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ABSTRACT 

APPLICATION OF CHEBYSHEV FORMALISM TO IDENTIFY 
NONLINEAR MAGNETIC FIELD COMPONENTS IN BEAM 

TRANSPORT SYSTEMS 

Michael Spata 
Old Dominion University, 2012 
Director: Dr. Geoffrey Krafft 

An experiment was conducted at Jefferson Lab's Continuous Electron Beam Ac­

celerator Facility to develop a beam-based technique for characterizing the extent 

of the nonlinearity of the magnetic fields of a beam transport system. Horizontally 

and vertically oriented pairs of air-core kicker magnets were simultaneously driven at 

two different frequencies to provide a time-dependent transverse modulation of the 

beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the 

position data at eight different points along the beamline was then used to measure 

the amplitude of these frequencies. For a purely linear transport system one expects 

to find solely the frequencies that were applied to the kickers with amplitudes that 

depend on the phase advance of the lattice. In the presence of nonlinear fields one 

expects to also find harmonics of the driving frequencies that depend on the order 

of the nonlinearity. Chebyshev polynomials and their unique properties allow one 

to directly quantify the magnitude of the nonlinearity with the minimum error. A 

calibration standard was developed using one of the sextupole magnets in a CEBAF 

beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the 

magnets in the Transport Recombiner beamline to measure their multipole content 

as a function of transverse position within the magnets. 
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CHAPTER 1 

INTRODUCTION 

In this thesis a technique for characterizing the extent of the nonlinearity of the mag­

nets of beam transport systems is investigated both theoretically and experimentally. 

There are well over 2200 magnets in the CEBAF accelerator with more than 50 dis­

tinct types. The fields of these dipole and quadrupole magnets are specified and 

designed to be linear across the aperture that the electron beam occupies. Errors 

in the real magnetic field of these beamline elements relative to an ideal model can 

occur for several reasons. 

Symmetry conditions allow the existence of certain systematic errors and forbid 

others depending on the magnet type. For example in addition to the quadrupole 

edge focussing of a dipole there is also an allowed second order sextupole term. In 

addition to these systematic multipole errors one can also find random errors that 

can be attributed to deficiencies in assembly, manufacturing or powering. 

Another source of error in the machine is misalignment of these components 

relative to the ideal model. The accelerator design specifies the transverse and lon­

gitudinal location of all of these beamline elements with a precision of 10 microns. 

The real machine can only be aligned to within 250 microns of the design. These 

positional errors can be compounded by roll, tilt or yaw errors in the angle of the 

dipoles and quadrupoles. Errors of this sort result in cross-plane coupling of the 

beam transport which can be very difficult to manage in the real machine. 

Traditional methods of tuning the accelerator to account for errors in the linear 

optics have utilized discrete transverse perturbations of the beam's trajectory relative 

to the design trajectory. Starting from the initial point in the lattice where the 

transverse kick occurs, the beam position will oscillate about the reference trajectory 

with an amplitude and phase that depend on the quasi-periodic focussing strength of 

the lattice. The phase and amplitude of these oscillations are compared to a design 

model while tuning quadrupoles at key locations are adjusted to minimize errors. 

To detect the nonlinear errors of the lattice one must use nonlinear perturbation 

techniques. Simultaneous sinusoidal modulation of the beam at two locations using 
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TABLE 1. Research Timeline 

Time Period Milestone 
July 2009 
Fall 2009 

December 2009 
March 2010 
April 2010 
July 2010 
Fall 2010 

December 2010 
January 2011 
February 2011 

April 2011 
May 2011 

Summer 2011 
September 2011 

April 2012 

Thesis Proposal Presented to the Committee 
Data Acquisition System Development and Installation in Arc 1 
First Test Run in Arc 1 to Characterize MAZ Kicker Magnets 

Sextupole Calibration Beam Test in Arc 1 
Thesis Update Presented to the Committee 

Sextupole and Dipole Measurements in Arc 1 
Design, Fabricate and Measure MAK Kicker Magnets 

Install Kicker Magnets in Arc 6 Recombiner 
Move Data Acquisition System from Arc 1 to Arc 6 

First Test Run in Arc 6 Recombiner to Commission Kicker Magnets 
First Beam Test in Arc 6 Recombiner 

Final Set of Arc 6 Recombiner Measurements 
BPM Test Stand Development and Linearity Studies 

Presentation at the International Particle Accelerator Conference 
Thesis Defense 

two distinct frequencies is used in this thesis to identify the nonlinear fields in the 

lattice. 

In Table 1 a timeline for this research is presented to provide an account of what 

was accomplished over the last three years. The rest of this introduction gives an 

overview of the chapters that follow. 

In the second chapter an introduction to the CEBAF accelerator is provided. 

The first section provides an historical overview of the facility and a look ahead 

towards the 12 GeV Upgrade. This is followed by a more technical description of the 

accelerator. 

The third chapter provides the theoretical basis for the experiment. First comes 

the derivation of the functional form of the magnetic fields for dipoles, quadrupoles 

and sextupoles as well as the two-dimensional general multipole expansion. This is 

followed by a description of beam optics and the matrix formalism that is central 

to research in accelerator physics. The development of a simple beamline model to 

demonstrate how simultaneous sinusoidal beam modulations will mix in the presence 

of non-linear magnetic fields is then provided. The chapter finishes with a discus­

sion of Chebyshev polynomials and their unique properties for minimizing errors in 
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modulation experiments. 

The fourth chapter describes the experimental equipment that was used for this 

research. The design, fabrication and measurement of the AC kicker magnets that 

were used to modulate the beam is presented. This is followed by a description of 

the Beam Position Monitors that are used to measure the position and modulation 

pattern of the electron beam. Next comes a description of the beam timing structure 

that was used for this experiment. The last section gives an overall description of 

the data acquisition system. 

The fifth chapter describes the experimental measurements and simulations that 

were done in support of this research. First comes a discussion on the analysis 

and correction of the nonlinearity of the Beam Position Monitors. This is followed 

by a description of the experimental procedures used for taking data. The next 

section presents the magnetic field measurements, from the Jefferson Lab's Magnet 

Measurement Facility, of an Arc 1 dipole. The chapter finishes with a discussion of 

simulations that were conducted as part of this research. 

The sixth chapter provides a description of the analysis and presents the results 

for the sextupole calibration runs, the Arc 1 dipole measurements as well as the 

results from the study of the Arc 6 Recombiner beamline. 

The seventh chapter provides some conclusions and a summary for the work 

presented in this thesis. 
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CHAPTER 2 

THE CEBAF ACCELERATOR 

2.1 HISTORICAL TIMELINE 

CEBAF was designed and constructed for the Department of Energy (DOE) as a 

4 GeV, 200 fiA five pass, recirculating electron accelerator and has been operating for 

Nuclear Physics research since November 1995. A timeline showing some important 

milestones for the facility is shown in Table 2. The initial construction took a little 

over six years with the machine being fully installed by 1993. An intense two year 

commissioning period culminated with the first five pass CW beam delivered to 

experimental Hall C on 25 May 1995. 

CEBAF reached its design goal of 1 MW of beam power a year later. Beamlines 

to experimental Halls A and B were completed and commissioned over the next 

two years with first beam delivery in 1997. Simultaneous three-hall operations was 

achieved in 1998. 

The energy reach of the accelerator was enhanced to 6 GeV beginning in 2000 

through a multi-year refurbishment program of 25% of the machine's two linear 

accelerators. Since then the facility has been conducting a robust Nuclear Physics 

program for over thirty weeks a year at energies up to 6 GeV. 

While the laboratory was first starting up the 6 GeV program proposals were 

already being developed to double the machine's energy to 12 GeV and to add a fourth 

experimental Hall D. The DOE accepted the proposal and provided first funding for 

the conceptual design phase in 2004. Approval to begin the engineering and design 

phase of the project came in 2006. Construction for the $310 million dollar project 

began in September of 2008. During an extended shutdown in 2011 the laboratory 

completed the first phase of the 12 GeV upgrade and then resumed the 6 GeV 

program for a final run which ended on 18 May 2012. The accelerator then shut 

down for an eighteen month shutdown to finish the 12 GeV Upgrade. Accelerator 

commissioning is scheduled to begin in October of 2013 with all beamlines completed 

by 2016. 
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TABLE 2. CEBAF Timeline 

Year Milestone 
1984 Site selection and first DOE funding provided for CEBAF 
1987 Construction begins on the new facility 
1991 Injector beamline is installed and commissioned 
1993 Linear accelerators and all 6 km of beamline are installed 
1995 First 4 GeV CW beam delivery to experimental Hall C 
1996 CEBAF reaches 1 MW of beam power 
1997 First beam delivery to experimental Hall A 
1997 First beam delivery to experimental Hall B 
1998 Simultaneous three-hall operations at 4 GeV 
2000 CEBAF reaches 6 GeV with 10 refurbished cryomodules 
2004 12 GeV Upgrade is funded and engineering/design work begins 
2011 First phase of 12 GeV Upgrade completed 
2012 Final 6 GeV run with beam to Halls A,B>C ended in May 
2013 Final phase of 12 GeV Upgrade to be completed in October 
2013 12 GeV Commissioning of the new Accelerator begins in November 
2013 One-pass beam at 2.2 GeV by the end of the year 
2014 First beam to Hall A at greater than 6 GeV in February 
2014 First beam to Hall D at greater than 10 GeV in May 
2016 First beam to Halls B and C at 11 GeV 

2.2 ACCELERATOR OVERVIEW 

This section provides a high level description of the CEBAF accelerator which 

is shown schematically in Fig. 1. The present machine is designed to accelerate 

electrons to 6 GeV by recirculating the beam five times through two 1497 MHz 

superconducting RF (SRF) linear accelerators. Each of the 200 meter long linacs 

(see Fig. 2) consist of twenty cryomodules containing eight 5-cell cavities operating 

at a superfluid liquid helium temperature of 2 K. A photograph of one of the 5-cell 

cavities showing the elliptical cell shape is shown in Fig. 3. Each cavity has an active 

length of 0.5 m. The average accelerating gradient for the cavities is 7.5 MV/m 

resulting in an energy increase of 600 MeV per linac or 1200 MeV per pass. 

The beam starts in the upper left corner of the diagram in Fig. 1 at the Injec­

tor's polarized electron source, where three interleaved 499 MHz lasers are used to 

create the RF micropulse structure of the electron beam. The three lasers are at the 
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FIG. 1. A schematic layout of the CEBAF accelerator showing the characteristic 
racetrack design (Drawing courtesy of Tom Oren). 

third subharmonic of the SRF cavities, separated in phase by 120° and are used to 

independently control the beam current to each of the three experimental Halls A,B, 

and C. The collinear lasers are focussed onto a small wafer of Gallium Arsenide, a 

semiconductor cathode material with high quantum efficiency, to create the beam 

of electrons. The cathode is held at a potential of 130 kV, hence the initial beam 

energy of 130 keV. 

The next segment of the Injector provides longitudinal bunching of the electron 

beam and acceleration to a relativistic energy of 6.3 MeV using a warm copper 

graded-beta cavity followed by two 5-cell SRF cavities. The beam is then acceler­

ated to the final injection energy of 67 MeV using two standard eight-cavity SRF 

cryomodules. The final segment of the Injector contains a set of quadrupoles used 

for matching the beam envelope to the next segment and a chicane section for trans­

porting the beam to the entrance of the North Linac. 

The beam is accelerated to 667 MeV after the first transit through the twenty 

cryomodules of the North Linac. Each of the one hundred and sixty SRF cavities are 

phased so that their peak electric field coincides with the arrival of the electron bunch. 

Between each linac cryomodule is a quadrupole for focussing the beam. The quads 



FIG. 2. A photograph of one of the CEBAF linear accelerators. Each of the linac's 
twenty cryomodules operate at 2 K and provide an average energy gain of 30 MeV 
(Photo from JLAB archive). 

are arranged in an alternating gradient structure with one period of oscillation of 

the beam envelope for the first pass beam occurring every third cryomodule. This is 

referred to as a 120° FODO lattice. The quadrupole strength increases monotonically 

as the beam gains energy in the linac. 

At the end of the North Linac is the East Spreader beamline which changes the 

vertical elevation of the beam. The first pass beam is directed towards the uppermost 

Arc 1 beamline. The recirculation arc bends the beam through 180° and is followed 

by a Recombiner segment that is mirror symmetric to the Spreader. The Recombiner 

lowers the beam back to linac elevation to prepare for another 600 MeV energy gain. 

The Spreader/Arc/Recombiner beamline is an isochronous and achromatic trans­

port system. In an isochronous system all electrons travel the same distance inde­

pendent of energy. In an achromatic system the position and angle of the beam at 

the exit is independent of energy. Within the Recombiner segment are four tuning 



FIG. 3. A photograph of one of the CEBAF 5-cell niobium cavities. The elliptical 
cells have an active length of 0.5 m with each cavity providing an average energy 
gain of 3.75 MeV (Photo from JLAB archive). 

quadrupoles for matching the beam envelope to the next Arc. 

The beam is transported through the South Linac for the first time and accel­

erated to 1267 MeV. The SRF cavity phasing and quadrupole configuration of the 

South Linac is identical to what was mentioned above for the North Linac. At the 

end of the linac is the West Spreader which changes the vertical elevation of the beam 

for transport into the Arc 2 and West Recombiner beamlines. The optical properties 

of this Spreader/Arc/Recombiner section are identical to the Arc 1 section. 

Between the end of the West Spreader and the start of the West Arc is a beam 

extraction system consisting of horizontally deflecting RF Separator cavities [1] and 

pairs of septa magnets. The cavities operate at 499 MHz which is the same frequency 

as the three-laser system in the Injector. If Halls A, B, or C require beam at this first 

pass energy the cavities are turned on and phased to provide peak deflection to the 

left for that hall's electron bunch. The other two beams will be deflected to the right 

at half the angle due to the 120° phase relationship between the bunches. Beyond the 

separator cavities the beams drift apart and then enter the first Septa magnet which 



FIG. 4. A photograph of a section of the East Arc. The lowest energy Arc 1 beamline 
is at the top with Arcs 3,5,7 and 9 stacked below (Photo from JLAB archive). 

has a strong horizontal dipole field on the left of the septa and zero field on the right. 

This dipole field provides an additional horizontal kick for the extracted beam. The 

beams continue to separate as they drift towards the second Septa which provides a 

final kick of the extracted beam towards the Beam Switchyard Recombiner section 

of the machine. 

The recirculated beams are reinjected into the North Linac for another 600 MeV 

energy gain. To ensure that the arrival time of the second pass beam is at the crest 

of the RF wave a three magnet chicane system in the preceding Arc is used to change 

the distance that the beam travels. These so-called Dogleg magnets are capable of 

changing the path length by 1 cm or 18 degrees of the 1497 MHz RF wave. 

As the beam leaves the North Linac for the second time it once again transits the 

East Spreader but this time at a higher energy. The total vertical deflection is 0.5 m 

less than the first time through resulting in beam transport into Arc 3. The mirror 



FIG. 5. A photograph showing stacks of magnet assemblies in the East Arc. The 
order of elements is sextupole, BPM, quadrupole and corrector (Photo from JLAB 
archive). 

symmetric Recombiner returns the beam to the south linac elevation for another 

energy gain of 600 MeV. The optimal arrival time for the second pass beam in the 

South Linac is controlled by the Arc 3 Dogleg magnets. 

This pattern repeats for each pass around the accelerator with beams extracted 

as necessary to meet the Nuclear Physics program. The final 5-pass energy, which is 

6067 MeV, can be shared by all three user facilities through the use of a vertically 

deflecting extraction system in the Beam Switchyard Recombiner beamline. The 

separator cavities are phased to allow the Hall B beam to pass through on zero-

crossing while the Hall A beam is kicked up and the Hall C beam is kicked down. A 

pair of vertical Septa are used to increase the separation. 

The Beam Switchyard Recombiner returns the extracted beams to the proper 

elevation for transport into one of the three hall's beamlines. A stacked pair of 
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horizontally deflecting magnets called the Lambertson kicks the beams towards the 

proper hall for that pass. The Hall A beam enters the upper channel and is deflected 

to the right. The Hall C beam enters the lower channel and is deflected left. The 

Hall B beam enters the center channel and is undeflected. 

The beam for Hall A is transported to the target through a right hand bend of 

37.5 degrees and terminates in a 1 MW beam dump. The hall has two polarimiters 

for measuring the polarization of the beam. For most experiments the hall uses an 

electron spectrometer and a hadron spectrometer to conduct their research. 

The Hall B target is approximately 3.4 m above the linac elevation. The beam 

is transported to the hall through a pair of antisymmetric bends and a ramp section 

to arrive on target. The hall can perform tagged photon experiments by sending the 

beam through a thin radiator and then dumping the electron beam vertically into a 

beam dump. The photon beam then hits the target and the electron that created 

the photon is tagged in the electron spectrometer. The hall can also turn off the 

tagging system, remove the radiator and take electrons directly onto the target. The 

spectrometer for this hall is called the CEBAF Large Acceptance Spectrometer and 

surrounds the entire target for nearly Air steradians of acceptance. 

The Hall C transport line is mirror symmetric to Hall A with a 37.5 degree bend 

to the left. The hall also has two polarimiters for measuring the polarization. While 

the initial physics program did use a pair of spectrometers similar to Hall A this hall 

has more recently been used to field more specialized experiments. 
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CHAPTER 3 

THEORY 

In this chapter the theoretical basis for the research presented in this thesis is de­

veloped. The fundamental characteristics of the different types of magnets that are 

used in charged particle transport is presented in section 3.1 [2]. To track the general 

path of the beam from one part of the accelerator to the next we need a mathemati­

cal framework to represent the different types of magnets that the beam encounters. 

The components that make up a beamline are collectively referred to as the lattice. 

A standard matrix formalism [3] for representing the linear optics of particle accel­

erators is presented in section 3.2. A simple model to indicate how nonlinear effects 

can be included in the tracking of a beam through the lattice is shown in section 3.3. 

The chapter concludes with an introduction to Chebyshev polynomials [4] which are 

used as the expansion basis for fitting the spectra that result from the transverse 

modulation of the beam. 

3.1 MAGNETS 

Accelerators are designed to transport charged particles along a carefully pre­

scribed path which is referred to as the design trajectory. Beams of electrons tend 

to diverge from one another due to the mutual repulsive Coulomb forces that act 

between them. Electromagnetic fields are used to focus the electrons back to the 

design trajectory. These restoring forces originate from the classic Lorentz forces 

given by 

F ^ e [ e  + v x B ] = i ^ l ,  (1) 

where E is the electric field, B is the magnetic induction, v is the velocity, and 

7mv is the relativistic momentum. When the beam is at non-relativistic energies 

both electric and magnetic fields may be used to guide the beam. At relativistic 

energies we have F = e^E + cBJ, so a magnetic field of strength B = 1 Tesla has 

the equivalent effect of an electric field of strength E = 300 MV/m. Conventional 

designs of magnets can easily reach a field strength of 1 T. Achieving electric field 
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strengths of 100 MV/m is however impractical so magnetic fields are generally used 

in relativistic beam transport. 

