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ABSTRACT

AN ADAPTIVE ALGORITHM TO IDENTIFY AMBIGUOUS PROSTATE CAPSULE 
BOUNDARY LINES FOR 3D RECONSTRUCTION AND QUANTITATION

Rania Hussein 
Old Dominion University, 2006 
Director: Dr. Frederic McKenzie

Currently there are few parameters that are used to compare the efficiency 

of different methods of cancerous prostate surgical removal. An accurate assessment 

of the percentage and depth of extra-capsular soft tissue removed with the prostate by 

the various surgical techniques can help surgeons determine the appropriateness of 

surgical approaches. Additionally, an objective assessment can allow a particular 

surgeon to compare individual performance against a standard. In order to facilitate 

3D reconstruction and objective analysis and thus provide more accurate quantitation 

results when analyzing specimens, it is essential to automatically identify the capsule 

line that separates the prostate gland tissue from its extra-capsular tissue. However 

the prostate capsule is sometimes unrecognizable due to the naturally occurring 

intrusion of muscle and connective tissue into the prostate gland. At these regions 

where the capsule disappears, its contour can be arbitrarily reconstructed by drawing 

a continuing contour line based on the natural shape of the prostate gland. Presented 

here is a mathematical model that can be used in deciding the missing part of the 

capsule. This model approximates the missing parts of the capsule where it disappears 

to a standard shape by using a Generalized Hough Transform (GHT) approach to 

detect the prostate capsule. We also present an algorithm based on a least squares 

curve fitting technique that uses a prostate shape equation to merge previously 

detected capsule parts with the curve equation to produce an approximated curve that 

represents the prostate capsule. We have tested our algorithms using three shapes on 

13 prostate slices that are cut at different locations from the apex and the results are 

promising.
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CHAPTER I 

INTRODUCTION

1.1 Introduction

Prostate cancer is the most common form of cancer among men in the United 

States. The American Cancer Society estimated that about 30,350 men would die of 

prostate cancer disease from a total of 232,090 new cases in 2005 [1]. Prostate 

specific antigen (PSA) test in conjunction with annual digital rectal exams (DRE) 

have made early diagnosis possible and can help physicians better assess the extent of 

the disease and its effect on surrounding organs.

Removing a sample of tissue from the patient and sending it to a pathologist for 

examination, however, is still the norm for diagnosing many cases of cancer. This 

procedure is called a biopsy and is currently the gold standard for diagnosing prostate 

cancer. Although such diagnosis is sometimes straightforward, there are several 

challenges remaining. Perhaps the greatest challenge is that prostate cancer is 

generally multifocal and only a very tiny portion of the prostate is sampled. 

Traditional biopsy sampling procedures use 6 parallel core samples, while newer 

procedures take 8-32 core biopsy samples [11]. Although the optimal number of 

biopsy samples remains unclear, the overall strategy of increasing the number of 

samples reduces errors on histopathologic grading and improves cancer detection and 

risk assessment. There has been a significant amount of research regarding optimizing 

biopsy protocols to increase the likelihood of detecting prostate cancer according to 

certain objective and quantitative criteria. The hope is that with optimized protocols 

one could achieve improved detection rates with fewer needles. An even better 

method would be to rely solely on imaging techniques, thus sparing the patient from 

painful and inconvenient procedures.

The journal model for this dissertation is the IEEE/ACM Transactions on Networking.
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Im aging m odalities are used to  aid in the detection and clinical staging of 

prostate cancer. Transrectal Ultrasound (TRUS) is the most frequently used imaging 

, technique in cancer detection. It is used in needle biopsy procedures to provide a 

high-resolution image of the prostate and thus enables more accurate needle 

placement and tissue sampling. It provides a good estimate of the prostate volume, 

but it has a low sensitivity overall and its specificity for malignant versus benign 

tumors varies. In addition to TRUS, Computed Tomography (CT) and Magnetic 

Resonance Imaging (MRI) are widely used in determining the stage of the cancer and 

its extent. However, images produced by CT and MRI have low tissue contrast and 

low signal-to-noise (SNR) ratio. Unfortunately, no imaging modality can effectively 

differentiate cancerous tissues from normal tissues, making their overall accuracy in 

detecting and diagnosing prostate cancer low.

As far as treatment is concerned, the options for local therapy have proliferated 

and include various forms of radiation delivery, cryo-destruction, and such novel 

forms of energy delivery as in high-intensity focused ultrasound. Surgical removal, 

however, remains the standard procedure for cure. Although surgical prostatectomy 

is currently the norm, there are few objective parameters used to compare the 

efficiency of each form of surgical removal. As surgeons apply these different 

surgical approaches, a quality assessment would be most useful, not only with regard 

to overall comparison of one approach versus another, but also a surgeon’s evaluation 

of personal surgical performance as related to a standard. Parameters such as the 

percent of capsule covered by soft tissue and, where present, the average depth of soft 

tissue coverage can be used to compare the efficiency of one form of surgical removal 

with another.

The objective of this research is to facilitate and provide a more accurate and 

objective assessment of the percentage and depth of extra-capsular soft tissue 

removed with the prostate by the various surgical approaches. Assessment accuracy, 

determination time, and cost will be improved by developing a software algorithm to 

perform automatic recognition of the prostate capsule, a process that pathologists are 

tediously doing.
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1.2 Motivation

Currently there are few objective parameters that are used to compare the 

efficiency of one form of prostate surgical removal over another. An objective 

methodology that could be applied to surgical specimens would be of immense value 

to establish clinical trial criteria for skills assessment, for trial entry, for ongoing 

assessment during trial conduct, and finally for dissemination of a mechanism of 

quality control and reassessment of individual surgical practices.

A novel methodology to computerize and objectively quantify the assessment 

process is to utilize a 3D reconstructed model for the prostate gland. With such a 

model, the curvature of the capsule, the irregular borders of the extra-capsular tissues, 

as well as the extensions of the tumor can be visualized. Subsequently, software 

algorithms may be designed and applied to quantify the virtual model.

In general, the reconstruction process consists of three main steps: a) extracting 

the object contours, b) interpolating intermediate contours, and c) reconstructing 

surfaces or volumes. During the last decade, there has been a considerable amount of 

research in the visualization and 3D reconstruction of medical data. Most research 

focused on developing or improving algorithms that consider the last two steps of the 

reconstruction process. Identifying and outlining objects in medical images, however, 

is an important task for many applications (a task for which the human eye is well 

equipped and experts are well capable of doing manually). Besides the fact that 

manual delineation of objects from large image sets is a time-consuming and a 

tedious procedure, it is also sensitive to an expert’s bias or experience.

Researchers have long investigated automatic algorithms for contours extraction 

of the prostate from medical images of different modalities especially in ultrasound 

images. Aamik et al. [2] reported a scheme for prostate recognition in 

ultrasonographic images based on a nonlinear Laplace filtering edge detection 

technique. An edge intensity image was obtained using edge strength and location 

information. The detected edges are linked, and a knowledge database of prostate 

shape is incorporated using edge-linking algorithms to construct a complete boundary 

of the prostate. Liu et al. [40] reported a segmentation scheme for prostate edge
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detection from  ultrasound im ages. Their schem e is dependent on im age quality and 

produces partial edge information rather than a complete prostate boundary. These 

attempts have had limited success due to large variability of prostate shapes, 

considerable amount of noise in images, low contrast between prostate and non 

prostate regions, and the incompleteness of prostate contour in some images. 

Accordingly, these algorithms are not in wide use although they have a certain degree 

of clinical utility.

Some researchers have employed neural networks and texture features to 

automatically identify the prostate boundaries. Prater and Richard [62] developed 

four different three-layer neural networks to classify prostatic and non prostatic tissue 

in transrectal ultrasound images. Their study showed that extensive trial and error is 

required to find the best number of nodes in each layer for the best results. In 

addition, the desire to use large training sets for effective network training makes the 

preparation of training patterns a tedious and time consuming task. Richard and Keen 

[68] presented a pixel classifier based on four texture energy measures associated 

with each pixel in ultrasound prostate images. Their study, however, showed an 

extensive computation and unpredictable number of produced classes. In an attempt 

to avoid the limitations that other researchers had faced with their algorithms, Pathak 

et al. [56] presented a new paradigm for the edge-guided delineation of the prostate in 

ultrasound images. The image contrast was enhanced and the speckle noise was 

reduced and the resulting image was further smoothed. A priori knowledge of the 

prostate shape and echo pattern was finally used to detect the most probable edges of 

the prostate. However, the algorithm-detected prostate edges were provided to the 

user as a visual guide to manually link them which would subject the results to 

observer bias.

Despite the numerous research studies in segmenting structures from medical 

images and reconstructing a compact geometric representation of these structures, no 

study, to the best of our knowledge, has been done to automatically identify the 

prostate capsule in medical images. Identifying prostate capsule is essential in staging 

prostate cancer and it greatly affects the treatment options. Studies have shown that
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the presence of metastases in the prostate’s adjacent organs is highly related to their 

penetration to the prostate capsule, which therefore influences the prognosis after 

surgical and hormonal treatment [50]. In addition to its importance in prostate 

prognosis, automatically identifying the prostate capsule provides a more accurate 

and objective assessment of the percentage and depth of extra-capsular soft tissue 

removed with the prostate by the various surgical approaches. Not only does this 

assessment allow surgeons to compare the quality of one surgical approach versus 

another, it also provides an evaluation of surgeons’ surgical performances as related 

to a standard [49].

1.3 Problem Definition

The objective of this research is to facilitate and provide a more accurate and 

objective assessment of the percentage and depth of extra-capsular soft tissue 

removed with the prostate by various surgical approaches. Visualization methods and 

tools were developed for images of prostates slices that are provided by the Pathology 

department at Eastern Virginia Medical School (EVMS) [49]. The visualization tools 

interpolate and present 3D models of prostate specimens upon which measurement 

algorithms are applied to determine statistics about extra-capsular tissue coverage. 

The contour of the gland (the capsule) had to be manually outlined by a pathologist 

on each slice’s image to enable construction of the 3D models of the prostate gland 

and the extra-capsular tissue. Besides the fact that manual outlining of the capsule is 

tedious and sensitive to observer bias and experience, it is considered a significant 

source of error in the assessment accuracy of the percentage of extra-capsular soft 

tissue [49]. The reason is that the thickness of the hand drawn line is approximately 

0.046 inches (1.168 mm) [49], which makes deciding whether to consider its inner or 

outer edge contour an issue. If the inside edge is considered, then the boundary that 

separates the prostate capsule from the extra-capsular tissue (which will be referred to 

as ‘fat’) might be under-estimated, while considering its outer edge might over 

estimate the capsule. Manual outlining can also affect the accuracy of thickness 

calculations of the extracapsular tissue with respect to the capsule.
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Fig 1. A prostate slice with a hand-drawn boundary.

The prostate gland sits right below the bladder and is wrapped around the 

urethra. Figure 2 is a transverse view of the prostate gland taken from a slice 

orthogonal to the urethra. A slice taken in this manner frequently reveals a distinctive 

chestnut or apple shape to the prostate. The sometimes distinctive arrow shape of the 

urethral wall can be seen in the center of the slice. The prostatic glandular epithelial 

elements are part of the prostate gland and they are the histological compartments 

where cancer originates (Fig. 2). Later, we will discuss the use of an imaginary line 

surrounding those glandular elements which we will call the parenchymal contour.

In order to automatically identify the contour of the gland within each prostate 

slice and replace the arduous and costly manual process, a software algorithm will 

need to be developed that recognizes the prostate gland capsule utilizing these 

elements of anatomy and shape.
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Fig 2. Prostate anatomy.

Certain anatomical features make capsules generally detectable; however, the 

prostate capsule is unrecognizable in some areas because of the naturally occurring 

intrusion of muscle into the prostate gland at the anterior apex and fusion of 

extraprostatic connective tissue with the prostate gland at its base. At these regions 

where the prostate capsule disappears, its contours will need to be reproduced by 

drawing a continuing contour line from those areas where the capsule can be 

objectively recognized based on the natural shape of the prostate gland.

To the best of our knowledge, we are unaware of any research that 

automatically detects the prostate capsule; however some efforts were reported in 

literature to detect the prostate boundary that separates the prostate from the 

surrounding body organs. Some researchers have used edge-based boundary detection 

methods that locate edges that correspond to local peaks in the intensity gradient of an 

image [56], while others used texture-based methods that characterize regions of an 

image on the basis of measures of texture [68]. The reader can refer to [76] for a 

review of the current prostate boundary detection techniques in ultrasound images. 

