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ABSTRACT

BENTHIC AND PLANKTONIC MICROALGAL COMMUNITY STRUCTURE AND 
PRIMARY PRODUCTIVITY IN LOWER CHESAPEAKE BAY

Matthew Reginald Semcheski 
Old Dominion University, 2014 
Director: Dr. Harold G. Marshall

Microalgal populations are trophically important to a variety of micro- and 

macroheterotrophs in marine and estuarine systems. In Chesapeake Bay, microalgae 

facilitate the survival and development of ecologically and economically relevant fauna, 

including shellfish and finfish populations. While regarded as significant components of 

coastal environments, microphytobenthic communities are historically understudied. In 

Chesapeake Bay, the importance of phytoplankton to the ecosystem is understood, but the 

contribution of microphytobenthos remains unclear. This project surveys intertidal 

microphytobenthic communities, in relation to phytoplankton communities, around lower 

Chesapeake Bay describing the taxonomic makeup of these populations, coupled with 

quantification of cell abundance, biomass, and primary production. Whole water samples 

and sediment cores were collected at eight sites throughout lower Chesapeake Bay for 

phytoplankton and microphytobenthic community analysis over a two-year period. Over 

the span of the study, a total of 142 taxa were identified (124 phytoplankton; 95 benthos). 

Microphytobenthic community composition, abundance and biomass were dominated by 

diatoms in spring, autumn and winter, while cyanobacteria were dominant during 

summer. Similarly, within the water column, diatoms were the most diverse group with 

greatest cell abundance and biomass throughout the sampling period. Algal abundance, 

biomass, species richness, and productivity rates all differed between the phytoplankton



and benthos. Abundance and biomass values were significantly higher in the benthos than 

in the phytoplankton throughout the study. Conversely, species richness and productivity 

rates were significantly higher in the phytoplankton. These results provide evidence that 

the microphytobenthos are an important, diverse community similar to, but significantly 

different than neighboring planktonic populations.
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CHAPTER I

INTRODUCTION

Estuaries are among the most productive aquatic ecosystems in the world (van der 

Wal et al. 2010). Microalgae living in the water column as phytoplankton and the algae 

of the microphytobenthos growing on intertidal and subtidal sediment are the major 

sources of this productivity and constitute the initial components of vital food webs in 

estuaries (Underwood and Kromkamp 1999). Our knowledge of estuarine phytoplankton 

dynamics is extensive for Chesapeake Bay. The first phytoplankton surveys began with 

descriptions of community composition by Wolfe et al. (1926) and Cowles (1930), and 

this has continued into the present century (Marshall et al. 2003, 2005, 2006). In 

comparison, fewer studies both globally and regionally have focused on the benthic 

microalgae, which represent a major component in estuarine food webs (Underwood and 

Kromkamp 1999). For definition, the benthic microalgae, also described as 

microphytobenthos, are the microscopic algae inhabiting the upper few centimeters of 

sediment in aquatic ecosystems. They are fast-growing, readily grazed, and may 

constitute a greater and more stable source of organic matter to higher trophic levels than 

estuarine macrophytes (Rizzo et al. 1996). The microphtyobenthos are also vital 

facilitators of carbon cycling in the world’s coastal ecosystems, with production estimates 

of ca. 500 million tons of carbon annually (van der Wal et al. 2010). Production estimates 

for microphytobenthos in various mid-Atlantic coastal systems range between 29 and 234 

g C m'2 yr'1, compared to 7 and 875 g C m'2 yr'1 for phytoplankton (Underwood and 

Kromkamp 1999). Numerous authors have suggested that benthic microalgal primary



production contributes significantly to the overall production in shallow aquatic 

environments, and may equal or exceed phytoplankton productivity rates in these waters 

(Admiraal and Peletier 1980, Leach 1970, Blasutto et al. 2005, Underwood and 

Kromkamp 1999, Cahoon and Cooke 1992). In some locations, benthic microalgae may 

contribute up to 50% of the total primary production in estuarine systems (Underwood 

and Kromkamp 1999).

Along with their importance as a food source to the global carbon cycle, 

sediments dominated by benthic microalgae exhibit lower rates of ammonium, nitrite, 

and nitrate release, indicating these communities may also function as nutrient sinks, 

rather than a source of nutrient release into the water column (Rizzo et al. 1996). Benthic 

microalgae also influence water quality by stabilizing fine sediments, thereby reducing 

turbidity in the water column and reducing the release of nutrients from re-suspended 

sediments (Rizzo et al. 1996). They are generally localized and concentrated in the 

intertidal regions and shallow subtidal sediments of coastal and estuarine ecosystems. 

These are euphotic areas that are favorable locations for algal development comprising 

23-42% of the estuaries in the U.S. mid-Atlantic region (Rizzo et al. 1996). Although 

these are mainly surface biofilms of benthic microalgae, other studies have reported 

between 30% - 50% of the estuarine benthic microagal biomass can be resuspended into 

the water column (Underwood and Kromkamp 1999). This suggests portions of what has 

been considered phytoplankton biomass is often of benthic origin.

Benthic algal assemblages have been defined according to differences in their 

adhesive tendencies and/or their affinity for different sediments. The “epipelic” algae 

favor fine silty/muddy sediments, whereas sandy sediments support the growth of
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“epipsammon”, or attached algal cells (Yallop et al. 1994). These terms have typically 

been applied to only diatoms, often neglecting to include other microalgal groups in the 

sediment, e.g. cyanobacteria, chlorophytes, cryptophytes, etc. To be more inclusive, 

MacIntyre and Cullen (1995) used the term microphytobenthos to describe any of these 

algal organisms associated with the substrate. In this study, all benthos-associated 

microalgae are referred to as microphytophenthos.

Studies of microphytobenthic populations in Chesapeake Bay are especially 

sparse, with few studies conducted in the Bay over the last 30 years (Rizzo and Wetzel 

1985, Rizzo and Wetzel 1986, Murray and Wetzel 1987, Reay et al. 1995, Rizzo et al. 

1996, Wendker et al. 1997, Stribling and Cornwell 1997, Buzzelli 1998). None of these 

provide a Bay-wide review of microalgal production or species composition, but rather 

report productivity rates involving small temporal periods and limited spatial ranges. 

Microphytobenthic studies have also been considered more complex than the 

phytoplankton since the benthic environment in the intertidal zone is more heterogeneous 

than the water column, with additional physical forcing interactions operating at different 

time and spatial scales compared to the pelagic environment (Guarini et al. 2000).

Cahoon (1999) summarized these variables and the importance of benthic microalgae in 

neritic ecosystems and the intrinsic difficulty of measuring the natural properties and 

responses of these organisms in coastal communities.

Microphytobenthic Community Composition

The majority of microphytobenthic studies treat algal assemblages as a single 

functional algal component. However, the benthic microalgal communities are typically
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composed of a great diversity of taxa, each with unique photosynthetic requirements and 

behavioral features (Janousek 2009, Underwood and Kromkamp 1999). Previous studies 

have also noted the general lack of specific taxonomic information available regarding 

the microphytobenthos composition (Fielding et al. 1998, Janousek et al. 2007, Saburova 

et al. 1995). When examining these communities, biomass data is generally recorded as 

chlorophyll a measurements, with little or no attention given to species present, their 

abundances, or diversity. Reporting biomass in terms of a photosynthetic pigment is also 

questionable, since algal cells in deeper sediment layers may possess lower or greater 

chlorophyll a content than surface cells, even though their true biomass is unchanged. For 

instance, Fielding et al. (1998) reported diatom biomass at depths below 10 cm in some 

sediments, emphasizing the inconsistency associated with pigment-only measures of 

surface algal biomass. While biomass (e.g. as chlorophyll a) and abundance 

measurements provide an instantaneous and general appraisal of existing algal 

communities, they provide no information regarding community dynamics, such as 

seasonal species composition and turnover (Pinckney et al. 2003). Furthermore, a 

quantification of the taxonomic makeup of a benthic algal community can reveal insights 

into nutrient cycling, sediment stabilization, organic matter content, and the ecological 

niches that each major algal group may occupy. The value of diversity and abundance 

studies of microphytobenthic communities are key to a more complete understanding the 

productive value of these taxa and the habitats in which they reside.
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Microphytobenthic Variability

Microphytobenthic community composition and biomass vary widely across and 

within benthic habitats (Janousek 2009). These communities tend to be heterogeneous on 

spatial scales ranging from millimeters to kilometers. The environmental factors driving 

the microphytobenthic composition and biomass are wide-ranging, with general 

agreement that no single, stand-alone variable is controlling microphytobenthic 

dynamics. Instead, these populations are influenced by a suite of interacting physical and 

biological conditions, working in concert to shape these communities. These factors 

include varying combinations of changing temperatures and salinities, terrestrial 

elevation gradients, emersion time (intertidal), bathymetry, light intensities, and 

sediment-nutrient availability. Other factors often involve the presence or absence of 

deposit and suspension feeders, bioturbation, physical turbulence (wave and current 

intensity), the shoreline aspect, plus others (Orvain et al. 2012). Several authors have 

attributed sediment type as being one of the most significant variables driving 

microphytobenthic algal biomass and community structure in estuarine environments 

(Jesus et al. 2009; Skinner et al. 2006). Sediment type and porosity will control water 

content and water residence time, and therefore the rate of allochthonous nutrient 

delivery to the microalgal community. Viable benthic algae below the sediment’s surface 

layers are also limited in their development due to the extremely small euphotic zone 

common to benthic habitats, especially those composed of fine sediments. Because of 

limited light, the majority of microphytobenthic biomass commonly occurs in the surface 

layer to depths of less than several centimeters.
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Microphytobenthic communities are exposed to the interaction of numerous 

variables that influence their abundance, biomass, photosynthesis, and species 

composition. The intertidal zone also presents a particularly harsh and dynamic 

environment for algal communities which respond to a variety of stressors that commonly 

include sediment scour, varying light gradients during periods of emersion/immersion, 

extreme temperature variation, and variable salinities. While no single stress factor may 

be the sole driving force shaping these communities, a select few have been singled out 

as most significant. Salinity has been considered the main ecological constraint to 

microphytobenthic composition in some studies (e.g. Blasutto et al. 2005), along with 

temperature as major factors influencing microphytobenthic biomass (Blanchard et al. 

1997). Large daily temperature fluctuations, particularly during low tides often have 

deleterious effects on microphytobenthic populations and their photosynthetic capacity 

(Blanchard et al. 1997). Microphytobenthic spatial and temporal patterns of composition 

and abundance are also attributed to available nutrient concentrations and grazing 

(Bennett et al. 2000). Though nutrient limitation is often a controlling factor in 

phytoplankton dynamics, this condition is less prevalent in the benthos where nitrogen 

and phosphorous are readily available due to remineralization processes in the sediment 

(MacIntyre et al. 1996). While nutrients and grazing may play a role in shaping the 

floristic community of the benthos, evidence of nutrient limitation is scarce (Underwood 

and Kromkamp 1999), and even grazing pressure may not be significant, particularly in 

areas overlain with thick microbial mats.

Light limitation is a major factor influencing spatial and temporal distributions of 

the microphytobenthos. Shallow coastal systems are characterized by high surface area to
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water volume ratios, leaving a significant benthic habitat within the photic zone. While 

this appears favorable for benthic algal growth and high production, coastal areas are also 

characterized by having increased sediment loads. Higher concentrations of suspended 

matter yields increased turbidity, and reduced light intensity which can negatively affect 

species composition and production by the microphytobenthos (Blasutto et al. 2005). 