Setting the electric field to zero in Eq. (1) and using the standard relationship for 

the cross product 

(2) 

we can derive the three cartesian components for the magnetic part of the Lorentz 

force. They are given by 

d (7 mv x)  

i  j  k 
vx B = Vx Vy v z  

B x  By B z  

dt 

d (7 mv v)  
dt 

d (ymv z)  
dt 

6  \VyB Z  V Z Byj  ,  

6 \y zB x  v xB z],  

^ \VXBy VyBx] 

(3) 

(4) 

(5) 

The length of a typical accelerator magnet is much larger than it's transverse 

aperture or bore radius. This means that the longitudinal field along the z direction 

is much smaller than the transverse fields along the x and y directions. This hard 

edge model is a good approximation for real magnets. Setting Bz to zero in Eq. (3) 

and rearranging terms gives an expression for the change in transverse momentum 

A {^mv x)  = \e\ [v zB y \  At.  (6) 

Rewriting the parameter At in terms of the beam's longitudinal velocity v z  and the 

length of the magnet L we can write 

A (7mv x)  = \e\ [v zB y] —, 
^2 

Aj) X  ByL.  
7 m 

(7) 

(8) 

The longitudinal velocity is related to the transverse velocity by v x  = v z  tan 9. Since 

vz» vx we can use the small angle approximation and write 

Av x  
U l  

A$ = -ByL .  (9) 
v z  ^mv z  

The change in angle is proportional to the strength of the transverse magnetic field 

times the length of the magnet and inversely proportional to the beam's longitudinal 

momentum. 
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Using the most practical units for accelerator physics we have the numerical 

expression 

A0(rad) = 2.9979 x (10) 
p2(MeV/c) 

Returning to Eq. (9) and rearranging terms we have 

^  =  j £ L B t = N B  ( n )  

L imv z  p z  

Introducing the momentum rigidity Bp = p z /e and writing the left side in terms of 

the radius of curvature we have 

1 1 ~ 
R  ~  B p v '  ( 1 2 )  

Since the transverse size of the electron beam is much smaller than the radius of 

curvature we can expand the magnetic field about the nominal trajectory in the 

power series as 

„ , .  dB v  1 d?B v  o 1 d3B v  o ,  .  
B„(:r) = B„ + — z + +3T1PT1 +"•• <13) 

Multiplying by 1 /Bp 

1 _ ,  ,  1 _ 1 dB y  11 cPB y  2  1 1 d3B y  3  -B.tr) = -Ba + ——* + m• •• • , (14) 

and introducing some constants to simplify the expression we can write 

~WpBy^ = i+kx+hmx2++" ' • 

The magnetic field near the beam can be regarded as a sum of multipoles, each of 

which has a different effect on the beam. The first term is the dipole field responsible 

for beam steering. The next term is the quadrupole field used for focussing the beam 

and together with the dipole term comprise the linear optics of the accelerator. The 

third term is the sextupole field which is typically used for chromatic compensation. 

The last term is the octupole field which is used for the compensation of field errors 

in a lattice. The higher order multipoles can also be attributed to field errors in 

the dipole and quadrupole magnets which need to be minimized through the magnet 

design process. 

The CEBAF accelerator consists of over 2800 magnets including dipoles, 

quadrupoles, correctors, and sextupoles. In the rest of this section the theoreti­

cal basis for these iron dominated magnets is developed. Following is a derivation of 
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the functional form of the magnetic field within the gap for each magnet type. This 

result is then used to show how the strength of that field depends on the current in 

the coils and the gap between the poles. 

For static electric fields the differential form of Ampere's Law is 

V x H = J. (16) 

The current density J  is zero within the vacuum space of the beam pipe where we 

are interested in knowing the field and so 

V x H = 0. (17) 

From vector calculus it is always true that VxV^ = 0 for an arbitrary scalar potential 

0. Therefore, Eq. (17) is automatically satisfied by allowing H to be written in terms 

of a scalar potential, 

H = V<£. (18) 

For convenience we use the magnetic flux density B = HQH,  where is the perme­

ability of free space. Re-scaling the potential according to $(x, y) — y) gives 

the expression 

B = V$. (19) 

Using Maxwell's equation V • B = 0 with this equation gives Laplace's equation 

V2$ = 0. (20) 

To determine the shape of the transverse field everywhere within the magnet we write 

the general expression 

By (x,y) = Gy (x) + f (y).  (21) 

The first term is the field in the y direction as we move along the x axis. The second 

term is an unknown function that captures the dependence of the field on the y 

coordinate. The potential is then written as 

y) = J Bvdv - Gvix)y + J f(y)dy• (22) 

Using Laplace's equation in two dimensions to find f (y) we have 

_ 2  _ d2$ d2$ d 2G y(x) df(z) n  
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Ho I 

Force Direction 

FIG. 6. Schematic diagram of an ideal dipole (left) and an example of a C-shaped 
dipole showing the path of integration used to determine the magnetic field (right). 

Rearranging the right hand side and integrating the equation gives the proper ex­

pression for 
f  d?G y(x) 1 cPG y(x) 2  

Substituting this result into Eq. (25) and integrating one more time yields the general 

expression for the two-dimensional potential 

V) = J BvdV = G y{x)y - (25) 

By inspecting the individual terms in the multipole expansion of Eq. (15) we 

can choose the proper values of Gy(x) and d2Gy(x)/dx2 for a dipole, quadrupole, 

sextupole, and octupole. This calulation will not work above octupole since the 

Laplacian is no longer exactly zero when d4G/dx4 / 0. 

The field distribution everywhere within the magnet aperture is then calculated 

by taking the gradient of the potential. This calculation provides the so-called upright 

or normal multipoles with the magnetic fields oriented vertically along the horizontal 

centerline. There are also skew multipoles where the magnetic field is horizontal 

along the horizontal centerline. These are determined by rotating a dipole by 90°, a 

quadrupole by 45°, and a sextupole by 30° which can be visualized by simply rotating 

Figs. 6, 7, and 8 by the prescribed amount. 

First we look at a dipole magnet which is shown in Fig. 6. From the multipole 

expansion of Eq. (15) we see that the dipole field is constant in the y direction and 
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the gradient is zero. Putting this result into Eq. (25) we have 

y) = B0y. (26) 

The fields come from the derivative of the potential and are given by 
r\ 

B x ( x , y )  =  V )  —  0, (27) 
r\ 

B y {x ,y)  =  -^(Boy)  =  B 0 .  (28) 

As is shown in the left hand side of Fig. 6, the ideal dipole provides a force in the 

midplane which steers the electron beam. CEBAF uses horizontally bending dipoles, 

such as shown here, in the Arcs and vertically bending dipoles in the Spreaders and 

Recombiners which are just rotated by 90°. 

Looking at the multipole expansion again we see that a quadrupole field is zero 

in the center of the magnet and increases linearly as we move along the x axis. 

The aperture of a quadrupole is shown schematically in Fig. 7. Using this result in 

Eq. (25) we write 

y)  = gxy, (29) 

dB 
where g = — I t  f o l l o w s  t h a t  t h e  f i e l d  o f  a  q u a d r u p o l e  i s  g i v e n  b y  

ax 

B x (x ,  v )  =  fo(9xy)  =  gy,  (30) 

B y (x , y) = -r^(gxy)  = gx.  (31) 

As is shown in Fig. 7, the fields within a quadrupole focus the beam in one plane 

while defocussing the beam in the other plane. 

Looking at the multipole expansion we see that a sextupole field is zero in the 

center but grows quadratically as we move along the x axis. The fields within the 

aperture of a sextupole are shown in Fig. 8. Using this result in Eq. (25) we write 

$(*> y) = \g'*2y - {#v - , (32) 

where g' = cPB y /dx2 .  The sextupole fields come once again from the derivatives of 

the potential and are given by 

B x(x,  y) = (x2y - y) = 9> xy, (33) 

B' ^  =  |) = I(x2~!'2)- (34) 
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Field Lines 

Current In 

Force Direction 
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FIG. 7. A detailed drawing of the beam aperture of a quadrupole showing the 
direction of current flow, the potential for each pole, the field lines within the aperture 
and the direction of force for an electron. 

Inspecting the octupole term in the multipole expansion we see that the field is zero 

at the center and grows cubically as we move along the x axis. It follows that the 

potential for a normal octupole is given by 

y) =  ̂ g"x3y -  ̂g"xy3  = y {x3y -  xy3) , (35) 

where g" = d3B y /dx3 .  The resulting magnetic fields are then 

B x(x,  y) = y ~ (x3y -  xy3)  = (3x2y -  y3) , (36) 

By{x, y) = Ydy v ~ xy3) = It ~ 3xy2}' 

The functional form of the dipole and quadrupole fields are linear and uncoupled 

while the sextupole and octupole fields are nonlinear and coupled. 

Finally for this section, we use Ampere's circuital equation to determine the field 

dependence for the three types of magnets as a function of the current in the coils 

and the gap between the poles. The integral form of Ampere's Law is given by 

H • d,S I total i (38) 
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Currant Out Flux Unas 

Fore* Direction Currant In 

FIG. 8. A detailed drawing of the beam aperture of a sextupole showing the direction 
of current flow, the potential for each pole, the field lines within the aperture and 
the direction of force for an electron. 

where H is the magnetic field and ds is the differential path around a closed loop 

that encircles the total current. For n conductors we can write I total = nl- For the 

path shown in the dipole schematic of Fig. 6 we have 

/ H • ds = Hfelpe + H0h = nl.  (39) 

The permeability within the iron, fipe, is related to the permeability of free space, 

Ho, by fj,r = fipe/lM) which is much greater than 1. It follows that 

HF e lF e  + H0h w H0h = nl.  

Using BQ — H0HQ we obtain the expression for the field of a dipole magnet 

Honl BQ = 
h 

(40) 

(41) 

The ideal dipole field is constant along the midplane, increases linearly with the total 

current nl and is inversely proportional to the gap between the poles h. 

Next we consider the quadrupole magnet which is shown in Fig. 10. The path of 

integration can be split into three distinct parts. First we have the path within the 

steel which has already been shown to be small as compared to the path in the gap. 

Second we have the path along the x axis where the field is always perpendicular to 

the path where B • ds is zero. Finally we have the segment from the origin to the 
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FIG. 9. A detailed drawing of the beam aperture of an octupole showing the direction 
of current flow, the potential for each pole, the field lines within the aperture and 
the direction of force for an electron. 

pole face which is the only part of the integral that contributes to the determination 

of the field. Looking at the right side of Fig. 10 we have 

H 0  = —y/x 2  + y 2  = —r.  (42) 
lk> Ato 

Performing the integral for the only relevant part of the path we have 

f° Hodr — — [ardr=JL^ = nI. 
Jo IM) Jo fM) 2 

The relationship for the gradient is then 

(43) 

2 ^° n /  (A  A \  g = (44) 

Using g = dB/dx and integrating yields the expression for the field 

B„ = (45) 

The ideal quadrupole field depends linearly on the position x in the midplane, scales 

linearly with the total current nl and is inversely proportional to the square of the 

pole radius a.  

Finally we consider the sextupole magnet which is shown in Fig. 11. Once again 

the only contribution to the integral is from the origin to the pole tip radius. Using 
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FIG. 10. Schematic diagram of a quadrupole (left) and a detailed picture of one 
of the poles showing the path of integration used to determine the magnetic field 
(right). 

the ^-component of the field for a sextupole and HQ = B0///0 we can write 

f  H0dr = — [ (x2  -  y2)dr.  (46) 
Jo IMs Jo 

The pole is oriented at 30° above the midplane. Substituting this in the above 

equation and solving the integral yields 

f H0dr = — [ f  r2  cos2(30°)rfr — f r2  sin2(30°)dr 
Jo Mo IJo Jo 

(47) 

r — < 4 8 )  

(49) 

Solving for g' we have 

If = (50) 
a6 

Using g' = d2B/dx2  and integrating twice yields the expression for the field 

3/«) nix2  

B, - (51) 

The ideal sextupole field depends quadratically on the position x in the midplane, 

scales linearly with the total current nl and is inversely proportional to the cube of 

the pole radius a. 
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Integration Path 

x 

Coil (n-l) 

FIG. 11. Schematic diagram of a sextupole (left) and a detailed picture of one of the 
poles showing the path of integration used to determine the magnetic field (right). 

3.2 BEAM OPTICS 

In this section the matrix formalism for describing the linear optics of the acceler­

ator is developed. As was shown in Eq. (15) the magnetic field near the beam can be 

expanded into a series of multipole strengths with the first two being identified as the 

linear optics. The beam is guided along the reference orbit by the dipole fields and 

oscillates about that trajectory in response to the restoring forces of the quadrupoles 

around the machine. The motion is referred to as betatron oscillations after they 

were first observed by Kerst and Serber [5] in an accelerator called the Betatron in 

1941. The general equations that form the basis of linear optics are the second-order 

differential Hill's [6] equations. We write them in two dimensions as 

where x and y are the transverse coordinates, s is the longitudinal beam-following 

coordinate, R is the radius of curvature within a dipole field, k is the quadrupole 

focussing strength and Ap/p captures the relative error in the beam momentum. The 

x-plane was selected as the principal bending plane for this discussion. Considering 

the case for Ap = 0, two-dimensional matrices for quadrupoles, drifts and dipoles in 

(52) 

y"(s) + k(s)y(s) = 0, (53) 
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the presence of a monochromatic beam can be developed. The general equations are 

now homogenous and can be solved analytically. The equations of motion reduce to 

x" ( s)  + (#2^) ~ = °' (54) 

y"{s)  +  k(s)y(s)  =  0. (55) 

The hard-edge model for transverse magnetic fields of the last section is used in 

what follows. In other words, the fields are constant within the magnets and we also 

assume that the magnets are absent of any multipole effects higher than quadrupole. 

We first solve the equations of motion for quadrupoles. There is no dipole term 

and so 1/R = 0 in Eq. (52). The equations of motion are then written as 

x"(s) — k(s)x(s)  = 0, 

y"{s) -I- k(s)y(s) = 0. 

(56) 

(57) 

For k > 0 we have a quadrupole that defocusses in the x-plane and focusses in the 

y-plane. We then solve the equations of motion for the position and angle with the 

initial beam conditions x0, t/o, ^o, and y'Q. The resulting equations are 

x 
x(s)  = xq cosh Vks + —y= sinh Vks,  

x'(s)  =  XQVk sinh Vks 4- x' 0  cosh Vks,  

V(s) yQ  cos Vks + -^7= sin Vks,  
Vk 

y ' ( s) — VoVksin Vks + y' 0  cos Vks.  

Letting 4> =  Vks and arranging the solution in a matrix form we have 

(58) 

(59) 

(60) 

(61) 

s(a) 

x'(s)  

y(«) 

y ' (s)  

cosh (f) ~^= sinh 4> 
Vk 

Vk sinh ( j )  cosh ( j )  

0 0 

0 0 

0 

0 

COS (f> 

•Vksincj)  

0 

0 
1  • A — S i n  ( D  

Vk 

COS(J) 

x 0  

x'Q 

yo 

Vo 

(62) 

For k < 0 we have a quadrupole that focusses in the x-plane and defocusses in the 

y-plane. We then solve the equations of motion with the same initial conditions as 
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before. The resulting equations are now written as 

x 
x{s) = xq cos y/\k\s H -p= sin 

V\k\  

x'(s) = Xo\/ffc[sin \Zffcjs Xq COS y/\k\s,  

y(s) = h'0 cosh y/\ic\s + -J±= sinh y/\k\a,  
V\ k \  

y'(s) = y0y/\k~\ sinh \ / \k\s + y'Q  cosh y/\k\s.  

Assuming now that (j) = y/\k\s the solution in matrix form is 

(63) 

(64) 

(65) 

(66) 

x{s) 

x'(s) 

V(s)  

l/(s) 

COS(P 
1 

VW\ 
— y/\k\ sin (j> cos 0 

0 0 

sin 4> 0 

0 

cosh <j> 

0 

0 

0 0 
VW\ 

y/\k\ sinh 4> cosh 0 

sinh^i 

XQ 

x'0 

2/0 

Vo 

(67) 

Next we consider the solution for a field-free region or drift. In this case we have 

l/R = 0 and k = 0 and Eqs. (54) and (55) are written as 

a/'(s) = 0, 

y"{s) = 0. 

These are readily solved to give the equations of motion for a drift: 

x(s) 

A») 

y( s )  

y ' (s)  

X Q + S X G ,  

x'o, 

yo + sy'o, 

y'o-

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

The solutions in matrix form for a field-free region are given by 

x(s) 1 s 0 0 XQ 

x'(s) 0 10 0 x'0 

v(s) 0 0 1s yo 

1 'ST
 

I _ 0 0 0 1 _ .  Y'o. 

(74) 
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For a pure dipole with no edge focussing we can set k  = 0 in Eqs. (54) and (55) 

and write 

0, +̂(-M)x(s) 

y"(s) = o. 

The solutions for these equations are 

x(s) : 

As) -

y(s)  = yo + sy'0, 

y ' (s)  =  

and in matrix form we have 

s .  s 
xQ cos — + x0R sm —, 

R R 
— X Q  .  S  .  S  
— sin- + x0cos-, 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

X  ( s )  
s 

COSR 
. s 

Rsm — 
R 

0 0 XQ 

x'(s) 
_ . s 

—R sin — 
R coss 

0 0 *0 

y( s )  0 0 1 s 2/o 

.  y 1 .  0 0 0 1 . y'o . 

(81) 

These matrices make it easy to track particles through the lattice. Any arbitrary 

sequence of linear beamline elements can be represented by a series of transfer ma­

trices. The matrix for the whole beamline is equal to the product of the individual 

matrices. For the example in Fig. 12 we have 

Mlattice — Ml • Ml • M3 • Mi • M5 • Ala • M7 • M» • Mg (82) 

One can construct more realistic magnet models using this formalism. For example 

placing a dipole matrix between two focussing matrices provides a dipole with edge 

effects. As was shown in section 3.1 the field of a sextupole is coupled in the transverse 

plane so linear matrices cannot be used. To account for the complexities of real 

magnets and include edge-effects and nonlinearities one must use simulation code. 

Two software packages were used in this thesis. For predicting the multipole content 

of dipole magnets as a function of the beam trajectory we used the TOSCA package 

from Vector-Fields [7] which is described in section 5.3. For tracking particles through 
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Beam Direction • 

M i  I  M 2  I M 3  M4 Ms M6 ! M7 j M8 IM9 

FIG. 12. An arbitrary sequence of beamline elements. 

the lattice we used a program called elegant [8] which is described in section 5.4. The 

beam-based measurements and analysis naturally include all of these effects. 

3.3 ANALYTICAL MODEL 

A simple model of zero-length elements can be used to demonstrate how two 

different AC kicker frequencies will propagate and mix across a nonlinear lattice. The 

beamline lattice is shown in Fig. 13 and consists of two kicker magnets, a sextupole to 

provide the nonlinear forces and a beam position monitor to measure the transverse 

location of the beam relative to the reference orbit. 

Transfer matrices are used to represent the beamline between the elements of 

the model as was shown in section 3.2. The segment between the two AC kickers 

is represented by the matrix L, the segment between the second AC kicker and the 

IL I M A N _ H H mi 

K-| K2 Sextupole BPM 

FIG. 13. A simple model of beamline elements for demonstrating how two distinct 
frequencies of a simultaneously modulated electron beam will mix due to the non­
linear fields of a sextupole. 
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sextupole is represented by matrix M and the last segment from the sextupole to the 

beam posit ion monitor is  represented by matrix N. 

Modulation in the horizontal mid-plane for each of the kickers will be assumed for 

the development of this simple model. As the beam transports through the system a 

subscript for the relevant element is appended to the position and angle to keep track 

of where we axe in the lattice. The beam position and angle entering any element 

will be noted with a minus sign in the subscript while the angle and position leaving 

a beamline element will be noted with a plus sign in the subscript. 