Although edge detection and texture recognition techniques have been used for the 

automatic delineation of prostate boundary, determining the prostate capsule cannot 

be completely solved by only applying such clean cut techniques. This is because the 

capsule detection depends on many factors such as recognizing the histological 

pattern of the elastic and collagenous fibers within the prostate capsule, urethra 

location, parenchymal contour location, as well as the whole shape.
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Thirteen specimens of radical prostatectomies were used for our study. The 

prostate slices were prepared using the whole mount technique where a prostate 

specimen was received fresh, was measured craniocaudally, antero-posteriorly and 

transversely, weighed, and then dipped in water to determine its volume. The whole 

specimen was inked blue on the right side and red on the left to avoid any possible 

flipping of the slices while scanned. The specimen was then serially cut into 5-8 

slices from apex to base at relatively precise and parallel 5 mm intervals in a 

perpendicular angle to the urethral apical orifice.

1.4 Approach

We present two approaches that use shape information to estimate the prostate 

capsule based on previously recognized collagenous fibers that uniquely identify the 

capsule of the prostate tissue. The first approach uses Generalized Hough Transform 

(GHT) technique in conjunction with a mathematical model that represents a standard 

shape for the prostate slices at different locations from the apex. The GHT has been 

used in literature to globally detect irregular shapes in images and has proved 

successful in many applications [83], [20][63]. The other approach is based on a least 

squares curve fitting technique that uses a prostate shape equation to merge the 

previously detected capsule parts with the curve equation to produce an approximated 

smoothed curve that represents the prostate capsule. The least squares method is a 

very popular technique used to compute estimations of parameters and to find the best 

fitting model for discrete data. It is widely used in literature to fit a function (which 

may represent a certain shape) to a set of data which can be used in many applications 

including medical imaging [59].

1.5 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2- Background: In chapter 2, we present the background in histopathologic 

imaging, texture analysis and image segmentation techniques.
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C hapter 3- R elated  W ork: In chapter 3, w e present the research efforts in the field 

of image segmentation and discuss the pros and cons of each method and how related 

each method is to our problem.

Chapter 4: Estimating the prostate capsule using shape information: In chapter 4, 

we explain our proposed approaches in details.

Chapter 5: Experimental Results: In chapter 5, we present our experimental results 

from running the 2 proposed approaches on our test bed that consists of 13 different 

prostate slices cut between 5 to 30mm from the apex. Our performance evaluation is 

based on calculating percentage of deviation from the expected capsule as well as 

calculating the Root Mean Square Error RMSE.

Chapter 6 : Conclusion and future work: Finally, in chapter 6, we present the 

contributions of our research and provide suggested future work.
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CHAPTER II 

BACKGROUND

2.1 Introduction

In the past years, imaging procedures have changed medical practice so 

fundamentally that not only are they indispensable, but it is simply impossible to 

imagine medical practice without them. Medical imaging is the most important source 

of anatomical and functional information, which are indispensable for up-to-date 

diagnosis and therapy. It is increasingly being used for a tremendous number of 

medical applications. Some of these applications include but are not limited to: pre­

operative imaging and image guided surgery.

Pre-operative imaging provides three-dimensional information about anatomy, 

function and the location of both diseases and healthy structures. Prior to the patient's 

surgery, image scans are usually taken and transferred to tape or optical disc to be 

read by the system's computer during surgery. Pre-operative imaging decreases or 

eliminates the need for intraoperative x-rays thereby sparing the patient and surgeon 

radiation exposure. Reviewing the patient's x-rays, CAT Scans, and/or MRI studies 

helps the surgeon to visualize the surgical process in his mind. Preoperative imaging 

thus helps surgeons perform complex reconstructions safer and faster.

Image-guided surgery techniques rely on a powerful computer system, which 

assists the surgeon in precisely localizing a lesion, in planning each step of the 

procedure via a 3D model on the computer screen, and in calculating the ideal access 

to a tumor before the operation. The tumor and its surroundings can be viewed from 

different angles and in relation to landmark structures, such as the optic nerve or the 

brain stem. This technique has been employed in neurosurgery since the mid-1990s.

While in the past, images were typically 2D; there has been a shift towards 

reproducing the three-dimensionality of human organs. 3-D Visualization generally 

refers to transformation and display of 3-D objects so as to effectively represent the 

3D nature of the objects. The goal of visualization in biomedical computing is to 

formulate and realize a rational basis and efficient architecture for productive use of
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biomedical image data. The need for new approaches to image visualization and 

analysis will become increasingly important as improvements in technology enable 

more data of complex objects and processes to be acquired. Visualization has been 

used in many clinical and biological applications. One of the important clinical 

applications of 3-D visualization is virtual endoscopy, which is the navigation of a 

virtual camera through a 3D reconstruction of a patient's anatomy enabling the 

exploration of the internal structures to assist in surgical planning. A virtual 

endoscopy tool can be used so that the surgeon can visualize the 3D model of an 

anatomical structure and define a trajectory path inside the model in order to perform 

a virtual exploration. When the virtual camera flies through the model, the surgeon 

can track the position of the virtual camera inside the model on one screen, view what 

the endoscopic camera sees on another screen and track the position of the camera on 

2D slices. Virtual exploration through patient-specific data can help the surgeon 

perform a diagnosis without having to operate on the patient. Virtual endoscopy (VE) 

is an integration of medical imaging and virtual reality technologies, leading to a 

computer-based alternative to the traditional fiberoptic endoscopy for examining the 

interior structures of human organs. It has many advantages as compared to 

traditional endoscopy procedures, such as being non-invasive, cost-effective, highly 

accurate, free of risks and side effects, and easily tolerated by the patient. Virtual 

endoscopy has been under development in many clinical areas, such as virtual 

colonoscopy, virtual bronchoscopy, virtual angioscopy, virtual cystoscopy, virtual 

laryngoscopy, virtual myelography and others. Continual advancement of VE 

technologies shall have a great impact for computer applications in medicine.

Another application for visualization can be found in neurosurgery, where 

detecting and locating brain tumors are very critical. Visualization in order to pre- 

operatively assess and guide surgical operations has been used successfully and 

increasingly over the past two decades. Neurosurgery is a complex procedure, 

involving extended knowledge and understanding of complicated relationships 

between normal anatomy and pathology. Patients with tumors undergo multimodality 

image scanning preoperatively to help the neurosurgeon understand the anatomy of 

interest. Different scans can be co-registered in order to produce single visualizations
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of complementary information, where in the registration process each point in one 

image is mapped onto the corresponding point in another image. The surgeon can 

then use this information to more carefully plan the surgical approach and determine 

the margins of pathology with respect to cerebral vasculature and eloquent cortical 

tissue.

Imaging technologies are very important in visualizing 3-D anatomies, which is 

the key step in 3-D reconstruction. Magnetic Resonance Imaging (MRI) is an imaging 

technique used primarily in medical settings to produce high quality images of the 

inside of the human body. It is based on the magnetization of water molecules, which 

are present in different concentrations in most types of tissue in the body. This makes 

the method particularly well suited to the visualization of soft tissue, as bones give off 

nearly no signal and are therefore almost invisible. This method is used primarily to 

visualize various types of tumors, internal organs such as the brain and the liver, and 

other organs that are otherwise barely visible, such as ligaments. Disadvantages of 

MRI are its high cost, the complexity of its equipment, and the requirement for the 

patient to remain still in the magnet for about half an hour, and the problems 

associated with the presence of high magnetic fields. Computed Tomography (CT), 

sometimes called CAT scan, uses special x-ray equipment to obtain image data from 

different angles around the body, and then uses computer processing of the 

information to show a 2D cross-section of body tissues and organs. A 3D image can 

be then reconstructed from a series of 2D cross sectional images. CT imaging is 

particularly useful because it can show several types of tissues, bones, and blood 

vessels with great clarity. Using specialized equipment and expertise to create and 

interpret CT scans of the body; radiologists can more easily diagnose problems such 

as cancers, cardiovascular disease, and infectious diseases. It provides detailed, cross- 

sectional views of all types of tissue. It is often the preferred method for diagnosing 

many different cancers, including lung, liver, and pancreatic cancer, since the image 

allows a physician to confirm the presence of a tumor and to measure its size, precise 

location, and the extent of the tumor's involvement with other nearby tissue. CT can 

clearly show even very small bones, as well as surrounding tissues such as muscle 

and blood vessels. CT examinations are fast and simple especially in trauma cases;
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they can reveal internal injuries and bleeding quickly enough to help save lives. CT 

scanning is painless, noninvasive, and accurate. Diagnosis made with the assistance 

of CT can eliminate the need for invasive exploratory surgery and surgical biopsy. CT 

does involve exposure to radiation in the form of x-rays, but the benefit of an accurate 

diagnosis far outweighs the risk. The risk of serious allergic reaction to iodine- 

containing contrast material is rare. The algorithm that will be developed in this 

research should be applicable to MRI images as well as CT images since both of 

these techniques can be used to obtain prostate images.

Three-dimensional reconstmction has led to the formation of 3-D physical 

biomodels, which greatly facilitates characterization, analysis and simulation of tissue 

structures. 3-D imaging and visualization methods are emerging as the method of 

choice in many clinical examinations, replacing some previously routine procedures, 

and significantly complementing others. The continuing evolution of 3-D and 

visualization imaging promises even greater capabilities for accurate noninvasive 

clinical diagnoses and treatment, as well as for quantitative biological investigations 

and scientific exploration, targeted at ever increasing the understanding of the human 

condition and how to improve it. In the near future, 3-D imaging will be integrated in 

surgical suites with imaging instrumentation, which will allow surgeons to probe 

tissue intra-operatively and view detailed soft-tissue anatomy in real time while 

performing interventional procedures.

This research is involved in another important application for prostate cancer 

surgery where cancerous prostates are surgically removed. There is a need for 

improved non-invasive pre-operative techniques that can more accurately measure 

tumor volume and extent, and thereby more clearly indicate the need for surgery. The 

ability to visualize the prostate capsule and tumor in relationship to the complicated 

anatomic structures in this region, including the neurovascular bundles and seminal 

vesicles, is helpful to preoperative planning of surgical approaches to tumor resection. 

Therefore a procedure that can provide a marker for pre-surgical stage can improve 

the outcome of necessary surgeries. This research works towards a process for 

automatically delineating the prostate gland capsule post excision but may one day 

contribute to a more accurate in-vivo approach.
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2.2 Prostate anatomy

The prostate gland is a chestnut-sized structure that is located in front of the 

rectum, below the bladder, and surrounding the urethra. Anatomically, the prostate is 

divided into peripheral, central, and transitional zones. In a normal prostate, the 

peripheral zone constitutes approximately 65% of the prostatic volume [86], where 

the prostate’s posterior, lateral, and apical regions are found. The cone-shaped central 

zone comprises approximately 25% of the prostate [86], and it surrounds the 

ejaculatory ducts. The transition zone consists of two lobes that surround the 

proximal urethral segment laterally and anteriorly and it comprises from 5 to 10% of 

a normal prostatic volume [86]. The peripheral zone is the most frequent place of 

prostate cancer from which about 70% of prostate cancers originate [75].

Fig 3 shows the basic anatomy of the prostate and Fig 4 shows its parts and 

orientation within the human body.

Blsukr Bladtr

Urethra

Seminal
vesicle

Central Zone' 
■’Transition Zone

Peripheral Zone

Front view Side view

Fig 3. Prostate Anatomy1.

1 Figure from [86] Fig. 1. Zonal anatomy of the prostate. (Copyright © (2002) Prostate Research Campaign 

UK. Reproduced with permission from Kirby, R.S., 2002. The Prostate: Small Gland, Big problem, second 

ed. Prostate Research Campaign, London, UK.)
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Fig 4. Prostate orientation within the human body.

The prostate tissue comprises a number of tissue subtypes, the most important 

of which are the epithelial cells (glandular tissue) and the capsule. The epithelial cells 

are the histological compartments where cancer originates. Fig 5 shows the epithelial 

cells surrounded by a thin virtual contour called parenchymal contour. The main goal 

of a prostatectomy is to remove the whole gland, particularly its epithelial elements, 

to avoid a significantly increased risk for positive tumor margins.

