
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Mechanical & Aerospace Engineering Theses & 
Dissertations Mechanical & Aerospace Engineering 

Spring 2010 

Hybrid Intelligent Optimization Methods for Engineering Problems Hybrid Intelligent Optimization Methods for Engineering Problems 

Yasin Volkan Pehlivanoglu 
Old Dominion University 

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds 

 Part of the Aerospace Engineering Commons 

Recommended Citation Recommended Citation 
Pehlivanoglu, Yasin V.. "Hybrid Intelligent Optimization Methods for Engineering Problems" (2010). Doctor 
of Philosophy (PhD), Dissertation, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 
10.25777/gpkn-b246 
https://digitalcommons.odu.edu/mae_etds/83 

This Dissertation is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU 
Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & 
Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact 
digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/83?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


HYBRID INTELLIGENT OPTIMIZATION METHODS FOR 

ENGINEERING PROBLEMS 

by 

Yasin Volkan Pehlivanoglu 
B.S. June 1993, Istanbul Technical University 

M.S. May 2006, Old Dominion University 

A Thesis Submitted to the Faculty of 
Old Dominion University in Partial Fulfillment of the 

Requirement for the Degree of 

DOCTOR OF PHILOSOPHY 

AEROSPACE ENGINEERING 

OLD DOMINION UNIVERSITY 
May 2010 

Approved by: 

Oktay Baysal (Director) 

TTBeskok (Member) 

Gene Hou (Member) 

Abdurrahman Hacioglu (Member) 



ABSTRACT 

HYBRID INTELLIGENT OPTIMIZATION METHODS FOR ENGINEERING PROBLEMS 

Y. Volkan Pehlivanoglu 
Old Dominion University, 2010 

Director: Dr. Oktay Baysal 

The purpose of optimization is to obtain the best solution under certain conditions. There 

are numerous optimization methods because different problems need different solution 

methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a 

natural phenomenon is almost based on differentials. Differential equations are constructed with 

relative increments among the factors related to yield. Therefore, the gradients of these 

increments are essential to search the yield space. However, the landscape of yield is not a simple 

one and mostly multi-modal. Another issue is differentiability. Engineering design problems are 

usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and 

constraint functions. Due to these difficulties, non-gradient-based algorithms have become more 

popular in recent decades. 

Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, 

non-gradient based algorithms. Both are population-based search algorithms and have multiple 

points for initiation. A significant difference from a gradient-based method is the nature of the 

search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, 

they are also called stochastic optimization methods. These algorithms are simple, robust, and 

have high fidelity. However, they suffer from similar defects, such as, premature convergence, 

less accuracy, or large computational time. The premature convergence is sometimes inevitable 

due to the lack of diversity. As the generations of particles or individuals in the population 

evolve, they may lose their diversity and become similar to each other. To overcome this issue, 

we studied the diversity concept in GA and PSO algorithms. 



Diversity is essential for a healthy search, and mutations are the basic operators to provide 

the necessary variety within a population. After having a close scrutiny of the diversity concept 

based on qualification and quantification studies, we improved new mutation strategies and 

operators to provide beneficial diversity within the population. We called this new approach as 

multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering 

problems in order to study the efficiency of these new approaches. These implementations were: 

applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil 

in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of 

autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross 

section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. 

As demonstrated by these test cases, we observed that new algorithms outperform the 

current popular algorithms. The principal role of this multi-frequency approach was to determine 

which individuals or particles should be mutated, when they should be mutated, and which ones 

should be merged into the population. The new mutation operators, when combined with a 

mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic 

process, they provided local and global diversities during the reproduction phases of the 

generations. Additionally, the new approach also introduced random and controlled diversity. 

Due to still being population-based techniques, these methods were as robust as the plain GA or 

PSO algorithms. Based on the results obtained, it was concluded that the variants of the present 

multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully 

avoided all local optima within relatively short optimization cycles. 
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1. INTRODUCTION 

1.1 Optimization Concept and Basics 

Optimization means "an act, process, or methodology of making something (as a 

design, system, or decision) as fully perfect, functional, or effective as possible." From the 

same family, the word optimum means "the amount or degree of something that is most 

favorable to some end; especially: the most favorable condition for the growth and 

reproduction of an organism: greatest degree attained or attainable under implied or specified 

conditions" [1]. The word optimum, meaning best, is synonymous with most or maximum in 

the former case and with least or minimum in the latter. 

Mathematically, the general standard optimization problem can be defined as 

min f(x,u(x)) 
xeR",u(x)sRm ( L 1 ) 

subject to; 

h(x,u(x)) = 0 
g(x,u(x))<0 

(1.2) xL<x<xu
 v ' 

G(x,u(x)) = 0 

where/to be minimized is a vector function representing the objective function(s), x is the 

column vector defining the design variables from a set of X, u(x) is a column vector including 

the state equations. This expression is solved by subjecting to vector function h as equality 

constraints, vector function g as inequality constraints, upper and lower bounds of x, and 

vector function G as another equality constraint group including state equations. Briefly this 

standard form includes three elements such as objective function, design variables, and 

constraints. The aim of the optimization process is to find the proper design variable values 

which yield the maximum or the minimum objective function value under constrained 

conditions. 

1.2 Solution Methodologies 

The general search methodologies to find the optimum solution are gradient-based and 

non-gradient based algorithms. Fig. 1.1 depicts the solution strategies. Gradient-based 

algorithms search the next candidate solution within the design space in accordance with the 

derivative information. Non-gradient based algorithms are linear programming techniques 
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and heuristic search methods. Heuristic optimization algorithms use the information currently 

gathered by the algorithm to help decide which solution candidate should be tested next or 

how the next solution candidate can be produced. There are a lot of heuristic search methods 

in the literature. 

The most popular ones are genetic algorithms (GA), particle swarm optimization 

(PSO), simulated annealing (SA), and ant colony optimization (ACO). These search methods 

are usually based on a model of some natural phenomenon or physical process. These 

algorithms are also called artificial intelligence. The other popular types of artificial 

intelligence methods are fuzzy logic (FL) and neural networks (NN). 

Solution 
Strategies 

1 — • 
Gradient 

Based 

Non-gradient 
Based 

—^ 
Linear Programming 

Heuristics 

T 

GA 

PSO 

SA 

ACO 

• 

A 
i 
i 
i 

FL 

NN 
A 
i 
i 
i 

Artificial Intelligence 

Figure 1.1 The solution strategies 

Gradient-based algorithms trade in guaranteed convergence of the solution for a 

relatively shorter runtime. This does not mean that the results obtained using them are global, 

they may probably be the local optima. Often heuristic algorithms may require more cost 

function evaluations than comparable, gradient-based algorithms. They, however, provide 

attractive characteristics, such as ease of implementation for both continuous and discrete 

problems, efficient use of large numbers of parallel processors, no requirement for the 

continuity in response functions, and more robust solution generations for searching global or 

near global solutions. Therefore, heuristic search methods are preferred to study. On the other 

hand, a solution a little bit inferior to the best possible one is better than one which needs 
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several years to be found. So, heuristic algorithms need to be adjusted to be more efficient 

than the current situations. 

Although they are called artificial intelligence techniques, their long computational 

times requirement probably originates from their basic, but essential nature: randomness and 

chance. However, the other artificial intelligence techniques such as fuzzy logic or neural 

networks do not have random nature, and they are almost deterministic methods. So, the use 

of deterministic and stochastic algorithms in a hybrid manner within robust algorithm 

architecture may be promising to solve optimization problems in a shorter time. 

1.3 Common Problems in Optimization Process 

There are some important complications, the major problems that may be encountered 

during the optimization solution process. Some of the subjects are in general and some of 

them are observed especially on nature-inspired approaches like genetic algorithms. 

Neglecting even a single one among them during the design or process of optimization can 

render the whole efforts invested useless, even if highly efficient optimization techniques are 

applied. By giving clear definitions to some of these topics, we want to raise the focused areas 

that are studied in this dissertation. The most countered complications are premature 

convergence mostly originating from loss of diversity, ruggedness and weak causality, 

deceptiveness, neutrality and redundancy, epistasis, noise and robustness, overfitting and 

oversimplification, and dynamically changing fitness. Most of them are related to objective 

function (fitness) landscape. The detailed information can be found in [2]. 

Among these complications probably the most popular problem is premature 

convergence. An optimization process comes to end if it cannot generate new solution 

candidates anymore or if it continually produces solution candidates from a small subset of 

the problem space. One of the problems in global optimization is that it is too difficult to 

determine whether the best solution currently known is a local or global optimum. This 

actually becomes only problematic if there are multiple optima which mean the problem is 

multimodal. An optimization algorithm prematurely converges to a local optimum if it is no 

longer able to explore other sections of the search space than the currently examined area and 

there at least one another region exists that contains a solution superior to the currently 

discovered one. The main reason for the premature convergence might be the lack of diversity 

within the searched space. Much of the efficiency in natural algorithms is based on the huge 

diversity of candidates interacting in manifold ways. In population-based global optimization 

algorithms, starting with diverse individuals and maintaining a set of diverse solution 
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candidates are very important. The lack of diversity means closing by a state where all the 

solution candidates under investigation are similar to each other. Preserving diversity is 

directly linked with maintaining a good balance between exploitation and exploration and has 

been studied by researchers from many aspects. 

The operations which generate new solutions from existing ones have a very large 

impact on the diversity in the population. In the context of optimization, exploration means 

global character finding new points in areas of the search space which have not been 

investigated before. Exploration is a metaphor for search operations which find totally new 

and maybe better solution candidates. Exploitation, on the other hand, has a local character 

and it is the process of improving and combining the traits of the currently known solution(s). 

Exploitation operations often incorporate small changes which lead to new individuals very 

close to the already tested solution candidates. 

Optimization algorithms that favor exploitation over exploration may have higher 

convergence speed but run the risk of not finding the optimal solution and may get stuck at a 

local optimum. However, those algorithms which perform excessive exploration may never 

improve their solution candidates far enough to find the global optimum or it may take them 

very long time to discover it accidentally. 

1.4 Basic GA Structure 

As a stochastic method, GA is an emergent optimization algorithm mimicking of the 

natural evolution, where a biological population evolves over generations to adapt to an 

environment by selection, recombination, and mutation [3]. When GA is applied to 

optimization problems, fitness, individual, and genes usually correspond to an objective 

function value, a design candidate, and design variables, respectively. 

The brief algorithm can be expressed as the following 

• Determine fitness function,/ 

• Determine stopping criteria 

• Determine population size, P 

• Determine fitness scaling method 

• Determine selection mechanism 

• Determine crossover fraction and method 

• Determine mutation ratio and method 

• Determine elite count 

• (= Initialize the population 



Repeat, g=\ 

Evaluation - compute fitness values 

Check the convergence criterion 

Fitness assignment - scale fitness's 

Selection - select parents 

Apply crossover 

Apply mutation 

l=End 

Basic genetic algorithm cycle is depicted in Fig. 1.2 

4xz Initial population 
Evaluation 

Fitness assignment Id 

b Selection 

Reproduction 

Crossover 
tf 

Mutation 

Figure 1.2 Basic genetic algorithm cycle. 

At the beginning of the optimization, GA needs a group of probable solutions named as 

initial population. It is possible to mention about two ways of generating the initial 

population. The first way consists of using randomly produced solutions formed by a random 

number generator. This method is especially preferable for the problems about which no a 

priori knowledge exists or for assessing the performance of an algorithm. The second method 

employs a priori knowledge about the given optimization problem. In this way, GA starts the 

optimization with a set of approximately known solutions and therefore converges to an 

optimal solution in less time than with the previous method [4]. 

The principle behind genetic algorithms is essentially natural selection. Selection 

provides the driving force in a genetic algorithm. With too much force, genetic search will 

terminate prematurely; with too little force, evolutionary progress will be slower than 
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necessary for adaptation. Up to now, many selection methods have been proposed, examined, 

and compared [5-7]. Common selection types are roulette wheel, tournament, uniform, 

stochastic uniform, and remainder selection methods. Before a selection step there is a scaling 

operation. In this phase the fitness values are scaled. Ranking, proportional (cost weighting), 

top, and shift linear are popular fitness scaling methodologies. We will not focus on selection 

methods, so detail information can be found in [8]. 

In genetic algorithms, accumulated information is explored by the selection mechanism, 

while new regions of the search space are explored by means of genetic operators such as 

crossover and mutation operators. We analyze them in detail in the methodology section. 

1.5 Critique on GA and Remedies in Literature 

Although genetic algorithms are robust and have high fidelity, they may sometimes be 

computationally expensive when each evaluation of the cost function requires intensive 

computation. However, there are different ways to accelerate and improve the performance of 

the genetic algorithms in literature. These are multi-level approaches [9], multi-processing 

[10], hybridization of genetic algorithms with other algorithms like gradient-based algorithm, 

neural network, or fuzzy algorithms [11-18], and the use of improved genetic operators. 

In GAs, multi-processing is related to the evaluation of candidate solutions on a cluster 

of interconnected processors or parallelization of the evaluation software, using data 

partitioning or subdomaining in computational mechanics. In hybrid methods a stochastic 

algorithm such as GA is chosen due to its global features; and, in order to reduce its 

prohibitive simulation time while keeping its advantages, it is coupled with a deterministic 

algorithm such as gradient-based method. A Multi-level approach includes multi level 

evaluation, search, or parameterization. In multi level evaluation approach different 

evaluation software is assigned to each level such as panel solvers for exploration at the 

beginning stage of the optimization process and high-fidelity models such as Euler or Navier-

Stokes solvers for refinement at the proceeding stages. Instead of using a real flow solver or 

optimization tool, the use of a surrogate model may be accepted as a multi-level approach. In 

multi-level search, each level is associated with a different search technique. Stochastic 

search techniques, such as GAs, are preferably used at the lower levels for the exploration of 

the design space, leaving the refinement of promising solutions to the gradient-based ones at 

the higher levels. In multi-level parameterization each level is associated with a different set 

of design variables. At the lowest or coarse level, a sub-problem with just a few design 

variables is solved. At the higher or fine levels, the number of design parameters is increased. 
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When facing constrained optimization problems, the term "different parameterization" may 

imply different handling of constraints. 

Currently there are many genetic operators proposed in the GA literature. However, it is 

difficult to provide rigorous guidelines for which method should be used to which problem; 

and there are still opportunities to improve new operators. Crossover and mutation operators 

are essential to the genetic algorithms. As summarized here, crossover enables the algorithm 

to extract the best genes from different individuals and recombine them into potentially 

superior children. Mutation adds to the diversity of a population and one of the most 

important factors that determine the performance of the genetic algorithm is the diversity of 

the population. Most popular mutation operators are Gaussian [19], uniform operators [20]. 

The other types can be found in [21-23]. 

Apart from designing new mutation operators, researchers have focused less on 

investigating how to apply mutation operators during the process and determining what kind 

of diversity should be provided within the population. So, the key factor is diversity. After 

dealing with PSO, we focus on diversity concept and its implications. 

1.6 Definition of Basic PSO 

As in GA, Particle Swarm Optimization (PSO) method is a population-based stochastic 

optimization algorithm that originates from the "nature" and "evolutionary computations." 

PSO algorithms search the optimum within a population called "swarm." It benefits from two 

types of learning, such as "cognitive learning" based on individual's own history and "social 

learning" based on swarm's own history accumulated by sharing information among all 

particles in the swarm. Since its development in 1995 by Kennedy et al. [24], it has attracted 

significant attention. Most of the investigations on this topic are related to either the 

mathematical analysis focusing on how it works, or improving the PSO to get faster and more 

reliable solutions. The impetus for the latter is typically the trapping of the solution candidates 

to local optima, or the so-called premature convergence. 