For beam entering the system a set of initial conditions with zero position and 

angle is chosen which gives at the entrance of the first kicker 

XK 1 -  =  X' K I _ =  0.  (83) 

An AC modulation with amplitude Ai and frequency u>i is applied to the first kicker. 

Since the elements are assumed to have zero length the position at the exit of the 

kicker is unchanged. The AC modulation changes the angle as the beam leaves the 

kicker. At the exit of the first kicker we have 

**1+ = 0, (84) 

X'ki+ ~ A\ cosuJii. (85) 

The transfer matrix L is used to transport the beam from the exit of the first kicker 

to the entrance of the second kicker. The one dimensional representation is given by 

X* 2 _ \  =  /  L n  Ln A /  \  

X' K 2 _ )  \  L 2 1 L 2 2  ) \X' K l +  J 

Substituting the expression for the position and angle at the kicker exit yields 

Xk 2 — = L\ 2 A\ coso;ii, (87) 

X' K 2 _ =  L22A1 cosoj i t .  (88) 

Now an AC modulation with amplitude A2 and frequency u>2 is applied to the 

second kicker. The modulation adds an additional angle as the beam leaves the kicker 

but does not affect the beam position within the zero-length element. The position 

of the beam at the exit of the second kicker magnet is then given by 

XK2+ = LL 2AX cost^iT, (89) 
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while the angle is given by 

*k2+ = LyzAi eosu>it  + A2  cosu21. (90) 

The transfer matrix M is used to transport the beam from the exit of the second 

kicker to the entrance of the sextupole. The matrix is again written as 

xs _ \ / Mn «„ \ C X*1+ \ 
X's_ J \M2l Mv )\ X'K2+ ) 

Substituting the initial conditions we have the position of the beam at the entrance 

of the sextupole given by 

Xs~ = Mnl/\2A\COSU)\t + Mi2{L/22-Ai COS U\t  + i42 COS Cc*2t), (92) 

Xs~ = (MnL\2 + M12L22)A-i cosLdit + Mi2A2Cosui2t, (93) 

Xs- = (ML)i2Ai coswif + Mi2A2Cosu)2t. (94) 

The beam angle at the entrance of the sextupole is given by 

X'g_ = M21L12A1 COSUlit + M22^22AI COSUlit + A2 COSUJ2t), (95) 

Xg_ = (M21L12 + M22L22)Ai coscc*!t + M22A2cosui2t), (96) 

X'g_ = (ML)22-<4i cos uJit + M22A2 cos uj2t. (97) 

As was shown in section 3.1 the magnetic field for a sextupole in the x and y 

plane is given by 
PB 

B x(x,y) = (9 8)  

y) = - y2)- (") 

For the development of this model the beam modulations are restricted to the hori­

zontal midplane. Under these conditions y — 0 and we only need to consider 

B„(x,0) = (100) 

where the sextupole gradient from section 3.1 has been used. The position at the exit 

of the zero-length sextupole is equal to the position at the entrance while the angle 

now has an additional term due to the Lorentz force of the field By which depends 
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on the square of the position within the sextupole. The position of the beam at the 

exit of the sextupole is given by 

A"s+ = (ML) i 2Ai cosuit 4 M12A2 cos (101) 

while the angle is given by 

X's+ = {ML)-22A\ COSOJ\t 4- M22^2 COS(102) 

((ML)i2Ai)2 cos2u/if 

4 2(M L)nMi2AiA2 coswitcosu>2t 

4- (M12A2)2  cos2Wit .  

The expression for X's+ can be rewritten using the following two trigonometric iden­

tities: 

cos A cos B = ^ [cos(^4 4- B) 4 cos(J4 — £)], (103) 

cos2 A — ^ [1 4 cos 2A] . (104) 

The modified expression for the angle of the beam leaving the sextupole is now 

written as 

-X5+ = (A/L)22-^l COSWxt 4" A/22-^2COSU?2t (105) 

+  Tj- ( ( M L )  1 2 A i )2[1 4 cos2u;i£] 

+ ( M L )I2MI2AIA2[cos(lji 4 uj%)t 4- cos(CJI — ^2)] 

4 ^(Afi2^42)2[l "I" cos2ct>2i]j • 

So we see that the angle at the exit of the sextupole carries the fundamental frequen­

cies of and ui2 as well as the four harmonics of 2a; 1, 2^2, (^i 4 u>2) and (u;i — a;2). 

Finally the transfer matrix N is used to transport the beam from the exit of the 

sextupole to the beam position monitor. The matrix is once again written as 

XbPM ) = ( N» N" V Xs+ V (106) 
X'BPM )  \N2, Na ) \ X ' s + )  

The position of the beam at the BPM is written as 

XBPM = Nn\(ML)i2 A\ cos UITM^A2 cos U)2i\ (107) 

+ 2"-^12 [2((-^ -^)i2^4i)2[l + cos2u;1^] 

4- (ML)i2Mi2^4i^2[cos(ti;i 4 u>2)t 4- cos(ct'i — w2)] 

4 |(A/I2^42)2[1 "I" cos 2o>2£]j 1 
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TABLE 3. Harmonic sidebands for fundamental frequencies of 1 Hz and 21 Hz. 

Magnet Order Harmonic Expression Frequency (Hz) 
2u>i 2 

Sextupole 
2CU2 

OJ] + U>2 
42 
20 

UJ\ — U>2 22 
3u>i 3 
30L>2 63 

Octupole CL?2 "1" 
U)2 — 2<JJI 

23 
19 

2u2 + k>l 43 
2u;2 — k-'i 41 

and the angle is written as 

X'BPM = -^21 [(•^•^/) 12-^1 cos ̂ 1^ +-^12-^2 cos ̂ 2^] (108) 

+  ̂• • ^ 2 2  ̂ 2 ^ ) l 2 > l l ) 2 [ l  +  C O S  2 U \ t ]  

-+- (A/Z/)I2-^12-'4I-^2[COS(6l'I + ^2)^ COs(tt>i — ^2)] 

+ f (Ml2^2) 2 [ l  +  COS 2U) 2 t ]  .  

The amplitude of the primary frequencies and harmonics can now be determined 

at the BPM by doing Fourier analysis of the time domain fluctuations of the beam. 

This experiment used u\ = 1 Hz and o;2 = 21 Hz. The different harmonics are shown 

in Table 3 for a sextupole as well as what one would expect in the presence of an 

octupole magnet's cubic transverse position dependence. 

3.4 CHEBYSHEV FORMALISM 

The Chebyshev polynomials and their unique properties were used for the analysis 

of the data in this thesis, as they allow one to readily obtain an upper bound on 

measurement errors. Its worthwhile to review the most important properties of this 

remarkable class of polynomials and to explain how they can be used for precision 

modulation measurements such as were conducted in this research. 

The defining relationship for deriving Chebyshev polynomials is given by 

Tn( cos 9) = cos (n0). (109) 
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Using well known trigonometric identities we can derive the first 5 Chebyshev poly­

nomials. For T0 we have: 

2o(cos0) -- cos(O) = 1, 

T0(x) = 1. 

For Ti: 

For T2: 

For T3: 

For T4:  

Ti(cos9) = cos(0), 

T\(x) = x. 

T2(  cos 6) — cos(20) = cos2 0 — sin2 9 

= cos2 9 — (1 — cos2 9) 

= 2 cos2# — 1, 

T 2( X )  = 2x2  — 1. 

T3( cos 9) — cos(3 0) = cos 20 cos 9 — sin 20 sin 9 

= cos 20 cos 0 — 2 sin2 0 cos 0 

= (2cos20 — l)cos0 — 2(1 — cos2 0) cos 0 

= 2 cos3 0 — cos 0 — 2 cos 0 + 2 cos3 0 

= 4 cos3 0 — 3 cos 0, 

73(2:) = 4:r3 — 3a:. 

T4(cos 0) = cos(40) = cos 20 cos 20 — sin 20 sin 20 

= (2 cos2 (0) — 1 )2 — (2 sin 0 cos 0)2 

= 4 cos4 0 — 4 cos2 0 + 1—4 sin2 0 cos2 0 

= 4cos40 — 4cos2 0 +  1  —  4 c o s 2 0  — ^os 

= 4 cos4 0 — 4 cos2 0+1 — 2 cos2 0 + 2 cos2 0 cos 20 

= 4 cos4 0 — 6 cos2 0+1 + 2 cos2 0(2 cos2 0—1) 

= 4 cos4 0 — 6 cos2 0 + 1 + 4 cos4 0 — 2 cos2 0 

= 8 cos4 0 — 8 cos2 0+1, 

T 4( X )  —  8x4 — 8x2  + 1. 
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TABLE 4. Chebyshev Polynomials from TQ(X) through T i 0(x).  

n Tn(x) 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

2x2  -  1 
4x3  — 3x 

8x4 - 8x2 + 1 
16a:5 - 20a:3 + 5 

32a:6 - 48a:4 + 18a:2 - 1 
64a:7  — 112a;5  + 56a:3  — 7x 

128a;8 - 256a:6 + 160a:4 - 32a;2 + 1 
256a:9  -  576a:7  + 432a:5  -  120a:3  + 9x 

512a:10 - 1280a:8 + 1120a:6 - 400a:4 + 50a;2 - 1 

1 
x 

The recurrence formula is apparent from the results, follows directly from the 

addition formula for cosines and is given by 

The first 11 Chebyshev polynomials appear in Table 4 [9]. A few general prop­

erties of the Chebyshev polynomials are apparent by examining the table. First, the 

leading power of Tn(x) for n > 1 is 2n_1ar™. Second, the polynomials include only 

even or odd powers of x depending on whether n is even or odd respectively. In other 

words the parity of Tn(x) is (—1)". Third, the polynomials are all normalized so that 

Tn{ 1) = 1. By the parity argument, Tn(—l) = (—l)n. 

The following properties of the general Chebyshev polynomial can be verified by 

inspection for the cases plotted in Fig. 14. First, there are n zeros for the polynomial 

Tn(x) and they are all contained in the domain [-1,1]. From the defining relation 

shown in Eq. (109), the zeros of the polynomial are given by 

Second, the polynomial achieves the values ±1, n + 1 times, at x values inside the 

closed interval [-1,1]. Third, the derivative dTn/dx has n — 1 zeros interleaved with 

the zeros of the polynomial itself. At each of these zeros the value of the polynomial 

is ±1 and the sign of the value changes for each succeeding zero. Fourth, and most 

Tn+i(x) = 2xTn(x) -  T„_i(ar) n > 1. (133) 

(134) 
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I -0.8 

FIG. 14. A plot of Chebyshev polynomials Ti(x) through T5(x).  

important for error estimation, \Tn(x)\  < 1 for all x e [-1,1]. The shape of the 

polynomial is said to have the equal-ripple property [10], or in other words, the 

polynomial makes ripples of equal amplitude throughout the domain [-1,1]. 

It should be noted that some authors [11] use the alternate normalization 

Tn(x)/2n_1 for the nth order Chebyshev polynomial. This has the benefit that the 

leading power of the polynomial is always one. In this thesis this normalization is 

not used. 

Now suppose one desired to measure a real-valued function f(x) whose domain 

is [-1,1] and that, after measuring the function, one would like to represent this same 

function by a polynomial. A natural choice for problems of this type is to use the 

McLaurin-Taylor power series expansion of the function given by 

f(x) = /(0) + 
df_ 
dx 

x cPf 

V.+ M 
X 
2!" + 

+ 
<f7 
dxn  

x" 
(135) 
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In addition to the general problem of taking derivatives numerically, this represen­

tation involves values of the function only near x = 0. When the series is truncated 

at a finite polynomial order N, the neglected terms may be quite small for values of 

x near 0 but there is no guarantee that the representation will provide an accurate 

value as x —> ±1. 

One solution to this deficiency is to have the polynomial representation include 

information about the function throughout the entire domain. A way to include 

this information, analogous to eigenfunction expansions in quantum mechanics, is 

to expand the function in modes given by sets of orthogonal polynomials. In order 

to pursue this line of reasoning one needs to have a way of quantifying the residual 

error between the function and the polynomial representation of the function. This 

task may be accomplished by defining suitable function-space norms. A frequently 

used method in statistical analysis is to require a minimum least squares error. The 

least squares norm of a function g(x) is defined to be 

I s  
= Jy g2(x)dx 

1/2 

(136) 

Using this norm, the least squares error between a function f(x) and a general nth 

order polynomial representation of the function is 
2 / \r \ 2 

error 
N .-i / N 

f ( X )  ~  ̂ a iP i ( X )  =  /  I f ( X )  ~Y l a i P i ^  J 
i=0  is V,  i=0  / 

(137) 

where a; are the polynomial expansion coefficients to be minimized and pi represent 

the general set of polynomials. 

Examining Eq. (137), it is apparent that the integral may be effectively integrated 

when the polynomial set is orthogonal in the norm. From elementary quantum 

mechanics [12] it is known that the Legendre polynomial set 

1 dT 
P0(x) -  1 Pn(x) -- (*2 " If 

2 nn! dx1 1  

is orthogonal on the domain [-1,1]. The orthogonality relationship is given by 
2 r, 

Pm(x )Pn{x) 

(138) 

(139) 
Is 

o , 1 ~ f u n  ? 2n + l 

where Smn is the Kronecker delta, defined to be l when m = n and 0 otherwise. The 

expression for the square of the least-squares error becomes 

error = [ f2{x)dx -2^ai [ f(x )Pi(x)dx + ̂ 2 0 2? i • (1 4°) 
J-i tz J-1 U2t + 1 
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The error is minimum when the are set using the overlap integral 

2i + 1 a, = /> x)Pi{x)dx 
f (x)Pi(x)  

Is 

P?(x) 

(141) 

The mean-square error between the function and its polynomial representation is 

minimized by setting the expansion coefficient to the value given by the orthonormal 

projection of the function onto the complete set  Pi(x) .  

Because \P n (x) \  < 1 for all x in the domain [-1,1], substantial progress has been 

made in bounding the error of a finite polynomial expansion, as compared to a finite 

McLaurin-Taylor power series expansion. The absolute error of the neglected terms 

cannot exceed 
OO 

£ a> <142> 
i=n+l 

throughout the domain. When representations of analytical functions by such ex­

pansions are made, it is possible to estimate the infinite sum either numerically or 

analytically, providing an absolute bound on the neglected terms. 

A related result which has a parallel for Chebyshev expansions, is that of all the 

polynomials with leading term xn, the polynomial with the smallest least-squares 

norm is the one proportional to Pn(x) [13]. To see this result, note that any polyno­

mial with leading term xn may be written as aiPi{x) for some real coefficients 

di. The square of the norm is 

y o.iPi{x) y ajPj(x) 
i=0 j= o 

2 a? 

Is 

n-1 

^ 2 i  +  1  
1=0 

+ 
2a: 

2n + 1 
(143) 

The coefficient an  must be chosen to give the leading term xn .  With this choice the 

minimum least-square norm occurs when a , i  = 0 for i  = 1, • ••  ,n — 1. 

This technique can be used to determine the function f ( x )  by sampling points 

of the domain at uniformly spaced intervals and numerically computing the overlap 

integral to obtain the coefficients of the expansion. If the aj fall off fast enough with 

increasing n the expansion can be obtained and an upper bound on the error can be 

found. 

Another alternative is to employ a measurement technique that can naturally 

bound the error due to the neglected terms. Consider that the points of the domain 
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FIG. 15. The plot at the left shows an arbitrary function to fit three points using a 
cosine expansion. The plot at the right shows harmonic lines from the expansion. 

are modulated at a certain frequency (u/2ir) as in Fig. 15 for example. The values of 

the modulated function f (cos uit) can be represented by a Fourier cosine expansion 

OO 

f  (cos cut) -  f0  + ̂ 2 h cos(iut).  (144) 
1=1 

Using the standard results from Fourier theory the expansion coefficients are 

Now when the function to be measured is expanded in Chebyshev polynomials 

the defining relation for the Chebyshev polynomials Tn(cos9) = cos(nO) and the 

usual orthogonality of the Fourier cosine expansion yields a* = /,. 

The process for measuring the function expansion in Chebyshev modes is: 

1. Modulate the input of the function to be measured at a certain frequency a 

2. Detect the output of the modulation. 

3. Fourier (cosine) transform the measured output. 

4. Read out the expansion of the function as Chebyshev polynomials. 

(145) 

OO 

(146) 
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The function may be highly nonlinear; the Chebyshev expansion will directly 

quantify the magnitude of the nonlinearity. Also note, that by the orthogonality 

of the Fourier series, single harmonics in the Fourier spectrum are unambiguously 

coupled to single Chebyshev polynomials. Response at the ith harmonic gives directly 

the amplitude of Ti(x) in the function expansion and the absence of a response at 

the ith harmonic means that there is no Ti(x) in the function expansion. Therefore, 

because the Chebyshev polynomials are bounded, the noise floor of the measured 

spectrum gives the maximum error possible for the measured value of the function 

as in the Legendre expansion above. 

Two things must be considered when using this technique. First, there cannot be 

any significant phase delay between the modulation and the detection of the modu­

lation. In the work reported here this is guaranteed because the beam transit time 

between the kickers and the BPMs is a few hundred nanoseconds which is far shorter 

then the modulation period. Second, to use the correspondence between Fourier and 

Chebyshev expansion coefficients accurately the value of the corresponding peaks of 

the spectrum must be determined accurately. Use of the NAFF [14] algorithm in 

this research maximizes the precision of the peak detection. 

This method of using Fourier analysis to obtain Chebyshev expansions may be 

extended to two dimensions which is applicable for this thesis. For an arbitrary 

two-dimensional function 
OO OO 

f(x,  y) = EE amnTm{x)Tn(y) (147) 
m=0 n=0 

the expansion coefficients may be found using simultaneous beam modulations at 

two distinct frequencies with the coefficients given by 

4 F 
amn — j- j—rj- r—r— I f(cosuJit,cosuj2t)cos(muit)cos(nuj2t)dt. (148) 

(1 + + Ono)T Jo 

Its important for the two frequencies to be incommensurate for the lowest har­

monic modes so that the identification of the spectral peaks is unambiguous. Some 

separation between the two frequencies is also desirable so that the sidebands don't 

overlap. The 1 Hz and 21 Hz frequencies used in this experiment are incommensurate 

as can be seen in Table 3. 

The final generalization is to include arbitrary functions that are not centered at 

zero on average. If the modulation is over the closed two dimensional region defined 

by (x, y) 6 [x0 - xm,xQ + xm] x [y0 -ym,y0 + ym] where [xQ, y0] is the center of the 
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modulation and [xm ,ym] are the modulation amplitudes, then the expansion function 

is 

= (149) 
m=0 n=0 \ Xm J \  Vm J 

The expansion coefficients are then given by 

4 , , 
amn (1 _t_ X \ f1 X \  *  (1^0) (1 + om0)(l + *)no)r 

I f { ( x o + ^m) cos Wit,  (y0  + ym)  cos u 2 t )  cos(mu ) i t )  cos(nu}2t)dt .  
Jo 

An additional benefit of Chebyshev expansions is that they tend to converge very 

rapidly requiring fewer terms to reach the desired residue. For this reason Chebyshev 

polynomials are most frequently used for high-precision numerical modeling and for 

developing numerically efficient routines for the computation of functions. 

The equal ripple property of Chebyshev polynomials provide an excellent starting 

point for solving the general problem of approximating a function with the minimum 

maximum error (minimax). Here the function space norm quantifying the error is 

the uniform or supremum norm given by 

l l / IU= sup | / (x) | .  (151) 
-1<X<1 

As proved by Chebyshev, of all of the polynomials with leading term xn ,  the poly­

nomial with the smallest uniform norm is rn(x) = Tn(x)/2n~l [15]. Another related 

result is that the best minimax approximation to the function x11 by a polynomial of 

degree no greater than n — 1 is given by xn — rn(x) [16]. 
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CHAPTER 4 

EXPERIMENTAL EQUIPMENT 

In this chapter the experimental equipment that was used to conduct this research is 

described in detail. A schematic representation of the overall hardware configuration 

is shown in Fig. 16. 

