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The aerodynamic dataC X t ,C Z t , and CM[ are given as look-up tables with enough 

resolution to capture the nonlinear behavior of the aerodynamic force and moment 

coefficients. In Reference 114, these aerodynamic coefficients have been modeled by the 

so-called "multivariate orthogonal functions". This orthogonality feature has the ability 

to decouple the computed regression coefficient of one function from the other functions 

presented in the model. Such decoupling removes any aliasing effect while qualifying 

each function's contribution to the overall regression model. Building the structure of this 

regression model was an optimization problem to minimize the so-called predicted 

squared error. The predicted squared error is a sum of the mean square fit error and a 

term proportional to the number of terms in the model. After building such a model, one 

can then expand these orthogonal functions into an ordinary multivariate polynomial 

where the total dependent aerodynamic coefficients are expressed in terms of angle of 

attack, sideslip angle, and control surface deflections as a finite multivariate power series 

as 

CXR =CX{A,SE)+^-C(A)= ± A^A S> 
cq 

2V ij=o 2V /=o 
I "lja'SJ J'O 

4 
I * /=0 cA 1 -

\ 

' P )2 

.57.3J 

1=0 

Z / a ' /=0 
1 -

157.3 J 

(5.48) 

f £ \ ^ 
- 0 . 1 9 

25 
+ (a) 

4 

2 > ' (5.49) 

I 25 J 2F,to 

CMT =Cm(a,SE)+CZT(xcgr - x j +^Cmq{a) 
2, 3 I mua'Sl *j=o 

5 
(5.50) 

2,3 
= E m 

>j=o 
a'Sj+Cz (x^-xJ+^Xn.a' 

cq 5 

2V~o 

The values of the regression coefficients are given in Reference 114. Unlike the look-up 

table structure, the multivariate orthogonal functions provide an analytical structure, 
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which reduce numerical errors in computing the stability and control derivatives from the 

aerodynamic coefficients. This polynomial formulation is used in the computation. 

5.2 Local Kernel Generation 

The PLTI system in Equation (5.6) provides an analytical solution for the kernels 

using successive substitution. Assume the velocity to be the output, then an output 

matrix coefficient is defined as C = [1 0 0 0]. The first PLTI system has a solution 

The characteristic equation of the longitudinal motion has two sets of conjugate complex 

roots. The first set represents the phugoid motion, which operates at a low frequency. 

This motion is also called long period motion. The second set represents the short period 

motion, which operates at a relatively high frequency. Total velocity and pitch angle are 

the significant variables with phugoid motion, while angle of attack and pitch rate are the 

dominant variables with short period motion. A fair assumption, therefore, is to present 

the total velocity or pitch angle by phugoid motion and angle of attack or pitch rate by 

short period motion. 

By substituting, the generalized convolution solution of the total velocity is given 

as 

(5.51) 

where 
d>(t-T) = eA(t~T) (5.52) 

o 

(5.53) 

o 
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where subscripts "ph" and "sp" denote phugoid and short period . Note only the phugoid 

contribution is retained to compute V\ (t). The same procedure gives the generalized 

convolution solution of angle of attack as 

n 

i n L + K 
(5.54) 

0 

The first kernels for both V and a are thus 

K { r ) = K a e - ^ h m { c o d v ( r ) + < ) 
(5.55) 

The second kernels are calculated by adding term-by-term from the nonlinear 

matrices Bxx, Bm, and Buu. Many of these matrices' elements are not significant and can be 

ignored. For example, for the second velocity second kernel, two elements f l a , and f)g2 

are significant compared to the others. Thus, the rate of velocity change is correlated to 

the drag coefficient, which has a quadratic form with angle of attack and elevator 

deflection. The drag quadratic function has a significant curvature making first order 

derivatives insufficient to fully describe the system. Numerical investigation of this point 

is discussed in detail in the next section. Assuming the two terms / ^ and / j are the 

only sources of nonlinearity, the second kernel of the velocity is 

^ W = f j \ C®(t ~ r)Bax (r)a, (r)dr + f ^ J C<b{t - z)BSe (r& (r]dr 
o o ( 5 . 5 6 ) 