Steep gradients of irradiance may occur within estuarine sediments, particularly in 

silty/muddy habitats. These sites are characterized by high organic matter content with 

intertidal areas subjected to extreme illumination cycles during tidal periods of emersion 

and immersion. Greater quantities of algal biomass may be found higher in the intertidal 

zone due to the overall longer exposure times, and higher light levels. In some instances 

the sediment itself can affect irradiance. In sandy sediments, light intensity at the surface 

can be higher than incident light, due to backscattering effects, creating increases in light 

intensity of 200% at the surface (Underwood and Kromkamp 1999), with this effect 

reduced in more cohesive sediments. Light intensity in the sediment is highly variable, as 

irradiance values, particularly at the upper end of typical irradiance ranges, may not 

affect microphytobenthic development. However, there is no evidence of benthic 

microalgal photosynthetic inhibition at full light intensity. Though 

photosynthesis/irradiance relationships among the microphytobenthos are well 

documented, the role of their species composition is rarely explored, and often these 

communities are simply described as “diatom biofilms”, without fully exploring their 

taxonomic makeup.
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Biomass and Productivity Relationships

A review of the benthic algal role as producers in nearshore waters (Cahoon 

1999) revealed a wide range of primary production rates (< 1 to > 500 mg C m'2 hr'1) 

worldwide, while in Chesapeake Bay, a smaller, yet still considerable range of rates (1 to 

90 mg C m'2 hr'1) is reported (Rizzo and Wetzel 1985, Wendker et al. 1997). Observed 

differences in microalgal biomass and productivity measurements are often attributed to 

spatial variability of the algae or habitat type. Temporal factors also play a role in 

establishing these communities. Blanchard et al. (2001) described common small-scale 

daily oscillations in the microphytobenthos, highlighting the potential rapid increase of 

sediment surface biomass during daytime exposure. This response is followed by a net 

decrease in biomass and productivity during immersion, due to resuspension, grazing, 

and natural mortality. This subsequently produces a high localized turnover leading to 

major differences in biomass and productivity estimates (Rizzo and Wetzel 1985, 

Thornton et al. 2002). A series of fluctuating tidal and light regimes may then produce a 

predictable sequence of biomass and productivity flux as a consequence of these physical 

and biotic factors. Though small-scale variation is well documented, more studies need to 

be focused on large-scale, seasonal variations in microphytobenthic biomass and 

productivity. For example, seasonal biomass-productivity relationships have been 

documented with conflicting conclusions (Tilman et al. 1996). In temperate 

microphytobenthic communities, Yallop et al. (2000) found a negative relationship 

between algal biomass and productivity, particularly in the higher biomass ranges. Others 

have noted production peaking at various times throughout the year, including the 

warmer summer and colder winter months (Thornton et al. 2002). In these studies, the
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benthic microalgal communities did not follow the often predictable growth patterns 

occuring in the plankton, which in many estuaries is associated with rising water 

temperatures, and nutrient delivery via seasonal precipitation and river flow events 

(Marshall et al. 2006).

In addition to complications associated with high spatial and temporal 

heterogeneity in measuring productivity of microphytobenthic communities, the 

methodology followed is also a concern. Caution must be exercised when extrapolating 

small scale productivity measurements to predict large scale trends. Not only do methods 

differ, but different approaches yield different measures of production (e.g. gross 

productivity, net productivity, potential productivity), each of which is not explicitly 

comparable (Underwood and Kromkamp 1999). Of the microphytobenthic productivity 

data available for Chesapeake Bay, it is difficult to compare data due to methodological 

differences. Another common methodological issue is the frequency of sampling. For 

example, variations in microphytobenthic productivity may occur on scales from hours to 

days. This variability is not detected by typical month to month (if not longer) sampling 

designs (Rizzo and Wetzel 1985). This high temporal variation reinforces the hesitancy 

of extrapolating hourly production to daily, monthly, and annual rates.

Disturbance and Distribution

In estuarine systems, sediment landscapes are altered frequently via temporal 

events such as seasonal river flow, tidal extremes, and storm events (van der Wal et al. 

2010). These recurrent, physical forces, along with the transient and resident meio- and
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megafauna in the sediment, subject the physical benthic environment to high levels of 

disturbance, particularly in the intertidal zones, and affect the distribution and 

composition of resident flora and fauna. Spatial and temporal heterogeneity of the 

microphytobenthos is most apparent in the intertidal zone where irradiance, temperature, 

and turbidity often reach extremes and relate directly to their lengths of exposure. 

Temporal variations are generally considered on a seasonal basis. However, the intertidal 

microphytobenthos exhibit high microscale temporal variation of a shorter time scale. 

This is due to rapid fluctuations in sediment biomass due to both biotic and abiotic 

disturbances involving rhythmic vertical migrations of the biota within the sediment 

strata. The depth of algal migrations within the sediment is influenced by emersion time 

and the sediment grain size. While the majority of the microphytobenthic biomass is 

within the top few millimeters of the sediment, bioturbation by grazers and sediment 

mixing (due to wave action) and tidal currents can relocate algal cells to depths of more 

than 10 centimeters (Middleburg et al. 2000). Despite being buried below the euphotic 

zone, these displaced cells can maintain some photosynthetic activity (Steele and Baird 

1968). Thus, a simple surface sediment sample may be insufficient to collect and 

characterize these benthic communities.

Microphytobenthic vertical and horizontal (spatial) distributions are also 

influenced by temporal microalgal migration. Long-term, resident distributions may be 

attributed to the degree of physical disturbance and sediment grain size. However, it is 

often difficult to differentiate between the two since currents and turbulence are also 

major particle sorting mechanisms (Fielding et al. 1998, Saburova et al. 1995). While 

vertical sampling may be ameliorated by extending the depth of sampling cores,
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horizontal variability at the microscale level becomes more problematic. Austen et al. 

(1999) noted a cross-shore variability in microphytobenthic biomass, with a gradient of 

high to low biomass along a transect from the upper to lower shore regions in an 

intertidal zone. This apparent elevation gradient is not only apparent in 

microphytobenthic biomass, but also common in species composition and distribution. 

This gradient is suggested as a product of extended exposure/illumination time in the 

upper reaches, as well as the higher water content of lower and middle shore sediments. 

Higher water content results in less stable environments, especially during high tidal 

flow, causing sediment scour and resuspension of loose sediment particles and associated 

algal cells (Underwood and Kromkamp 1999). Conflicting reports suggest either an equal 

distribution of microalgal species throughout the intertidal zone, with density differences 

along elevation gradients, or patterns of heterogeneity on both vertical and horizontal 

scales (Saburova et al. 1995).

Sediment-Benthic Algal Relationships 

Sediment type

In addition to light and temperature among the major drivers of 

microphytobenthic productivity and biomass, the sedimentary characteristics and the role 

of granulometry (grain size characteristics) are also significant (Cahoon et al. 1999). 

Numerous studies have identified substrate type as a major variable driving 

microphytobenthic composition within estuaries (Riznyk and Phinney 1972, Colijn and 

Dijkema 1981, Davis and Mclntire 1983, Shaffer and Onuf 1983, Fielding et al. 1988,
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Mclntire and Amspoker 1986, Whiting and Mclntire 1985). In reference to grain size and 

its relationship to microphytobenthos biomass, Cahoon et al. (1999) reviewed the 

literature noting algal biomass positively correlates with coarse-grained sediments 

(Skinner et al. 2006; Cahoon et al. 1999; Colijn and Dijkema 1981), but others indicated 

a positive correlation to finer sediments (Grippo et al. 2010, van der Wal et al. 2010, 

Underwood and Kromkamp 1999, Mclntire and Amspoker 1986). In contrast to these 

studies, others have found no relationships to sediment grain size (Cammen 1982, 

Janousek 2009, Du et al. 2010, Gottschalk et al. 2007). However, the general consensus 

has been that fine sediments support higher algal biomass (Fielding et al. 1998). 

Concentrated at or near the surface, the algal biomass is dependent upon the ability of 

algal cells to actively migrate vertically through the sediment. Algae in sandy, and larger 

coarse sediments, typically have a lower algal representation, but the cells may be 

distributed to a deeper depth, with light able to penetrate into these layers. Daily tidal 

mixing will also enhance the resuspension and subsequent settling of algal cells in the 

sediment. Van der Wal et al. (2010) noted that microscale disturbances involving these 

algae are often more pronounced in muddy sediments, where temporal fluctuations are 

less apparent, compared to the lower nutrient concentrations and higher resuspension 

rates associated with a sandy substrate.

The substrate type grain size not only influences the accumulation of algal 

biomass, but different estuarine substrates have been associated with distinct algal 

assemblages (Amspoker and Mclntire 1978, Whiting and Mclntire 1978, Mclntire and 

Amspoker 1986, Gottschalk et al. 2007). Brotas and Plante-Cuny (1998) noted the 

highest microphytobenthic diversity occurred in fine muddy estuarine sediments, whereas
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Jesus et al. (2009) reported sediment type controls the presence/absence of specific 

microphytobenthic groups. They found fine cohesive sediments were dominated almost 

exclusively by diatoms, and the coarse, sandy sediments contained a more diverse 

community that included diatoms, cyanobacteria and euglenoids. Several authors have 

concluded that sandy sediments favor the growth of attached algal cells, not only due to 

the ample surface area of coarse sand grains, but also the necessity for attachment to exist 

in these turbulent environments (Mclntire and Amspoker 1986, Amspoker and Mclntire 

1978, Whiting and Mclntire 1985). In contrast, muddy surface sediments are dominated 

by mobile (epipelic) algae, since these habitats are generally sheltered from wind/wave 

action, and often have reduced tidal turbulence (van der Wal et al. 2010, Yallop et al. 

1994, Thornton et al. 2002). In this study, all algal components of the microphytobenthic 

biomass are included. This approach counters the ambiguity and subjectivity of many 

early algal studies of the benthos by only considering the diatoms either as epipelic 

(mobile), or epipsammic (attached) taxa. Such groupings are problematic in that they 

ignore other functional groups capable of motility and productivity (e.g. cyanobacteria, 

euglenoids, dinoflagellates, etc.).

While there is evidence describing differences in algal species composition along 

particle size gradients, these are not always reflected in their biomass or productivity 

rates, which rely more heavily on other variables, such as irradance and nutrient 

concentrations. (Mclntire and Amspoker 1986). There is also linkage between nutrients, 

sediment type, and their collective influence on the composition of the microphytobenthic 

communities. Finer, muddy sediments tend to have higher organic matter content, thereby 

more bacterial decomposition, leading to higher levels of dissolved nutrients available in
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the sediment. In contrast, sandflats tend to be more porous, and oligotrophic in 

comparison, suggesting the possibility of nutrient limitation in coarse-grained 

environments. Underwood and Kromkamp (1999) suggest that while nutrients may not 

directly limit photosynthesis or biomass levels in cohesive sediments, nutrient limitation 

can occur in coarse, sandy sediments. Nutrient limitation in concert with various physical 

forces (e.g. sediment composition, irradance), would be a factor in determining species 

composition across these sediment/habitat types. Despite ample evidence supporting 

sediment as a major factor in shaping microphytobenthic dynamics, this viewpoint 

remains controversial, particularly when considering the multitude of factors interacting 

within these intertidal communities.

Sediment Stability

While it is decidedly apparent that sediment characteristics influence the 

composition and abundance of microphytobenthic communities, these microalgal 

populations will also influence the nature of the sediment. One key 

microphytobenthos/sediment interaction is the ability of diatoms and cyanobacteria to 

produce large amounts of extracellular polymeric substances (EPS), which increases the 

stability of the surrounding sediment and supports sediment accretion. These extracellular 

carbohydrates enhance the attachment of cells to sediment grains, and influence the 

movement and migration of raphid diatoms (both vertically and horizontally) in the 

sediment (Blasutto et al. 2005). Cellular biomass alone is not an indicator of EPS 

production. The mechanisms by which microphytobenthos stabilize sediments are 

dependent on the algal taxa present. Thornton et al. (2002) stated diatoms produce a
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carbohydrate-rich EPS that is extruded from these cells during their movement. 

Conversely, cyanobacteria form amorphous linkages between non-cohesive sediment 

grains, as well as accumulating an EPS matrix (Yallop et al. 1994). This sediment 

stabilizing of the microphytobenthos, will also be influenced by the abundance of 

predators grazing these algae. However, in cohesive sediments, high algal biomass may 

be the most critical factor, in contrast to any negating grazer effects (Austen et al. 1999).

Chapman et al. (2010) emphasized that several levels of environmental factors 

impact the presence and composition of the microphytobenthic community. These 

conditions may initiate a response directly or indirectly, even at extremely small response 

levels. Results of small-scale studies should not be extrapolated to represent large scale 

patterns. However, small-scale variations are often real responses to the habitat at the 

micro-scale level, and should not be relegated as simply noise (Chapman et al. 2010). 

There are a number of conditions interacting to influence the estuarine microphytobenthic 

communities, with perhaps even more complex relationships in intertidal zones. The most 

important factor(s) may be difficult to decipher, as the strength of each of these variables 

and their effects may vary from habitat to habitat. Continued investigations of 

microphytobenthic communities, their diversity, biomass, abundances, and productivity, 

along with their spatial and temporal dynamics will provide further insight into the 

environmental variables that drive these populations, and the functional roles they play in 

coastal wetland habitats.