Let S be the swarm size, D be the particle dimension space, and each particle of the 

swarm has a current position vector Xh current velocity vector Vh individual best position 

vector Pt found by particle itself. The swarm also has the global best position vector Pg found 

by any particle during all prior iterations in the search space. Assuming that the function/is 

to be minimized and describing the following notations in t"1 iteration, then the definitions are 

as follows: 
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x,(t) = (*(il(*X*(ll(0.-.\oW.). *,,,«) e *D,hW s (1-3) 
K, (0 = (v., (0, v,2 (0,.... v(iD (0,), v(J (0 6*° , '-•, s (1 -4) 

where each dimension of a particle in the swarm is updated using the following equations: 

v IJ(0 = vw ( r - l ) + c Ir1(i>a-l)-*w(*-l)) + c1r2(i»,(t-l)-x1J(t-l)) (1.5) 

x,Jt) = xIJ(t-l) + V,J(t) (1.6) 

In Eq. (1.5), c7 and c2 denote constant coefficients, r; and r2 are elements from random 

sequences in the range of (0, 1). The parameter c; controls the influence degree of "cognitive" 

part of an individual, and c2 determines the effect of a "social" part of the swarm. The 

personal best position vector of each particle is computed using the following expression: 

P(t)Jw-v>- <//w»*/w-i))l 
\x,(f), iff(xl(t))<f(p,{t-m 

Then, the global best position vector is found by, 

^ ( 0 = argmin/(^(0) ,, ô  

1.7 Improved PSO Algorithms in Literature 

PSO may have some issues related to convergence speed, prematurely converged 

solutions, deficient accuracy or lack of diversity. Although numerous modifications have been 

proposed so far to overcome these issues [25], we will highlight some improvement methods. 

These may be broadly divided into two categories as focusing on hardware or software 

improvements. The hardware focus is related to parallel computing. The software studies may 

be further classified as hybridization with other search algorithms, inspiration from other 

stochastic-based algorithms, rearranging and manipulating the reproduction descriptions 

mainly related to the velocity equation, parameter and neighborhood topology manipulations 

within the reproduction phase, and finally the population sizing and grouping. 

Since each particle's cost function can be evaluated independently in the swarm, PSO is 

ideally suited for synchronized execution on a cluster of computers in parallel. Integrating 

PSO algorithms with other search algorithms is called hybridization. A common hybrid 

application is to use PSO with another population-based algorithm such as a genetic 

algorithm. Yet another technique is to use a gradient-based algorithm as an integrated part. 

Manipulating or rearranging Eq. (1.5) and Eq. (1.6) is an important part of algorithm 

improvements. In these manipulations the velocity equation is extended with an extra term or 

shortened depending on the approach. Parameter re-descriptions constitute another bundle of 
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modification packages. Since Shi et al. [26] suggested the use of an inertia weight (w) 

multiplying with the previous velocity in Eq. (1.5), the parameter number to be adjusted is 

increased to three. The inertia weight determines the effect of a previous velocity. The 

common PSO parameters, w, cj, c2 may be constant, or linearly or nonlinearly changeable, 

let's say periodically, adaptively, chaotic or randomly changeable depending on the time or 

other reference such as cost function value, velocity, metropolis criteria. Neighborhood 

topology originates from the selection of position vectors P{ and Pg. In the original algorithm 

the particle is going to be attracted by individual best position and global best position. It 

means no other individual best position vectors will have an attractive effect to individual 

itself and also the best one will never be changed at that iteration. At this point, different 

neighborhood topology descriptions are introduced. Population itself is also studied in many 

different aspects. Dynamic population sizing or dividing the population into subgroups may 

be promising to solve some of the optimization problems. 

Inspirations from other stochastic-based algorithms such as GA and simulated 

annealing or opposition-based learning algorithm are other popular methodologies to improve 

the basic PSO algorithm. Commonly used GA reproduction operators including selection, 

crossover, elitism, and mutation can be deployed in PSO algorithm architecture. Among GA 

operators, mutation is the most utilized. Because the drawback of PSO is due to the lack of 

diversity, which forces the swarm particles to converge to the position found so far which 

may not even be a local optimum. Without an effective diversity enhancing mechanism, the 

optimization algorithm may not be able to efficiently explore the search space. Mutation 

operators introduce new individuals into a population by manipulating a current individual, 

thus adding diversity into the population and probably preventing stagnation of the search in 

local optima. However, the mutation application procedure brings some new adjustments to 

the algorithm such as the criteria of mutation applications, the position where mutation will be 

applied, and the selection of random probability distribution sequence. Describing diversity 

thresholds, mutation probability percentages, similarity and closeness to each other in terms 

of Euclidian distance may be the criteria for mutation applications. Gaussian, Cauchy, Beta 

distributions, chaotic distribution based on logistic maps, or mixed types such as cloud 

distribution are possible random distribution sequences. Randomly selected current positions, 

velocities, or even individual best position and global best position vectors may be mutated 

[27-37]. However, elitism concept is integrated into the algorithm in the case of mutating the 

individual best or global best position vectors. 

Although mutations provide diversity within the population they may also cause a 

peripheral stagnation search. Therefore, the type of mutation operator and its application 
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strategy are important decision parts for the mutation applications. Apart from designing new 

mutation operators, researchers have relatively put less effort into investigating how to apply 

mutation operators during the process and determining what kind of diversity should be 

provided within the population in PSO process. 

1.8 Dissertation Objectives 

This research aims to demonstrate the effect of diversity concepts within GA and PSO 

optimization processes. To determine its effects quantitative expressions must be described 

and tested. After studying the quantification of the diversity concept, it should then be 

qualified in terms of local and global search capabilities or random and controlled 

applications. 

Within this scope, mathematical expressions for diversity need to be described, 

compared, and analyzed for selected benchmark test functions. Special attention will be paid 

to mutational operations, because the main source for diversity in the population or swarm 

originates from mutations. To classify diversity in terms of local and global search 

capabilities, or random and controlled applications, new qualitative mathematical expressions 

will be described. To introduce controlled diversity concept, popular deterministic intelligent 

methods, such as, fuzzy logic and neural networks will be coupled with mutational 

operations. 

After quantitative and qualitative studies of the diversity concept, a new mutation 

strategy will be constructed, tested, and approved for improved search capability. New 

methods need to be implemented on selected problems to determine the performance of the 

newly developed methods for aeronautical engineering applications. 
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2. METHODOLGY 

2.1 Control Parameters in GA 

The important control parameters of a simple GA include the population size P, 

crossover fraction Pc, and mutation rate Rm. Usually populations are of constant size. 

Depending on the preferred genetic way, there may be other important control parameters. 

Crossover fraction determines the number of children, Nc generated by crossover operations 

in the next generation. It also automatically determines the number of individuals mutated by 

mutation operator, Nm. Mutation rate determines the number of mutated genes, Sm related to 

the length of chromosome (individual), n within the population. Nc, N„, and Sm are integer 

values and computed as follows 

Nc=PcP (2-D 

N
m=«-Pc)P (2-2) 

Sm=n.Ra.Nm (2.3) 

2.2 Genetic Operators 

Search is one of the most universal problem-solving methods for problems in which one 

cannot determine a priori the sequence of steps leading to a solution. Typically, there are two 

types of search behaviors: a global search and a local search. Global search explores the 

entire solution space and is capable of achieving escape from a local optimum. Local search 

exploits the best solution and is capable of climbing upward toward a local optimum. An ideal 

search should posses both types simultaneously. 

In essence, genetic operators perform a random search and cannot guarantee to yield 

improved offspring. In conventional meaning, the crossover operator is used as the principal 

operator. It performs a random search to try to explore the area beyond a local optimum. In 

general understanding, the mutation operator which produces spontaneous random changes in 

various chromosomes is used as a background operator and it performs a local search to try to 

find an improved solution. However, we will show that a mutation operator with a proper 

application strategy can perform a search to explore and exploit the solution space during the 

generation process. 
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Crossover 

Because it serves well as a paradigm for other genetic operators, it would be better to 

look first at crossover. In biological systems, crossover is a process yielding recombination of 

genes via exchange of segments between pairs of chromosomes. Crossover proceeds in two 

steps; within the first step, two individuals as parents are randomly selected from the current 

population. In the second step, a new structure is formed from parents by exchanging their 

genes; so the crossover recombines features from two parents to produce offspring. 

Sometimes the crossover would recombine the best features from the parents, resulting in 

superior offspring, but not always. 

There are different types of crossover operators. Some well used genetic operators 

based on crossover are uniform, single point, two-point, intermediate, heuristic, arithmetic, 

and blend crossover known as BLX-p. In the next sections these crossover operators are going 

to be compared. Therefore, each method is explained in the followings. Before proceeding, 

assume that the parents as father (F) and mother (M), a child as (C), and the fitness values of 

them are selected as 

< , * ; v = u • (2.4) 

/ ' , / " (2.5) 

Uniform crossover A child is generated as the following 

(2.6) // r<o.5 * ;=* ; 
if r>0.5 * , c=x" 

where r is a random number between (0,1). In uniform crossover approximately half of the 

genes of the child come from each parent. 

Single point crossover A child is generated as the following 

*,TU " = t « «•. .<•* *ri (2.7) 

where p is a random integer number between (1, ri). 

Two-point crossover A child is generated as the following 

X
C\M'2 " _ r r f rF F M M M F F F-. n m 

*j | L-»l »-*2 > •">-> , - 4 >+l> -V+2>" - ' - \ >-\ !+l>-*?+2>— >"Si J \^-°J 

where p and q are random integer numbers between (1, «). 

Intermediate crossover A child is generated as the following 
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<=<+««-Of"2 " (2.9) 
a = u.R 

where a is a random number between (0,1) and R is the ratio determined by the user. The ratio 

controls the range over the children. 

Heuristic crossover A child is generated as the following 

2,...,n 

(2.10) // r<fM xc
t =<+*(*;-<) 

if fM<r *̂  =*;+*(<-*;) 

where R is the same as the previous one as ratio determined by the user. The ratio is selected 

as 1.2 or more. 

Arithmetic crossover A child is generated as the following 

xcj = kx* + (1 - A)xf p 2 (2.11) 

where A is a random number between (0,1). 

Blend crossover The children is generated as the following 

^ = ^ ; + ( i - ^ < y = u " 

0 = Tu-O.5 

(2.12) 

where u is a random number between (0,1), T is the constant determined by a user. In this 

method extrapolation between parent values is possible. 

Mutation 

Mutation is one of the most familiar of the genetic operators. In genetics, mutation is a 

process wherein one gene is randomly replaced by or modified to another to yield a new 

structure. Generally there is a small probability of mutation at each gene in the structure. Like 

crossover operators, there are different types of mutation methods. Some of them are uniform, 

adaptive feasible and Gaussian mutation. In the next sections these mutation operators are 

going to be compared. Therefore, each method is explained in the following. Before 

proceeding, assume that the current generation is labeled with g, the maximum generation is 

G, a child is M, and the individual selected for mutation is indexed with P such as 
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*f (2-13) 

Gaussian mutation A child is generated as the following 

A = / W f l § (2.14) 

/ ? 3 = A « - * ; f U (2.15) 

< = x ; + A J , r A (2.16) 

where Pi is a user defined scale factor, y is other user defined shrink factor, u is the random 

number generated from standard normal distribution. U and L are the upper and lower bound 

indexes for the genes. Mutation rate is not applicable to this type of operator because all genes 

in chromosome are mutated. 

Uniform mutation A child is generated as the following 

^ , = < - * , T U " (2-17) 

(2.18) 
Ml I | (=l ,2 t . . . , /u 

tf=x^+Ax,.u\ 

where u is the random number generated between (0,1). In this application not all genes are 

mutated. Instead, randomly selected IM genes are mutated depending on user defined Rm. 

Adaptive feasible mutation A child is generated as the following 

x^=xp
j+apd\'X-2 " (2.19) 

where a is the step size, p is the scale factor, and d is the search direction. These values are 

not user defined and computed during the iterations. As it is in Gaussian type applications, all 

genes are mutated. However this operator is a bit different from others. It is deterministic and 

not stochastic based. The direction is found by a kind of line search. 

2.3 Quantification of Diversity 

The word diversity means "the condition of being diverse, variety", or "the quality or 

state of being composed of many different elements or types." [38]. Diversity refers to 

Euclidian distance among the members in a group. We can describe three different diversity 

scales. These are the diversity of design variable, DVt g; the diversity of individual, Du g; and 

the diversity of population, DPi g such as 
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D, 

v'«Uu...,e 

'•s|g=.,2,.,C 

/ • * l«=U,.,G 

(2.20) 

(2.21) 

(2.22) 

where 5 is the problem dimension, g is the number of generation, G is the maximum number 

of generations, p is the population size, and P is the number of population which is typically 1 

if there is only one population instead a group. It is possible to determine each diversity type 

as a single value based on the general and selected positions in the population. This can be 

achieved by three different definitions: the difference between a member and the best 

member; the difference between a member and average member value; and the difference 

among the members. 

Diversity of Design Variables 

The diversity of any design variable at each generation can be computed by using the 

following equations; 

X.CL-

2><„(s)-*;(s))2 

! > , » - * * (g»2 

2X(i?)-*,(g))2 

(2.23) 

(2.24) 

(2.25) 

where xej is the fh variable value belonging to elite individual at g'h generation, xbj is the /* 

variable value belonging to the best individual in that population at g'h generation, and 3cy is 

the averaged/* variable value at g'h generation. 

Diversity of Individuals 

We can categorize individual diversity into two types such as individual diversity and 

individual dependent diversity. Any individual diversity at each generation can be computed 

by using the following equations; 

D, 

A 

!Xte)-*;(g))2 

2>..,(S)-*;(S))2 

y=i 

(2.26) 

(2.27) 
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A c:- i>,,(g)-*,(g))2 

.>=> 
i ' 

(2.28) 

Individual dependent diversity is the diversity between two different individuals in the 

population. Assume that xk is the k?h individual and xt is the i'h individual, then dependent 

diversity is given by 

D '* l«=l,2,..,G 

Dk =Di 

(2.29) 

Diversity of Population 

The diversity of population can be computed by using many different ways. At first, we 

can calculate this value based on the distance between the design variables as we did in the 

previous sections. Secondly, we can compute the population diversity based on the fitness 

values. The population diversity related to design variable distances is symbolized as Ifp,g, 

the population diversity related to fitness values is symbolized as LfPg. Ifp,s can be computed 

by the following expressions. The first one is related to the difference between the individuals 

and the best one. It is defined as 

D-7? 2>;or)-*,6(g))2 (2.30) 

The second one may be based on the difference directly between the individuals such as 

i p p 

P i=l pi 
ZtfteWte))1 (2.31) 

The last one may be constructed of the difference between the individuals and the 

averaged ones such as 

'* pit 2tofe)-*ycg))2 

p 1=1 

(2.32) 

(2.33) 

This description is a kind of averaged population diversity because we divide the total 

sum with the population size. Additionally, Eq. (2.32) may be manipulated such that 
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Vs-fi I(*}(s)-*yte))2 

>> 
(2.34) 

In this way we can take care of the population size as multiplier. Another approach is 

fitness value based description. Similarly the diversity, £/Pg can be determined based on the 

differences between general and selected individual fitness values. The first one is related to 

the difference between the individuals' fitness values and the best fitness value. It is defined 

as 

°L = It/"'-/*)2 (2.35) 

The second one may be based on the difference directly between the individuals' fitness 

values such as 

P i=l L/>i 
(2.36) 

The last one may be constructed of the difference between the individuals' fitness 

values and the averaged fitness value such as 

* * , - Z(/'-/)2 

p~ 

(2.37) 

(2.38) 

2.4 Quantification in a Simple Test Case 

In the previous paragraphs we showed that there are many possible definitions for 

diversity indicators. It may be beneficial to see some of them for better understanding of 

indication character. For this reason a simple test case is constructed. One of the benchmark 

test functions, Rastrigin test function, is selected as a test case and some diversity definitions 

are compared in terms of generation and diversity values. Rastrigin test function is described 

as the following 

10« + £ [*/ -10cos(2w*()] (2.39) 

search range Jfcl 
[-5.12,5.12]° [0,0,...,0] 

The problem dimension is selected as 10. A regular genetic algorithm is used to search 

optimal x values. The features of genetic algorithm used in test case are tabled in the next 
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table. The diversity indicator changes are depicted in Fig. 2.1. The diversity definitions 

related to the positions of individual genes are plotted on the left side. Other diversity 

definitions related to individual fitness values are shown on the right side. The definition 

given in Eq. (2.30) is labeled as Dx-\, Eq. (2.31) is labeled as Dx-2, and Eq. (2.32) is labeled 

as Dx-3. Similarly the definition given in Eq. (2.35) is labeled as Dr\, Eq. (2.36) is labeled as 

Dr2, and Eq. (2.36) is labeled as Dr3. 

