving more attention but still fall into a second, less utilized class. 

Homomorphic filters were developed during the 1970’s and obey a generalization 

of the superposition principle [40]. While the design and analysis of 

homomorphic and polynomial filters are somewhat similar to those used for linear 

filters, order statistic and morphological filter design cannot be achieved using 

generalizations of linear techniques. Thus, these types of filters are frequently 

designed using heuristic methods. Consequently, the behavior of order statistic 

and related filters, such as morphological filters, were not well understood until 

important results on their statistical behavior were defined.

In the early 1980’s root signals, the class of signals invariant to median 

filtering, were defined, and important results on the statistical behavior of the 

median filter presented [76]. The median filter is an order statistic filter that 

replaces the center value in the filter window with the median window value. A 

median filter is recursive if the values in the window are updated as the filter acts 

on the signal.
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In general, design and analysis of nonlinear filters is more difficult than the 

design and analysis of linear filters. In 1987 statistical and deterministic analyses 

for the basic morphological filters were published [74]. This publication was an 

important contribution to signal processing since it established a firm 

mathematical foundation for the use of these filters. Mathematical morphology is 

a method of nonlinear filtering limited to maximum and minimum operations 

which are effective at noise suppression, and are more tractable than other 

nonlinear filtering techniques. In many applications a primary drawback of 

morphological filtering is the introduction of a deterministic bias into the filtered 

signal. However, for the application intended in this dissertation this bias is not a 

drawback since the reduction of signal valleys and enhancement of signal peaks 

is a specific goal.

As mentioned above an important property of a nonlinear filter is its root 

signal set, also referred to as fixed points of the filter. The root signal set is the 

set of signals that are unchanged by the operation of the filter. A root signal 

consists only of constant neighborhoods and edges, where a constant 

neighborhood is an area of constant value with length at least half the length of 

the window and an edge is a monotonic region of any length between two 

constant neighborhoods [77]. A critical goal of morphological filtering is the 

preservation of slowly varying regions and rapid transitions, as well as the 

smoothing of impulses and rapid oscillations. Thus, root signal sets with these 

properties are clearly quite important.
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The maximum and minimum functions that define the basic morphological 

filtering are the cause of the signal bias mentioned earlier. For example, the 

close and close-open operations begin with the dilation operation, which replaces 

the center value in the filter window with the maximum value within the filter 

window. Signals filtered with these operations lie on or above the root signal 

found by median filtering. Filtering with the open and open-close operations 

result in an output signal which has a magnitude below or equal to the root signal 

found by median filtering. In many applications (e.g. image processing) the bias 

is undesirable but the smoothing property of the morphological filtering is 

valuable. In this dissertation the goal is to broaden spectral peaks and reduce 

the depth of noisy low level spectral valleys. Therefore the bias in the filtered 

signal can be taken advantage of with respect to the specific goal of the 

morphological filtering used in this dissertation. However, the amount of spectral 

peak broadening must be controlled so as to avoid over smoothing of the filtered 

spectra.

The remainder of this chapter is organized as follows. Section 6.2 

presents definitions for mathematical morphology and discusses general 

properties of morphological filtering. Signal processing for morphological filtering 

is presented in Section 6.3. Experimental results from evaluations of 

morphologically filtered FFT based DCTC/DCS features are presented in Section 

6.4. Evaluations of the morphologically filtered LP based DCTC/DCS signal 

model are presented in Section 6.5. The evaluations presented in Sections 6.4 

and 6.5 were performed with the dilation operator. In order to demonstrate the
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behavior of the other morphological filter operations an evaluation was performed 

for each of the signal models determined by filtering with the erosion, open, 

close, open-close, and close-open filters. The results of these experiments are 

presented in Section 6 .6 . Finally, the complexity of the Hidden Markov Model 

recognizer was increased and tested with the signal model determined by 

morphologically filtering the spectra of the LP based DCTC static coefficients with 

the close-open operator. Results of these experiments are presented in Section 

6.7. The last set of experiments was an evaluation of morphological filtering and 

the LP based DCTC/DCS signal model using the Aurora 3.0 database. 

Recognizer performances are reported in Section 6.9. Chapter conclusions are 

presented in Section 6.10.

6.2 MATHEMATICAL MORPHOLOGY

In morphological filtering geometrical properties of the signal are modified 

by morphological convolution of the signal with a structuring element, which is 

chosen to enhance specific characteristics of the filtered signal. Variation of the 

shape and size of the structuring element provides a means of extracting 

different types of information from the signal. Thus, signal shaping is 

accomplished by the use of a smooth shaped structuring element.

Every morphological filter must be translation and scale invariant, depend 

only on local signal values, and be upper semi-continuous [74]. A morphological 

convolution is upper semi-continuous if the structuring element has a compact 

region of support. This requirement is not a problem in signal processing 

because every sampled signal is upper semi-continuous. There are four basic
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morphological filtering operations which are derived from Minkowski set addition, 

defined below.

Minkowski set addition and subtraction, respectively, are given by 

equations 6.1 and 6 .2 .

A@B = {a + b : a e A , b e B } = \ ] A b , where Ab -  {a + b :a e  A} (6.1)
beB

AD B = \a + b : a e A,b e B} = f| Abj ± 0 , where Ab = \a + b : a + b e A] (6.2)
beB

Equations 6.1 and 6.2 mean that the union of the translates of B produce dilation 

whereas the intersection of the translates of B produce erosion. The translates 

of B relative to A include every case of B shifted such that for each element 

a e A the center of B is coincident with a. Thus, the dilation of A by the set B is 

the union of the translates of B which form a non-empty intersection with A. The 

erosion of the set A by set B is the union of the set of points to which the 

reflection of B may be translated while still being completely contained within the 

original set A. All filters designed from these basic operations behave similarly to 

the well-known median filters [74]. Combinations of the two basic operations, 

dilation and erosion are used to produce the open, close, open-close, and close- 

open operations. The first stage of the open and open-close operators is 

erosion. Whereas dilation is the first stage of the close and close-open filters. 

Additionally, the geometric structure of mathematical morphology can be used to 

create filters that use signal threshold values to produce further improvements in 

noise suppression and peak detection.
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If we let B s = { - b : b e B \  be the symmetric set of B with respect to the

origin, then the operations of erosion, dilation, opening, and closing, are derived

from Minkowski set addition as defined below:

X<SBs = { z : B , f \ X * 0 }  = {JX_,  (6.3)
beB

X Q B s ={z-.BI ^ X }  = [ \ X _ l  (6.4)
beB

X B=[ACU BS) ® B  (6.5)

X s =(Ac@Bs)0 B (6.6)

The graphic example in Figure 18 illustrates these abstract set theoretic 

definitions.

Minkowski set addition

f§ 11 © o o o
hb © -■$=- = cb —

©  o  Q  ©
o

Minkowski set subtraction

O  O  O  O  O

O  4 *  0
o o m
o o

Figure 18 Example of Minkowski set addition and Minkowski 
set subtraction.

From the definitions above it can be seen that morphological filtering was 

originally derived from set theory, and therefore was applied to binary signals. 