16

Objectives

This broad scale analysis regarding the microphytobenthos was focused on 

expanding the current knowledge and importance of this unique community in the 

shallow bottom sediment of estuarine habitats, and to provide additional information 

regarding its role as a primary producer in the Chesapeake Bay ecosystem. Emphasis 

was placed on the algal constituents within the various estuarine and sediment habitats of 

Chesapeake Bay. This study emphasized the following objectives: 1) identify and 

quantify the seasonal microphytobenthic algal species composition, 2) provide 

information regarding their biomass and community composition, 3) determine seasonal 

primary productive rates from both this community and the phytoplankton within the 

water column for comparisons, 4) describe seasonal and spatial trends regarding the 

benthic micro-algal abundance, biomass, community composition, and primary 

productivity, and 5) examine the conditions which shape these micro-algal communities.
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CHAPTER II 

METHODS 

Study Sites

Eight study sites were located in the lower Chesapeake Bay estuarine system from 

the Maryland/Virginia border on the Delmarva Peninsula to the Chesapeake Bay 

entrance, then extending west from Hampton Roads, north along the western shoreline of 

the Bay, ending in the Great Wicomico River, south of the Potomac River (Fig. 1). A 

major impediment to site selection was the limited direct public access to the Bay’s 

shoreline. Thus, several sites located in a tributary or embayment, flowing into, adjacent, 

or otherwise directly connected to the Chesapeake Bay were included in this study. They 

were exposed to meso- or polyhaline tidal waters of the lower Bay, including their 

indigenous pelagic and benthic algal flora. These locations represent a broad and diverse 

geographic area that includes the dominant and characteristic shoreline habitats in lower 

Chesapeake Bay along with the associated habitat sites at the mouths of the various 

creeks and rivers bordering the Bay. For sites not directly along the Bay shoreline, the 

average distance from Chesapeake Bay proper is 2.7 km, with the Lafayette River site the 

furthest at 14.5 km upstream. These sites were considered representative of the intertidal 

benthic habitats within the lower Chesapeake Bay regarding their substrate, accessibility, 

and adjacent wetlands.

The collection sites will be referred to as: 1) “Saxis” - Saxis Wildlife 

Management Area, Saxis, VA, 2) “Harborton” - Pungoteague Creek, Harborton, VA, 3) 

“Cape Charles” - Old Plantation Creek, Cape Charles, VA, 4) “Lynnhaven” - Lynnhaven
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Inlet, Virginia Beach, VA, 5) “Lafayette” - Lafayette River, Norfolk, VA, 6) “Hampton”

- Back River, Hampton, VA 7) “New Point Comfort” -  New Point Comfort Natural Area 

Preserve, Mathews County, VA, and 8) “Great Wicomico” -  Cranes Creek, 

Northumberland County, VA.

Site descriptions

1). Saxis (37° 54’ 19.09” N, 75° 41’ 02.23” W) -  the northernmost site on the eastern 

shore is located within the Saxis Wildlife Management Area in Accomack County, VA. 

Managed by the Virginia Department of Game and Inland Fisheries, this area is 

comprised of ca. 26 km2 of predominantly tidal wetland (tidal range 0.7 m), with higher 

hummocky areas inland. The sample site is along a small tidal gut flowing south into 

Messongo Creek, with muddy sediments dominated by Spartina alterniflora, S. patens, 

and Juncus roemerianus.

2). Harborton (37° 39’ 58.32” N, 75° 49’ 50.23” W) -  located within Pungoteague Creek 

in the town of Harborton, Accomack County, VA. The location is adjacent to the 

Harborton public boat ramp (tidal range 0.5 m), and is comprised of sandy sediments, 

with a thin line of vegetation (S. alterniflora, Iva frutescens) separating the shoreline 

from a gravel parking lot.
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Fig. 1 Sampling sites located in the lower Chesapeake Bay, January 2010 -  December 
2011. 1) Saxis, 2) Harborton, 3) Cape Charles, 4) Lynnhaven, 5) Lafayette, 6) Hampton, 
7) New Point Comfort, and 8) Great Wicomico.
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3). Cape Charles (37° 14’ 9.79” N, 76° 00’ 33.42” W) -  the southernmost site on the 

Delmarva Peninsula, is located on the property of Bay Creek Resort and Club, Cape 

Charles, Northampton County, VA. This is an un-vegetated muddy sediment (tidal range 

0.7 m) on the backside of a sand spit within Old Plantation Creek. While the sampling 

area is un-vegetated, the immediate area surrounding the site is heavily vegetated with S. 

alterniflora, S. patens, I. frutescens, and Baccharis halimifolia along with a variety of 

other wetland and upland vegetation.

4). Lynnhaven (36° 54’ 28.17” N, 76° 05’ 37.08” W) -  located directly on the southern 

shore of Chesapeake Bay, at the mouth of the Lynnhaven Inlet (tidal range 0.7), west of 

the Lesner Bridge, Virginia Beach, VA. This site is characterized as a high-energy, un- 

vegetated, coarse, sandy sediment, with heavy human impact, in terms of foot traffic, 

particularly during the summer months. This habitat is also subject to extreme turbulence 

from wind driven waves and boat wakes, as well as tidal currents.

5). Lafayette (36° 53’ 25.67” N, 76° 17’ 55.43” W) -  the furthest upstream (14.5 km) of 

all sites sampled, this area is located within Colley Bay, a heavily developed urban tidal 

embayment of the Lafayette River, Norfolk, VA. The specific sampling location is 

between a recently restored tidal wetland (tidal range 0.8 m), and a small channel leading 

from a storm water culvert to a large mudflat. The area is characterized by both naturally- 

occurring and planted S. alterniflora and S. patens, as well as other planted upland 

vegetation (/. frutescens, Panicum virgatum). Additionally, a large portion of the 

shoreline in this area is comprised of concrete and asphalt rip-rap, along with fallen trees 

as a result of erosion via sheet flow from a landward athletic field. All sampling at this 

site was conducted outside of, but adjacent to the restored wetland area.
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6). Hampton (37° 05’ 41.71” N, 76° 17’ 37.62” W) -  located adjacent to the Dandy Point 

public boat ramp, Hampton, VA. The sampling site consists of muddy sediment within a 

heavily vegetated S. alterniflora marsh (tidal range 0.7 m) at the bottom of a steep 

embankment, and subject to runoff from a landward asphalt parking lot. A variety of 

mixed vegetation separates the shoreline from the parking area, including I. frutescens, 

and Phragmites australis.

7). New Point Comfort (37° 19’ 12.62” N, 76° 16’ 54.77” N) -  located on the eastern 

shore of Mobjack Bay, within the New Point Comfort Natural Area Preserve, Mathews 

County, VA. This site is a pristine mixed -S. alterniflora!S. patens marsh (tidal range 0.7 

m), with a predominantly fine grained sand and clay sediment.

8). Great Wicomico (37° 49’ 02.47” N, 76° 19’ 39.25” W) -  located on private property 

in Cranes Creek, a tidal creek to the south of the Great Wicomico River, Northumberland 

County, VA. This site (tidal range 0.4 m) consists of muddy shoreline with fibrous 

sediments, sheltered from wind and wave action, bordered landward by a thin band of S. 

alterniflora, abruptly transitioning to a regularly mowed lawn.

Benthic fauna frequently observed on, or in the immediate vicinity of most sites 

included the ribbed mussel (Geukensia demissa), Virginia oyster (Crassostrea virginica), 

marsh periwinkle (Littorina irrorata), eastern mudsnail (Ilyanassa 21iatom a), Atlantic 

blue crab (Callinectes sapidus), Atlantic ghost crab (Ocypode quadrata), fiddler crab 

ifJca sp.), hermit crab (Pagurus sp.), and barnacle (Balanus sp.), along with a variety of 

other benthic infaunal organisms. Additionally, an assortment of transient and resident 

shorebirds and wading birds were present at these sites throughout the sampling period,
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and on occasion, the northern raccoon (Procyon lotor) and white-tailed deer (Odocoileus 

virginianus) tracks were observed, as well as sightings of muskrat (Ondatra zibethicus) 

and nutria (Myocastor coypus).

Sampling frequency

During a 2-year period (January 2010 -  December 2011), sites were sampled 5 

times annually. The 5 sampling periods were separated seasonally as: winter (January -  

February), spring (March -  April), summer (2 collections, June -  July, August -  

September), and autumn (October -  December). Seasonal months for collections were 

based according to their average water temperatures from Murray and Wetzel (1987). All 

samples were taken during low tide/emersion during daylight hours.

Benthic algae are also known to migrate in response to light stimulus, as well as 

migration related to diel and tidal cycles (Thornton et al 2002). Sampling any less than 1 

cm in coarse sandy sediments would exclude a large portion of the active 

microphytobenthic community (Skinner et al. 2006). In finer sediments, the photic zone 

is often limited to depths of 2.5 -  5.0 mm (Rizzo et al 1996). Based on preliminary 

sampling and that the majority of sites sampled were characterized by finer sands and 

silts, 0.5 cm cores were taken to collect all algae biomass present, including the migratory 

fraction.
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Field sampling

At each site, 10 replicate cores (3.0 cm i.d.) were collected randomly within a 1 

m quadrat placed in the mid-intertidal zone devoid of macrophytes with Tenite™ plastic 

tubing, then capped at the bottom, and transported in the dark and on ice in a cooler to the 

campus laboratory. Quadrats were located away from vegetation stands, as seasonal 

changes in aboveground plant biomass create dynamic light regimes at the marsh surface 

(Pinckney and Zingmark 1993). Plant detritus on the sample’s sediment surface was 

discarded. Sediment cores were taken to a depth of 0.5 cm after preliminary sampling 

revealed no indication of microalgal biomass below this depth in most sediments. While a 

surface scrape may have been sufficient at the stations characterized by fine-grained 

cohesive sediments, areas with high wave action and sediment scour often displace algal 

cells to depths several centimeters below the surface. In this study, even at the most 

turbulent station (Lynnhaven), little or no algal biomass was found below a 0.5 cm depth. 

In order to avoid any bias regarding benthic microalgal biomass variation along an 

elevation gradient within the intertidal zone (Austen et al. 1999), all cores were taken in 

the mid-intertidal, roughly half the distance between the high and low tide lines, based on 

personal observation. At the time of sediment sampling, 0.5 L whole water surface (< 1.0 

m) samples were also collected in polyethylene bottles, sub-tidally in areas adjacent to 

the sediment sampling sites, (e.g. below mean low water, MLW), and brought to the 

laboratory on ice in the dark. Light (PAR) measurements at the sediment surface were 

recorded with a Quantum MQ-200 light meter (Apogee Instruments Inc.) and 

meteorological conditions were noted on site. Water and sediment temperatures were 

measured with a long stem hand-held thermometer, while water column and sediment
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pore-water salinity were determined with water placed in a hand-held refractometer 

(Fisher Scientific). Sediment grain size was analyzed for every benthic collection (n = 78) 

via the same coring method used for taxonomic and productivity analyses. Grain size 

measurements were carried out using a Malvern Mastersizer laser particle analyzer.

Phytoplankton and Sediment Community Analysis

Water column samples for taxonomic analysis were processed by a modified 

Utermohl protocol (Marshall et al. 2006). Upon arrival in the laboratory, replicate water 

samples (500 ml) were fixed with Lugol’s solution, and pooled to create a composite 

sample, and processed through a series of settling and siphoning steps to produce a 30 -  

40 ml concentrated phytoplankton sample. The concentrate was then settled via serial 

dilution into a settling chamber and examined with an inverted light microscope (Nikon 

Eclipse TS100) for algal species composition and abundance.

Sediment algal samples were sectioned to a depth of 0.5 cm (core area: 7.065 

cm ), ensuring that the sediment surface was perpendicular to the long axis of the cores to 

minimize unevenness in the thickness of the surficial 0.5 cm. Two 0.5 cm subsections 

were pooled together, fixed with Lugol’s solution, and diluted to 500 ml with filtered 

water from each site. From this volume, a known volume was placed in a settling 

chamber, and examined with an inverted light microscope (Nikon Eclipse TS100) for 

species composition and abundance.

Microalgae from both the water column and sediment were counted using a 

minimum-count basis of 200 cells and 10 random fields at 315X to determine dominant
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taxa, after which, the entire settling chamber surface was scanned at 125X for net 

microalgal abundance. Algal taxa were identified to the generic level, and when possible, 

to species. Microalgal biomass both in the water column and the sediment was calculated 

based on a carbon content per bio-volume estimate according to Smayda (1978).

