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ABSTRACT 

LATENT CHOICE MODELS TO ACCOUNT FOR MISCLASSIFICATION 

ERRORS IN DISCRETE TRANSPORTATION DATA 

 

Lacramioara Elena Balan 

Old Dominion University, 2019 

Director: Dr. Rajesh Paleti 

 

One of the most fundamental tasks when it comes to analyzing data using statistical 

methods is to understand the relationship between the explanatory variables and the outcome. 

Misclassification of explanatory variables is a common risk when using statistical modeling 

techniques. In this dissertation, we define ‘misclassification,’ as a response that is reported or 

recorded in the wrong category; for example, a variable is registered as a one when it should have 

the value zero. Misclassification can easily happen in any data; for example, in an interview setting 

where the respondent misunderstands the question or the interviewer checks the wrong box. 

 The results uncovered significant misclassification rates ranging from 1% to 40% for 

different auto ownership alternatives, in the first part of the dissertation. Also, the results from 

latent class models provide evidence for variation in misclassification probabilities across different 

population segments. The second part of the dissertation uses traditional crash databases that 

record police-reported injury severity data, which are prone to misclassification errors. In addition, 

we developed a mixed generalized ordered response model that quantifies misclassification rates 

in the injury severity variable and adjusts the bias in parameter estimates due to misclassification. 

The model uncovered a 32% misclassification rate in the non-incapacitating severity category. As 

another case study, the misclassification extent in the telecommuting frequency data is also 

investigated. Telecommuting frequency is a response variable collected in travel surveys; 

therefore, it is prone to errors leading to mismeasurements or misclassification. The objective of 

this investigation of the dissertation is to develop a statistical model to analyze telecommuting data 

while accounting for potential misclassification errors. 

  Models that ignore misclassification were not only found to have lower statistical fit but 

also significantly different elasticity effects, particularly for choice alternatives with high 
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misclassification probabilities. Overall, the simulation analysis, along with the other models 

developed, suggests that the models that consider misclassification in the data perform better than 

the ones that ignore the misclassification. The methods developed in this study can be extended to 

analyze misclassification in other transportation disciplines. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

The most fundamental tasks when it comes to analyzing data using statistical methods is 

to understand the correlation between the explanatory variables and the outcome. Misclassification 

of explanatory variables is a common risk when using statistical modeling techniques. 

Misclassification occurs when a subject is falsely classified into a category in which the subject 

does not belong. It may result from misreporting by study subjects, from the use of less than 

optimal measurement devices, or by random error. For example, a variable could be recorded with 

a value of one when it should have the value zero.  

The subject of mismeasurement has been extensively studied in econometrics. Most of the 

studies have focused on analyzing the misclassification of the discrete dependent variable more 

that mismeasurement of continuous dependent variable. From a statistical standpoint, when the 

variable analyzed is continuous, this event is referred to as containing errors in variables or simply 

as measurement errors; when the explanatory variable is discrete, the term used is a 

misclassification. The observed responses in the data can be viewed as realizations from random 

variables that depend on true latent responses that are unobservable to the analyst. 

Misclassification of continuous dependent variables does not result in biased parameter estimates 

in linear regression specification but less precise statistical estimates [1]. However, in cases of 

limited dependent variables such as discrete choices, the standard maximum likelihood estimates 

are biased and inconsistent. For instance, using simulation analysis, Hausman et al. found that 

misclassification rates as low as 2% can lead to 15-25% bias in the parameter estimates and lower 

standard errors (or over-precise estimates) in the binary choice scenario [2].  This study also 

analyzed the decision of workers to change jobs in the past one year and found that 6% of non-job 

changers reported job change whereas 31% of persons who changed their job  did not report job 

change in the survey data. So, their study found not only evidence for significant misclassification 

but also different misclassification rates for different responses (job change versus no job change).  

1.2 The Importance of Travel Survey 

Travel surveys are one of the most important ways of obtaining the critical information 

needed for transportation planning and decision making. These surveys are not only used to gather 
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current information about the demographic, socioeconomic, and trip-making characteristics of 

individuals and households, but they are also used to further understanding of travel about the next 

choice, location, and also, scheduling of daily activities. Such information will permit us to enlarge 

travel forecasting methods and improve the capacity to predict changes in daily travel patterns in 

response to current social and economic trends and new investments in transportation systems and 

services.  

Travel surveys also play a role in evaluating changes in transportation supply and 

regulation as they occur. In the last half-century, travel survey methods have experienced 

tremendous change. Originally, travel surveys were done primarily through face-to-face 

interviews, typically conducted in respondents’ homes or at intercept points along major roadways 

and transit routes or major transportation nodes [3-6]. These changes, coupled with technological 

advancements such as GPS, have improved the quality of survey data considerably. However, it is 

still very likely that there are several errors in the data recorded. The response variables collected 

in these surveys are prone to errors leading to mismeasurement or misclassification. Standard 

modeling methods that ignore these errors while modeling travel choices can lead to biased 

parameter estimates. Models that ignore misclassification were not only found to have lower 

statistical fit but also significantly different elasticity effects, particularly for choice alternatives 

with high misclassification probabilities. 

1.3 The Importance of Safety Analysis 

A key crash attribute used for safety analysis is the injury severity of the crash. The crash 

injury severity level is recorded as the severity level of the most severely injured person in the 

crash. Reducing the severity of injuries from traffic accidents is one of the most effective means 

to improve highway safety.  Many studies have been conducted to reduce the number of people 

killed and injured in traffic accidents and to identify the risk factors that can significantly influence 

the injury outcomes of traffic accidents. Injury severity analysis is a significant topic to investigate 

for improving motorized vehicles and roadway design, improving control strategies at conflict 

locations, designing good pedestrian and bicycle facilities and building driver and non-motorized 

user education programs.  Typically, injury severity is recorded based on crash-assigned or 

hospital-assigned ordinal scoring systems [7]. The crash-assigned injury severity reported in police 

accident reports is typically recorded on a five-point ordinal scale – fatal, incapacitating, non-
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incapacitating, possible, and no injury (KABCO scale). However, the definitions of these ordinal 

categories in the KABCO scale vary across state jurisdictions. Traditional crash databases that 

record police-reported injury severity data are prone to misclassification errors. Ignoring these 

errors in discrete ordered response models used for analyzing injury severity can lead to biased 

and inconsistent parameter estimates.  

1.4 The Importance of Telecommuting Frequency  

Telecommuting usually refers to working from home or telecenters using computers or 

telephones. Other scholars are referring to telecommuting as teleworking, and recently more 

advanced communication facilities are used to maintain a connection with the office and with 

central management and administration. Some of the concerns of the mobility management 

strategies that affect the public and private sector (pollution, traffic congestion, energy 

consumption, labor shortage, office spaces, and family commitments) can be enhanced using 

telecommuting. From a cost standpoint towards the users and the time it takes to be implemented, 

scholars have shown that, among all the strategies, telecommuting is easy to implement, and it has 

a lower cost [8-10].  

Telecommuting has several benefits for both employers and employees. It can improve 

telecommuter’s family-work balance by providing more time to be spent with the family members 

[11, 12], and it can bring a more efficient way of planning the activity-travel arrangements during 

the working hours [13]. In addition to the saved commuting time, it has been concluded that 

telecommuters spend more time on work activities than they would do in the workplace [14], and 

based on the flexible work schedule, they are working during the time that they are productive 

[15]. In Finland, for example, it was proven that home-based telecommuting could reduce the total 

commute distance by 0.7% (almost 0.84 million miles saved every week) [16]. Recently, using 

data from the Canadian General Security Survey, it was found that as telecommuters have more 

flexible activity schedules, they mostly take trips during off-peak periods. Also, it was showed that 

telecommuting could reduce daily travel time by an average of 13 minutes [17]. Although scholars 

focused on the effects of telecommuting on travel demand and network operation, none of the 

studies considered errors in the data modeled. Ignoring these errors in discrete count models 

analysis when using telecommuting frequency data may lead to bias and inconsistent parameter 

estimates. The number of days a person telecommutes in a month is usually obtained using 
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household travel surveys [18]. It was previously demonstrated that household travel surveys are 

prone to misclassification errors. Ignoring this misclassification errors can lead to bias and 

inconsistent parameter estimates. 

1.5 An Overview of Research Objectives  

This dissertation addresses this gap in the past literature by developing a framework for 

analyzing misclassification errors in discrete choice responses, by developing statistical models to 

analyze different discrete transportation data while accounting for potential misclassification 

errors using the existing literature in econometrics. The different datasets investigated are 

household travel surveys: application to auto ownership, safety analysis: application of the injury 

severity level of the driver, and household travel surveys: application of  monthly telecommuting 

frequency, and for all of them, the model that accounts for misclassification performed better. For 

these analyses misclassification rates were modeled as high as 40% and 25% for the “three cars” 

and “two cars” respectively in the case of the auto ownership levels. In the injury severity level 

and the telecommuting frequency, misclassification rates as high as 32.2%, and 14.4% 

respectively, were found in the non-incapacitating injuries. It was also proven that the model that 

accounts for misclassification has a better statistical fit when compared with the model that ignores 

misclassification for the three datasets investigated. 

1.6 The Structure of the Dissertation 

The rest of the dissertation is structured as follows. The next section, Chapter 2, provides 

an overview of the available methods in the econometric literature for handling misclassification 

and methods previously used to acknowledge the presence of misclassification in the cases of 

injury severity data, auto ownership data, and telecommuting frequency data. Chapter 3 presents 

a simulation study to evaluate the performance of the misclassification models using synthetic 

data. Chapter 4 presents the methodological framework and describes the data followed by the 

empirical results and post-estimation analysis of misclassification in travel surveys and 

implications to choice modeling: application to household auto ownership decisions. Chapter 5 

presents the methodological framework and describes the data followed by the empirical results 

and post-estimation analysis using modified mixed generalized ordered response model to handle 

misclassification in injury severity data. Chapter 6 presents the methodological framework and 

describes the data followed by the empirical results and post-estimation analysis using a 
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generalized extreme value model to handle misclassification rates in the telecommuting frequency 

data. Finally, I will outline the research, and give information on fulfillment of the research 

objectives and future research directions. 
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CHAPTER 2 

EARLIER RESEARCH AND THE CURRENT STUDY IN CONTEXT 

This chapter provides a detailed review of earlier work relevant to the two main objectives 

of the dissertation The literature review is grouped under the following headings: 1)  

Misclassification in Travel Surveys and Implications to Choice Modeling: Application to 

Household Auto Ownership Decisions,  2) A modified Mixed Generalized Ordered Response 

Model to Handle Misclassification in Injury Severity Data, and 3) A Generalized Extreme Value 

Model to Handle Misclassification in Telecommuting Frequency Choices Data. 

2.1 Misclassification in Travel Surveys and Implications to Choice Modeling: 

Application to Household Auto Ownership Decisions 

Household Travel Survey (HTS) data that records information regarding activity and travel 

patterns along with detailed socio-demographic details of a representative population in the study 

area is the primary component underlying all transportation planning and policy analysis. The 

travel survey methods have evolved over the past two decades both in the format (e.g., travel diary 

versus activity diary) and the medium (e.g., face-to-face or phone-based interviews versus web-

based survey questionnaires) of data collection [3-6]. These changes, coupled with technological 

advancements such as GPS, have improved the quality of survey data considerably. However, it is 

still very likely that there are several errors in the data recorded. These errors may be traced back 

to too many different sources. For instance, the respondent can intentionally provide 

misinformation. For example, past studies found that self-employed individuals can under-report 

their income by up to 25% in household travel surveys  [19]. In some cases, the errors might be 

systematically associated with the survey instrument used for collecting data. For instance, 

respondents in Computer Assisted Telephone Interviewing (CATI) based surveys were found to 

under-report trip rates, under-report travel distances, and over-report travel times compared to 

GPS-based studies [20]. Moreover, these errors were also found to vary based on the demographic 

characteristics of the survey respondents [21, 22]. It is also possible that the respondent provided 

wrong responses unintentionally, either due to the problem in comprehending the survey questions 

or miscommunication on the part of the surveyor. In some cases, random errors (e.g., mistakes 

while recording) can also be the source of errors. Such errors may occur in all types of survey 
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responses - continuous (e.g., trip duration) and discrete including nominal (mode choice), ordinal 

(trip/tour frequency), and count (monthly telecommuting frequency).  

In the transportation context, this is a critical problem because most of the activity-travel 

choices are discrete and models that ignore misclassification can provide incorrect travel 

sensitivities leading to misleading or even wrong policy inferences. Moreover, recent travel 

demand models take the form of large-scale activity travel simulators that encompass a chain of 

several discrete choice models tied together sequentially. So, the misclassification errors in an 

upstream discrete choice model can accumulate and propagate to all downstream models in the 

activity-travel simulator, affecting several new model forecasts and not just the choice being 

modeled. However, it is surprising that while there have been studies that attempted to quantify 

the extent of misclassification [20, 22], most studies have entirely ignored these errors while 

modeling the travel choice itself. 

2.2 A Modified Mixed Generalized Ordered Response Model to Handle Misclassification 

in Injury Severity Data. 

The World Health Organization (WHO) considers road safety a significant public health 

problem given that almost 1.25 million people lose their lives and another 50 million people sustain 

non-fatal injuries every year globally [23]. Also, traffic crashes remain the leading cause of death 

within the 15 to 29 years age group. In the United States alone, 35,000 people lost their lives and 

2.44 million people were injured in 2015 [24]. To address this problem, safety engineers undertake 

data analysis to identify policy measures to enhance roadway safety. In the United States, within 

each state, traffic accidents are usually investigated by police officers who complete a standard 

form, usually soon after a crash has occurred, named the police accident report (PAR). The report 

contains information regarding driver characteristics, vehicle attributes, traffic conditions, 

environmental conditions, and crash characteristics [25]. Typically, all accidents that are above a 

specified severity level and threshold for the property damage dollar value are recorded by police 

[26]. These PARs constitute the primary data component used for safety analysis. For instance, 

the General Estimates System (GES) data of the National Automotive Sampling System (NASS) 

is a  representative sample of police-reported crashes across the nation. While the PARs are mostly 

reliable, several factors determine the quality of data recorded. The consistency of coverage and 

interpretation, missing data, response errors, entry procedure, and level of detail are some of the 

factors identified in the literature [27].  
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A key crash attribute used for safety analysis is the injury severity of the crash. The crash 

injury severity level is recorded as the severity level of the most severely injured person in the 

accident. In some cases, the PARs record the severity level of injuries sustained by all the people 

involved in the crash. Typically, injury severity is recorded based on crash-assigned or hospital-

assigned ordinal scoring system [7]. The crash-assigned injury severity reported in PARs generally 

is recorded on a five-point ordinal scale – fatal, incapacitating, non-incapacitating, possible, and 

no injury. However, the definitions of these ordinal categories in the KABCO scale vary across 

state jurisdictions. The hospital-assigned injury severity, on the other hand, is an anatomically 

based Abbreviated Injury Scale (AIS) that rates an injury on a six-point scale (minor, moderate, 

serious, severe, critical, and maximum) based on the threat to life and is correlated with mortality, 

morbidity, and hospital stay duration [26].  

While some studies found significant differences between the KABCO and AIS scoring 

systems [26], few others found that these two measures are reasonably consistent [7]. A 

comparison of police-reported crashes and hospital records in New Zealand found that police 

recorded only two-thirds of fatal accidents. Furthermore, the reporting rates were found to vary by 

demographic, accident, seasonal, and geographic factors [28]. Along similar lines, non-fatal 

pedestrian accidents were found to be under-reported in police records [29]. A similar comparison 

between police records and trauma registry in France found misclassification in all injury severity 

categories [30]. Similar under-reporting and misclassification of injury severity of crashes leading 

to medical care were found in other recent studies [31-34]. On the contrary, police records were 

found to considerably over-estimate injury severity, and the degree of over-estimation was found 

to vary by the injury severity score (ISS) and the victim’s age and position inside the vehicle [25]. 