Epithelial cells

Parenchymal contour

Fig 5. Epithelial cells and parenchymal contour.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

The prostate capsule is a fibromuscular band of transversely oriented collagenous 

fibers, and it lies between the parenchymal contour and the periprostatic tissues (Fig 

6).

Fig 6. The prostate Capsule.

Studies have shown that the prostate capsule has a mean thickness of 0.5 to 2 

mm [72], however it is incomplete at the apex and is difficult to determine at the base 

[72], [50], and [6]. This is due to the naturally occurring intrusion of muscles into the 

prostate gland at the anterior apex, and fusion of extraprostatic connective tissue 

within the prostate gland at its base. While detecting the prostate capsule may be 

subjective in certain areas, the recognition of the parenchymal contour is unequivocal 

and objective.

2.3 In vitro data and histology slides

After the prostate is removed surgically, it is measured craniocaudally, 

anteroposteriorly and transversely. It is weighed and immersed in water to determine 

its volume. The whole gland is then inked blue on the right and red on the left to label 

the surgical margins. A posterior midline is inked with a black ribbon running from 

base to apex and the dipped in Bowin’s solution to fix the ink. The prostate is then 

fixed in formalin for 24 hours for “whole mount” processing and for histopathological 

review. After that it is serially cut from apex to base at precise and parallel 5 mm
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intervals in a perpendicular angle to the urethral apical orifice. The sections are then 

submitted in large cassettes and processed in a tissue processor (Tissue Tek VIP 

Model 52150460) overnight, then embedded in paraffin (Tissue Tek Embedding 

center Model 4603). The paraffin blocks are cut with a sliding microtome (Leica 

Sliding Microtome Model SM2000R). Sections of four microns in thickness are then 

mounted on large glass slides, stained with Eosin and Hematoxilin and coverslid [73].

2.4 Digitizing Microscopic Slides

In pathology, tissue samples are processed and made into stained tissue sections 

to be mounted on glass slides for interpretation. Representing the histological features 

of a slide in digital formats may require using a very high resolution capturing device 

that can capture the details of the tissue as seen under a microscope. Spatial resolution 

is a term that refers to the number of pixels that construct a digital image. As the 

image’s spatial resolution increases, the number of pixels that can digitize it 

increases. The number of pixels contained in a digital image and the distance between 

every two pixels (known as the sampling interval) determine the accuracy of the 

digitizing device. Optical resolution measures the ability of a microscope to reveal the 

details present in a specimen. It is related to the number of pixels in the digital image 

(spatial density), optics’ quality, and the microscope’s sensor and electronics. The 

value of each pixel in the digital image represents the intensity of the optical image 

averaged over the sampling interval. According to Nyquist sampling theorem, a 

sampling interval that is greater than twice the highest specimen spatial frequency is 

needed to accurately digitize a microscope specimen without losing any details 

available to the human eye. Details with high spatial frequency will not be accurately 

represented in the final digital image if sampling of the specimen occurs at an interval 

beneath that required by the Nyquist sampling theorem. In optical microscopes, the 

Abbe limit of optical images’ resolution is 0.22 micrometers (0.22 * 40 = 8.8 micro 

inches). This means that a digitizer must be capable of sampling at intervals that 

correspond to 0.11 micrometers (4.4 micro inches) or less in the specimen space.

Digital images can be generated by a scanner or by a digital camera. The most 

common way of digitizing medical images is with a microscope equipped with a
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digital camera and a robotic stage to capture thousands of individual images. Once 

acquired, these images must be stitched (or tiled) together to form the final 

representation of the slide. This process can result in the misalignment of images due 

to their large numbers; besides, it is very time consuming for pathologists.

The best alternative solution is to produce an image of the entire microscopic 

slide, thereby producing a true digital representation of the entire histopathological 

specimen. Accordingly, very high-resolution scanners should be used in order to 

capture the fine details of specimens. As previously mentioned, the Nyquist theorem 

requires that a minimum of two pixels should be used to cover the corresponding 

limiting resolution distance, so that all of the specimen information available to the 

human eye is captured. This means that a scanner is needed that can scan at pixel 

resolutions of 4.4 micro inches (0.11 micrometers) or smaller to meet the limiting 

resolution distance of the optical microscope. A scanner with 1200 ppi (pixels per 

inch) will only scan at 416 micro inches (1200*2 = 2400 to satisfy Nyquist, then 

samples that are spaced 1/2400 = 416 micro-inches will be taken) resolution, which is 

considered very low compared to the 4.4 micro-inches resolution.

To the best of our knowledge, no such scanner is available on market that can 

scan at 0.11-micrometer pixel (about 113,000 pixels/inch) resolution but a close 

resolution was achieved by some systems like the scanscope developed by Aperio 

technologies. Scanscope can scan at 0.5 |im/pixel (50,000 pixels/inch) at 20x 

magnification, and can scan at 0.25 pm/pixel (100,000 pixels/inch) at 40x 

magnification.

2.5 Detecting Histological Patterns of Elastic Fibers within the Prostate Capsule

In this section, we will show images of a prostate slice scanned at different 

resolutions aiming to detect the histological patterns of elastic fibers within the 

prostate capsule. Fig 7 shows the prostate capsule fibers as seen under the 

microscope. The images were taken by Nikon CoolPix800 digital camera with 

resolution 1600x1200 ppi and were mounted to a Nikon compound light microscope. 

As seen from the figure, more details can be revealed by increasing the magnification. 

The histological wavy pattern can be marginally detected at lOx, clearly detected
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under 40x m agnifications, bu t can not be detected at 4x. H ow ever, it w ill require 

tiling a lot of captured sections to obtain a whole image of a prostate slice, which may 

cause misalignment of the different sections of the images.

(a) (b) ( c )

Fig 7. Histological wavy patterns of the prostate capsule as seen under microscope with 

a) 4x, b)10x, and c)40x magnification.

We have also scanned a microscope slide with a flatbed scanner with 

1200x1200 ppi and were not able to detect the capsule with this resolution (Fig 8).

Fig 8. Histological wavy patterns of prostate capsule can not be seen when scanned with 

a 1200 ppi flatbed scanner.
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We have tried the scanscope system developed by Aperio Technologies where 

microscope slides were scanned at 20x magnification. The histological wavy pattern 

was clearly detected as seen in Fig 9.

Fig 9. Histological wavy patterns of prostate capsule were detected under 20x 

magnification using scanscope system of Aperio Technologies.

From Fig 7 and Fig 8, we conclude that a resolution of 1200 or 1600 ppi with 

magnification between 20x and 40x should be acceptable; however, significant 

storage and processing power is still required.

2.6 Texture Analysis

The development of automated systems to analyze histopathologic images has 

been lagging due to the inherent difficulties in microscopy images. Uneven 

illumination, instrumentation noise, and improper specimen preparation are some of 

the artifacts in histopathologic images. Additionally, the overlapping cell boundaries 

resulting from the compact arrangements of cells exhibit a very low and uneven 

gradient magnitude that is difficult to recognize by traditional image processing 

algorithms such as edge detectors and region growing. Nowadays, however, the 

automated analysis of histopathologic images becomes possible owing to the 

advancements in imaging technologies and image processing systems.
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T exture plays an im portant role in the perception o f histological scenes and is 

used mainly to achieve image segmentation. It quantifies image properties such as 

smoothness, coarseness, and regularity by measuring the variation of the image 

intensity. According to Materka et al [47] and Castellano et al [12], approaches to 

texture analysis are categorized as structural, model-based, transform, and statistical 

methods (Fig 10).

Auto-regressive
model

—  Histogram—  Fourier

—  Absolute Gradient—  Gabor

—  Run-length Matrix—  Wavelet

—  Co-occurrence Matrix

Texture Analysis 
Methods

Structural Model-based StatisticalTransform

Fig 10. Texture Analysis Taxonomy.

2.6.1 Structural Methods

In structural methods [31], texture is represented by well-defined primitives 

(such as straight lines) and by placement rules (location) of those primitives.
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A lthough they provide a good sym bolic description of the im age, stm ctural m ethods 

are useful for image synthesis rather than analysis. The abstract description can not 

well define natural textures because of the variability of micro- and macrostructures 

where no clear distinction between them is available. Mathematical morphology is a 

more powerful tool for structural texture analysis.

2.6.2 Mathematical Morphology

Mathematical morphology, originally developed by Serra [74], is a set theory 

that uses set transformations (erosion and dilation) to extract the impact of a 

particular shape on images via structuring elements that encode primitive shape 

information. The structuring element is typically a circular disc, but it can be any 

shape.

There are many applications in which mathematical morphology was used in the 

analysis of texture in medical images. Samarabandu et al. [71] used fractal analysis 

based on mathematical morphology to detect trabecular bone structures in a 

radiograph of a rat femur. Their study showed promise in finding the degradation of 

bone structures, which can be a useful indicator for an early staged osteoporosis 

disease. Sutherland and Ironside [79] developed a novel image processing system 

which can segment images of human cerebellal tissue using morphological functions. 

Individual cells were linked together using a dilation function followed by an erosion, 

to form a region that represents the granular area. Zana and Klein [85] presented an 

algorithm based on mathematical morphology and curvature evaluation for the 

detection of vessel-like patterns in angiographic images. Mathematical morphology 

was well adapted to the tree-like geometry of vessels which they defined as bright 

patterns, piecewise connected, and locally linear. Marghani et al. [46] presented a 

morphological approach based on the shape for an automated method to identify 

cancer and normal colon tissue glands. The authors reported that using morphological 

operations based on structure elements can lead to better segmentation, and thus 

improve automation systems.

Mathematical morphology provides a quantitative description of geometrical 

structures using small patterns (structuring elements) of varying size and shape. It can
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provide boundaries of objects and their skeletons and can be useful in edge thinning 

and pruning techniques. It is, however, unable to capture all the meanings and 

symbolic representations of the human mind and its efficiency in texture analysis 

depends on the geometry of the scenes under study.

2.6.3 Model-based Methods

Model-based methods ([15] and [57]) interpret an image texture using fractal 

and stochastic models. The methods are based on the construction of a parametric 

image model that can be used to describe texture and synthesize it. The auto­

regressive model is an example of stochastic models that assumes a local interaction 

between image pixels in that pixel intensity value is a weighted sum of neighboring 

pixel intensities. The computational complexity of estimating the parameters is a 

major drawback of model-based methods.

2.6.4 Transform methods

Transform methods such as Fourier ([69] and [10]), Gabor [64], and Wavelet 

transforms [44] analyze the frequency content of the image. Fourier transform 

performs poorly in practice because it describes the global frequency content of an 

image without any reference to spatial localization. Gabor filters possess better 

localization properties in both the spatial and frequency domain but their usefulness is 

limited because spatial structures in textures can not be localized by a single filter 

resolution. Wavelet transforms provide multi-resolution analysis using a window 

function, whose width changes as the frequency changes. The wide range of wavelet 

functions enables one to choose wavelets best suited for texture analysis depending 

on the application. The drawback of a wavelet transform, however, is that it is not 

translation-invariant [43].

2.6.5 Statistical Methods

Statistical methods [31] represent texture using properties that govern the 

distributions and relationships between grey-level values of the image. Statistical
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methods can be classified into first-order (one pixel), second-order (two pixels) and 

higher-order (three or more pixels) statistics based on the number of pixels defining 

the local feature. The first-order statistics (e.g. histograms) neglect the spatial 

interaction between image pixels and estimate properties like the average and 

variance of individual pixel values. On the other hand, second- (e.g. co-occurrence 

matrix) and higher-order statistics estimate properties of two or more pixel values 

occurring at specific locations relative to each other. The most commonly used 

methods are histograms, absolute gradient, run-length matrix, and co-occurrence 

matrix where,

■ The histogram of an image provides a count of the total number of pixels that 

possess a given grey-level value.

■ The gradient measures the spatial variation of grey-level values across the image 

and it can take positive or negative values depending on whether the grey level 

varies from dark to light or from light to dark. The absolute gradient ignores 

polarity since the presence of an abrupt or a smooth grey-level variation is what 

is of interest.

■ The Run-length matrix capture the coarseness of texture by searching the image 

for runs of pixels having the same grey-level value, across a certain direction.