* V. ' * v ' 

By substituting from Equation (4.55) 
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v ? ( 0 = j e ^ ( ' - r ) S i n ( ^ (t - r)+(pv
ph )x 

o 0 

J { r " r ' 1 s i n ( ^ p ( r - r , ) + <p%))se(r,)a(t-r,)Jr, x (5.57) 
0 0 

sin (r - r2)+ - r 2 f c (r 2 ) d r 2 d r 

0 

By rearranging the integration limits in the order d z x d r t x d z 2 , the multiplication 

of the two operators A(r-Ti)A(T-T2) can be replaced by setting the lower limit of the 

internal integration by max(ti, xi) instead of 0, where the operator max(x, y) refers to the 

maximum values between x and y . The operator A(t-Xj) also allows setting the upper 

limits of the external integrations by t instead of x . The integration in Equation (5.57) 

yields to 
I I 

(5.58) 
0 0 

where 

(5.59) 

By integrating Equation (5.59), the second kernel due to a 2 is 
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+ J - ( r 2 -z-,)-<pv
ph + (pph)--^rsin(^ih + h)~<PVph + 2K aph to 

+ 4 r ( r , +r2)+<pp/l + + )j 

1 /r- I lg2 av ^yfo+ri) (2gJf,-gfJmin(ri.r2) 
4 

1 

1 . + sinUy 
oph 

(7, - r 2 ) - (pv
ph + + codph min(r,, r2)) 

fo ^ + o)d min(r,, r2)) 

" (r, +r2)-<pv
ph+ 2 <pa

sp + (2®^ + ) min(r,, x2)) 

+ sin(^ (r, + r 2 ) + ^ + + cp~ + (2©^ - ) min(r,, r2))[ 

where 
2(7sp -<T ph 

®ph 

0) 
0) 

2<r,P -°Ph a>-=pasp-aph)2+(2(odsp -codph)2 , cos(p~)= ^ 

The contribution of the / 2 term to the second kernel is 

(5.60) 

= ^2 < Jsp -Cptf + 6 ) j p h ) 2 , COs(^)=2(T°CPh ( 5 " 6 1 > 

V? (t) = \e-°'J'-T) sm(cod> (t - r) + ^ ( r ) r f r 
0 

= KVp]\e-aAl-tl] sin[codph (t - r,) + - r2 )Se (r, )Se (r2 ]dr,dr2 (5.62) 
0 0 

I 1 
= J j Ks: (' ~ ri'' ~ r2 K (ri K fo dT2 

0 0 

where <5(ti -T2) is the impulse function. Note Kv is the normalized value of Kv with 

respect to elevator deflection. 

The total velocity second kernel is 

K fc ^2) = Ka> (T1' r2 ) + C 2 t l ' T2 ) (5-63) 
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The second kernel has two terms: angle of attack quadratic kernel and 

elevator quadratic kernel hv
lgl ( r , , z2) . Each kernel is a two dimensional surface as a 

function of x/ and X2• The expression of the angle of attack quadratic kernel has the short 

period damped frequency eod and the phugoid damped frequency cod k . The elevator 

quadratic kernel is an impulsive sheet over the diagonal kernel line. The boundary of this 

sheet has the same shape as the first order kernel. 

5.3 Results and Discussion 

A routine has been developed to emulate the dynamic behavior of the aircraft 

based on the nonlinear simulation using the Runge-Kutta 4th order logic. This routine 

includes many subroutines to compute: 1) trim conditions, 2) local linear model, and 3) 

local Volterra model. The trim condition subroutine receives the nature of the maneuver 

and the flight conditions (altitude, velocity, and initial angular velocities), while linear 

and angular acceleration are zero. Depending on the nature of the excited motion 

(rectilinear, pull-over, level turn, etc.), the subroutine sets some variables to specific 

values. For example, in the rectilinear motion, the flight path angle is zero (y = 8-a = 0), 

the symmetric flight is assumed (/? = 0 and v = 0) and all angular velocities are zero (p = 

q = r = 0). Consequently, the trim problem involves searching for the values of a, Se, and 

<5th to match the derivatives of dV/dt, da!dt. and dq/dt to zero. 