Thus, the first morphological filters were set processing filters. However, the
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foundation of mathematical morphology has since been extended to multi-level 

signals [75] [78]-[80], which led to function processing (FP) and function set 

processing (FSP) operations. The extension from set processing to function 

processing is accomplished by a process referred to as threshold decomposition 

of the function and accomplished by expressing the function as an ordered set of 

functions [75]. This is performed by taking a cross section of the function at each 

value in the range, and then taking the union of these cross sections over the 

range of the function. This process gives a complete representation of the 

function, i.e. the function can be recovered from the union of the cross sections. 

The use of signal threshold values is one way to move from set processing to 

function processing. However, in this dissertation an equivalent representation 

called the umbra of a function [78] is used.

The umbra of a closed function f, denoted by U(f), is the Minkowski sum of 

the graph of the function and the half-open set (-o o ,0 ]. Figure 19 shows a

function g in R2 and its umbra. One way to determine the umbra of f  is by 

projecting the points in f  onto (-<»,0]. Thus, the umbra of a function can be 

viewed as its shadow. The umbra of a function f  is a closed set and is 

analytically defined by.

U ( / )  = { ( * ,  0  e DxF  : f ( x )  > t }  (6.7)

where D and F are the domain and range of f, respectively.

For each x in the domain of f,

f ( x )  = swp( ( x , t )e U( f ) ) (6-8)
t
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Thus, f  can be uniquely reconstructed from its umbra, U(f).

Structuring element g r and its umbra
20

15 Structuring 
function, g

10

- 5

Un bra of th<! 
sti uct uri ng :un :ti< >n-10

-1 5

- 2 0 0 2 6- 6 -4 -2 4

Figure 19 The graph of the structuring function g, 
and its umbra. The function g is the parabola in the 
range [-4,4] and is zero elsewhere. The umbra of g 
is indicated by the solid lines extending downward in 
the range [-4,4].

The use of the definition of the umbra of a function is equivalent to the 

signal threshold method and allows morphological function processing filters to 

be treated as special cases of set processing filters in that the function 

processing filters process the umbrae of the input functions instead of the set 

processing performed by SP filters [78]. In this dissertation morphological 

filtering of a signal is accomplished via the transformation of its umbra by a 

compact structuring function B. Using the umbrae of f and B the Minkowski 

addition and subtraction of f with B is defined as follows:

U ( f ® B )  = U ( f ) @ B  = U ( f ) ® U ( B )  (6.9)

U ( fU  B) = U ( f )U  Br = U ( f )U  [U(B)]r (6.10)
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where Br = {(x,-t )eDxF :(x, t )eB}  is the reflected set of B with respect to D. 

From equations 6.9 and 6.10 it can be seen that the transformation of the umbra 

of f by B is equivalent to the transformation of the umbra of f by the umbra of B.

Set structuring elements assume a flat intensity profile over their region of 

support. In contrast, structuring functions process signals based on a shape 

based profile. Therefore, in this dissertation the umbra of the speech signals are 

transformed, or filtered, by the umbra of a compact structuring function, g. In 

order to emphasize the signal peaks and suppress low level noise the structuring 

function was chosen to be a parabola, defined by the following equation:

The curvature of the parabola is controlled by the parameter H, and the 

region of support of the parabola is defined by N, which is determined by a 

specified frequency range. A large value for H results in a parabola that more 

deeply penetrates the peaks (valleys) of the function.

Figures 20 and 21 give examples of one frame of the spectrum of the digit 

string “008” before and after dilation and erosion with the structuring function g, 

respectively, where h = 2, N = 9, and the region of support is [-4 ,4 ]. The 

number of points in the region of support is computed using the formula:

where Fs is the sampling rate, L is the length of the windowed signal, and Fsp is 

the specified filter window size in Hz. For Figure 10 the region of support was

g - H * ( N 2 - n 2) (6 .11)

(6.12)
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computed using the valuesFs =8000 H z , L=512, Fsp= 140 Hz. From Figure 20 it

can be seen that the dilation of the spectrum of the function by the structuring 

function broadens peaks and reduces the depth of the valleys of the input 

spectrum. Erosion of the same frame of the spectrum by g is illustrated in Figure 

21. The figure shows the erosion of peaks and tracking of valleys of the input 

function.

Dilation of 1 Frame of the Spectrum of the Digit String "QOS''
21

<— Dilation of the spectral frame
20

19

18

1
f 17 1
9
S 16

Spectrum of 1 frame of ”008
15

14

3500 4000500 1000 1500 2000 2500 3000
Frequency /Hz

Figure 20 Dilation of one frame of the spectrum with g.

An example of the same spectral frame after the open-close by g is given 

in Figure 21. The graphic shows the clipping of the peaks of the input spectrum. 

It can also be seen that the depth of the valleys is not reduced by the cascaded 

operation. The structuring function was also used to perform the open-close 

operation on the same spectral frame.
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Erosion of 1 Frame of the Spectrum of the Digit String ”008"

20 i 4- Spectrum of 1 frame of ”008"

18

a
I
93

<- Brosion of the spectral frame

500 1 0 0 0 1500 2 0 0 0  :
Frequency/Hz

2500 3500 40003000

Figure 21 One frame of the spectrum of digit string 
“008” eroded with g.

Figure 22 depicts the same spectral frame before and after the close-open by g.

The center of the structuring function is translated to each point of the 

signal. As a result, the filtered signal peaks (valleys) are located at the center of 

the filter window. Additionally, the width of the candidate peaks and valleys is 

directly dependent on the size of the region of support of the structuring function 

g. For example, large spikes of short duration present in the signal are referred 

to as impulsive noise. If the width of the noise spikes does not exceed the width 

of the region of support of the structuring function the noisy peak (valley) can be 

effectively suppressed by the open-close operation, which begins with the 

erosion operation depicted in Figure 21. Suppression of sharp peaks can be 

seen in Figure 22 where peaks are reduced via the open-close operation. The 

sharper peaks are clearly more affected by the open-close operation.
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Open-close of 1 Frame of the Spectrum of the Digit String "008"
21

20 <- Spectrum of 1 frame of "008"
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Frequency/Hz

Figure 22 One frame of the spectrum of the digit 
string “008” after open-close by g.

Peak broadening and valley depth reduction by the close-open operation 

is depicted in Figure 23. Recall that the region of support of the structuring 

function was [-4 ,4 ] for each of the Figures 19 through 22, which means the filter

window length was approximately 140 Hz. Thus, spectral peak broadening 

produced by this window length is quite large. As can be seen in Figure 23 the 

filtered signal is over smoothed and is likely to result in degraded recognizer 

performance.

In summary, Figures 20 through 23 provide an illustration of the effects of 

the filters, which are quite different from each other in that erosion removes 

positive spikes and preserves valleys, while dilation essentially tracks the valleys 

and broadens peaks. Both operations preserve monotonic ranges within the 

signal. The open-close and close-open operations are cascaded operations built
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from the basic operations of erosion and dilation, which essentially double the 

effective window length.