Sediment Grain-Size Analysis

A superficial 0.5 cm slice of sediment core from each site was also examined for 

sediment grain size analysis during each sampling period at every site. Sediment cores for 

grain size analysis were processed following the protocol of Folk (1980). Initially, 

sediment core slices were dried at 100°C for 24 hrs to remove all water from the samples. 

Samples were weighed to obtain dry weight and combusted at 550°C for 6 hrs in a muffle 

furnace (Jesus et al. 2009). Granulometric analysis was completed via laser analysis in a 

Malvern Mastersizer 2000 (Malvern Instruments Ltd.). Statistics of grain size distribution 

were calculated according to Folk (1980). Sediments were categorized according to mean 

grain size (Wentworth 1922) and placed into the following classes: coarse silt or silts and 

clays (<63 pm), very fine sands (63 -  125 pm), fine sands (125 -  250 pm), medium sands 

(250 -  500 pm), and coarse sands (>500 pm).
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Primary Productivity

The protocol described below has been the standard method for determination of 

Chesapeake Bay phytoplankton primary productivity since 1989 (Marshall and Nesius 

1996). This protocol involves exposing the organisms of interest (sediment and water 

column microalgae) to inorganic radio-labeled carbon (14C) which is then taken up by the 

microalgae during incubation and incorporated in their biomass, which can then be 

quantified using a scintillation counter (Beckman LSI701).

While there is no current standard method in place for the measurement of 

microphytobenthic primary production, there are several widely used methods. Two 

common approaches are the oxygen microelectrode method (Revsbech and Jorgensen 

1983) and the l4C uptake method (Strickland and Parsons 1972), with the latter having 

several variations. The 14C uptake/slurry method chosen for the measurement of 

microphytobenthic primary productivity in this study was based primarily on logistical 

constraints. Unlike intact sediment cores, the slurry method allows the radioisotope to 

evenly reach all layers of sediment and microalgae within those layers (Jonsson 1991, 

Underwood and Kromkamp 1999, Cibic et al. 2008). Additionally, depending on the 

consistency of the sediments being sampled, obtaining and maintaining a complete intact 

sediment core may not be possible. One drawback of the slurry method is that it destroys 

existing microgradients at the sediment surface, which may affect algal photosynthetic 

rates, in addition to exposing microalgae from deeper layers to the same light regimes as 

microalgae at the sediment surface. Therefore, this method measures the rate of potential 

primary production (Underwood and Kromkamp 1999).
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Cores were sectioned to 0.5 cm depth, obtaining a 3 ml volume equivalent, and 

diluted to 100 ml in filtered seawater from each corresponding site. Each dilution was 

sub-sampled (2.0 ml) and re-suspended up to 100 ml with filtered seawater from each site 

following a modified protocol from Cibic et al. (2008). Sediment samples were placed in 

250 ml acid-washed milk-dilution bottles inoculated with 50 pi NaH14C03 and incubated 

at saturated light conditions for ca. 2 hr.

Similar to the sediment samples, water column samples were inoculated with 50 

pi NaH14CC>3 and incubated simultaneously with sediment samples, with incubator water 

temperature maintained at the same temperature as that recorded at the collection site. 

Light intensity in the incubator was kept constant at 500 pE, which is sufficient for near 

maximum potential for autotrophy (Rizzo et al. 1996).

For both sediment and water column samples, triplicate light and duplicate dark 

samples were incubated, along with a time-zero 14C-incorporation control. After 

incubation, 15 ml subsamples of each sample were filtered through a 0.45 p Millipore 

filter. Filtered samples were then fumed over HC1 for 24 hr and added to 7 ml 

scintillation cocktail (Scintisafe). Samples were analyzed on a Beckman LSI701 liquid 

scintillation counter along with 14C standards to determine reactivity of the isotope added 

to each sample. Sample alkalinity was measured via standard titration methods (Palmer 

1992) to calculate the amount of inorganic carbon present at each sampling site. Carbon 

fixation rates for the water column were determined according to Strickland and Parsons 

(1972) using the following formula:
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(Rs - R b) x  A x  Ft x  1 .0 5  

R x  N

Where:

R s = counting rate of sample 
Rb = counting rate of blank 
A = total carbonate alkalinity
Ft = approximated to 0.95; coverts carbonate alkalinity to total carbon dioxide 
1.05 = isotope coefficient, since uptake of l4C is 5% lower than the uptake of l2C 
R = reactivity of l4C 
N = incubation time (hr)

Rates for the sediment community, expressed as a rate per area (mg C m'2 hr'1) were 

calculated following a modified equation from Cibic et al. (2008):

C02 x  * 0 . 0 0 1 )  x  DPMl„d x K l  x  1 .0 5  

DPM ( 5 7 )  X T  x  7 .0 6 5  x  1 0 ~ 4

Where:

CO2 = alkalinity of the overlying water used to suspend the sediment 
15/100 = the filtered volume from the 100 ml incubated
3.4 = coverts volume of incubation bottle from ml to L
DPMl-d = average disintegrations per minute (3 light minus 2 dark)
K1 = 1416, the dilution factor derived from all dilutions of initial core
1.05 = isotope coefficient, since uptake of 14C is 5% lower than the uptake of 12C 
DPM (ST) = activity of the 14C standard solution
T = incubation time (hr)
7.065 = core area in cm2 
1 O'4 = converts cm2 of the core area into m2

Statistical Analyses

Variability of productivity rates, both temporally (within stations) and spatially 

(between stations) was tested using an analysis of variance (ANOVA) series using IBM
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SPSS version 20. Variability of community structure, both temporally and spatially was 

tested using ordination analysis. Ordination analyses were used to determine the effects 

of multiple environmental factors (temperature, salinity, grain size (sediment samples 

only) controlling the variability of both primary productivity and community structure. 

Non-metric multidimensional scaling (NMS) was carried out using PC-ORD version 5.33 

on the “slow and thorough” autopilot mode, using a Bray-Curtis distance matrix.
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CHAPTER III 

RESULTS -  COMMUNITY COMPOSITION, ABUNDANCE, AND 

BIOMASS

This study included a total of 78 collection events, with both the phytoplankton 

and microphytobenthos sampled during each collection event. Two stations (Cape 

Charles and Great Wicomico) were not collected during 2010 winter due to adverse 

weather restrictions. Twice yearly summer collections were averaged to create a 

composite summer season at each station. Initial analysis of all data collected indicated 

significant differences between habitats with the phytoplankton and microphytobenthos 

differing across all attributes. The phytoplankton community had significantly higher 

species richness (p = 0.024) and primary productivity rates (p = 0.004), however, total 

abundance (p < 0.0001), biomass (p = 0.005), and the Shannon Index of diversity (p < 

0.0001) were significantly higher in the benthos. As such, further analyses treated each 

habitat as separate data sets. In instances where significant differences were found within 

each habitat, Tukey post-hoc tests were performed to identify significant differences 

among stations. Among all phytoplankton collections, no significant differences were 

observed for any of the measured parameters (Table 1). Conversely, among the 

microphytobenthos, significant differences were recorded for all parameters except 

species richness (Table 2). In several instances, primary productivity measurements were 

discarded, as control experiments revealed abnormally low reactivity of stock solutions, 

and considering the sensitivity of the method, these rates were deemed inaccurate.
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Table 1 Summary of analysis of variance tests of phytoplankton parameters across all 
stations.

Df f P
Abundance 7 1.505 0.186
Biomass 7 1.056 0.404
Productivity 7 1.371 0.243
Species Richness 7 2.014 0.070
Shannon Index 7 0.552 0.791

Table 2 Summary of analysis of variance tests of microphytobenthic parameters across 
all stations. * indicates significance at the p < 0.05 level._________ ________________

Df f P
Abundance 7 3.151 0.007*
Biomass 7 2.434 0.030*
Productivity 7 5.411 0.000*
Species Richness 7 1.996 0.072
Shannon Index 7 6.578 0.000*
Phi value 7 15.802 0.000*
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Community Composition

Over the 2-year study, a total of 142 taxa were identified (Table 3). These 

included 124 taxa in the phytoplankton, with 64 diatoms representing 52% of the taxa, 

dinoflagellates 17%, chlorophytes 11%, and cyanobacteria 10%. Other taxa present 

included charophytes, cryptophytes, chrysophytes, euglenophytes, haptophytes, and 

ochrophytes. The microphytobenthic communities were represented by 95 taxa and were 

similarly dominated by diatoms (61%), followed by cyanobacteria (18%), and 

chlorophytes (8%), with other groups less common and rarely present.

Species richness was significantly higher in the phytoplankton than in the benthos 

(p = 0.024) throughout the duration of the study (Fig. 2), with a broad range of species 

present across both habitats (Tables 4 and 5). The phytoplankton species richness 

averaged 33 and ranged from a high of 47 (Lynnhaven, winter 2011), to a low of 20 

(Great Wicomico spring 2011). Among the microphytobenthos, species richness 

averaged 22 and ranged from 41 (Harborton, winter 2010) to its lowest of 7 (New Point 

Comfort, winter 2011). Conversely, the Shannon Index of diversity (Hf) (Fig. 3) was 

significantly higher in the benthos than in the phytoplankton (p = 0.000). Shannon indices 

in the phytoplankton (avg. 1.67) ranged from a high of 2.29 (Lynnhaven, spring 2010) to 

a low of 0.36 (Great Wicomico, fall 2011). In the benthos, H' (avg. 2.39) ranged from 

3.57 (Lafayette, winter 2010) to 0.64 (Lynnhaven, winter 2011), and differed 

significantly across all stations sampled (p < 0.0001).



Table 3 Species inventory of taxa identified in the phytoplankton and benthos.
Phytoplankton Benthos

Bacillariophyta
Amphiprora sp. X X
Amphora sp. X X
Asterionellaformosa X
Asterionellopsis glacial is X X
Aulacoseira granulata X X
Aulacoseira sp. X X
Bacillaria paxillifer X X
Cerataulina pelagica X X
Chaetoceros neogracilis X
Chaetoceros pendulus X
Chaetoceros sp. X X
Chaetoceros subtilis X X
Cocconeis sp. X X
Corethron sp. X X
Coscinodiscus sp. X X
Cyclotella spp. X X
Cyclotella striata X X
Cylindrotheca closterium X X
Cymbella sp. X X
Dactyliosolen fragilissimus X X
Delphineis surirella X
33iatom asp. X X
Diploneis sp. X X
Ditylum brightwellii X X
Eucampia zodiacus X
Eunotia sp. X X
Fragilaria sp. X X
Gomphonema sp. X
Grammatophora sp. X X
Guinardia delicatula X X
Guinardiaflaccida X
Gyrosigma balticum X X
Gyrosigma fasciola X X
Gyrosigma sp. X X
Hemiaulus hauckii X X
Hemiaulus sp. X X
Leptocylindrus danicus X
Leptocylindrus minimus X
Licmophora sp. X X
Melosira moniliformis X X
Melosira varians X
Navicula sp. X X
Nitzschia sp. X X
Odontella mobiliensis X
Odontella rhombus f. trigona X



Table 3 Continued
Phytoplankton Benthos

Bacillariophyta
Odontella sinensis X X
Odontella sp. X X
Paralia sulcata X X
Pinnularia sp. X X
Plagiogramma sp. X X
Pleurosigma angulatum X
Pleurosigma sp. X X
Proboscla alata X X
Pseudo-nitzschia pungens X
Pseudo-nitzschia seriata X X
Rhaphoneis amphiceros X X
Rhaphoneis sp. X X
Rhizosolenia imbricata X
Rhizosolenia setigera X X
Rhizosolenia sp. X
Rhizosolenia styliformis X
Skeletonema costatum X X
Skeletonema potamos X
Stephanopyxis palmeriana X
Striatella sp. X X
Surirella sp. X X
Synedra sp. X X
Tabellaria sp. X
Thalassionema nitzschioides X X
Thalassiorsira leptopus X
Thalassiosira sp. X
Triceratium sp. X X

Charophyta
Cosmarium sp. X
Desmidium sp. X
Spirogyra sp. X X
Staurastrum sp. X

Chlorophyta
Ankistrodesmus falcatus X X
Ankistrodesmus falcatus var. 
mirabilis

X

Chlamydomonas sp. X
Crucigenia irregularis X
Crucigenia sp. X
Crucigenia tetrapedia X
Dictyosphaerium sp. X
Dimorphococcus lunatus X
Oocystis sp. X
Pandorina sp. X