5.3.1 Local Linear and Volterra Models 

Both local linear and Volterra model subroutines receive the trimming values and 

compute the equivalent matrices A, B, Bxx, Bxu, and Buu at the equivalent trimmed states. 

Many of the matrix elements require aerodynamic derivatives such as dC Mr Ida • These 

aerodynamic derivatives can be computed using a finite difference technique or analytical 

expressions based on the "multivariate orthogonal functions." Use of the finite difference 

technique may lead to round-off error at a low derivative step size or lost precision at a 
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high derivative step size. These types of error are more significant in the second order 

derivatives than the first order derivatives. In order to avoid any numerical error 

propagation, the analytical technique is used. For example, the generated linear and 

Volterra model at V= 1500 ft/s and H= 30,000 ft in a rectilinear motion is 

-9 .93x 10"3 87.22 0.87 -32.17 ' 9.13 

-4 .30xl0~ 5 -1.02 0.95 0 
, B = 

-0 .11 
A = 

-4 .30xl0~ 5 

, B = 
0 -9 .94 -1.53 0 -36.82 

0 0 1 0 0 

= 

B„. = 

-3 .31xl0" 6 

9.55 xl0~9 

0 
0 

1.22xl0~2 

-1.39xl0~4 

-4.71xl0~2 

0 

7.33xl0"2 0 0 -1.29xlOJ 

-6 .77x10 
-1.33xl0~2 

0 

2.31xl02 

-6.44xl0"3 

-7 .50 
0 

0 0 
0 0 
0 0 

0 0 
0 0 
0 0 
0 0 

1.14 
13.96 

0 

B„„ = 

-29.08 
-4.18x10 

- 1 . 2 2 

0 

-1 .04x l0 2 

-2.85xl0~2 

3.19xl02 

0 

- 2 

(5.64) 

Note all dimensions are in feet and radians. As a nature of the rectilinear motion, some of 

these matrix elements are constant or zero, as an example fie = -gCg.a = -g. There are 40 

nonzero elements, however, there are 31 varying elements left in these matrices, which 

change as the flight conditions change. 

Figure 5.1 shows the time responses when a perturbed elevator deflection of 

Se] = ASe = 1.5 deg excites both linear and Volterra models at the specific flight 

condition indicated. In the case of the nonlinear simulation, this perturbed deflection is 

added to the trim elevator deflection Seo = -2.39 deg. It is observed that there is a small 

lag in the position of maximum/minimum peaks between linear and nonlinear responses. 

On top of that, there is a noticeable difference in the steady angle of attack between linear 

and nonlinear. As previously shown in Chapter 4, the significant quadratic terms are 

responsible for producing such differences. However, qualitatively speaking, both linear 
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and Volterra models follow quite closely the nonlinear model in the case of angle of 

attack a, pitch rate q, and pitch angle d. 

In the case of the total speed V, the linear model not only fails to capture the 

response's amplitude, but also fails to capture the shape of response. At time t = 0.2 s, the 

linear model heads downward by a much less rate than the nonlinear simulation's rate. 

This rate keeps decreasing in the case of the linear simulation up to time t = 1.8 s, then 

the linear behavior heads upward; completely deviating from the nonlinear simulation. 

The Volterra model, on the other hand, shows a consistent behavior along with the 

nonlinear simulation. By the time t = 5 s, the deviation from the nonlinear simulation is 

-37 ft/s in the case of the linear model and -3 ft/s in the case of Volterra model, while the 

total perturbed velocity is -26 ft/s. The source of difference between the linear and 

Volterra models can be traced back to specific terms in the PLTI matrices' elements. 