Overall, past research suggests that hospital-based AIS recordings are more precise compared to 

the KABCO scale police recordings. However, there is no consensus on the exact level of 

discordance, the nature of discordance, and the factors that lead to discordance between these two 

measures of injury severity [29, 30, 35, 36]. Even small errors in the injury severity data can have 

enormous implications for the accuracy of predictions and policy sensitivity analysis. Irrespective 

of the type of injury severity scoring system, there may be errors in crash databases [37, 38]. For 

instance, multiple injury severity patterns can have the same score in AIS depending on the weights 

associated with different body parts. Furthermore, the error rates in the police injury severity 

recordings that form the basis for most safety research are expected to be higher compared to 
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hospital-based severity scores. However, while there have been attempts to measure the errors in 

crash databases by comparing them with alternate data sources (such as hospital and ambulance 

records), none of these studies attempted to account for these errors in statistical models used for 

analyzing injury severity 

2.3 Generalized Extreme Value Model to Handle Misclassification in Telecommuting 

Frequency Choices Data 

Telecommuting or teleworking, mainly, refers to working from home or telecenters using 

telephones, computers, or other advanced communications facilities to maintain a connection with 

the office and with central management and administration. One of the mobility management 

strategies that address the public and private sector concerns such as pollution, traffic congestion, 

energy consumption, labor shortage, office space, and family commitments is telecommuting [39-

41]. Previous scholars have shown that among these policies, telecommuting has a lower cost for 

the users and a shorter time to be implemented [8-10]. Telecommuting has several benefits for 

both employers and employees. It can improve telecommuter’s family-work balance by providing 

more time to be spent with the family members [11, 12], and can bring a more efficient way of 

planning the activity-travel arrangements during the working hours [13]. In addition to the saved 

commuting time, it has been concluded that telecommuters spend more time on work activities 

than they would do in the workplace [14], and based on the flexible work schedule, they are 

working during the time that they are productive [15].  

Several studies have considered two dimensions of telecommuting decisions and analyzed 

accordingly. First one focused on whether the employer provides telecommuting options for the 

employees and secondly, how many days the employee is using this option [42, 43]. From a 

monthly telecommuting frequency, earlier studies have had modeled the actual number of days an 

employee works from home using different models. Count models [43], ordered response models 

[44], or even breaking the frequency information into different categories (e.g., infrequent, 

medium, and high frequency) and using discrete choice models such as MNL are just a few of the 

models used to model the telecommuting frequency [45].  

Telecommuting was mainly previously investigated from two major perspectives. On the 

one hand, some scholars examined telecommuting, focusing on the worker’s adoption behavior 

and aimed to identify the factors associated with their propensity to adopt this policy [46-49]. 
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Relying on the statistical analysis of workers’ decisions about choice and frequency and trying to 

recognize the connection between their choices and various types of personal, household, job-

related and built-environment attributes, as well as their activity planning and scheduling behavior 

it was of high importance to account for their propensity to adopt telecommuting [50].  

On the other hand, some of scholars investigated the potential consequences of 

telecommuting implementation, the impact of this policy on telecommuter’s trip rates and miles 

driven. There would be conflicting viewpoints about the effect on worker’s daily activity-travel 

behavior, even if it were accepted that telecommuting reduces commute travel. Many studies have 

shown results supporting the hypothesis that telecommuting can reduce daily trip rates. It was 

confirmed that the telecommuter’s peak period trips could be reduced by 60% and the total distance 

traveled by 75% on telecommuting days, based on spatial and temporal analysis of travel diaries 

from California [13]. It was also shown that telecommuting could reduce annual vehicle-miles 

traveled by up to 0.8% [8]. When comparing the results with approximate vehicle-miles traveled 

caused by public transit, it was shown that telecommuting is a far more cost-efficient congestion 

mitigation policy. In Finland, for example, it was proven that home-based telecommuting could 

reduce the total commute distance by 0.7% (almost 0.84 million miles saved every week) [16]. 

Recently, it was found that as telecommuters have more flexible activity schedules, they mostly 

take trips during off-peak periods, according to data from the Canadian General Security Survey. 

Also, it was shown that telecommuting could reduce daily travel time by an average of 13 minutes 

[17].  

While focusing on the complementary effects of telecommuting, some studies showed an 

increase in travel measures [10, 51, 52]; overall, the impact of telecommuting on both travel 

demand and network operation still need to be studied for more empirical evidence on this issue 

[9, 53]. Although scholars focused on the effects of telecommuting on travel demand and network 

operation, none of the studies considered errors in the data modeled.  Such errors can occur in all 

types of survey responses (continuous, and discrete including nominal, ordinal, and count data). 

Statistically, these errors are referred to as ‘mismeasurements’ errors, more specifically as 

‘misclassification’ errors in the case of discrete responses. It was shown that misclassification rates 

as low as 2% could lead to 15-25% bias in the parameter estimates and lower standard errors, using 

simulation analysis [2]. For one study, the decision of workers to change jobs in the past year was 
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analyzed, and researchers found that 6% of non-job changers reported job change, whereas 31% 

job changers did not report job change in the survey data. Not only misclassification was found 

but also different misclassification rates for different responses. On the same topic, while 

investigating the auto ownership choice data, significant misclassification rates were revealed, 

ranging from 1% to 40% for different auto ownership alternatives [18]. It was shown that only 

68.23% and 62.75% of possible and non-incapacitating injuries were correctly recorded in the 

2014 General Estimates System (GES) data, using a mixed generalized ordered response model 

for quantifying the misclassification rates in the injury severity variables. Also, when compared 

with the mixed generalized order model that ignores misclassification, it was shown that the model 

that considers misclassification has better data fit [54].  The objective of this dissertation is to 

develop a statistical model to analyze telecommuting data while accounting for potential 

misclassification errors by building upon existing literature in econometrics. The empirical 

analysis was undertaken using the 2017 National Household Travel Surveys (NHTS).  
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CHAPTER 3 

SIMULATION ANALYSIS 

This chapter considers a simulation study to evaluate the extent of misclassification errors 

using synthetic data.  The details of the simulation settings and the results of this analysis are 

discussed next. To analyze the extent of misclassification errors, the Multinomial Logit model that 

accounts for misclassification was developed. 

3.1 Methodological Framework 

Previous econometrics studies developed statistical models (parametric and semi-

parametric) that estimate discrete choice models under misclassification. The sufficiency condition 

needed for consistency is that the probability of being misclassified is smaller than the probability 

of being correct classified [2]. In their analyses, the estimates from the parametric estimates were 

similar to those obtained using the semiparametric method, indicating that the parameter approach 

is reasonable for several applications. For this part of the dissertation, the modified maximum 

likelihood estimation method was adopted, which is described below. For better understanding let 

us consider as example, the mode choice. 

Let q, and i be the indices for household and alternatives, respectively. Let J denote the 

total number of alternatives in the choice set (in the current empirical context, say J = 3 for 

example: car, transit, car-pool). For this part of the dissertation, we will assume that the alternatives 

are to be outcome of the utility maximization principle in the unordered modeling framework. Let 

𝑈𝑞,𝑖, 𝑉𝑞,𝑖, 𝑎𝑛𝑑 𝜀𝑞,𝑖 denote the total, observed, and unobserved components of utility associated with 

alternative i for household q. In the utility framework, the probability that a person q chooses 

alternative i is given by: 

𝑃𝑞(𝑖) = 𝑃(𝑈𝑞,𝑖 > 𝑈𝑞,𝑗) ∀ 𝑖 ≠ 𝑗 

= 𝑃(𝑉𝑞,𝑖 + 𝜀𝑞,𝑖 > 𝑉𝑞,𝑗 + 𝜀𝑞,𝑗) ∀ 𝑖 ≠ 𝑗 

= 𝑷(𝜺𝒒,𝒋 − 𝜺𝒒,𝒊 < 𝑽𝒒,𝒊 − 𝑽𝒒,𝒋) ∀ 𝒊 ≠ 𝒋                    (3. 1) 

Assuming the stochastic utility components to be realizations from standard Gumbel 

distributions that are independent and identically distributed across alternatives and households 

will result in the standard multinomial logit (MNL) model. In the absence of misclassification, the 

probability of alternative i is given by: 
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 𝑷𝒒(𝒊) =
𝒆
𝑽𝒒,𝒊

∑ 𝒆
𝑽𝒒,𝒋𝑱

𝒋=𝟏

       (3. 2) 

Let 𝛼𝑠,𝑡 denote the probability that alternative s is misclassified as alternative t. Any given 

alternative s can be classified as one of the J alternatives, so ∑ 𝛼𝑠,𝑡
𝐽
𝑡=1 = 1. Now, if i is the observed 

dependent variable, then the true latent response can be any of the J alternatives. So, the probability 

of observed dependent variable i under misclassification is given by: 

𝑷𝒒(𝒊) = ∑ 𝜶𝒕,𝒊 ×
𝒆𝑽𝒒,𝒕

∑ 𝒆
𝑽𝒒,𝒋𝑱

𝒋=𝟏

𝑱
𝒕=𝟏                (3. 3) 

In the current simulation context with three alternatives, the misclassification matrix is given by: 

||

𝑩𝒆𝒔𝒕 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 ↓ || 𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 → 𝑶𝒏𝒆 𝑻𝒘𝒐 𝑻𝒉𝒓𝒆𝒆
𝑶𝒏𝒆 𝜶𝟏,𝟏 𝜶𝟏,𝟐 𝜶𝟏,𝟑

𝑻𝒘𝒐 𝜶𝟐,𝟏 𝜶𝟐,𝟐 𝜶𝟐,𝟑

𝑻𝒉𝒓𝒆𝒆 𝜶𝟑,𝟏 𝜶𝟑,𝟐 𝜶𝟑,𝟑

||                   (3. 4) 

The diagonal elements in the above matrix indicate the probability that the observed and 

the correct response variable are the same or the probability of correct classification. Any observed 

response s in the survey data may be because of misclassification (i.e., the chosen alternative was 

some other alternative t but was misclassified as s) or due to correct classification. The intuitive 

meaning of the sufficiency conditions for consistency is that the probability of observed data being 

correct must be larger than the probability of being misclassified. If these sufficiency conditions 

fail, the parameter estimates in the model can have opposite signs from a model that ignores 

misclassification, and there is little hope in recovering the true parameters consistently [2]. 

Mathematically, the sufficiency condition translates into the following equation for alternative s: 

∑ 𝜶𝒕,𝒔
𝑱
𝒕=𝟏
𝒕≠𝒔

< 𝜶𝒔,𝒔∀ 𝒔 ∈ [𝟏, 𝑱]              (3. 5) 

Adding ∑ 𝛼𝑠,𝑡
𝐽
𝑡=1
𝑡≠𝑠

 to both sides of Equation (5) gives the following result: 

∑ 𝜶𝒕,𝒔
𝑱
𝒕=𝟏
𝒕≠𝒔

+ ∑ 𝜶𝒔,𝒕
𝑱
𝒕=𝟏
𝒕≠𝒔

< 𝜶𝒔,𝒔 + ∑ 𝜶𝒔,𝒕
𝑱
𝒕=𝟏
𝒕≠𝒔

∀ 𝒔 ∈ [𝟏, 𝑱]  (3. 6) 

But, 𝛼𝑠,𝑠 + ∑ 𝛼𝑠,𝑡
𝐽
𝑡=1
𝑡≠𝑠

= ∑ 𝛼𝑠,𝑡
𝐽
𝑡=1 = 1. So, the sufficiency condition is equivalent to: 

∑ 𝜶𝒕,𝒔
𝑱
𝒕=𝟏
𝒕≠𝒔

+ ∑ 𝜶𝒔,𝒕
𝑱
𝒕=𝟏
𝒕≠𝒔

< 𝟏  ∀ 𝒔 ∈ [𝟏, 𝑱]    (3. 7) 

For the current empirical application, these sufficiency conditions are: 

(𝜶𝟐,𝟏 + 𝜶𝟑,𝟏) + (𝜶𝟏,𝟐 + 𝜶𝟏,𝟑) < 𝟏                     (3. 8 a) 
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(𝜶𝟏,𝟐 + 𝜶𝟑,𝟐) + (𝜶𝟐,𝟏 + 𝜶𝟐,𝟑) < 𝟏                     (3.8 b)    

(𝜶𝟏,𝟑 + 𝜶𝟐,𝟑) + (𝜶𝟑,𝟏 + 𝜶𝟑,𝟐) < 𝟏                                   (3.8 c) 

                      

3.2 Synthetic Data Generation 

Going further with the demonstrations provided in the following chapters, we undertook a 

simulation study to evaluate the performance of the misclassification models using synthetic data. 

More details of the simulation set up and the results of this analysis are outlined in this section. 

The choice conditions considered in the analysis have three alternatives, among which one of the 

alternatives is considered probabilistically during decision making. The number of independent 

variables is three, and all these variables were drawn from linear functions of independent normal 

distributions. The data generation process is designed to create synthetic data that is close to real-

world mode choice data with three independent variables and three alternatives: travel time, travel 

cost, and headway, and car, transit, and carpool, respectively. 

Table 1. Synthetic data generation for our three alternatives scenario 

Alternate Travel Time (min) Travel Cost (in $) Headway (in min) 

Car  7+30+UNIFORM (0,1) 2.0+15+UNIFORM (0,1) 0 

Transit 12+30+UNIFORM (0,1) 1.0+10+UNIFORM (0,1) 30+120+UNIFORM (0,1) 

Car-pool 9+30+UNIFORM (0,1) 1.5+10+UNIFORM (0,1) 60+120+UNIFORM (0,1) 

The mean parameter vector considered for the three independent variables is b = (1, -1, -

0.5); additionally the observed parts of the utilities include alternate specific constants (ASCs) 

given by ASC = (0, -0.4, -0.3). The ASC corresponding to the first alternative is fixed to zero (also 

during model estimation) because only utility differences matter, and we chose the first alternative 

as the base alternative. Also, along with the mean parameter vector and the alternate specific 

constant, the misclassification matrix was also given:  

|

𝑩𝒆𝒔𝒕 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 ↓ || 𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 → 𝑶𝒏𝒆 𝑻𝒘𝒐 𝑻𝒉𝒓𝒆𝒆
𝑶𝒏𝒆 𝟎. 𝟎𝟎𝟎 −𝟏.𝟎𝟎𝟎 −𝟐.𝟎𝟎𝟎
𝑻𝒘𝒐 −𝟏.𝟎𝟎𝟎      𝟎. 𝟎𝟎𝟎 −𝟐.𝟎𝟎𝟎

𝑻𝒉𝒓𝒆𝒆 −𝟏.𝟎𝟎𝟎   −𝟐.𝟎𝟎𝟎     𝟎. 𝟎𝟎𝟎

|           (3. 9) 

Synthetic data were generated assuming that the correct data generation is a Multinomial Logit 

Model while accounting for misclassification. Any given alternative s can be classified as one of 
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the J alternatives, so ∑ 𝛼𝑠,𝑡
𝐽
𝑡=1 = 1. Now, if i is the observed dependent variable, then the true 

latent response can be any of the J alternatives.  

The consideration probability of each variable was obtained using equation 3.4. For each 

observation record, the observed outcome was generated and compared to 𝑷𝒒(𝒊),in order to 

determine if the first alternative was considered during decision making. To be specific, if 

UNIFORM (0, 1) <𝑷𝒒(𝒊), then the choice set does not include car, if not all of the three alternatives 

are considered.  

3.2 Model Estimation 

We consider the Multinomial Logit Model while accounting for misclassification and 

Multinomial Logit Model that does not account for misclassification in this comparative analysis. 

Using the maximum likelihood (ML) inference approach, all parameters were estimated, and all 

model estimation work was undertaken using Gauss programming language. The mean β̅ and the 

standard deviation σ of each parameter were computed using the estimation results of the 100 

synthetic data sets. The performance of models were evaluated using two metrics: absolute 

percentage bias (APB) obtained by taking the absolute value of ( 
β−β̅

𝛽
 ) x 100 and the t-statistic 

calculated as ( 
β−β̅

𝜎
 ), where β is the true value of the parameter used during data generation. While 

APB values indicate the extent of bias, the t-statistic indicates whether the bias is statistically 

significant (i.e., whether parameter estimates are significantly different from their corresponding 

true values in the MNL model).  

3.3 Simulation Results 

Table 3. present the results of the simulation analysis for the MNL model accounting for 

misclassification and without misclassification scenarios, respectively. In Table 2, it can be seen 

that the mean APB value of the model and t-statistic are confirming that the MNL model, which 

accounts for misclassification, and that this is a correct method for modeling latent choice sets. 