Table 2.1 Genetic algorithm features in quantification case 
Pc Mutation 

10 2000 0.8 Gaussian: 0lt 0.5; y, 0.75 
Fitness scaling selection Elite count Crossover 

Rank Roulette 1 Arithmetic 

iog(g) log(g) 

Figure 2.1 The diversity indicator changes versus generations. 

Fig. 2.1 shows that there is no significant difference among the diversity indicators. 

There is just scale variety between Dx-\ and Dx-2. However the curve characteristics are 

almost the same. The same conclusion is valid for fitness based diversity indicators. Therefore 

the diversity definition given in Eq. (2.32) and the second version of it, Eq. (2.34) are selected 

as diversity indicators for the rest of studies. 

2.5 Diversity and Crossover Operator Relationships 

The diversification is provided by genetic operators during the generations. Both 

crossover and mutation operators may probably have different diversification characteristics. 

The crossover operator and diversity relationship is investigated in the next test case bundle. 

The same test function given in Eq. (2.39) is used in test cases. As diversity indicator, Eq. 

(2.32) is used. The features of a regular genetic algorithm are expressed in Table 2.2. We 

excluded mutation operations in reproduction phases to see the pure effect of crossover 

operators on diversity changes. So, all individuals are generated by crossover operator within 

the population. 20 runs are fulfilled and the average diversity indicator values are plotted for 
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each crossover operator. Selected operators are scattered, single point, two-point, 

intermediate, heuristic, and arithmetic crossover operators. 

Table 2.2 Genetic 
P 
10 

Fitness scaling 

algorithm features in crossover case 
G 

200 
selection 

Pc 
1 

Elite count 

without mutation 
Mutation 

No mutation 
Run 

Rank roulette 20 

The diversity and crossover operator characteristic relationships are depicted in Fig. 

2.2. This figure is divided into two sections such as binary coded and real coded genetic 

processes. Scattered, single and two-point crossover operators are used in binary coded 

process and their relationships with diversity are shown on the left side of the figure. 

Intermediate, heuristic, and arithmetic crossover operators are real coded processes and their 

relationships with diversity are shown on the right side of the figure. For both types the 

relationships are similar characteristic behaviors. In binary coded process the diversity shows 

linear change in logarithmic scale until a certain generation number. After about 23rd iteration 

the diversity is significantly decreased. Then the diversity becomes constant. This type 

behavior is almost the same for all crossover operators in binary coded process. However, 

other operators in real coded process behave in different modes. The diversity shows linear 

change in logarithmic scale until a certain generation and then becomes stagnant. We do not 

see a sudden decrease; instead, we observe a gradual decrease in diversity values. From this 

point we can conclude that real type coding provides higher diversity among the individuals 

than binary type coding. On the other hand, the difference among the crossover operators 

within the same coding type is almost negligible. It seems it does not matter what kind of a 

crossover operator is used to generate an individual from the point of view of diversity. 

)° 

-10 

>>-
\ V ^ _ v \ 

^ S 
\ \\ -
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intermediate 

heuristic 
- - » - - arithmetic 

-

\ X 
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\ » * * V 
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Figure 2.2 The diversity and crossover method relationships. 

In the next step, we want to determine the effect of a fixed type mutation operator has 

on diversity for the same crossover operators. For that reason, a new test case bundle is taken 

into consideration. Rastrigin test function with the same constraints is used for test cases. The 
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features of a regular genetic algorithm are expressed in Table 2.3. 20 runs are fulfilled and the 

average diversity indicator values are plotted for each crossover operator. A common 

mutation operator is selected as a uniform mutation operator which is applicable to both 

binary and real coding systems. The mutation rate, Rm is equal to 0.05. 

Table 2.3 Genetic algorithm features in crossover case with uniform mutation 
p 
10 

Fitness scaling 

G 
200 

selection 

Pc 
0.8 

Elite count 

Mutation 
Uniform 

Run 
Rank roulette 1 20 

The diversity and crossover operator characteristic relationships are depicted in Fig. 

2.3. Similar to previous analysis, this figure is divided into two sections such as binary coded 

and real coded genetic processes. Interestingly, mutation operator significantly changes the 

diversity and crossover operator relations. Without mutation there was a strong difference 

between binary and real coded processes. However, a mutation operator weakens the 

difference among the crossover operators. Both binary and real coded crossover operators 

show almost the same diversity-generation characteristics. Diversity values are decreased 

linearly in logarithmic scale until a certain generation and then become stagnant with a certain 

periphery. It seems that a mutation operator keeps the diversity level at the same degree with 

some exceptional points. Additionally, binary coded system operators show relatively higher 

diversity values than real-coded ones. This is an expected result due to sensitivity of binary 

coding to the digital changes. 
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10 
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Figure 2.3 The diversity and crossover method relationships under common mutation effect. 

The last analysis will be based on the crossover ratio, Pc. We observed that there is no 

serious difference among the crossover operators under a common mutation operator effect. 

However, we kept the crossover ratio as 0.8 during the test runs. It means only 20 percent of 

the total population is going to be mutated with a certain mutation ratio. Therefore, we need 

to look at the effect that the crossover ratio has on the diversity changes. To do this analysis 
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we select a heuristic crossover operator with R 1.2 and a Gaussian mutation operator as 

genetic operators. We change the crossover ratio from 0.2 to 1.0. The mutation operator 

parameters are selected as p7, 0.5; y, 0.75. The features of regular genetic algorithm are 

expressed in Table 2.4. 20 runs are fulfilled and the average diversity indicator values are 

plotted for each crossover ratio. 

Table 2.4 Genetic algorithm features in crossover case with Gaussian mutation 
P G Mutation 
10 

rank 

200 Gaussian 
Fitness scaling selection Elite count Run 

roulette 1 20 

m1 

< 

10° 

Pc0.4 
Pc0.6 
Pc0.8 

10s 

«n° 10 

a* -s 
8>10 

I O 1 0 

in"16 

V. 

\ 
\ 

\ \ \ \ 

"-. 

Pc 1.0 ' 

Pc0.9 

• 

50 100 

9 

150 200 50 100 

9 

150 200 

Figure 2.4 The diversity and crossover fraction relationships under common mutation effect. 

The evaluation of Fig. 2.4 shows that the crossover fraction significantly effects the 

diversity changes. Low level fraction causes high level diversity. Actually the real parameter 

here is (l-Pc) value. This value determines the number of individuals which will be mutated 

by mutation operator. If Pc is equal to 1 it means that there is no individual to be mutated so 

the diversity significantly decreases. This big gap can be observed on the right side of the 

figure. Ten percent mutated individuals per population (Pc is equal to 0.9) increase the 

diversity with logarithmic scale. 

2.6 Diversity and Mutation Operator Relationships 

As we show that the crossover operator has little effect on the level of diversity. The 

main effect comes from the number of mutated individuals. Now, we need to analyze the 

relationship between diversity and a mutation operator type. For the test bundle, Rastrigin test 

function with the same constraints is used. As a diversity indicator, Eq. (2.32) is used. The 

features of a regular genetic algorithm are expressed in Table 2.5. 20 runs are fulfilled and the 

average diversity indicator values are plotted for each mutation operator. A common 

crossover operator is selected as a heuristic crossover operator with R 1.2. The crossover 
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fraction is set to Pc 0.8. The selected mutation operators to be tested are Gaussian with/?/, 0.5; 

y, 0.75, uniform with Rm 0.05, and adaptive feasible mutation operators. 

Table 2.5 Genetic algorithm features in heuristic crossover case 
P G Crossover 
10 200 Heuristic, Pc 0.8 

Fitness scaling selection Elite count Run 
Rank roulette 1 20 

According to Fig. 2.5 the mutation operator determines the level of diversity. Uniform 

and adaptive feasible mutation operators show similar behaviors. However, a Gaussian 

mutation operator has similar characteristic with different scales. The diversity decreases fast 

to a certain degree and then becomes stagnant with different periphery. This is an expected 

result because of mutation rates. In Gaussian mutation applications all genes of selected 

parents are mutated. It means Rm is equal to 1. However, the mutation rate is restricted to Rm 

0.05 in uniform mutation applications. This ratio directly affects the diversity. In adaptive 

feasible mutation applications, all genes are also mutated, but the deterministic search 

direction seems to decrease the diversity. On the other hand, the number of mutated 

individuals within the population is the same. 
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Figure 2.5 The diversity and mutation operator relationship under common crossover 

operator effect. 

2.7 Diversity and Population 

Up to now, we observed that the diversity originates mainly from the number of 

mutated individuals and secondly from the type of mutation operator. The first parameter 

determines the scale and the second parameter determines the periphery. For the next analysis 

we will look directly at the population itself. In this case, diversity indicators given in Eq. 

(2.32) and Eq. (2.34) are used separately under the same conditions. In principle, the small 
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populations run the risk of seriously under-covering the solution space, and so increase the 

chance of premature convergence to a poor solution. On the other hand, larger populations 

allow the exploration of fewer generations per unit of computational efforts [39]. We analyze 

the population size and diversity under common crossover and mutation genetic operators. 

The features of a regular genetic algorithm are expressed in Table 2.6. 20 runs are fulfilled 

and the averaged diversity indicator values computed via Eq. (2.32) are plotted for each 

population size. A common crossover operator is selected as a heuristic crossover operator 

with R as 1.2. The crossover fraction is set to Pc 0.8. 

Table 2.6 Genetic algorithm features in population case 
Mutation 
Uniform 
Gaussian 

Fitness scaling 

G 
200 

selection 

Crossover 
Heuristic, Pc 0.8 

Elite count Run 
Rank roulette 1 20 

The diversity and population size characteristic relationships are depicted in Fig. 2.6. 

The analysis is divided into two sections. At first, the diversity is observed under different 

population sizes and uniform mutation operator with Rm 0.05. Upper side of Fig. 2.6 shows 

this case's relationship. Interestingly, the increase in population size does not bring more 

diversity within the population. The same conclusion is observed on the lower side for 

Gaussian mutation with f},, 0.5; y, 0.75, too. At the beginning of the generations the 

population size causes slightly higher diversity level, and then this effect disappears through 

the proceeding generations. However, this type of diversity is averaged population diversity. 

Therefore, we need to look at the values of non-averaged population diversity given in Fig. 

2.7. 
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Figure 2.6 The diversity and population size relationship in accordance with Eq. (2.32). 
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Figure 2.7 The diversity and population size relationship in accordance with Eq. (2.34). 

In Fig. 2.7, we see that the population size increases the population diversity with 

multiplier effects. As a result, more population size does not mean more averaged population 

diversity, but means higher population diversity. Additionally, we need to put this point that 

more population size means higher convergence rate. This takes us to other inference; more 

diversity in the population may not mean faster convergence rate. Therefore, in addition to 

quantification of diversity, we need to focus on the qualification of the diversity. Before this 

subject, we will have a closer look on the mutation criteria. 

2.8 Mutation with Threshold Diversity 

In regular genetic algorithms we see that the diversity is controlled by the number of 

mutated individuals in terms of the ratio of population size and the mutation operator type. 

Instead of this classical approach we can control the diversity directly itself. For example, one 

of the current mutation operators or a new type may be activated only when the diversity of 

the population becomes less than a certain threshold value, Diow. The new mutation 

application is named as threshold mutation operator and described in the following equation. 

'fD<Dl0W x)=xi
j+%u 

ifD>Dlow x' 
(2.40) 

iy-i.2... 

where £ is the scaling factor, u is a random number generated by a Gaussian distribution. The 

diversity description given in Eq. (2.40) is based on the differences between the average 

dimensional position and the current dimensional particle positions, Dx. In this approach, the 

whole population is mutated under threshold diversity criteria. In the first generations the 

diversity will be crossover operator dependent. However, when the diversity is decreased, the 

mutation operator is going to be activated and this activation continues until the desired 

diversity is provided. The effects of this approach can be compared and analyzed with 

different parameters settings. For the test bundle, Rastrigin test function given in Eq. (2.39) 
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with the same constraints is used. The features of a new genetic algorithm are expressed in 

Table 2.7. 20 runs are fulfilled and the average diversity indicator values are plotted for each 

threshold diversity value. Fig. 2.8 shows the relation between threshold diversity value and 

population diversity. It is observed that the threshold diversity value determines the 

population diversity level. Naturally, the population diversity is decreased due to generational 

crossover operations. When the mutation operator is activated, the population diversity is 

increased and the diversity level is kept on threshold diversity level with a certain periphery. 

Higher threshold diversity value means higher population diversity level. Another interesting 

point inferred from the figure is the periodicity. It seems that the determination of diversity 

level brings an unclear, but dominant periodic mutation applications. This observation is more 

understandable in Fig. 2.9. 

Table 2.7 Genetic algorithm features in mutation with different threshold case 
Mutation 

Threshold with % 0.5 
Fitness scaling 

Rank 

G 
2000 

Selection 
Roulette 

Crossover 
Blend with T 2 

Elite count 
1 

P 
10 

Run 
20 

V* 2 V 

Dlow= 0 1 

D , o w = * 

D , o w = 3 

10 10 10 10 
iog(g) 

Figure 2.8 The diversity and different threshold diversity relationship under common 
crossover operator and scale factor. 

Fig. 2.9 shows the effect of a scale factor on the population diversity under a fixed 

threshold diversity value. The features of a genetic algorithm are expressed in Table 2.8. 

Different scale factors cause different population diversity characteristics. Higher scale 

factors provide larger band diversity changes and cause more mutation operator activity. On 

the other hand, lower scale factor generates at a lower diversity band and with rare mutation 

operator activation. Both figures also show that each parameter in Eq. (2.40) effects both the 

diversity band width and the activation frequency. This may result in an interaction between 

these parameters. However, we need to get a closer look at the periodicity of diversity. 



26 

Table 2.8 Genetic algorithm features in mutation with fixed threshold case 
Mutation 

Gaussian with Diow 0.1 
Fitness scaling 

Rank 

G 
2000 
selection 
roulette 

Crossover 
Blend with T2 

Elite count 
1 

P 
10 
Run 
20 

4.5 
4 

E=10 

E=0.1 

^/v^v<^ 
500 1000 

9 

1500 2000 

Figure 2.9 The diversity and different scale factor relationship under common crossover 
operator and threshold diversity. 

2.9 Wavelet Analysis 

Before the analysis of signal it had better to deal with signal analysis. We can express 

any signal, s in terms of detail signals such as 

-=2>, 
jeZ 

Dj=yLaj.k¥j,t 

(2.41) 

(2.42) 

where a,,* is a coefficient and y/Jik is a wavelet function. This expression is usually divided into 

approximate and detail signals such as 

S-AJ+^DJ 
jSJ 

(2.43) 

where Aj is the approximate signal and Dj are the detail signals [40]. The biggest part of the 

signal energy is carried by an approximate signal. The remaining energy is shared by detail 

signals sometimes called noise signals. There are different wavelet functions in literature. In 

our analysis we preferred to use Meyer wavelets [41]. 