Considering the difference in amplitude of the perturbation states, it becomes clear that 

the value 0 .5 / 2 = -1.29 x 103 and 0.5 f l = -1.04 xlO2 are the most effective J 1 a J l S; 

nonlinearities and all other terms can be neglected with respect to them. Figure 5.2 shows 

the simulation based on the complete or total Volterra model and the two term 

approximate Volterra model (only f]al and fxgl are nonzero). 

As listed in Equation (5.63), the second kernel of the total speed has two terms. 

The first term is the total velocity's second kernel due to the quadratic angle of attack 

hv
2a2 (r,, r 2 ) , which is shown in Figure 5.3. For this second kernel term, the signature of 

the phugoid motion appears through the diagonal line, while the signature of the short 

period motion appears through the cross-diagonal lines. The surface in Figure 5.3 is an 

oscillatory surface with (od ( = 0.035 rad/s and £ph = 0.143 over the diagonal line, which 

has perpendicular frequency <od = 3.06 rad/s and damping ratio £sp = 0.385 in the 

cross-diagonal direction. The second term is the total velocity's second kernel due to the 

quadratic elevator defelection (r,, r 2 ) , which has an impulsive surface over the 

diagonal. The boundary of this sheet has the same shape as the total velocity's first kernel 
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multiplied by / 2 = - 1.04 x 102. Both terms have negative amplitudes, which is the main 

reason that the velocity response based on the Volterra model heads downward, 

consistent with the nonlinear simulation, while the velocity response based on the linear 

model heads upward (see Figure 5.1). Although the short period motion's frequency and 

damping ratio appear in the second kernel, they have almost no influence on the response. 

Thus, the influence of the short period motion's frequency and damping ratio characterize 

the cross-diagonal lines only, which scales the volume between the surface and the 

t, - r2 plane. The main shape of the surface is given through the diagonal line (phugoid 

motion). Figure 5.4 shows the response for the same input excitation at V0 = 500 ft/s and 

H0 = 5 kft. As it appears, there is no significant difference between the Volterra and linear 

models to duplicate the nonlinear simulation. This observation indicates that the strength 

of the nonlinearity is a function of the operating condition. 

Figure 5.1 Local Linear and Volterra Models for ASe =1.5 deg at 
Va= 1500 ft/s and H0 = 30 kft 
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Figure 5.2 Approximate Volterra Model for A<5e= 1.5 deg 
at V„ = 1500 ft/s and H0 = 30 kft 

Figure 5.3 Quadratic Angle of Attack Second Order Kernel of Total Velocity 
at V0 = 1500 ft/s and H0 = 30 kft 
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Figure 5.4 Local Linear and Volterra Models for Ade =1.5 deg 
at V0 = 500 ft/s and H0 = 5 kft 

5.3.2 Global Volterra Model 

Two factors, total velocity V and altitude H or the varying parameter vector 

0 = jy / / ] ' , are selected to capture the variation over the flight envelope for the 

rectilinear trim motion. Note, in the rectilinear motion, specifying two variables is 

enough to find the rest of the trimming values. The varying parameter 0 = [Vg Ho] has 

velocity as one of the states, which means that the developed VPV model is quasi steady. 

The model is called quasi steady if the varying parameter vector includes any subset of 

the state vector. The high and low level of each element in the varying parameter vector 

0 is set as 500 ft/s < V0 < 1500 ft/s and 5,000 ft < H0 < 30,000 ft. 

To build a VPV model, as well as LPV model, the common technique is to 

generate the LPV/VPV matrices at different points over the entire flight envelope and 
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schedule their equivalent elements with the operating condition parameters. The choice of 

grid resolution, interpolation technique, and simulation step size are then a matter of 

concern. A grid with a high resolution yields better results, while the main disadvantage 

is then the consumed memory and computational cost arising from using such high-

resolution tables in addition to leading to a round-off error. Using different time steps in 

the nonlinear simulation, there is no significant difference in the produced response for 

time step less than At = 0.1 s. The same time step is used for both LPV and VPV 

simulations. For grid resolution and interpolation techniques, an investigation is 

conducted using the input in Figures 5.5 at flight condition V0 = 800 ft/s and H0 = 20 kft. 