At the lower left are the four kicker magnets for modulating the beam. Each 

magnet is connected to an independent current source, referred to as a trim card, 

in the above ground service building. A pair of function generators are used to 

provide the 1 Hz and 21 Hz AC voltages which are used to modulate the current 

delivered to the magnets on the beamline. The AC voltage is also connected to the 

data acquisition system. The design, fabrication, measurement, and operation of the 

magnets will be discussed in section 4.1. 

At the left are the 4-antenna Beam Position Monitors used to measure the mod­

ulation of the electron beam. Each of the eight monitors are connected to an RF 

module through a switching multiplexer. The multiplexer sequences through the dif­

ferent passes during normal operations. For this experiment the switches were fixed 

to the particular beamline under test. The signals from the RF module are connected 

to an IF module and a high speed data acquisition system, the former being part of 

the nominal BPM system and the latter designed for this research. The BPM system 

beamline components as well as the electronics are described in section 4.2. 

The control room computer was used to display the BPM signals during the 

initial beam setup, to control the BPM calibration, and to switch the multiplexer. 

The electron beam macropulse structure was also controlled from the console and 

will be described in section 4.3. 

At the upper right is the data acquisition system which records signals from all 

32 BPM antennae as well as the two AC sources. The system is triggered by a beam 

synchronization pulse from the electron gun control system. Section 4.4 provides an 

overview of the Data Acquisition System and describes the sampling scheme that 

was used to record the 1 MHz signal of the RF module and the 1 Hz and 21 Hz 

signals from the function generators. 
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FIG. 16. A schematic representation of the experiment. 

4.1 AIR-CORE KICKER MAGNETS 

Transverse modulation of the beam orbit for this experiment was provided by 

eight separate individually controlled kicker magnets. The four magnets in the Arc 1 

beamline were originally installed in 1998 as part of a machine optics characterization 

scheme called the 30 Hz System. A photograph of a pair of these 8" long magnets 

designated as MAZ1E01H and MAZ1E01V is shown at the top of Fig. 17. The pairs 

of coils for each magnet are mounted to the 3" diameter beam tube with plastic tie 

wraps. 

The four magnets for the BSY Recombiner study were specifically designed, built 

and tested for this research. A photograph of a pair of these 14" long magnets 

designated as MAK6T04H and MAK6T04V is shown at the bottom of Fig. 17. The 

pairs of coils for each magnet are mounted in an aluminum holder with a stainless 

steel band clamp to secure them to the 3" beam tube. The precision machining of the 

holder allows for better control of the relative coil alignment and overall orientation 
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FIG. 17. A picture showing two of the 8" long 60-turn kicker magnets in Arc 1 at 
the top and two of the 14" long 150-turn kicker magnets in the Arc 6 Recombiner at 
the bottom. 

and position of the kicker assembly. 

The selection of a design for the MAK kicker magnets was guided by the re­

quirements for the experiment and by any physical constraints of the system. To 

adequately explore the fields of the lattice with this technique one needs to modulate 

the beam across a significant portion of the physical aperture of the beamline. As 

was shown in section 3.1 the angle for a dipole magnet is given by 

A0(rad) = 2.9979 x 10~4 • (152) 
p2(MeV/c) 

So for a given momentum pz we need to find the right combination of central field 
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FIG. 18. The coordinate system for determining the magnetic field a distance R from 
a long straight wire carrying a current I. 

BQ and effective length L. In section 3.1 we found that the central field of a dipole 

scales according to B0 — n0nl/h. The gap h is constrained by the physical size of 

the beam tube. The number of turns is constrained by the need to keep the current 

density low enough to prevent the magnets from overheating from ohmic losses. The 

effective length is limited by the amount of space on the beamline but also by the 

need to keep the coils as straight as possible along the beam axis. The optimum 

design needs to strike a balance among all of these competing constraints. 

A good estimate of the central field for a kicker magnet can be made using the 

Law of Biot-Savart and the assumption that the total current for the coil bundle is 

concentrated at the center. The coordinate system used for what follows is shown in 

Fig. 18. The integral form of the Biot-Savart relation is given by 

PLqI f dl x f 
B . 

47r 
f dl xf 

J —• (153) 

For an infinitely long wire we have the familiar result 

B° - ss- <154> 

A cross-sectional view of the kicker assembly is shown in Fig. 19. The distance R 

from the center of the coil to the origin is 4.85 cm and It = 150 amp-turns for the 

MAK kicker design. Putting this into the equation for B0 provides an estimate of 

the central field. Numerically we have 

Bo = 1.°q
7_(T^A

2
)/ *5° = 6.185 x 10"4 T/A = 6.185 G/A. (155) 

2tt • 4.85 x 10-2(m) ' ' y ! 



43 

B total 

Beam Tube 

FIG. 19. A cross-sectional view of an MAK magnet showing the field vectors for each 
of the four current sources and the resultant vertical field. 

The field vector for each of the four coil assemblies is shown in Fig. 19. Symmetry 

guarantees that the field in the ^-direction is zero. The angle 9 is nominally 30° 

giving a total central field along the vertical axis of 

Bt = 4 • B0 cos(0) = 4 • 6.185 G/A • cos(30°) = 21.08 G/A. (156) 

The nominal length for the coils is 14" or 35.56 cm. This gives an estimate of the 

integral field strength of 21.08 G/A x 35.56 cm = 749.60 G-cm/A. 

The coils are made from 17 AWG kapton coated magnet wire using the winding 

fixture shown in Fig. 20. The wire is wound under tension into 15 layers of 10 carefully 

stacked turns for 150 total turns. The ends of the coil assemblies are bent up at an 

angle of 30° to allow them to fit around the beam tube and to minimize multipole 

errors at the ends of the magnets. The coils are then dipped in a high temperature 

epoxy called HYSOL® and baked in an oven for three hours. A drawing of the coil 

assemblies is shown in Fig. 21. 
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FIG. 20. A picture of the winding fixture that was used to make the coils. 

IS.625' 

14.00' 

10 Turns 0.50' 
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72"Leads 

4.00' 

2.50" 

FIG. 21. A drawing of the coil design for the 150 turn MAK kicker magnets that 
were used in Arc 6. An elevation view (top) and plan view (bottom) is presented. 
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FIG. 22. A drawing of the aluminium clamp for mounting the correctors on the 3" 
beam tube. At left is a downstream view and shows the coils in the mount. At right 
is an edge view to show the channel for the stainless steel band clamp. 

An aluminum clamp was designed to hold the pair of coils in the proper orientation 

and to mount them around the 3" diameter beam tube. Two clamps were used for 

each coil pair and were secured using stainless steel band clamps. A flat section was 

machined on the round clamp for leveling the completed assembly on the beam tube. 

A drawing of the clamp is shown in Fig. 22. 

The magnet wire has a temperature limit of 200° C. A test of a completed magnet 

assembly was performed in the lab to verify that it did not exceed this temperature 

rating. The test was done with 5 A of DC current for over four hours to allow the 

temperature to come to equilibrium. The peak temperature was around 80° C which 

is well below the limit. The results are shown in Fig. 23. 

Both the MAZ and MAK kicker magnets were measured for field quality before 

they were installed on the beamline. The integrated dipole strength along the mid-

plane was measured at several DC currents to develop a map of magnetic field versus 

excitation current for use in the control of the magnets. At each current the field is 

measured with a Hall Probe starting well outside the magnet where only the earth's 
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FIG. 23. A graph of temperature data for a coil pair operating at 5 Amps DC current. 

field is present. The probe is stepped along a straight line through the magnet and 

out the other side in 0.5 cm increments until once again only the earth's field is 

evident. The field measurements at each point are added and then multiplied with 

the total length of the path through the magnet. The data for the MAZ magnet is 

from the CEBAF database and includes a single track along the longitudinal z axis 

at x = y = 0. The data for the MAK magnets was also taken using a Hall probe but 

this time along thirteen different tracks in the y = 0 midplane from x — —3 cm to 

x = +3 cm in 0.5 cm increments. The field map along x = y = 0 is shown for each 

magnet type in Fig. 24. The earlier estimate of the integrated field strength of the 

MAK magnet was 749.60 G-cm/A. The value from the lab measurement was 745.42 

G-cm/A which is within 2% of the estimate. All of the magnet measurement data 

is corrected for the earth's field which is on order 0.5 G. The generalized coordinate 

system for resolving the field into components is shown in Fig. 25. The data [17] 

for the earth's field at the location of the Magnet Measurement Facility is shown in 

Table 5. 

The thirteen individual tracks of Hall probe data for the MAK magnet is shown 

in Fig. 26. The plots show the quality of the left-right symmetry of the field. The 

Coil Surface Temperature 
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FIG. 24. Field map graphs for the MAZ magnet at the top and the MAK magnet at 
the bottom. Both data are integrated along 2 at x = y = 0. 
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FIG. 25. The generalized coordinate system for describing the earth's field. 

TABLE 5. The Earth's magnetic field at Jefferson Lab. 

Parameter Value Unit 
Declination -10.71402 deg 
Inclination 64.63293 deg 
North-South Component 214.0066 mG 
East-West Component -404.912 mG 
Horizontal Component 217.7954 mG 
Vertical Component 459.3534 mG 
Earth's Field 508.3738 mG 
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FIG. 26. A graph of the magnetic field versus the longitudinal position for the MAK 
magnet showing all thirteen tracks. The box represents the length of the magnet. 

actual corrector length is represented by the rectangle to show how the edge effects 

axe related to the real magnet. Figure 27 shows the integrated field strength versus 

the transverse position in the midplane of the magnet. The data are normalized to 

the central trajectory and show reasonable flatness out to about 1 cm. 

In this experiment the beam modulation of the first kicker magnet can result in a 

large transverse position offset in the second kicker magnet which is simultaneously 

modulating. Its important to try and minimize the multipole content of the kickers 

themselves so that their nonlinearity doesn't significantly add to that of the lattice 

being investigated. Bench measurements of the harmonic content of both the MAZ 

and MAK magnets were conducted using a rotating coil system. 

A rectangular loop of wire is printed onto a circuit board, mounted onto a rota­

tional mechanism and then spun inside the magnet at a low frequency. The outer 

edge of the coil is located a fixed distance from the axis of rotation which is called 

the reference radius. The time rate of change of the magnetic flux induces a voltage 

in the loop which is then recorded. Fourier decomposition of the signal is used to 

analyze the data and determine the strength of each harmonic relative to the n = 1 
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FIG. 27. A graph of the integrated field strength versus the transverse position in 
the midplane. The data is normalized to the track at x = y = 0. 

dipole term. 

The voltage generated in a rotating loop of wire at radius r with the return on 

the axis of rotation is given by 
K = <157> 

where <J> is the total flux in the loop. The total flux can also be written as 

$  =  L e f f  /  B { a ) d s .  (158) 

For each harmonic number the induced voltage is related to the field strength by 

•Leff f B^dts. (159) 

The calculated results for the nth harmonic at the reference radius can be scaled to 

any radius using 
r t n—1 

(160) nn _ r>n 
new **ref 

. re/ _ 

The results for the MAZ and MAK magnets at a radius of 1 cm and 0.5 cm 

is shown in Figs. 28 and 29 respectively. Beyond n = 9 the harmonic strength was 
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FIG. 28. Harmonic content of MAZ kicker for 1.0 cm radius at the top and 0.5 cm 
radius at the bottom. 
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FIG. 29. Harmonic content of MAK kicker for 1.0 cm radius at the top and 0.5 cm 
radius at the bottom. 
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FIG. 30. A schematic of the trim magnet system. 

vanishingly small for both magnet types. The MAK magnet has better results overall 

due to the uniformity and precision mounting of the coils. 

The hundreds of quadrupole, sextupole, and orbit correction magnets around the 

accelerator are controlled with what is referred to as the Trim Magnet System. A 

schematic representation is shown in Fig. 30. Each equipment rack in the service 

building contains thirty-two trim cards that are independently controlled across a 

serial network from the control room. The digital to analog converter (DAC) is 

housed within an isothermal regulator module to provide precision control of the 

magnet current. The DAC is connected to a shunting preamplifier to control the 

current. The racks are equipped with a positive and negative polarity power supply 

operating at 30 V which source the current for the trim cards within that rack. 

The cards for this experiment are specially modified to take their setpoint from an 

external input. The DAC output within the regulator module was disconnected from 

the control circuit and replaced by the external input. An HP function generator was 

then connected to the input through a patch panel to control the current set point 

for each of the kicker magnets. The signal sent to the trim card was also sent to 

the data acquisition system to be synchronously sampled with the BPM data. The 
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output from the shunting preamplifier, which scales with the current returning from 

the magnet was also sent to the data acquisition system. 

4.2 BEAM POSITION MONITORS 

The CEBAF accelerator is a highly instrumented machine with over 600 Beam 

Position Monitors distributed throughout the 6.7 km of beamline. In this thesis two 

distinct types of 1/4 wave antenna-style BPMs [18,19] are used, which are designated 

M20 and M15. A drawing for each type of BPM can is shown in Fig. 31. The larger 

M20 is used in Arc 1, Arc 2, and the Extraction region of the accelerator with the 

smaller M15 can used elsewhere. 

The 1497 MHz micropulse structure of the electron beam creates an electric field 

which couples to the 1/4 wave antennas within the BPM can. An electrical schematic 

is shown in Fig. 32 for illustration. The beam position is proportional to the difference 

divided by the sum of the induced voltages on the antennae which is given by 

V + - V ~  A 
r l x ^  +  v -  = s- (161) 

For a perfectly centered beam the voltage for each channel is the same which corre­

sponds to r = 0. A beam that is offset from the central trajectory will result in an 

imbalance between the two signals. While the sum of the signals remains the same 

we now have a nonzero difference signal which is interpreted as a position offset. 

The proportionality constant k depends on the can geometry. For the M15 BPM 

k = 18.86 mm and for the M20 BPM k = 25.56 mm. A constant a is introduced to 

account for any mechanical or electrical mismatch between the two channels. The 

relation for r is now given by 

, V + - a V ~  r = kv* + av-- (162) 

The BPM has two opposing pairs of antennae designated X + , X ~ , Y +  , Y ~  that 

are oriented 45° to the lab frame. This is to prevent synchrotron light, emitted from 

the beam in the horizontal or vertical bend plane, from striking the antennas. To 

find ay an RF calibration signal is applied to the X~ antenna in the absence of beam. 

Taking the ratio of Y+ — Y^f to Y~ — Y~f{, where the offset signals are recorded 

with the beam and calibration source off, provides the value for ay. To find ax the 

same procedure is used but this time the RF calibration signal is applied to the Y~ 
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FIG. 31. Schematic drawing of an M20 BPM at the top and an M15 BPM at the 
bottom. 

antenna. The expression for the two constants is given by 

X + ~ X o f f  a, = — (163) 
A Aoff 

Y +  -  Y +  

ay = °'J. (164) 
'  roff 

An example calibration run is shown in Fig. 33. When the Y ~  calibration signal is on 

we see that the X+ and X~ signals are nearly equal while the Y+ signal is weakest 

since its furthest from the calibration source. When the calibration signal is off we 

see that all four offset signals are just a few hundred counts. 

The X  and Y  position of the beam in the rotated frame is then fully determined 

and designated Xrot and Yrot with the two equations written as 

x"*-k(x+-x+,)+ai(x--x0-„y (165) 
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FIG. 32. An electrical schematic for a CEBAF Beam Position Monitor. The elec­
tr o n  b e a m  c r e a t e s  a  t r a n s v e r s e  e l e c t r o m a g n e t i c  f i e l d  t h a t  c o u p l e s  t o  t h e  V +  a n d  V ~  
antennae. The measured position will depend on the difference in antenna voltages. 

Y r o ,  - * { r + _  + Qb ( y -  _  Y - f )  • (166) 

The beam position in the lab frame is then determined by a simple coordinate 

rotation by 45° given by 

X  =  - j = ( X r o t - Y r o t ) ,  (167) 

y =  ~ ( X r o t  +  Y r o t ) .  (168) 

The error in our knowledge of alpha can be determined from the standard rules 

f o r  e r r o r  p r o p a g a t i o n .  W h e n  a d d i n g  o r  s u b t r a c t i n g  t w o  a r b i t r a r y  s i g n a l s  A  a n d  B  

the error is given by 

A R  =  ̂ ( A A ) 2 +  ( A B ) 2 .  (169) 

When multiplying or dividing two arbitrary signals A  and B  the error is given by 

A R  =  R  



57 

10000 

9000 

8000 

7000 

6000 

! -U 
4000 

3000 

2000 

1000 

BPM Calibration Data 

t&SIX "~t S«SA 

1-S 2 2.5 3 35 

Tlme(s) 

FIG. 33. A plot of four BPM wire signals during the alpha calibration procedure. 

Using the RMS value of the wire signals with the calibration oscillators on and 

with the calibration oscillators off and then applying the above rules we can determine 

the relative error in ax and ay. The error equations are then given by 

Act. 
Qt:7 

Aa„ 
Ot\< 

\ 
(AX+) + (&X+,Y + (AX-)2 + (A X ; „ Y  

( X +  -  K j / Y  (*- - K„) 

\ 
( A Y + f  + (AY-f + (&Y0-„Y 

(Y* - Y*,f (Y~ - Y0-„f 

(171) 

(172) 

For this thesis there were eight BPMs in the Arc 1 beamline and eight BPMs 

in the Arc 6 Recombiner beamline that were included in the experiment. The cal­

ibration data for all sixteen BPMs is captured in the next three tables. The data 

for calibration oscillators ON along with the RMS errors for the sixty-four antennae 

is shown in Table 6. The data for calibration oscillators OFF along with the RMS 

errors for the sixty-four antennae is shown in Table 7. And finally the error in ax 

and ay for all thirty-two pairs of antennae is shown in Table 8. 

A block diagram of the electronics is shown in Fig. 34. A single electron source of 
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FIG. 34. A schematic layout of the BPM Electronics. 

TABLE 6. BPM Wire Data with Calibration Oscillators On 

BPM Name X+ x- Y+ Y~ 
IPM1A10 11799±48 8939±26 10872±32 9147±61 
IPM1A11 8395±33 8834±33 8170±47 8255±39 
IPM1A13 7792±41 7459±28 8142±31 9299±31 
IPM1A14 5668±56 6719±40 4713±39 6571±29 
IPM1A16 6591±38 6264±26 5244±30 5932±24 
IPM1A18 5286±30 5243±29 4905±26 4639±21 
IPM1A19 3177±19 3135±18 3644±41 4246±24 
IPM1A21 5105±26 5107±27 5312±27 5241±37 
IPM6T00B 6504±45 6280±30 5628±27 5623±48 
IPM6T01 4196±34 4913±37 4714±57 4357±37 
IPM6T03 9133±44 8628±26 8513±26 7946±25 
IPM6T06 9888±59 9020±42 7718±41 7558±35 
IPM6T07 5428±55 5488±25 5670±32 6095±27 
IPM6T08 4555±31 3933±25 3996±24 4271±23 
IPM6T09 4059±19 3831±26 3947±53 3531±23 
IPM6T09A 4511±28 4993±28 4967±31 4679±41 
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TABLE 7. BPM Wire Data with Calibration Oscillators Off 

BPM Name X o f f  X o f f  o f f  Y o f f  
IPM1A10 797±28 210±14 471±21 745±60 
IPM1A11 319±16 459±16 480±57 459±31 
IPM1A13 614±55 390±37 378±23 403±17 
IPM1A14 676±68 431±25 497±27 252±13 
IPM1A16 484±13 224±28 356±15 278±36 
IPM1A18 355±18 494±13 503±45 275±15 
IPM1A19 376±26 260±20 1156±29 532±31 
IPM1A21 230±13 426±20 278±19 629±19 
IPM6T00B 630±27 338±18 264±17 617±40 
IPM6T01 403±26 387±20 690±73 429±34 
IPM6T03 675±51 305±21 274±25 221±13 
IPM6T06 594±33 537±23 413±49 419±22 
IPM6T07 736±22 192±86 381±31 268±17 
IPM6T08 335±19 301 ±28 262±18 231±11 
IPM6T09 309±21 451 ±39 869±24 346±25 
IPM6T09A 233±21 291±15 353±19 614±19 

TABLE 8. Table of a data for all sixteen BPMs. 