The wavelet analysis is based on the genetic process described in Table 2.9 for the same 

optimization problem. The whole diversity signal can be seen in Fig. 2.10. 
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Table 2.9 Genetic algorithm features 
Mutation G 

Threshold with Dlow 1, f 0.5 10000 
Fitness scaling selection 

Rank roulette 

in wavelet analysis 
Crossover 

Blend with T2 
Elite count 

1 

P 
10 

Run 
20 

Q 

logfe) 
Figure 2.10 The diversity signal. 

The diversity change in terms of the last 2000 generations is included for steady result. 

This signal can be analyzed by using discrete approximation of Meyer wavelets at 10-level. 

So, the diversity signal is expressed by the following 

10 

D„ = AO + ZDJ (2.44) 

The resulted discrete wavelet transform for the diversity can be seen in Fig. 2.11. The 

figure includes only approximation signal A10 and detail signals DJyj; 7, 8, 9, and 10. The 

remaining signals are noise signals. The picture shows that the main diversity signal caries 

some locally periodic signals and noises. 

1.4 
1.2 

1.17 

Figure 2.11 Wavelet analysis of a part of diversity signal. 
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Up to now we analyzed that the description of threshold diversity brings new 

parameters such as periodicity and band width, let's say a kind of amplitude. For the next 

step, we focus on the relationship between threshold value and the fitness value. 

2.10 Threshold Effect on Fitness 

Different threshold diversity values result in different convergence speed. To test this 

issue we can use the same test set up as the previous one. The features of genetic algorithm 

are expressed in Table 2.10. 20 runs are fulfilled and the last value of average diversity 

indicator is plotted for each threshold diversity value. Fig. 2.12 shows that the relation 

between threshold diversity and best fitness value is nonlinear. It means we need to tune up 

the threshold diversity for the best convergence and this relationship may also have more than 

one local minimum. For the next step, we will compare the new type mutation activation and 

the regular mutation application with regular mutation operators. 

Table 2.10 Genetic algorithm features in threshold effect 
Mutation 

New Gaussian with f 0.5 
Fitness scaling 

Rank 

G 
10000 

selection 
roulette 

Crossover 
Blend with T 2 

Elite count 
1 

P 
10 

Run 
20 

W* 10-2 io° 
iog(Dbw) 

Figure 2.12 Averaged best objective function values versus different threshold values. 

2.11 Comparison of Mutation Applications 

It will be beneficial to compare new type mutation activation and application method 

with the previous mutation application and operator approaches. For that reason the same 

optimization problem is included. The features of genetic algorithms are expressed in Table 

2.11 and 2.12. In regular genetic algorithms, the uniform mutation operator is with Rm 0.05, 

Gaussian mutation is with fij, 0.5; y, 0.75. 20 runs are fulfilled and the averages of the best 

objective function values are plotted for each mutation type. Fig. 2.13 depicts the results. 

10 * - - -

J 

10" 

10 
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Table 2.11 New typ 
Mutation 

Threshold with Dhw 0.1 and f 0.5 
Fitness scaling 

Rank 

Table 2.12 Regular 
Mutation 
Uniform 
Gaussian 

Adaptive feasible 

e genetic algorithm features 
G 

5000 
selection 
roulette 

Crossover 
Blend with T 2 

Elite count 
1 

genetic algorithm features 
G 

5000 
P 
10 

Fitness scaling selection 

Crossover 
Heuristic with P 1.2 

Pc0.8 

Elite count Run 

P 
10 

Run 
20 

Rank roulette 1 20 

It seems that new mutation activation strategy provides a better convergence result than 

the regular mutation activation methodologies for the current test function, Rastrigin. New 

strategy decreases the required generations at least 40 % comparing with the best of regular 

ones. Regular mutation applications could not save the population from premature 

convergence. 

io3 

io2 

3 io1 

I „• 
t 
£5 1 0 
IV 

Gaussian 
Uniform 

— - Adaptive feasible 
• Threshold 

1 2.500 5.000 

9 

Figure 2.13 Averaged best objective function values versus different threshold values. 

Mutation activation dependent on diversity may be beneficial due to high and 

guarantied diversification. However, finding a proper threshold value may not be easy and 

may take extra study. Additionally, fixed diversity rate may not be proper for more accurate 

convergence in different test functions. Instead of using threshold diversity, we may analyze 

the periodicity and amplitude features in terms of a new mutation concept which includes 

both of them. 

2.12 Periodic Mutation Activation 

At the beginning of the genetic process we determine the crossover fraction and then 

naturally the number of mutated individuals in regular genetic algorithms. This fraction is 

fixed at each generation. Instead of this approach we can describe the same fraction such as 
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P = 
lif g=mf 
Oif g*mf 

im=l,2J r . 

(2.45) 

where / is the frequency, let's say mutation application frequency, n is the integer number. 

This strategy means that all individuals within the population are going to be mutated in every 

/generations, in other generations all individuals are generated by only crossover operations. 

We did not describe any mutation operator; we just described the mutation application 

strategy. Now, we can describe a new mutation operator which has an amplitude factor. 

Vibrational mutation operator Within the periodic mutation strategy, a child can be 

generated as the following 

x'J[l+w/}(l-u)],ifg=mf,'"=,a-
x), ifg^mf,^1-2' 

(2.46) 

where w is a user defined weight number, /? is the scale factor which may be user defined or 

generation dependent, « is a random number generated between (0,1), and/is a user defined 

application frequency. Apart from other mutation applications, vibrational mutation is not 

applied in every generation, instead it is applied periodically. The other important point is the 

applicants. The whole genes of all individuals are mutated in a corresponding generation. 

2.13 Effects of Vibrational Mutations 

We need to analyze the effect of vibrational mutations on the population diversity and 

objective function. For this reason we use the same optimization problem based on Rastrigin 

test function. However, we will decrease the problem dimension to 3 for visual observation of 

the individual trajectories. In other analyses we will use larger problem dimension. 

600 800 -5 
x + "g.6x" 

-5t 
0 200 400 600 800 

x + "g.6x" 

Figure 2.14 Individuals' positions of regular genetic algorithm process. 
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The individuals' trajectories in 4-dimensional domain can be seen in Fig.2.14 and 2.15. 

In these plots the x axis of an individual is ridden on the generations (g) with a certain range, 

Sx. Totally 20 runs including 60,000 individual positions are plotted in each figure. The 

features of used genetic processes are given in Table 2.13 and 2.14. In Fig. 2.14 we can see 

some drawbacks of the regular genetic process. It is clear that there are multiple local 

minimums and the algorithm prematurely converges to these minimums. Activated mutations 

based on uniform mutation operator cause random but global perturbations within the 

population and it seems that they don't provide beneficial diversity for the population. The 

other point is the homogeneous distribution of the mutated individuals. On the other hand, the 

dispersions of the individuals of vibrational genetic process at each mutation period are 

clearly observed like fishbone during the generations in Fig. 2.15. The dispersions become 

smaller during the iterations. The mutated individuals are heterogeneously distributed. There 

are also a few local minimum locations observed until a certain generation. However these 

local convergences disappear after 200th generation. Almost all runs are converged to a global 

minimum with certain accuracies. 

Figure 2.15 Individuals' positions of vibrational genetic algorithm process. 

Table 2.13 Vibrational genetic algorithm features 
Mutation 

Vibrational with/10, w 1, and/? 5 
Fitness scaling 

Rank 

G 
300 

selection 
roulette 

Crossover 
Blend with T2 

Elite count 
1 

P 
10 

Run 
20 

Table 2.14 Regular genetic algorithm features 
Mutation G/P Crossover and fraction 

Uniform with Rm 0.05 300 /10 Heuristic with P 1.2, Pc 0.8 
Fitness scaling selection Elite count Run 

Rank roulette 1 20 

The diversity change in the population belongs to vibrational genetic process can be 

seen in Fig. 2.16. The features of the algorithm are given in Table 2.15. The problem 
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dimension is increased to 10 in this test case. Fig. 2.16 points to three different issues, which 

are periodicity, adaptive periphery, and adaptive decrease in diversity. 

It is clear that the periodic mutation applications cause a periodic change in population 

diversity. However, the diversity is not fixed at any level. It adaptively decreases to certain 

levels. This process is not linear. The diversity bandwidth is also changing depending on the 

generations. The amplitude of change in diversity starts from large fluctuations and ends with 

small fluctuations. This process matches with the individuals trajectories depicted in Fig. 

2.15. When the population gets closer to a global minimum the dispersions also get closer, but 

there are still dispersions with small peripheries in the population. 

10 

10 

10 

! \ \ 

1000 2000 3000 

Figure 2.16 Zoomed diversity changes versus generations in vibrational genetic algorithm 
process. 

The effect of vibrations on the best fitness value can be observed in Fig. 2.17. This 

figure is a repetitive version of Fig. 2.13 except vibrational mutations process. We see that 

vibrational genetic process outperforms its rivals in Rastrigin function test cases. 
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Figure 2.17 Best objective function value changes versus generations in vibrational genetic 
algorithm process. 
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Table 2.15 Vibrational genetic algorithm features 
Mutation G Crossover 

Vibrational with/5, w 1, and fi 0.5 3000 Blend with T 2 
Fitness scaling selection Elite count 

Rank roulette 1 

P 
10 

Run 
20 

2.14 Qualification of Diversity 

Up to now, we analyzed the quantification of diversity within the population with 

different genetic operators including mutation strategies. It seems that diversification is useful 

and required for fast and more accurate convergence. However, diversity sometimes may 

have destructive effects on the population. For example; Gaussian mutation operator causes 

more diversification in the population as shown in Fig. 2.5, however, its performance is not as 

good as others as seen in Fig. 2.13. Therefore, we need to analyze the quality of diversity. We 

think mat the quality of diversity can be categorized depending on the distribution character 

in the search space and/or the determination process. At first, we will focus on the distribution 

character of the diversity such as global or local diversity and then determination process such 

as random or controlled diversity. 

Global and Local Diversity 

If the mutation applications cause a wider range of distribution of the current population 

in search space it can be called global diversity. Assume that the population, P and the 

diversity D are described as follows 

P=c, f*"* (2.47) 

c^T^ (2-48) 

(2.49) 

(2.50) 

P Tt 

1 * 

P M 

pM.-J 

1/2 

where c, is i'h individual curve in P, c^ is /* discrete point on i'h curve. Suppose that the 

current diversity of the current population is described as Dc, and the new diversity after 

mutation applications is called as Dn. We describe that if D„ » Dc then Dn is called global 

diversity. An example current population can be seen in Fig. 2.18. In this population the 

individual curves are close to each other with a certain range. These individuals are globally 

distributed after vibrational mutation applications as seen in Fig. 2.19. The curves are farther 

than each other in terms of Euclidean distances; therefore, the new diversity is larger than the 
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previous one. Vibrational mutation operator described in Eq. (2.46) cause global diversity 

within the population. Each gene of each chromosome is modified with a certain range. 
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Figure 2.18 Population in search space. 
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Figure 2.19 Globally distributed population in search space 

Local diversity concept can be based on any individual and its neighborhood. Instead of 

taking any individual we prefer to get the elite individual. Before taking the next step, let's re-

describe individual dependent diversity, Dmn term peculiar to this case. Dmn can be described 

as the following 

tf 2X,-c„,)2 

(2.51) 

where m is the m'h individual curve, « is the n'h individual curve, and Dm „ is individual 

dependent diversity between these two individuals. Assume that we have three individual 

curves labeled as cm, c„, and ck in the population. The individual dependent diversities for these 

curves are called Dmn, Dmk, and Z\„. Let's describe localized diversity, AD. If the following 

criteria 

<2L-ZL-<A£> (2.52) 

is valid for the curves cm> c„, and ck then we can say that there is a local diversity within the 

population. An example local diversity can be seen in Fig. 2.20. In this population there are 
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some individuals which are close to each other. During the genetic process local diversity is 

going to be common phenomenon within the population. This situation may results from local 

or global convergence. Therefore, it may or may not be beneficial to the population. 
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Figure 2.20 Locally distributed population in search space. 

Periodic Localization 

We can intentionally generate local diversity by using vibrational mutation operator. 

The application can be done in accordance with the following equation; 

x)\\+Wp(}-u)lifg = mf," 
x' ifg*mf, i«=1.2r.. 

(2.53) 

where JC* is the i* individual, n is the problem dimension, w is a user defined weight number, /? 

is the scale factor which may be user defined or generation dependent, u is a random number 

generated between (0,1), and / i s a user defined application frequency. The base vector j«f is 

the elite individual of the population and q is the number of new individuals locally generated 

by a vibrational mutation operator. 

Multi-frequency Vibrational Mutation Applications 

We need to point out that Eq. (2.53) is different from Eq. (2.46). The first one is 

globally; the second one is locally applied. It is possible to select different frequencies, scale 

factors, and weight numbers. We can describe this situation such as 

"*)[l+Wlfl(l-«)]. «r*=''!f,.","w'-" 

^[UW2P2(l-u)],ifg=mf2r^ 

ifg*mf2r
x>~ 

(2.54) 

(2.55) 

We can figure the population in terms of g generations. Assume that// is equal to 5,f2 is 

equal to 3. For the first seven generation includes the following populations; 
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where P/ is the initial population, Pc is the population generated by crossover operations, PML 

is the population locally generated by the second mutation operator, PMG is the population 

globally generated by the first mutation operator. 

At first, the population is composed of randomly generated initial individuals. In the 

second generation the population only includes the individuals generated by crossover 

operations. The third generation corresponds to the second frequency; g <— nf2, n=l. In the 3rd 

generation, the population includes (n-q) individuals generated by crossover operations and q 

individuals generated by the second vibrational mutation operator. In the 4th generation the 

population only includes the individuals generated by crossover operations. The fifth 

generation corresponds to the first frequency; g <— «/}, n=l. In the 5th generation the 

population only includes the individuals generated by the first vibrational mutation operator. 

The sixth generation corresponds to the second frequency; g *— nf2, n=2. In the 6th generation, 

the population includes (n-q) individuals generated by crossover operations and q individuals 

generated by the second vibrational mutation operator. In the 7th generation the population 

only includes the individuals generated by crossover operations. This periodic genetic process 

goes on until the stopping criterion is satisfied. 

Random and Controlled Diversity 

Vibrational mutation operators generate new individuals and these new individuals are 

absolutely random-based estimations for better solutions. Application of the first mutation 

operator provides global but random diversity within the population. Application of the 

second mutation operator cause local but random diversity surrounding by elite individual 

neighborhood in the population. However, we may improve the quality of estimations 

generated by vibrational mutation operators. We can call this secondary process as filtration 

or controlled diversity. 

Control action on mutated individuals before placing them into next population can be 

done by using artificial intelligent methods. There can be two possible options for control 

process. These options are called as correction and permission steps. Fig. 2.21 depicts the 

control processes. 
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Evaluation Fitness analysis 

T 
Correction Permission 

Placing into 
Next population 

Figure 2.21 Control options on mutated individuals. 

In correction process the input as current situation is corrected in accordance with 

evaluation result. Therefore the current situation is going to be changed. After correction 

phase the input, let's say mutated individual is placed into next population. In permission 

process the input is just evaluated and then the decision is made if the input is going to be 

placed into the next population or not. The second process is simpler than the previous one. 

However, permission requires multiple inputs for ordering and placing. In this diagram there 

are some questions to be answered. How can we do evaluation, correction, and permission? 