Three different resolutions with three different interpolation techniques have been tested 

as listed in Table 5.1. The results based on these grids are shown in Figures 5.6-5.8. The 

results show that the accuracy of the VPV model is almost the same for a grid of AVx NH 

= 5 x 5 or higher where Ny and NH denote the number of grid points for variables V and H, 

respectively. 

Table 5.1 Investigated Interpolation Techniques and Grid Resolutions 

Nyx NH = 5 x 5 Nyx NH = 25 x 25 Nyx NH= 50x50 

Linear Interpolation Grid 1 Grid 4 Grid 7 

Spline Interpolation Grid 2 Grid 5 Grid 8 

Mixed Interpolation Grid 3 Grid 6 Grid 9 

It is clear that linear interpolation doesn't accurately capture the variation in short 

period motion. For example, in cases of angle of attack and pitch rate responses, the 

linear interpolation provides less maximum and minimum peak overshoot than the 

nonlinear simulation. Such initial errors over time move the VPV propagation away from 
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the nonlinear simulation. In phugoid motion, the linear interpolation allows the VPV 

propagation to have the same qualitative response as the nonlinear simulation with a 

quantitative error as a consequence of the initial errors in the short period motion. The 

spline interpolation precisely renders the variation in the short period motion, but fails to 

render the phugoid motion for both V and 6. This observation concludes that spline 

interpolation is well suited for short period motion and linear interpolation is well suited 

for phugoid motion. Taking advantage of this conclusion, a mixed interpolation technique 

is developed. This mixed interpolation employs linear interpolation for phugoid motion, 

which is presented by the total velocity and pitch rate equations, while it employs spline 

interpolation for the short period equation or angle of attack equation. This mixed 

technique solves the trade-off between the two interpolation techniques delivering a 

better match for the nonlinear simulation. Based on this investigation, mixed 

interpolation with resolution AVx NH = 25 x 25 (Grid 6) is used throughout this chapter. 

Figure 5.5 Perturbed Input I 
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Figure 5.6 Responses of Grids 1, 2, and 3 
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Figure 5.7 Responses of Grids 4, 5, and 6 
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Figure 5.8 Responses of Grids 7, 8, and 9 

5.3.3 Comparison to Global Linear Model 

The input signal in Figure 5.5 is used to compare the LPV, VPV, and nonlinear 

simulations at the operating condition V0 = 800 ft/s and H0 = 20 kft. The input is designed 

to have a fast smooth change from 0 deg to -4.5 deg within 2 s. The input returns back to 

0 deg by t = 5 s. This input moves the aircraft over the flight envelope as shown in Figure 

5.9. At the first 5 seconds, this input excites the short period mode of the aircraft 

producing an oscillatory change in both angle of attack (Aamax ~ 20 deg) and pitch rate 

(A<7max ~ 20 deg/sec). Consequently, the pitch angle increases by A(9max ~ 40 deg 

producing a high rate of decrease in the kinetic energy (total speed), while the altitude is 

almost constant. When the input signal settles down to zero again, both angle of attack a 

and pitch rate q settle to their initial trimming value. The total speed V and pitch angle 6 

start then to oscillate slowly interchanging between kinetic and potential energy that 

occurs when the aircraft attempts to reestablish the equilibrium balance between lift, 
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weight, thrust, and drag (see Figure 5.10). Since the operating condition (V0 = 800 ft/s 

and H0 = 20 kft) has a stable phugoid mode, the generated trajectory is a slowly shrinking 

helix; heading toward this operating condition. 