Table 3 presents the estimation results of the model that doesn’t account for misclassification. It 

can be observed that the mean APB value of the model parameters is quite high. Also, the t-

statistics of comparison between the correct values and mean estimates of over 100 synthetic 

datasets show that the settings estimates are significantly different from their corresponding correct 

values.  
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Table 2.Simulation results MNL considering misclassification 

Variable True parameter Mean Absolute Percentage Bias SE T Stat 

Constant -0.400 -0.389 2.875 0.320 0.036 

Constant -0.300 -0.169 43.567 0.208 0.628 

First Variable 1.000 0.924 7.650 0.238 -0.322 

Second Variable -1.000 -0.914 8.560 0.209 0.409 

Third Variable -0.500 -0.664 32.720 0.170 -0.963 

 Additional misclassification parameters 

 
0.000 0.000 0.000 0.000 0.000 

 
-1.000 -1.037 0.000 0.167 -0.219 

 
-2.000 -2.359 0.000 0.601 -0.598 

 
-1.000 -1.117 0.000 0.233 -0.504 

 
0.000 0.000 0.000 0.000 0.000 

 
-1.000 -0.888 0.000 0.156 0.722 

 
-2.000 -1.678 0.000 0.389 0.829 

 
-1.000 -0.994 0.000 0.221 0.028 

 
0.000 0.000 0.000 0.000 0.000 

Mean APB     19.074 0.582 0.009 

 

Table 3.Simulation Results MNL without misclassification 

Variable True parameter Mean Absolute Percentage Bias SE T Stat 

Constant -0.400 -0.050 87.625 0.046 7.670 

Constant -0.300 -0.155 48.467 0.045 3.203 

First Variable 1.000 0.292 70.790 0.025 -28.660 

Second Variable -1.000 -0.295 70.490 0.025 28.771 

Third Variable -0.500 -0.232 53.680 0.024 11.421 

Mean APB     331.052 0.164 22.405 
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CHAPTER 4 

MISCLASSIFICATION IN TRAVEL SURVEYS AND IMPLICATIONS TO 

CHOICE MODELING: APPLICATION TO HOUSEHOLD AUTO 

OWNERSHIP 

In this chapter methods available in the econometrics literature were used to quantify and 

assess the impact of misclassification errors in auto ownership choice data. To demonstrate that, 

the modified maximum likelihood estimation and latent class models were adopted. 

4.1 Methodological Framework 

Hausman and his colleagues developed both parametric (maximum likelihood estimator 

(MLE)) and semi-parametric (monotone rank estimator) methods to consistently estimate discrete 

choice models under misclassification. The sufficiency condition needed for consistency is that 

the probability of misclassification is less than the probability of correct classification [2, 55, 56]. 

While the semi-parametric estimator is quite robust, the MLE will provide consistent estimates 

only if the misclassification probabilities are modeled correctly [55]. However, in their analysis, 

the estimates from the parametric method were quite similar to those obtained using the semi-

parametric method, indicating that the parametric approach is reasonable for several practical 

applications [1, 55]. For this part of the study, we adopted the modified maximum likelihood 

estimation method that is described below. 

Let q and i be the indices for households and alternatives, respectively. Let J denote the 

total number of alternatives in the choice set (in the current empirical context, J = 5 - zero, one, 

two, three, and four or more cars). Researchers used both ordered and unordered modeling 

frameworks for analyzing auto ownership choices and found that data fit in both the modeling 

frameworks is reasonably close [57-59]. In this study, auto ownership choices are assumed to be 

the outcome of the utility maximization principle in the unordered modeling framework. However, 

the methodology presented below can be easily extended to the ordered modeling framework. Let 

𝑈𝑞,𝑖, 𝑉𝑞,𝑖, 𝑎𝑛𝑑 𝜀𝑞,𝑖 denote the total, observed, and unobserved components of utility associated with 

alternative i for household q. In the utility framework, the probability that household q chooses 

alternative i is given by: 

𝑃𝑞(𝑖) = 𝑃(𝑈𝑞,𝑖 > 𝑈𝑞,𝑗) ∀ 𝑖 ≠ 𝑗 
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= 𝑃(𝑉𝑞,𝑖 + 𝜀𝑞,𝑖 > 𝑉𝑞,𝑗 + 𝜀𝑞,𝑗) ∀ 𝑖 ≠ 𝑗 

= 𝑷(𝜺𝒒,𝒋 − 𝜺𝒒,𝒊 < 𝑽𝒒,𝒊 − 𝑽𝒒,𝒋) ∀ 𝒊 ≠ 𝒋    (4. 1) 

Assuming the stochastic utility components (𝜺𝒒,𝒋 − 𝜺𝒒,𝒊) to be realizations from standard 

Gumbel distributions that are independent and identically distributed across alternatives and 

households will result in the standard multinomial logit (MNL) model. In the absence of 

misclassification, the probability of alternative i is given by: 

 𝑷𝒒(𝒊) =
𝒆
𝑽𝒒,𝒊

∑ 𝒆
𝑽𝒒,𝒋𝑱

𝒋=𝟏

        (4. 2) 

Let 𝛼𝑠,𝑡 denote the probability that alternative s is misclassified as alternative t. Any given 

alternative s can be classified as one of the J alternatives, so ∑ 𝛼𝑠,𝑡
𝐽
𝑡=1 = 1. Now, if i is the observed 

dependent variable, then the true latent response can be any of the J alternatives. So, the probability 

of observed dependent variable i under misclassification is given by: 

𝑷𝒒(𝒊) = ∑ 𝜶𝒕,𝒊 ×
𝒆𝑽𝒒,𝒕

∑ 𝒆
𝑽𝒒,𝒋𝑱

𝒋=𝟏

𝑱
𝒕=𝟏                   (4. 3) 

In the current empirical context with five alternatives, the misclassification matrix is given by: 

[
 
 
 
 
 
 
𝑩𝒆𝒔𝒕 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 ↓ ||𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 → 𝒁𝒆𝒓𝒐 𝑶𝒏𝒆 𝑻𝒘𝒐 𝑻𝒉𝒓𝒆𝒆 𝑭𝒐𝒖𝒓 +

𝒁𝒆𝒓𝒐 𝜶𝟏,𝟏 𝜶𝟏,𝟐 𝜶𝟏,𝟑 𝜶𝟏,𝟒 𝜶𝟏,𝟓

𝑶𝒏𝒆 𝜶𝟐,𝟏 𝜶𝟐,𝟐 𝜶𝟐,𝟑 𝜶𝟐,𝟒 𝜶𝟐,𝟓

𝑻𝒘𝒐 𝜶𝟑,𝟏 𝜶𝟑,𝟐 𝜶𝟑,𝟑 𝜶𝟑,𝟒 𝜶𝟑,𝟓

𝑻𝒉𝒓𝒆𝒆 𝜶𝟒,𝟏 𝜶𝟒,𝟐 𝜶𝟒,𝟑 𝜶𝟒,𝟒 𝜶𝟒,𝟓

𝑭𝒐𝒖𝒓 + 𝜶𝟓,𝟏 𝜶𝟓,𝟐 𝜶𝟓,𝟑 𝜶𝟓,𝟒 𝜶𝟓,𝟓 ]
 
 
 
 
 
 

             (4. 4) 

The diagonal elements in the above matrix indicate the probability that the observed and 

the correct response variable are the same or the probability of correct classification. Any observed 

response s in the survey data may be because of misclassification (i.e., the chosen alternative was 

some other alternative t but was misclassified as s or due to correct classification. The intuitive 

meaning of the sufficiency conditions for consistency is that the probability of observed data being 

correct must be larger than the probability of being misclassified. If these sufficiency conditions 

fail, the parameter estimates in the model can have opposite signs from a model that ignores 

misclassification, and there is little hope in recovering the true parameters consistently [2]. 

Mathematically, the sufficiency condition translates into the following equation for alternative s: 

∑ 𝜶𝒕,𝒔
𝑱
𝒕=𝟏
𝒕≠𝒔

< 𝜶𝒔,𝒔∀ 𝒔 ∈ [𝟏, 𝑱]              (4. 5) 
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Adding ∑ 𝛼𝑠,𝑡
𝐽
𝑡=1
𝑡≠𝑠

 to both sides of Equation (4.5) gives the following result: 

∑ 𝜶𝒕,𝒔
𝑱
𝒕=𝟏
𝒕≠𝒔

+ ∑ 𝜶𝒔,𝒕
𝑱
𝒕=𝟏
𝒕≠𝒔

< 𝜶𝒔,𝒔 + ∑ 𝜶𝒔,𝒕
𝑱
𝒕=𝟏
𝒕≠𝒔

∀ 𝒔 ∈ [𝟏, 𝑱]  (4. 6) 

But, 𝛼𝑠,𝑠 + ∑ 𝛼𝑠,𝑡
𝐽
𝑡=1
𝑡≠𝑠

= ∑ 𝛼𝑠,𝑡
𝐽
𝑡=1 = 1. So, the sufficiency condition is equivalent to: 

∑ 𝜶𝒕,𝒔
𝑱
𝒕=𝟏
𝒕≠𝒔

+ ∑ 𝜶𝒔,𝒕
𝑱
𝒕=𝟏
𝒕≠𝒔

< 𝟏∀ 𝒔 ∈ [𝟏, 𝑱]    (4. 7) 

For the current empirical application, these sufficiency conditions are: 

(𝜶𝟐,𝟏 + 𝜶𝟑,𝟏 + 𝜶𝟒,𝟏 + 𝜶𝟓,𝟏) + (𝜶𝟏,𝟐 + 𝜶𝟏,𝟑 + 𝜶𝟏,𝟒 + 𝜶𝟏,𝟓) < 𝟏   (4.8 a) 

(𝜶𝟏,𝟐 + 𝜶𝟑,𝟐 + 𝜶𝟒,𝟐 + 𝜶𝟓,𝟐) + (𝜶𝟐,𝟏 + 𝜶𝟐,𝟑 + 𝜶𝟐,𝟒 + 𝜶𝟐,𝟓) < 𝟏   (4.8 b) 

(𝜶𝟏,𝟑 + 𝜶𝟐,𝟑 + 𝜶𝟒,𝟑 + 𝜶𝟓,𝟑) + (𝜶𝟑,𝟏 + 𝜶𝟑,𝟐 + 𝜶𝟑,𝟒 + 𝜶𝟑,𝟓) < 𝟏   (4.8 c)  

(𝜶𝟏,𝟒 + 𝜶𝟐,𝟒 + 𝜶𝟑,𝟒 + 𝜶𝟓,𝟒) + (𝜶𝟒,𝟏 + 𝜶𝟒,𝟐 + 𝜶𝟒,𝟑 + 𝜶𝟒,𝟓) < 𝟏   (4.8 d)  

(𝜶𝟏,𝟓 + 𝜶𝟐,𝟓 + 𝜶𝟑,𝟓 + 𝜶𝟒,𝟓) + (𝜶𝟓,𝟏 + 𝜶𝟓,𝟐 + 𝜶𝟓,𝟑 + 𝜶𝟓,𝟒) < 𝟏   (4.8 e)  

The analyst must estimate 𝐽 × (𝐽 − 1) additional parameters to account for 

misclassification. However, in the current empirical context, all the auto ownership alternatives 

are ordered. So, it is expected that the misclassification probability 𝛼𝑠,𝑡decreases considerably as 

|𝑠 − 𝑡| increases. So, several entries of the misclassification matrix are expected to be zero. 

It can be seen that the misclassification probabilities in matrix 4.4 do not vary across household q. 

The model can be generalized to allow misclassification probabilities to differ across different 

demographic population segments. For instance, two sets of misclassification probabilities can be 

estimated separately for low and high-income households. The sufficiency conditions in Equation 

(3.7) must hold within low and high-income households separately (but not necessarily across the 

entire population). However, the number of misclassification parameters can explode easily as the 

number of segments increases. To avoid this problem, we used the latent class modeling approach 

that probabilistically assigns each household to latent segments each with its own set of 

misclassification probabilities. The probability of belonging to each latent segment can be 

specified as a function of several household socio-demographics. Dustmann and van Soest [60] 

and Sullivan [61] used similar methods to allow misclassification probabilities to differ across 

population groups. 
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Let l denote the index for latent class, and L indicate the total number of latent classes in 

the population. The conditional probability of observed dependent variable i for household q with 

observed utility 𝑉𝑞,𝑖
𝑙  for segment l i,s given by: 

𝑷𝒒
𝒍 (𝒊) = ∑ 𝜶𝒕,𝒊

𝒍 ×
𝒆
𝑽𝒒,𝒕
𝒍

∑ 𝒆
𝑽𝒒,𝒋
𝒍

𝑱
𝒋=𝟏

𝑱
𝒕=𝟏       (4.9) 

The sufficiency conditions for MLE to provide consistent estimates are as follows: 

∑ 𝜶𝒕,𝒔
𝒍𝑱

𝒕=𝟏
𝒕≠𝒔

+ ∑ 𝜶𝒔,𝒕
𝒍𝑱

𝒕=𝟏
𝒕≠𝒔

< 𝟏∀ 𝒔 ∈ [𝟏, 𝑱] 𝒂𝒏𝒅 ∀ 𝒍 ∈ [𝟏, 𝑳]  (4. 10) 

where 𝛼𝑠,𝑡
𝑙  is the probability that alternative s is misclassified as alternative t in segment l. 

Lastly, the unconditional probability of observed dependent variable i is given by: 

𝑷𝒒(𝒊) = ∑ 𝑷𝒒
𝒍 (𝒊) × 𝒘𝒒(𝒍)

𝑳
𝒍=𝟏  𝒘𝒉𝒆𝒓𝒆 ∑ 𝒘𝒒(𝒍)

𝑳
𝒍=𝟏 = 𝟏            (4.11) 

During model estimation, 𝛼𝑡,𝑠
𝑙  and 𝑤𝑞(𝑙) were parameterized to ensure that ∑ 𝛼𝑠,𝑡

𝑙𝐽
𝑡=1 = 1 and 

∑ 𝑤𝑞(𝑙)
𝐿
𝑙=1 = 1. For instance, the diagonal elements of the misclassification matrix were not 

estimated but calculated as: 1 − ∑ 𝛼𝑠,𝑡
𝑙𝐽

𝑡=1
𝑡≠𝑠

. Similarly, 𝑤𝑞(𝑙) was parameterized as a function of 

household socio-demographics 𝒁𝑞
𝑙  using a multinomial logit formulation as follows: 

 𝒘𝒒(𝒍) =
𝒆𝜸𝒍

′𝒁𝒒
𝒍

∑ 𝒆
𝜸𝒓
′𝒁𝒒

𝒓
𝑳
𝒓=𝟏

,      (4. 12) 

where: 𝜸𝑙
′ is the parameter vector corresponding to 𝒁𝑞

𝑙  and all elements of 𝜸𝑙
′ for one of the 

segments are normalized to zero for identification. 

Several metrics can be computed to characterize the population belonging to different 

segments [62]. For instance, the mean value 𝑧̅𝑙 (within each segment) of each attribute 𝑧𝑞
𝑙  that 

determine segment membership can be computed as: 

𝒛̅𝒍 =
∑ 𝒘𝒒(𝒍)×𝒛𝒒

𝒍
𝒒

∑ 𝒘𝒒(𝒍)𝒒
     (4.13) 

Also, the size of each segment l can be obtained by summing the latent class probabilities 𝑤𝑞(𝑙) 

across all households as ∑ 𝑤𝑞(𝑙)𝑞 . Next, the share 𝑅𝑙 of the segment, l was computed by dividing 

∑ 𝑤𝑞(𝑙)𝑞  by the total number of households in the sample. 

Lastly, the shares of different auto ownership alternatives can be calculated as: 

𝑺𝒍(𝒊) =
∑ 𝑷𝒒

𝒍 (𝒊)×𝒘𝒒(𝒍)𝒒

∑ ∑ 𝒘𝒒(𝒍)𝑳
𝒍=𝟏𝒒

 𝒂𝒏𝒅 𝑺(𝒊) = ∑ 𝑹𝒍 × 𝑺𝒍(𝒊)
𝑳
𝒍=𝟏     (4. 14) 
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where 𝑆𝑙(𝑖) and 𝑆(𝑖) are shares of alternative i in segment l and the entire sample, respectively.  

4.2 Empirical Application 

Household auto ownership decisions are critical determinants of several short-term travel 

choices that household members make on a day-to-day basis. Understandably, most travel demand 

models have an explicit model to predict the household auto ownership levels that are subsequently 

used as an explanatory variable in several downstream models. In some cases, the auto ownership 

variable is also used to constrain the choice set of downstream choices instead of being used as a 

more explanatory variable. For instance, mode choice models of non-working household members 

who do not have a car (because the household vehicle was taken by the working member in the 

household) exclude drive alone auto mode completely. So, any errors in the auto ownership 

forecasts can propagate downstream through the entire modeling system.  

Given this particular importance associated with auto ownership decisions, the latent class 

modeling framework described in the methodology section was used to explore, quantify, and 

assess the impact of misclassification errors of auto ownership responses in household travel 

surveys. The data for the analysis was obtained from the Southern California Household Travel 

Survey (HTS) that collected detailed activity and travel diary information from a representative 

sample of 35,000 households. This dataset was recently used to analyze auto ownership decisions 

using latent choice set Manski model [57]. After excluding records with missing information on 

explanatory variables considered in this study, the data size was reduced to about 30,000 

households. The frequency distribution of the dependent variable of analysis in this study, auto 

ownership, was zero cars (7.7%), one car (31.3%), two cars (40.3%), three cars (14.5%), and four 

or more cars (6.2%). The relatively lower percentages for the extreme alternatives – zero cars and 

four or more cars – may  be due to misclassification. For instance, low shares of zero cars may be 

due to households with one car underreporting or households with zero cars over-reporting.  