■ The Co-occurrence matrix analyzes the grey level distribution of pairs of pixels 

and is also called the second order histogram. Contrast (difference between gray- 

level values of different objects in the image) and entropy (a measure of the 

randomness or homogeneity of the pixel distribution with respect to length or 

orientation) can be computed from co-occurrence matrix.

Studies showed that second-order statistical methods achieve higher 

discrimination rates than transform-based and structural methods [82]. Co-occurrence 

features are the most popular widely used second-order statistical features and it was 

shown that they outperform wavelet packets when applied to texture classification 

[80],
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2.6.6 Texture analysis in  m edical im aging

Texture analysis methods are undergoing great development and utilization in 

medical imaging applications. During the past decade, researchers have shown the 

ability of texture analysis methods to extract information from medical images, 

obtained with different imaging modalities, that is not easily extracted by visual 

inspection [4], [19] [22], [23], [35],[43], [46], [60], [64], [65], [79] and [85], For 

example, in segmenting anatomical structures based on their texture characteristics, 

alterations in the tissue of associated anatomical structures may occur. Normally, 

such alterations can be detected by histological examination but sometimes not by 

visual inspection of the tissue’s image, whereas they may be demonstrated by 

statistically analyzing the pixel distribution of the structure’s image.

Most medical applications use texture to classify regions of interest in images, 

to segment different anatomical stmctures [5], [19], [65], [79] and [85], or to 

differentiate between healthy and pathological tissue [4], [22], [23], [35],[43], [46], 

[60] and [64]. The procedure generally is to compute a large set of texture parameters, 

and then determine which of them provides the required discrimination. Such analysis 

remains limited by the restricted resolution of medical images, which makes it a 

promising method based on improvements in the quality of medical images.

2.7 Medical image segmentation

Many medical imaging applications inevitably use image segmentation to 

automate or facilitate the delineation of anatomical structures and other regions of 

interest. Image segmentation is the partitioning of an image into non-overlapping, 

constituent regions that are homogeneous with respect to some characteristic such as 

intensity or texture [31], [54]. Many segmentation techniques have been reported in 

literature, however there is no single method that yields acceptable results for all 

medical images, nor are all methods equally good for a particular type of image. 

Nevertheless, methods that are specialized to particular applications can often achieve 

better performance by taking prior knowledge into account. In this section, we 

describe common approaches that have appeared in literature on medical image 

segmentation and discuss their advantages and disadvantages. The reader can refer to
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[21] for a detailed survey. Although each technique is described separately, multiple 

techniques are often combined to solve different segmentation problems.

2.7.1 Thresholding

Image thresholding [70] is the simplest segmentation process that divides an 

image into two segments only. A thresholding procedure attempts to determine an 

intensity value, called the threshold, where segmentation is achieved by grouping all 

pixels with intensity greater than the threshold into one segment and all other pixels 

into another segment. Determination of more than one threshold value is called 

multithresholding, and is used when there are variations in intensity levels of an 

image. Thresholding becomes a simple effective segmentation technique when 

different image structures have contrasting intensities or other quantifiable features. 

However, normally this condition is hard to meet in medical images, thus making 

threshold(s) selection a non-trivial job. The major drawbacks of thresholding are that 

in its simplest form only two classes are generated, and it does not take into account 

the spatial characteristics of an image. Accordingly, thresholding is sensitive to noise 

and intensity inhomogeneities which can normally occur in medical images.

2.7.2 Region-growing

Region growing [32] is a bottom-up technique that starts with a set of pixels 

known as seed pixels. Regions are grown from these seeds by adding neighbouring 

pixels that satisfy homogeneity criteria, thus increasing the size of each region (Fig 

11). When the growth of one region stops another seed pixel is chosen which does not 

yet belong to any region and region growing starts again. The pixels that are 

considered are determined by whether 4- or 8-connectivity is being used. Region 

growing only works well if the initial seeds are properly representative of the regions 

of interest.
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Direction o f Growth

Fig 11. Illustration of region growing

The primary disadvantage of region growing is that it requires manual 

interaction to obtain a seed point for every region to be extracted. Besides, starting 

with a particular seed to grow a particular region completely before trying other seeds 

biases the segmentation in favour of the regions which are segmented first. This 

means that different choices of seeds may give different segmentation results. 

Another disadvantage is that ambiguities around edges of adjacent regions may not be 

resolved correctly. Region growing can also be sensitive to noise, causing extracted 

regions to have holes or even become disconnected.

Region growing is not often used solely in medical image segmentation, but 

within a set of image processing operations particularly for the delineation of small, 

simple structures such as tumors and lesions [27][61].
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2.7.3 A rtificial N eural N etw orks (ANN s)

ANNs are massively parallel networks of processing elements “neurodes” that 

attempt to model the basic architecture of the human brain, particularly its ability to 

parallel process information. Neurodes are analogous to physical neurons and they 

serve as the loci for mathematical operation. They are connected by mathematical 

weights (analogous to physical axons) that either emphasize or de-emphasize 

particular connections between them. Fig 12 shows the structure of a typical “back- 

propagation” ANN, one of the most often used network in many applications.

Input node 1

Hidden 
node 1

Connection Weight

Hidden 
node 2Input node 2 Output node

Hidden 
node 3

Input node 3

Input layer Hidden layer Output layer

Fig 12. The structure of a typical back-propagation ANN.

The application of neural networks for image segmentation can be performed in 

a variety of ways. The widest use in medical imaging is as a classifier [26], as a
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clustering m ethod [67], or for deform able m odels [52], B ecause o f the m any 

interconnections used in ANNs, spatial information can be integrated into their 

classification procedures.

Using ANNs in image segmentation does not require any well described and 

explicit properties or relationship of objects to be recognized, the network learn the 

general features from a set of training patterns. The major drawback of ANNs is that 

designing the network is mainly a trial and error as the effects of varying the number 

of units in each layer are poorly understood. Besides, the preparation of the training 

patterns is time consuming, as large sets have to be used for effective network 

training. Although ANNs are inherently parallel, they are usually simulated on 

standard serial computers thus reducing their potential computational advantage.

2.7.4 Deformable models

Segmenting structures to a compact geometric representation is difficult in 

medical images due to the sheer size of the datasets, the complexity, and the 

variability of the anatomic shapes of interest. Moreover, sampling artifacts, spatial 

aliasing, and noise may cause the boundaries of structures to be indistinct and 

disconnected. Extracting boundary elements that belong to the same structure and 

integrating them into a coherent and uniform model is a challenge. Traditional low- 

level image processing techniques, such as region growing, edge detection, and 

mathematical morphology operations, consider only local image information which 

results in incorrect assumptions during the integration process and thus generate 

infeasible object boundaries. As a result, these model-free techniques usually require 

considerable amounts of expert interactive guidance. Deformable models are a 

promising model-based approach to computer-assisted medical image analysis. The 

ability of deformable models to segment, match, and track images of anatomic 

structures is the reason behind their widely recognized potency. Deformable models 

exploit (bottom-up) constraints derived from the image data together with (top-down) 

a priori knowledge about the location, size, and shape of anatomic structures. 

Employing geometric representations such as splines, which involve many degrees of 

freedom, deformable model geometry usually permits broad shape coverage. The
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degrees of freedom are governed by physical principles, which intuitively provide 

meaningful behavior, and are not permitted to evolve independently. The name 

“deformable models” has originated from the use of elasticity theory at the physical 

level, generally within a Lagrangian dynamics setting [48]. Through a computational 

physics simulation, the model responds dynamically to applied simulated forces in a 

natural and predictable way. The equilibrium state of the dynamic model is 

characterized by a minimum of the potential energy of the model subject to imposed 

constraints which deform the model such that it fits the data.

The deformable model that has attracted the most attention to date is popularly 

known as “snakes.” Active contour models known as snakes or energy minimizing 

curves were introduced by Kass et al. [36] for boundary segmentation in images. 

They usually consist of an initial model (contour) which is deformed until reaching a 

final location guided by external and internal forces. The external forces are derived 

from the gradient of the image under consideration leading the snake toward its 

salient characteristics. Internal forces are derived from the active contour itself and 

control its deformation. The snake will evolve towards a minimum of a global energy 

function which includes its forces.

Mathematically, a deformable model moves according to its dynamic equations 

and seeks the minimum of a given energy function [36]. The deformation of a typical

2-D deformable model can be characterized by the following dynamic equation [21]:

(1)

Where x(s,t) = (x(s,t),y(s,t )) is the position of the model at a given timet, 

and//(s), y(s)  represent the mass density and damping density of the model, 

respectively. Eq. (1) causes the model to move according to the direction and 

magnitude of the forces on the right hand side. The most commonly used internal 

forces are

F  =  —  

mt ds
a(sY-

ds
d 2 (  n . . d V i
ds2

P(S) ds (2)
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which represent internal stretching and bending forces. The most commonly used 

external forces are computed as the gradient of an edge map.

Snakes have become quite popular for a variety of applications in medical 

imaging. Among the first and primary uses of deformable models in medical image 

analysis was to segment structures in 2D images. For example, snakes have been 

employed for the segmentation of myocardial heart boundaries as a prerequisite from 

which such vital information such as ejection-fraction ratio, heart output, and 

ventricular volume ratio can be computed [28] and [66]. Davatzikos and Prince used 

active contour models to map outer cortex in brain images [18]. Typically a 

deformable model is initialized near the object of interest and allowed to deform until 

it reaches the targeted object, where users can manually fine tune the model. Once the 

user is satisfied with the result on an initial image slice, the fitted contour model may 

then be used as the initial boundary approximation for neighboring slices. These 

models are then deformed and propagated until all slices have been processed. The 

resulting sequence of 2D contours can then be connected to form a continuous 3D 

surface model [48]. Image segmentation based on deformable models has been shown 

to be efficient in the segmentation of anatomical structures mainly due to its ability to 

exploit the image data as well as the prior approximate knowledge about the location, 

shape and dimension of structures. The interested reader can refer to [48] for an 

exhaustive review of the application of deformable methods to medical images.

The main advantages of deformable models are their ability to directly generate 

closed parametric curves or surfaces from images and their incorporation of a 

smoothness constraint that provides robustness to noise and spurious edges [21]. On 

the other hand, deformable models suffer from many drawbacks. Firstly, they require 

manual interaction to place an initial model and choose appropriate parameters [21]. 

The snake initialization accuracy influences significantly the segmentation, as 

disturbing image gradients which do not belong to the actual object contour can 

attract the snake into local energy minima. Secondly, deformable models can exhibit 

poor convergence to concave boundaries [21]. However, this difficulty can be 

alleviated somewhat through the use of pressure forces [14] and other modified 

external force models. Thirdly, the deformable models ability to automatically handle
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topology changes turns out to be a liability in applications where the object to be 

segmented has a known topology that must be preserved [81]. Lastly, they require to 

a greater or lesser degree, a high computational effort, which renders them 

inappropriate for applications needing fast response [81].

2.7.5 Generalized Hough transform

Most of the usual segmentation algorithms rely on local image information, 

such as edges and gray levels, and may fail if the initialization is performed too far 

away from the expected solution. For example, snakes algorithm lacks foresight 

because the curve propagates according to a differential equation where the snakes’ 

particles move under the influence of a small neighborhood of image pixels. If a full 

automatic object extraction is required, global information about the structure of 

interest (i.e. shape) has to be encoded in the segmentation algorithm.

The Generalized Hough transform (GHT) was proposed by Ballard [7] to detect 

shapes of no simple analytical form in which a look-up table is used to define the 

positions and orientations of boundary points with respect to a reference point. The 

edge direction at each pixel is measured and the corresponding position vector is 

retrieved from the lookup table. Then the cell that represents the reference position in 

the Hough domain is increased.