The linear model shows a significant inability to capture total velocity response 

during the input excitation period. The velocity response based on the LPV simulation 

indicates that velocity is almost constant at the first 3 s, while the VPV and nonlinear 

simulation show a high drop in the velocity within the same period. The parametric 

variation of the drag and lift coefficients (Co and C/J with angle of attack, shown in 

Figure 5.11 for the first 3 seconds, explains why LPV modeling is not enough to capture 

the dynamics. The LPV technique considers the local slope at t = 0 s, relatively low, to 

launch the simulation. Such a low initial drag coefficient rate of change induces a 

velocity with almost zero rate of change. Over time, this slope is then updated by the 

parameter varying process and a correction to the velocity and altitude response 

eventually happens, which is the reason that the LPV approach is still able to capture the 

behavior. The error propagation, however, because of using first derivatives only, makes 

the LPV simulation shift from the nonlinear simulation by At = 11 s for the first 

minimum peak overshoot. Unlike the LPV approach, the VPV model uses a second order 

approximation, which is well suited for the drag variation with the angle of attack a (see 

Figure 5.11). The variation in the lift coefficient Ci with the angle of attack a, on the 

other hand, can be fairly well approximated by a linear model. For this reason, there is no 

significant difference between LPV and VPV responses with the nonlinear simulation for 

the angle of attack's response. 

The input in Figure 5.12 moves the aircraft over the track shown in Figure 5.13 

with the trim condition being V0 = 1000 ft/s and H0 = 17.5 kft. The variation of this input 

is sharper than the variation in input I. The response based on this input signal is shown 

in Figure 5.14 indicating that the LPV model delivers a close result to the VPV model, 

which means that the waveform of the input signal has an influence on the strength of the 
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nonlinearity. The amplitude of the input II is less than the amplitude of the input I during 

the first five seconds. This fact indicates that the quadratic elevator nonlinearity's 

contribution is much less in case of input II. The quadratic angle of attack nonlinearity, 

on the other hand, is proportional to the short period motion, and this amplitude for input 

II is less than that for input I. In this way, VPV methodology has a capability to increase 

or decrease the nonlinearity impact with the input's waveform. 
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Figure 5.14 Aircraft Response of Input II 

5.3.4 Global Kernels 

Analysis of flight vehicle dynamic behavior, based on the Volterra model kernels, 

is addressed in this subsection. Although a differential form of Volterra theory using 

mixed interpolation was implemented for simulation accuracy purposes, the integral form 

can also be used in creating the global model. The primary intent here is dynamic 

analysis based on the analytical kernel framework. For that reason, the analytical 

expression of the first and second Volterra kernels (see Equations (5.55) and (5.63)) are 

computed at each operating condition. In this way, new dimensions are added to the 

series kernels. For example, the first kernels will have three arguments, hi(t,V0, H0), 

instead of one, hi(t), where V„ and H0 represent the operating point around which the sub-

model is constructed. The hyper-surface representing the first kernels h^{t,V0,H0) and 
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Jf(t,V0,H0)can not be fully plotted in three dimensions. For visualization, a set of slices 

is shown in Figures 5.15-5.18. These slices are taken to be at the middle of the selected 

operating space (500 ft/s < V Q < 1500 ft/s and 5 kft < H0 < 30 kft). 

The waveforms of (t, Vn, Ha= 17.5 kft) in Figure 5.15 and 

h"{t,V0,H0 =17.5kft) in Figure 5.16 capture the variation of the first kernels with 

velocity. In the case of the total velocity's first kernel/af, up to altitude H0 = 22 kft, 

increasing the velocity makes the system less oscillatory (decreasing cod ) with more 

damping (increasing £"ph )• When the altitude is more than H0 = 22 kft, increasing the 

velocity increases a>d and reduces Cph up to a critical speed (~ 600 ft/s) followed by an 

opposite variation. After this critical velocity, increasing the velocity reduces cod and 

increases Cph- The amplitude of increases with velocity, which means the velocity 

responds more sensitively to the elevator deflection at a high velocity. On the other hand, 

increasing the velocity makes the angle of attack's first kernel hlf more oscillatory 

(increasing a>d ) with a slight reduction in the damping (<fsp is almost constant). The 

amplitude of angle of attack first kernel Itf decreases with the operating velocity, 

indicating less sensitivity to the elevator deflection. 