Close-open of 1 Frame of the Spectrum of the Digit String "008"
21

«- Close-open of 
the spectral frame20

19

18
1
I 17X

16

\ T i15

14

500 1000 1500 40002 0 0 0 2500 3000 3500
Frequency/Hz

Figure 23 One frame of the spectrum of the digit 
string “008” after close-open by g.

The remainder of this chapter reports the results of the investigation of the 

use of nonlinear filters based on mathematical morphology discussed above to 

determine peak enhanced speech signal representations. Specifically, filters 

based on mathematical morphology are developed, analyzed, and applied in a 

variety of speech recognition experiments. Figures 20 through 23 show the basic 

behavior of four morphological filters, and depict the deterministic bias in the 

filtered signal. Morphological filtering presented in this work was designed to 

take advantage of this characteristic to enhance speech signal spectral 

envelopes. The morphologically filtered LP derived DCTC/DCS signal 

representation is compared, via experimental results, with MFCC, DCTC/DCS, 

and LP based DCTC/DCS signal representations.
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6.3 MORPHOLOGICAL FILTER SIGNAL PROCESSING

Six different morphological filter operators were defined in Section 6.2. As 

seen in Figure 21 the erosion and open operators reduced the spectral peaks. 

Therefore, they were not considered useful for speech signal enhancement for 

ASR. Additionally, each of the operators presented in this dissertation was 

implemented with the structuring function defined by equation 6 .11, given in the 

previous section. The region of support was determined by N, as specified in 

equation 6.12. Each of the operators open, close, open-close, and close-open 

are computed by cascading the dilation and erosion operators. Therefore, only 

the signal processing for the dilation and erosion operations are presented in this 

section.

Let the input signal s(m)  have length M. Then for each m such that 

1 < m < M  the filter window is defined as W  =  [ m - N , m  +  N ] .  Also, the beginning 

and ending of each frame of the signal is padded with the first and last value, 

respectively such that m ±  N  >  0.

DILATION

The structuring function is translated such that the center of the structuring 

function is coincident with the current signal value s ( m ) , which is then replaced 

as follows:

5(/w) = sup(5 U ^ ) i where W is the current filter window. (6.13)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

EROSION

The erosion operator is defined as the intersection of the f  and the 

translates of g which are properly contained in f. Thus, g is translated in the 

same manner as for the dilation operator. However, if the translate is not 

properly contained in f, it is contained in the umbra of f, U ( f ) . This can be seen 

by sliding the structuring function down along the “shadow” of f  until g  <= U ( f ) . 

Subsequently, the erosion is determined by taking the minimum of the 

intersection over the filter window as follows:

s(m) = in f ( 5  f | g ) , where W  is the current filter window (6.14)

Sections 6.4 through 6.8 present evaluations of morphologically filtered 

FFT and LP based DCTC/DCS signal models using the Aurora 2.0 and Aurora 

3.0 databases.

6.4 FFT BASED DCTC/DCS FEATURES:MORPHOLOGICAL 
SMOOTHING

Experiments presented in this chapter were conducted in order to test the 

hypothesis that preservation and enhancement of spectral peaks, by 

morphological filtering of the LP based DCTC/DCS signal representation, would 

improve the performance of speech recognition in noise. Part of this hypothesis 

was tested via evaluations of the peak enhancing capability of the LP based 

DCTC/DCS signal representation, which were presented in Chapter 5. 

Specifically, Sections 5.3.1 and 5.3.2 presented control experiments which used 

the WI007 MFCC feature vectors and the ODU FFT based DCTC/DCS feature
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vectors computed without the use of LP analysis. The LP based DCTC/DCS 

signal representation was evaluated and compared to the performance of 

recognizers from each of the control experiments.

Speech recognizers determined by the FFT based DCTC/DCS feature 

vectors achieved a best performance of 16.39% WER while the recognizers 

determined by the MFCC feature vectors performed with a word accuracy of 

12.23% WER. Finally, Section 5.3.4 presented evaluations of the LP based 

DCTC/DCS signal representation and compared performance to that of the 

control experiment recognizers. The best performance achieved by the LP 

based DCTC/DCS features was 11.98% WER, which is a slight improvement 

over the performance achieved by the control features from the MFCC 

recognizer in Section 5.3.1.

In this section experiments are presented in which the spectrum of the LP 

based DCTC static feature vectors is morphologically filtered using the dilation 

operation with filter length In the range 0 to 400 Hz. Figure 20 gave an 

illustration of the behavior of the dilation of one frame of the spectrum of the digit 

string “008” with a window width of 140 Hz. As can be seen there the peaks of 

the spectrum are broadened while the valleys are left essentially unchanged. 

This enhancement of the spectral peaks allows more speech information to be 

captured and was expected to improve the noise robustness of the recognizers.

Morphological filtering with long windows can result in over smoothing of 

the peak regions potentially resulting in loss of detail in the spectral 

representation. This effect is not desirable because it can lead to degraded
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recognizer performance. This theory was tested by also filtering with a window 

width of 400 Hz, which is more than twice as long as the 234 Hz window. Thus, 

it was expected that performance would be degraded by morphological filtering 

with such a long window. Finally, with the exception of the morphological filtering 

(dilation) of the spectrum of the static feature vectors, the FFT based DCTC/DCS 

feature vectors used in the experiments presented in this section are the same 

as those used in the experiments presented in Chapter 5. Recall that a window 

width of 0 Hz defaults to the FFT based DCTC/DCS feature vectors with no 

morphological smoothing. Pilot experiments were run in which the experimental 

setup was similar to the second control experiment in that the block length was 

varied from 3 to 25. These experiments were conducted in order to determine 

the best block length to use with morphological filtering of the spectra of the static 

feature vectors. Block lengths 11 and 13 were determined to result in the best 

performance from the pilot experiments. Therefore, evaluations presented in this 

chapter were all implemented with fixed block length of either 11 (multi-condition 

training) or 13 (clean training).

6.4.1 MORPHOLOGICALLY FILTERED FFT-DCTC/DCS: 
AURORA 2.0 MULTI-CONDITION TRAINING

Evaluation of signal models, determined by morphologically filtered 

spectra of the FFT based DCTC/DCS static components, are presented in this 

section. Filtering was performed with the dilation operator varied over the range 

[0,400] Hz. Recognizer performance from the evaluation using multi-condition 

training is presented in Figure 24.
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W o r d  A c c u r a c y  v s  
Morphological Filter Length 

Dilation Operator

Figure 24 Word Accuracy as a function of filter length 
(dilation operator). The recognizer was trained with 
multi-condition data.

As with the experiments presented in Chapter 5 the recognizer accuracy was 

highest with block lengths 10 and 11. However, the addition of morphological 

filtering resulted in more noise robust recognizer performance. The best results 

were achieved by the recognizer determined by morphological filter window width 

of 109 Hz and block length 11. Figure 24 also shows that as predicted 

recognizer performance decreases as the filter length is increased. Recognizer 

performance for the each of the test sets are provided in Table 15 so that a 

comparison can be made with the performance of the recognizer built using the 

base line FFT based DCTC/DCS features determined in experiments presented 

in Chapter 5.