Table 3 Continued
Phytoplankton Benthos

Chlorophyta
Pediastrum duplex X
Pediastrum duplex gracilimum X
Pyramimonas sp. X X
Scenedesmus acuminatus X
Scenedesmus dimorphus X
Scenedesmus quadricauda X X
Tetraedron sp. X
Ulothrix sp. X X

Cryptophyta
Cryptomonas erosa X X
Cryptomonas sp. X X

Chrysophyta
Ebria tripartita X X

Cyanobacteria
Anabaena sp. X X
Aphanocapsa sp. X
Aphanothece gelatinosa X
Aphanothece sp. X
Chroococcus dispersus X
Chroococcus sp. X X
Chroococcusturgidus X
Dactylococcopsis raphidioides X X
Dactylococcopsis sp. X
Lyngbya aestuarii X X
Lyngbya sp. X
Merismopedia elegans X X
Merismopedia tenuissima X X
Microcystis incerta X X
Phormidium sp. X X
Pseudanabaena sp. X X
Spirulina sp. X X

Dinophyta
Amphidinium sp. X
Ceratium furca X
Ceratium fusus X
Ceratium schroeteri X
Cochlodinium heterolobatum X
Dinophysis sp. X
Diplopsalis lenticula X
Gonyaulax sp. X
Gymnodinium sp. X X
Gyrodinium aureolum X



Table 3 Continued
Phytoplankton Benthos

Dinophyta
Gyrodinium sp. X X
Heterocapsa triquetra X
Katodinium rotundatum X
Polykrikos kofoidii X
Prorocentrum gracile X
Prorocentrum micans X X
Prorocentrum minimum X X
Prorocentrum triestinum X
Protoperidinium mite X
Protoperidinium sp. X
Scrippsiella trochoidea X X

Euglenophyta
Euglena acus X
Euglena elastic X X
Euglena proximo X
Euglena sp. X X

Haptophyta
Rhabdosphaera hispida X

Ochrophyta
Dictyocha fibula X X
Synura uvella X X

El p h y to p la n k to n  

B  b e n t h o s

w in t e r s u m m e rsp r in g

Fig. 2 Two-year average species richness in phytoplankton and benthic samples.



Table 4 Phytoplankton diversity indices for each year and season of study. SR = species richness, H' = Shannon Index, NC = not collected. 
Stations denoted as: SXS = Saxis, HARB = Harborton, CC = Cape Charles, LYNN = Lynnhaven, LAF = Lafayette, HAMP = Hampton, NPC = 
New Point Comfort, GWR = Great Wicomico._______________________________________________________ _

2010 2011

Winter Spring Summer Fall Winter Spring Summer Fall
SXS 42; 0.41 34; 1.64 35; 1.58 40; 2.03 33; 1.44 31; 1.90 30; 1.62 30; 1.86
HARB 33; 0.79 38; 2.12 33; 1.63 30; 2.05 38; 1.91 26; 1.88 27; 1.41 35; 2.19
CC NC 27; 2.14 37; 1.88 46; 1.64 29; 1.69 31; 1.58 37; 1.88 42; 2.25
LYNN 37; 1.30 37; 2.29 41; 1.81 43; 1.71 47; 1.87 34; 1.21 33; 1.23 37; 2.09
LAF 33; 0.60 27; 1.93 29; 1.93 30; 1.82 30; 0.85 30; 1.85 23; 1.59 27; 1.74
HAMP 41; 1.79 28; 2.13 33; 1.30 31; 1.75 46; 1.94 25; 1.17 28; 1.39 31; 1.96
NPC 37; 1.42 25; 1.72 36; 1.98 36; 2.12 23; 1.60 35; 1.50 33; 1.67 33; 2.02
GWR NC 25; 2.00 32; 1.95 32; 1.96 29; 2.06 20; 1.17 32; 1.23 21; 0.36

Table 5 Microphytobenthos diversity indices for each year and season o f  study. SR = species richness, H' = Shannon Index, NC = not collected. 
Stations denoted as: SXS = Saxis, HARB = Harborton, CC = Cape Charles, LYNN = Lynnhaven, LAF = Lafayette, HAMP = Hampton, NPC = 
New Point Comfort, GWR = Great Wicomico._________________________________________________________

2010 2011

Winter Spring Summer Fall Winter Spring Summer Fall
SXS 30; 2.98 22; 2.83 21; 1.75 25; 3.26 21; 2.53 19; 2.13 18; 2.30 22; 2.53

HARB 41; 2.74 22; 1.95 29; 2.34 23; 0.77 22; 1.74 19; 0.81 23; 1.05 22; 1.50
CC NC 25; 2.45 23; 2.85 24; 1.38 23; 2.68 26; 2.64 22; 2.50 25; 2.96

LYNN 23; 2.43 25; 2.86 18; 2.16 19; 2.60 15; 0.64 16; 1.59 16; 2.08 19; 0.90
LAF 33; 3.57 25; 3.17 24; 2.46 21; 2.31 29; 3.32 16; 2.47 19; 2.53 24; 3.02

HAMP 35; 3.55 29; 2.92 28; 3.11 22; 2.72 18; 2.54 23; 2.32 21; 2.73 23; 2.63
NPC 11; 1.84 25; 2.60 22; 2.57 18; 2.45 7; 1.60 13; 1.56 19; 1.74 13; 1.44
GWR NC 21; 3.27 31; 3.43 25; 2.56 27; 3.49 14; 2.41 20; 2.80 25; 3.16
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El p h y to p la n k to n  

□  b e n t h o s

w in t e r sp r in g s u m m e r

Fig. 3 Two-year average of Shannon Index of biodiversity in phytoplankton and benthic 
samples.
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Seasonal trends in composition and biomass were apparent throughout the study 

in both habitats. The phytoplankton community was dominated by diatoms in winter and 

early spring, with dinoflagellates co-dominating with diatoms from late spring throughout 

summer and early fall, before returning to a winter, diatom-rich community (Figs. 4, 5). 

The micophytobenthos followed a similar pattern of seasonality, with these habitats 

comprised of diatoms throughout winter and spring, with a gradual shift to a mixed 

community of diatoms, cyanobacteria, and chlorophytes during late spring and early 

summer, before returning to mainly a fall/winter diatom population (Figs. 6, 7). These 

trends were apparent in both cell abundance and biomass for both phytoplankton and 

microphytobenthic communities.
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Fig. 4 Two-year average phytoplankton abundance (cells/ml) across all stations.
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Fig. 6 Two-year average microphytobenthos abundance (cells/cm ) across all stations.
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Phytoplankton Abundance

Phytoplankton Abundance - 2010

Total phytoplankton cell abundance was highest during the 2010 winter (Fig. 8), 

with cell densities at all stations > 104 cells/ml, with a peak density (> 7.0 X 104 cells/ml) 

at the Saxis station, which was mainly composed of dense concentrations of the centric 

diatom Skeletonema costatum (> 6.5 X 104 cells/ml). Diatoms dominated cell abundances 

at all stations during 2010. Densities dropped in the 2010 spring (Fig. 9), with all 

concentrations < 7.0 X 103 cells/ml at each station, and were again highest at the Saxis 

station (> 6.0 X 103 cells/ml). The cyanobacteria and dinoflagellates were present at all 

stations. Cell abundances increased during the 2010 summer (Fig. 10), but did not attain 

densities noted in winter. Diatoms, along with filamentous cyanobacteria composed the 

majority of algal taxa. Fall densities mirrored those in the spring (103-  4.0 X 103 

cells/ml), with an assemblage of diatoms, cyanobacteria, and cryptophytes representing 

the dominant algae present (Fig. 11). Prominent algal taxa throughout the 2010 sampling 

period included the diatoms S. costatum, Cerataulina pelagica, Cylindrotheca closterium, 

and Chaetoceros sp., plus the dinoflagellate Gonyaulax sp., cryptomonad Cryptomonas 

sp., and cyanobacteria Pseudanabaena sp.
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Fig. 8 Phytoplankton abundance for winter 2010. Cape Charles and Great Wicomico not 
collected due to weather.

7 .0 0 0

6.000

5 .0 0 0  

E 4 ,0 0 0
JA
g  3 ,0 0 0

2.000 

1,000

0

^  4 ?<? <sc°
J '  ^  cr  „$■

\?X*'
x°

□  O th e r s

□  D in o p h y ta

■  C y a n o b a c te r ia  

0  C ry p to p h y ta  

11 C h lo ro p h y ta

□  B acillia rio p h y ta

Fig. 9 Phytoplankton abundance for spring 2010.



44

12,000

10,000

8,000

v> 6 ,0 0 0

I
4 ,0 0 0

2,000  -

ID O th e rs  

ES D in o p h y ta  

■  C y a n o b a c te r ia  

H  C ry p to p h y ta  

O  C h lo ro p h y ta  

□  B acillia rio p h y ta
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Fig. 11 Phytoplankton abundance for fall 2010.
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Phytoplankton Abundance -  2011

Microalgal abundances in 2011 followed similar trends as those the previous year. 

In winter, cell densities ranged from 1.0 X 103 -  1.4 X 104 cells/ml (Fig. 12), with the 

diatom S. costatum again dominant. Spring densities regressed, with all but one station 

(Saxis) having cell abundances < 4.0 X 103 cells/ml (Fig. 13). Taxonomic composition 

was generally split between diatoms and cyanobacteria during spring, with the diatoms 

S.costatum and C. closterium, and cyanobacteria Pseudanabaena sp. and Merismopedia 

elegans being dominant. In the 2011 summer there was an increase of phytoplankton cell 

densities, though no station had densities > than 1.0 X 104 cells/ml (Fig. 14). The diatom 

C. closterium was in high densities at every station during the 2011 summer, with the 

highest density at the Hampton site (> 7.0 X 103 cells/ml). In general, diatoms and 

filamentous cyanobacteria dominated cell abundances at every station during the 

summer. Fall cell densities exhibited a similar pattern in 2011 (as those in 2010), with 

abundances between 103 and 5.0 X 103 cell/ml (Fig. 15), except for high numbers at 

Great Wicomico (> 1.3 X 104 cells/ml) and Saxis (> 1.8 X 104 cells/ml), that were driven 

by high densities of C. closterium and several pennate diatoms, respectively.
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Fig. 12 Phytoplankton abundance for winter 2011.
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Fig. 13 Phytoplankton abundance for spring 2011.
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Phytoplankton Biomass

Phytoplankton Biomass - 2010

The 2010 phytoplankton biomass values for winter ranged from 0.6 -  3.3 ug 

C/ml, and consisted mainly of diatoms, which were the dominant flora during this 

sampling period (Fig. 16). In spring there was a shift in biomass, produced by a diatom- 

dominated flora, to that of dinoflagellates, with these taxa almost doubling the biomass of 

diatoms across all stations (Fig. 17). The dinoflagellate biomass was highest in the 

Lafayette (2.08 ug C/ml), where Gymnodinium sp. and Gonyaulax sp. were the dominant 

taxa, and in the Great Wicomico site (1.12 ug C/ml), where high Gyrodinium sp., 

Gymnodinium sp., and Scrippsiella trochoidea were present. The summer of 2010 had 

similar distributions of diatom and dinoflagellate biomass across all stations (Fig. 18). 

New Point Comfort contained the highest dinoflagellate biomass (2.10 ug C/ml) during 

this sampling period, with the Lafayette having values (1.21 ug C/ml) also high, and 

likely the result of a Cochlodinium polykrikoides bloom in August of that year. The fall 

had similar patterns of algal biomass with the winter (Fig. 19) dominated by diatoms, but 

these values were lower at most stations < 0.5 ug C/ml).
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Phytoplankton Biomass -  2011

High microalgal diatom biomass during the 2011 winter was similar to the 

previous year, except for two stations (Lafayette and Great Wicomico) that had high 

dinoflagellate biomass of 0.48 ug C/ml and 0.39 ug C/ml respectively (Fig. 20). These 

high dinoflagellate values came from the same taxa present during the winter and spring 

of 2010. These were Gymnodinium sp., and S. trochoidea, plus Gyrodinium aureolum. 