The evaluation can be constructed on objective function value or error value if the 

problem has a target design. For evaluation step based on objective function value the remedy 

lies on the feature of genetic algorithms; it is a clear fact that they are population-based 

algorithms. In each generation the algorithm produces design input parameters and resulted 

outputs based on objective function computations. These couples are also sample points for 

the design space. Normally, sample points are selected in accordance with design of 

experiments (DoE) methods. DoE is a systematic procedure for choosing a set of samples, 

with the general goal of maximizing the amount of information gained from a limited number 

of samples. But genetic process produces solution examples instead of sample points. As a 

result, after each generation we had growing sample points. It is possible to use these sample 

points naturally generated by genetic process to construct approximations models. In the 

current state of art applications, during the optimization, the complicated and time-consuming 

objective function computation and analysis can be replaced by a surrogate model with much 

higher computational efficiency and acceptable accuracy. There are different approximation 

models. Most popular ones are Response Surface Methodology (RSM) [42], Kriging [43-44], 

and Radial Basis Function Neural Network [45-48]. In this model, due to being orders of 

magnitude cheaper to run, approximation models can be used in lieu of computationally 
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expensive solver codes during an evolutionary search. However, since the fitness function 

evaluations are performed using the approximate solutions, the performance of an 

evolutionary search depends on the success of approximation models. In our technique, which 

is different from the current surrogate model usage, an approximation model is utilized within 

the mutation steps to evaluate and control the mutated individuals. Correction steps can be 

done in accordance with error analysis. In some optimization problems there may be design 

target values. For example, in inverse design of an airfoil the target is pre-determined pressure 

coefficient distribution. By comparing the target and the current situation the error analysis 

can be done. This error analysis is used to correct a mutated individual. By using other 

artificial intelligent methods such as fuzzy logic we can correct the mutated individual. 

A permission step is formed by an ordering process. After fitness function evaluations 

of mutated individuals they are sorted and put in order. Selected ones are allowed to take 

place into the next population. Control phases can be applied to global or local diversity. So, 

the algorithm may use random global diversity, random local diversity, controlled global 

diversity, and controlled local diversity. All these options can be applied in a single way or 

together. Another option is to start from local diversity and arrive in a globally controlled 

diversity. This option requires global search engines such as simulated annealing or particle 

swarm optimization methods. In the following figure each method is depicted. Here, A[unc is 

an approximation function, ĉ 5earch is global search engine, vmoj is the vibrational mutation 

operator given in Eq. (2.54), and vmo2 is the vibrational mutation operator given in Eq. (2.55). 

Applications of these methods are in the next sections. 
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Figure 2.22 Qualification of diversity. 
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2.15 Quantification of Diversity in PSO 

Similar to GA analysis we can describe three different diversity scales. These are the 

diversity of design variable, £>v>/; the diversity of particle, DpJ; and the diversity of swarm, Ds,t 

such as 

D 

"•'Ul,2,..,r 

S* \l=l3r:J 

(2.56) 

(2.57) 

(2.58) 

where t is the number of generation, T is the maximum number of generations, and S is the 

number of swarm which is typically 1 if there is only one population instead of a group. It is 

possible to determine each diversity type as a single value based on the general and selected 

positions in the swarm. This can be achieved by three different definitions: the difference 

between a member and the best member; the difference between a member and average 

member value; and the difference among the members. We will mainly focus on particle 

diversity and swarm diversity. We can categorize particle diversity into two types such as 

particle diversity and particle dependent diversity. Any particle diversity at each generation 

can be computed by using the following equation; 

D 
P> hil..J '' S>,,,(')-*,(0)2 

>' 

*/o=-5X/W 

(2.59) 

(2.60) 

Particle dependent diversity is the diversity between two different particles in the 

swarm. Assume that JC* is the lth particle and JC, is the i'h particle, then dependent diversity is 

given by 

#,i=ty 

iXw-^e))2 
(2.61) 

The swarm diversity may be constructed of the differences between the particles and 

the averaged one such as 

"*-3 2X(o-*,(0)2 (2.62) 
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This description is a kind of averaged population diversity because we divide the total 

sum with the swarm size. We plan to use the diversity description given in Eq. (2.62) in the 

following analysis. 

2.16 Mathematical Analysis of Basic PSO 

Ozcan and Mohan [49] analyzed the updating Eq. (1.5) and (1.6) in an analytical way. 

Let's reissue the analytical analysis to get a further step. For the sake of simple mathematical 

analysis assume that c/.r/ and c2.r2 are constants which are equal to q>i and q>2, respectively, 

and Pi (t), Pg (t) are also constants, such as/?*, andpg, respectively. Then, Eq. (1.5) and (1.6) 

become, 

vlj(t) = vtj(t-\)+Vi{pt-xlJt-l))+<p2(Pg -* , , ( / - l» (2.63) 

xll{t) = xil{t-\) + v,.(t) (2.64) 

by getting Xt/t-1) using Eq. (2.64) and substituting it into Eq. (2.63) we get the following 

particle path equation 

*,, (0 - (2 - 9x ~ <P2 )*,., C -0 + *,.j ( '" 2) = <P,P, + 9>tP, (2.65) 

x-ax' + x' = 0 (2.66) 

where 
a = (2-*>-*,) (2.67) 

P = <PlP,+<P2Pg (2.68) 

This is a linear non-homogeneous second order differential equation. The general solution 

of Eq. (2.65) can be derived by getting complementary and particular solutions. The resulted 

solutions including initial boundary conditions can be found such that 

ZjlT) = ZT'+#'+r (2-69> 

where 
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z = i0.5-^Z^lK+^+JL > ^ _ (2.70) 
2rj 'J t, 2 7 2(<p1+9>2) 

, = ( 0 . 5 + M J ^ ) ) X < » . _ ^ _ A + _ A _ (2.71) 

(2.72) 
(2.73) 
(2.74) 
(2.75) 

This result may expose several different cases depending on a value, specifically the sum 

of (pi and cp2 values. Value of r\ becomes a complex number for 0< cpi + cp2 <4. Converting <P 
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and T into polar forms and substituting them into Eq. (2.69) we can obtain the simplified 

following equations; 

xtJ (0 = iesm(0t) + A cos(0t) + y (2.76) 

0 = tan-l(|M|/H) (2.77) 

* = (2v™-(*+*,)*£+£)/M (2-78) 

x = $-r (2-79) 

This is the general form for the particle path. We can make some assumptions such that 

there is only one dimension, p=pi= pg, <fii + q>2= (p and 2>f>0 or 4> <p>2, x(0)=xo, v0>=v0. 

Then the path of any particle in the swarm is directed by the following equations; 

x(t) = 4 sin(0/) + A2 cos(0t) 

(2v 0 - t x 0 - t p ) 

6 = arc t a n ( ^ 2 - 4 ^ | /12 - (j>\) 

(2.80) 

(2.81) 

(2.82) 

(2.83) 

As Clerc and Kennedy [50] concluded, the particle as seen in discrete time "surfs" on an 

underlying continuous foundation of sine waves and each time it jumps from one wave to 

another by using random numbers in periphery of a random number distribution. At this 

point, let's redefined the Kronecker delta function such that; 

*(/) = 
x^ + A^S S = \ if t>nf,n = 1,2,... 

x(t) 6 = 0 ift<nf,n = 1,2,... 
(2.84) 

here / is to be the periodicity to make an impulse, and A3 is the third amplitude which is 

possibly negative or positive. The resulting graphs for Eq. (2.80) and Eq. (2.84) with positive 

A3 can be plotted in Fig. 2.23. The purpose of adding an impulse depending on the time frame 

is to catch the big wave, or let's say to extend the search domain from one local area to 

another local area for the particle. The effect of an impulse will be analyzed in further 

sections. 
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Figure 2.23 Trajectory of a particle in a simplified PSO algorithm 
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2.17 Improved PSO Algorithms 

When a new algorithm is proposed into literature it is expected to be compared with the 

current state of art algorithms on commonly used benchmark test functions. Obviously it is 

difficult to make a fair comparison because each algorithm may have peculiar tuning which 

results in important differences on the cost functions. However well-defined and 

straightforward algorithms may provide relatively good inference. Three well known PSO 

algorithms are selected as comparative optimization algorithms. These are constriction factor 

PSO (c-PSO), linearly decreased inertial weight PSO (w-PSO), and Gaussian mutation based 

PSO (g-PSO). 

c-PSO 

The particle swarm with a constriction factor is introduced by Clerc [50], which has 

investigated the use of a parameter called the constriction factor. With the constriction factor 

K, the particle velocity and position dimensions are updated via: 

vl/(t) = K[vl/(.t-l) + clrl(Pl(t-l)-x,J(t-l)) + c2r2(Pg(t-\)-x,t(t-l))] (2.85) 

(2.86) 

2 
K = -, , ip = c, + c2, y > 4 

2 -V -vV2 -4(/ 

A particularly important contribution of this factor is that if it is correctly chosen, it 

guarantees the stability of PSO without the need to bind the velocities. Typically values of 

2.05 are used for ci and c2, making y/ is equal to 4.1 and K is equal to 0.729. 

w-PSO 

Shi and Eberhart [51] introduced the idea of a time-varying inertia weight. The idea was 

based on the control of the diversification and intensification behavior of the algorithm. The 

velocity is updated in accordance with the following expression; 

v,J(t) = W(t)v,J(t-\) + clrl(Pl(t-l)-xlJ(t-l)) + c2r2(Pe«-l)-xIJ(t-\)) 

x/J(o=\yc-i)+v,,,(o (2-87) 

The inertia weight, w, is decreased linearly starting from one point and ending to 

another point related to maximum iteration number, G. Normally the starting value of the 

inertia weight is set to 0.9 and the final to 0.4. However we tuned them to [0.6, 0.2] range for 

better performance. 
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g-PSO 

First Gaussian mutation based PSO algorithm is introduced by Higashi and Iba [27], 

which use a mutation operator that changes a particle dimension value using a random 

number drawn from a Gaussian distribution. A particle is selected for mutation using a 

mutation rate that is linearly decreased during a run. However it is improved by several 

researchers. Pant et al. [52] developed Gaussian mutation operator application technique for 

updating the position of the swarm particles. The mutation operator is activated only when the 

diversity of the swarm becomes less than a certain threshold, dlow. The velocity is updated via 

Eq. (2.87) in addition to the following criteria; 

if d<d,m then x,Jt) = xlj(t-l) + £.rand (2.88) 

where £ is the scaling factor, rand is a random number generated by Gaussian distribution. 

The diversity description is based on the differences between the average dimensional 

position and the current dimensional particle positions. 

2.18 Quantification in a Simple Test Case 

It may be beneficial to see the change of swarm diversity for better understanding of 

algorithm characters. For this reason a simple test case is constructed. One of the benchmark 

test functions, Ackley test function is selected as a test case and selected PSO algorithms are 

compared in terms of generation and swarm diversity values. Ackley test function is 

multimodal test function and it is described as the following 

-20exp 
<*%• 

J l 1 

-J^xj -exp - ] T c o s ^ x , ) y=i 

+20+e (2.89) 

The search range and optimal values; x*,f(x') are given in the following 

search range x f(x) 
[-30,30]u [0,0,...,0] 0~ 

The problem dimension, d is selected as 3, the swarm size, s is selected as 5, and the 

maximum generation, T is fixed as 200. The experimental set up for c-PSO, w-PSO, and g-

PSO are given in Table 2.16. All algorithms are run 40 times and the results are averaged. 

The resulted plots can be seen in Fig. 2.24. We can see averaged best (elite) fmi„ values versus 

generations on the left side and the swarm diversity values versus generations on the right 

side. 
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Table 2.16 The features o 
Algorithm w 

c-PSO 
w-PSO w,„,= 0.6; weni= 0.2 
g-PSO wM= 0.6; wend= 0.2 

f PSO al 
Cl 

2.05 
2 
2 

goritht 
c2 

2.05 
2 
2 

ns 
dim 

lO3 

f 

6 

Fig. 2.24 shows that g-PSO outperforms the other ones. At the end of maximum 

generation g-PSO reaches about the level of 10"4 for objective function values. However the 

other two algorithms are about the level of 10"' for objective function values. It seems that 

threshold diversity based mutation applications decreased 40 percent of the required 

generation number. On the other hand, the swarm diversity values have different 

characteristics. Both constriction factor based PSO and linearly decreased inertia weight 

based PSO have linearly decreased swarm diversity in logarithmic scale of objective function 

values. w-PSO shows higher level in diversity than c-PSO. However, g-PSO has a completely 

different characteristic in diversity changes. The algorithm decreases the swarm diversity 

until a certain generation number; then, the mutation operator takes a role and keeps the 

swarm diversity in a fixed level. Interestingly, the swarm diversity changes in a periodic 

manner. It seems that the update rules of PSO always decrease the swarm diversity in a linear 

fashion in logarithmic scale. It implies that the swarm tries to make similar each particle to 

each other during the generations without outer disturbance. This characteristic behavior may 

significantly cause premature convergence within the swarm. 
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Figure 2.24 The comparative results of selected PSO algorithms. 

2.19 Signal Analysis 

It may be beneficial to have a close look at swarm diversity changes in g-PSO. The 

swarm diversity change is a kind of signal based on time series. The wavelet analysis is 

applied to the same optimization problem with r=1000. The whole diversity signal can be 

seen in Fig. 2.25 
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Q 

1000 

Fig. 2.25 The swarm diversity signal in g-PSO optimization process 

The diversity change in terms of the last 800 generations is included for steady result. 

So, the diversity signal is expressed by the following 

(2.90) 

where Aj is the approximate signal and Dj are the detail signals. As expressed in the previous 

chapter, the biggest part of the signal energy is carried by an approximate signal. The 

remaining energy is shared by detail signals sometimes called noise signals. There are 

different wavelet functions in literature. In our analysis we preferred to use Meyer wavelets at 

9-level. The resulted discrete wavelet transform for the diversity can be seen in Fig. 2.26. The 

figure includes only approximation signal A9 and detail signals Dj, j ; 6, 7, 8, and 9. The 

remaining signals are ignored due to noisy natures. The picture shows that the main diversity 

signal caries some locally periodic signals and noises. 

Figure 2.26 Wavelet analysis of a part of swarm diversity signal 
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Wavelet analysis showed that the description of threshold diversity brings new 

parameters such as periodicity and band width; let's say a kind of amplitude. Mutation 

activation dependent on diversity may be beneficial due to high and guarantied 

diversification. However, finding a proper threshold value may not be easy and may take 

extra study. Additionally, fixed diversity rate may not be proper for more accurate 

convergence in different test functions. Instead of using threshold diversity, we may analyze 

the periodicity and amplitude features in terms of a new mutation strategy which includes 

both of them. 

2.20 Periodic Mutation Activation 

At the beginning of the PSO process we determine the mutation probability, Pm and 

then naturally the number of mutated individuals in a regular manner. This probability is fixed 

at each generation. Instead of this approach we can describe the same probability such as 

P j f f ] (2-91) 

where / is the frequency, let's say mutation application frequency, n is the integer number. 

This strategy means that all particles within the swarm are going to be mutated in every / 

generations, in other generations all particles are generated by only update operations. We put 

an attention that we did not describe any mutation operator, we just describe the mutation 

application strategy. Now, we can describe a new mutation operator which has an amplitude 

factor. 

2.21 Vibrational PSO Algorithm: v-PSO 

The traditional general form of the mutation which was applied in the previous g-PSO 

algorithm can be written as Xt/t) = gfa/t)); where g is the mutation operator providing the 

offspring vector. Instead of this strict form of a mutation operator it can be described 

including mutation strategy as 

*,,,(>) =c/(s(*,,,(0),/) (2.92) 

where F is the generalized mutation function,/is a user defined frequency. Right after update 

applications, in every /" ' period of the generations applying the mutation operator to all 

particle dimensions of the whole swarm, particles in the population spread throughout the 

design space. Mutation operator is given by 
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[1 if t = nf,n = 1,2,..- I 
x,Jt) = x,Jt)[\ + A.(0.5-rand).6], ^:< and S = \ j (2.93) 

where A is a user defined scale factor called an amplitude and it may be selected as a fixed 

number or computed during the generations, rand is a real random number specified by 

random number generator in accordance with N[0, 1]. In the applications Gaussian probability 

density function is used. However other density functions can also be used in Eq. (2.93). The 

aim of designing such a mutation strategy is to catch the big wave for escaping from local 

traps and getting the correct search pattern. We need to point out that Eq. (2.93) resembles 

Eq. (2.84). The velocity and the positions are updated via Eq. (2.87) except the generations 

corresponding to the mutation period. This new algorithm is named as vibrational PSO (v-

PSO). 