4.2.1 Statistical Fit Comparison 

Several models were developed for this dissertation including MNL, MNL with 

misclassification (‘MNL MC’), latent class MNL (‘LC MNL’), and latent class MNL with two 

sets of misclassification probabilities (‘LC MNL MC’). For brevity, only the results of the “LC 

MNL MC” models are presented in the Table 45 along with the misclassification probabilities in 

‘MNL MC’ model for comparison purposes. Although the ‘MNL MC’ model has nine 

misclassification probabilities, only six of them were estimated because diagonal elements were 
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obtained using the constraint that each row in the misclassification matrix must add up to 1. By 

the same logic, only nine additional parameters were estimated in the ‘LC MNL MC’ model 

compared to the ‘LC MNL’ model. The likelihood ratio (LR) test of comparison between the MNL 

(log-likelihood, LL =-28,235) and ‘MNL_MC’ (-28,141) models was 188.89, which  is greater 

than the critical chi-squared statistic of 12.59 corresponding to six degrees of freedom at 95% 

confidence level. This suggests that the model that accounts for misclassification is statistically 

better than the standard MNL model. While the latent class model with two segments could be 

estimated, our attempts to estimate models with more than two segments were not successful due 

to convergence problems even with the expectation maximization (EM) algorithm. So, the latent 

class model with two classes (‘LC MNL’) was adopted for subsequent analysis. Given that the 

MNL and ‘LC MNL’ models are non-nested, they cannot be compared using the LR test. So, 

Bayesian Information Criterion (BIC) computed as  −2 × 𝐿𝐿 + 𝑘 × 𝐿𝑁(𝑁), where k is the number 

of parameters and N is the sample size, was used to compare the two models. Between two non-

nested models, a model with lower BIC value is preferred over the other model. The BIC values 

for the MNL and ‘LC MNL’ models are 57,110 and 56,836, respectively suggesting superior data 

fit in the ‘LC MNL’ model. Lastly, the ‘LC MNL MC’ that accounts for different misclassification 

errors in the two latent segments has nine additional parameters compared to the ‘LC MNL’ model. 

The LR test statistic of comparison between the ‘LC MNL’ (log-likelihood, LL = -27,887) and 

‘LC MNL MC’ (-27,837) models is 100.67, which is greater than the critical chi-squared statistic 

of 16.92 corresponding to nine degrees of freedom at a 95% confidence level. Overall, the ‘LC 

MNL MC’ model that allows misclassification rates to vary between the two segments was found 

to the best model in this study.  

4.2.2 Misclassification Errors in Un-Segmented Model 

Table 4 presents the results of the misclassification components for the ‘MNL MC’ and 

‘LC MNL MC’ models. All non-zero non-diagonal elements in the three matrices were statistically 

different from 0 at a 95% confidence level. The results in Table 4.a for the ‘MNL MC’ model 

show significant misclassification of extreme alternatives compared to intermediate alternatives. 

Specifically, 25.2% of ‘zero cars’ responses were wrongly classified as ‘one car’, whereas 29.2% 

and 7.7% of ‘four or more cars’ responses were wrongly classified as ‘three cars’ and ‘two cars,’ 

respectively. There was no evidence for misclassification for the ‘two cars’ alternative, which is 
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also the most common auto ownership level in the data. Lastly, 18.4% of ‘three cars’ responses 

were wrongly classified as ‘four or more cars’ alternative.  

4.2.3 Latent Class Model and Misclassification Errors 

The ‘MNL MC’ model restricts that misclassification probabilities are the same for all 

households. To relax this assumption, the ‘LC MNL MC’ model was estimated. The results 

corresponding to the latent class membership component in 5 indicate that high-income 

households, households with more workers, owner-occupied households, single-family detached 

households, and households with fewer senior adults aged 80 years and above are more likely to 

belong to the first segment. The mean values of attributes within each segment were computed 

using Equation 4.13 and shown in Table 45. These mean values are consistent with the parameter 

signs and the earlier interpretations of the latent class membership component. Also, 43% of 

households were found to belong to the first segment, whereas the remaining 57% of households 

belonged to the second segment. The shares of different auto ownership levels in 5 indicate that 

auto ownership levels tend to be higher in the first segment, whereas they are skewed towards the 

lower end in the second segment. For instance, the shares of extreme auto ownership levels (‘zero 

cars’ and ‘four or more cars’) are almost flipped in the two segments: (2.4%, 11.4%) in the first 

segment and (11.6%, 2.2%) in the second segment.  

Table 4.Misclassification Probabilities 

Table 4a Misclassification in Un-Segmented Model 

Best Estimated ↓ ||Observed → Zero One Two Three Four + 

Zero 0.7477 0.2523 0.0000 0.0000 0.0000 

One 0.0200 0.9471 0.0329 0.0000 0.0000 

Two 0.0000 0.0000 1.0000 0.0000 0.0000 

Three 0.0000 0.0000 0.0000 0.8157 0.1843 

Four or more 0.0000 0.0000 0.0766 0.2928 0.6306 

Table 4b Misclassification in Segment 1 

Best Estimated ↓ ||Observed → Zero One Two Three Four + 

Zero 1.0000 0.0000 0.0000 0.0000 0.0000 

One 0.0000 0.9448 0.0552 0.0000 0.0000 

Two 0.0000 0.0000 1.0000 0.0000 0.0000 
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Table 4. Continued 

Best Estimated↓||Observed→ Zero One Two Three Four + 

Three 0.0000 0.0000 0.0000 0.8951 0.1049 

Four or more 0.0000 0.0000 0.0000 0.0000 1.0000 

Table 4c Misclassification in Segment 2 

Best Estimated ↓ ||Observed → Zero One Two Three Four + 

Zero 0.8703 0.1297 0.0000 0.0000 0.0000 

One 0.0140 0.9308 0.0552 0.0000 0.0000 

Two 0.0000 0.0000 0.9651 0.0349 0.0000 

Three 0.0000 0.0000 0.0000 0.7967 0.2033 

Four or more 0.0000 0.0000 0.2487 0.4019 0.3494 

Table 5. Latent Segmentation Component 

Explanatory Variable 

Segment 2 

(Base: Segment 1) 
Mean Attribute Value 

  Parameter T-Stat Segment 1 Segment 2 

Constant 3.9543 15.920     

Household Income (Base: $35,000 or less)        

   $35,001-$50,000 -0.7066 -4.743 0.10 0.15 

   $50,001-$100,000 -1.3177 -8.979 0.38 0.26 

   >$100,000 -2.0158 -11.415 0.41 0.12 

Ratio of workers to driving age adults -4.0542 -14.195 0.78 0.32 

Ratio of adults 80 years or older to driving age adults 1.7288 6.398 0.03 0.13 

Housing Type (Base category: Mobile & Other)         

   Single family detached household -0.3706 -3.018 0.74 0.61 

   Owner-occupied household -0.2191 -1.496 0.77 0.64 

Size of Segment      43% 57% 

Mode Shares within Segment       

 Zero Cars     2.37 11.64 

 One Car     18.89 40.51 

 Two Cars     46.06 36.22 

 Three Cars     21.29 9.44 

 Four or More Cars     11.38 2.20 
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Moreover, the misclassification probabilities were found to be different for the two latent 

population segments (see 4b and 4c). Interestingly, there were no misclassification errors for 

extreme alternatives in the first population segment. Also, respondents in the first segment were 

found to over-report auto ownership levels. Specifically, 5.5% of ‘one car’ and 10.5% of ‘three 

cars’ responses were wrongly classified as ‘two cars’ and ‘four or more cars’, respectively. On the 

contrary, the misclassification errors of extreme alternatives were significant in the second 

segment. For instance, only 34.9% of ‘four or more cars’ responses were correctly classified with 

more than 40%, and 25% responses wrongly classified as ‘three cars’ and ‘two cars,’ respectively. 

These misclassification errors in the second segment are significantly higher than the errors in the 

un-segmented ‘MNL MC’ model. Other misclassification probabilities for intermediate 

alternatives were also higher compared to corresponding misclassification probabilities in ‘MNL 

MC’ model except ‘one car’ responses. 

Interestingly, while the un-segmented model found no evidence for misclassification error 

in the ‘two cars’ alternative, 3.5% of ‘two cars’ responses were found to be wrongly classified as 

‘three cars’ in the second segment. These results suggest that not only is misclassification 

significant, but that it also varies across different population segments. Lastly, it can be seen that 

all the misclassification probabilities in both the un-segmented and segmented models satisfy the 

sufficiency conditions in Equation 8. For instance, for the fifth alternative, ‘four or more cars’ in 

the second segment, the sufficiency condition is (𝛼1,5 + 𝛼2,5 + 𝛼3,5 + 𝛼4,5) + (𝛼5,1 + 𝛼5,2 +

𝛼5,3 + 𝛼5,4) < 1 which is equivalent to (0.0000+0.0000+0.0000+0.2033) + 

(0.0000+0.0000+0.2487+0.4019) < 1 or 0.8539 < 1 which is true.  

4.2.4 Utility ComponentTable 5, presents the results of the utility specification for the two 

latent segments. The ‘two cars’ alternative was chosen as the base alternative in the utility 

specification of both segments. In some cases, an alternate specification based on ‘household auto-

sufficiency’ was used. Auto sufficiency is an alternate-specific variable with three categories 

(excluding the zero cars alternative) –low (fewer cars than driving age (16 years) adults), equal 

(same number of cars as driving age adults), and high (more cars than driving age adults). For each 

variable, both the standard way (where the ‘two cars’ alternative was chosen as the reference 

alternative) and as an interaction with the auto-sufficiency variable were tested and the 

specification that provided better data fit was chosen. Also, the constants in the utility specification 
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were segmented by the number of driving age adults in the household. Given that there are several 

continuous variables in the utility specification, there is no clear behavioral interpretation for the 

constants.  

4.2.5 First Latent Segment Utility Component 

Households with more senior adults aged 80 years and above are more likely to choose 

high auto-sufficiency levels. Higher income levels were associated with higher auto ownership 

levels beyond two, whereas lower income levels were associated with lower inclination to own 

less than two cars. Households with higher educational attainment (associate’s degree and higher) 

are less likely to own less than two cars compared to households with an education attainment of 

high school degree and lower. Single-family detached and non-rental households are less likely to 

own fewer cars, whereas non-rental households tend to own more than two cars. Households 

residing in residential neighborhoods with high household density are more likely not to own a car 

as well as less likely to own more than two cars. Also, a higher percentage of residence zones in 

high-quality transit areas (HQTA) and transit priority areas (TPA) are associated with lower auto 

ownership levels. Lastly, households in high transit accessibility neighborhoods are less inclined 

to choose higher auto ownership levels. Interestingly, auto ownership preferences of households 

in the first segment were not related to the average commute distance within the household. 

4.2.6 Second Latent Segment Utility Component 

Households with more workers, pre-driving age children (<16 years), and senior adults 

(aged 65-79 years) are more inclined to own at least one car. Also, households with more senior 

adults aged 65-79 years are less likely to choose high auto-sufficiency levels. Households with 

more senior adults 80 years and above are less inclined to choose high sufficiency alternatives and 

more likely to choose zero and low sufficiency levels compared to equal sufficiency alternatives. 

Similar to the results in the first segment, higher (lower) income levels were associated with higher 

(lower) auto ownership levels. Households with higher educational attainment are less inclined to 

own fewer than two cars. While households in single-family detached households are less inclined 

to own fewer cars, households in apartments have different auto ownership preferences. Also, 

owner-occupied households tend to own three cars and less inclined to own fewer than two cars 

compared to rental households. High residential density, high bus stop density, and a high 

percentage of HQTA and TPA were associated with lower auto-sufficiency levels. Interestingly, 

transit accessibility was not found to influence auto ownership choices for households in the 
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second segment. Lastly, higher average commute distance was found to be associated with a lower 

likelihood of owning fewer than two cars. This does not imply causality because it is possible that 

households with more cars chose to reside in suburban neighborhoods with longer commutes. 

4.3 Elasticity Effects Analysis 

To quantify the impact of ignoring misclassification errors on parameter estimates and 

model forecasts, elasticity effects that indicate the percentage change in the shares of different auto 

ownership levels for a unit change in an explanatory variable were computed. First, market shares 

of different auto ownership alternatives were computed in the base scenario using Equation 4.14. 

Next, the market shares were recomputed in the policy scenario using the same equation but with 

a unit increase in the variable for which the elasticity is being calculated. The unit change is 0 to 

1 in the case of dummy variables such as high-income indicator variable and one unit increment 

in case of ordinal variables such as workers indicator variable. Table 7 present the results of the 

elasticity analysis for the ‘LC MNL’ and ‘LC MNL MC’ models. The last column presents the 

absolute difference between the elasticity effects of the two models. The first number under the 

column ‘LC MNL MC’ indicates that households with income between $35,001 and $50,000 are 

57.3% less likely not to own cars compared households with income less than $35,000. Other 

numbers in the table can be interpreted similarly. For instance, households with one additional 

worker are, on average, 27.6% more likely to own four or more cars. The elasticity estimates of 

the two models are quite similar for the ‘one car’ and ‘two cars’ alternatives. This is consistent 

with the fact that the misclassification probabilities of these intermediate alternatives are relatively 

low. Alternatively, the elasticity effects of extreme alternatives (four or more cars, three cars, and 

zero cars) can differ significantly, which is again consistent with higher misclassification errors 

associated with these alternatives. For instance, the elasticity effects of the variable representing 

the household income with ‘four or more cars’ alternative differ by up to 75 percentage points. 

These results suggest that misclassification errors can result in biased parameter estimates, leading 

to incorrect model forecasts and policy sensitivity.  
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Table 6. Utility Component  

Explanatory Variables 
Generic Parameters 

Parameters Specific to Choice Alternatives 

0 1 3 4+ 

Seg 1 Seg 2 Seg 1 Seg 2 Seg 1 Seg 2 Seg 1 Seg 2 Seg 1 Seg 2 

Household Demographic & Socio-Economic Variables                               

Number of Driving Age Adults in the Household                     

One       3.304 3.446 3.919 2.595 -1.406 -3.468 -4.004 -0.986 

Two           -1.614 0.910 -1.862 -3.510 -5.597 -2.493 

Three                   1.531 -2.508 -2.267   

Four or more                   3.009 -1.388     

Household Income (Base: Household income $35,000 or less)                               

$35,001-$50,000       -2.052 -1.702 -1.046 -0.611         

$50,001-$100,000       -2.052 -2.213 -1.046 -0.907     0.599   

>$100,000       -3.105 -3.016 -1.443 -1.415 0.299 0.982 1.161   

Housing Type (Base category: Mobile & Other)                               

Single family detached household       -1.093 -0.227 -0.799               

Single family attached household                            

Multi-family household         0.518   0.272         

Highest Educational Attainment (Base: Less than high school)                               

High school         -0.660                   

Associate degree       -1.526 -1.095 -0.422 -0.182   0.377       

Bachelor degree       -1.561 -1.552   -0.423             

Graduate degree       -1.344 -1.909   -0.358             
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Table 6. Continued 

Explanatory Variables 
Generic Parameters 

Parameters Specific to Choice Alternatives 

0 1 3 4+ 

Seg 1 Seg 2 Seg 1 Seg 2 Seg 1 Seg 2 Seg 1 Seg 2 Seg 1 Seg 2 

Owner-occupied household       -1.423 -1.731 -0.347 -0.468 0.469 1.124 1.587   

Average commute distance (in miles/100)         -6.278   -0.828             

Ratio of workers to driving age adults         -1.563                   

Low sufficiency 0.691                           

Ratio of pre-driving age children to driving age adults         -0.393                   

Ratio of adults 65-79 years or older to driving age adults         -0.455                   

High sufficiency   -0.406                        

Ratio of adults 80 years or older to driving age adults         0.387                   
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Table 7. Elasticity Effects  

Explanatory Variable Alternative 
LC MNL 

MC 

LC 

MNL 

Absolute 

Difference 

Household Income $35,001-$50,000 

Zero -57.3% -57.6% 0.3% 

One -11.4% -13.6% 2.1% 

Two 14.4% 15.1% 0.7% 

Three 13.5% 15.1% 1.6% 

Four or more 26.8% 19.9% 6.9% 

Household Income $50,001-$100,000 

Zero -67.3% -66.4% 0.8% 

One -25.2% -26.8% 1.6% 

Two 17.2% 19.0% 1.7% 

Three 41.4% 39.6% 1.8% 

Four or more 102.1% 70.2% 32.0% 

Household Income >$100,000 

Zero -76.2% -76.0% 0.3% 

One -42.4% -44.4% 1.9% 

Two 16.3% 19.9% 3.6% 

Three 77.1% 69.9% 7.2% 

Four or more 217.0% 141.9% 75.1% 

Single family detached household 

Zero -7.3% -8.2% 0.9% 

One -12.3% -13.2% 1.0% 

Two 7.4% 6.8% 0.7% 

Three 8.5% 11.6% 3.1% 

Four or more 16.4% 18.4% 1.9% 

Owner-occupied household 

Zero -59.6% -59.0% 0.6% 

One -4.9% -7.1% 2.2% 

Two 1.7% 2.4% 0.8% 

Three 46.3% 35.9% 10.3% 

Four or more 104.6% 108.7% 4.1% 

Number of workers Zero -38.3% -34.1% 4.2% 
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Table 7. Continued 