Table 15 Word Accuracy obtained with (dilation) filter length 109 Hz and 
block length 11. Multi-Condition Training.

SNR Level Word Accuracy (%)

Test Set A Test Set B Test Set C Average
Average 90.76 88.61 89.02 89.57
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The new recognizer achieved a word error rate of 10.43%. Whereas the 

recognizer determined by the FFT based DCTC/DCS signal model (presented in 

the second control experiment in Section 5.3.2) had best performance of 16.39% 

WER. Comparison of these results with those shown in Table 15 shows a 

reduction in word error rate of 36%. Additionally, recall from Table 12 that 

11.07% W ER was the best performance achieved by recognizers presented in 

Chapter 5. The word error rates for test sets A, B, and C were 10.03%, 13.66%, 

and 12.72%, respectively. Thus, the reduction in word error rates in test sets B 

(medium mismatch) and C (high mismatch) were 16.62% and 13.68% WER. 

These improvements are an indication that the new signal model is more robust 

to the mismatch in the training and test data. Improvements were achieved with 

the addition of the new morphological filtering which resulted in the preservation 

of more spectral peak information encoded in the static feature components, and 

reduction of the depth of the spectral valleys which eliminated some of the low 

level noise.

The relative improvement of the newly determined recognizer over the 

performance of the recognizer determined with the FFT based DCTC/DCS 

features is quite impressive. However, a more important comparison is the 

relative reduction in WER of 14.72% over the performance of the standard MFCC 

based recognizer presented in the first control experiment in Section 5.3.1, which 

performed with a 12.23% WER. Thus, the new recognizer is more robust to 

noise than the recognizer determined with the standard MFCC feature vectors.
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Morphological filtering was performed before the dynamic components 

were computed, meaning that the spectral enhancements due to morphological 

filtering were encoded into the dynamic feature components. Thus the 

experimental results presented in this section support the hypothesis that 

enhancement of the spectral peaks via morphological filtering of the speech 

spectrum can improve the performance of automatic speech recognition in noise.

6.4.2 MORPHOLOGICAL FILTERED FFT- DCTC/DCS:
AURORA 2.0 CLEAN TRAINING

In order to test the new signal model with the Aurora 2.0 clean training 

data the evaluation presented in Section 6.4.1 was repeated. However, 

preliminary experiments were performed to determine the best block length 

(BL=13) for clean-condition training. With the exception of block length the 

evaluation was performed with the same parameters used in the experiments 

presented in the previous section. The recognizer determined by a 125 Hz filter 

length obtained a 29.94% WER, which was the best recognizer performance 

achieved with this experimental setup. Figure 25 shows the recognition word 

accuracies as a function of filter length.
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Word Accuracy vs 
Morphological Filter Length 

Dilation Operator

Figure 25 Performance of recognizers determined by 
varying the morphological filter length (BL=13), and 
evaluated with clean-condition training.

There was a 2.28% relative improvement in word error rate over the 

performance of the recognizer determined by the WI007 signal model, presented 

in Section 5.2.1, which achieved a 30.64% WER. Table 16 gives averages for 

the recognizer determined with morphological filter length 125 Hz

Table 16 Word Accuracy obtained with (dilation) filter length 125 Hz and 
block length 13. Clean-Condition Training.

SNR
Level

Word Accuracy (%)

Test Set A Test Set B Test Set C Average
Average 71.35 66.39 73.14 70.06

6.5 LP BASED DCTC/DCS: MORPHOLOGICAL FILTERING

In the previous section signal models determined by the morphologically 

filtered spectra of the FFT based DCTC/DCS static feature vectors were 

evaluated. Results of those experiments showed that morphological filtering 

improved recognition performance by broadening the spectral peaks and 

smoothing of the noisy low level valley regions. For the multi-condition training 

data the performance of the new recognizers achieved a reduction in word error
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rate of 14.72% over the base line MFCC features computed by the standard 

WI007 MFCC front-end, and a reduction in word error rate of 36% over the FFT 

based DCTC/DCS features presented in Section 5.3.2. Thus, experiments 

presented in Section 6.4 demonstrated the performance improving capability of 

the morphologically filtered DCTC/DCS features, which produce more a noise 

robust signal representation.

In order to further test the hypothesis stated in section 5.1, that recognizer 

performance would improve if the spectral peaks were not only preserved but 

also emphasized or enhanced, experiments with morphological filtering of the 

spectra of the LP based DCTC/DCS features were performed. In each of the 

following experiments 39 LP based DCTC/DCS features were computed from the 

morphologically-filtered spectra of the 13 component static feature vectors 

determined by LP-DCTC analysis. All other processing parameters, including the 

HMM recognizer, were identical to parameters of the evaluations presented in 

previous sections. Sections 6.5.1 and 6.5.2 present the evaluations discussed 

above. In both cases results are compared to the performance of the 

morphologically filtered FFT based DCTC/DCS features obtained by experiments 

presented in section 6.4.

6.5.1 MORPHOLOGICALLY FILTERED LP-DCTC/DCS 
SPECTRUM: MULTI-CONDITION TRAINING

The experiments presented in this section were designed to evaluate 

recognizer performance determined by the signal model computed from 

morphologically filtered spectra of the LP based DCTC/DCS static feature
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vectors. Performance is compared to those of the recognizers determined by the 

39 component feature vectors computed directly from FFT spectra, as reported in 

section 6.4. Additionally, the experiments presented in this section were 

performed with fixed block length. The morphological filter length was varied 

from 0 to 400 Hz, and the order of the linear prediction analysis was varied over 

a range of 0 to 100. Recall that an LP order of zero results in the FFT based 

DCTC/DCS signal analysis. Experimental results are presented in Figure 26.

Word Accuracy vs 
Varying LP Order & Varying 

Filter Length (Dilation Operator)

0 109 125 234 400
Morphological Filter Length (Hz)

■  LP 0
■  LP 15
□  LP 25
□ LP 50
■ LP 75
■ LP 100

Figure 26 Performance of recognizers determined by 
varying the LP order and the morphological filter length 
(dilation operator), and evaluated with multi-condition 
training.

As indicated in Figure 26 recognizer performance for LP order 50 with 

filter lengths 109 and 125 Hz are quite close with a relative difference of only 

0.06%. However, the best performance was achieved with morphological 

window length of 109 Hz resulting in a word error of 10.24%. Thus, the addition 

of peak sharpening by LP analysis resulted in a reduction in word error rate of 

1.82%. Word accuracies for the recognizer determined by LP order 50, block 

length 11, and filter length 109 Hz are presented in Table 17.
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The best performance achieved by recognizers determined by the same 

LP order but with morphological filter window width of 234 Hz achieved 11.77%  

WER, and the recognizer determined by a morphological window length of 400 

Hz achieved 13.95% WER, which supports the theory stated earlier regarding 

extremely long filter length.

Table 17 Word Accuracy obtained with (dilation) filter length 109 Hz and 
block length 11. Multi-Condition Training.