The spring biomass values were below 0.5 ug C/ml at most stations (Fig. 21) that were 

dominated by diatom biomass, except for high concentrations of the dinoflagellates 

Gymnodinium sp. and Heterocapsa rotundatum at the Lafayette site. The 2011 summer 

had a slight increase in overall biomass, though most stations had values below 1.0 ug 

C/ml including several stations < 0.5 ug C/ml (Fig. 22). Diatoms continued to constitute 

the majority of the biomass at all stations, except for New Point Comfort, which had 

elevated dinoflagellate biomass (1.85 ug C/ml) due to the increased Gonyaulax sp. 

concentrations. Fall 2011 exhibited a broad range of biomass values, from 0.1 ug C/ml in 

the Lafayette, to 2.6 ug C/ml at Saxis (Fig. 23). Diatoms again composed the majority of 

the biomass at all stations except Cape Charles, which had increased densities and 

biomass of the dinoflagellates Gymnodinium sp., Prorocentrum minimum, and 

Heterocapsa triquetra.
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Fig. 21 Phytoplankton biomass for spring 2011.
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Microphytobenthic Abundance

Microphytobenthic Abundance - 2010

Across all stations during both sampling years, the benthic microalgal abundance 

was significantly higher (p < 0.0001) than the pelagic phytoplankton abundance. The cell 

densities were generally in the 1.0 X 105 cells/cm3 range and frequently eclipsing 106 

cells/cm3, whereas phytoplankton densities were generally below 5.0 X 103 cells/ml. In 

the winter of 2010, the benthic cell abundance was mainly comprised of diatoms except 

at one station (Harborton) where cell densities > 106 cells/cm3 of the cyanobacteria 

Phormidium sp. were present (Fig. 24). In spring, the benthos remained dominated by 

diatoms (Fig. 25), though increasing numbers of cyanobacteria were present, namely 

Anabaena sp., Aphanocapsa sp., and Lyngbya aestuarii. The diatoms Fragilaria sp., 

Gyrosigma sp., Navicula sp., and Melosira moniliformis were most abundant at all 

stations during spring 2010. During the 2010 summer, algal densities increased (Fig. 26) 

with all but two stations having counts over 106 cells/cm3. These algae were dominated 

by cyanobacteria at nearly every station, with L. aestuarii, Merismopedia elegans, 

Chroococcus sp., and Anabaena sp. the most abundant taxa. Cyanobacteria continued to 

dominate into the fall of 2010 at all stations (Fig. 27). During summer the total cell 

abundance declined at the Saxis, Lynnhaven, and Hampton sites, while increasing in the 

other locations, with most remaining above 106 cells/cm3. Much like the previous 

sampling season, L. aestuarii, and M. elegans were the dominant taxa.
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Microphytobenthic Abundance -  2011

Similar to 2010, diatoms were most abundant in the benthos during the 2011 

winter sampling (Fig. 28). Overall cell densities were < 1.0 X 106 cells/cm3 at all but two 

stations (Lynnhaven, New Point Comfort). Dominant taxa were Bacillaria paxillifer, 

Thalassionema nitzschioides, Gyrosigma sp., and Navicula sp., which had high densities 

at all stations. The spring 2011 benthic communities shifted to cyanobacteria, with 

densities within the 5.0 X 105 -  106 cells/cm3 range (Fig. 29). The cyanobacteria L. 

aestuarii, Anabaena sp., and M. elegans were dense during this season, particularly at the 

Harborton site, where M. elegans densities exceeded 3.0 X 106 cells/cm3. Cell densities in 

2011 summer increased compared to the previous season, with almost all stations having 

abundances > 10 cells/cm (Fig. 30), and all but one station (Lynnhaven) dominated by 

cyanobacteria (e.g. Anabaena sp., M. elegans, and L. aestuarii). Microphytobenthic 

abundance in the fall of 2011 reverted back to winter conditions, with most stations 

falling below the 1.0 X 106 cells/cm3 level, with diatoms the dominant microalgal group 

(Fig. 31).

Analysis of variance tests showed significant differences in microphytobenthic 

average abundance across stations over the span of this study. Tukey post-hoc tests 

revealed both Cape Charles (p = 0.018) and Harborton (p = 0.013) had significantly 

higher cell abundances than the Lynnhaven station.
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Microphytobenthic Biomass

Microphytobenthic Biomass - 2010

The microphytobenthic biomass had a similar pattern as their abundance, with 

values significantly higher (p < 0.0001) than phytoplankton biomass over the course of 

the sampling period. Within the benthos, only Cape Charles and Lynnhaven were had 

significantly different biomass values (p = 0.042). Biomass during the 2010 winter 

ranged from 11 -  280 ug C/cm3, with the majority from the diatoms (Fig. 32). Algal 

biomass increased at nearly every station in the 2010 spring, again dominated by diatoms 

at most stations, as well as having an increased overall cyanobacteria biomass (Fig. 33). 

Algal biomass increased at every sampling station during the 2010 summer, with a high 

of 529 ug C/cm3 at the Saxis site, with all but one station over 110 ug C/cm3 (Fig. 34). 

The fall biomass was split evenly between diatoms and cyanobacteria (Fig. 35), and in 

general, the biomass decreased from summer values.

Microphytobenthic Biomass -  2011

The 2011 microalgal biomass of the benthos followed the same trends as in 2010, 

with the majority of algal biomass consisting of diatoms, that included a wide range of 

values across sites (Fig. 36). Spring sampling produced slightly lower overall biomass 

values in the benthos (Fig. 37), with increasing cyanobacteria biomass occurring at most 

stations. A pronounced cyanobacteria increase was at the Harborton site due to the 

colonial cyanobacteria M. elegans having a biomass value of 93.48 ug C/cm3. Similar to 

2010, the 2011 summer had increased overall biomass (Fig. 38) along with generally an
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even distribution of diatom and cyanobacteria biomass across all stations. The fall 

microphytobenthic biomass returned to trends noted the previous winter, with overall 

biomass lower than in summer and diatoms dominating at every station (Fig. 39).
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CHAPTER IV 

RESULTS - PRIMARY PRODUCTIVITY 

Phytoplankton

Two-year average phytoplankton primary productivity rates ranged from a high of 

755 mg C/m3/hr at the Lafayette station, to a low of 141 mg/C/m3/hr at the New Point 

Comfort station (Fig. 40). Overall, productivity rates in the phytoplankton were variable 

across all stations, showing no apparent seasonal trends, however these differences in 

rates were not significant (p = 0.243). The 2010 winter saw a high of 1270 mg C/m3/hr at 

the Lafayette station, and a low at Hampton, with a rate of 89 mg C/m3/hr (Fig. 41). 

Spring productivity increased overall, though the highest rate decreased from the winter, 

with 734 mg C/m3/hr at Harborton and New Point Comfort again showing the lowest rate 

at 90 mg C/m3/hr (Fig. 42). Summer and fall rates continued to be variable, with New 

Point Comfort again having the lowest rate, and Harborton the highest, with a station- 

wide average of 277 mg C/m3/hr in the spring (Fig. 43, while rates averaged 130 mg 

C/m3/hr in the fall (Fig. 44). Productivity rates in 2011 winter decreased from 2010, with 

an average of 139 mg C/m3/hr (Fig. 45). From 2011 winter through the spring and 

summer, the Lafayette station continued to have the highest phytoplankton productivity 

rates (Figs. 46,47), and average rates increased through fall to a two-year high of 728 mg 

C/m3/hr (Fig. 48).
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Fig. 44 Fall 2010 phytoplankton primary productivity rates. Error bars = s.e.
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Fig. 46 Spring 2011 phytoplankton primary productivity rates. Error bars = s.e.

Fig. 47 Summer 2011 phytoplankton primary productivity rates. Error bars = s.'
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Microphytobenthos

Microphytobenthic primary productivity rates had similar variability as those in 

the phytoplankton, with fluctuating values throughout the sampling period. The Cape 

Charles station had higher productivity rates over the course of the study, and overall 

significantly higher than Great Wicomico (p = 0.004), Hampton (p = 0.001), Harborton 

(p = 0.001), Lynnhaven (p < 0.0001), New Point Comfort (p < 0.0001), and Saxis (p = 

0.018). The two year average rate was 2.75 mg C/m3/hr, with a high of 20 mg C/m3/hr at 

Cape Charles in 2011 spring. Cape Charles also recorded the highest overall average 

productivity rate at 10.33 mg C/m3/hr during the study (Fig. 49). In 2010 winter, rates 

ranged from 0.95 mg C/m3/hr at New Point Comfort to 5.92 mg C/m3/hr at the Lafayette 

station (Fig. 50). Rates decreased slightly in the 2010 spring to an average of 1.95 mg 

C/m3/hr (Fig. 51), down from 2.02 mg C/m3/hr in 2010 winter. The Cape Charles and 

Saxis stations showed large increases of rates in the 2010 summer, with overall rates 

averaging 4.78 mg C/m3/hr (Fig. 52), while average fall rates dropped to 1.49 mg C/m3/hr 

(Fig. 53). Winter microphytobenthic productivity rates dropped to a two-year low 

average of 0.81 mg C/m3/hr (Fig. 54), then an increase in 2011 spring, with Cape Charles 

showing a high of 20.7 mg C/m3/hr (Fig. 55). Average summer productivity rates 

dropped to 1.75 mg C/m3/hr (Fig. 56), before reaching an average seasonal high of 4.55 

mg C/m3/hr in 2011 fall (Fig. 57).
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CHAPTER V 

RESULTS - SEDIMENT GRAIN-SIZE ANALYSIS

Grain size distribution for each site was averaged over the course of the 2-year 

study (Figs. 58-65), assigning a Wentworth size class to each station. A range of 

sediment classes were observed, the coarsest being Lynnhaven, with a mean grain size of 

442 pm, followed by Harborton (427 pm), Great Wicomico (302 pm), New Point 

Comfort (198 pm), Lafayette (153 pm), Cape Charles (126 pm), Hampton (97 pm), and 

Saxis (63 pm). Sediment properties are summarized in Table 6. These include phi units 

(<j>), a logarithmic transformation of millimeters into whole integers, Wentworth size 

class, mean grain size, sorting <j>, and sorting class, which describes the grain-size 

variation of a sample by encompassing the largest parts of the size distribution as 

measured from a cumulative curve (Folk 1980). Significant differences in sediment grain 

size were found between stations, (p < 0.0001), with stations categorized into the 

following size classes: medium sand (Great Wicomico, Harborton, Lynnhaven), fine sand 

(Lafayette, New Point Comfort), very fine sand (Cape Charles, Hampton) and coarse silt 

(Saxis).
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Fig. 61 Two-year average of sediment grain size (pm) distribution at Harborton.
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Table 6 Two-year average o f  sediment properties across all stations.
Sediment Properties

Station * Wentworth class Sorting <j> Sorting Mean grain size 
(pm)

Cape Charles 3.13 fine sand 1.64 poorly 126
Great Wicomico 1.90 medium sand 1.51 poorly 302
Hampton 3.50 very fine sand 1.49 poorly 97
Harborton 1.26 medium sand 0.78 moderately 427
Lafayette 2.83 fine sand 2.04 very poorly 153
Lynnhaven 1.26 medium sand 0.73 moderately 442
New Point Comfort 2.63 fine sand 1.29 poorly 198
Saxis 4.00 coarse silt 2.12 very poorly 63
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CHAPTER VI 

RESULTS - MICROALGAL COMMUNITY RELATIONSHIPS

Pearson correlation analysis was performed to determine the effects of measured 

parameters and environmental variables on microalgal abundance, biomass, and 

productivity. In the phytoplankton, salinity proved to be a strong environmental variable, 

significantly correlating with abundance, biomass, species richness and the Shannon 

index of diversity (Table 7). Biomass-salinity correlation (Fig. 66) had a significant 

negative relationship (r = -0.286, p = 0.024), while both species richness (Fig. 67) and 

Shannon diversity (Fig. 68), gave positive correlations with salinity (r = 0.450, p < 

0.0001; r = 0.349, p = 0.005). While salinity factored significantly in shaping 

phytoplankton communities, it did not have an effect on the microphytobenthos. 

However, multiple significant correlations were within this dataset (Table 8). Among 

environmental variables, phi value proved to be a significant factor, positively correlating 

with species richness (Fig. 69), biomass (Fig. 70) and Shannon diversity (Fig.71).