Figures 5.17 and 5.18 show the influences of altitude variation on tf and//," at V0 

= 1000 ft/s. For the total velocity's first kernel/zf, up to V0 = 700 ft/s, increasing the 

altitude reduces the damping (decreasing £*sp ) and slightly increases the co, up to a 
^ sp 

critical altitude 25 kft) followed by opposite influences. The amplitude of total 

velocity's first kernel tf increases with altitude indicating more sensitivity to the 

elevator deflection. When the velocity is more than V - 700 ft/s, increasing the altitude 

slightly increases o)d and reduces <fsp. The angle of attack first kernel Jtf, on the other 

hand, receives reductions in the damping Csp and frequency cod associated with a slight 

reduction in the amplitude as H0 increases. 

The global second kernel of the total velocity, as an example, includes two 

components h^ (r,, r2, Vn, Hn) and (r,, r2 , V0, Ha) . Both terms have a four-
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dimensional space. Figures 5.19-5.24 show the contour plots of different slices of the 

hyper-surface of hv
2al (r,, t2 , Vo, Ht>) describing its variation with the operating velocity V0 

and altitude H0. The variation of the surface hv
la2(rx,T2,V0,H0) at constant V0 and H0 has 

a low frequency cod ( waveform with a damping ratio £*ph over the diagonal line. The 

surface has an orthogonal waveform with a relatively high frequency co , and high .5p 

damping ratio <fsp- Combining the two waveforms constructs the surface, which can be 

described through a set of primary convex and concave signatures over the diagonal line 

(n = T2) and a set of the secondary convex and concave signatures over the off-diagonal 

lines (ti = T2 + tc and rc ^ 0). Because the cross-diagonal waveform has a relatively high 

damping ratio, the primary convex and concave set is the most significant part of the 

surface. Consider the first concave signature, which has an elliptical projection over the 

T1-T2 plane (see Figures 5.19-5.24). The semi-major axis of this T1-T2 projected ellipse lies 

over the diagonal line (n = T2) with a slope of 45 deg, while the semi-minor axis lies over 

the cross-diagonal line. The length of the semi-major axis is defined by the phugoid 

frequency at this operating condition to be 71/ a>d ( (half cycle) and the semi-minor axis is 

defined by the short period frequency at this operating condition to be 7t/ cod (half cycle). 

The variation of the hyper-surface (r,, r2, Vn, Hr>) with operating velocity and altitude 

could be described by the variation of the first concave signature. 

The surface of the quadratic elevator component / / 2 ( r , , r 2 , V n , H n ) is an Zoe 

impulsive hyper-surface over the diagonal line (ri = T2). Since it is hard to visualize such 

an impulsive surface, the gain of this quadratic elevator component is used herein to be 

an indication of the strength of the quadratic elevator nonlinearity. Figure 5.25 shows the 

variation of the quadratic elevator component's gain figlKVi with the flight condition. It 

is clear that increasing the altitude and decreasing the velocity increases the strength of 

the quadratic elevator nonlinearity. This conclusion also explains the difference between 

the aircraft responses in Figures 5.1 and 5.4. 



154 

t(s) 

Figure 5.15 Total Velocity First Kernel at H0 = 17.5 kft 

Figure 5.16 Angle of Attack First Kernel at H0 = 17.5 kft 
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Figure 5.19 Quadratic Angle of Attack Second Kernel of Total Velocity 
at H0 = 17.5 kft and V0 = 500 ft/s 

P 30 

fs) 

Figure 5.20 Quadratic Angle of Attack Second Kernel of Total Velocity 
at H0 = 17.5 kft and V0 = 1000 ft/s 
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Figure 5.21 Quadratic Angle of Attack Second Kernel of Total Velocity 
at H0 = 17.5 kft and V0 = 1500 ft/s 

x107 

Figure 5.22 Quadratic Angle of Attack Second Kernel of Total Velocity 
at H0 = 10 kft and V0 = 1000 ft/s 
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Figure 5.23 Quadratic Angle of Attack Second Kernel of Total Velocity 
at H0 = 20 kft and V0 = 1000 ft/s 

x 10 

Figure 5.24 Quadratic Angle of Attack Second Kernel of Total Velocity 
at H0 - 30 kft and V0 = 1000 ft/s 



Figure 5.25 Variation of Quadratic Elevator Kernel's Gain of Total Velocity 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The objectives of this dissertation were 1) reducing the computational cost of 

applying Volterra theory for high strength nonlinearities as in the aircraft dynamics case, 

2) developing a nonlinear cause-and-effect parametric study for the low order 

atmospheric flight motions, that can be used as a foundation to qualify the high 

performance aircraft, and 3) constructing a global model, which has the capability to 

duplicate the aircraft nonlinear behavior across a wide array of operating conditions. 