SNR Word Accuracy (%)

Test Set A Test Set B Test Set C Average

Average 90.94 88.78 89.27 89.76

The improved performance was a result of morphological filtering with the 

addition of the 50th order LP analysis, which produced sharper spectral peaks. 

These parameters indicate that morphologically filtered peaks produced by the 

LP based DCTC/DCS analyses are more pronounced than those produced by 

the FFT based DCTC/DCS signal model. Hence, for multi-condition training the 

combination of the high order LP analysis with morphological filtering resulted in 

a slightly more robust signal model, which improved recognizer performance.

6.5.2 MORPHOLOGICALLY FILTERED LP-DCTC/DCS 

SPECTRUM: CLEAN-CONDITION TRAINING

Section 6.4.2 presented the evaluation of recognizers determined from 

FFT based DCTC/DCS signal models, which were trained with the Aurora 2.0 

clean-condition training data. The best performance was achieved with the 

dilation operator using a filter length of 109 Hz. This section presents the same
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evaluation but the signal model was determined from morphologically filtered 

spectra of the LP based DCTC static coefficients.

Evaluations presented in this section were designed to determine the LP 

order and morphological filter window which would determine the best recognizer 

performance when training with clean-condition data. Therefore, preliminary 

experiments were performed to determine the best block length (BL=13) for 

clean-condition training with the LP based DCTC/DCS signal model. Once the 

block length was determined the evaluation was performed with the same 

experimental setup used for the experiments presented in Section 6.4.2. Results 

are presented in Figure 27.

Word Accuracy vs 
Varying LP Order & Varying 

Filter Length (Dilation Operator)

0 109 125  234 250 400

Morphological Filter Length (Hz)

■ LP 0
■ LP 15
□ LP 25
□ LP 50
■ LP 75
■ LP 100

Figure 27 Performance of recognizers determined by 
varying LP order and morphological filter length 
(dilation operator), and evaluated with clean-condition 
training data.

In contrast to the evaluations with multi-condition training data the addition 

of LP analysis did not result in improved recognizer performance. Thus, the 

recognizer determined with LP order 0 and morphological window length 125 Hz 

still produced the best performance.
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6.6 MORPHOLOGICAL FILTER TYPES

Thus far the objective of the experiments presented in this dissertation has 

been to improve Automatic Speech Recognition in noise. Pilot experiments 

determined that the dilation and close-open operators would be most likely to 

determine the most robust signal models. The close-open operator performs 

marginally better than the dilation operator but is three times more 

computationally demanding. Therefore, the dilation operator of morphological 

filtering was the only filter used in the experiments presented to this point. 

However, for completeness the other morphological filters were each tested with 

the LP based DCTC/DCS signal representation. The results of those evaluations 

are presented in this section.

EROSION OPERATION

The essential characteristic of the erosion operation is to reduce signal 

peaks, as was seen in Figure 21. Therefore, it was expected that the erosion 

operation would result in degraded recognizer performance. Figure 28 shows 

performance of recognizers determined from morphologically filtered (erosion) 

spectra of the LP based DCTC static components. As the LP order was 

increased the recognizer performance was further degraded. This behavior can 

be attributed to the fact that subsequent morphological filtering reduced sharp 

peaks produced by the LP analyses. This reduction of signal peaks results in the 

loss of important speech information and naturally produces a poor signal 

representation.
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Erosion Operation 
Varying LP Order 

Varying Filter Length

Morphological Filter Length 
(Hz)

■ LP 0
■ LP 15
□ LP 25
□ LP 50
■ LP 75
■ LP 100

Figure 28 Erosion operation, varying LP order and 
varying filter length. Evaluation was performed with 
multi-condition training.

OPEN OPERATION

Figure 29 shows performance of recognizers determined from 

morphologically filtered (open) spectra of the LP based DCTC static components.

Open Operation 
Varying LP Order & 

Filter Length

0 78 109 234 400

Morphological Filter Length 
(Hz)

■ LP 0
■ LP 15
□ LP 25
□ LP 50
■ LP 75
■ LP 100

Figure 29 Open operation, varying LP order and 
varying filter length. Evaluation performed with multi­
condition training.

As with the erosion operator, recognizer performance degraded as the LP order 

was increased
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CLOSE OPERATION

As can be seen in Figure 30 the recognizer determined by the close 

operation performed slightly better than the one determined with the dilation 

operation. However, the close operation requires more than twice the 

computational demand for only a slight improvement in recognizer performance. 

Thus, the decision was made to use the dilation operation for most of the 

evaluations presented in this dissertation.

Close Operation 
Varying LP Order & 

Filter Length

M o r p hological Filter Len g t h  (Hz)

■ LP 0
■ LP 15
□ LP 25
□ LP 50
■ LP 75
■ LP 100

Figure 30 Close operation, varying LP order and 
varying filter length. Evaluation performed with multi­
condition training.

OPEN-CLOSE OPERATION

The open-close operator performs quite well without LP analysis (LP 

order=0). Recall that the open-close operator begins with the open operation 

which essentially clips noisy impulse peaks, where the close stage of the 

operator emphasizes remaining peaks. Evaluations of the recognizers 

determined from the open-close operation are presented in Figure 31. The figure 

shows performance degrading as the morphological filter length and the LP order
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are increased. However, even for morphological filter length of 400 Hz the 

performance of the recognizers with low LP order are a minimum of 10% higher 

than those with LP order 50 and higher.

Open-close Operation 
Varying LP Order & 

Filter Length

Morphological Filter Length 
(Hz)

■ LP 0
■ LP 15
□ LP 25
□ LP 50
■ LP 75
■ LP 100

Figure 31 Open-close operation, varying LP order and 
varying filter length. Evaluation performed with multi­
condition training.

CLOSE-OPEN OPERATION

As can be seen in Figure 32 the close-open operation performs very much 

like the dilation operator. However, filter lengths for the dilation operator which 

produces good signal models are not necessarily good choices for the close- 

open operator due to the cascading the dilation and erosion operators.
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Close-open Operation 
Varying LP Order & 

Filter Length

0 78 109 234 400
Morphological Filter Length 

(Hz)

■ LP 0
■ LP 15
□ LP 25
□ LP 50
■ LP 75
■ LP 100

Figure 32 Close-open operation, varying LP order and 
varying filter length. Evaluation performed with multi­
condition training.

To this point each of the experiments presented have been performed 

using the standard Hidden Markov Model recognizer described in Section 3.4. 

This recognizer configuration was determined by the ETSI Aurora Working Group 

so that front-end analysis algorithms could be compared as directly as possible. 

Thus, the use of the standard HMM recognizer configuration allows researchers 

to compare speech recognition results without the added complexity of 

determining whether changes in performance were due to improved speech 

signal representation or from the HMM configuration. However, the ETSI 

working group later determined that the original standard HMM configuration was 

not optimal, and could be improved.

In an attempt to provide a better baseline a second, more complex HMM 

recognizer configuration was later designed [59]. This new configuration is 

discussed in Section 6.7. The new HMM configuration was tested using the best 

parameters determined from experiments presented in Section 6.5. These
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parameters were used as a starting point for determining the speech signal 

representation for the new HMM configuration. Results from these experiments 

are also presented in section 6.7.