Fig 13 shows the relevant geometry and the table shows the form of the lookup 

table where (xc,yc) is reference point, (x,y) is an edge point, p is the edge point 

direction, <]) is the edge point orientation and r is the distance between the edge point 

and the reference point.
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Fig 13. An illustration of GHT parameters and lookup table

Using Fig 13, the GHT algorithm can be summarized in the following steps [34] 

A- Examine the boundary points of a standard shape to construct the lookup table

1- Choose a reference point xc,yc for the shape

2- For each boundary point (x,y), find <|), (3, and find r where r = (xc,yc) -  (x,y)

3- Store r, [3 as a function of <|>

4- The lookup table is constructed where <]) is its index and each (j) may have 

many values of r, (3

B- Applying Hough transform to the image

5- For each edge pixel (x,y) in the image

a. Find the entry in the lookup table that corresponds to its §

b. Increment all corresponding points a = (x,y) + r and store the result in 

accumulator A

6- Find maxima in A

7- Map each maxima back to image space

The Hough transform has been used to detect objects of regular shapes in 

medical images. For example, Solaiman et al [78] has applied the Hough transform to 

locate the aorta in ultrasound images. Fitton et al [25] used the Hough transform to 

automatically assess the regional systolic thickening of the left ventricle from cardiac 

wall segmentation, where they approximated the shape of the epicardial contour with 

a circle. The Hough transform was used to detect the circle parameters and then a 

number of control points were uniformly placed along the estimated circle boundary
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for further boundary refinement. Because of the irregular shape of the prostate, the 

Hough transform can not be used in our research; we need a general algorithm that 

can deal with irregular shapes. Fortunately, the generalized Hough transform proved 

successful in detecting objects of irregular shapes [83], [20][63] and it is applicable to 

our problem. However, its main drawbacks are its substantial computational and 

storage requirements that become especially acute when object orientation and scale 

have to be considered.
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CHAPTER III 

RELATED WORK

3.1 Introduction

In this chapter, we provide an overview of current methods used for prostate 

boundary detection from ultrasonographic images. Ultrasound has been the main 

imaging modality for prostate related applications since it is inexpensive, easy to use, 

accessible, can be viewed in real time, and it has no adverse effect on patients. 

However, the methods discussed are by no means limited to ultrasonographic images, 

and can be applied in different image applications, taking into consideration the 

limitations of each imaging method. Detecting the prostate boundary plays a key role 

in many applications, such as the accurate placement of the needles in biopsy, the 

assignment of the appropriate therapy in cancer treatment, and the measurement of 

the prostate gland volume [77]. Since manual delineation of the boundaries is tedious 

and sensitive to observer bias and experience, automatic segmentation has a 

significant advantage over manual annotation. On the other hand, automatic 

segmentation of ultrasound images is a challenging task because:

■ Ultrasound images have low intensity contrast between prostate and non prostate 

regions.

■ Images contain a considerable amount of noise.

■ The prostate contour in images is often incomplete.

■ The prostate does not have one unique shape.

In this chapter, we focus on providing an introduction to the different algorithms 

that were proposed by other researchers to improve the efficiency of ultrasound 

prostate segmentation (or simply boundary detection) and the pros and cons of each 

method.
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3.2 T w o-dim ensional Prostate B oundary D etection from  U ltrasonographic Im ages

This section presents a review of major publications for 2D prostate boundary 

detection. Accordingly, the prostate image segmentation methods can be classified 

into three types: edge-based, texture-based, and model-based methods.

3.2.1 Edge-Based Detection Methods

hi edge-based methods, the prostate boundary is outlined by using two 

subsequent steps. The first step is using edge detectors to identify all the edges in the 

image. Pixels are classified into edge and non-edge using image features such as local 

maxima of directional intensity gradients. The second subsequent step is an edge 

recognition process to select and link edge pixels to produce a continuous boundary 

of the prostate.

Aamink et al [2] have developed a practical method based on minimum and 

maximum filtering using an approximation of a nonlinear Laplace filter to objectively 

detect the prostate contour in a series of consecutive cross-sections for prostate 

volume measurements in transrectal ultrasonographic images. Using this algorithm, 

the authors were able to obtain the second derivative and the gradient images that 

represent possible edges and the corresponding strength of those edges. The edges are 

enhanced, emphasized by relaxation, selected, linked and interpolated to form a 

closed prostate boundary. With the manually indicated prostate center as the starting 

point, specific features (light-to-dark transitions at edges) are extracted for edge 

enhancement and knowledge-based (such as the expected kidney-like shape) search 

strategies are applied for selecting the correct edges. They used a radial edge search 

strategy starting at the manually indicated prostate center for the upper prostate part 

and a linear search strategy for the lower part. The problem with this method is that 

artifacts such as cysts, calcification, and shadowing can lead to erroneous edges. The 

authors further improved the edge detection and localization, by introducing a multi­

resolution edge detection scheme [3]. They used the local standard deviation to 

differentiate between the homogeneous regions and the areas that showed intensity 

transition. Areas with high possibility of edge appearance, as indicated by high 

standard deviation, were analyzed using smaller filter sizes to improve edge
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localization. More interpolation to find a closed contour is therefore needed, and the 

definition of prior knowledge becomes more essential.

Liu et al [40] introduced a radial bas-relief (RBR) method, which was extended 

from a darkroom technique used in conventional photography, to segment the prostate 

boundary from ultrasound images. Multi-resolution filtering was used and the 

resulting image set was superimposed to obtain a binary-like image in which the 

prostate boundary was enhanced. However, the RBR method would fail to detect the 

desired boundary if the image center and the object boundary centroid were not close 

and had a big deviation.

Pathak et al [56] used an edge-based technique for outlining the prostate 

boundary. First, the contrast of the image was enhanced using a method called sticks. 

The resulting image was then smoothed by a filter, and then some prior knowledge of 

the prostate shape and its appearance in ultrasonic images was used to detect the most 

probable prostate edges. The detected edges were overlaid on top of the image and 

then presented as a visual guide to the observers for manually delineating the prostate 

boundary. An important issue in this study is that although the inter-observer 

consistency in prostate delineation was improved when the edge detection results 

were used to guide manual outlining, the manual interference is still a source of error 

and results should be better if the delineation process is automated.

Edge-based boundary detection methods are very straightforward methods that 

typically locate edges that correspond to local peaks in image intensity gradient. 

These methods can perform well if the boundary is clearly defined. However, because 

of the ultrasonographic images poor quality, the application of these methods leads to 

false boundaries in highly textured areas as well as missing boundaries in not well 

delineated prostate boundary areas.

3.2.2 Texture-Based Detection Methods

In texture-based methods, pixels are classified into target regions and non target 

regions using the texture information which can produce an edge map by creating a 

border between regions that have different textures. Richard and Keen [68] extracted 

the prostate boundary by segmenting 2D images of the prostate gland into prostate
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and non-prostate regions. They used a pixel classifier based on four texture energy 

measures associated with each pixel in the image and a clustering procedure was used 

to associate each pixel with its most probable class. The authors, however, claimed 

that their algorithm is computational expensive and the number of classes produced 

by the clustering procedure is unpredictable. They acknowledged that the effect of 

using texture information is marginal and that better results can be obtained if their 

algorithm is combined with other edge-detection methods.

3.2.3 Model-Based Detection Methods

Studies have shown that model-based segmentation methods are efficient in 

delineating object boundaries [48]. These methods integrate some prior knowledge, 

such as shape information and imaging features, into the model to improve the 

boundary detection algorithms. This section reviews two different concepts that refer 

to model-based methods that have been applied to prostate boundary detection. The 

first concept is based on deformable contour models while the other one is based on 

statistical models.

3.2.3.1 Deformable Contour Models

Deformable contour models, introduced by Kass et al. [36] and known as active 

contour models or snakes, delineate object boundaries by using closed curves or 

surfaces that deform under the influence of internal and external forces. Deformable 

models have been extensively investigated in literature as an attractive tool for image 

segmentation and boundary detection.

Pathak et al. [55] presented an algorithm based on snakes to detect the prostate 

boundary from transrectal ultrasonographic images. They used the sticks algorithm 

[17] to enhance the contrast along the edges, followed by a snake model initialized 

with manually specified initial curve. To initiate the boundary detection, the user has 

to input an initial curve for each ultrasonographic image. The results acquired are 

found to be dependent on the position of the initial contour to the prostate boundaries. 

If the initial contour is reasonably close to the boundaries, the algorithm delineates 

the prostate boundaries successfully and vice versa.
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Ladak et al. [39] developed a m ethod in w hich the user selects four points 

located on the prostate boundary from which the initial contour is estimated by cubic 

interpolation functions and shape information. Gradient direction information was 

used to attract the contour to the prostate boundaries. If the algorithm failed to detect 

the correct boundary due to improper initial points (which is a major drawback), the 

detected boundary was manually edited and deformed again to obtain better results.

Attempting to address the problem of contour initialization, Knoll et al. [37] and 

[38] proposed an algorithm to represent particular prostate shapes and restrict the 

elastic deformation. In their algorithm, the authors applied localized multi-scale 

contour parameterization based on the ID dyadic wavelet transform. The starting 

contour was initialized using a binary multi-scale pattern matching, which compares a 

training set of object models against the real image data. The internal curve 

deformation forces were implemented using multi-scale parametrical contour 

analysis. Their experiments had proved the robustness and efficiency of their 

algorithm compared to conventional snakes.

3.2.3.2 Statistical Models

In statistical models, the variations of parameters in a training set are coded and 

characterized in a compact manner. Estimated parameters are obtained from available 

segmented images and are used to segment new images. The result can be 

incorporated into the model thus updating a priori information available to the 

system.

Prater and Richard [62] presented a method for segmentation of the prostate in 

transrectal ultrasound images based on feed-forward neural networks where images 

are segmented into prostate and non-prostate regions. The authors proposed three 

neural network architectures which are trained using a small portion of a training 

image (segmented by an expert) and then applied to the entire training image. 

Although this method could provide a good result of segmentation, it requires 

extensive training and thus complicates the detection process. Moreover, it is difficult 

to incorporate user-specified boundary information into the neural networks.
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Lorenz et al. [42] extracted the prostate boundaries using the Markov random 

field (MRF). They assumed the contour sequence to be a 2D first order Markov 

random process, and incorporated prior shape knowledge about the contour by clique 

potentials defined on a neighborhood system. The contour is estimated iteratively on 

the basis of the maximum a posteriori principle and the results were further improved 

by incorporating three-dimensional information on neighboring slices in a volume 

data set. The drawbacks of the MRF method are: the difficulty to properly select the 

parameters that control the strength of spatial interaction, and its intensive 

computational load.

Wu et al. [84] proposed a model-based boundary recognition method called 

feature-modeling to detect the prostate boundary automatically. In their algorithm, the 

authors modeled the boundaries using conventional point distribution estimation 

method where some specific information about the prostate (such as the shape, actual 

size, relative position to the ultrasonic probe, and boundary orientation) is integrated. 

Subsequently, they used a genetic algorithm to perform a robust search of the object 

boundary with model constrains. Although the authors claimed that their algorithm 

has achieved good accuracy and robustness, the specifications of their model requires 

that the central point of the ultrasonic probe must be visible in the image; however it 

is not captured in most ultrasound examinations.

Shen et al. [77] introduced a statistical shape model to automatically segment 

the prostate in transrectal ultrasound images. The model consisted of three parts: the 

calculation of the statistical shape from the prostate sample, the hierarchical 

representation of the image features using the Gabor filter bank, and the hierarchical 

deformable segmentation. The shape statistics was calculated from a set of training 

samples that are manually outlined from the ultrasound images. The image features 

are hierarchically represented by a set of rotation-invariant features reconstructed 

from the Gabor filter bank. These features were used as the image attributes for 

driving the prostate shape model to its correct position in the ultrasound image. The 

average shape model was rigidly transformed to a position that optimally matches the 

rotation invariant image features, to determine the model initialization. The model is 

then hierarchically deformed under the forces from the features, the internal and
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statistical constraints. The experimental results were promising and were close to 

annotations provided by human experts.

Gong et al. [24] incorporated prior knowledge of prostate shapes in a 

deformation-based method, to automatically segment prostate in ultrasound images. 

The prostate shapes were modeled using deformable super-ellipses. The results were 

compared with manual outlining from several human experts and shown to be 

promising.

Chiu et al. [13] introduced a semi-automatic segmentation algorithm based on 

the dyadic wavelet transform (DWT) and the discrete dynamic contour (DDC). A 

spline interpolation method wais used to determine the initial contour based on four 

user-defined initial points. The DDC model then refined the initial contour based on 

the approximate coefficients and the wavelet coefficients generated using the DWT. 

The DDC model was executed under two settings and a selection rule was used to 

choose the best contour based on the contours produced. The authors compared the 

final contour produced by the proposed algorithm with the manual contour outlined 

by an expert observer and claimed that the average difference between them is less 

than 3 pixels.