Considerable efforts were focused on meeting these objectives and much success was 

achieved in all areas. The new techniques have been developed for constructing 

mathematical solutions from the governing relationships describing the aircraft dynamic 

behavior using Volterra theory. These techniques include the Piecewise Volterra 

Approach, the Nonlinear Cause-and-Effect Analysis, and the Volterra Parameter-Varying 

Approach. These methods were applied to low and high order atmospheric flight dynamic 

systems. Numerical and analytical solutions for such atmospheric flight dynamic systems 

show the capability of Volterra-based models to duplicate the aircraft's dynamic behavior. 

The solutions were used to obtain valuable insight and understanding to predict and 

analyze the aircraft dynamic behavior beyond that attainable by the linear theory or the 

nonlinear simulation. Overall, this dissertation has made significant and unique 

contributions to flight dynamics. 

The piecewise Volterra approach proves the universality of a Volterra model by 

decomposing the nonlinearity into weaker component nonlinearities appearing in several 

operational sub-regions, which only require a low order truncated series. The approach 

has successfully captured the limit cycle and amplitude hysteresis behavior when applied 
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to an approximate low order nonlinear pitch-plunge model. However, there is no 

systematic way to assemble all these sub-regions together. That requires a bio-logic 

interaction to define the range of each sub-region. The cause-and-effect analysis provides 

a procedure to analytically assemble the constituents of the dynamic response of simple 

low order nonlinear systems using the variational method. The procedure provides 

closed-form expressions for the convolution integral kernels, which in turn lead to 

expressions for the time response for a step input. The explicit nature of the relational 

expressions allows cause-and-effect insights between nonlinearities present in the state 

space model and corresponding response traits. Application to single state and dual state 

uniaxial aircraft motion exposed the source of differences between nonlinear and linear 

responses, specifically initial departure time, maximum and steady offsets, differences in 

settling times, and oscillation frequency and phase shifts. The procedure has only been 

developed for first and second order single degree of freedom systems. Volterra 

parameter-varying approach has been developed as a systematic procedure to model a 

computationally complex and large envelope airframe system. In a comparison with the 

global linear varying model, it can be inferred that the Volterra varying model approach 

has more capability to replicate the dynamic behavior of a particular system, because of 

its ability to render the inherent nonlinearities in the system. This systematic approach 

has less error during switching between different flights regimes. The technique was 

successfully applied to a nonlinear longitudinal motion model for the F-16. This 

technique can be extended and applied to more general dynamic system evolutions. 

The proposed approaches in this dissertation not only provide an acceptable 

accuracy level to duplicate the dynamic behavior, but also a theoretic framework by 

presenting the solution as a set of kernels. These kernels are a unique signature of the 

system and they can be used for understanding the way in which the change of basic 

parameter characteristics from one flight regime to another in the flight envelope can lead 

to significant change in system behavior. The proposed analytical Volterra-based model 
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offers an efficient nonlinear preliminary design tool in qualifying the aircraft responses 

before computer simulation is invoked or available. 

6.2 Recommendations 

Several extensions to this dissertation and its contents are recommended as future 

activities. Considerable work in this dissertation involves the flight mechanics application. 

Applying the same techniques to other dynamic systems could be an interesting topic for 

the nonlinear dynamics research community. The proposed procedures have been applied 

with time domain analysis. An extension to the Laplace domain or frequency response 

analysis may lead to the development of equivalent dynamics and control techniques for 

purposes of model reductions and control design. Also, an extension of this framework to 

multi-axis motions is of future interest. 
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