BPM Name OLx CXy 

IPM1A10 1.263±0.008 1.222±0.014 
IPM1A11 0.964±0.006 0.989±0.012 
IPM1A13 1.017±0.012 0.865±0.006 
IPM1A14 0.791±0.015 0.663±0.008 
IPM1A16 1.019±0.009 0.871±0.010 
IPM1A18 1.047±0.010 1.013±0.013 
IPM1A19 0.992±0.015 0.680±0.016 
IPM1A21 1.044±0.009 1.069±0.012 
IPM6T00B 0.999±0.011 1.031±0.015 
IPM6T01 0.844±0.012 1.069±0.027 
IPM6T03 1.026±0.009 1.070±0.006 
IPM6T06 1.099±0.010 1.018±0.011 
IPM6T07 0.874±0.019 0.903±0.009 
IPM6T08 1.171±0.016 0.920±0.010 
IPM6T09 1.089±0.017 0.963±0.021 
IPM6T09A 0.916±0.010 1.138±0.015 
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the three laser injector system was used for this experiment which provides beam at 

499 MHz. A multiplexer sequentially switches five BPMs, each one from a particular 

pass, to the RF Module located adjacent to the beamline. The RF Module is a 

4-channel amplifier that down-converts the RF signal from the BPM to 1 MHz to 

reduce the transmission loss in the long signal cables that are connected to the patch 

panel in the above ground Service Building. The RF Module also includes a 2-channel 

RF calibration source used for determining ax and ay. 

The signals are connected from the Patch Panel to the IF Module which resolves 

the 1 MHz signal to a DC level. The signal is then digitized and sent over the network 

for control room display. The IF module is triggered to acquire data at 60 Hz for 

typical beam operations. For this thesis the IF module is replaced with a high speed 

digital data acquisition system which is described in section 4.4. 

4.3 BEAM MACROPULSE STRUCTURE 

The CEBAF electron beam for a single laser consists of a 499 MHz Continuous 

Wave of electrons. The average power in this CW beam is simply the average current 

times the voltage gained through acceleration P(W)=I(//A) xV(MV). The accelerator 

is classified as a Mega-Watt beam facility and reached this milestone in 1996 with a 

1497 MHz, 200 //A, 4 GeV beam as was shown in Table 2. During machine tuning, 

and beam modulation experiments such as this, the total power must be limited to 

prevent the beam from melting through the stainless steel beam tube at any location 

of beam loss. 

To have an acceptable signal:noise ratio for the BPM system, a reasonable mini­

mum threshold current is around 10 /J.A. This gives 10 W/MeV which is still too high 

for the typical energies of the machine. The duty factor of the beam must be reduced 

to lower the average power. The nominal tuning beam has the pulse structure shown 

at the top in Fig. 35 and consists of a 60 Hz train of 250 /is macropulses with an 

average current of 10 fiA within the macropulse. Beyond the main macropulse is a 

4 /xs long trailing pulse used by the linac BPMs to detect the time of flight separated 

signals of the different passes within the linac. The duty factor for this configuration 

is 1.5%. 

The pulse structure chosen for the modulation experiment is shown at the bottom 

in Fig. 35 and consists of a 500 Hz train of 100 /is macropulses with an average current 

of 10 fiA within the macropulse. The duty factor for this configuration is 5%. This 
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FIG. 35. The beam pulse structure used for tuning the machine is shown at the top. 
The beam pulse structure during modulation experiments is shown at the bottom. 

particular pulse structure was selected for the following reasons: 

1. The dominant noise source affecting the beam comes from 60 Hz power supply 

fluctuations. These are significant out to the 4th harmonic or 240 Hz. To keep 

track of these errors the sample rate has to be at least twice this frequency or 

480 Hz per the Nyquist theorem. 

2. The insert able beam dumps in the accelerator have a power limit of 2 kW. For 

the energies used in this experiment this corresponds to 311 W and 1711 W in 

Arc 1 and the Arc 6 Recombiner respectively. 

3. The signal to noise ratio and the ability to resolve the peaks in the BPM 

spectrum are improved with more samples. 

4. The data acquisition system uses I-Q sampling (described in section 4.4) to 

obtain the beam position from the down converted 1 MHz BPM signals. Within 

the 100 /is macropulse there are then a hundred 1 MHz cycles that can be 

averaged to improve the data quality. 
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4.4 DATA ACQUISITION SYSTEM HARDWARE 

The data acquisition system used in this thesis was initially developed as a pro­

totype system for detecting fast transients in the linac RF during beam trips [20]. 

This Distributed Data Acquisition System (DDA) is a modular design consisting of a 

main motherboard using an embedded IOC based on the PC/104 architecture. The 

computer runs EPICS (Experimental Physics and Industrial Control System) on top 

of RTEMS (Real-Time Executive for Multiprocessor Systems) software. This single 

board computer can take up to five data acquisition modules that are each capable of 

receiving twelve channels. A picture of the prototype installed in the service building 

during the experiment is shown in Fig. 36. This experiment used three of the data 

acquisition modules, visible along the front of the chassis, for a total of thirty-six 

inputs. The BPM patch panel is also visible in the photo at the lower right side. On 

top of the chassis is a multi-output DC source for powering the system. 

FIG. 36. A picture of the data acquisition system in the service building. 
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FIG. 37. A picture of one of the four data acquisition circuit boards. 

The first thirty-two channels were used for the 1 MHz RF signals from the eight 

4-wire BPMs. The BPM patch panel can been seen at the lower right in the photo. 

The last four channels were used to record the 1 Hz and 21 Hz signals from the four 

kicker magnets. A picture of one of the boards is shown in Fig. 37. The twelve 

ADCs can be seen along the top of the board with a Field Programmable Gated 

Array (FPGA) and memory registers at the bottom right. 

A schematic representation of the ADC data flow is shown in Fig. 38. The 

thirty-two 1 MHz signals from the BPM system were AC coupled to a buffering 

amplifier with a 1.2 MHz bandwidth and an expected input voltage of ±1 V. The 

two 1 Hz and two 21 Hz signals from the kicker magnets were also AC coupled to 

2.5 MHz 
.16-bltADC. 

Buf 

12chann«te 
per board 
x 3 boards 

EPICS 
Control 
System 

2.5MHz 
16-bit ADC 

Buf 

256k x 16-bit 
SRAM 

Altera 

FPGA 

FIG. 38. A schematic representation of the data flow through an ADC board. 
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FIG. 39. I-Q sampling as a function of time shown at the right. A phasor diagram 
showing the same sampling is shown at the left. 

the buffering amplifier but with a modified gain resistor to account for the expected 

±10 V. The signals are then sampled with a 2.5 MHz 16-bit ADC and passed to an 

FPGA through a circular buffer. A 30 /us delay relative to the trigger was used to 

reject any beam-loading transients on the leading edge of the 100 //s pulse. 

During the remaining 70 fis pulse each kicker signal was acquired 175 times and 

then averaged on the FPGA to provide one data point per pulse over the EPICS net­

work. The method of acquiring the much faster 1 MHz BPM data for this experiment 

relies on I-Q sampling and an algorithm called COEDIC [21] which stands for Co­

ordinate Rotation Digital Computer. The algorithm is coded on the FPGA. 

An arbitrary RF signal can be represented by 

Now the in-phase component is along the x-axis and the quadrature component is 

along the y-axis as seen in Fig. 39. The abitrary RF signal can now be written as 

y(t) = Asin(u)t -I- 60). (173) 

Rewriting this equation using the addition of sines formula we have 

y(t) = A cos 0O sin u>t + A sin 6Q cos u>t. (174) 

y(t) = I cos cut + Q sin ut. (175) 
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The I and Q samples are typically derived by phase shifting the signal by 90° in 

hardware and then simultaneously sampling both singles to get I and Q. The in-

phase component / and the quadrature component Q are just the axes of the phasor 

diagram in Fig. 39. The magnitude and phase of the RF signal can now be associated 

with the values of I and Q and are written as 

r = y/P + Q2, (176) 

9 = arctan • (177) 

Harmonic sampling of the RF signal can be accomplished using any odd multiple 

of the original 1 MHz RF signal to yield the required I-Q samples as the phasor 

rotates through the four quadrants. For example consider the case where n — 2 

which gives a sampling frequency of 800 Hz as shown in Fig. 40. For this case we 

have 
4 x 1  M H z  4 x 1  M H z  
~2n + T~ ~ WT = 800 HZ' (178) 

This sampling scheme is illustrated in Fig. 40. At the leading edge of the first 

800 ksps pulse we pick up an I+ and the next pulse picks up a Q+. The next I-Q pair 

are negative and inverted to match the previous pair. In this way the data is sampled 

and for each I-Q pair we can calculate the magnitude and phase using CORDIC as 

described below. 

The ADC samples the RF signal at 2.5 MHz. The FPGA picks out every third 

data point to create a data stream at 833 ksps. The error in sampling frequency 

relative to 800 ksps produces a small ripple on the sampling stream but during the 

70 fis we acquire 30 I-Q pairs which can be averaged. The data quality is further 

800 ksps 

1 MHz 

FIG. 40. A drawing showing the I-Q sampling scheme used by the data acquisition 
system. 
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FIG. 41. Illustration of binary search pattern for finding magnitude and phase. 

improved by simultaneously using all three 833 ksps streams of interleaved data which 

provides 90 I-Q samples. These are then averaged to provide one number for each 

100 /zs beam macropulse. 

The CORDIC algorithm uses an iterative binary search to calculate the magnitude 

and phase of each I-Q sample which is illustrated in Fig. 41. The initial angle of the 

vector is rotated by 45 degrees. The next rotation is by half the angle; in the same 

direction if the value of y is still positive or in the opposite direction if y is negative. 

This repeats until the resultant lies on the x axis. Adding all of the individual angles 

recovers the value of the initial angle and the magnitude is now just the value of x. 

The search is made into a binary search by using powers of 2 to define the angles 

TABLE 9. Values of CORDIC angles for binary search. 

Angle TAN(Angle) i Nearest 2 1 ATAN(2 l) 
45 1 0 1 45 

22.5 0.414 1 0.5 26.57 
11.25 0.199 2 0.25 14.04 
5.625 0.0985 3 0.125 7.125 
2.8125 0.0491 4 0.0625 3.576 

1.40625 0.0245 5 0.03125 1.790 
0.703125 0.0123 6 0.015625 0.8952 
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as indicated in Table 9. In this sense the original angle is then given by 

6 = di arctan (2_t) , (179) 
i 

where di = +1 if yi < 0 and di = — 1 if y{ > 0. 
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CHAPTER 5 

LABORATORY MEASUREMENTS AND SIMULATIONS 

Results from laboratory measurements and off-line simulations that were done in 

support of the thesis are presented in this chapter. To accurately measure the non-

linearities of the magnetic fields one needs to modulate the beam to large amplitudes 

where the BPMs are also nonlinear. The linearization of the BPM system is pre­

sented in section 5.1. The nonlinearity of the Arc 1 BE dipoles was measured in the 

lab and simulated in software before measuring with the beam. In section 5.2 we 

present the multipole data from the Magnet Measurement Facility and in section 5.3 

we provide the results of Tosca simulations of these same dipoles. Elegant particle 

tracking code was used to simulate the beam transport across a sextupole magnet 

and a dipole magnet. The results are presented in section 5.4. 

5.1 BPM NONLINEARITY CORRECTION 

The difference/sum method assumes that the BPM response is linear across the 

whole range through the linearity constant k. Early measurements [19] of the CE-

BAF M15 and M20 BPMs have shown that the devices are linear within the ±5 

mm aperture that the beam is typically held within. This research requires large 

amplitude orbit excitation to explore the nonlinearities of the magnets. Under these 

conditions the BPM nonlinearity must be corrected. 

A surface wave transmission system had been developed at Jefferson Lab [22], 

along with a precision translation stage, to perform in-air tests on the M15 and M20 

BPMs (see Fig. 42). 

It was demonstrated by Sommerfeld [23] that certain dielectric boundary condi­

tions allow for the existence of a traveling wave on the surface of a coaxial cylinder 

with finite conductivity. Goubau [24] first proposed a method for launching and 

capturing these waves as a substitute for low-loss coaxial microwave transmission 

systems. The Goubau Line (G-Line) system consists of a single thin conductor 

coated in a dielectric material. The wire is connected to conical launchers that excite 

the proper fields for standing-wave formation. The launchers also provide impedance 

matching from the 50 $7 transmission line to the nominal 200 17 of the thin conductor. 
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FIG. 42. A picture of the BPM test stand with an M15 BPM mounted on the stage 
and an M20 BPM sitting on the table. 

The electron beam is simulated with a 34 AWG enameled magnet wire having a 

diameter of 160 microns. This is comparable to typical beam sizes in CEBAF. The 

wire is passed through the BPM can and then soldered to the center conductor of the 

cones at either end of the the test stand. One end of the wire is terminated in a 50 Q 

load with the other end connected to an RF source. The wire is held under tension 

within the BPM to properly simulate a beam. The BPM under test was oriented 

with the X+ and X~ antennas oriented in the horizontal plane. The translation 

stage was then moved in 200 micron steps from -1-21 mm to -21 mm. The raw wire 

data at each step was processed using the difference/sum method and shows that the 

system behaves linearly to about ±8 mm as shown at the left in Fig. 43. 

To correct for the BPM nonlinearity we follow a method used at Fermilab [25]. A 

two-dimensional electrostatic model of the M15 and M20 BPMs was developed using 

Poisson [26]. A potential of 1 Volt was placed on a single electrode with the outside of 

the can grounded. The potential map was calculated across the interior of the BPM 

and is shown as a contour plot at the right in Fig. 43. Using Green's reciprocity 

theorem [27] we can infer that the simulated voltage at any point within the BPM 

is simply the voltage that would be induced on the antenna. Potential maps for the 

other three antennae are generated through rotations using the inherent symmetry 
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FIG. 43. Data from the BPM test stand showing the nonlinear response and the 
nonlinear potential map that was generated using Poisson. 

of the BPM. The input file for generating the electrostatic model for an M20 BPM 

is shown in Appendix C. 

The Poisson model was seeded with a dense square grid of points across the full 

aperture of the BPM to simulate the nonlinearity. The points are shown in the 

upper left graph of Fig. 44. For each point within the grid a spline interpolation was 

performed to calculate the potential on each wire based on the Poisson model. The 

difference/sum method was then applied using the nominal values for k to create a 2-

dimensional map of what would be measured with the linear method. The simulations 

were done in the rota-ted frame which places the antennae at the top, bottom, left 

and right of the grid. Significant pin cushioning of the linear map is observed in the 

upper right graph of Fig. 44. 

A correction of the distortion is made by generating a pair of two-dimensional 

polynomials. The square grid of points and the values from the linear method are 

used to calculate the coefficients in a least squares sense and then applied to the 

distorted position map. The corrected grid of points is shown in the lower left part 

of the same figure. The precision of the correction is gauged by plotting the absolute 

value of the difference between the square grid of points and the corrected grid of 

points. The method recovers the original grid to better than 100 microns across the 

entire grid of points. 
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X Position (cm) X Posrtion (on) 

Corrected PosAon Using 11th Order Polynomal 

X Posrtion (cm) X Posfcor (cm) 

FIG. 44. A sequence of plots showing the distortion of BPM data due to the limita­
tions of the difference/sum method and the results of the correction. 
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Poiibon Batman OipotM (1A16) 

FIG. 45. Beam modulation in y-plane at left and a histogram of position corrections 
at right. 

An example of the correction algorithm is shown in Fig. 45. At the left is a 

plot of the beam position in the x — y plane with the beam centroid displaced in x 

and modulated in y. A histogram of the corrections is shown at the right. The x 

corrections are centered at 650 microns with the distribution biased towards the right 

because of the slight curvature of the trace in the x direction. The y corrections are 

centered near zero and also have a small bias towards more positive values because 

the distribution is not quite centered about y = 0. 

5.2 BE DIPOLE LAB MEASUREMENTS 

All of the magnets that are installed in the CEBAF machine are initially qualified 

at our Magnet Measurement Facility. Multiple techniques are used to measure the 

field quality of the magnets relative to design specifications. These include Moving 

Stretched Wire, Rotating Coil, as well as a Hall Probe Stepper Stand. The latter 

was used to measure one of the meter long Arc 1 BE dipoles with data analyzed on 

curved beam trajectories [28, 29]. 

The magnetic field in the vertical direction (By) was collected using a Hall probe. 

The probe was stepped through the magnet along the midplane in a grid pattern 

along the x and 2 directions. The longitudinal 2 steps went from 0.5 m outside of the 

steel to the longitudinal midpoint of the 1 m magnet in steps of 0.2 cm. The probe 

was then shifted in x for another run in z. The transverse x steps went from +5 cm 

to -5 cm in 0.5 cm steps with the zero aligned to the center of the pole width. 
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• / • • • 

By into page V 
FIG. 46. A sketch of the grid of points and the coordinate system for calculating 
fields along a curved trajectory. 

The integrated dipole field strength is calculated along a trajectory defined by the 

design bend radius of the magnet. The ideal path is derived from optics modeling 

software. Along this curved trajectory s a fit is made every 0.5 cm using the local 

grid of points to determine an interpolated field point (see Fig. 46). The data are 

then integrated along the whole path s and multiplied by two, since only half of the 

magnet was measured, to get the total dipole strength. 

To determine the first order quadrupole term the raw grid of data are used to 

create a grid of derivative data at each point in the two dimensional map. The 

derivatives are written as 

— (B x-i  — B x + i) fAx, (180) 

d¥i 
— = (BZ .1~BZ + 1)/Az. (181) 

For points along the curved trajectory defined by the design bend radius of the 

magnet the local derivative is calculated using interpolation of the grid of derivative 

data. The interpolated points are then rotated into the r, 0 coordinates system at 

fixed radius and integrated. The field gradient along the 6 direction is 

dB dB dB .  ,  
— cosa^_ sinQ (182) 

dd dx dz 

This process of calculating the dipole and quadrupole strength of the magnet is 

repeated for trajectories shifted in r about the design trajectory from +2.0 cm to 



74 

0.7094 

Sextupole Strength Relative to Dipole Strength 

0.60% 

0.50% 

tt0.40% 
s 

i 0.30% 

0.20% 

0.10% 

0.00% 

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 

Tranavaraa Position (cm) 

1.5 2.0 2.5 

FIG. 47. A plot of relative sextupole strength vs. transverse position for a BE dipole. 

-2.0 cm in 0.5 cm steps. The sextupole strength as a function of transverse position 

is derived by computing d?B/dr2 from the family of radial gradient data (Fig. 47). 