Betrouni et al. [9] discussed a method for the automatic segmentation of trans­

abdominal ultrasound images of the prostate. In this method, a filter is applied to 

enhance the contours without modifying the image information. This filter combines 

adaptive morphological filtering and median filtering to detect the noise-containing 

regions and smooth these areas. Then a heuristic optimization algorithm searches for 

the contour initialized from a prostate model. The authors compared the resulting 

contours with those obtained by manual segmentation and claimed that the average 

distance between the contours was 2.5 mm.

3.3 Discussion

Recent studies are focused more on statistical model based algorithms than 

deformable models. Deformable models based methods use only local constraints 

such as gradients and shape smoothness, therefore the results heavily depend on 

individual images. Statistical-model-based segmentation methods, on the other hand,
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characterize and use all possible variations in  the training set to  identify a valid 

instance. Information obtained in the training process can serve as constraints or prior 

knowledge for the segmentation process, thereby achieving a trade-off between the 

prior knowledge (obtained during training) and the local information in the processed 

image [86].

By analyzing the existing literature, the error resulting from applying prostate 

segmentation methods may increase considerably when the image contains shadows 

with similar gray level and texture attached to the prostate, and/or when boundary 

segments are missing. Another obstacle that faces segmentation is the lack of 

sufficient number of training (gold) samples if a learning technique is used. Although 

algorithms based on active contours have been used successfully, their major 

drawback is that they depend on user interaction to determine the initial contour.

Therefore, a new segmentation approach should ideally possess certain 

properties:

■ User interaction (e.g. defining seed points or manually placing initial contour) 

should be eliminated due to its drawbacks such as time consumption, human bias 

and/or error.

■ Sample-based learning should be avoided because it is difficult to provide a large 

number of training samples in medical environments.

■ Robustness of the segmentation algorithm with respect to the presence of noise 

and shadow is crucial.

■ Shape information should be incorporated into segmentation algorithms to be able 

to estimate contour segments that are missing in some areas.

In this dissertation, we establish a straightforward algorithm which attempts to 

avoid the problems that exist in literature and to satisfy the above conditions as much 

as possible.
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CHAPTER IV 

ESTIMATION OF THE PROSTATE CAPSULE USING SHAPE 
INFORMATION

4.1 Introduction

In order to automatically identify the capsule of the prostate and replace the 

arduous and costly manual process of detecting it, a software algorithm was 

developed that recognizes the capsule utilizing elements of prostate anatomy and 

shape. Certain anatomical features make capsule generally detectable; however, the 

capsule is unrecognizable in some areas because of the naturally occurring intrusion 

of muscle into the prostate gland at the anterior apex and fusion of extraprostatic 

connective tissue with the prostate gland at its base. At these regions where the 

prostate capsule disappears, its contours need to be reproduced by drawing a 

continuing contour line from those areas where the capsule can be objectively 

recognized, also taking into account the natural shape of the prostate gland.

In this chapter, we first highlight the research efforts in the literature that 

classified cells in histopathologic images and can be applied to our problem. We then 

introduce a mathematical model that provides a standard prostate shape to be used in 

conjunction with Generalized Hough Transform (GHT) to detect the prostate capsule 

as well as approximate the missing parts of the capsule where it disappears to a 

standard shape. We also present another algorithm based on least squares curve fitting 

technique that uses the prostate shape equation to merge the previously detected 

capsule parts with the curve equation to produce an approximated smoothed curve 

that represents the prostate capsule.

4.2 Detecting Histological Patterns of Elastic Fibers within the Prostate Capsule

As we have previously pointed out in chapter 2, the elastic fibers within the 

prostate capsule can be clearly recognized under the microscope and also under high 

resolution of scanned digital images. In order to correctly locate those lines, it is 

essential to detect the parenchymal outer contour of the prostatic glandular epithelial
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elements (Fig 14), since the capsule is normally located between this contour and the 

perimeter of the slice.

Fig 14. A prostate slice with parenchymal contour (inner line), slice perimeter (outer 

line), and the prostate capsule (dashed line).

Classification of cells in histopathologic images is an important problem in 

many clinical and research activities. Traditional histopathologic techniques remain 

labor-intensive and inherently subjective based on the personal judgment of 

pathologists. The development of automated pathology has remained out of reach 

essentially due to the complexity of imagery. Nowadays, with developments in 

machine vision, image processing systems, and computer hardware, pathologists’ 

methodologies could be complemented by providing an automated and objective 

approach to analyze histopathologic images. Analyzing cell images can be considered 

as an image segmentation problem where cells or their kernels should be extracted 

[53],

There are several attempts in literature to classify tissues of histopathologic 

images using texture analysis and image morphology [19], [29], [30], [53] and [58].

Nedzved et al. [53] proposed two segmentation algorithms for histology cell 

images by means of gray-scale thinning, mathematical morphology and split/merge
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operations. Their algorithm produced good results for most of the images; however 

the segmentation result depends on the quality of preparation and on the coloring of 

histology images.

Diamond et al [19] used prostate slices cut from whole-mount radical 

prostatectomy to identify tissue abnormalities in prostate histology. The images of the 

slices are captured at x40 objective magnification using a microscope and a digital 

camera and overlapped by 10% for registration purposes. Since texture analysis is 

based on the interrelationship between pixel intensities, the authors chose a subimage 

size of 100x100 to define a high degree of detail, for processing at a time. They used 

texture and morphological characteristics of the scenes in the subimages to classify 

the different tissue types. By investigating Haralick texture features, they found that 

Haralick 4 (H4) is more appropriate to distinguish between stroma and prostatic 

adenocarcinomas while the analysis of morphological characteristics allowed the 

identification of normal tissues. Normal tissue exhibits larger areas of associated 

lumen, thus the identification of lumen objects using mathematical morphology 

defines the epithelial layer. The authors were able to correctly classify 79.3% of 

subregions of small scenes. Their methodology also succeeded in classifying the 

different tissues when applied to whole slide images via scanning technology.

Petushi et al. [58] developed an automated method to detect and identify 

microscopic structures on histology slides. They were able to identify fat cells, 

stroma, nuclei of cells of epithelial origin, and other two types of nuclei that represent 

inflammatory cells and cancer cells. The slides were scanned using a 40X 

magnification lens, covering almost all the tissue. Each slide image is composed of 

400 sub-images each is 460x620 pixels. The algorithm starts by an off-line learning 

phase to extract intensity mean, intensity STD, and shape area for each type of nuclei, 

while for the stroma and fat like structures only the intensity mean and STD features 

are extracted. To segment the regions of interest that represent the three types of cell 

nuclei, the authors used optimal adaptive thresholding (based on histogram 

partitioning to automatically determine the optimal thresholds) with local 

morphological opening and closing operations. The output from the segmentation 

step was then clustered and a binary decision tree was used as a classification method.
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The authors were able to correctly identify the different tissue structures in H&E 

stained histology slides with 89% ±0.8 accuracy.

Based on the previous research efforts, we conclude that the collagenous fibers 

within the prostate capsule as well as the epithelial cells can be automatically 

identified using either of the techniques mentioned in [19] and [58], given that the 

slides are scanned at 40X magnification. By detecting the epithelial cells, the 

parenchymal contour can therefore be generated. As for the tissue parts where the 

prostate capsule exists, the algorithms mentioned above can automatically detect 

them and mark them on the slices’ images to be used as inputs to our algorithms 

which we will explain in the following sections.

4.3 A Mathematical model for a standard prostate shape top down anterior to 

posterior

In general, any prostate has a standard shape as the one shown in Fig 15 where 

it has different parameters. This shape can be defined in terms of equations for each 

quadrant (four equations total) as follows [34]

p
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Fig 15. A standard prostate shape.

F 2 =  1.75 F I = 1.2

FrFi =0.6

r = 1.2 -  0.6 cos 0
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In the first quadrant, the curve’s equation can be defined in terms of two equations

z  = (F I -  F 3 cos #)cos 9  
p  = (FI -  F 3 cos <?)sin 9

Where 0 < 0 < 7t/2

For the second quadrant where 7t/2 < 0 < 7t

z = | —- ( F I  -  F\ ) 9  + 2 F \ -  F2  |cos 9

j j - ( F 2 -  Fl ) 9  + 2 F 1 -  F2  |sin 9

Similarly, the third and fourth quadrants curves can be defined by considering 

the shape’s symmetry.

The anterior/posterior ratio will be defined as R where R is equal
Z l  F I  -  F 3
Z 2 F 2

Where

F l  =  P„

p>2 —

"  1+ R

F3 = P™ *- A

And

P max =  F 1

Azmax = F l - F 3  + F2  = Pnax - F 3 + F 2

Up to this point, a standard shape of a complete prostate gland was considered. 

We now need to find a standard equation that defines a prostate slice. A prostate slice 

can be viewed as shown in Fig 16 where a standard equation can be defined as 

follows

f - Y 3.32552+ (—1.8142857-0 .27 )2 =1 
F

(3)
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Fig 16. A standard shape of a prostate slice.

Notice that Fig 16 consists of four curves marked as A, B, C and D where each 

of these curves represents a case of equation 3 with different parameters values.

For curve A equation, substitute in equation 3 with y from 0 to 0.1488188F, and find

Therefore x = F  x '
1 -

1.8142857 \ 2
y  -  0.27

3.32552
(4)

For curve B, substitute with y = [0.1488188+0.55118 sinO] F for x;

Where 0<6<0.837t
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x = ± F x ^
1 -

1.8142857
y  -  0.27

3.32552
+ for 0<6<7c/2, - for

7i/2<0<O.837C (5)

For curve C, substitute with y = [0.1488188 - 0.55118 sin0] F for x; 

Where O.17<0<7t

, [ 1 - 8 1 4 2 8 5 7  V

x = -  F  x 1 —  ------------------------ — - for O.177t<0<7t/2, + for
" 3.32552

7t/2<0<7t -----------(6)

For curve D, substitute with y = -0.1488188 F to 0 for x;

1.8142857 y + 0.27
x = F x l  ^ -------------- (7)

1 3.32552

The above equations can be approximated by the Limagon curve equation 

r = b + a cos 0 ------------------ (8)

Different shapes of the curve can be generated by varying the ratio of a to b as 

shown in Fig 17.
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(a) (b) (c)

Fig 17. Limacon curves (a) when a< b, (b) when a<b<2a, and (c) when 2a<=b.

The limacon serves only as an approximation since there is always a degree of 

roundness to this shape. Therefore, the limacon serves as a better shape than a circle 

but may not be as good as an ellipse where more elongated prostate shapes are 

observed.

4.4 Approach

We present a general process that utilizes two different shape algorithms to 

detect the prostate capsule. This process can be summarized as follows:

1. Using digital images of prostate slices scanned with 40x magnification, 

identify the input sections of the prostate capsule (the outer perimeter, the 

parenchymal contour, and the observable portions of the capsule) 

automatically using texture analysis techniques [19].

2. Call a shape algorithm to generate a curve that interpolates between the 

parts generated in step 1.

3. Adjust the generated curve so that it does not violate any constraints. In our 

case the constraint is that the curve should be between the parenchymal 

contour and the prostate perimeter.

4. Repeat steps 2 and 3 until a satisfactory threshold is acquired.
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To achieve step 2, w e have used tw o different shape algorithm s: the G eneralized 

Hough Transform (GHT) and the least squares shape algorithms. In the following 

sections we present them in details.

4.4.1 Generalized Hough Transform (GHT) shape algorithm

In chapter two, we have introduced the GHT algorithm and its mechanism, 

GHT can be applied to detect the prostate boundary by the use of prostate slice 

equations, defined in the mathematical model that was introduced in the previous 

section, as follows:

For a prostate slice

1. Choose a reference point Xc,yc for the shape (It can be the central point)

2. For each boundary point y = (Xi,y0, find r where r = (Xc,yc) -  (x;,y,) then substitute 

with y in equations 2,3,4, or 5 (according to the current quadrant) to get the 

corresponding curve equation x

3. Store r, y, and x in a lookup table (Table 1)

4. For each r in the lookup table, count the number of points that construct each 

curve occurrence and represent the counter by c

5. Choose the largest c for each r; this represents the strongest curve occurrence.

Table 1: A lookup table for the proposed GHT.

r (x,y)

ri {xn,yn},

{Xi2,yi2},{Xl3,yi3},--.