Explanatory Variable Alternative LC MNL MC LC MNL Absolute Difference 

 

One -1.6% -4.7% 3.1% 

Two 0.8% 2.2% 1.4% 

Three 13.9% 13.3% 0.6% 

Four or more 27.6% 20.4% 7.2% 

Number of senior adults aged 80 years and above 

Zero -5.1% 6.5% 11.7% 

One 13.7% 11.8% 1.9% 

Two -5.4% -5.8% 0.4% 

Three -6.9% -8.9% 2.0% 

Four or more -12.5% -9.0% 3.4% 

 

4.4 Conclusion 

Household Travel Survey (HTS) data is prone to several errors either due to intentional or 

unintentional misinformation provided by the respondents. Ignoring these errors while modeling 

travel decisions using standard discrete choice models can result in biased parameter estimates. In 

this study, methods available in the econometrics literature for handling misclassification were 

used to quantify and assess the impact of misclassification in travel survey data. Individually, 

misclassification in household auto ownership choices was analyzed using Southern California 

HTS. The auto ownership survey response was recorded into five categories – zero, one, two, 

three, and four or more cars and was modeled as an unordered discrete response variable. The 

results indicate that misclassification errors can be as high as 40%, particularly for the extreme 

auto ownership levels. Comparatively, the misclassification in ‘one car’ and ‘two cars’ alternatives 

was lower. However, un-segmented models restrict that misclassification rates are the same for the 

entire population. To relax this assumption, latent class auto ownership model that allows the 

misclassification probabilities to vary across different latent segments was developed. The 

empirical analysis uncovered two latent classes in the population about auto ownership preferences 

and also significant differences in the misclassification rates between the two segments. Statistical 

fit comparisons and elasticity analysis illustrate that models that ignore misclassification have not 

only worse data fit but also biased parameter estimates with significant policy implications.  
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 The modern suite of advanced travel demand models including tour-based and activity-

based models encompass several discrete choice models to predict daily activity and travel 

preferences of people. The underlying idea of these models is that people travel to participate in 

different types of events at locations dispersed in space and time. So, the critical response variables 

that form the basis of these models are activity purpose, activity duration, mode, departure time, 

and destination. All these responses in HTS data are prone to measurement errors and must be 

analyzed using similar modeling methods to those used in this study to quantify and assess the 

impact of misclassification on parameter estimates of respective choice models. Also, it is a 

common practice for researchers to collect their data to analyze new empirical contexts with 

limited revealed preference data. For example, several studies used web-based surveys that elicit 

preferences for new vehicle technologies including connected and autonomous vehicles and 

electric vehicles. It is a useful exercise to explore the quality of these survey responses by 

quantifying misclassification to demonstrate the validity and confidence of these study findings. 

Lastly, the models developed in this study can be applied to other transportation disciplines. For 

instance, in the transportation safety arena, police reported injury severity in crash databases is a 

key dependent variable that safety engineers analyze to explore the factors that determine the 

severity of a crash conditionally at the crash occurrence. These injury severity recordings are prone 

to errors either due to the subjectivity of classification or the stress that police are subjected to 

during crash incidents. Ignoring these errors can potentially result in over or under-estimation of 

critical variables such as seat belt effectiveness and alcohol involvement.  
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CHAPTER 5 

A MODIFIED GENERALIZED ORDERED RESPONSE MODEL TO 

HANDLE MISCLASSIFICATION IN INJURY SEVERITY  

The objective of this part of the study is to develop a statistical model to analyze police-

reported injury severity while accounting for potential misclassification errors by building upon 

the existing literature in econometrics. 

5.1 Methodological Framework 

The ordered response (OR) framework assumes a single latent propensity function that is 

mapped into one of J ordered outcomes by J-1 threshold parameters that are strictly ordered. The 

latent propensity function is specified as the sum of linear-in-parameters deterministic component 

(which is a function of observed attributes) and a random component (that represents all the 

unobserved factors that influence the ordered outcome). The specification of the OR model is 

completed by assuming a continuous probability density function for the random component. The 

two most commonly used assumptions for the density function of the unobserved part are the 

standard normal distribution (leading to the ordered response probit (ORP) model) and the standard 

logistic distribution (pointing to the ordered response logit (ORL) model) [63, 64]. Earlier 

applications of the OR models assumed constant threshold parameters that do not vary across 

observations. However, for the same reasons that the latent propensity function varies across 

observations, the threshold parameters can vary systematically across observations. This idea led 

to the formulation of the Generalized Ordered Response (GOR) framework that parameterized 

thresholds as a function of observation-specific attributes [65]. The next significant extension of 

the OR framework is capturing the unobserved heterogeneity of parameters in the propensity and 

threshold components, i.e., the effects of different observed attributes can vary across observations 

because of the moderating influence of unobserved factors not considered in the model [66]. 

Researchers developed the mixed GOR (MGOR) model that assumes the parameters in the 

propensity and threshold components to be stochastic realizations from multivariate probability 

density functions to address this problem [65, 67]. This study adopted the mixed generalized 

ordered probit (MGORP) framework for modeling injury severity outcomes conditional on crash 

occurrence.  
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Let 𝑞 (1,2, … . 𝑄) be the index for crash and 𝑗(1,2,… 𝐽) be the index for injury severity 

outcome. In the current context, 𝐽 = 4 with the four ordered alternatives being no injury (𝑗 = 1), 

possible injury (𝑗 = 2), non-incapacitating injury (𝑗 = 3), and incapacitating or fatal injury 

(𝑗 = 4). In the OR framework, the latent propensity 𝑦𝑞
∗ is related to the 𝐾 × 1 vector of observed 

attributes 𝒙𝑞 (including constant) as:  

𝒚𝒒
∗ = 𝜷𝒒

′ 𝒙𝒒 + 𝜺𝒒      (5. 1) 

where 𝜷𝑞is the vector of parameters corresponding to the observed attributes 𝒙𝑞 and 𝜀𝑞 is the 

stochastic component of propensity assumed to be a realization from the standard normal 

distribution, i.e. 𝜀𝑞~𝑁(0,1).  The subscript q to the parameter vector indicates unobserved 

heterogeneity across observations. The 𝜷𝑞 vector is assumed to be a realization from a multivariate 

normal distribution with mean vector 𝐛 and 𝐾 × 𝐾 covariance matrix𝚺, i.e. 𝜷𝑞~𝑁(𝒃, 𝚺). Equation 

(4.1) can now be re-written as follows: 

𝒚𝒒
∗ = 𝒃′𝒙𝒒 + 𝜷̃𝒒

′ 𝒙𝒒 + 𝜺𝒒 = 𝒃′𝒙𝒒 + 𝜼𝒒   (5. 2) 

where 𝜷̃𝑞~𝑁(𝟎𝐾, 𝚺) and 𝟎𝐾 is a 𝐾 × 1 vector of zeros. The variance of the effective error term 

𝜂𝑞is equal to 𝒙𝑞
′ 𝚺𝒙𝑞 + 1. 

The latent propensity 𝑦𝑞
∗ is mapped into ordinal outcomes by threshold parameters 𝜓𝑞

𝑘 as follows: 

𝒚𝒒 = 𝒋   𝒊𝒇   𝝍𝒒
𝒋−𝟏

< 𝒚𝒒
∗ < 𝝍𝒒

𝒋
    (5. 3) 

The strict monotonicity of thresholds is ensured by using the following parameterization: 

𝝍𝒒
𝒌 = 𝝍𝒒

𝒌−𝟏 + 𝒆𝒙𝒑(𝜸𝒌,𝒒
′ 𝒛𝒌,𝒒),𝝍𝒒

𝟎 = −∞,𝝍𝒒
𝑱 = ∞,𝒂𝒏𝒅 𝝍𝒒

𝟏 = 𝒆𝒙𝒑(𝜶𝟏)   (5. 4) 

where 𝒛𝑘,𝑞 is 𝐿𝑘 × 1 vector of observed attributes affecting the kth threshold and 𝜸𝑘,𝑞 is the 

corresponding vector of coefficients, which is assumed to be a stochastic realization from a 

multivariate normal distribution with mean 𝒄𝑘 and 𝐿𝑘 × 𝐿𝑘 covariance matrix 𝛀𝑘, i.e., 

𝜸𝑘,𝑞
′ ~𝑁(𝒄𝑘, 𝛀𝑘). Please note that the observed attributes 𝒙𝑞 can include a constant because in 

Equation 5.4 all the thresholds are constrained to be positive using the exponential 

parameterization.  
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Let 𝜽𝑞 = (𝜸1,𝑞
′ , 𝜸2,𝑞

′ , … 𝜸𝐽−1,𝑞
′ )

′
 and 𝒄 = (𝒄1

′ , 𝒄2
′ , … . 𝒄𝐽−1

′ )
′
 denote (∑ 𝐿𝑘

𝐽−1
𝑘=1 ) × 1 vectors of 

vertically stacked parameters 𝜸𝑘,𝑞 and 𝒄𝑘. The probability of ordinal outcome j conditional on 

random parameter vectors 𝜸𝑘,𝑞 in thresholds can be obtained as follows: 

𝑃(𝑦𝑞 = 𝑗|𝜽𝑞) = 𝑃(𝜓𝑞
𝑗−1

< 𝑦𝑞
∗ < 𝜓𝑞

𝑗
) = 𝑃(𝜓𝑞

𝑗−1
< 𝒃′𝒙𝑞 + 𝜂𝑞 < 𝜓𝑞

𝑗
) 

= 𝑃(𝜓𝑞
𝑗−1

− 𝒃′𝒙𝑞 < 𝜂𝑞 < 𝜓𝑞
𝑗
− 𝒃′𝒙𝑞) 

   = 𝜱(
𝝍𝒒

𝒋
−𝒃′𝒙𝒒

√𝒙𝒒
′ 𝜮𝒙𝒒+𝟏

) − 𝜱(
𝝍𝒒

𝒋−𝟏
−𝒃′𝒙𝒒

√𝒙𝒒
′ 𝜮𝒙𝒒+𝟏

)                           (5. 5) 

The unconditional probability of ordinal outcome j is obtained by integrating the random 

components 𝜸𝑘,𝑞 as follows: 

𝑷(𝒚𝒒 = 𝒋) = ∫ [𝜱(
𝝍𝒒

𝒋
−𝒃′𝒙𝒒

√𝒙𝒒
′ 𝜮𝒙𝒒+𝟏

) − 𝜱(
𝝍𝒒

𝒋−𝟏
−𝒃′𝒙𝒒

√𝒙𝒒
′ 𝜮𝒙𝒒+𝟏

)]
 

𝜽𝒒
𝒇(𝜽𝒒)𝒅𝜽𝒒     (5. 6) 

where 𝑓(𝜽𝑞) is the multivariate normal probability density function of 𝜽𝑞~𝑁(𝒄, 𝚵) and 𝚵 is a 

(∑ 𝐿𝑘
𝐽−1
𝑘=1 ) × (∑ 𝐿𝑘

𝐽−1
𝑘=1 ) block diagonal matrix with 𝛀𝑘 as the kth diagonal matrix.  

5.1.1 Modified Likelihood Function to Handle Misclassification  

Let 𝛼𝑠,𝑡 denote the probability that ordinal alternative s is misclassified as ordinal alternative t. 

Any given alternative s can be classified as one of the J alternatives, so ∑ 𝛼𝑠,𝑡
𝐽
𝑡=1 = 1. Now, if 𝑗 is 

the observed ordinal outcome, then the true latent response can be any of the J alternatives. So, the 

probability of observed ordinal outcome 𝑗 under misclassification is given by: 

𝑷̃𝒒(𝒚𝒒 = 𝒋) = ∑ 𝜶𝒕,𝒊 × 𝑷(𝒚𝒒 = 𝒋)𝑱
𝒕=𝟏    (5. 7) 

In the current empirical context with four injury severity alternatives, the misclassification matrix 

is given by: 

[
 
 
 
 
 

𝑩𝒆𝒔𝒕 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 ↓ ||𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 → 𝒋 = 𝟏 𝒋 = 𝟐 𝒋 = 𝟑 𝒋 = 𝟒
𝒋 = 𝟏,𝑵𝒐 𝒊𝒏𝒋𝒖𝒓𝒚 𝜶𝟏,𝟏 𝜶𝟏,𝟐 𝜶𝟏,𝟑 𝜶𝟏,𝟒

𝒋 = 𝟐, 𝑷𝒐𝒔𝒔𝒊𝒃𝒍𝒆 𝒊𝒏𝒋𝒖𝒓𝒚 𝜶𝟐,𝟏 𝜶𝟐,𝟐 𝜶𝟐,𝟑 𝜶𝟐,𝟒

𝒋 = 𝟑,𝑵𝒐𝒏 − 𝑰𝒏𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒂𝒕𝒊𝒏𝒈 𝑰𝒏𝒋𝒖𝒓𝒚 𝜶𝟑,𝟏 𝜶𝟑,𝟐 𝜶𝟑,𝟑 𝜶𝟑,𝟒

𝒋 = 𝟒, 𝑰𝒏𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒂𝒕𝒊𝒏𝒈 𝑰𝒏𝒋𝒖𝒓𝒚 𝜶𝟒,𝟏 𝜶𝟒,𝟐 𝜶𝟒,𝟑 𝜶𝟒,𝟒 ]
 
 
 
 
 

  (5. 8) 
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The diagonal elements in the above matrix indicate the probability that the observed and the true 

response variable are the same or the probability of correct classification. Any observed ordinal 

outcome s in the crash database may be because of misclassification (i.e., the true severity outcome 

was some other alternative t but was misclassified as s) or due to correct classification. The 

intuitive meaning of the sufficiency conditions for consistency is that the probability of observed 

data being correct must be larger than the likelihood of being misclassified. If these sufficiency 

conditions fail, the parameter estimates in the model can have opposite signs from a model that 

ignores misclassification, and there is little hope in recovering the true parameters consistently [2]. 

Mathematically, the sufficiency condition translates into the following equation for alternative s: 

∑ 𝜶𝒕,𝒔
𝑱
𝒕=𝟏
𝒕≠𝒔

< 𝜶𝒔,𝒔∀ 𝒔 ∈ [𝟏, 𝑱]     (5. 9) 

Adding ∑ 𝛼𝑠,𝑡
𝐽
𝑡=1
𝑡≠𝑠

 to both sides of Equation 9 gives the following result: 

∑ 𝜶𝒕,𝒔
𝑱
𝒕=𝟏
𝒕≠𝒔

+ ∑ 𝜶𝒔,𝒕
𝑱
𝒕=𝟏
𝒕≠𝒔

< 𝜶𝒔,𝒔 + ∑ 𝜶𝒔,𝒕
𝑱
𝒕=𝟏
𝒕≠𝒔

∀ 𝒔 ∈ [𝟏, 𝑱]  (5. 10) 

But, 𝛼𝑠,𝑠 + ∑ 𝛼𝑠,𝑡
𝐽
𝑡=1
𝑡≠𝑠

= ∑ 𝛼𝑠,𝑡
𝐽
𝑡=1 = 1. So, the sufficiency condition is equivalent to: 

∑ 𝜶𝒕,𝒔
𝑱
𝒕=𝟏
𝒕≠𝒔

+ ∑ 𝜶𝒔,𝒕
𝑱
𝒕=𝟏
𝒕≠𝒔

< 𝟏∀ 𝒔 ∈ [𝟏, 𝑱]     (5. 11) 

For the current empirical application, these sufficiency conditions are: 

(𝜶𝟐,𝟏 + 𝜶𝟑,𝟏 + 𝜶𝟒,𝟏) + (𝜶𝟏,𝟐 + 𝜶𝟏,𝟑 + 𝜶𝟏,𝟒) < 𝟏        (5.12 a) 

(𝜶𝟏,𝟐 + 𝜶𝟑,𝟐 + 𝜶𝟒,𝟐) + (𝜶𝟐,𝟏 + 𝜶𝟐,𝟑 + 𝜶𝟐,𝟒) < 𝟏        (5.12 b) 

(𝜶𝟏,𝟑 + 𝜶𝟐,𝟑 + 𝜶𝟒,𝟑) + (𝜶𝟑,𝟏 + 𝜶𝟑,𝟐 + 𝜶𝟑,𝟒) < 𝟏        (5.12 c)  

(𝜶𝟏,𝟒 + 𝜶𝟐,𝟒 + 𝜶𝟑,𝟒) + (𝜶𝟒,𝟏 + 𝜶𝟒,𝟐 + 𝜶𝟒,𝟑) < 𝟏        (5.12 d)  

The analyst must estimate 𝐽 × (𝐽 − 1) additional parameters to account for misclassification. 