5.3 TOSCA ANALYSIS 

The TOSCA 3-D modeling software from Vector Fields was used to predict the 

sextupole strength of an Arc 1 BE dipole as a function of transverse position within 

the midplane as well as points above the midplane [30]. A model of the 1-meter 

dipole magnet is shown in Fig. 48. Throughout the path of the beam, the model 

uses 1 mm tetrahedra and quadratic interpolation between the nodes to calculate the 

field. There are over thirty-three million elements and over forty-one million nodes 

that are used to model the magnet. 

The simulations were done for eighteen different trajectories through the dipole 

magnet which are shown in Fig. 49. The trajectories start well outside the magnet 

where the calculated fields are negligible and end at the longitudinal midplane. On 

each of the overlapping 3 mm circles the magnetic field By is calculated at eighteen 

different points. Fourier analysis is used to compute the multipole content at that 

location using 
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FIG. 48. The 3-D Tosca model of a CEBAF BE-style dipole. The iron above the 
midplane and the pair of coils are shown. 

The Bn terms are the skew moments described in section 3.1 and are all zero in 

the expansion for an upright dipole. The An are the normal modes with n = 0 for 

the dipole term, n — 1 for the quadrupole term and n = 2 for the sextupole term. 

The simulation shifts along the modelled beam trajectory by As = 1 mm and 

repeats the fourier decomposition for each point. The results are integrated along 

the path and then multiplied by 2 because only half of the magnet is included in the 

model. The data is then divided by 10 to get integral cm instead of mm. The results 

for the sextupole term are presented in Fig. 50. 

The results from the figure show that the sextupole strength increases as the 

trajectory shifts horizontally towards the open end of the dipole magnet. This is 

due to the increasing edge effects as we get towards the end of the steel. On the 

other hand the results indicate that as we shift vertically away from the midplane 

the sextupole term decreases. This is due to the trajectory getting closer to the pole 

face of the magnet where the fields are less curved. 

5 

n 
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FIG. 49. The arrangement of the eighteen orbits through the BE dipole and the 
eighteen points around the circle used for TOSCA analysis. 
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FIG. 50. The integrated relative sextupole strength is plotted vs. the index of the 
start position. 
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5.4 ELEGANT SIMULATIONS 

Simulations of the ARC1 sextupole measurements and BE dipole measurements 

were conducted with a particle tracking code, developed at Argonne National Labo­

ratory, called elegant which stands for " ELEctron Generation ANd Tracking". The 

software is capable of tracking the trajectory of electrons in the 6-dimensional phase 

space (x, x', y, y', s, S) where x and x' are the horizontal transverse coordinate and 

angle, y and y1 are the vertical transverse coordinate and angle, s is the total distance 

travelled and 5 is the fractional change in the electron momentum. The tracking for 

this study was performed using second order matrices to account for the nonlinear 

fields of the sextupole and the multipole error of the simulated dipoles. 

A model of the beamline was created which includes all elements from the 

first kicker magnet (MAZ1S08H) to the last BPM in the data acquisition system 

(IPM1A21). The so called lattice file is shown in Appendix A.l with the individual 

beamline elements described below. 

The quadrupole magnets in the machine are modeled by the KQUAD element. 

They are described by their length L in meters and by their geometric quadrupole 

strength Kl in units of 1 /m2 which is defined as 

where g is the quadrupole field gradient and p is the momentum of the beam. The 

proportionality constant was defined as (1 /Bp) in section 3.1. 

The sextupole magnets in the machine are modeled by the SEXT element. They 

are described by their length L in meters and by their geometric sextupole strength 

K2 in units of 1/m3 which is given by 

.29979 x g<(T/m») 
p(GeV/c) ' ( ' 

where g' is the sextupole field gradient and p is the momentum of the beam. 

Each of the dipole magnets in the machine are modeled by the CSBEND element. 

They are parameterized by their length L in meters and the ANGLE of the bend 

in radians. A quadrupole gradient term Kl, and a sextupole strength K2 are used 

to capture the higher order components of the field.  The entrance El and exit  E2 

angles of the beam relative to the pole face in radians are also defined and, along with 

the HGAP parameter, determine the strength of the edge focusing for the dipole. 
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The kicker magnets in the model are either oriented horizontally (HKICK) or 

vertically (VKICK) and are typically defined as zero length elements. The relevant 

parameter for driving the simulation is their KICK value which is given in radians. 

The BPMs in the model are represented by the MONITOR element and are also 

captured as zero length elements. They are located in the model to have the longitu­

dinal center of the real BPM antennae at the design location. And finally the space 

between beamline components is referred to as a DRIFT which are simply defined 

by their length L in meters. 

The elegant file used to setup and run the simulations is shown in Appendix A.2. 

The first part is the run_setup section which specifies the lattice file and beamline 

for the simulation, defines the momentum of the beam, and the expected output 

files from the simulation. For this experiment the only required output is the beam 

centroid file which contains the beam position and angle at each element in the 

beamline for each step in the simulation. 

The next segment is the run_control section which defines the number of times 

to run through the simulation defined by the following vary .element commands. For 

this simulation we simultaneously step each of the kicker magnets based on the value 

in the enumerationJile called corrector.sdds. The first column is composed of 1 Hz 

sinusoidal data while the next column has the 21 Hz sinusoidal data. The sinusoids 

were created using data from a real beam run as recorded in the data acquisition 

system. 

Next in the setup file is the bunched beam section which defines the number of 

particles to track and some initial beam parameters. For these simulations the bunch 

is restricted to a single particle since detailed information about the beam and its 

evolution were not relevant to the study. Rather we are only interested in the point to 

point transport across the lattice. Finally the track section simply tells the software 

to record the tracked particle at each step in the simulation. 

In the first simulation the sextupole at 1A14 was studied. The beam was mod­

ulated in the y-plane with the first kicker at 1 Hz and the second kicker at 21 Hz. 

The modulation pattern was centered in the x-plane within the sextupole. Figure 51 

shows the x position and the FFT of the position with the sextupole set to 1000 G/cm. 

The spectra clearly shows the harmonic sidebands (2, 20, 22, and 42 Hz) of the two 

driving frequencies that one would expect for a field that depends quadratically on 

position. The simulation was repeated for multiple sextupole excitations to verify 
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FIG. 51. Horizontal position and the FFT downstream of a sextupole at 1000 G/cm. 

the expected response from the analytical model developed in section 3.3. The re­

sults are shown at the top in Fig. 52 and clearly show the linear dependence of the 

sideband amplitudes with sextupole strength. 

In the second simulation a sextupole field was added to a pair of ARC1 dipoles 

(MBE1A06 and MBE1A07) by adding a K2 term to the model for each element. 

The simulation used the same modulation pattern as was used for the sextupole 

simulations. The intent of this study was to gauge the dependence of the multipole 

amplitudes on the horizontal position of the beam within a dipole. For the real 

machine study the orbit was horizontally shifted in a pair of dipoles using a four 

corrector orbit bump to provide a lateral position error within the magnets parallel 

to the normal trajectory. In the simulation the beam was also offset within both 

dipoles but rather than introduce an orbit bump we simply assigned an alignment 

error in the x-plane to shift the dipole pair about the design orbit. The results are 

shown at the bottom of Fig. 52 and are in qualitative agreement with the earlier 

TOSCA studies and the magnet measurement data which also show an increase in 

sideband amplitude as a function of transverse position of the modulation pattern 

within the dipole. 
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FIG. 52. Simulation results for the sextupole study and dipole study. 
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BEAM MEASUREMENTS 

The beam-based measurements that were conducted for this thesis are presented in 

this chapter. In section 6.1 the overall experimental procedures for conducting the 

research are discussed. In section 6.2 a discussion of the NAFF algorithm that was 

used to find the amplitudes of the relevant frequencies in the spectra is presented. 

This is followed by a discussion of the systematic and random errors for the ex­

periment in section 6.3. The first set of measurements involved beam modulations 

within an explicit sextupole magnet in the Arc 1 beamline and are presented in 

section 6.4. These measurements establish a calibration standard through the com­

parison of the amplitude of the sidebands of the modulation versus the strength of 

the sextupole. Once the calibration standard was developed the measurement tech­

nique was then applied to a pair of dipole magnets in Arcl to determine the variation 

of their multipole strength versus the transverse position within the magnets. The 

Magnet Measurement Facility results of section 5.2, the TOSCA measurements of 

section 5.3, and the elegant simulations of section 5.4 all predict there to be a change 

in the spectra with position. The final set of measurements were conducted in the 

Arc 6 transport line to the Beam Switchyard. Here we gauge the overall field quality 

of the entire system of magnets that comprise a CEBAF recombiner beamline. The 

results are presented in section 6.6. 

6.1 EXPERIMENTAL PROCEDURE 

This section provides an overview of the steps taken to conduct the beam-based 

portion of this research. Prior to being awarded beam time on the accelerator a 

Test Plan must be submitted to the Operations Department for review. The plan 

outlines all of the necessary steps required to conduct the experiment and includes 

safety assessments as well as the identification of any prerequisites that need to be in 

place before the research can begin. Approved experiments are then scheduled well 

in advance which provides adequate time to familiarize the Operations staff with the 

details of the test plan. 
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The prerequisite steps for this experiment were intended to qualify the hardware 

in the absence of beam. Prior to a beam run the data acquisition system is connected 

in the field to the BPM patch panel and kicker hardware as described in section 4.4. 

The BPM channels are calibrated without beam to determine the system's a values 

using the procedure described in section 4.2. The kicker magnets are then modulated 

to test their performance relative to the field maps described in section 4.1. 

At the start of a beam test, the settings for the magnets in the accelerator are 

saved. These values are used to recover the accelerator after the tests are completed. 

The beam dump at the end of the beamline under test is inserted to ensure that the 

beam cannot be transported beyond the intended termination point (see Fig. 1). Low 

power tune beam, as discussed in section 4.3 is transported to the end of the line so 

that the beam steering can be optimized. The ideal trajectory for the electron beam 

is defined by the quadrupole centers along the lattice. This is checked by individually 

modulating each quadrupole field and monitoring the down beam transport. Since 

the field is zero at the center of a quadrupole, a well centered beam will not be 

deflected during quad modulation. An automated routine modulates the quadrupole 

setting while the beam is manually steered with corrector magnets. When the beam is 

in the center the downstream orbit deflections are at a minimum. Once this position 

is found an offset is entered into the adjacent BPM to match its electrical center with 

the magnetic center of the quad. This reference orbit can then be readily restored as 

necessary during the course of measurements. 

Once the preliminary steps to establish a nominal orbit are completed the beam 

mode is changed to the 500 Hz, 100 //s structure required for the tests. The first beam 

measurement is typically performed without modulation to measure the inherent 

stability of the tune. An example of the stability of the beam centroid in the absence 

of explicit modulation is shown in Fig. 53. The dominant source of noise is due to AC 

line fluctuations on the magnet power supplies and is discussed further in section 6.3. 

A typical sequence for beam measurements during sextupole runs is shown below. 

• Verify nominal orbit with tune mode beam. 

• Adjust sextupole setting and restore any orbit error due to minor steering errors 

within the sextupole. 

• Switch to 500 Hz mode and turn on beam modulation with the pair of kickers. 
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Baam Stability without Modulation 

Tim* (a) 

FIG. 53. Typical beam centroid stability showing the x position as a function of time 
for Beam Position Monitor IPM1A16. 

• Start the run acquiring 33000 samples in 66 seconds. 

• Check online data quality at the end of the run to look for shifts in the average 

position that may come from uncontrolled errors in the transport. 

• Turn off the beam modulation. 

• Verify nominal orbit with tune mode beam. 

• Adjust sextupole settings and or orbit for next measurement and repeat the 

sequence. 

Once all of the runs were completed the modulation hardware and data acquisition 

system were shut down. The settings for the machine were restored and checked 

relative to the earlier save with tune mode beam. Dipole runs were performed in a 

similar way but instead of adjusting a sextupole excitation the beam orbit would be 

adjusted between measurements. 

Off line analysis of the data was then performed and followed the sequence as 

outlined below and shown in the MATLAB code in Appendix B. 

• Read BPM wire counts and kicker magnet voltages from data file. 
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• Convert wire counts to x and y position data in the rotated frame. 

• Correct for the nonlinearity of the calculated position using the Poisson model. 

• Rotate the position data to the laboratory frame. 

• Take Fast Fourier Transform of corrected position data. 

• Find frequencies and amplitudes with NAFF algorithm. 

6.2 NAFF ALGORITHM 

The Numerical Application for Finding Frequencies was initially developed by 

Jacques Laskar [14] and was used in astrophysics research to determine the fre­

quencies and amplitudes of orbits in complex galactic systems. This technique of 

frequency map analysis of Hamiltonian systems was recognized to be well suited to 

study the long term stability and dynamics of the quasi-periodic nonlinear orbits in 

particle accelerators [31]. 

The algorithm follows an iterative approach to find the complex frequencies and 

amplitudes and starts by first removing the average value of the time domain signal 

and applying a positive, even weighting function x(t/T) to the standard definition 

of the FFT. We have 

0(u) = </(t), f ( t )e^x( t /T)dt .  (186) 

To determine the first frequency one searches for the maximum amplitude using the 

above equation. For proper normalization the weighting function must satisfy 

1/2 J X( t )dt  = 1. (187) 

The NAFF algorithm used in this research employs a Hanning window as the 

weighting function given by 

X(i) = 1 + cos(7r£), (188) 

which is readily found to satisfy Eq. (187). The Hanning window broadens the peaks 

while reducing the sidelobes which allows for a more precise determination of the 

frequencies and amplitudes. Once the maximum FFT amplitude is found the overlap 

is subtracted from the original signal and the process is repeated until the desired 



85 

NAFF Amplitudes Relative to FFT 

0.5 

fc -0.5 
w Ul 
§ -I 
1 
S. -i s 

-2 

-2.5 

" ' —r— ] 
• 20 Hz. 

\ 
. 

1 
A 

i f \ 
\ 

r 
• X • s 

i 

** 

\ 

i 

\ 
r / 

/ • X • s 
i 

** 

\ 

V 
\ 

/ 
t 

\ / 

( 

1 

100 200 300 400 500 600 700 800 900 1000 

Sextupole Strength (G/cm) 

FIG. 54. A plot of the relative error in amplitude for FFT versus NAFF for the 20 
and 22 Hz sidebands as a function of sextupole strength. 

number of peaks is found. Figure 54 shows the comparison between NAFF and FFT 

with NAFF generally providing approximately a 1% correction to the sidebands at 

20 and 22 Hz across the sextupole settings. 

6.3 MEASUREMENT ERROR 

As in all experiments there are systematic errors and random errors that con­

tribute to the noise in the system and that can affect the quality of the data. The 

main source of systematic error is related to how well the beam is centered in the 

multipole. As was mentioned in section 6.1, a quadrupole modulation technique 

was used to find the magnetic center of the idealized beam trajectory. Keeping the 

beam on this same reference orbit throughout the measurement helps to minimize 

the systematic error. During a typical run the residual error at the downstream BPM 

was around 200 microns with full excitation of the sextupole to 1000 G/cm. This is 

equivalent to having an orbit error relative to the ideal trajectory at the sextupole 

of around 1.4 mm. This is a relatively large systematic error that could have been 

managed better. On the other hand one could also consider the sideband amplitude 
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FIG. 55. A plot of the amplitude of the 20 Hz peak for y — y' modulation as a 
function of x position within the sextupole. 

sensitivity to transverse orbit error within the sextupole. By modulating the beam 

in the y-plane at different x positions and recording the spectra an estimate of this 

sensitivity is determined. An example of the result for the 20 Hz sideband is shown 

in Fig. 55. The slope of the fit with 1% error bars is 5 x 10~4. So we see that the 

amplitude is relatively insensitive to the position of the beam centroid within the 

sextupole. 

The main source of statistical noise on the beam is due to the 60 Hz and higher 

harmonics that come from Arc magnet power supply fluctuations. These errors are 

in both planes with the vertical fluctuations coming from the magnets in the East 

Arc Spreader and the horizontal fluctuations coming from the Dogleg and East Arc 

magnets. The amplitude of these errors at each location depend on the transport 

optics between the many source points and the Beam Position Monitors. In Fig. 56 

the noise at IPM1A16 is plotted as an example of the typical centroid stability with 

ax — 230 //m and ay = 188 /im. The FFT of the position data in both planes is 

shown in Fig. 57 with the frequency axis set to highlight the strength of the primary 

line harmonic at 60 Hz. 

In a beam modulation experiment such as this, one can minimize the effect of 
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FIG. 56. Plot of x and y centroid noise at IPM1A16. The main source of peak 
broadening is due to AC ripple on magnet currents. 
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FIG. 57. FFT of x and y centroid noise at IPM1A16 showing the amplitude of the 
60 Hz AC ripple on magnet currents. 
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FIG. 58. The few parts in a thousand amplitude of the residual peaks in the absence 
of sextupole excitation sets a lower bound on the measurement error. 

power supply noise by carefully selecting the kicker frequencies so that there is suf­

ficient separation of the driving frequencies and their harmonics from the AC line 

peaks. Picking 1 Hz and 21 Hz works well for studying the beam transport system 

in the presence of the harmonics due to sextupole and octupole fields as shown in 

Table 3. The narrowness of the harmonic peaks also make it easy to distinguish the 

different frequencies in the spectra. 

The dominant source of uncertainty for the sextupole calibration runs is related 

to the residual peaks in the spectra with the sextupole off. The plot in Fig. 58 shows 

that even in the absence of explicit sextupole excitation there are still measurable 

peaks that are discernable above the background. The beamline between the kicker 

magnets and the sextupole under test has many potential sources of nonlinearity. 

There are two half-meter long and a one-meter long dipole in the dogleg system as 

well as six one-meter long dipoles in the Arc proper that all potentially can contribute 

to the residual nonlinearity. For this experiment the limited number and location of 

Beam Position Monitors coupled with the long distance between the AC kickers and 

the magnets under test provide a source of error. The final statistical noise source 

for the experiment is due to the stochastic fluctuations in the system which set the 

overall noise floor and the limit for the best that one can do regarding the signal to 
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FIG. 59. Upper plot shows the spectra with the sextupole set to 1000 G/cm. Lower 
plot with sextupole ramped to zero showing only the remnant field in the magnet. 
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noise ratio. The plots in Fig. 59 show the spectra at the peak sextupole excitation as 

well as the case with the sextupole ramped to zero. The remnant field in the magnet 

is discernable above the background. 

6.4 SEXTUPOLE MEASUREMENTS 

In this section the results from the calibration runs are presented. The beam was 

modulated in the horizontal midplane and then in the vertical midplane for multiple 

settings on the sextupole. The beam centroid data for a typical run in the y-plane is 

shown in Fig. 60. Here we see that the modulations stay in plane until we cross the 

sextupole MSB1A14 which for this run was set to 1000 G/cm. Beyond the sextupole 

starting at  BPM 1A16 we see the y-plane modulations become coupled to the x-

plane due to the vertically oriented magnetic fields along the y midplane. For the 

x-plane modulations of Fig. 61 we see no folding of the modulation pattern to the 

other plane. This is because the fields along the x midplane are transverse to the 

modulation pattern and the Lorentz forces are in the plane of modulation. 

For the calibration runs the field within the sextupole was varied from 0 to 1000 

G/cm in steps of 100 G/cm. At each sextupole setting the beam orbit was restored 

to the nominal orbit with tune beam to correct for any minor steering error from the 

sextupole fields. This ensures that the beam modulation in the downstream BPM 

was always centered about the same point. 