T2 {x2, yi}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

D eterm ining the boundary points in step 2 o f the previous algorithm  can be 

done by recognizing the histological pattern of the elastic and collagenous fibers 

within the prostate capsule as we have previously mentioned in section 1 of this 

chapter. In our experiments, we have used circle, limacon, and ellipse shapes as our 

equations for the GHT algorithm.

4.4.1.1 Implementing the GHT using the limacon shape equation

In implementing the GHT algorithm using the limacon equation, we have taken 

rotation into consideration thus adding another term to the limacon equation to 

become r = b + a  cos (0+0)

A range of values is chosen for a, b, O, (xc,yc) where xc,yc is a reference point 

For each boundary point (x,y) [boundary points represent the capsule parts]

For each xc,yc (the range covers the whole image)

For each a,b

If r = r’ (within certain threshold),

increase accumulator [The accumulator is a 5D array in a,b,xc,yc,0] 

End for 

End for 

End for

We have set a threshold at which we consider the curve passing by a particular 

point if the point is within n pixels distance from that curve. The number of pixels n is 

calculated by n = (di/d2)*t

Where di is the diagonal of the image in pixels, 

d2 is the diagonal of the picture box of the GUI, 

and t is a threshold that we set to 5

The accumulator is scanned to find the cell with the maximum count 

The corresponding cell parameters (a,b,Xc,yc,0 ) represent the resulted curve

Calculate 0 = tan‘1((y-yc) / (x-xc))

Calculate r = b + a cos (0+0) [O is configurable]

Calculate r '
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In case that more than one curve is retrieved, the curve that has the minimum 

square error with respect to the optimal capsule line (drawn by the pathologist) is 

chosen

4.4.2 The least squares shape algorithm

The least squares method is a very popular technique used to compute 

estimations of parameters and to find the best fitting model for discrete data. It is 

widely used in literature to fit a function (which may represent a certain shape) to a 

set of data which can be used in many applications including medical imaging [59].

Assuming that we have a number n of discrete data (xi,yO, (X2 ,y2) ,  (xn,yn) and

f(x) is a function for fitting a curve. Therefore, f(x) has the deviation (error) d from 

each data point, i.e. di = yi-f(xO, d2 = y2-f(x2) , ......... , dn= yn-f(xn)

The best-fit curve is the curve that has the minimal sum of the deviations squared 

from a given set of data [16], i.e. it is the curve that satisfies the following equation

Minimum Least square error (]”[) = di2 + d22 + .. ..+dn-i2 + dn2
ft

= ' L d ?
i=1

= J  foi - /(* ,•  ) f
i=1

4.4.2.1 Implementing the least squares using the limacon shape equation

Using the limacon equation, taking the rotation factor into consideration, the 

least squares algorithm can be summarized as follows:
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Select range of values for the center of the curve (cx,cy) 

Select range of values for the curve parameters (a, b) 

Select range of values for the curve rotation angle (theta) 

minError = infinity 

FOR all values of a 

FOR all values of b 

FOR all values of cx 

FOR all values of cy 

FOR all values of theta 

Generate the curve points 

Compute the error in curve 

IF error < minError 

minError = error 

store curve parameters 

END IF 

END FOR 

END FOR 

END FOR 

END FOR 

END FOR

Return the stored curve parameters

We have used the least square method to find the closest location of the prostate 

shape equation with respect to the parts of the capsule that are present in the tissue 

(Fig 18)
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Fig 18. Least squares method and prostate shape equation, (a) Arrows point to the 

detected parts of the prostate capsule, (b) Arrow points to the curve representing the 

prostate shape located as close as possible to the capsule parts.

4.4.2.1.1 Known capsule regions preservation

Once the curve is positioned close to the capsule parts, parts of the shape curve 

is replaced by the capsule segments and a new curve is generated by connecting all 

the curve points and capsule points using cubic splines (Fig 19)

Fig 19. New shape curve after merging the capsule parts into the original shape curve.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

This can be summarized as follows

FOR each segment on the boundary curve

point 1 = Closest point on the generated curve the first point on the segment 

point2 = Closest point on the generated curve the last point on the segment 

IF length o f curve from  point 1 to point2 < ( total length o f  curve ) /  2 

remove curve points in the range from  point 1 to point2

ELSE

remove curve points in the range from  point2 to point 1 

END IF

insert segment points into the curve 

smooth curve at connection points 

END FOR

At the connection points, we used a smoothing technique which can be summarized 

as follows:

pivot = connection point

alpha = initial smoothing factor (between 0 and 1)

WHILE (alpha >threshold)

p = get the next neighboring point

compute the equation of the line connecting pivot to p

d = length of the line

replace p with the point at distance (l-alpha)*d from the pivot (on the line) 

END WHILE
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4.4.3 Curve Adjustment Algorithm

Sometimes the generated curve violates the constraint that states that the 

prostate capsule is typically located between the parenchymal contour and the 

prostate perimeter as shown in Fig 20.

Fig 20. Shape curve extending beyond the prostate perimeter.

In this case, we use the flood fill algorithm [33] to relocate the curve parts that 

violates the constraint such that new points are generated between the 2 contours (Fig 

21) for the least square algorithm to be executed again for better results.
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Fig 21. Contours.

4.5 Summary

In this chapter we presented two novel shape algorithms to detect the prostate 

capsule boundary with the use of Generalized Hough Transform (GHT) and least 

squares fitting along with prostate shape equations. The curve adjustment algorithm 

was used primarily to generate new boundary points to feed the shape algorithm for 

consecutive runs for improved shape fitting. However, in case one wishes to stop 

after a certain number of runs and the output curve extends beyond the slice perimeter 

or inside the parenchymal contour, the algorithm is used as a final step to enforce this 

constraint. This enforcement may result in some sharp edges; a curve smoothing 

technique can be added as a future extension to our algorithm to solve this problem.
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CHAPTER V 

IMPLEMENTATION AND EXPERIMENTAL RESULTS

5.1 Images preprocessing

The specimens used in our study are sliced every 5mm from apex to base, along 

the urethra and each slice is saved in a jpg file with a size of approximately 

3000x2000 pixels. To speed up the algorithms processing time, we have reduced the 

size of each slice image by 50%. Our algorithms start with the assumption that the 

parenchymal contour and the prostate perimeter contour have been automatically 

predetermined by a texture based segmentation technique as we explained in chapter

4. Therefore, we have substituted this phase by manually outlining the two contours 

using adobe photoshop 7.0. We have chosen a distinct color for each contour that 

uniquely identifies it from the other colors in the slice. The RGB combination for the 

parenchymal and perimeter contours are chosen to be (60, 120, 60) and (120, 120, 60) 

respectively. The contours are drawn by the brush tool in photoshop with 22 pixels 

width while disabling the brush smoothing option. A new jpg image file is created for 

each slice after marking the contours, eliminating the debris, and positioning the slice 

in the center of the image (see Fig 22)

Fig 22. Slice Image (a) original slice image, (b) a processed image
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5.2 Test bed

In testing our algorithms, we have used 13 images of slices cut at 5, 

10,15,20,25, and 30mm from the apex (Table 2). The samples are named as 

RP[xx]mm[yy] where xx stands for a sample number and yy stands for the distance in 

mm from the apex where this sample was cut.

Table 2 Test bed.

RP16mm25RP16mm20

RP36mml5RP39mm25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

RP38mmlO

RP37mml5

RP40mml0 RP36mm05

RP38mm30 RP37mmlO
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RP37mm05
RP38mml5

RP31mm25

5.3 Testing

We have tested the Generalized Hough Transform (GHT) algorithm and the 

least squares fitting algorithm on Pentium 4 machines, with dual processors of 

3.4GHz and 1.00 GB of RAM. The 13 slices are used to test each algorithm using 3 

different shape equations: the limacon (discussed in chapter 4), the circle, and the 

ellipse.

The limacon equation has 3 parameters a, b, and 0 that changes the curvature, 

the width, and the orientation of the curve respectively. The program searches in a 

predetermined range of values of the parameters for the best shape that fit the slice in 

process. For example, in Fig 23a, the slice has a flat top so the curvature is minimal 

while in Fig 23b, the slice has a concave top which requires some curvature at the top.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

Therefore, the lim acon generates tw o different shapes as show n by  the arcs to 

accom m odate each case.

(a)

Fig 23. Limacon curve generated for two different slices.

The input to the least squares as well as the GHT algorithms are arcs that 

represent the parts of the capsule that are present in the slice and can be clearly seen 

under the microscope or with high scanning resolution. We have assumed that these 

parts have already been determined by a texture based algorithm, as we explained in 

chapter 4, and thus we have manually drawn them for testing our algorithm. As was 

explained by a pathologist, we have drawn the capsule parts in areas that are close to 

fat tissues as shown in the Fig 24
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Fig 24. Manual marking of the capsule parts that are present in the slice.

5.3.1 Testing Least squares algorithm

In chapter 4, we have explained the steps of the least squares algorithm using 

the limacon equation. In this section, we show the results of applying this algorithm 

on our test bed using the limacon, circle, and ellipse equations. In the following table, 

we show the detailed steps of running the least squares algorithms on slice 

RP38mm30.

Table 3: Detailed steps of applying least squares algorithm on a slice

Original image of a slice cut at 

30mm from the apex. The dashed 

curve, manually drawn by a 

pathologist, shows the expected 

capsule.
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The locations where the capsule 

parts are present are marked and 

saved

The parenchymal contour and the 

slice perimeter are marked with 2 

distinct colors

•  vŴ Ê&roRfit fflBm X«3^^HII^HB1jF 

^^■z'JB^^HpKj9||3r9yK^r

1st run

The least squares algorithm finds 

the best value for the equation 

parameters to position the output 

curve close to the input arcs. The 

arrow points to the generated 

curve.
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The generated curve is connected 

by the input arcs.

! ^ m » rW:' %ln *^v*. **v v ^W£^nE^^^R5Mfl^7jKF'i7

Some parts of the generated curve 

violate the constraint which states 

that the capsule should be located 

between the parenchymal contour 

and the slice perimeter. Therefore 

we use the floodfill algorithm to 

relocate the points of the curve that 

violate the constraint and place 

them between the 2 contours. The 

new generated points are shown.

v ^ i N B i u m « W

2nd run

The algorithm runs for a second 

time with the original arcs as input 

in addition to the points generated 

by the floodfill algorithm in the 

previous step. The algorithm finds 

the best values (from a specific 

range) for the equation parameters 

that place the curve close to the 

arcs and the points.
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The generated curve is connected 

by the original input arcs as well as 

with the new additional points. 

Note that the curve doesn’t violate 

any constraints so the floodfill will 

not generate any new points and 

therefore, the curve has converged 

to its optimum state.

The final curve.

In the example shown in Table 3, the curve has converged at the second run of 

the algorithm because the shape equation used is best suited for this particular slice. 

However, this may not be the case when the shape equation is not appropriate for the 

slice in process. In such a case, the algorithm can continue running further as long as 

the floodfill generates new points at the end of each run and the curve will converge 

to its optimum state eventually. However, if the shape is not good for the slice, the 

final curve may reach its optimum state with a high deviation from the expected 

curve.
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In Table 4 we show the output of 2 runs for the slice explained in table using 

circle shape equation and in fig we show the output of 2 runs using an ellipse 

equation.

Table 4: Results of running the least squares algorithm on RP38mm30 using circle 

equation

1st run

After connecting the input arcs with 

the curve generated from the 1st run

2nd run

After connecting the input arcs with 

the curve generated from the 2nd run

From Table 4, we notice that the curve has not converged at the second run as 

was the case when the limacon equation was used. However, since part of it violates
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the constraint, the floodfill will push the points in between the two contours and it 

may converge at the 3rd run.

Table 5: Results from running the least squares algorithm on RP38mm30 using ellipse 

equation.

After connecting the input arcs with the 

curve generated from the 1st run

After connecting the input arcs with the 

curve generated from the 2nd run

From Table 5, we notice that the curve has converged at the 2nd run as was the 

case when limacon equation was used. However, the curve generated by the limacon 

is closer to the expected optimum curve than the one generated by the ellipse
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equation. This means that for this particular slice, the limacon equation better suits it 

than the circle or the ellipse. Each of the three curve equations may be good for some 

slices and bad for others as shown in Table 6.

Table 6: Least squares algorithm results after the 2nd run.