6.7 RECOGNIZER ARCHITECTURE: INCREASED COMPLEXITY

Recall from section 3.5 that the original HMM architecture used one 18 

state word model for each digit, which were modeled by one continuous density 

HMM with Gaussian probability density functions (referred to as mixtures) and a 

diagonal covariance matrix. After 16 iterations of training the final word models 

contained 6 Gaussian mixtures and the silence models contained 10 Gaussian 

mixture components. The configuration of the new HMM recognizer is described 

in the following section.

6.7.1 NEW HMM RECOGNIZER CONFIGURATION

The new HMM configuration uses the same basic initialization scheme as 

the previous HMM configuration. Thus the word models are initialized to 18 

states with 1 Gaussian mixture, and initial parameters are determined by equally 

segmenting each utterance in the database, and computing the global mean and 

variance. However, an additional iteration of parameter estimation was added 

before the silence and short-pause model initialization. After the initialization of 

the silence models there is again an additional iteration of re-estimation of the 

model parameters. Also, the Viterbi algorithm is used to align the training data 

before further iterations of parameter estimation. As with the previous HMM 

configuration, additional Gaussian mixture components are added in between
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parameter estimations. However, in this case the final word models contain 20 

Gaussian mixtures and the final silence models contain 10 Gaussian mixtures. 

Furthermore there are a total of 103 training iterations where the previous HMM 

recognizer was trained with only 16 iterations.

6.7.2 EXPERIMENTS: THE NEW HMM CONFIGURATION

The close-open operation was expected to provide increased noise 

suppression over the dilation operation, which would result in a more noise 

robust signal representation. However, pilot experiments determined that the 

performance improvements achieved by filtering with the close-open operation 

were not enough to justify its use due to the significant increase in computational 

demand. Therefore, the dilation operator was used in each of the experiments 

presented in Chapter 5, Section 6.4, and Section 6.5. Experiments using the 

new HMM configuration require approximately 24 hours of computation time as 

compared to approximately 7 hours for the old HMM recognizer configuration. 

Whereas the computational demand resulting from filtering with the close-open 

operation and training the new HMM recognizer requires approximately 26 hours. 

This is only an 8.33% increase in performance from over 24 hours. Therefore 

the new HMM configuration was tested with the close-open operation.

The evaluation was performed with the Aurora 2.0 multi-condition training 

data. Block length was varied from 10 to 17, and LP order was varied from 0 to 

100. Also, preliminary experiments showed the close-open filter length of 79 Hz 

resulted in more robust signal representation. Therefore, the evaluations were
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performed with this parameter value. Recognizer performances are presented in 

Figure 33.

Close-open Operator 
Morphological Filter Length 79 Hz 

LP Order 100

Block Length
Figure 33 Recognizer performances for the close- 
open operation with window length 79 Hz, varying 
block length. The evaluation was performed with 
multi-condition training.

The recognizer determined by LP order 100 and block length 13 achieved 

9.87% WER. Thus, the new recognizer achieved relative improvement of 4.17%  

in word error rate over the best recognizer performance presented in Section 6.5, 

and a 19.30% reduction in W ER over the baseline recognizer evaluated in the 

control experiment in Section 5.3, which achieved 12.23% WER.

6.8 MORPHOLOGICALLY FILTERED SPECTRA:
THE AURORA 3.0 DATABASE

Each evaluation already presented has been performed using the Aurora 

2.0 database. The Aurora 3.0 database was used in the evaluations of the 

enhanced signal representation presented in this section. One evaluation was 

performed using each language of the Aurora 3.0 database. Experimental
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parameters were chosen based on the values which were used to determine the 

best performance in experiments presented in experiments presented in previous 

chapters. In each case the LP order was varied over the range 0 to 75, block 

lengths 11 and 13 were tested, and the morphological filter length was varied 

over the lengths 78 Hz, 109 Hz, and 125 Hz. The results of the recognizers with 

the best performances are presented in Tables 18 through 21.

Table 18 Evaluation of the recognizer determined with the dilator operator 
with morphological filter length 78 Hz, LP order 25, block length 13, and 
the Spanish language database.

SNR Level Word Accuracy (%)

Well-
Matched

Medium-
Mismatch

High-
Mismatch

Average

Average 87.96 77.90 54.98 76.19

Table 19 Evaluation of the recognizer determined with the dilator operator 
with morphological filter length 109 Hz, LP order 25, block length 13, and 
the Finnish language database.

SNR Level Word Accuracy (%)

Well-
Matched

Medium-
Mismatch

High-
Mismatch

Average

Average 91.76 67.99 49.26 72.82

Table 20 Evaluation of the recognizer determined with the dilator operator 
with morphological filter length 109 Hz, LP order 0, block length 13, and 
the Danish language database.

SNR Level Word Accuracy (%)

Well-
Matched

Medium-
Mismatch

High-
Mismatch

Average

Average 79.03 53.95 38.17 60.04
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Table 21 Evaluation of the recognizer determined with the dilator operator 
with morphological filter length 125 Hz, LP order 75, block length 11, and 
the German language database.

SNR Level Word Accuracy (%)

Well-
Matched

Medium-
Mismatch

High-
Mismatch

Average

Average 90.48 80.31 67.21 81.10

The ETSI published results and results from the literature were presented 

in Chapter 3. For convenience the ETSI published results and the best results 

from the literature are given again in Table 22. From Tables 18 through 21 it can 

seen that the evaluation of the recognizers determined with morphological 

filtering (dilator operator) result in performance better than the ETSI published 

results, except for the German language database for which performance is 

essentially equivalent. While the performances reported in Tables 18 through 21 

do not exceed the best reported in literature they are important in that they are 

accomplished with only the addition of morphological smoothing. Each of the 

results reported in Table 22 (except for the ETSI Published) were achieved with 

several additional stages of signal processing. Possible future work could be to 

test morphological filtering with additional speech signal processing stages 

comparable to those used to obtain the best results reported in Table 22.
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Table 22 Key Study Results for Aurora 3.0 Multi-Condition Training.

Author Finnish Spanish German Danish

ETSI Published 68.76 67.61 81.31 52.3

Bauerecker, H. 84.78 86.78 NA 74.44

Chen, C. 96.36 91.41 86.86 80.25

Droppo, J. 91.22 92.64 90.03 86.00

Andre, A. 91.42 94.48 92.88 94.57

6.9 CHAPTER CONCLUSIONS

The best recognizer performance was achieved by training with the new 

HMM recognizer with the signal model determined from morphologically filtering 

the spectra of the LP-DCTC derived static feature components. The improved 

recognizer achieved a reduction in word error rate of 19.30% over the 

performance of the recognizer determined from the MFCC based representation 

evaluated in the first control experiment presented in Section 5.3.1, and a 

reduction in word error rate of 39.80% over the FFT based DCTC/DCS speech 

signal representation with no morphological filtering, also presented in Section 

5.3.1.