The analytical model of section 3.3 predicts a linear relationship for the amplitude 

of the harmonic frequencies with sextupole excitation. The data for the y-plane 

modulation is plotted in Fig. 62 and the data for the x-plane modulation runs is 

plotted in Fig. 63. For the .x-plane modulations the sideband amplitudes below 400 

G/cm were overcome by the broad 1 Hz and 21 Hz primary modulation frequencies 

as they are all in the same plane. On the other hand the cross plane coupling under 

y-plane modulations allows for excellent separation of the harmonics from the driving 

frequencies as is shown in the bottom of the figure. 

The data for the calibration runs is shown in Tables 11 and 10 for the x-plane 

and y-plane respectively. An entry of NA means that there was no discernable peak 

at that frequency and sextupole setting. 

Both sets of measurements show a linear dependence of sideband amplitude with 

sextupole excitation. The lack of signal at small sextupole settings under horizontal 

excitation makes it difficult to measure the relatively weak signal from dipoles as was 
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FIG. 60. Plots of the transverse position for all eight BPMs during a sextupole 
with y — xf modulation. Cross plane coupling is evident starting at 1A16. 
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FIG. 61. Plots of the transverse position for all eight BPMs during a sextupole run 
with x — x' modulation. No cross plane coupling occurs. 
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TABLE 10. Spectral data for y — y' modulation in Sextupole mid-plane 

Sextupole (G/cm) 1 Hz 2 Hz 20 Hz 21 Hz 22 Hz 42 Hz 
0 0.008 0.0139 NA 0.0092 NA NA 

100 0.1002 0.0481 0.0451 0.0994 0.0442 NA 
200 0.1111 0.0782 0.0768 0.1052 0.0782 0.0175 
300 0.1228 0.1134 0.1094 0.1123 0.1104 0.0209 
400 0.1293 0.1435 0.1424 0.1183 0.1409 0.0295 
500 0.1384 0.1762 0.1768 0.1189 0.1766 0.0371 
600 0.1547 0.2101 0.2105 0.1281 0.2113 0.0467 
700 0.1569 0.2429 0.2439 0.1312 0.2438 0.0562 
800 0.1704 0.2769 0.2783 0.1365 0.2755 0.0635 
900 0.1723 0.3074 0.3101 0.1408 0.3100 0.0698 

1000 0.1826 0.3399 0.3428 0.1437 0.3437 0.0790 

TABLE 11. Spectral data for x — x' modulation in Sextupole mid-plane 

Sextupole (G/cm) 1 Hz 2 Hz 20 Hz 21 Hz 22 Hz 42 Hz 
0 3.1527 NA 0.0447 NA NA NA 

100 3.1569 NA 0.0449 NA NA NA 
200 3.1573 NA 0.0488 NA NA NA 
300 3.1604 0.0159 0.0518 NA NA NA 
400 3.1597 NA 0.0225 0.0550 0.0214 0.0232 
500 3.1677 0.0207 0.0281 0.0577 0.0265 0.0257 
600 3.1656 0.0242 0.0361 0.0618 0.0366 0.0299 
700 3.1685 0.0273 0.0429 0.0648 0.0428 0.0348 
800 3.1715 0.0282 0.0499 0.0671 0.0471 0.0410 
900 3.1827 0.0304 0.0564 0.0808 0.0566 0.0445 

1000 3.1851 0.0358 0.0641 0.0861 0.0628 0.0488 
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FIG. 62. Beam data for the sextupole measurements with t/-plane modulation. The 
2 Hz and 42 Hz data are at the top and the 20 Hz and 22 Hz data are at the bottom. 



96 

0 06 

Beam Data for x-x' Modulation in Sextupole 

1 

.... . 

Li near (2 Hz) 

Li near (42 Hz) 

1 ' •  
200 400 600 800 

Sextupole Strength (G/cm) 
1000 1200 

Beam Data for x-x1 Modulation in Sextupole 

j? 
Linear (20 Hz) 

Linear (22 Hz) 

200 400 600 800 

Sextupole Strength (G/cm) 
1000 1200 

FIG. 63. Beam data for the sextupole measurements with x-plane modulation. The 
2 Hz and 42 Hz data are at the top and the 20 Hz and 22 Hz data are at the bottom. 
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found during the next phase of the beam measurements. 

6.5 BE DIPOLE MEASUREMENTS 

In this section the results for the dipole measurements in Arc 1 are presented. 

For this test the sextupole magnet used earlier was degaussed so that it would not 

interfere with measuring the relatively weak allowed multipole content of the dipole 

pair. As was discussed in section 5.4, a four corrector bump was used to offset the 

beam within the dipole magnets. The quadrupoles within the orbit bump were also 

degaussed to eliminate the quad kicks which would otherwise oppose the corrector 

kicks. For each measurement tune beam was used to establish a precise orbit across 

the dipole pair and to return the beam to the center of the BPM used to make the 

measurements. 

The TOSCA measurements and magnet measurement data both show that the 

extent of the nonlinearity due to allowed sextupole should increase with an offset in 

the horizontal direction. The TOSCA results also showed a decrease in the multipole 

content as the beam rises above the midplane. Measurements of the dipole pair 

were done in both planes. For the horizontal tests the beam was modulated in the 

midplane and in 1 mm steps above the midplane to 5 mm. There were no frequencies 

detected other than the primary driving frequencies and the AC line harmonics. 

This limitation was also observed during the sextupole calibration runs. During x-

plane modulation the Lorentz forces are in the same plane as the beam modulation 

preventing the relatively weak signal from being detected. For the earlier sextupole 

calibration run there were no peaks below 400 G/cm. Moving to the y-plane however 

offered better results. For these tests the beam was modulated in the v/-plane at 

x=0 mm to x =10 mm in 1 mm steps. 

A plot of the results for the dipole measurements is shown in Fig. 64. The raw 

data for the measurement is shown in Table 12 with the x position corrected for the 

nonlinearity of the Beam Position Monitor. The linear trend is clear from the data 

for all frequencies and qualitatively compares to the results from TOSCA and the 

Magnet Measurement Facility. TOSCA also predicts that beyond a horizontal orbit 

of 12 mm the field begins to rise more sharply. The beam-based test are unfortunately 

limited by the physical aperture of the beam pipe. Attempting to modulate the beam 

beyond 1 cm caused beam scraping. The final point at x= 10.342 mm hints at this 

departure from the linear trend. 
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FIG. 64. Beam data for y-plane modulation in a pair of BE dipoles. 

TABLE 12. Spectral data for y — y1 modulation vs. x position in BE Dipole 

Corr. 3>pos (mm) 1 Hz 2 Hz 20 Hz 21 Hz 22 Hz 42 Hz 
0.000 0.0391 0.0192 0.0786 0.0579 0.0797 0.0383 
1.000 0.0475 0.0199 0.0821 0.0776 0.0808 0.0403 
2.000 0.0488 0.0193 0.0851 0.0794 0.0869 0.0408 
3.000 0.0495 0.0191 0.0868 0.0789 0.0862 0.0431 
4.000 0.0482 0.0207 0.0869 0.0781 0.0869 0.0430 
5.000 0.0513 0.0224 0.0874 0.0766 0.0866 0.0440 
6.000 0.0514 0.0217 0.0866 0.0782 0.0864 0.0440 
7.033 0.0511 0.0198 0.0860 0.0761 0.0856 0.0441 
8.105 0.0480 0.0203 0.0855 0.0749 0.0850 0.0442 
9.205 0.0490 0.0216 0.0881 0.0737 0.0860 0.0439 

10.342 0.0423 0.0285 0.0976 0.0658 0.0993 0.0469 
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6.6 BSY RECOMBINER MEASUREMENTS 

The final set of beam-based tests were conducted in the Beam Switchyard Re-

combiner using the MAZ kicker magnets that were fabricated as part of this research. 

The intent of these tests was to qualify the extent of the nonlinearity of the whole 

system of magnets by performing beam modulations in both planes at multiple am­

plitudes. To simplify the lattice the quadrupoles downstream of the kicker magnets 

were degaussed. Without the quad kicks it was much easier to establish the desired 

modulation amplitudes. For these test we chose amplitudes of 5 mm, 10 mm and, 15 

mm at the BPM near the end of the beamline. The three different modulations in 

both plane are shown in Fig. 65. 

The source of any nonlinearity in this transport line can come from errors in 

individual magnets or from the magnets in the adjacent beamlines which are tightly 

nested as the beamlines come together in the Beam Switchyard. A TOSCA model of 

this system had not been developed to compare against so we rely on the calibration 

runs and ARC1 dipole measurements to bound the field quality of the system. A 

linear result to ±5 mm is adequate as that is typically the steering allowance used in 

setting up the machine. The results are shown in the FFT plots in Figs. 66 and 67. 

The first set are the x-plane modulations. At 5 mm only the primary frequencies 

are visible in the modulation plane. Other than noise in the y-plane there's also 

a 1 Hz peak two orders of magnitude down from that in the x-plane which likely 

is due to a small roll error in the placement of the first horizontal kicker. At 10 

mm we see the 1 Hz peak grow in the y plane and in the x-plane we start to see 

frequencies consistent with an octupole field which are even more pronounced in the 

bottom plot. At these amplitudes we begin to approach the limit of the polynomial 

correction for the BPM nonlinearity which was only computed to a 2 cm grid or an 

apparent position of around 16 mm. 

The second set of measurements are with y-plane modulations. At 5 mm we see 

the strong driving frequencies at the right and coupling to the other plane at both 

frequencies. The roll error for both vertical kickers is apparently over three degrees 

and will need to be checked at the next opportunity. At 10 mm we again start to 

see octupole sidebands which become more apparent in the bottom trace and once 

again likely due to limitations with the correction algorithm. 
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FIG. 65. Plots of small, medium and large beam modulations as measured at the 
6T09 BPM. 
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FIG. 66. Series of FFT plots of the 6T09 BPM for x - x' modulation. 
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FIG. 67. Series of FFT plots of the 6T09 BPM for y — y' modulation. 
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CHAPTER 7 

CONCLUSIONS 

7.1 SUMMARY OF EXPERIMENT 

This experiment set out to study the feasibility of using simultaneous transverse 

beam modulation as a means of measuring the nonlinear fields of the magnets that 

make up a beam transport system. The intent was to develop a calibration standard 

with a known and controllable nonlinear sextupole and to then use the technique 

to characterize the nonlinear multipole content in dipoles as well as whole systems 

of magnets. Traditional methods of tuning the CEBAF accelerator have used linear 

techniques to tune the optics of the machine which are of course insensitive to non­

linear effects. The development of this technique is hoped to be able to extend our 

tuning capabilities to account for nonlinear effects when gauging the overall quality 

of the beam tune. 

The derivation of the functional form of magnetic fields within dipoles, 

quadrupoles, sextupoles, and octupoles as well as the general multipole expansion 

provide a clear foundation for understanding the interaction of the beam with the 

Lorentz forces of the beam transport system. In particular we gain the ability to 

predict the expected harmonic content for different types of magnets based on the 

functional form of the fields as derived using Maxwell's equations. 

Fundamental linear optics theory and the well-known matrix formalism for linear 

systems was presented to provide a basis for the development of an analytical model. 

This simple model was used to establish the expected frequencies for the harmonic 

content of sextupoles and octupoles when the beam is simultaneously modulated at 

two distinct frequencies. 

Through the development of the Chebyshev formalism we have shown that the 

unique properties of this class of polynomials coupled with the orthogonality of 

Fourier cosine expansions allows us to perform modulation experiments with mini­

mum error. With the application of precise modulation frequencies to the beam and 

the use of the NAFF algorithm to minimize peak detection errors we found good 

agreement between the theory, multiple models and the experimental results. 
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The existing air-core kicker magnets in Arc 1 were well suited for this research. 

In general they were able to provide sufficient field at 1 Hz and 21 Hz as they 

were originally designed as part of a 30 Hz system. For the measurements in the 

Beam Switchyard Recombiner there were no magnets available. New magnets were 

designed, fabricated, tested and installed to perform this research. Using the Law 

of Biot-Savart a simple model of an air-core magnet was developed to come up 

with a working design. Bench measurements verified that the integrated dipole field 

strength was within 2% of the prediction. Thermal performance was also well within 

specification. 

It was important to minimize the nonlinear fields of the kicker magnets so that 

their multipole content would not impact the results. The fabrication and assembly 

process successfully provided magnets with low harmonic content. In fact their per­

formance in this regard was better than the magnets in Arc 1 despite them being 

physically longer. One thing that I had not considered during the design process was 

the effect of the higher inductance. Initial measurements showed a severe roll-off at 

low frequencies. A simple change to a gain resistor provided better matching and 

fixed the problem. 

Both the existing magnets in Arc 1 and the new magnets were installed with a 

few degree roll about the beamline axis. This provides a small amount of cross-plane 

coupling. A better job could have been done to manage the error. 

The nonlinear errors of the Beam Position Monitor System were corrected using 

a Poisson model. Good results were achieved across a ±2 cm aperture in both planes 

with correction to better than 10 microns. 

The data acquisition system required extensive work to integrate it into the mea­

surement scheme. The use of I-Q sampling and the CORDIC algorithm worked well 

with the 499 MHz beam micropulse structure. The end result provided exceptional 

performance with regard to the signal:noise ratio and overall repeatability of mea­

surement results. 

The results from the Magnet Measurement Facility and TOSCA simulations were 

used to predict the expected behaviour for dipole measurements. Both predicted an 

increase in multipole strength as a function of position which was confirmed with 

beam-based measurements. 

The elegant software package was used to develop a model of the beamline. Simu­

lations were then conducted for sextupole and dipole magnets. The model predicted 
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that there should be a linear increase in harmonic content with sextupole excitation. 

The model also predicted an increase in harmonic content as a function of transverse 

position within a dipole. Both were confirmed with beam-based measurements. 

The beam measurements for the sextupole calibration run and the elegant model 

both showed a linear dependence of amplitude with sextupole excitation for all har­

monic sidebands. The difference in slope between beam measurements and the model 

can be attributed to a mismatch between the linear model and the real machine 

transport. 

The beam measurements for the BE dipole magnets in Arc 1 verified the qual­

itative results from TOSCA, Magnet Measurement and elegant simulations. The 

amplitude of the sidebands increase as a function of transverse position in the dipole. 

The real machine aperture limited the extent to which this could be measured due 

to beam loss on the vacuum beam tube at large transverse position. 

The measurements in the Beam Switchyard Recombiner indicate that within a 

±5 mm aperture the system is very linear. Larger amplitude excitations do indicate 

a departure from linearity. A detailed model of this system was not developed for 

comparison. 

Overall the experiment was successful in measuring the nonlinear fields of sex-

tupoles, dipoles and systems of magnets with good signal:noise. 

7.2 SUGGESTIONS FOR FUTURE WORK 

Looking forward, its likely that more measurements will be made as the 12 GeV 

machine is commissioned. Some improvements in the methods used here and the 

upgrade of existing hardware will make measurements such as these more integrated 

in the accelerator. For example, the BPM electronics used here are now decommis­

sioned. The new BPM systems that are being installed have onboard data acquisition 

hardware that rival what was used here and are distributed around the whole ma­

chine. 

The nonlinear correction algorithm for the Beam Position Monitor System used 

here had not been implemented in the machine before this research. These algo­

rithms are being built into the hardware which will make the model more precise. 

In particular the beam orbit in the Extraction regions are typically well outside the 

linear range of the system. 

There are many complementary machine modeling techniques under development 
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at Jefferson Lab that are all aimed at nailing down the linear model. Coupling this 

research with those activities will make commissioning the machine far more efficient 

and effective in the 12 GeV era. 



107 

BIBLIOGRAPHY 

[1] C. Hovater et al., The CEBAF RF Separator System, in Proceedings of the 1996 

Linear Accelerator Conference, Geneva, Switzerland, p. 77, CERN 96-07, 1996. 

[2] K. Wille, The Physics of Particle Accelerators, Oxford University Press, Oxford, 

NY, first edition, 2000. 

[3] H. Wiedemann, Particle Accelerator Physics 1, Springer, Berlin, Germany, 

second edition, 1999. 

[4] P. L. Chebyshev, Theorie des mecanismes connus sous le nom de par-

allelogrammes, in Memoirs of Foreign Scholars presented at the Academy of 

St. Petersburg, volume 7, pp. 539 586, 1854. 

[5] D. W. Kerst and R. Serber, Physical Review 60, 53 (1941). 

[6] G. W. Hill, Acta Mathematica VIII, 1 (1886). 

[7] Vector Fields 3D Magnetostatic Modeling Software., Cobham Technical Ser­

vices, Aurora, IL. 

[8] M. Borland, elegant: A Flexible SDDS-Compliant Code for Accelerator Simu­

lation, Advanced Photon Source LS-287, (September 2000). 

[9] M. A. Snyder, Chebyshev Methods in Numerical Approximation, p. 18, Prentice 

Hall, Inc. Series in Automatic Computation, Englewood Cliffs, NJ, 1966. 

[10] M. A. Snyder, Chebyshev Methods in Numerical Approximation, p. 4, Prenticei 

Hall, Inc. Series in Automatic Computation, Englewood Cliffs, NJ, 1966. 

[11] L. Debnath and P. Mikusiriski, Introduction to Hilbert Spaces with Applications, 

Academic Press, Inc., San Diego, CA, first edition, 1990. 

[12] R. Winter, Quantum Physics, pp. 227 230, Faculty Publishing, Inc., Davis, CA, 

second edition, 1986. 

[13] M. A. Snyder, Chebyshev Methods in Numerical Approximation, p. 7, Prentice 

Hall, Inc. Series in Automatic Computation, Englewood Cliffs, NJ, 1966. 



108 

[14] J. Laskar, C. Froeschle, and A. Celletti, Physica D 56, 253 (1992). 

[15] M. A. Snyder, Chebyshev Methods in Numerical Approximation, p. 31, Prenticei 

Hall, Inc. Series in Automatic Computation, Englewood Cliffs, NJ, 1966. 

[16] T. W. Korner, Fourier Analysis, Cambridge University Press, Cambridge, GB, 

1988. 

[17] Data from the National Geophysical Data Center at www.ngdc.noaa.gov. 

[18] A. S. Hofler et al., Performance of the Cebaf Arc Beam Position Monitors, in 

Proceedings of the 1993 Particle Accelerator Conference, Washington, DC, p. 93, 

IEEE Catalog No 93CH3279-7, 1993. 

[19] W. A. Barry, A General Analysis of Thin Wire Pickups for High Frequency 

Beam Position Monitors, in Nuclear Instruments and Methods, pp. 407 416, 

1991. 

[20] T. Allison and T. Powers, CEBAF Distributed Data Acquisition System, in 

Proceedings of the 2005 Particle Accelerator Conference, Knoxville, TN, pp. 

3541 3542, IEEE, 2005. 

[21] J. E. Voider, The CORDIC Trigonometric Computing Technique, in IRE 

Transactions on Electronic Computers, volume EC-8, pp. 330 334, 1959. 

[22] J. Musson and K. Cole, Application of Goubau Surface Wave Transmission Line 

for Improved Bench Testing of Diagnostic Beamline Elements, in Proceedings of 

the 2009 Particle Accelerator Conference, Vancouver, BC, pp. 4060 4062, IEEE, 

2009. 

[23] A. Sommerfeld, Annalen Der Physik 303, 233 (1899). 

[24] G. Goubau, Single-Conductor Surface-Wave Transmission Lines, in Proceedings 

of the IRE 39, pp. 619 624, IEEE, 1951. 