251 run using circle 

equation

2nd run using 

limacon equation

Sample

number

2n run using ellipse 

equation

RP38mml0

RP38mml5

RP16mm20 k

RP16mm25
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RP36mm05 • •
RP36mml5 9 (1
RP39mm25 9
RP37mm05 9 9 9
RP37mmlO • 9
RP37mml5 9 9
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RP31mm25

RP40mml0

5.3.2 Testing GHT algorithm

In this section, we show the results of applying the GHT algorithm on our test 

bed using the limacon, circle, and ellipse equations. The difference between the GHT 

approach and the least squares approach is that in GHT we do not merge the input 

arcs with the generated curve after each run. The GHT uses the shape equation and 

tries to pass by as many points as possible of the input arcs. We have set a threshold 

at which we consider the curve passing by a particular point if the point is within n 

pixels distance from that curve. The number of pixels n is calculated by

d l  *n - ----- * t
d  2

Where di is the diagonal of the image in pixels, 

d2 is the diagonal of the picture box of the GUI, 

and t is a threshold that we set to 5 

In the following table, we show the detailed steps of running GHT algorithms 

on slice RP38mm30 using limacon equation.
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Table 7: Detailed steps of applying GHT algorithm on RP38mm30.

Original image of a slice cut at 

30mm from the apex. The dashed 

curve, manually drawn by a 

pathologist, shows the expected 

capsule.

The locations where the capsule 

parts are present are marked and 

saved.

The parenchymal contour and the 

slice perimeter are marked with 2 

distinct colors.
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1st run

The GHT algorithm finds the best 

value for the equation parameters 

that enables the curve to pass by as 

many arc points as possible.

New points are generated by the 

floodfill algorithm for the parts 

where the curve has violated the 

bounding constraint.

GHT runs for a second time and 

the generated output curve is better 

than the one obtained in the 1st run. 

The curve still violates the 

bounding constraint though, 

therefore floodfill will generate 

new points and the algorithm can 

run for a third time.

2nd run
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In our experiments, we stopped at 

the 2nd run of each specimen. In 

this case, when no further runs are 

to be held, the flood-fill algorithm 

can be used as a final step to adjust 

the curve if it violates the 

constraint.

We have also applied the GHT on the same slice using circle equation and 

ellipse equation and the results are shown in Table 8 and Table 9 respectively.

Table 8: Results of running the GHT on RP38mm30 using circle equation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

Table 9: Results of running the GHT on RP38mm30 using ellipse equation.

From Table 8 and Table 9, we notice that 2 runs are not enough for the GHT 

algorithm to converge to an optimum shape. However, at the 2nd run one can usually 

predict how good or bad a shape equation is for a particular slice. As the shape has 

more parameters that can change through the runs aiming for a best fit, the algorithm 

will eventually converge to an optimum curve. In the previous example, it turns out 

that at the second run the three shapes have produced close error percentages with the 

least error in the limacon or the ellipse shape and the most in the circle shape. In the 

following table we show the 2nd run’s results of applying GHT on our test bed using 

the three shape equations.

Table 10: GHT results after the 2nd run.

Sample

number

2n run using circle 

equation

2n run using limacon 

equation

2n run using ellipse 

equation

RP38mmlO
7i
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RP38mml5

RP16mm20

RP16mm25

RP36mm05

RP36mml5
SH

B P

RP39mm25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

RP37mm05

RP37mmlO

RP40mml0

RP31mm25

5.4 Performance evaluation

To evaluate the performance of the least squares algorithm and the GHT, we 

have used two measurements, the root mean square error RMSE and the percentage 

of error, which are defined as follows:

RP37mml5
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Root m ean square error (RM SE):

Assuming that curves are represented by control points, the mean square error is 

the average of squared deviations. Deviations can be calculated by getting the 

distance from each point on the curve to the closest point on the reference curve. The 

root mean square error can be calculated by getting the square root of the mean 

square error as shown in the following equation:

i=i ” n

Where

n is the number of points in the curve

di is the min distance from point i in the curve to the reference curve.

The following 2 figures shows the RMS error of the least squares algorithm and 

the GHT respectively

RMSE of least squares algorithm

circle limacon ellipse

Shape

■  RMSE

Fig 25. Root Mean Square Error for the least squares algorithm.
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RMSE of GHT algorithm

circle limacon ellipse

Shape

B RMSE

Fig 26. Root Mean Square Error for the GHT algorithm. 

Percentage error:

m t-
Percentage Error = ̂ —

;=i m 

Where

m is the number of points in the reference curve

fl d ; > threshold 

[0 dj < threshold

di is the min distance from point i in the reference curve to the curve

The thresholds considered in our study are equal to 1%, 1.5%, and 2% of the 

number of pixels of the image diagonal. Fig 27 illustrates the size that each threshold 

contributes to the actual size of a prostate slice. The squares that appear on the top left 

represent the number of pixels that are equal to 1%, 1.5%, 2% of the image diagonal 

respectively. By measuring the three squares, we found that the 2% threshold, which
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is the biggest threshold we used, is less than 2mm in length. According to the fact that 

the capsule thickness is between 0.5 to 2mm [72], we believe that the 2% threshold is 

reasonable and within acceptable limits while the 1.5% threshold is used to gauge 

performance improvement. The 1% result is essentially directly on top of the 

reference line.

Fig 27. Thresholds with respect to an actual slice image.

The following figures show the % matching between the calculated curve and 

the optimal curve for the least squares and the GHT algorithms at 0.01, 0.015 and 

0.02 threshold, respectively.

Percentage of matching between the calculated curve and the optimal curve at 0.01 
tolerance for the least squares algorithms

I %matching

circle limacon

Shapes

ellipse
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Percentage of matching between the calculated curve and the optimal curve at 
0.015 tolerance for the least squares algorithm

circle limacon ellipse

Shape

Percentage of matching between the calculated curve and the optimal curve at 
0.02 tolerance for the least squares algorithm

■ %matching

limacon

Fig 28. Percentage matching for least squares algorithm.
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P e rc e n ta g e  of m a tch in g  b e tw e e n  th e  ca lcu la ted  cu rv e  an d  th e  
o p tim a l c u rv e  a t 0.01 to le ra n c e  fo r  GHT

| »  %nat chi ng |

limacon

S h a p e
ellipse

P e rc e n ta g e  o f m a tc h in g  b e tw e e n  th e  ca lcu la ted  c u rv e  an d  th e  
o p tim a l c u rv e  a t 0.015 to le ra n c e  fo r GHT

circle lim acon e llipse

Shape
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Percentage of matching between the calculated curve and the optimal curve 
at 0.02 tolerance for GHT

circle limacon ellipse

Shape

Fig 29. Percentage matching for GHT algorithm.

5.5 Discussion

The results presented in this chapter show that the GHT and the least squares 

shape algorithms show an aptitude for increasing capsule detection as better shape 

equations are used. From Table 6 and Table 10, we notice that the circle equation 

may produce an erroneous curve (as Table 10 shows in the case of specimens 

RP31mm25 and RP39mm25). This is due to the limited degree of freedom in the 

circle equation compared to the limacon and ellipse equations. During 

experimentation we have noticed that sometimes the output curve for a particular 

slice gets worse after the second run of the shape algorithm (as Table 6 shows in the 

case of specimen RP31mm25 using limacon equation) but gets better if we run the 

algorithm for a third run. The results presented in this chapter are the outcome of 

running the algorithms for 2 runs only; however, they can be run for as many times as 

needed until a satisfactory threshold is acquired. Obviously, increasing the number of 

runs for a particular specimen is more important for complex prostate equations that 

have more degrees of freedom.
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W e w ould like to  poin t ou t that w e used the flood-fill algorithm  prim arily to 

generate new boundary points to feed the shape algorithm for consecutive runs for 

better fitted output curves which also may add a smoothing effect. However, in case 

that one wishes to stop after a certain number of runs and the output curve extends 

beyond the slice perimeter or inside the parenchymal contour, the flood-fill is used as 

a final step to enforce these constraints. This enforcement may result in some sharp 

edges (as Table 10 shows in the case of RP36mm05 and RP31mm25). A curve 

smoothing technique can be added as a future extension to our algorithm to solve this 

problem.
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CHAPTER VI 

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Despite the numerous research studies in segmenting structures from medical 

images and reconstructing a compact geometric representation of these structures, no 

study, to the best of our knowledge, has been done to automatically identify the 

complete prostate capsule in medical images. As studies show, identifying the 

prostate capsule is essential in staging prostate cancer and it greatly affects the 

treatment options since the presence of metastases in the prostate’s adjacent organs is 

highly related to the penetration through the prostate capsule, which therefore 

influences the prognosis after surgical and hormonal treatment [50]. In addition to its 

importance in prostate prognosis, automatically identifying the prostate capsule 

provides a more accurate and objective assessment of the percentage and depth of 

extra-capsular soft tissue removed with the prostate by the various surgical 

approaches. Not only does this assessment allow surgeons to compare the quality of 

one surgical approach versus another, it also provides an evaluation of surgeons’ 

surgical performances as related to a standard [49].

In this dissertation, we presented an overall process and two novel shape 

algorithms to detect the prostate capsule boundary with the use of Generalized Hough 

Transform (GHT) and least squares fitting along with prostate shape equations. We 

have tested our algorithms on a data set of 13 different prostate slices and our results 

show promises. Both algorithms show an aptitude for increasing capsule detection as 

better shape equations are used. The least squares algorithm used in our detection 

process give better results on average due to the complexity and variety of shapes 

analyzed. We believe that this is an artifact of the limited degrees of freedom in the 

shape equations used. On well behaving specimens we see that the GHT approach can 

do extremely well. In fact, on one specimen slice the GHT achieved zero error within 

our threshold. It is likely that more complex equations with greater degrees of 

freedom will give better results in the GHT. The combination of the two algorithms
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within the overall process allows a trade off between faster processing time and 

smaller errors in using more complicated and flexible prostate shapes.

Given these encouraging results, the contributions of our research are:

• Creating an overall process to automatically detect the prostate capsule.

• Developing two novel shape algorithms that use Generalized Hough

Transform (GHT) and least squares fitting along with prostate shape

equations.

• Providing a more accurate and objective method that can be used to

assess the percentage and depth of extra-capsular soft tissue removed

with the prostate by the various surgical approaches. Such a method will 

improve assessment accuracy and reduce determination time and cost, 

thus replacing the current manual capsule outlining process that 

pathologists are tediously performing [49].

Although our research works towards a process for automatically delineating 

the prostate gland capsule post excision, we expect that one day it may contribute to a 

more accurate in-vivo segmentation approach.
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6.2 Future Work

• Automatic estimation of search parameter space

Depending on the shape used in the curve fitting, there are various parameters 

that are used to obtain the most appropriate match. In least square error algorithm, the 

range of these parameters is varied and the error is calculated at each time. 

Eventually, the curve that has the least error is considered the best match. On the 

other hand, for the Hough technique all the possible values of parameters are tried 

and the number of control points passing by each curve is tracked in an accumulator. 

Eventually, the curve that passes by the most number of control points is selected. In 

either case, the selection of parameter space is crucial to the success of the applied 

technique to get the best curve. It is possible to estimate the lower bound and upper 

bound for each parameter. When using upper and lower bound for each parameter, 

the search space becomes very large. That in turn, makes least square technique very 

time consuming, and it comes at the expense of extra memory and time in Hough 

technique. An approach can be used to quantize the search space. However, coarse 

quantization leads to less accuracy, and probably failure to identify the best curve that 

meets the required criteria. In the future, we propose to estimate more strict 

boundaries on the search parameters. For example, we can limit the search space for 

center point to points in the inner boundary of the prostate slice. We can, based on the 

center point selected, determine the lower and upper bound for other parameters such 

as radius to ensure that the generated shapes will satisfy constraints on the generated 

curve.

• Using Adaptive Hough Accumulator

Given the fact that search space for parameters can be large, which in turn 

affects the memory used for the accumulator and the time to search all the space, we 

suggest an adaptive approach to speed up the search process and reduce the memory 

used in the accumulator. This can be done by predicting the lower bound and upper 

bound for each parameter, then using coarse quantization for the search space. Using 

the coarse quantization, we can have an accumulator of a very small size and the time 

to search that whole space will be minimal. After this process, the areas of interest

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

can be identified and a finer quantization can be applied to obtain more accurate 

results. The process can be repeated recursively until a satisfactory accuracy is 

acquired.
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