2.22 Comparison of Algorithms with a Simple Case 

New algorithm is compared with the previous algorithms in the same test function case. 

In addition to Table 2.16 the features of v-PSO is given in Table 2.17. The results are 

depicted in Fig. 2.27. On the left side of the figure the averaged best objective function values 

versus generations are shown. Vibrational PSO outperforms the other algorithms. It decreases 

the required generations 50 percent as compared with c-PSO and w-PSO, and 25 percent as 

compared with g-PSO. Additionally the accuracy of the solution is about 10"7 level and it is 

almost twice more accurate than g-PSO. On the right side of the figure the swarm diversity 

versus generations are observed. The swarm diversity of v-PSO is decreased during the 

generations; however its change is fluctuated and periodic due to periodic mutation 

applications. The amplitude of change is also changed. 

Table 2.17 The features of v-PSO algorithm 
Algorithm W Cj £2 f A 

v-PSO 0.05 2 1.5 25 1 

Figure 2.27 The comparative results of PSO algorithms. 
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Fig. 2.27 is also showed that the performance of the algorithm is directly related to the 

diversity. However, this relation is not subject to the quantification, it is subject to the 

qualification. Therefore, we need to analyze the qualification of the diversity. 

2.23 Qualification of Diversity 

Up to now, we analyzed the quantification of diversity within the swarm with different 

swarm algorithms including a new mutation strategy. It seems that diversification is useful 

and required for fast and more accurate convergence. However, high level diversity does not 

bring better performance. Better performance is related to the quality of diversity. We think 

that the quality of diversity can be categorized depending on the distribution character in 

search space and/or the determination process. It can be global or local diversity. It can be 

random or controlled diversity. At first, we will focus on the distribution character of the 

diversity in terms of global or local diversity. 

Global and Local Diversity 

If the mutation applications cause a wider range of distribution of the current swarm in 

search space it can be called global diversity. Suppose that the diversity of the current swarm 

is described as Ds(t), and the new diversity after mutation applications is called as Ds(t+1). 

We describe that if 

D,( /+1)»D,(0 (2.94) 

is valid, it means that the mutation applications provide a global diversity in the swarm. Local 

diversity concept can be based on a particle and its neighborhood. Assume that we have two 

particles labeled as xm and xk in the swarm. The particle diversities for these particles are 

named as Dm
p(t) and Dk

p(t). Let's describe local difference in diversity, ADL. If the following 

criteria 

D;(t)-Dk
p(t)<ADL (2.95) 

D;*=>ADL (2.96) 

are valid for the particles; then, we can say that there is a local diversity within the population. 

During the optimization process local diversity is going to be common phenomenon within 

the swarm. This situation may results from local or global convergence. Therefore, it may or 

may not be beneficial to the population. 



49 

Periodic Localization 

We can intentionally generate local diversity by using additional vibrational mutation 

operator for a better local search. The application can be done in accordance with the 

following equation; 

. ,, A fl if t = nf',n = \,2,... ] 
xll(t) = x]{t)[\ + A\{Q.S-rand).Sl'i:^;:q

andS = L J,*nf J ( 2 " 9 7 ) 

where A' is a user defined scale factor called an amplitude,/ is the application frequency, the 

base vector JC* is the global best called elite particle of the swarm, and q is the number of new 

individuals locally generated by new vibrational mutation operator. 

An example periodic localization for the previous test case can be seen in Fig. 2.28. In 

this application; £ is taken as 10, T is taken as 200, and q is taken as 2. The other features of 

the algorithm are given in Table 2.18. In the figure the particle diversities versus generations 

are depicted. The solid lines belong to elite based particles generated by using vibrational 

mutation operator. The dotted lines are the other particles' diversities in the swarm. On the 

right side the generations between 25 and 50 are zoomed. It is clearly observed that the elite 

based particles are closer to each other than the other particles. 

Table 2.18 The features of v-PSO algorithm 
Algorithm w Ct c2 f A 

v-PSO 0.05 2 1.5 15 0.5 

t t 

Figure 2.28 Local diversity among the particle diversities 

Multi-frequency Vibrational Mutations 

We need to point out that Eq. (2.93) is different from Eq. (2.97). The first one is global; 

the second one is locally applied. It is possible to apply both mutation operators by selecting 

different frequencies and amplitudes. We can describe this situation such as 
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. ,, , fl if t = nf.,n = 1,2,... ] 

[0 'ft*nf, J 

,, w fl i/ t = nf7,n = 1,2,... ] 
*„ (o=*; (OP+4.(0.5-™wO.*], £t>«d<?=-! . ; ' , (2.99) 

We can figure the swarm in terms of t generations. Assume that// is equal to 5,f2 is 

equal to 3. For the first seven generation includes the following swarm combinations; 

t 

s 

1 

* ; ( — 

2 

sir* 
3 

sir-
4 

^ r -
5 6 

s>mr* 

7 

sir-

where 5/ is the initial swarm, Su is the swarm generated by update operations, SML is the 

swarm locally generated by the second mutation operator, SMG is the swarm globally 

generated by the first mutation operator. At first, the swarm is composed of randomly 

generated initial particles. In the second generation the swarm only includes the particles 

generated by update operations described in Eq. (2.87). The third generation corresponds to 

the second frequency; t <— nf2, n=l. In the 3rd generation, the swarm includes (s-q) particles 

generated by update operations and q particles generated by the second vibrational mutation 

operator. In the 4th generation the swarm only includes the particles generated by update 

operations. The fifth generation corresponds to the first frequency; t <— nfi, n=l. In the 5th 

generation the swarm only includes the particles generated by the first vibrational mutation 

operator. The sixth generation corresponds to the second frequency; t <— nf2, n=2. In the 6th 

generation, the swarm includes (s-q) particles generated by updating operations and q 

particles generated by the second vibrational mutation operator. In the 7th generation the 

swarm only includes the particles generated by update operations. This periodic process goes 

on until the stopping criterion is satisfied. 

Random and Controlled Diversity 

Vibrational mutation operators generate new particles and these new particles are 

absolutely random based estimations for better solutions. Application of the first mutation 

operator provides global but random diversity within the swarm. Application of the second 

mutation operator causes local but random diversity surrounded by elite individual 

neighborhood in the swarm. However, we may improve the quality of estimations generated 

by vibrational mutation operators. We can call this secondary process as filtration or 

controlled diversity. Control action on mutated individuals before placing them into the next 

swarm can be done by using artificial intelligent methods. There can be two possible options 

for control process. These options are called correction and permission steps. In the 

correction process the input as a current particle situation is corrected in accordance with 
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evaluation results. Therefore, the current particle situation is going to be changed. After the 

correction phase, the corrected input, let's say mutated particle, is placed into next swarm. In 

the permission process the input is evaluated and then the decision is made if the input is 

going to be placed into next swarm or not. The second process is simpler than the previous 

one. Therefore, we focus on permission step. However, permission requires multiple inputs 

for ordering and placing. 

It is a clear fact that PSO is a population-based algorithm. In each generation the 

algorithm produces design input parameters and resulted outputs based on objective function 

computations. These couples are also sample points for the design space. Normally, sample 

points are selected in accordance with design of experiments (DoE) methods. But PSO 

process produces solution examples instead of sample points. As a result, after each 

generation we had growing sample points. It is possible to use these sample points naturally 

generated by PSO process to construct approximation models. In current state of the art 

applications, during the optimization, the complicated and time-consuming objective function 

computation and analysis can be replaced by a surrogate model with much higher 

computational efficiency and acceptable accuracy. There are different approximation models. 

The most popular ones are RSM, Kriging, and Radial Basis Function Neural Network. 

However, since the objective function evaluations are performed using the approximate 

solutions, the performances of evolutionary search depend on the success of approximation 

models. In our technique, which is different from the current surrogate model usage, the 

approximation model is utilized within the mutation step to evaluate and control the mutated 

individuals. The permission step is formed by ordering process. The best ones are allowed to 

take place into next swarm. 

In the test case the Matlab function newrb is used to generate neural networks. In a set 

of training data, the input parameters are the position points of particles in the swarm, while 

the output parameters are their objective function values to be improved. 

RBF NN in controlled diversity 

Control process can be applied in global or local diversity applications. Therefore, we 

have four options including global controlled diversity, local controlled diversity, global 

random diversity, and local random diversity. In our applications we prefer to use global 

random diversity and local controlled diversity. The steps of neural network coupled v-PSO 

for optimization are the following; firstly, cost function calculations in the current swarm are 

performed to get their objective function values. Secondly, networks are trained after the 

threshold generation point by using the particles in the current and previous swarms and their 



52 

cost function values. However the training set is limited to a certain number. For this training, 

particles in the swarms are used as the input and their cost function values are used as the 

output. Then, the mutations according to Eq. (2.99) are applied and temporal neural network 

swarm including Ts particles is generated. After neural network population generation, by 

using trained neural nets, the cost function values of temporal network swarm are estimated 

and some of them (for example the best q of Ts) which have smaller cost function values than 

the global best particle has in the current swarm are randomly placed in the new swarm to be 

used as candidates at the next step of the algorithm as follows 

[/"* order~] = Sort(fNN) (2.100) 

„ / -\ rnorder(i) k=rand[l-s'\ 
Xk\')~1s ' 1=1,2 q 

Similar to GA applications there are some important points which require careful tuning 

during the online use of neural network model in v-PSO. These are: the number of 

generations required for training the neural network and the selection of generations to be 

used for training. 
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3. APPLICATIONS AND RESULTS 

In this section, we applied new algorithm improvements to different problems in order 

to check their efficiencies. These problems are mostly selected from aerospace engineering. 

However, the solution algorithms improved in this dissertation are also applicable to other 

engineering disciplines. The selected problems are as follows; 

• Effect of surface parameterization on VGA in 2D airfoil design. 

• Inverse design of 2D airfoil in subsonic flow conditions. 

• Aerodynamic optimization of 2D airfoil in transonic flow regime. 

• Path planning of autonomous UAV in 3D terrain environments. 

• Radar cross section minimization of 3D air vehicle for simple and complex shapes. 

• Optimization of parameters for benchmark test functions. 

3.1 Effect of Surface Parameterization on VGA in 2D Airfoil Design 

In this study, two different curve representation methods; Parsec and Bezier 

representation methods are tested via vibrational genetic algorithm [VGA] to understand the 

effect of representation method on the type of optimization process in 2D airfoil design. 

Introduction 

The main goal in aerodynamics is commonly to increase the efficiency like the ratio of 

lift over drag. Aircraft wings are the primary subject to optimization efforts. Airfoils are the 

basic elements of wing geometry; they determine a large share of wing flow phenomena 

though they are just 2D sections of the physical wing surface. Given a designer's refined 

knowledge about the occurring flow phenomena, his goal may be to obtain certain pressure 

distributions on wing surfaces: This may be reached by inverse approaches with a shape 

resulting from the effort, or by applying optimization strategies to drive results toward ideal 

values [53]. In an aerodynamic optimization problem the optimum design is an unknown 

shape, and the performance of the optimization process depends on how well the geometry 

representation method can approach the optimum shape. To pose the airfoil shape 

optimization problem, the design variables that control the geometrical shape of airfoil are 

needed. The goal is to propose functions with a minimum set of input parameters for shape 

variation, function structure and their parameters chosen to address special aerodynamic or 

fluid mechanic phenomena. However, a method with more design parameters should have a 

more complete set of shapes, and therefore can approach the design target better [54]. 

There are different functions to describe airfoil sections. In addition to well known 

airfoil descriptions the aircraft industry has also developed their own mathematical tools to 
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shape specific wing and blade sections. Among these geometrical representations it is 

possible to make a categorization depending on the type of the mathematical functions. The 

classification can be divided into three categories; polynomial function based representation 

methods, sinusoidal function based representation methods, and others. Bezier functions [55], 

NURBS [56], Parsec method based functions [57], and NACA 4- and 5-digit series functions 

[58] are well known polynomial type representation methods of airfoil sections. B-spline 

functions [59] are also other well known type of polynomial functions. Mathematically, any 

continuous function defined on a closed interval can be represented by an infinite series of 

normal modes which form a complete set of bases. The set of Fourier sine functions is an 

example of such a complete set. There are several well known shape functions for wing 

section modifications. Hicks-Henne functions, Wagner functions, and aerofunctions are some 

of them [60]. Joukowski transformation, mesh point and grid parameterization methods are 

given examples of the category of other methods [61]. In mesh pint method for a numerical 

computation, mesh points are used to represent the airfoil surface. The mesh-point method 

uses the coordinates of these points directly as the design parameters. 

Different representation methods may have different performances depending on the 

optimization algorithms. There are some studies which include the comparisons among 

representation methods related to gradient based optimization algorithms [62, 63]. Both 

studies showed that the mesh-point method can reach the highest accuracy among other 

methods such as Parsec, Hicks-Henne, B-Spline, and the Class function / Shape function 

Transformation. This is an expected result; because the accuracy is proportional to the 

number of design parameters. More design parameters usually mean a more complete design 

space and hence a better capability of approaching the design target. More design parameters 

mean also more sensitivity to local perturbations. Gradient based optimization algorithms are 

mainly based on local sensitivities related to perturbations [64]. On the other hand, 

conventional gradient-based algorithms may be ineffective in some optimization problems 

with non-differentiable, highly nonlinear, and many local minima cost functions because of 

local minimums or the difficulty in calculating gradients. Search methods that require no 

gradient information and can achieve a global optimal solution, offer considerable advantages 

in solving these difficult optimization problems [65]. These advantages are robustness, 

suitability to parallel computing, and simplicity. Owing to these advantages over the 

analytical methods, especially genetic algorithms have become increasingly popular in a 

broad class of design problems [66]. Although there are some successful applications to 

compute optimal solutions for aerodynamic problems, sometimes, premature or slow rate 

convergence may prevent GAs from reaching global optimal solutions. This may be directly 

because of the applied optimization algorithm itself or a selected representation method. 
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There are some studies [67, 68] which include global optimization methods to analyze the 

accuracy of some parameterizations such as B-spline and basis function approaches or Parsec 

method and its derivations. In this study, two different curve representation methods, Parsec 

and Bezier representation methods, are tested via a vibrational genetic algorithm to show the 

effect of representation method on search type optimization process in 2D airfoil design. At 

first, representation methods are tested in low speed flow conditions within the inverse design 

problem and then the same representation methods are tested in transonic flow conditions 

within the optimization problem. For both cases a vibrational genetic algorithm is used as an 

optimization tool. 

Surface Parameterization 

Bezier and Parsec representation methods are polynomial function based representation 

methods. Although there are some similarities between Bezier and Parsec methodologies, 

these curves are different in nature. A selected 2D curve, an airfoil can be represented by a 

Bezier curve representation with a set of (m+1) control points. Its expression is given by the 

following equations 

*(')=zo'(i-,r-*,. 
i=0 

1=0 CL = m\ 
i\(m-i)\ 

(3.1) 

(3.2) 

(3.3) 

where t is the parameter of the curve whose values vary uniformly between [0-1]. The (Xj, y$ 

are the coordinates of the control points (c. p.) which define the airfoil points (x(t), y(t)). The 

two control points (0,0) and (1,0) at the leading and trailing edges are fixed. It is commonly 

considered that the x, control points are kept fixed, and the parameters coded in the genetic 

algorithm are only the yt coordinates of the control points. Fig. 3.1 shows the Bezier curve 

representation of an example airfoil. 