The best performance achieved with the original HMM recognizer 

configuration was 89.2%, and was obtained by the recognizer determined from 

the 39 component feature vectors, which were computed from the 

morphologically filtered spectra of the LP-DCTC static coefficients. .The 

recognizer performance represents a reduction in word error rate of 34.11% over 

baseline speech signal representation presented in Section 5.3.1, and a
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reduction in word error rate of 11.69% over the standard MFCC signal model 

determined by the WI007 front-end. Thus, the results of the experiments 

presented in this chapter support the hypothesis that machine recognition would 

improve with morphological enhancement of the LP based DCTC/DCS speech 

signal representation.
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CHAPTER VII 
CONCLUSIONS AND FUTURE WORK

Many aspects of the use of morphological filtering with LP based 

DCTC/DCS analysis have been investigated. In the case of the Aurora 2.0 multi­

condition training data the proposed morphological filtering methods have proven 

to be beneficial over the typical MFCC method and FFT based DCTC/DCS 

methods. Furthermore, there is much room for improvement for the dilator, 

close, and close-open filters which may lead to significant performance 

improvements. The use of variable morphological filter window lengths might 

result in better performance. Since the objective of this work was concerned with 

establishing the basic noise suppression capabilities of morphological filtering the 

more advanced benefits of this method have not been addressed.

7.1 CONTRIBUTIONS

A straight forward technique for spectral smoothing via morphological 

filtering with LP-DCTC/DCS analysis has been proposed for use with continuous 

digit string recognition.

For convenience, the key study results listed in Chapter 3 are repeated in 

Tables 23 and 24. Our best results including LP analysis are given in Tables 25 

and 26, and best results without LP analysis are given in Tables 27 and 28. As 

can be seen in Table 23 the best result reported in literature for the Aurora 2.0 

multi-condition training data was a 6.48% W ER where our best achieved was a 

9.87% WER. The WER achieved by C. Chen, et al was a relative reduction in
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W ER of 0.52% over our best. However, the performance achieved by Chen was 

achieved by mean subtraction followed by variance normalization of the static 

coefficients, and using a mixed auto-regression moving average filter after mean 

subtraction and variance normalization. Thus, there are three additional stages 

of signal processing as compared to our front-end analysis which adds only the 

morphological filtering. Additionally, D. Macho achieved a W ER of 9.8% (as 

compared to our 9.87% W ER) by two stages of filtering, one in the time domain 

and one in the frequency domain. The relative reduction of 0.7% W ER was 

clearly achieved with an increase in computational demand.

Table 23 Key Study Results for Aurora 2.0 using Multi-Condition Training.

Author Aurora
WI007

Cui, X. Droppo,
J.

Macho,
D.

Chen,
C.

Test Set
TSA 87.91 90.22 90.83 91.37 93.76
TSB 87.69 88.84 89.37 89.72 93.27
TSC 85.70 89.08 89.24 89.51 93.51
AVG 87.52 89.38 89.81 90.20 93.52

Table 24 Key Study Results for Aurora 2.0 using Clean Training.

Author Aurora
WI007

Evans,
W.D.

Kim,
H.K.

Cui, X. Chen,
C.

Test Set
TSA 67.62 76.01 81.26 85.48 87.58
TSB 62.96 72.60 82.6 85.77 88.41
TSC 71.62 79.16 83.07 84.10 87.05
AVG 66.99 75.61 82.18 85.27 87.74

For the Aurora 2.0 clean-condition training data the best performance of 

12.26% WER were again achieved by C. Chen, et al. This is a relative reduction 

of 1.44% in WER. Although this is a significant improvement over our W ER it is
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important to note that our results were achieved with minimal additional signal 

processing. Additionally, the primary objective of the work presented in this 

dissertation was focused on the multi-condition training data. It is possible that 

with additional signal processing the morphological filtering presented in this 

work would also further improve performance with the clean-condition training 

data.

Table 25 Best performances achieved with when evaluating with multi­
condition training data.

SNR Level Word Accuracy

Test Set A Test Set B Test Set C Averag
e

BL = 11 
LP Order 50 

Morphological 
Filter Length 109 

Hz

90.94 88.78 89.27 89.76

BL=13 
LP Order = 100 
Advanced HMM 

Morphological 
Filter Lenath= 79

92.71 87.19 90.10 90.13

Table 26 Best performances achieved with LP Order = 50 when evaluating 
with clean-condition training data.

SNR Level Word Accuracy
Test Set A Test Set B Test Set C Average

BL = 13 
Morphological 

Filter Length 125

70.332 65.25 73.07 69.23
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Table 27 Best performances achieved with LP Order = 0 when evaluating 
with multi-condition training data.

SNR Level Word Accuracy
Test Set A Test Set B Test Set C Average

BL=10 86.39 82.25 81.06 83.61
BL=11 89.97 86.34 87.28 88.03
BL=11 

Morphological Filter 
Length 
109 Hz

90.76 88.61 89.02 89.57

Table 28 Best performances achieved with LP Order = 0 when evaluating 
with clean-condition training data.

SNR Level Word Accuracy (%)
Test Set A Test Set B Test Set C Average

BL=13

Morphological Filter 
ength 125 Hz

71.35 66.39 73.14 70.06

The highest performance reported in the literature was accomplished with 

significant signal processing. Our recognition accuracy on test data was 

comparable to the second highest result reported on the Aurora 2.0 multi­

condition data with straightforward signal shaping, which requires much less 

signal processing than that used for the best reported results obtained with 

Aurora 2.0.

The original hypothesis was that morphological filtering would improve 

upon the results achieved by peak sharpening via LP-DCTC/DCS analysis 

demonstrated by experiments presented in Chapter 5. Experiments presented in 

Chapter 6 showed that morphological filtering did improve results achieved with 

LP-DCTC/DCS peak sharpening. By comparing results reported in Tables 25 

through 26 it can be seen that the same experiments also showed that
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morphological filtering without the benefit of LP-DCTC/DCS analysis achieved 

nearly equivalent results. In some cases the results achieved with the 

combination of LP-DCTC/DCS analysis and morphological filtering were 

improved but the improvements were at a cost of significant computational 

demand due to the LP analysis. Thus, morphological filtering provided more 

benefit than was originally predicted since noise robustness can be increased 

without additional significant computation demand.

The morphological filtering method was illustrated with a collection of 

experiments that were conducted using features computed using various 

morphological operators for spectral smoothing. Performance for the dilator 

operator was comparable to some of the best results in the literature while 

computational complexity was simpler and time requirements were lower.

7.2 FUTURE WORK

There are several suggestions for further research as follows:

1. Voice activity detection should be implemented with frame dropping 

dependent on the voice activity detection results.

2. Feature normalization, such as mean and variance normalization, can 

be applied to the final features after the morphological filtering.

3. Variable block spacing based on changes in spectral change and 

variable block size should be investigated.

4. Instead of a conventional HMM, a combination Neural Network/HMM 

could be employed.
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APPENDIX A 
HTKCOMMANDS

HCOPY: SIGNAL ANALYSIS

Each of the HTK tools can parameterize waveforms. However, it is more 

efficient to compute the signal representation, or parameterize all of the data at 

once. Most of the parameterization presented in this dissertation was performed 

using the ODU Speech Communications Laboratory front-end analysis software, 

TFRONTM. However the WI007 baseline experiment was performed using the 

HTK HCOPY tool to determine the speech signal representation.