[25] P. Piot, Evaluation and Correction of Nonlinear Effects in FNPL Beam Position 

Monitors, Technical Report Internal FNAL Pub, Fermilab, 2005. 

[26] K. Halbach and R. F. Holsinger, Superfish-a computer program for evaluation 

of RF cavities with cylindrical symmetry, in Patricle Accelerator 7, pp. 213 222, 

1976. 

http://www.ngdc.noaa.gov


109 

[27] G. H. Hoffstaetter and R. W. Helms, Phys. Rev. ST Accel. Beams 8, 062802 

(2005). 

[28] K. Baggett, L. Harwood, and T. Hiatt, 12 GeV Dipole Magnet Measurement 

Analysis using Curved Beam Trajectories, Technical Report JLAB-TN 07-050, 

JLAB, 2007. 

[29] The measurement data for the BE dipole was taken from the CEBAF Magnet 

Measurement Database. 

[30] The development of the TOSCA model of the BE dipole and the simulations 

were performed by Dr. Jay Benesch. 

[31] J. Laskar, Frequency Map Analysis of an Hamiltonina System, in Workshop 

on Non-Linear Dynamics in Particle Accelerators, pp. 130 159, AIP Conference 

Proc., 1995. 



110 

APPENDIX A 

ELEGANT SIMULATION FILES 

A.l ARC 1 LATTICE FILE 

The following text describes the beamline for simulating the ARCl experiment 

as described in section 5.4. It includes all components on the beamline from the 

MAZ1S08H kicker to the IPM1A21 Beam Position Monitor. The settings in the 

model match the values that were in the control system during the beam tests. 

MAZ1S08H: HKICK, L=0, KICK=0, TILT=0, STEERING=0 

D116: DRIFT, L=5.08611 

IPM1S08: MONITOR, L=0 

MQB1S08: KQUAD, L=0.15, Kl=l.521231, TILT=0 

MBT1S08H: HKICK, L=0, KICK=0, TILT=0 

MBT1S08V: VKICK, L=0, KICK=0, TILT=0 

MAZ1S09V: VKICK, L=0, KICK=0, TILT=0, STEERING=0 

IPM1S09: MONITOR, L=0 

MQB1S09: KQUAD, L=0.15, Kl—1.50963, TILT=0 

MBT1S09V: VKICK, L=0, KICK=0, TILT=0 

IPM1S10: MONITOR, L=0 

MQB1S10: KQUAD, L=0.15, Kl= 7.410557e-01, TILT=0 

MBT1S10H: HKICK, L=0, KICK=0, TILT=0 

MBT1S10V: VKICK, L=0, KICK=0, TILT=0 

MAZ1E01H: HKICK, L=0, KICK=0, TILT=0, STEERING=0 

MAZ1E01V: VKICK, L=0, KICK=0, TILT=0, STEERING=0 

IPM1E01: MONITOR, L=0 

MQB1E01: KQUAD, L=0.15, Kl=-0.373350, TILT=0 

MBT1E01H: HKICK, L=0, KICK=0, TILT=0 

MBT1E01V: VKICK, L=0, KICK=0, TILT=0 

D121: DRIFT, L=0.4803 

MBW1E01: CSBEND, L=0.500137 & 
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, ANGLE=-0.0405309085544383, K1=0 k 

, TILT=0 k 

, E1=0, HGAP=0, FINT=0.5 k 

, E2=-0.0405309085544383, EDGE_0RDER=1 k 

, INTEGRATI0N_0RDER=4 k 

, N_KICKS=20 

D122: DRIFT, L=5.75472 

MBX1E02: CSBEND, L=l.00027 & 

, ANGLE=0.0810616425759514, K1=0 k 

, TILT=0 k 

, E1=0.0405309085544383, HGAP=0, FINT=0.5 k 

, E2=0.0405309085544383, EDGE_0RDER=1 k 

, INTEGRATI0N_0RDER=4 k 

, N_KICKS=20 

MBW1E03: CSBEND, L=0.5001370000000001 k 

, ANGLE=-0.0405309085544383, K1=0 k 

, TILT=0 k 

, El=-0.0405309085544383, HGAP=0, FINT=0.5 k 

, E2=0, EDGE_0RDER=1 & 

, INTEGRATI0N_0RDER=4 k 

, N_KICKS=20 

D123: DRIFT, L=0.525003 

IPM1E02: MONITOR, L=0 

MQB1E02: KQUAD, L=0.15, K1=0.556967, TILT=0 

MBT1E02H: HKICK, L=0, KICK=0, TILT=0 

MBT1E02V: VKICK, L=0, KICK=0, TILT=0 

D124: DRIFT, L=15.6361 

IPM1E03: MONITOR, L=0 

MQB1E03: KQUAD, L=0.15, Kl=-0.613577, TILT=0 

MBT1E03H: HKICK, L=0, KICK=0, TILT=0 

MBT1E03V: VKICK, L=0, KICK=0, TILT=0 

D124A: DRIFT, L=0.36866 

IHA1E03: MONITOR, L=0 

D124B: DRIFT, L=15.2675 
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IPM1A01: MONITOR, L=0 

MQB1A01: KQUAD, L=0.15, Kl-1.05041, TILT=0 

MBT1A01H: HKICK, L=0, KICK=0, TILT=0 

MBT1A01V: VKICK, L=0, KICK=0, TILT=0 

ITV1A01: MONITOR, L=0 

D125: DRIFT, L=l.71272 

MQB1A02: KQUAD, L=0.15, Kl=-0.288196, TILT=0 

D126: DRIFT, L=2.68242 

MKMATCH1S: MARK ft, FITP0INT=1 

MBE1A01: CSBEND, L=l.00161 & 

, ANGLE=0.196349540849362, Kl=-0.00229840648881061 & 

, TILT=0 & 

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 & 

, E2=0.09817477042468099, EDGE_0RDER=1 & 

, INTEGRATI0N_0RDER=4 k 

, N_KICKS=20 

D127: DRIFT, L=5.2152 

IPM1A03: MONITOR, L=0 

MQB1A03: KQUAD, L=0.15, Kl—1.16578, TILT=0 

MBT1A03V: VKICK, L=0, KICK=0, TILT=0 

D128: DRIFT, L=2.3809 

D159: DRIFT, L=0.15 

D129: DRIFT, L=0.21202 

IPM1A04: MONITOR, L=0 

MQB1A04: KQUAD, L=0.15, Kl=2.13112, TILT=0 

MBT1A04H: HKICK, L=0, KICK=0, TILT=0 

D130: DRIFT, L=0.70155 

ITV1A04: MONITOR, L=0 

D131: DRIFT, L=1.87544 

IPM1A05: MONITOR, L=0 

MQB1A05: KQUAD, L=0.15, Kl=-0.84544, TILT=0 

MBT1A05V: VKICK, L=0, KICK=0, TILT=0 

D132: DRIFT, L=5.05061 

MBE1A02: CSBEND, L=l.00161 & 



113 

, ANGLE=0.196349540849362, Kl=-0.00229840648881061 ft 

, TILT=0 ft 

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 ft 

, E2=0.09817477042468099, EDGE_0RDER=1 ft 

, INTEGRATI0N_0RDER=4 ft 

, N_KICKS=20 

IPM1A06: MONITOR, L=0 

MQB1A06: KQUAD, L=0.15, K1=0.79145, TILT=0 

MBT1A06H: HKICK, L=0, KICK=0, TILT=0 

D133: DRIFT, L=4.54514 

MBE1A03: CSBEND, L=1.00161 ft 

, ANGLE=0.196349540849362, Kl=-0.00229840648881061 k 

, TILT=0 k 

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 ft 

, E2=0.09817477042468099, EDGE_0RDER=1 k 

, INTEGRATI0N_0RDER=4 k 

, N_KICKS=20 

IPM1A07: MONITOR, L=0 

MQB1A07: KQUAD, L=0.15, Kl=-0.849233, TILT=0 

MBT1A07V: VKICK, L=0, KICK=0, TILT=0 

D134: DRIFT, L=2.74293 

IPM1A08: MONITOR, L=0 

MQB1A08: KQUAD, L=0.15, Kl-1.56739, TILT=0 

MBT1A08H: HKICK, L=0, KICK=0, TILT=0 

D135: DRIFT, L=2.93902 

IPM1A09: MONITOR, L=0 

MQB1A09: KQUAD, L=0.15, Kl=-0.757331, TILT=0 

MBT1A09V: VKICK, L=0, KICK=0, TILT=0 

D136: DRIFT, L=5.0506 

MBE1A04: CSBEND, L=1.00161 ft 

, ANGLE=0.196349540849362, Kl=-0.00229840648881061 ft 

, TILT=0 ft 

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 ft 

, E2=0.09817477042468099, EDGE_0RDER=1 ft 



, INTEGRATI0N_0RDER=4 & 

, N_KICKS=20 

D137: DRIFT, L=2.38277 

IPM1A10: MONITOR, L=0 

D138: DRIFT, L=2.38277 

IPM1A11: MONITOR, L=0 

MQB1A11: KQUAD, L=0.15, Kl=l.243258, TILT=0 

MBT1A11H: HKICK, L=0, KICK=0, TILT=0 

MBE1A05: CSBEND, L=l.00161 k 

, ANGLE=0.196349540849362, Kl=-0.00229840648881061 k 

, TILT=0 k 

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 k 

, E2=0.09817477042468099, EDGE_0RDER=1 k 

, INTEGRATI0N_0RDER=4 k 

, N_KICKS=20 

IPM1A13: MONITOR, L=0 

MQB1A13: KQUAD, L=0.15, Kl=-0.897279, TILT=0 

MBT1A13V: VKICK, L=0, KICK=0, TILT=0 

MSB1A14: SEXT, L=0.15, K2=32.65, 0RDER=2, DX=0.00 

IPM1A14: MONITOR, L=0 

MQB1A14: KQUAD, L=0.15, Kl=1.39555, TILT=0 

MBT1A14H: HKICK, L=0, KICK=0, TILT=0 

D157: DRIFT, L=l.87544 

D140: DRIFT, L=0.51167 

MQB1A15: KQUAD, L=0.15, Kl=-0.854162, TILT=0 

MBT1A15V: VKICK, L=0, KICK=0, TILT=0 

MBE1A06: CSBEND, L=l.00161 k 

, ANGLE=0.196349540849362, Kl=-0.00229840648881061 ft 

, TILT=0 k 

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 k 

, E2=0.09817477042468099, EDGE_0RDER=1 k 

, INTEGRATI0N_0RDER=4 k 

, N_KICKS=20 

IPM1A16: MONITOR, L=0 
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MQB1A16: KQUAD, L=0.15, K1=0.539361, TILT=0 

MBT1A16H: HKICK, L=0, KICK=0, TILT=0 

MBE1A07: CSBEND, L=l.00161 k 

, ANGLE=0.196349540849362, Kl=-0.00229840648881061 k 

, TILT=0 k 

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 k 

, E2=0.09817477042468099, EDGE_0RDER=1 ft 

, INTEGRATI0N_0RDER=4 ft 

, N_KICKS=20 

D141: DRIFT, L=5.51485 

MQB1A17: KQUAD, L=0.15, Kl=-1.00616, TILT=0 

MBT1A17V: VKICK, L=0, KICK=0, TILT=0 

IPM1A18: MONITOR, L=0 

MQB1A18: KQUAD, L=0.15, Kl=l.29706, TILT=0 

MBT1A18H: HKICK, L=0, KICK=0, TILT=0 

D158: DRIFT, L=2.23747 

IPM1A19: MONITOR, L=0 

MQB1A19: KQUAD, L=0.15, Kl=-0.5900030000000001, TILT=0 

MBT1A19V: VKICK, L=0, KICK=0, TILT=0 

MBE1A08: CSBEND, L=l.00161 k 

, ANGLE=0.196349540849362, Kl=-0.00229840648881061 ft 

, TILT=0 k 

, E1=0.09817477042468099, HGAP=0.0127, FINT=0.5 k 

, E2=0.09817477042468099, EDGE_0RDER=1 k 

, INTEGRATI0N_0RDER=4 k 

, N_KICKS=20 

D142: DRIFT, L=2.68242 

IPM1A21: MONITOR, L=0 

D1000: DRIFT, L=4.563783 

D1001: DRIFT, L=0.522307 

D1003: DRIFT, L=4.66066 

D1004: DRIFT, L=0.42545 

D1005: DRIFT, L=14.8678 

D1006: DRIFT, L=0.2921 
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D1007: DRIFT, L=0.47625 

D117: DRIFT, L=4.46076 

D118: DRIFT, L=0.62535 

D119: DRIFT, L=14.5108 

D120: DRIFT, L=0.5 

A.2 ARC1 ELEGANT FILE 

The following text contains the instructions for performing the simulations of the 

experiment using the lattice of the previous section. The segments of the file are 

described in section 5.4. 

&run_setup 

lattice="ARCl.lte", 

use_beamline="ARCl", 

p_central_mev=559.865372797133, 

centroid=0/'/,s. cen 

&end 

&run_control n_indices=l 

ftend 

&vary.element 

index_number=0 

enumeration_file=corrector.sdds 

enumeration_column=MAZlS09V 

name=MAZlS09V 

item=VKICK 

fiend 

&vary_element 

index_number=0 

enumeration_file=corrector.sdds 

enumeration_column=MAZlE01V 

name=MAZlE01V 

item=VKICK 

feend 

&bunched_beam 



n_particles_per_bunch=l, 

emit_x=2e-09, emit_y=2e-09, 

beta_x=6.35476, alpha_x=-0.0575519, 

beta_y=27.1339, alpha_y=-1.86361 

sigma_dp=2e-05,sigma_s=0.0, 

distribution_type[0] = 3*"gaussian" 

distribution_cutoff[0] = 3*3, 

enforce_rms_values[0]=1,1,1 

Send 

fctrack 

fiend 
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MATLAB CODE FOR ANALYZING BPM WIRE DATA 

The following code was used to convert the raw data from the 32 BPM wires to 

position data, rotate the position data to the lab frame and calculate the Fast Fourier 

transform and Power Spectral Density of the time domain data. 

'/.Convert BPM 4-channel wire data to properly rotated BPM positions 

'/.The data_in matrix contains the raw wire data 

'/.The BPM alpha values are read from the alpha matrix 

'/.The BPM names are read from the alphatext matrix 

'/.The sample rate is typically 500 Hz. 

'/. 
function [x,y] = wires2fft_psd(data_in,alpha,alphatext,sample_rate) 

'/,k=18.81; '^Sensitivity for M15 BPM 

k=25.67; '/^Sensitivity for M20 BPM 

m=length(data_in); 

xrot=zeros(size(data_in)); '/.Preallocate memory 

yrot=zeros(size(data_in)); '/.Preallocate memory 

'/. 

'/.Loop for converting wire data to position data 

'/.in rotated frame which is then rotated to the 

'/.laboratory frame 

7. 

for n=(2:4:30) 

xrot(:,0.25*n+0.5)=k*(data_in(:,n)-alpha(0.25*n+0.5,1) 

*data_in(:,n+l))./(data_in(:,n)+alpha(0.25*n+0.5,l)*data_in(:,n+l)); 

yrot(:,0.25*a+0.5)=k*(data_in(:,n+2)-alpha(0.25*n+0.5,2) 

*data_in(:,n+3))./(data_in(:,n+2)+alpha(0.25*n+0.5,2)*data_in(:,n+3)) ; 

x=cos(pi/4)*xrot-sin(pi/4)*yrot; '/.rotate to lab frame 

y=cos (pi/4) *yrot+sin(pi/4) *xrot; '/.rotate to lab frame 

'/. 
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'/.Plot beam aspect ratio in x-y plane 

*/. 

plot(x(:,0.25*n+0.5),y(:,0.25*n+0.5),'k.','MarkerSize',.1) 

grid on 

xlim([-12,12]) 

ylim([-12,12]) 

xlabel('X Position (mm)') 

ylabeK'Y Position (mm)') 

title(alphatext(0.25*n+0.5+1,1)); 

pause 

end 

% 

'/,Determine the Fourier Transform and the Power Spectral Density 

'/,of the Beam Position Monitor time-domain data. 

% 

x=x(l:m,1:8); 

y=y(l:m,1:8); 

NFFT=2"15; 

X=fft(x,NFFT)/m; 

Y=fft(y,NFFT)/m; 

XPSD=X.*conj(X); 

YPSD=Y.*conj(Y); 

f=sample_rate/2*linspace(0,l.NFFT/2+1); 

figure; 

% 

'/.Plot FFT and PSD 

% 

for index=(l:8) 

subplot(2,2,1);semilogy(f,2*abs(X(l:NFFT/2+l,index))); 

grid('on'); 

xlim([0,45]); 

ylim('auto'); 

xlabel('Frequency (Hz)'); 

ylabel('Power'); 



title([alphatext(index+l,1),'x']); 

subplot(2,2,2);semilogy(f,2*abs(Y(1:NFFT/2+1,index))); 

grid('on'); 

xlim( [0,45] ) ; 

ylim('auto'); 

xlabel('Frequency (Hz)'); 

ylabel('Power'); 

title('y'); 

subplot(2,2,3);semilogy(f,XPSD(1:NFFT/2+1,index)); 

grid('on'); 

xlim([0,45]); 

ylim('auto'); 

xlabel('Frequency (Hz)'); 

ylabel('Power'); 

titleCy'); 

subplot(2,2,4);semilogy(f,YPSD(1:NFFT/2+1,index)); 

grid('on'); 

xlim([0,45]); 

ylim('auto'); 

xlabel('Frequency (Hz)'); 

ylabel('Power'); 

t i t l e ( ' y ' ) ;  

pause 

end 
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APPENDIX C 

POISSON CODE FOR SIMULATING BPM 

The following text shows the Poisson Automesh file which defines the physical di­

mensions of the BPM can as well as the position of one of the antennae. 

! Poisson Automesh file for creating an M20 Beam Position Monitor 

! Draw the outer wall of the Beam Position Monitor centered at 0,0 

&po x=4.2799,y=0.0 ft 

ftpo nt=2,x0=0.0,y0=0.0,r=4.2799,theta=90. ft 

ftpo nt=2,x0=0.0,y0=0.0,r=4.2799,theta=180. ft 

ftpo nt=2,x0=0.0,y0=0.0,r=4.2799,theta=270. ft 

ftpo nt=2,x0=0.0,y0=0.0,r=4.2799,theta=360. ft 

! Draw one of the four antennae centered at (0,2.45363) 

ftreg mat=0,voltage=l,ibound=-l ft 

ftpo x=0.07874,y=2.45363 ft 

ftpo nt=2,x0=0,y0=2.45363,r=0.07874,theta=90. ft 

ftpo nt=2,x0=0,y0=2.45363,r=0.07874,theta=180. ft 

ftpo nt=2,x0=0,y0=2.45363,r=0.07874,theta=270. ft 

ftpo nt=2,x0=0,y0=2.45363,r=0.07874,theta=360. ft 

ftreg kprob=0, 

xjfact=0.0, 

Poisson or Pandira problem 

Electrostatic problem 

Mesh interval for x direction 

Mesh interval for y direction 

Cartesian coordinates 

dx=0.01, 

dy=0.01, 

icylin=0, 

conv=l, 

nbsup=0, 

nbslo=0, 

nbsrt=0, 

nbslf=0, 

ltop=10 ft 

! Convert inches to centimeters 

! Dirichlet boundary condition at upper edge 

! Dirichlet boundary condition at lower edge 

! Dirichlet boundary condition at right edge 

! Dirichlet boundary condition at left edge 

! Maximum row number for field interpolation 
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