However, in the current empirical context, all the alternatives are ordered. So, it is expected that 

the misclassification probability 𝛼𝑠,𝑡decreases considerably as |𝑠 − 𝑡| increases. So, several entries 

of the misclassification matrix are expected to be zero. The parameters of the MGORP model were 

estimated using the Maximum Simulated Likelihood (MSL) estimation approach using 150 Halton 

draws. 
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5.2 Empirical Application 

The data used for undertaking the analysis was obtained from the 2014 General Estimates 

System (GES) database maintained by the National Highway Traffic Safety Administration 

(NHTSA)’s National Center for Statistics and Analysis. The GES database is a nationally 

representative sample of police-recorded accidents that involved at least one motor vehicle 

traveling on a traffic-way and resulted in property damage, injury, or death. The database provided 

detailed information on about 53,000 accidents involving 93,000 vehicles.  Including (a) details of 

all people involved in the crash (age, gender, seating position, seat belt use, alcohol involvement, 

whether the occupant was ejected, and injury severity level sustained), (b) attributes of all vehicles 

involved in the crash (body type of the car and whether the vehicle rolled-over), roadway geometric 

attributes (details regarding the regulatory signs/control at the accident location, number of lanes, 

roadway type, and speed limit), environment factors (lighting and weather conditions), and crash 

characteristics (type of collision, whether the collision occurred at an intersection, and number of 

vehicles involved). The injury severity of each occupant was recorded on a five-point KABCO 

ordinal scale: (1) No injury, (2) Possible injury, (3) Non-incapacitating injury, (4) Incapacitating 

injury, and (5) Fatal injury. Given that the focus of this analysis is on accidents involving colliding 

motor-vehicles, all non-collision crash records, motorcycle crashes, and crashes involving 

bicyclists and pedestrians were excluded from the analysis. Also, the analysis was limited to driver 

injury severity. So, all records corresponding to passengers were removed. Lastly, after cleaning 

the data and eliminating the records with missing information on key explanatory variables and 

the injury severity variable, the size of the data reduced to about 42,100 driver records from 25,708 

crashes. In this final estimation sample, the percentage of drivers who sustained fatal injury was 

less than 1%. Because of this low percentage of the fatal injury records, the fatal and incapacitating 

injury categories were combined and labeled as ‘incapacitating or fatal’ injury. The distribution 

of the dependent variable in the final estimation sample was as follows: no injury (69%), possible 

injury (12.3%), non-incapacitating injury (12.2%), and incapacitating or fatal injury (6.5%).  

Past research findings, statistical significance, and parameter intuitiveness guided the 

model estimation. Only parameters that were statistically significant at a 95% confidence level 

were retained in the final model specification. Two models – misclassification-adjusted MGORP 

(MMGORP) and standard MGORP model that ignores misclassification – were estimated for 

comparison purposes. 
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5.2.1 Misclassification Rates 

 Table 8. Misclassification Probabilities in MMGORP Model8 presents the estimated 

misclassification matrix in the best specification of the MMGORP model. The identification 

conditions in Equations (5.12a-5.12d) are satisfied by the estimated misclassification rates. 

Interestingly, the misclassification rates of all injury severity categories were found to be zero 

except for the non-incapacitating injury. Specifically, 32.2% of non-incapacitating injuries were 

wrongly classified as possible injuries. Alternatively, only 67.8% of non-capacitating injuries were 

correctly classified. This is consistent with the expectation that there may be considerable 

subjectivity while classifying less severe crashes without significant bodily harm into possible and 

non-incapacitating categories.  

Table 8. Misclassification Probabilities in MMGORP Model  

𝐵𝑒𝑠𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 ↓ ||𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 → No Injury Possible Injury Non-Incapacitating Injury Incapacitating or Fatal Injury 

No Injury 1.0000 0.0000 0.0000 0.0000 

Possible Injury 0.0000 1.0000 0.0000 0.0000 

Non-Incapacitating Injury 0.0000 0.3218 0.6782 0.0000 

Incapacitating or Fatal Injury 0.0000 0.0000 0.0000 1.0000 

 

5.2.2 Parameters Interpretation 

Table 7. Elasticity Effects 9 presents the parameter estimates of the MMGORP model and 

the bias between the parameter estimates of MMGORP (𝛽𝑀𝑀𝐺𝑂𝑅𝑃) and MGORP (𝛽𝑀𝐺𝑂𝑅𝑃) models 

computed as: 

𝑩𝒊𝒂𝒔 =
(𝜷𝑴𝑮𝑶𝑹𝑷−𝜷𝑴𝑴𝑮𝑶𝑹𝑷)

𝜷𝑴𝑴𝑮𝑶𝑹𝑷
× 𝟏𝟎𝟎     (5. 12) 

All the parameter estimates have the same sign in the two models except for the constant 

parameter in the last threshold. However, there was considerable bias in the parameter estimates 

of MGORP models that ignore misclassification as shown in the last column of Table 7. Elasticity 

Effects 9. The MGORP model seems to under-estimate the parameters in the propensity and second 

threshold and over-estimate the parameters in the third threshold relative to the MMGORP model. 

This finding is consistent with the over-representation of the less severe possible injury category 
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due to misclassification in the more severe non-incapacitating injury category. So, the MGORP 

model skews the propensity to the left and the second and third thresholds to the right to account 

for over-representation of the possible injury category and under-representation of the non-

incapacitating injury category. Also, the bias in the threshold parameters was higher than bias in 

the propensity parameters. Specifically, the average absolute percentage bias values were 11.1%, 

18.0%, 43.8%, and 22.7% for the propensity, first, second, and third threshold parameters, 

respectively. So, the bias in the second threshold parameters between possible and non-

incapacitating injury categories and the third threshold parameters between incapacitating and non-

incapacitating injury categories were higher compared to other parameters. This is consistent with 

the significant misclassification rate in the non-incapacitating injury category. However, the bias, 

although relatively lower in magnitude, propagates to the propensity and other threshold 

parameters.  

From an interpretation standpoint, higher propensity values translate into higher 

probabilities of more severe injury outcomes. Also, higher values for the second threshold will 

lead to a higher probability for possible injury and lower probability for non-incapacitating injury. 

Similarly, higher values of the third threshold will lead to a higher probability of non-

incapacitating injury and a lower probability of incapacitating or fatal injury outcome. Everything 

else being the same, men tend to sustain less severe injuries compared to women. Older drivers 

are more likely to sustain severe injuries compared to younger drivers. As expected, driving under 

the influence of alcohol and driver ejection increase whereas seat belt use lowers the propensity to 

sustain severe injuries. Drivers in SUVs, vans, light trucks, and heavy trucks have lower risk 

propensity compared to passenger car drivers. Drivers in rolled-over vehicles tend to sustain severe 

injuries. Crashes along two-way divided roadways and ramps tend to be more severe compared to 

those occurring on one-way and two-way undivided roadways. Drivers in crashes along multi-lane 

roadways have higher risk propensity than those who have accidents along single lane roads. 

Interestingly, the speed limit was not found to influence the risk propensity of drivers. This is 

probably because of the correlation between roadway geometry variables (roadway type and some 

lanes) and speed limit. Intersection crashes have marginally higher risk propensity compared to 

accidents elsewhere. The kind of traffic control at the intersection also had a significant impact on 

severity. Specifically, accidents at controlled intersections including traffic signals, stop, and yield 

signs have higher risk propensity compared to crashes at uncontrolled intersections. There is no 
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base category for collision type variable because the constant in the propensity was completely 

segmented by the type of crash. Front-front, angled, and opposite direction sideswipe collisions 

tend to be more severe compared to front-rear and same direction sideswipe collisions. Drivers 

involved in accidents with fixed objects have a higher risk of propensity compared to drivers 

involved in vehicular collisions. Dawn and cloudy conditions have marginally higher risk 

propensity compared to dark and daylighting conditions. The higher the number of vehicles 

involved in a crash, the higher the risk propensity becomes. Significant unobserved heterogeneity 

was observed in the effect of vehicle body type, vehicle rollover indicator, roadway type, surface 

condition, traffic control type, and lighting conditions, as indicated by the standard deviation 

parameters in Table 7. Elasticity Effects 9. Also, all the three thresholds were found to be stochastic, 

as noted in the standard deviation parameters on the constants in these thresholds. These results 

underscore the importance of unobserved heterogeneity in crash severity modeling.  

5.2.3 Statistical Fit Comparison 

The final log-likelihood values of the MGORP and MMGORP models were -36402.40 and 

-36350.29, respectively. The MMGORP model that handles misclassification has only one 

additional parameter (i.e., the misclassification rate corresponding to non-incapacitating injury) 

and nests the MGORP model as a particular case. So, these two models can be compared using the 

log-likelihood ratio (LR) test. The LR statistic of comparison between the two models was equal 

to −2 × (−36402.40 + 36350.29) = 104.22, which is considerably higher than the critical chi-

squared value of 3.96 corresponding to one degree of freedom. This suggests a superior data fit in 

the MMGORP model. 

Table 9.The MMGORP Model Results 

 

Propensity Second Threshold Third Threshold 

 Coeff. Bias Coeff. Bias Coeff. Bias 

Explanatory Variables 

   Constant   -1.459 -48.39 0.171 -161.93 

        Standard Deviation   0.329 -16.09 0.248 -49.47 
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Table 9. Continued 

Explanatory Variables 

Gender (Base: Female)       

   Male -0.327 -7.25 -0.220 -8.68 -0.188 4.20 

 Age (Base: <=15 years)         

   16 to 19 years -0.316 -11.38      

   20 to 25 years -0.132 -10.79      

   46 to 60 years 0.110 -2.90      

   61 to 75 years 0.125 -1.69   -0.076 18.87 

   >=76 years      -0.147 38.16 

DUI (Base: No)        

   Yes 0.311 -5.37     

Wearing a seat belt (Base: No)        

  Yes 1.367 -13.12     

Ejected        

   Yes 1.778 -21.90     

Body Type (Base: Passenger car)        

   SUV -0.203 -10.75     

   Van -0.155 -11.84     

   Light Truck -0.274 -8.64     

   Heavy Truck -1.291 -14.38     

        Standard deviation 0.509 -20.83     

Vehicle rolled over (Base: No)        
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Explanatory Variables 

   Yes 1.723 -40.93   0.817 -61.12 

       Standard Deviation 0.810 -66.70     

Roadway type (Base: One-way Two-way 

Undivided) 
      

   Two-way Divided Unprotected  0.206 -3.78     

   Two-way Divided Protected  0.247 -3.24 0.275 -50.36   

   Ramp 0.196 -18.87     

      Standard deviation 0.289 0.38     

# of lanes (Base: One lane)        

   Two Lanes 0.195 -12.62     

   Three Lanes  0.178 -15.19     

   Four or More Lanes 0.213 -14.85     

Surface condition (Base: Normal)       

Wet     0.071 17.26 

   Snow -0.258 -7.75     

       Standard deviation 0.409 -8.18     

   Ice -0.321 -6.72     

       Standard deviation 0.371 -6.14     

Traffic control (Base: No control)        

   Traffic Signal -0.075 -4.16     

   Stop Sign -0.323 -4.02     

       Standard deviation 0.362 -3.93     
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Explanatory Variables 

   Yield Sign -0.611 2.06     

       Standard deviation 0.378 8.10     

Type of Collision       

   Front End Collision 1.066 -8.89 0.384 -50.29 -0.172 74.56 

   Rear End Collision -0.499 -10.11       

   Angled Collision 0.436 -7.57 0.293 -44.44 -0.083 76.08 

   Side Swipe Same Direction -0.437 -10.48      

   Side Swipe Opposite Direction 0.284 -1.73   -0.260 36.59 

Crash occurred at Intersection        

   Yes 0.071 -5.90     

Lighting conditions (Base: Day/Dark 

lighting) 
      

   Dark no lighting   -0.570 -65.17   

   Dawn 0.147 -8.98     

       Standard deviation 0.328 -5.55     

   Cloudy 0.061 -16.34 -0.235 -65.25 0.066 -4.98 

Fixed object crash          

   Yes 0.749 -13.28    -0.107 114.33 

Number of vehicles (Base: <3)         

   3 or more 0.155 -10.56 0.311 -46.01   

First Threshold  

Constant -0.257 (% Difference = 8.98%) 
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Explanatory Variables 

        Standard Deviation -0.976 (% Difference = -27.00%) 

Log-likelihood at convergence  

 MGORP Model -36,350.29 

MMGORP Model -36,402.40 

 

5.3 Elasticity Effects Analysis 

The bias in a parameter estimate of a variable does not necessarily mean significantly 

different policy implications. This is because the parameter estimates in Table 7. Elasticity Effects 

10 do not directly indicate the magnitude of variable effects. To gain understanding into the relative 

effects of different variables and the policy implications of misclassification, the aggregated 

elasticity effects were calculated as the percentage change in the shares of varying injury severity 

levels for a unit change in an explanatory variable. First, the shares of different injury severity 

categories were computed in the base scenario by summing the probabilities obtained using 

Equation 5.6 across all observations. Next, the shares were recomputed in the policy scenario using 

the same equation but with a unit increase in the variable for which the elasticity is being 

calculated. Given that all variables in the final model specification are indicator variables, the unit 

change is 0 to 1. Table 10 presents the results of the elasticity analysis for the MMGORP model 

and the percentage bias in the MGORP model elasticity effects. The elasticity corresponding to 

the ‘Gender’ variable for the ‘incapacitating or fatal’ injury was -11.7%, indicating that male 

drivers are 11.7% less likely to sustain an ‘incapacitating or fatal’ injury compared to women in 

the event of a crash. The next set of four numbers in the first row indicate the bias of elasticity 

effects in the MGORP model that ignores misclassification. For instance, the MGORP model over-

estimates the elasticity effect for ‘incapacitating or fatal’ injury by 7%. Other numbers in the table 

can be interpreted similarly. From the relative magnitude of elasticity effects, it can be seen that 

ejection from the vehicle, front-front vehicle collisions, vehicle rollover, and fixed object collisions 

are most likely scenarios to result in ‘incapacitating or fatal’ injury. Similarly, seat belt use, drivers 

in heavy trucks, rear-rear collisions, yield sign traffic control, and younger drivers are least likely 

scenarios to result in ‘incapacitating or fatal’ injury. The results indicate considerable bias in the 
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elasticity estimates of the MGORP model. Furthermore, the bias is much higher for the possible 

injury and non-incapacitating injury categories compared to ‘no injury’ and ‘incapacitating or 

fatal’ injury categories. For instance, drivers under the influence of alcohol are 21% more likely 

to sustain non-incapacitating injury. However, the MGORP model underestimates this elasticity 

effect by 30%. The average absolute bias values for the four injury severity levels are 6%, 58%, 

24%, and 4%, respectively.1 These findings are consistent with the statistically significant 

misclassification rate corresponding to the possible and non-incapacitating injury category in   8. 

Overall, the results indicate that misclassification in injury severity data can result in biased 

parameter estimates leading to incorrect policy sensitivity results. 

Table 10. Elasticity Effects of MMGORP Model2 

 

GORP- Misclassification % Bias of MGORP Model 

Explanatory Variables/ 

Alternative NI PI NII IFI NI PI NII IFI 

Gender (Base: Female)                 

   Male 10.5 -27.1 -27.3 -11.7 7.0 3.9 4.4 7.1 

 Age (Base: Less than <=15 years)                 

   16 to 19 years 9.2 -11.6 -21.6 -32.8 1.2 26.8 11.0 -3.0 

   20 to 25 years 3.9 -4.3 -9.1 -15.0 2.4 37.5 14.4 -2.8 

   46 to 60 years -3.3 3.2 7.8 14.3 11.9 62.0 28.1 5.9 

   61 to 75 years -3.8 3.5 3.2 25.6 13.6 67.1 33.8 -2.3 

   >=76 years -6.2 5.1 2.4 46.3 12.0 72.9 -56.8 0.4 

DUI                 

   Yes -9.6 6.9 21.3 44.5 10.4 84.3 29.8 3.6 

Wearing a seat belt                 

                                                           
1 The unusually high bias for the ‘Ramp’ traffic control for possible injury was excluded from the average bias 

calculation. This high bias value is due to extremely low elasticity effect (0.1%) in the MMGORP model. 
2 NI: No injury; PI: Possible injury; NII: Non-Incapacitating injury, IFI: Incapacitating or Fatal injury 
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Table 10. Continued 

 

GORP- Misclassification % Bias of MGORP Model 

Explanatory Variables/ Alternative NI PI NII IFI NI PI NII IFI 

  No 

-42.7 -9.8 58.3 
305.