0.2 0.4 0.6 0.8 
x/c 

Figure 3.1 An airfoil in Bezier form. 
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An airfoil family, "Parsec," has been proposed to parameterize an airfoil shape in a 

different way but familiar to geometry. A remarkable point is that this technique has been 

developed to control important aerodynamic features effectively by selecting the design 

parameters based on the knowledge of flows around airfoil. The Parsec-11 basic set 

parameterizes upper and lower airfoil surfaces using polynomials in coordinates x, z as 

*=IX*"- , /2 (3.4) 
n=l 

where an are real coefficients. Instead of taking these coefficients as design parameters, the 

Parsec airfoils are defined by basic geometric parameters; leading edge radius, upper and 

lower crest location including curvatures, trailing edge ordinate, thickness, direction, and 

wedge angles as shown in Fig. 3.2. The real coefficients, a„, are computed by solving simple 

simultaneous equations related to each design parameter. An algebraic equation system can be 

written in accordance with design parameters and solved to get coefficients for each curve. 

For the upper surface of the airfoil, the design parameters can be related to the polynomials as 

6 

11=1 

*w=*(*»)=i>.v-,,j 

tan(are) = z'(l) = t ^ - U 

n=l ^ 

n=l * 

(3.5) 

2 2 

r = -a, 
2 ' 

Figure 3.2 Design parameters for the Parsec airfoil. 

The similar equations are valid for the lower surface of the airfoil. By using these 

equations, the following algebraic equation system can be written 
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Parsec and Bezier curve representation methods are still popular fashions although there 

are some criticized points related to Bezier or Parsec. In each method some improvements are 

implemented to basic descriptions and compensated inefficient sides of each method. 

CFD Solvers 

Once an aerodynamic shape representation is defined, a numerical optimization method 

is coupled with a suitable flow analysis tool (flow solver). Two types of CFD solvers are used 

in this study. These solvers are 2D vortex-panel solver for incompressible, inviscid, subsonic 

flows and Euler equations solver for inviscid, compressible, transonic flows. Panel method 

based solver is used in inverse design problems. The other one is used in an optimization 

problem. The Euler equations solver program uses elliptic partial differential equation 

solution method to generate structural grids around the airfoil. The produced grid structure 

example around NACA 4-digit airfoil is given in Fig. 3.3. Within the program, the flux values 

are calculated by using a cell-centered finite volume space discretization method on a 

structured O-mesh and Roe flux difference splitting method. The steady state solution is 

reached by pseudo-time marching the Euler equations using an explicit six-stage Runge-Kutta 

scheme. 

p 

Figure 3.3 Grid structure for NACA 4412 

Case Studies and Results 

In the first case, representation methods are tested in low speed flow conditions within 

the inverse design problem. In the second case, the same representation methods are tested in 

transonic flow conditions within the optimization problem. For both cases a vibrational 

genetic algorithm (VGA) is used as an optimization tool. 
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Case 1 

Initial populations for both representation methods are generated by using random 

number operator based on NACA-0012 symmetric airfoil. Bezier curves for upper and lover 

airfoil lines are governed by 26 control points. Four control points of them are known points 

such as leading edge and trailing edge. Therefore, the total unknown number of control points 

for an airfoil is 22. The sample initial population for Bezier curves is given in Fig. 3.4. Parsec 

curves are totally directed by 10 parameters. The y coordinate and thickness of trailing edge 

are fixed as zero. The sample initial population for Parsec curves is given in Fig. 3.4. 

Figure 3.4 Initial populations based on Bezier curves (left) and Parsec curves (right). 

For both processes angle of attack is fixed 0. The fitness function #, for i,h individual 

among population is defined as 

f^\{Cp'-Cp')ds ( 3 l 7 ) 

where Cp' is the pressure coefficient value of i& individual, Cpr is the pressure coefficient 

value of the reference curve. As a reference curve Cp distribution around Rae2822 

asymmetric airfoil is selected. Initial/reference Cp distributions together with initial/target 

airfoil shapes are shown in Fig. 3.5. 

target 

initial 
. . , , , 1 0 i , , , , 
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

x/c x/c 

Figure 3.5 Initial and reference Cp distributions together with initial and target airfoil shapes 

-0.1 
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The features of a common optimization tool, VGA, are selected as follows: maximum 

generation is limited to 100, population number is 10, selection method is roulette, elite count 

is 1, mutation is vibrational mutation operator with frequency 4 and weight 0.5, cross over is 

modified Blx-a with a 0.8. At the end of the optimization processes the resulted typical Cp 

distributions and airfoil shapes for both representations are depicted in Fig. 3.6. The 

comparison between Bezier and Parsec are shown in Fig. 3.7. The plot shows the convergence 

histories of the averaged fitness values (over 20 runs). Fig. 3.7 emphasizes the superiority of 

the Parsec representation method. Regarding the average best individual fitness value, Parsec 

gives better results than the Bezier representation method while the second method shows 

more than 300% improvement in the final fitness value. The maximum, minimum and 

average fitness values for two methods are shown in Table 3.1. It is clear from this table that 

Parsec representation method is more efficient than the other one. 

1.5 

0.05 

•s o 

1 L 

**\ ? 
0.5 

-0.05 

rc^ 
^y^ 

'/ 

t^r—^^ 
N ^ > V 

x^ 
reference curve 

Parsec 

— - Bezier 

. 
0.2 0.4 0.6 0.6 1 

x/c 

Figure 3.6 At the end of the optimization processes the resulted typical Cp distributions and 
airfoil shapes. 
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Figure 3.7 Comparison between Bezier and Parsec representations in accordance with faVerage 
best individual (fABl) 

Table 3.1 Fitness values and methods 
Representation method Bezier Parsec 
Max 
Min 
Average 

78 
48.8 
65.4 

402.5 
150.5 
221.2 



60 

Case 2 

In the second test case shock wave reduction problem of Rae2822 airfoil at 2° angle of 

attack and Mach number 0.75 was investigated via two representation methods within VGA 

process. Initial populations for both representation methods are generated by using random 

number operator based on Rae2822 airfoil. Bezier curves are governed by 22 control points. 

Parsec curves are directed by 10 parameters. Sample initial populations for Parsec and Bezier 

curves are given in Fig. 3.8. 

0.1 

0.05 [ 0.05 

-0.05 

-0.1 

-0.05 

-0.1 

^ 

0 0.2 0.4 0.6 0.8 1 
x/c 

Figure 3.8 Initial populations based on Bezier and Parsec curves. 

The fitness function,/ for ith individual among population is defined as 

/ = ^ + i o (d-cH)2+ioo (t--tf 

Cj if CL>CL 

L Q 

C„ = -i — *-a 

if CL<CL 

(3.8) 

(3.9) 

where CL is the lift coefficient, CD is the wave drag coefficient and / is the thickness ratio of 

the candidate airfoil, as Q* and t* are the design lift coefficient (equal to 0.75) and thickness 

ratio (equal to 0.12) respectively. 

The features of the common optimization tool, VGA, are selected as follows: maximum 

generation is limited to 100, population number is 10, selection method is roulette, elite count 

is 1, mutation is vibrational mutation operator with frequency 4 and weight 0.5, cross over is 

modified Blx-a with a 0.8. The original airfoil of Rae2822 and typical optimized ones (Parsec 

and Bezier representation based ones, from one of 10 independent runs of VGA), and their 

pressure coefficient Cp distributions are shown in Fig. 3.9 correspondingly. The comparison 

of optimization processes between Bezier and Parsec are shown in Fig. 3.10. The plot shows 

the convergence histories of the averaged fitness values (over 20 runs). Fig. 3.10 emphasizes 

the superiority of the Bezier representation method. Regarding the average best individual 
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fitness value, the Bezier method based optimization process gives slightly better results than 

the Parsec method based optimization process while the first method shows more than 40% 

improvement in the required iteration number for cost function value 23.5. 

x/c x/c 
Figure 3.9 At the end of the optimization processes the resulted typical Cp distributions and 
airfoil shapes. 

25, , . - , 

9 
Figure 3.10 Comparison between Bezier and Parsec representations in accordance with 
average best individual. 

Conclusion 

In this study, Bezier and Parsec representation methods are tested in two different flow 

conditions: subsonic and transonic flows. In the first test case, both representation methods 

are compared via VGA optimization tool under the subsonic flow conditions. In the second 

test case, both representation methods are compared via VGA optimization tool under the 

transonic flow conditions. From these cases it is concluded that the Parsec method is more 

global and more efficient than the Bezier method in subsonic flows. However, the Bezier 

method is more flexible and more efficient than the Parsec method within transonic flows. 

3.2 VGA Enhanced with FL and NN in 2D Airfoil Optimization 

A new optimization algorithm called multi-frequency vibrational genetic algorithm 

(mVGA) is significantly improved and tested for two different test cases: an inverse design 

of an airfoil in subsonic flow and a direct shape optimization of an airfoil in transonic flow. 
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The algorithm emphasizes a new mutation application strategy and diversity variety, such as 

global random diversity and local controlled diversity. The local controlled diversity is 

based on either a fuzzy logic controller or an artificial neural network depending on the 

problem type. 

Introduction 

The present study introduces the application of a new multi-frequency vibrational 

genetic algorithm (mVGA) to speed up the optimization algorithm and overcome such 

problems as deficient diversity and premature convergence during the optimization. The 

principal role of this multi-frequency approach is to answer the question of which individuals 

should be mutated and when they should be mutated. Then, depending on the nature of the 

problem at hand, the present approach employs fuzzy logic or neural network concepts to 

provide local but controlled diversity within the population in addition to random global 

diversity. To demonstrate, mVGA and its variants are applied to two different test cases. First, 

a new fuzzy-logic coupled mVGA is tested on an inverse design problem at low flow speed 

conditions. Secondly, a new neural-network coupled mVGA is tested on an airfoil shaping 

problem at transonic flow conditions that mitigates the adverse shock wave effects. 

Methodology 

The present multi-frequency vibrational genetic algorithm (mVGA), which is given 

details in section 2, is an iterative algorithm for which a flow chart is presented in Fig. 3.11. 

1—• 

Initial Population 
Generation 

1 
Cost Function 
Evaluations 

Fitness Scaling & 
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Elitism 

1 
Crossover ^ 

Yes - STOP 
i i 

Convergence? 

i ' 
No 

Mutations 

Global-random 
diversity tool 

Local-controlled 
diversity tool 

Figure 3.11 Flow chart of mVGA algorithm 
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An initial population is generated by using a random number operator based on baseline 

shape or parameters. To describe the method mathematically, let S be the population size, D 

be the individual (or chromosome) dimension space,/be the objective function, and Z, be the 

current position vector including genes, ztJ(t), described in /* iteration: 

Z, (0 = (*y (0. z,,2 (0, - . *«, (')>), 

The second step is to evaluate the fitness of the current population via a defined cost 

function/ Then, the cost weighting fitness scaling and roulette selection procedure [69] for 

mating are determined. The elitism concept is applied next to ensure that the best objective 

function value within a population is not reduced from one generation to the next. The 

procedure for the elite fitness value,/, and elite individual, T, is as follows: 

/e(0=argmin/(Z,(0) & Z'(/)=Z,(0 ( 3 n ) 

\ z-(t), ifr(t)<r{t-\)\ y ' 

The crossover technique denoted by BLX-a and described in [70] with a=0.5, is 

applied for the new individuals. The present mVGA mutation strategy is applied right after 

this crossover phase. At this step, there are two tools. As the first tool, the goal of the first 

mutation application is to provide a global random diversity in the population. For this reason, 

all the genes in all the chromosomes are mutated as follows: 

where/ is the application frequency, /?/ is a user defined amplitude parameter, u is a random 

real number between (0-1), and w, is a user defined scale factor. Implementing the mutation 

starts from the first gene position of the first chromosome, and continues throughout the genes 

at the same positions in the other chromosomes. As a second tool, the goal of the second 

mutation application is to provide a local but controlled diversity in the population. A fuzzy 

logic controller or a neural network application can be used at this stage depending on the 

problem at hand. For example, in an inverse design problem, the target is defined in the 

beginning. Therefore, using fuzzy logic is proper. However, in a direct optimization problem, 

such a target is not provided. Hence, a neural network application can be used to provide a 

local-controlled diversity within the population. In applying the fuzzy logic, modified elite 

genes, z"1'*', are generated as given below: 
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zm\t) = \ * 2 2 „ T (3.14) 

A = o M Z * ) (3.15) 

where .£ is the application frequency, /^ is the amplitude, ŵ  is a user-defined scale factor, and 

5 is a randomly determined gene number. Instead of fixing the value of fi2, it is estimated by 

the fuzzy logic controller function, c5^,BC. The modified elite gene is placed in an elite 

individual and this new individual is randomly located within the population as follows and 

applied / times: 

Z" ( / ) = (z;(0,zJ(0,...,z." z'D(f)) (3.16) 

(Zt(0),=Z"'(0|,=i2 , (3.17) 

In the neural network application, all the genes of an elite individual are mutated as 

follows: 

fzX0[l+w,A(l-«)] ift=nf° 
P•(,)= >w l lHlK ,iJ *>' } (3.18) 

where u is a random real number between (0-1), fi2 is a user-defined constant amplitude. A 

newly generated temporal population P includes N individuals. The objective function values 

of this population, /m, are predicted via trained neural network function, c^„ c , and the best 7 

of them are randomly placed within the population: 

[fNN order] = sort(fm) ( 3 - 1 9 ) 

ik=rand[l-D] 

(Z*(0)i -P„rder(i) |j==, 2 , 

The frequencies//,/^, and / are user-defined constants and their typical values are 5, 2, 

and 3, respectively. The special functions t^junc and ds^nc will be explained in detail when 

presenting the case studies. After the mutation operations, a new population is evaluated via 

the cost function which is determined by the real solver. The algorithm repeats all of the 

above steps as necessary until the convergence criterion are satisfied. 

Results 

The mVGA algorithm will now be applied first to an inverse design problem, followed 

by a direct shape optimization of an airfoil in transonic flow. The algorithm, however, will be 

coupled with a fuzzy-logic controller for the first application. The lack of a target in a direct 

optimization problem makes use of fuzzy logic difficult for the second application. However, 
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using neural networks may be appropriate to provide the necessary local but controlled 

diversity in the genetic population. Therefore, for the second application, the algorithm will 

be coupled with a neural-network controller. The benefits for each coupling will be rather 

clear when the results are presented. 

Fuzzy Logic Coupled mVGA 

The airfoil family, known as "Parsec," was proposed to parameterize an airfoil shape. 

As mentioned before this technique aims to control the important aerodynamic features by 

selecting the design parameters based on the a priori knowledge of a flow around an airfoil. 

Parsec airfoils are defined by basic geometric parameters, such as, the leading edge radius 

(TLE), upper and lower crest locations including curvatures (xup, zup, z^p, xi0, zIo, z^, trailing 

edge ordinate (zTE), trailing edge thickness (AZTE), direction (are), and wedge (JITE) angles. The 

number of design parameters can be decreased to 9 by setting AzTE and ZTE to be equal to zero. 

The initial populations for the present case are generated by using the random number 

operator based on the NACA-0012 symmetric airfoil. 

Objective function and flow solver 

The angle of attack is assumed to be zero during the optimization process. The fitness 

function/^ for i* individual among population is defined as, 

/ = • 

1 

^(Cp'-Cp'f (3.20) 

where Cp' is the pressure coefficient value of /<* individual computed by a panel solver [71], 

Cp' is the pressure coefficient value of the target curve, and L is the number of panels. A Cp 

distribution around the Rae2822 asymmetric airfoil is selected as the target pressure 

distribution. Shown in Fig. 3.12 are the initial and reference Cp distributions, and the initial 

and the target airfoil shapes. 