Table 7 Pearson correlation coefficients (r) for multiple correlations o f  phytoplankton abundance, biomass, productivity rates, species 
richness (SR), Shannon index (H'), salinity ( % o ) ,  and temperature (T). N = 62 in all cases except productivity correlations (N = 56). * p 
< 0.05, * * p < 0 . 0 1

Biomass Productivity SR H' %0 T
Abundance 0.534** 0.247 0.034 -0.164 -0.408** -0.254*

Biomass 1 0.016 0.109 -0.130 -0.286* -0.046
Productivity 1 -0.011 0.143 -0.103 0.146

SR 1 0.207 0.450** 0.217
H' 1 0.349** 0.023
%0 1 0.058
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Fig. 66 Phytoplankton salinity-biomass scatterplot.
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Fig. 67 Phytoplankton salinity-species richness scatterplot.
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Fig. 68 Phytoplankton salinity-Shannon diversity scatterplot.



Table 8 Pearson correlation coefficients (r) for multiple correlations of microphytobenthic abundance, biomass, productivity rates, 
species richness (SR), Shannon index (H'), salinity (%o), temperature (T) and phi value ($). N = 62 in all cases except productivity

Biomass Productivity SR H' %0 T
Abundance 0.736** 0.094 0.282* -0.294* 0.062 0.046 0.061

Biomass 1 0.243 0.433** 0.104 0.080 0.175 0.334**
Productivity 1 0.138 0.279* 0.043 0.235 0.183

SR 1 0.488** -0.081 0.257* 0.012
H' 1 -0.213 0.092 0.280*
%0 1 0.058 -0.153
T 1 0.069
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Fig. 69 Microphytobenthic biomass-species richness scatterplot.
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Fig. 70 Microphytobenthic biomass-phi value scatterplot.
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Figure 71. Microphytobenthic Shannon diversity-phi value scatterplot.
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Ordination of microalgal communities was performed on abundance data of both 

algal groups examined (phytoplankton and microphytobenthos) using non-metric 

multidimensional scaling (NMS). Initial analysis revealed a distinct separation of both 

microalgal groups, with the relative distance between points indicating relative similarity 

(closer together) or dissimilarity (farther apart), and each point representing species 

abundance of individual collections (Fig. 72). As a result of the differences in species 

composition between habitats (water column vs. benthos), further ordination analyses 

were conducted separately on each algal group to assess patterns corresponding to spatial 

(stations), or temporal (seasonal) factors. Among the phytoplankton, while some stations 

appear closer to each other than others, no strong spatial relationships are apparent (Fig. 

73). A clearer relationship is seen when seasons are examined, with winter and summer 

abundance data opposite each other in the ordination plot, while spring and summer 

collections are between the two (Fig. 74).

Ordination among the microphytobenthos had stronger spatial relationships than 

those in the phytoplankton, with several within-station clusters and among-station groups 

(Fig. 75). Five stations displayed a strong similarity between each other, with Cape 

Charles, Great Wicomico, Hampton, Lafayette, and Saxis forming a cluster, while the 

remaining stations (Harborton, Lynnhaven, New Point Comfort) were not only separated 

(dissimilar) from each other, but also indicated within-station dissimilarity. 

Microphytobenthic ordination analyses indicated less seasonal patterns than in the 

phytoplankton, with no temporal patterns present (Fig. 76). Sediment type or grain size 

was also examined as a predictor of microphytobenthic community structure. Ordination 

presented a pattern of increasing similarity as sediment grain size decreased from the
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coarsest sediment type (medium sand) to the finest (coarse silt), where the station with 

the finest sediment characteristics (Saxis) formed a tight grouping (Fig. 77). Additionally, 

the same ordination was performed defining stations characterized as either sand, or mud. 

Distinction was made between sand and mud, where a station was classified as sand if < 

20% of the sediment sample particles were < 63 pm, and classified as mud if > 20% of 

the sediment particles were < 63 pm. Stations having a greater proportion of larger 

sediment particles (sand) tended to be more dissimilar than those classified as mud, 

which had greater similarity (Fig. 78).
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Fig. 72 Ordination of microalgal community composition among the phytoplankton and 
microphtyobenthos using abundance data. Distances between points are proportional to 
differences in composition.
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categorized according to substrate type (sand vs. mud).
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CHAPTER VII 

DISCUSSION

These results constitute the most comprehensive survey regarding the 

composition of benthic microalgae in the Chesapeake Bay to date. Data analysis has 

indicated significant differences were present between the water column phytoplankton 

and the microphytobenthos regarding every parameter measured, and further testing 

revealed significant differences among the benthic stations, suggesting a highly variable 

benthic microalgal community, in contrast to a somewhat homogeneous pelagic 

phytoplankton environment. Previous Chesapeake Bay microphytobenthic studies are 

generally focused on a single parameter, or function. The scope of this project reports 

microphytobenthic densities, biomass, and primary productivity rates over a broad 

geographic area along with detailed taxonomic information, community structure and 

trends, plus providing baseline data of the benthic algal communities in lower 

Chesapeake Bay.

Community Composition, Abundance, and Biomass

The phytoplankton and benthic microalgal communities in this study were 

considerably different. Ordination analysis of taxonomic data displayed a clear separation 

of the phytoplankton and benthic microalgal communities. Further investigation into each 

habitat yielded significant differences throughout the dataset. The phytoplankton was 

significantly more diverse than the benthos, with all stations having species richness
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values > 20 at every sampling, and values consistently > 30. In contrast, the benthic 

habitat had significantly higher Shannon indices of biodiversity (H'), indicating a more 

even distribution of algal taxa. Both habitats were dominated by diatoms in terms of 

species richness, though overall taxomonic makeup of these populations varied between 

habitats and stations. In the phytoplankton, the centric diatom Skeletonema costatum was 

the most abundant species and diatoms in general were the most abundant microalgal 

group throughout the study. Aside from the prominence of diatoms, community 

composition at each phytoplankton station displayed no apparent patterns. NMS 

ordination analysis did not completely resolve the high variability among phytoplankton 

community composition, with no apparent similarities within stations. Ordination 

indicated a somewhat weak seasonal composition relationship, with winter and spring 

grouping together (e.g. taxonomic similarity). This seasonal similarity may have been 

driven by the increased densities of cyanobacteria and dinoflagellates present during the 

spring and summer of both years. High dinoflagellate biomass occurred at several 

stations during spring and summer seasons, particularly in the 2010 spring/summer, when 

high values were at the Lafayette, Great Wicomico, and New Point Comfort stations. 

Relatively large-sized dinoflagellates were in the Lafayette, where C. polykrikoides and 

P. micans were in high numbers. Winter/fall relationships were more ambiguous, 

possibly due to dominance of diatoms and varying combinations of lesser algal groups 

during these months.

Supporting seasonality as a potential driver of phytoplankton communities was a 

significant negative correlation between temperature and abundance. While this evidence 

presents a strong case for temperature as a major driver of these microalgal communities,
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phytoplankton data from this study was most influenced by salinity. Significant negative 

correlations were found between salinity and abundance as well as salinity and biomass 

(Fig. 65). Conversely, salinity positively correlated with both species richness (Fig. 66) 

and the Shannon diversity index (Fig 67).

In the benthos, and contrary to available taxonomic data, cyanobacteria were the 

most prominent group throughout much of the sampling period. In the few publications 

available that report benthic microalgal taxonomy, diatoms are in most cases described as 

the dominant microalgal group, and in some instances, although present, no phyla other 

than diatoms were considered. In this case, although pennate diatoms dominated taxon 

counts (species richness), cyanobacteria were the most abundant in terms of overall 

numbers. Though other taxonomic groups were present throughout the year, diatoms and 

cyanobacteria persisted as the most common and abundant algae in both cell densities 

and biomass at nearly every station in every sampling season. Diatoms maintained stable 

cell densities and biomass values throughout the entire sampling period, while 

cyanobacteria experienced seasonal fluctuations, with particularly high densities during 

the warmer summer months. High densities of the colonial cyanobacteria M. elegans and 

the filamentous L. aestuarii were present during spring and summer seasons, 

predominantly at the eastern shore stations (Cape Charles, Harborton, and Saxis). While 

other stations consistently had greater abundance and biomass values (Cape Charles, 

Saxis), in general, among-station microphytobenthic density and biomass fluctuated 

erratically throughout the study. Divergent from earlier data, salinity and temperature had 

little effect on the microphytobenthic communities observed here. Though 

microphytobenthic community dynamics appeared to be correlated with temperature
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based on seasonal increases of algal abundance and biomass during the warm summer 

months, these relationships were not statistically significant, with only species richness 

significantly affected by temperature based on Pearson correlation analysis.

NMS ordination analysis indicated weak seasonal effects on community structure, 

with the majority of spring and summer collections grouping near each other, and 

fall/winter collections more widely spread, indicating dissimilarity, though these seasonal 

associations are speculative at best. Spatial relationships in community structure were 

more apparent however, with several stations clustering near each other (Cape Charles, 

Hampton, Lafayette, Saxis). Considering the microphytobenthic ordination results in 

terms of sediment grain size/Wentworth size class at each site, a much clearer picture 

emerges. As presented in Figure 76, collections in the larger size range (Wentworth 

1922) tend to be more taxonomically dissimilar, with stations classified as medium sand 

and fine sand spread throughout the NMS plot. As size class decreases, stations become 

clustered together, with the finest-grained sediment type (in this case, coarse silt), being 

the tightest grouping. The Wentworth size classes are based on phi value (which 

correspond to mean grain size), with larger phi values corresponding to smaller sediment 

grain size. In this case, it appears that sediment grain size effects community 

composition, particularly in sediments with smaller grain sizes. Further supporting 

sediment grain size effect on microphytopbenthic communities, Pearson correlation 

analysis gave significantly positive correlations of grain size to both biomass and 

Shannon diversity. Biomass data from stations with smaller grain sizes (larger phi values) 

consistently have similar values from season to season, regardless of seasonal variations. 

It has been suggested that temporal fluctuations of microphytobenthic communities are
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less prevalent in fine, muddy sediments compared to less stable, low nutrient sandy 

sediments (Van der Wal et al. 2010). Microphytobenthic biomass data presented here 

provides a similar pattern, with only small variations in biomass at sites characterized by 

fine-grained sediments, while coarse-grained sites were exhibiting larger fluctuations 

throughout the sample period.

Algal biomass is not the only parameter affected by sediment grain size. As noted 

elsewhere (Mclntire and Amspoker 1986, Gottschalk et al. 2007) and in the current data, 

grain size is capable of producing taxonomic distinctness among algal assemblages. 

Typically, sheltered habitats with fine, muddy substrates are taxonomically more diverse 

than those with larger sediment grains and exposed to more turbulent conditions. 

Taxonomic data illustrated here concurs with those findings, as stations with fine-grained 

sediments were consistently more diverse in species richness and Shannon diversity, than 

stations characterized by coarse sediments. The significant correlation between phi value 

and Shannon diversity reinforces the results of microphytobenthic community NMS 

analysis, in that sediment grain size has significant effects on microalgal community 

composition within the sediment. While the type and strength of sediment grain size 

effects related to microphytobenthic communities will continue to be debated, this study 

confirms that sediment type plays a critical role.

However, sediment type alone is not the sole driver of microphytobenthic community 

dynamics, as a tight linkage exists among both biotic and abotic factors in these 

environments. Benthic habitats with finer grains tend to be in areas with heavy vegetation 

and high organic matter, allowing for higher rates of nutrient cycling within the sediment. 

Cohesive sediments are less porous than coarse sandy sediments, thereby reducing the
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rate of nutrient delivery to the water column. The cohesive nature of these sediments, 

particularly in areas with extensive benthic microalgal development would bind nutrients 

via sediment stabilization, reducing sediment resupension, and acting as a barrier of 

sediment-water column nutrient exchange while still being available to sediment surface 

biofilms. This would negate any effects of nutrient limitation and allowing for growth of 

a diverse benthic flora. Conversely, habitats with coarse sediment profiles may have low 

pore water content unable to retain nutrients, thus retarding continued growth of the algal 

biomass. For example, the Lynnhaven station had the lowest biodiversity, abundance and 

microalgal biomass throughout the study, as well as the largest mean sediment grain size. 

The low algal biomass and productivity rates in the coarse-sediment stations of this study 

may be the product of nutrient limitation, which, while generally a non-factor in fine 

sediments, is not uncommon in sandy, porous sediments (Underwood and Kromkamp 

1999).