4 
6.5 

-

276.

5 

60.1 -5.1 

Ejected                 

   Yes 

-54.0 
-

25.3 
49.4 

402.

1 
-1.8 

-

139.

0 

90.2 
-

16.7 

Vehicle Type (Base: Passenger car)                 

   SUV 
6.0 -6.8 

-

13.8 

-

22.2 
2.3 35.2 13.6 -2.7 

   Van 
4.5 -5.3 

-

10.8 

-

17.5 
1.1 32.8 12.4 -3.8 

   Light Truck 
8.1 -9.7 

-

18.7 

-

29.0 
4.3 34.0 15.0 -0.6 

   Heavy Truck 
25.3 

-

55.5 

-

63.7 

-

69.9 
2.0 1.4 3.9 2.1 

Vehicle rolled over                  

   Yes 

-47.5 
-

30.4 

160.

4 

186.

9 

-

18.8 

-

152.

7 

-

14.7 
-4.9 
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GORP- Misclassification % Bias of MGORP Model 

Explanatory Variables/ Alternative NI PI NII IFI NI PI NII IFI 

Roadway type (Base: One-way or two-way 

undivided) 
                

   Two Way Divided Unprotected Roadway -6.2 38.2 9.6 17.3 11.3 -37.6 32.3 11.2 

   Two Way Divided Protected Roadway -7.4 6.7 17.8 34.4 11.7 69.3 29.8 5.9 

   Ramp 
-6.5 0.1 11.5 37.1 1.3 

3410

.3 
29.4 -3.1 

Number of lanes (Base: One Lane)                 

   Two Lanes -5.7 5.8 14.3 26.8 0.6 46.8 15.7 -5.4 

   Three Lanes  -5.3 5.0 12.6 23.8 -2.1 44.6 12.4 -8.4 

   Four or More Lanes -6.3 6.4 15.6 29.2 -1.6 41.8 12.3 -8.2 

Surface conditions (Base: Normal)                 

   Snow 
5.4 

-

15.7 

-

16.5 
-9.4 0.6 0.2 -2.8 4.8 

   Ice 
7.4 

-

16.9 

-

20.3 

-

18.9 
2.7 7.9 3.8 0.9 

Traffic control type (Base: No control)                 

   Traffic Signal 2.2 -2.3 -5.1 -8.7 10.2 52.2 23.8 4.1 

   Stop Sign 
7.6 

-

16.7 

-

20.6 

-

20.0 
5.0 12.1 6.8 2.0 

   Yield Sign 
14.2 

-

28.4 

-

36.8 

-

42.6 
8.0 20.5 12.1 1.2 

Type of collision                 
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GORP- Misclassification % Bias of MGORP Model 

Explanatory Variables/ Alternative NI PI NII IFI NI PI NII IFI 

   Front End Collision 
-33.6 53.1 35.1 

223.

0 
9.6 -4.9 11.7 4.4 

   Rear End Collision 
13.6 

-

20.8 

-

34.0 

-

47.4 
2.1 19.8 10.0 -1.4 

   Angled Collision -12.9 49.7 20.2 66.1 6.8 -21.5 -2.8 3.0 

   Side Swipe Same Direction 
12.5 

-

17.4 

-

29.8 

-

43.0 
1.7 22.5 10.4 -2.0 

   Side Swipe Opposite Direction 
-8.8 6.5 -2.0 75.3 14.6 86.2 

146.

2 
0.2 

Crash occurred at intersection                  

   Yes -2.1 2.2 5.1 9.1 8.2 51.8 23.0 2.4 

Lighting Conditions (Base: Day)                 

   Dawn 

-5.2 -2.2 8.0 33.1 12.3 

-

172.

5 

59.6 2.2 

   Cloudy 
-1.8 

-

18.9 
12.9 7.0 -3.7 -75.2 1.2 0.8 

Fixed object collision (Base: No)                 

   Yes 
-23.2 8.7 37.7 

166.

6 
2.1 

174.

6 
-3.4 1.0 

Number of vehicles involved (Base: <3 

vehicles) 
                

   3 or more -4.7 41.0 5.2 8.7 3.3 -41.7 6.1 -8.4 
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5.4 Conclusions 

The police-reported injury severity recordings in crash databases are prone to errors. 

Previous research that measured the discordance between police-reported injury severity data and 

hospital/ambulance records confirmed the presence of misclassification errors in traditional crash 

databases. However, these databases remain the primary data sources for safety analysis including 

aggregate crash frequency and disaggregate injury severity analysis conditional on crash 

occurrence. Ignoring the errors in the injury severity data during modeling can lead to biased and 

inconsistent parameter estimates. However, it is surprising that none of the earlier studies 

attempted to quantify and adjust the bias caused by misclassification in injury severity models. In 

this study, the misclassification-adjusted mixed generalized ordered response probit (MMGORP) 

model was developed to analyze driver injury severity using the 2014 General Estimates System 

(GES) data. The results indicate that more than 30% of non-incapacitating injuries were wrongly 

classified as possible injuries. Also, the MGORP model that ignores misclassification has not only 

lower data fit but also considerable bias in the parameter and elasticity effects leading to incorrect 

policy implications. The model developed in this study can be used to investigate misclassification 

errors in ordinal response variables in other empirical contexts beyond transportation safety.  

  However, there are several possible avenues for future research. For instance, the 

misclassification rates in the model developed do not vary across observations. However, earlier 

studies found that the discordance rates between police and hospital records vary as a function of 

different factors including the driver, crash, and geographic factors. The model developed in this 

study can be extended to allow the misclassification rates to vary across different segments. For 

instance, two sets of misclassification rates can be estimated separately for crashes that occur in 

urban and rural neighborhoods. The sufficiency conditions in Equation 11 must hold within urban 

and rural neighborhoods separately (but not necessarily in the two regions together). However, the 

number of misclassification parameters can explode easily as the number of segments increases. 

To avoid this problem, latent class models that probabilistically assigns each driver/crash record 

to latent segments each with its own set of misclassification rates can be developed [60, 61]. The 

probability of belonging to each latent segment can be specified as a function of the driver, vehicle, 

and crash variables. Recently, this latent modeling approach was used for analyzing 

misclassification rates in household auto-ownership responses in travel surveys  [18]. Next, not 

only injury severity recordings but also other variables in crash databases are prone to 
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misclassification. For instance, police tend to over-estimate seat-belt use in road casualties [68]. 

Seat-belt use also has the endogeneity problem whereby there can be common unobserved factors 

that influence the decision to wear a seat-belt and the injury severity outcome [69].  In this context, 

future research that develops an integrated modeling framework to account for misclassification 

in critical explanatory variables in addition to the injury severity response variable is warranted.  
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CHAPTER 6 

GENERALIZED EXTREME VALUE MODEL TO HANDLE 

MISCLASSIFICATION IN TELECOMMUTING FREQUENCY CHOICES 

DATA  

In this chapter, we are investigating the misclassification extended in the telecommuting 

frequency data using a form of the General Extreme Value Model, recently developed by other 

scholars. Specifically, the Negative Binomial Model re-casted as the Multinomial Logit Model 

with maximum count set to 31 days while accounting for misclassification errors. 

6.1 Methodological Framework 

The number of days that a person telecommutes in a month are count responses variables. 

Count data are typically analyzed using parametric count models including Poisson and Negative 

Binomial (NB) models. While the Poisson model is suited for count data with equidispersion 

property (i.e., mean is equal to variance), the NB model is apt for modeling over-dispersed data 

(i.e., mean is less than variation) [70]. Another common feature of count data is the ‘excess zeroes’ 

problem, i.e., zero count outcome is over-represented, making it difficult for standard count models 

to account for additional probability mass associated with the zero count outcomes. In the past, 

researchers used the two-step hurdle or zero-inflated models with an explicit modeling step to 

account for probability mass associated with zero count outcome [71, 72]. In the current empirical 

context, the response variables of interest are the misclassification errors for the number of days a 

person telecommutes in a month. It is very likely that this data is skewed to the right, leading to 

over-representation of multiple non-zero count outcomes. However, it is difficult to extend the 

hurdle and zero-inflated models to account for the additional probability mass associated with 

various count outcomes (i.e., excess ones, excess twos, etc.).  Recently, Generalized Extreme 

Value (GEV) count models that can easily handle the probability mass deviations of multiple count 

outcomes were developed [73].  Each worker has several or zero days that he/she telecommutes in 

a  corresponding month. So, it is likely that there are workers-specific unobserved factors that 

influence the number of days chosen to telecommute across the month. These common unobserved 

factors that remain the same across all time-periods can be captured by introducing worker-specific 

random effects into the mean parameter of the count model. The current study adopted the 
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Generalized Extreme Value (GEV) count modeling framework for jointly modeling the number of 

days a worker telecommutes while accounting for misclassification errors and the characteristics 

of telecommuting frequency data. More specifically, the Negative Binomial Model re-casted as 

the Multinomial Logit Model with the maximum count set to 31 days that account for 

misclassification.  

For the Negative Binomial model, the probability of observing count outcome y conditional 

on the expected value parameter λ and dispersion parameter r >0 is given by: 

𝑷(𝒀 = 𝒚)  =  (
𝒓

𝒓+𝝀
)
𝒓 𝜞(𝒓+𝒚)

𝜞(𝒚+𝟏)𝜞(𝒓)
+ (

𝝀

𝒓+𝝀
)
𝒚

                             (6. 1) 

Where Γ is the gamma function defined as follows: 

Γ (t) =  {
∫ 𝒙𝒕−𝟏𝒆−𝒙∞

𝒙=𝟎
𝒅𝒙  𝒇𝒐𝒓 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒏𝒐𝒏 − 𝒊𝒏𝒕𝒆𝒈𝒆𝒓 𝒕

(𝒕 − 𝟏)!  𝒇𝒐𝒓 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒊𝒏𝒕𝒆𝒈𝒆𝒓 𝒕
                   (6. 2) 

Also, the Gamma function, Γ has the following property: 

𝜞(𝒕 + 𝟏) =  𝒕𝜞(𝒕)  𝒇𝒐𝒓 𝒂𝒏𝒚 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒕                      (6. 3) 

The variance of the negative binomial distribution 𝜆 +
𝜆2

𝑟
 which is always greater than the expected 

value parameter λ, the Negative Binomial Model is better suited for handling over-dispersion as 

mentioned earlier. The NB model collapses to the Poison Model for large values of the dispersion 

parameter r and to the Geometric Model when 𝑟 = 1. It is important that the parameter r will not 

take integer values.  

It was previously shown by other scholars [73] that the Negative Binomial Model could be 

recast as special cases of the simplest GEV model, the multinomial logit. Considering that, the 

probability that an outcome k with observed utility 𝑉̃𝑘 is chosen from a set of K mutually exhaustive 

and exclusive outcomes is given by:  

𝑷(𝒀 = 𝒚) =
𝒆𝑽̃𝒚

⅀𝒌=𝟎
𝟑𝟏 𝒆𝑽̃𝒌

 , where  𝑽̃𝒌 =  𝑳𝑵 [
𝜞(𝒓+𝒌)

𝜞(𝒓)𝜞(𝒌+𝟏)
+ (

𝝀

𝒓+𝝀
)
𝒌

]            (6. 4) 

Eq. 6.4 can be viewed as the probability expression of an MNL model with infinite ordinal 

outcomes (starting from 0) in the choice set and the observed utility of count outcome k given 

by
  

      𝑉̃𝑘
=  𝐿𝑁 [

𝛤(𝑟+𝑘)

𝛤(𝑟)𝛤(𝑘+1)
+ (

𝜆

𝑟+𝜆
)
𝑘

].  
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𝑷(𝒀 = 𝒚) =

𝜞(𝒓+𝒚)

𝜞(𝒚+𝟏)𝜞(𝒓)
+(

𝝀

𝒓+𝝀
)
𝒚

⅀𝒌=𝟎
∞ 𝜞(𝒓+𝒌)

𝜞(𝒓)𝜞(𝒌+𝟏)
+(

𝝀

𝒓+𝝀
)
𝒌                                         (6. 5) 

It can be seen that more r → ∞, this utility expression collapses to LN [
𝜆𝑘

𝑘!
], which is the utility 

expression in the Poisson model. 

Let 𝑘(0,1,2, …𝐾) be the index for the number of days the worker chooses to telecommute outcome. 

In the current context, 𝐾 = 31 with the outcome being zero days  (𝑘 = 0), one day (𝑘 = 1), two 

days, (𝑘 = 2)and so on until last the day of the month (𝑘 = 31).  

Modified Likelihood Function to Handle Misclassification 

Let 𝝆𝒔,𝒕 be the probability that count outcome s is misclassified as count outcome t, where 0 ≤ 𝜌 ≤

1.  Any given outcome s can be classified as one of the K outcomes, so ∑ 𝝆
𝒔,𝒕

 𝐾
𝑡=1 = 1. Now, if 𝑘 

is the observed ordinal outcome, then the true response can be any of the K outcomes. So, the 

probability of observed ordinal outcome 𝑘 under misclassification is given by: 

𝑷 (𝒀 = 𝒌) = ∑ 𝝆𝒔,𝒕  × 𝑷(𝒚 = 𝒕)𝑲
𝒕=𝟏                                       (6. 6) 

In the current empirical context with 31 days to telecommute outcomes, the misclassification 

matrix is given by: 

[
 
 
 
 
 
 
 
 
𝑩𝒆𝒔𝒕 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 ↓ ||𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 → 𝒌 = 𝟎 𝒌 = 𝟏 𝒌 = 𝟐 𝒌 = 𝟑 . 𝒌 = 𝟑𝟏

𝒌 = 𝟎 − 𝝆𝟐
𝟏 𝝆𝟐

𝟐 𝝆𝟐
𝟑 . 𝝆𝟐

𝟑𝟏

𝒌 = 𝟏 𝝆𝟏
𝟏 − 𝝆𝟐

𝟏 𝝆𝟐
𝟐 . 𝝆𝟐

𝟑𝟎

𝒌 = 𝟐 𝝆𝟏
𝟐 𝝆𝟏

𝟏 − 𝝆𝟐
𝟏 . 𝝆𝟐

𝟐𝟗

𝒌 = 𝟑 𝝆𝟏
𝟑 𝝆𝟏

𝟐 𝝆𝟏
𝟏 − . 𝝆𝟐

𝟐𝟖

… . . .  . . .
𝒌 = 𝟑𝟎 𝝆𝟏

𝟑𝟎 𝝆𝟏
𝟐𝟗 𝝆𝟏

𝟐𝟖 𝝆𝟏
𝟐𝟕 . 𝝆𝟐

𝟏

𝒌 = 𝟑𝟏 𝝆𝟏
𝟑𝟏 𝝆𝟏

𝟑𝟎 𝝆𝟏
𝟐𝟗 𝝆𝟏

𝟐𝟖 . − ]
 
 
 
 
 
 
 
 

        

 (6. 7) 

The diagonal elements in the above matrix indicate the probability that the observed and the true 

response variable are the same or the probability of correct classification. Any observed ordinal 

outcome s in the data may be because of misclassification (i.e., the true outcome representing the 

number of days telecommuting is some other outcome t but was misclassified as s) or due to correct 

classification. The intuitive meaning of the sufficiency conditions for consistency is that the 

probability of observed data being correct must be larger than the probability of being 
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misclassified. If these sufficiency conditions fail, the parameter estimates in the model can have 

opposite signs from a model that ignores misclassification, and there is little hope in recovering 

the true parameters consistently [2]. Mathematically, the sufficiency condition translates into the 

following equation for alternative s: 

∑ 𝝆𝒕,𝒔
𝑲
𝒕=𝟏
𝒕≠𝒔

< 𝝆𝒔,𝒔∀ 𝒔 ∈ [𝟏,𝑲]                                (6. 8) 

Adding ∑ 𝜌𝑠,𝑡
𝐾
𝑡=1
𝑡≠𝑠

 to both sides of Equation (6.8) gives the following result: 

∑ 𝝆𝒕,𝒔
𝒌
𝒕=𝟏
𝒕≠𝒔

+ ∑ 𝝆𝒔,𝒕
𝑲
𝒕=𝟏
𝒕≠𝒔

< 𝝆𝒔,𝒔 + ∑ 𝝆𝒔,𝒕
𝑲
𝒕=𝟏
𝒕≠𝒔

∀ 𝒔 ∈ [𝟏,𝑲]                   (6. 9) 

But, 𝜌𝑠,𝑠 + ∑ 𝜌𝑠,𝑡
𝐾
𝑡=1
𝑡≠𝑠

= ∑ 𝜌𝑠,𝑡
𝐾
𝑡=1 = 1. So, the sufficiency condition is equivalent to: 

∑ 𝝆𝒕,𝒔
𝑲
𝒕=𝟏
𝒕≠𝒔

+ ∑ 𝝆𝒔,𝒕
𝑲
𝒕=𝟏
𝒕≠𝒔

< 𝟏∀ 𝒔 ∈ [𝟏,𝑲]                                         (6. 10) 

For the current empirical application, these sufficiency conditions are: 

(𝝆𝟐
𝟏 + 𝝆𝟐

𝟐 + …+ 𝝆𝟐
𝟑𝟏

 
) + (𝝆𝟏

𝟏 + 𝝆𝟏
𝟐 + …+ 𝝆𝟏

𝟑𝟏
 
) < 𝟏                            (6.11. a)                           

(𝝆𝟏
𝟏 + 𝝆𝟐

𝟏 + …+ 𝝆𝟐
𝟑𝟎

 
) + (𝝆𝟐

𝟏 + 𝝆𝟏
𝟏 + …+ 𝝆𝟏

𝟑𝟎
 
) < 𝟏                  (6.11. b) 

    (𝝆𝟏
𝟐 + 𝝆𝟏

𝟏 + …+ 𝝆𝟐
𝟐𝟗

 
) + (𝝆𝟐

𝟐 + 𝝆𝟐
𝟏 + …+ 𝝆𝟐

𝟐𝟗) < 𝟏                             (6.11. c)  

    ………………………………………………………..           