The HCOPY tool converts (“copies") one or more source files to an output 

file, using the specified parameterization. The input speech data can be in any 

supported format (Examples: NIST, SPHERE, HTK) but the output is always in 

HTK format.

HTK File format
Number of Samples Number of samples contained in the waveform.
Sample Period Frame Rate.
Number of Features Number of parameters computed for each wave form.
Bytes per Sample Number of bytes per sample.
Sample Type: USER, MFCC, LPCC.

Sample HTK Header File
Sample Bytes: 156 Sample Kind: USER
Num Comps: 39 Sample Period: 10000.0 us
Num Samples: 164 File Format: HTK

Note: All times must be given in 100ns units and as floating-point numbers.

Inputs:

•  Configuration file contains basic configuration information

• Sentence list file contains the list of (wave form files) sentences to 
process
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Outputs:

•  HTK format feature files, one file for each waveform file

Typical usage: HCopy -A  -D  - T  1 -C  config file -S  sentencejist

The options -A, -D, -T, -C, and -S, are standard options, which are common

across all of the HTK tools.

-A  Signals HTK to print out the command line arguments and is useful for 

debugging.

-D Signals HTK to print the version of HTK.

- T  Specifies the trace level for debugging. There are four trace levels for the 

HCOPY tool, specified using octal base numbers, 1, 2, 4, and 10. The flag 

value 1 specifies basic progress reporting, and is the one used for 

experiments presented in this dissertation.

-C  Specifies the configuration file, in this example config_file, which is a text file 

containing configuration parameters for the HCOPY tool.

-S  Specifies the wave form files for computing parameterizations. In this 

example sentencejist is a text file containing the list of wave form files

After HCopy is executed, one parameter file should have been created for each

of the wave files specified in the sentence list.

HCOMPV: HMM INITIALIZATION

HCompV calculates the global mean and covariance of a specified set of

training data, and uses these to initialize all mixture components of all models.

Inputs:

•  Parameter files, for example those created with HCOPY

Outputs:
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•  A file that contain initial HMM models with each mixture component 
set equal to the overall training data global mean and covariance.

Typical usage: HCompV -A  - T  2 -D  -C  config_file -o  hmmdef - f  0.01 -m  -S  
trainjist -M  hmm_dir proto

The -A , -T, -D, and -C  options are as described for HCopy.

-o hmmdef is used to specify that the initialized HMMs are to be stored in a text

file called hmmdef.

- f  0.01 sets the minimum variance to 0.01.

-m  causes the means to be updated

-S trainjist instructs HCompV to use the parameterizations stored in files listed 

in the text file trainjist.

-M hmm_dir proto is used to specify hmm_dir as the output directory path name,

and proto is a text file that contains the hmm proto-type.

For a system completely determined by HTK the parameter files are created with 

HCOPY.

HEREST: ITERATIVE TRAINING

The Baum-Welch algorithm HERest performs a single re-estimation of the 

parameters of the HMMs. For each training utterance a set of accumulators are 

updated simultaneously.

HEREST operates in two stages.
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1. For each training file the accumulators for state occupation, state 

transition, means and variances are updated.

2. The accumulators are used to calculate new estimates for the HMM 

parameters.

Inputs:

•  Features files

•  Initial HMM configurations

• Setup information

Outputs:

•  Updated HMM models

Typical usage: HERest -A -D  - T  4 -C  config_fil - I  labels - t  250.0 150.0 1000 -  
S
trainjist -H  macros -H  models -M  hmm_dir hmmjist.

-A, -D, -T, -C, in this work, the same as in previous commands.

- I  instructs HERest to load the master label file labels. The master label files 

contain transcriptions for each of the sentence files. These transcriptions 

include the silence and short pause symbols.

- t  sets the pruning threshold to 250 so that during backward probability 

computation any log yff values more than 250 below the maximum value are 

ignored. A pruning error causes the threshold value to be increased by 

150.0. This process continues until the limit of 1000 is reached.

-H  instructs HERest to load the model and macro files, respectively. Macros 

and models are files that contain model parameters, and are generally quite 

large.
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-M  sets the output directory for the current HMM model and macro files. 

H m m dir  is the output directory for the models and macros

H m m jst is a text file containing the list of HMM models.

HHED: EDITING HMM MODELS

HHed is used to manipulate the HMM definitions. In this work it was used 

to ledit the HMMs and output a transformed set of HMMS. HHed syntax consists 

of a comma separated list of item sets. For example the command AT 1 3 0.1 

{*.transP} will add a transition from state 1 to state 3 with probability 0.1.

Inputs:

•  Macros

• Models

• Hmm list

Outputs:

•  Edited HMMs

Typical usage: HHed - T  2 -H  macros -H  models -M output edit_file hmmjist.

The edit_file is a text file containing edit commands, and hm m jist is the set of 

HMMs to be edited.

-H  instructs HHed to load the macro and model files, respectively.

-M  instructs HHed to store the output model file in the specified output file.

HVITE: VITERBI BASED RECOGNITION

HVITE matches a speech file against a network of HMMs and outputs a 

transcription. A label file and dictionary are read in and used to create a model
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based network. The expansion is determined automatically from the dictionary 

and hmm list.

Inputs:

•  Configuration file

•  Macros

• Models

•  Dictionary file

•  Word list

•  Grammar specified in a text file called net

•  Sentences to be tested, listed in the text file testjist

Outputs:

•  Hypothesis transcriptions contained in a text file. In this example 
the output text file is called output.

Typical usage: HVite -A  -D  - T  1 -C  config_fil -H  macros -H  models -w  net - I  
“*” - i  output diet w ordjist -S  testjist.

This command causes HVite to then load the network file (net) and match it 

against each of the test files specified in testjist. The wordjist file contains a 

list of the models.

- I  allows the output path to be appended to each label stored in the master 

label file.

- i  option causes the HVite output to be stored in the specified master label file, 

-w specifies the network file
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HRESULTS: PERFORMANCE EVALUATION

HRESULTS is the performance analysis tool. It reads in a set of label files

output from HVite and compares them with the reference transcription file for the

corresponding sentence file. Recognition statistics are output for each sentence.

Inputs:

•  Labels for test sentences

• The HMM list specified in hm m jist

Outputs:

•  A text file containing recognition statistics

Typical usage: HResults -D  -A  - e  ??? sp - e  ??? sil -p  - I  labels hm m jist 
recognitionjile.

The file specified by recognitionjile contains the output transcriptions from 

HVite. HResults is applied to each file in recognitionjile. The hm m jist file 

contains the list of each of the HMM models, and noisejabels contains the list of 

label files for each noise type.

- e  ??? causes HResults to ignore sp and sil wherever they occur in the 

transcription files.

-p  causes HResults to output the confusion matrix.

- I  instructs HResults to load the label files for the test files.
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