Primary Productivity

The range of phytoplankton productivity rates measured here (28 -  1,907 mg 

C/m /hr) were higher than historical Chesapeake Bay productivity rates (0.3 -  400 mg 

C/m3/hr), though still within published ranges (Marshall and Nesius 1996). A plausible 

cause for elevated rates may have been the close proximity of sampling locations to a 

variety of nutrient sources. While historical Chesapeake Bay productivity measurements 

are based on pelagic mainstem Bay stations where nutrients are derived from large scale 

downstream transport (Marshall and Nesius 1996), stations in this study were along the 

shoreline, and located within several meters of the low tide line. Therefore, nutrients
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derived from terrestrial runoff would generally be at higher concentrations in these near

land areas than those in pelagic waters, and readily available for algal uptake. 

Additionally, water temperatures in these shallow sub-tidal areas are often considerably 

elevated during seasonal periods of increased algal development compared with those in 

deeper waters, and when combined with terrestrially-derived nutrient concentrations, 

yield higher productivity rates. In general, phytoplankton productivity rates at these sites 

increased with rising temperatures, though this trend was not significant. The highest 

average phytoplankton productivity rate (2-year avg. = 755 mg C/m3/hr) was recorded at 

the Lafayette station, which is located in a heavily urbanized embayment of the tidal 

Lafayette River. This waterway has undergone extensive eutrophication, and is subject to 

frequent algal blooms, particularly after prolonged periods of precipitation and increased 

nutrient entry occurring during late summer and early fall. Furthermore, the Cape Charles 

station had elevated productivity rates (2-year avg. = 734 mg C/m3/hr) similar to the 

Lafayette, even though situated in a more rural setting. This station is located adjacent to 

a golf course, in a semi-enclosed portion of Old Plantation Creek, thrus with low tidal 

flushing it is subject to increased nutrient input in the form of commercial fertilizers. The 

Cape Charles station also had the highest productivity during the study, at 1,907 mg 

C/m3/hr during the 2011 fall season. The lowest average phytoplankton productivity rates 

were seen at the New Point Comfort station (avg. 141 mg C/m3/hr), which, as noted 

earlier, is considered a more pristine location, with little surrounding human 

development, and has an unrestricted path of water exchange with Chesapeake Bay.

While much of the reported data regarding microphytobenthic productivity rates
■y

are reported as “mg C/m /hr”, an aerial rate, data presented here is expressed as “mg
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C/m3/hr”, a volumetric rate, since productivity was measured considering the entire algal 

community within the sediment core, instead of just the surface component. Comparison 

of aerial rates to volumetric microphytobenthic primary productivity rates is commonly 

accepted in microphytobenthic studies. Benthic microalgal primary productivity rates (0 

-  21 mg C/m /hr), while significantly lower than rates for the neighboring phytoplankton, 

still are within the range of published results both in the intertidal Chesapeake Bay (1 -  

90 mg C/m2/hr), and worldwide (Cahoon 1999). When considering microphytobenthic 

biomass values measured in this study, benthic productivity rates recorded here are 

unexpectedly low (2-year average = 2.80 mg C/m3/hr), particularly when compared with 

rates in the phytoplankton (2-year average = 390 mg C/m3/hr). While microphytobenthic 

productivity rates were considerably lower than those of the phytoplankton, their biomass 

values were significantly higher than the phytoplankton, indicating an important role as a 

food source for benthic fauna. Evidence of an inverse relationship between biomass and 

productivity, similar to patterns seen in some terrestrial producers (Tilman et al. 1996) 

was explored, though no significant correlations could be made. Possibly explaining the 

high biomass/low productivity rates, much of the biomass quantified in this study may 

have been from sediment layers below the narrow euphotic zone, particularly in the 

muddy/silty sediment habitats, where many algal cells may not be photosynthetically 

active, or have reduced photosynthetic capacity. In general, microphytobenthic 

productivity rates remained static throughout the sampling period, having rates at most 

stations in the 0 - 5  mg C/m /hr range, with little apparent divergence. However, data 

evaluation on a station by station basis indicated erratic patterns of productivity 

throughout the year regardless of biomass, season, or any other environmental variable, a
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phenomenon similarly observed in other studies (Thornton 2002). Large scale and high 

frequency variations in biomass and productivity are a common feature of 

microphytobenthic communities (Kromkamp and Forster 2006). A review of annual rates 

by Cahoon (1999) highlight the extreme variability in estimates of microphytobenthic 

primary production , with an average rate of 104 g C/m2/yr with a standard deviation of 

93 (North America only), with worldwide rates exhibiting similar variability. Both 

phytoplankton and microphytobenthic communities are patchy in their distribution, both 

at the meso- and microscale level, leading to significant variation in biomass values and 

primary productivity rates, complicating attempts at measuring these parameters. 

Phytoplankton patchiness, both on small and large scales is often the result of turbulent 

flow, shear, and tidal energy (Mitchell et al. 2008). In the benthos, this phenomenon may 

be more pronounced than in the fluid pelagic environment, as benthic habitats are subject 

to a wider range and magnitude of variables, both natural and human-influenced. 

Variability seen in microphytobenthic primary productivity rates may be the product of 

both actual variability and the differences in methodology used to measure those rates 

(Forster and Kromkamp 2006). In order to accurately evaluate trends in productivity, 

precise quantitative methodology must be employed. In the case of microphytobenthic 

communities, this may not be easy due to the complex set of changing interactions 

between the biological, chemical, and physical processes occurring in the benthic 

environment.

Though no clear productivity trends are apparent, some congruence with 

phytoplankton data was present, with productivity generally increasing with increasing 

temperature, yet no significant relationship was present. Also similar to the
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phytoplankton, both the Lafayette and Cape Charles stations exhibited the highest 

average microphytobenthic productivity rates (2-year averages = 5.54 mg C/m3/hr and 

10.33 mg C/m3/hr, respectively) over the course of the study. This reinforces the concept 

of nutrient loading in these areas as a driver of increased algal productivity. The lowest 

average benthic productivity rate (0.05 mg C/m3/hr) was observed at the Lynnhaven 

station. This site, is characterized by heavy wave action/disturbance plus large, coarse

grained sediment, and usually with little, or no obvious algal growth. This was 

consistently the benthic station with the lowest abundance and biomass values. Unlike 

evidence from previous studies summarized by Cahoon (1999), when compared with 

phytoplankton productivity rates, the current data does not suggest microphytobenthos as 

a large contributor to estuary-wide primary productivity for the entire Chesapeake Bay 

ecosystem, relative to phytoplankton productivity.
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CHAPTER VIII 

CONCLUSIONS

Results of this study have identified a significant microalgal biomass 

(microphytobenthos) within the benthic environment occurring year-round in the near 

shore waters of lower Chesapeake Bay. Unlike many estuarine macrophytes which enter 

dormancy during the colder fall and winter months, the microphytobenthos in these 

waters represent a continuous source of carbon to higher trophic levels of the common 

biota regardless of season. This study has identified specific relationships in this 

microalgal community and drivers of community composition and related dynamics. 

Productivity rates measured here indicate increased phytoplankton and benthic 

production in eutrophic habitats and other areas of high nutrient input. Based on these 

results, intertidal microphytobenthic primary production accounts for roughly 1% of the 

total microalgal production in the habitats surveyed. Although this percentage is low 

compared to the phytoplankton productivity, when considering the extent of the intertidal 

habitats in the Chesapeake Bay estuarine system, it represents a substantial amount of 

biomass available to constituents within the Bay complex.

These estimates do not include sub-tidal microphytobenthos or intertidal periphyton, and 

are restricted to the sediment-associated microalgae. Based on the sampling of only one 

benthic microalgal compartment, methodological constraints, and the characteristic 

patchiness of benthic microproducer communities, these results are believed to be an 

underestimate of benthic microalgal production in lower Chesapeake Bay.

As noted previously, phytoplankton and microphytobenthic populations 

are often generalized into a single group referred to as “microalgae”. These findings
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suggest that while some taxonomic overlap exists between these groups, their diversity, 

cell densities, biomass, productivity rates and community dynamics are very different, 

and reinforce the theory that they are indeed separate communities and should not be 

categorized as a single functional group. Considering the microphytobenthos alone, 

previous taxonomic studies of microphytobenthic communities often stress the presence 

of diatoms, and in many cases ignore the occurrence of other algal groups. Data presented 

here are to the contrary, in that a great diversity of benthic microalgal flora is present in 

these habitats. In several cases, other algal groups such as cyanobacteria and chlorophytes 

dominated the algal biomass at these benthic stations. As such, it is not recommended 

that all microphytobenthic communities be treated similarly, as these data reveal unique 

benthic microalgal assemblages, often showing site-specific diversity, significantly 

different from that in the neighboring phytoplankton.

While a number of factors interact to complicate microphytobenthic biomass and 

productivity measurements in the intertidal such as sediment type, light attenuation, 

spatial patchiness, and physiological variability driven by temperature, light, and other 

environmental gradients, it may be that microphytobenthic taxonomic diversity may itself 

account for much of the observed variability in primary productivity rates (Kromkamp 

and Forster 2006), with certain microalgal groups possessing unique physiological and 

photosynthetic capabilities.

While this project quantifies microphytobenthic properties on large scales, both 

spatially and temporally, small-scale variation must be explored as well. Evidence of 

daily oscillations of biomass, productivity, and highly localized species turnover may 

explain the high variability and lack of seasonal patterns in the biomass and primary
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productivity measurements in this study. The heterogeneity observed in the benthic 

environment may be due to harsh and rapidly changing local or regional environmental 

conditions commonly associated with this algal community; the magnitude of which is 

not present in the pelagic environment. Intertidal benthic organisms, both flora and fauna, 

are subject to extreme physical, temperature, light, and salinity changes during ebb and 

flood tides, along with the obvious issues of daily periods of desiccation during emersion. 

Additionally, the benthos, and particularly the intertidal zone, may be more prone to 

human impacts than neighboring sub-tidal environments. Due to high human impacts in 

estuarine environments, and particularly in the shoreline areas where this study was 

focused, discerning natural microphytobenthic variability from that caused 

anthropogenically may be difficult. The presence both naturally-occurring and human- 

influenced disturbance-driven patchiness may affect these communities on a daily basis, 

thereby making broad conclusions regarding microphytobenthos dynamics across 

Chesapeake Bay not prudent.

Looking toward the future, predicted increased eutrophication of estuaries and 

coastal ecosystems worldwide will no doubt have a significant effect, not only on 

microphytobenthic communities, but the habitats in which they persist, and all associated 

local flora and fauna. What these effects may be however, are difficult to discern, and are 

hardly predictable. In one scenario, increased anthropogenic nutrient input would lead to 

extensive phytoplankton blooms, which may create a positive feedback, with a surplus of 

carbon entering the system, and eventually decomposing, thereby releasing nutrients back 

into the system. As noted earlier, microphytobenthic biofilms are adept at remineralizing 

nutrients bound in the sediments. Potentially, this would be advantageous for
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microphytobenthic communities, allowing for increased productivity and extensive 

benthic microalgal biomass development. This situation would not only alter biomass and 

productivity rates, but could potentially affect the taxonomic makeup of these benthic 

microproducers. In the presence of recurrent dense phytoplankton blooms, turbidity 

becomes a factor, particularly in shallow near shore areas. In this case, temporary, yet 

frequent shading of the benthos would favor those algal taxa that either have an affinity 

for low-light conditions, or are otherwise better adapted at thriving in such an 

environment.

When considering eutrophication and habitat degradation in general, other 

human-influenced effects cannot be ignored. Coastal development and the hardening of 

shorelines is a serious threat to estuarine ecosystems, and particularly coastal wetlands, 

which are at the forefront of such development. A combination of rising sea levels and 

the construction of more bulkheads, seawalls, and other such non-natural shoreline 

structures, wetland vegetation is obstructed from a landward migration, thereby 

“drowning” such habitats. With the loss of wetlands, so comes the loss of those flora and 

fauna that inhabited these environments. In many cases, and especially in the vast 

wetlands of Chesapeake Bay and its associated tributaries, these coastal wetlands provide 

crucial habitat and rearing grounds for countless numbers of economically vital and 

ecologically essential marine and estuarine species.

While the specific role(s) and dynamics of microphytobenthos in these systems is 

still debatable, their importance is no longer in question. The results presented here, 

including biomass, abundance, productivity, and taxonomic information characterize the 

microphytobenthic communities and provides an essential framework for future
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Chesapeake Bay microphytobenthic research, and identifies the importance of this crucial 

and significant component of the Bay’s estuarine ecosystem.
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