(𝝆𝟏
𝟑𝟏 + 𝝆𝟏

𝟑𝟎 + …+ 𝝆𝟏
𝟑𝟎

 
) + (𝝆𝟐

𝟑𝟏 + 𝝆𝟐
𝟑𝟎 + …+ 𝝆𝟐

𝟏
 
) < 𝟏                          (6.11. d) 

The analyst must estimate 𝐾 × (𝐾 − 1) additional parameters to account for misclassification. In 

our case the outcome is count in nature, so most of the misclassification terms are likely to be zero 

as the distance between two outcomes increases. In the current empirical context, all the number 

of days a person telecommutes alternatives are ordered. So, it is expected that the misclassification 

probability  𝝆 decreases considerably as |𝑠 − 𝑡| increases. So, several entries of the 

misclassification matrix are expected to be zero. 

The probability of observed outcome in Equation 6.6 is a function of all the misclassifications of 

parameter 𝜌𝑡,𝑘. Please note that the observed number of days a person telecommutes outcome, k, 

varies across workers in addition to all the parameters of 𝑃(𝑦 = 𝑡). 
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6.2 Empirical Analysis 

The data for this analysis were obtained from the 2017 National Household Travel Surveys 

(NHTS) that collected detailed socio-demographics, employment characteristics, and travel diary 

information from a representative sample of the US population. In the complete sample, there are 

about 106,580 workers, and 82.6 % of these workers have their primary work location outside the 

home. Among these workers with an out-of-home workplace, only 17.21% (about 18,341) had the 

option to telecommute. These 18,341 workers constitute the target sample for the analysis in this 

study. After excluding records with missing information about key explanatory variables used 

during model estimation, the final estimation sample reduces to 18,306 workers. 

Figure 1. Monthly Telecommuting Frequency 

 

Figure 1 present the frequency distribution of telecommuting frequency in the final sample. It can 

be seen from the picture that 24.8% of workers do not telecommute although they have the option. 

There are a significant number of workers who have high telecommuting frequency. For instance, 

3.0% and 1.9% of workers telecommute 15 and 20 days a month, respectively. The mean frequency 

is 4.61 days, and the variance is 33.5. So, the preliminary descriptive analysis suggests over-

dispersion in telecommuting frequency data. Based on the descriptive statistics presented in Figure 

1, we observe the presence of rounding in the responses.  Rounding is a type of misclassification 

in the dependent variable that can lead to inconsistent parameter estimates [2].  

Several models were developed in this study including NB, NB MNL, a model that 

accounts for rounding, NB MNL with one misclassification parameter, and NB MNL with two 
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misclassification parameters. For brevity, only the results of the “NB MNL with two 

misclassification parameters” model and the standard NB MNL, along with the misclassification 

parameters were presented in this study. The likelihood ratio (LR) test of comparison between the 

NB MNL model (log-likelihood, LL= -46,998.5) and the NB MNL with one misclassification 

parameters (-46,994.8) models was 7.32, which is greater than the critical chi-squared statistic of 

3.84 corresponding to one degree of freedom at a 95% confidence level. This suggests that the 

model that accounts for one misclassification parameter for the entire dataset is statistically better 

than the standard NB MNL model.  The likelihood ratio test of comparison between the NB MNL 

with one misclassification parameter (-46,994.8) and the NB MNL with two misclassification 

parameters (-46,994.1) is 1.46, which is smaller than the critical chis-squared statistic of 3.84. 

Based on that we cannot reject the null hypothesis, and the difference between the two models is 

not statistically significant. Because we choose to represent only the results from the NB MNL 

and the NB MNL with two misclassification parameters, we also computed the log-likelihood ratio 

test. The value of the log-likelihood ratio test between these two models (-46,994.8 and -46.994.1) 

is 8.79, which is greater than the critical chi-squared statistic of 5.99 corresponding to two degrees 

of freedom at av95% confidence interval.  The magnitude of the dispersion parameter r in the NB 

MNL tow parameters was -0.0898 which is lower than -0.6157 for the NB MNL model. The 

constant in Table 9.The MMGORP Model Results0 cannot be interpreted directly because they are 

controlling for the range of the continuous commute distance variables. Considering that, the 

constants in Table 9.The MMGORP Model Results1, can be interpreted as a measure of over-

representation (because all constants are positive) of the corresponding count outcomes in the 

telecommuting frequency data.  

Table 11.Estimation Results 

  
NB MNL 

NB MNL TWO 

PARAM 

Explanatory Variables Parameter t-stat Parameter t-stat 

Person Attributes 

Constant 1.4308 24.447 1.3075 16.296 

Gender (base: Female) 

Male 0.0465 1.701 0.0736 2.375 

Immigration Status (base: Immigrant) 
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Table 11. Continued 

  
NB MNL 

NB MNL TWO 

PARAM 

Explanatory Variables Parameter t-stat Parameter t-stat 

US Born Citizen 0.0632 1.825 0.0652 1.750 

Job category (base case: 'sales and service,' 'other jobs.' 

Clerical and administration -0.8474 -13.940 -0.9032 -12.901 

Manufacturing, construction, maintenance, and 

farming 0.4857 5.278 0.5806 4.963 

Professional. Managerial, or technical -0.5352 -13.030 -0.5813 -11.844 

Commute distance/100 (miles) 0.6028 8.006 0.6646 7.756 

Works part-time  0.4395 9.465 0.4809 9.051 

Uses Internet frequently 0.1512 6.047 0.1595 5.887 

Household socio-demographics 

Auto Ownership (base case: fewer or same cars as driving age adults) 

More cars than driving age adults 0.1352 4.956 0.1508 5.057 

Household income(base case: ≥ 35,000) 

Low income (≤ 34,999) 0.3787 7.512 0.4417 7.282 

Dispersion Parameter, r -0.6157   -0.8098   

Misclassification Parameter 

𝜌1     -2.1917  -4.537 

𝜌2     -1.7861  -6.992 

 

Model results, shown above, as expected and consistent with previous studies, that employed men 

are less likely to telecommute compared with working women, as indicated by the positive 

coefficient for the “Male” variable. Immigrant employees tend to telecommute less frequently 

compared with native citizens. Workers in the ‘clerical and administration’ positions, along with 

those in ‘professional, managerial, or technical’ positions tend to telecommute more compared 

with the ones in ‘sales and service’ or ‘other jobs.’ On the other hand, as expected, workers in 

‘manufacturing, construction, maintenance, and farming’ positions are not using the 

telecommuting option when compared with the ones in ‘sales and service’ or ‘other jobs‘. Also, as 

expected, part-time workers tend to telecommute less frequently compared with full-time 
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employees. The parameter estimates on the commute distance variables indicate a robust positive 

relationship between commute distance and telecommuting frequency. Specifically, employees 

with longer commute distances are inclined to telecommute more frequently compared with 

employees with relatively shorter commuting distance. People who use the internet regularly are 

less inclined to telecommute. Workers in households with more cars than the driving age are less 

likely to telecommute compared to households with fewer cars then the driving age adults. From 

this data analysis, it is not possible to understand if workers that own fewer cars telecommute 

frequently or they telecommute because they have fewer cars. The decisive parameter on the low-

income variable suggests that low-income workers are less inclined to telecommute. As expected, 

and based on the results, misclassification errors exist in the telecommuting frequency data 

reporting. 

Table 12.Misclassification Probabilities 

Best Estimated || Observed (days) 0 1 2 . 30 31 

0 0.8324 0.1436 0.0206 . 0.0000 0.0000 

1 0.1005 0.7319 0.1436 . 0.0000 0.0000 

2 0.0101 0.1005 0.7218 . 0.0000 0.0000 

… . . . . . . 

30 0.0000 0.0000 0.0000 . 0.7447 0.1436 

31 0.0000 0.0000 0.0000 . 0.1005 0.8883 

Error! Reference source not found.2, presents the results of the misclassification components 

or the NB MNL with two misclassification parameters. The results in Error! Reference source 

not found.2, show significant misclassification of extreme alternatives compared with 

intermediate alternatives. Specifically, only, 83.24% of the responses of the workers that do not 

telecommute were correctly classified, 14.36% were wrongly classified as telecommuting ‘one 

day’, whereas 2.06% as telecommuting ‘two days’. Same in the case of ‘one day’ outcome, only 

73.19% of the responses were correctly classified whereas, 10.05% and 14.36% of the responses 

were wrongly classified as ‘zero days’ and ‘two days’ respectively. Based on the results and 

consistent with previous studies, the respondents tend to over-estimate more than under-estimate 

the numbers of days that they telecommute. The misclassification parameters show that there is a 

tendency of misclassifying of the number of days a worker telecommutes. 
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6.4 Conclusion 

By nature, and consistent with other studies, Household Travel Surveys (NHTS) data is prone to 

errors that can be grouped in intentional or unintentional misinformation provided by the person 

being interviewed. Ignoring these errors while modeling telecommuting frequencies using 

standard discrete count models can result in biased parameter estimates. In this part of the 

dissertation, the General Extreme Value models available in the literature for handling 

misclassification were used to quantify the impact of misclassification in telecommuting frequency 

data. Correctly, the frequency of telecommuting days was analyzed using the Negative Binomial 

re-casted as the Multinomial Logit Model. The misclassification parameter was calculated for both 

over-reporting and under-reporting. The misclassification errors can be as high as 14% over-

reported and as high as 10% under-reported, particularly for the neighboring values. Statistical fit 

comparison between the models used shows that models that ignore misclassification have not 

only worse data fit but also biased parameter estimates with significant policy implications.  
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CHAPTER 7 

CONCLUSION 

This chapter gives a brief overview of this dissertation’s findings, key implications of 

misclassification errors and future research directions. In all the three different discrete 

transportation datasets investigated, some evidence of misclassification errors was found based on 

the proposed model. The extent of these errors is different for each dataset depending on the 

variables considered. It was shown that ignoring misclassification errors can potentially result in 

over or under-estimation of critical variables that are important for future policy implications.  The 

sufficiency condition considered in the three models developed is the same: the probability of an 

outcome being misclassified is smaller than the likelihood of being correctly observed. Based on 

this, the models developed showed a better statistical fit of the parameter estimates than the models 

that do not account for misclassification. The police-reported injury severity recordings in crash 

databases are prone to errors. Past research that measured the discordance between police-reported 

injury severity data and hospital/ambulance records confirmed the presence of misclassification 

errors in traditional crash databases. However, these databases remain the primary data sources for 

safety analysis including aggregate crash frequency and disaggregate injury severity analysis 

conditional on crash occurrence. Ignoring the errors in the injury severity data during modeling 

can lead to biased and inconsistent parameter estimates.  

Misclassification errors are varying for different data sets. In the auto ownership 

investigation, it was shown that the misclassification errors could be as high as 40%, particularly 

for the extreme auto ownership levels. Comparatively, the misclassification in ‘one car’ and ‘two 

cars’ alternatives was lower. The un-segmented models used in this part of the dissertation restrict 

that misclassification rates are the same for the entire population. To relax this assumption, a latent 

class auto ownership model that allows the misclassification probabilities to vary across different 

latent segments was developed. The empirical analysis uncovered two latent classes in the 

population with regards to auto ownership preferences and also significant differences in the 

misclassification rates between the two segments. The misclassification-adjusted mixed 

generalized ordered response probit (MMGORP) model was developed to analyze driver injury 

severity using the 2014 General Estimates System (GES) data.  
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The research methodology adopted in this dissertation treats the observed injury severity 

outcomes as realizations from discrete random variables that depend on true latent injury severities 

that are unobservable to the analyst. The results indicate that 31.77% of possible injuries were 

wrongly recorded as no injuries; 29.80% of non-incapacitating injuries were wrongly classified as 

possible injuries: and 7.45% of non-incapacitating injuries were wrongly recorded as 

incapacitating or fatal injuries. Also, the MGORP model that ignores misclassification has not only 

lower data fit but also considerable bias in the parameter and elasticity effects, leading to incorrect 

policy implications. Ignoring these errors while modeling telecommuting frequencies using 

standard discrete count models can result in biased parameter estimates.  

In another part of the dissertation, the General Extreme Value models available in the 

literature for handling misclassification were used to quantify the impact of misclassification in 

telecommuting frequency data. Specifically, the telecommuting frequency was analyzed using the 

Negative Binomial re-casted as the Multinomial Logit Model. The misclassification parameter was 

calculated for both over-reporting and under-reporting. The misclassification errors can be as high 

as 14% over-reported and as high as 10% under-reported, particularly for the neighboring values. 

Statistical fit comparison between the models used shows that models that ignored 

misclassifications have not only worse data fit but also biased parameter estimates with significant 

policy implications. The model developed in this study can be used to investigate misclassification 

errors in ordinal response variables in other empirical contexts beyond discrete transportation data. 

However, there are several possible avenues for future research. For instance, the results 

indicate that there is no significant misclassification in the incapacitating/fatal injury category, i.e., 

all true incapacitating and fatal injuries are recorded correctly. However, it is possible that the 

misclassification rates in incapacitating injuries are zero because of merging the incapacitating and 

fatal injury categories as one alternative. This is because fatal crashes are rarely misclassified and 

the non-zero misclassification in incapacitating injuries are weighed down by the zero-

misclassification rate in fatal crashes. Future studies must examine the impact of aggregation of 

injury severity categories on misclassification rates as an avenue for future research. Also, the 

misclassification rates in the model developed do not vary across observations. However, earlier 

studies found that the discordance rates between police and hospital records vary as a function of 

different factors including the driver, crash, and geographic factors. The model developed in this 
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chapter can be extended to allow the misclassification rates to vary across different segments. For 

instance, two sets of misclassification rates can be estimated separately for crashes that occur in 

urban and rural neighborhoods. The sufficiency conditions must hold within urban and rural areas 

separately (but not necessarily in the two regions together). However, the number of 

misclassification parameters can explode easily as the number of segments increases. To avoid 

this problem, latent class models that probabilistically assign each driver/crash record to latent 

segments each with its own set of misclassification rates can be developed [60, 61]. The probability 

of belonging to each latent segment can be specified as a function of the driver, vehicle, and crash 

variables. Recently, this latent modeling approach was used for analyzing misclassification rates 

in household auto-ownership responses in travel surveys  [18]. 

Next, not only injury severity recordings but also other variables in crash databases are 

prone to misclassification. For instance, police tend to over-estimate seat-belt use in road casualties 

[68]. Seat-belt use also has the endogeneity problem whereby there can be common unobserved 

factors that influence the decision to wear a seat-belt and the injury severity outcome [69].  In this 

context, future research that develops an integrated modeling framework to account for 

misclassification in key explanatory variables in addition to the injury severity response variable 

is warranted. The modern suite of advanced travel demand models including tour-based and 

activity-based models that encompass several discrete choice models to predict daily activity and 

travel preferences of people. The underlying idea of these models is that people travel to participate 

in different types of activities at locations dispersed in space and time. So, the key response 

variables that form the basis of these models are activity purpose, activity duration, mode, 

departure time, and destination. All these responses in HTS data are prone to measurement errors 

and must be analyzed using similar modeling methods used in this study to quantify and assess the 

impact of misclassification on parameter estimates of respective choice models. Also, it is a 

common practice for researchers to collect their data to analyze new empirical contexts with 

limited revealed preference data. For example, several studies used web-based surveys that elicit 

preferences for new vehicle technologies including connected and autonomous vehicles and 

electric vehicles. It is a useful exercise to explore the quality of these survey responses by 

quantifying misclassification to demonstrate the validity and confidence of these study findings. 

Lastly, the models developed in this study can be applied to other transportation disciplines.  
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