Figure 3.12 Initial and reference target airfoil shapes; initial and reference Cp distributions 
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Fuzzy logic controller and c ^ w 

Fuzzy logic is a form of multi-valued logic derived from a fuzzy set theory to deal with 

reasoning that is approximate rather than precise. It has been applied to diverse fields from 

control theory to artificial intelligence. This alternative, non-analytical technique has been 

recently employed to carry out a multi-objective optimization in different ways [72]. The 

fuzzy logic system employs a set of fuzzy linguistic rules, which may be provided by experts 

or can be extracted from numerical data. These rules are expressed as a collection of "if-then" 

statements. Therefore, a fuzzy rule base, R, can be expressed as: 

R = [R.]Ma * 
(3.21) 

R,={if[c,isA] then [ut is J3]} 

where c, and A are the fuzzy inputs to the system; namely, /'* input variable and the 

consequent fuzzy set, respectively. On the other hand, H, and fl are the fuzzy output; namely, 

i'h design variable and the consequent fuzzy set, respectively. In the antecedent of rule Rt, the 

term A=[A'j,..., A"J represents the vector of the fuzzy sets referring to the input fuzzy vector 

c. The membership functions of both the antecedent and consequent, A and /? respectively, 

have been chosen to be Gaussian; the inference engine employs a product inference for the 

rule implication. For the present inverse design case, the fuzzy system output represents the 

design variable amplitude and the fuzzy inputs are the error parameters, which can be 

described as follows: 

e^Cp'j-Cpy*-2 L (3.22) 

where e, is the error distribution of the elite individual, Cp' is the target pressure distribution 

around the target airfoil geometry, and Cpe is the pressure distribution of the elite individual. 

Input fuzzy vector, c, can be derived from error distribution by computing the center of 

distribution coordinates such as cx and cz for an elite airfoil using the following expressions: 

c = £ (3.23) 

g(e,+e,j'(*y»,-x,) 

0 . = ^ " ( 3 - 2 4 > 

Z (eJ +e, ,)(*., -x,) 
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Since each Parsec parameter has an aerodynamic meaning, an error analysis is easily 

interpreted for both the upper and the lower curves of the airfoil. The sensitivities of the Cp 

distributions along with the variations on upper and lower curves are evaluated and the 

general characteristics of each Parsec parameter are determined. During this analysis, the 

centroids of error spectra and the error distributions are both taken into consideration. The 

characteristic behaviors of example Parsec parameters (xup. and zup) for the upper curve are 

shown in Fig. 3.13. 

+ 

0.25 0.5 

X/C 

Figure 3.13 Airfoil shapes, pressure coefficient and error distributions, and error centroids (+) 
for selected Parsec parameters xup (left side) and zup (right side) 

Just for illustration purpose, consider the zup parameter. When the position of the central 

gravity (c) of the error distribution of zup parameter is evaluated, it is possible to make global 

conclusions. An example inputs/output membership functions for zup parameter is given in 

Fig. 3.14. 
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Figure 3.14 Membership functions of inputs and output for zup parameter; na pz, up, 
respectively. D: down, LD: little down, NORM: normal, LU: little up, U: up. 
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The order of magnitude of an error is between -0.5 and 0.5. The x coordinate of c is in 

the middle between 0.4 and 0.6. According to these error distributions and the position of the 

centroids, rules and membership functions are generated using Matlab 7.0 fuzzy logic toolbox 

for each of the Parsec parameters. The <^func expression for zup parameter in terms of fuzzy 

rules is given in Table 3.2. 

Table 3.2 The rules of z„„ parameter amplitude estimation 
If cz LD & cx CENTER Then fi LU 

CENTER Then fi NORM 
CENTER Then fi D 
CENTER Then p UP 
CENTER Then 0 LD 

In addition, the rule surface for the same parameter is given in Fig. 3.15, and the flow 

chart of the local-controlled diversity tool as c5^nc is given in Fig. 3.16. 
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Figure 3.15 The fuzzy rule surface of zup parameter 
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Figure 3.16 Flow chart of local-controlled diversity tool as Ffunc 

An inverse design application 

An inverse design problem for an airfoil typically has the resulting pressure distribution 

around the geometry as a given, then the method searches for a geometry that supports this 

distribution. The efficiency of fuzzy logic coupled mVGA is now tested through an 
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application to an inverse design problem. The algorithm features of VGA and fuzzy-coupled 

mVGA are given in Table 3.3. 

Method 

VGA 

mVGA 

G 

200 

200 

S/I 

10/0 

10/3 

Table 3.3 The features of VGA and mVGA 
Fitness 
scaling 

rank 

rank 

Selection 

roulette 

roulette 

fi-Wj-Pi 

f i-w,- Pi 5/0.5/1 
fi-w,-Pi 5/0.5/1 
f2-w2-P2 2/l/FA„c 

Crossover 

Blx-a 

Blx-a 

Elite 
count 

1 

1 

The comparisons between VGA and m-VGA results are shown in Fig. 3.17 and 3.18. 

Fig. 3.17 provides the average best individual (over 20 runs) against computational fluid 

dynamics (CFD) solver calls. This comparison clearly demonstrates the superiority of the 

present mVGA method. mVGA not only finds better results than VGA, but also it obtains 

more than 50% improvement in the final fitness value. Observed in Fig. 3.18, the resulting 

airfoil shape by mVGA is much closer to the target airfoil shape. In particular, the leading 

edge (A) and the lower curve (B) sections show the better fit to the corresponding target 

airfoil sections. 
700 r 
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Figure 3.17 Comparison between VGA and mVGA in accordance withfaveragei,es,MMdua, 
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Figure 3.18 The Cp distributions and the airfoil shapes at the end of the optimization 
processes 
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Neural Network Coupled mVGA 

In the second test case, the shape of an airfoil is optimized for a transonic flow at 

M=0.75 past an airfoil placed at 2° angle of attack and 6.5x106 Reynolds number. The initial 

shape is selected to be NACA-64A410 and the optimized shape is expected to weaken the 

shock wave formed on the upper surface in order to increase the lift to drag ratio. The 

optimization will be performed first by VGA and then the neural-network-coupled mVGA in 

order to demonstrate the enhancement with the latter. 

Shape parameterization 

An airfoil can be represented using the Bezier curves with a set of control points. The 

two control points (0,0) and (1,0) at the leading and trailing edges are fixed. It is commonly 

assumed that the xt are fixed, then the design parameters are only the z, coordinates of the 

control points. The initial population needed for the present method is generated by using a 

random number operator based starting with the NACA-64A410 airfoil. 

Objective function and flow solver 

The objective function,/is to be maximized, where 

/ = ^ + i o (c;-ct2)2
 + ioo (,--,)2 

- i - i 

CL2 = 
c\ if cL>c\ 
CL if CL < C\ 

(3.25) 

and CL is the lift coefficient, CD is the wave drag coefficient. CL* is the design lift coefficient 

and t is design maximum thickness ratio, which are taken for the demonstration case to be 

0.885 and 0.1, respectively. Since the lift and drag coefficients are computed based on the 

pressure distribution around an airfoil, the pressure distribution needs to be computed at each 

generation of the design process. The pressure distribution around an airfoil for inviscid 

compressible flow can be determined by solving, for example, the Euler equations presented 

below 

V(puU) = - — (3.26) 
dx 

V.(pvU) = -^- (3.27) 
dy 

In the equations above, p is the fluid density, p is the pressure, u is the flow speed in x-

direction, v is the flow speed in ^-direction, and U is the flow velocity vector. For 2D flows 

around an airfoil, the pseudo-time-dependent, compressible Euler equations are solved using a 
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finite volume method and the Roe flux-splitting scheme [73]. An elliptic PDE (Partial 

Differential Equation) method is used to generate a structured grid around the airfoil. The 

time required for grid production and flow solution around an airfoil varies depending on the 

geometry, however, and takes approximately 60 seconds when computed on an Intel(R) 

Core(TM) Duo CPU T7100 1.8GHz processor. 

Neural networks and ĉ funC 

Radial Basis Function (RBF) networks are designed to find a surface in a 

multidimensional space that provides a best-fit to the training data [74]. They are one of the 

popular approximation models that can be used as surrogates of the complicated and 

computationally expensive CFD methods. Before the description or the RBF network, some 

prerequisite definitions will be given here. An example radial basis function neural network is 

shown in Fig. 3.19. The input is z and the output is y=&f/unc(z), where &iju„c represents the 

processing by the entire radial basis function neural network. The input to the i'h receptive 

field unit, which is sometimes called a radial basis function, is z, and its output is denoted 

with Rt(z). Assuming that there are nR receptive field units, the output of the radial basis 

function neural network may be represented as follows: 

(3.28) 
i=i 

*• y 

Figure 3.19 Radial basis function neural network model 

There are several possible choices for the receptive field units, Rt(z). A sample choice 

may be the following: 

\ 2 " 
/ f i ( z )=Z e x p 

y-i 

l f z - c 
2\ a 

(3.29) 

where c is the center and a is the variance. Let's assume that there are N sample points for the 

problem with D design variables, the sampled data (Zs, Ys) can be defined as follows: 
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^2 
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(3.30) 

where Zs is the design matrix with each row vector representing a sample point as input, and 

Ys is the column vector that contains the value of the response at each sample point as output. 

The set of sample points are used to train the neural network. In Eq. (3.28), the unknown 

coefficients, w, and b, can be calculated by the least squares regression technique: 

[wl,w1,:..,wm,b] = (HTH)-,HTYs ' (3.31) 

"*,&) ^(z,) *„(?,) f 

*,(z2) ^(z2) K(Zi) 1 
H = 

^ ( O RtizJ Rm(zJ \ 

(3.32) 

In the present test case, the Matlab function newrb is used to generate neural networks. 

In a set of training data, the input parameters are the control points of individuals (that is, 

parameterized airfoil geometry for aerodynamic optimization) in the population, while the 

output parameters are their aerodynamic performance values (that is, CL or CD) to be 

improved. There are some important points which require careful tuning during the use of the 

neural network model in the present methodology, mVGA. These are the number of 

generations required for training the neural network, and the selection of generations to be 

used for training. The first issue is related to the training cost and the second one determines 

the quality of the prediction. Instead of gathering all previous exact evaluations, it is more 

effective to gather a certain amount of collected data (N) based on the recent generations to 

avoid the computationally expensive task. Additionally, the selection of the neighboring 

patterns, such as the last certain generation, provides a better reliability. The reason is because 

the last certain generation is locally closer in terms of Euclidean distance in the design space 

to the current individuals and their perturbed variants. 

The flow chart of the local-controlled diversity tool as &C/unc is presented in Fig. 3.20. 

The steps of the neural network coupled with the present mVGA methodology are as follows. 

First, the cost function calculations in the current population are performed to get their fitness 

values. Secondly, the two networks are trained after the threshold generation point (the 

threshold is selected as the 10th generation in the present implementation) by using the 

individuals in the current and previous populations and their fitness values. The first network 

is trained for the CL estimation and the second is for the CD estimation. However, the training 

set needs to be limited. For the present test case, it is limited with the last 100 data set. For 

this training, individuals in the population are used as the input and their fitness values are 
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used as the output. Lastly, the mutations, as in Eq. (3.18), are applied and the temporal neural 

network population is generated. It is taken 40 as N in the application. After the generation of 

the neural network population, the fitness values of network population are estimated by 

using trained neural nets. Then, some of them, which have greater fitness values than the elite 

individual (in the present use, the best two are selected) are placed in the new population to be 

used as candidates at the next step of the algorithm. 

Neural Network Training 
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Figure 3.20 Flow chart of local-controlled diversity tool as &Cfu„c 

Aerodynamic shape optimization case 

The efficiency of the neural-network-coupled mVGA is tested and it is compared with 

the corresponding VGA results. The features of the VGA and m-VGA algorithms are 

provided in Table 3.4. 

Table 3.4 The features of VGA and mVGA 

Method S/I Fitness 
scaling Selection fi-WrP. Crossover Elite 

count 
VGA 

mVGA 

100 

50 

10/0 

10/3 

rank 

rank 

roulette 

roulette 

f i -w,-p , 4/0.5/1 
f i -w,-p, 4/0.5/1 
f2-w2- P2 1/0-5/1 

Blx-a 

Blx-a 

A comparison of the average best individuals (over independent 10 runs) versus the 

CFD solver calls is given in Fig. 3.21. VGA reaches the objective function value of 24.52 

within 1000 CFD computations while the neural-network-coupled mVGA obtains the same 

value within 330 CFD calculations. mVGA clearly shows better performance than VGA after 

the 10th generation, because a local-controlled diversity tool based on neural networks is 
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activated after this iteration. This result indicates that m-VGA decreases the CFD solver calls 

by about 67% with respect to VGA. 

The initial NACA-64A410 airfoil and the optimized shapes (from one of 10 

independent runs of each optimization algorithm), and their corresponding Cp distributions 

are shown in Fig. 3.22. Both optimization algorithms keep the lift coefficient and maximum 

thickness ratio fixed at their design values. 
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Figure 3.21 Comparison between VGA and NN coupled mVGA in accordance with^veroge best 

individual 

«? 
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Figure 3.22 The resulted typical Cp distributions and airfoil shapes at the end of the 
optimization processes 

Conclusions 

The present paper introduced a new multi-frequency vibrational genetic algorithm 

(mVGA) to speed up the optimization algorithm and overcome problems, such as, deficient 

diversity and premature convergence. Then, depending on the nature of the problem at hand, 

the present approach employed fuzzy logic or neural network concepts to provide local but 

controlled diversity within the population in addition to random global diversity. The average 
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best-individual-fitness values of all algorithms were recorded for a fair comparison among 

them. To demonstrate their merits, mVGA and its variants were applied to two different test 

cases. First, a new fuzzy-logic coupled mVGA was tested on an inverse design problem at 

low flow speed conditions. Secondly, a new neural-network coupled mVGA was tested on an 

airfoil shaping problem at transonic flow conditions that mitigated the adverse shock wave 

effects. 

3.3 A New GA for Path Planning of Autonomous UAV 

This study introduces a new evolutionary algorithm that can be used to solve path 

planning problems of autonomous unmanned aerial vehicles (UAVs). This new algorithm 

combines fuzzy c-means clustering and Voronoi diagram along with multi frequency 

vibrational genetic algorithm (mVGA) to find the optimal paths. In this study clustering 

method and Voronoi diagram concepts are used within initial population phase of mVGA 

process. 

Introduction 

The number of applications that are considering the use of intelligent unmanned 

vehicles is increased within civilian or military purposes. Unmanned aerial vehicles have 

become an indispensable platform for many applications where manned operation is 

considered unnecessary or too risky. These applications include goals such as reconnaissance, 

search and rescue, weather observation, target detection, or target destruction. For both 

military and civilian applications, there is a desire to develop more sophisticated UAV 

platforms where the emphasis is placed on development of intelligent capabilities. There are 

many activities that must be followed or carried out by an UAV system to enable the 

execution of the task of autonomous navigation. These activities are mapping and modeling 

the environment, path planning and flight control systems. Between these three problems, it 

can be argued that path planning is one of the most important problems in the navigation 

process. Its intention is to find out the optimal or suboptimal safe flight trajectory starting 

from departure location and ending to arrival location in the proper duration which UAV is 

able to accomplish the pre-arranged task and avoid the hostile threats. 

Regardless of the domain, the path planning problem can be broken up into two major 

categories: solving the problem of creating a planned path to follow in a static environment, 

or creating a plan for a dynamic environment. In the first environment, the starting point, 

ending point, set of regions to avoid, and set of regions to visit, are all known before the 

proposed plan is constructed. In the second case, some or all of the set of regions to avoid, 

may be initially unknown. It is called a dynamic path planning which includes global path 
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construction together with local path plannings that make the UAV avoid collision in real 

time state. Changing the planning problem from fixed obstacles to moving ones changes the 

problem from a deterministic problem to a stochastic problem. The selection of an appropriate 

algorithm in every stage of the path planning process is very important to ensure that the 

navigation process will run smoothly. In computing, data structures play an important role 

and greatly influence the computational complexity and efficient implementations of an 

algorithm. Because the optimal path planning relies too heavily on time consuming 

optimization techniques such as numerical computation, it is usually solved offline based on 

the known information before takeoff. 

There are different groups of path planning algorithms in the literature. Researchers 

have fulfilled extensive analysis and simulation studies. The first group is called skeleton 

approach. This approach is also called the roadmap, or highway approach. These algorithms 

are usually based on configuration space representations. Widely used skeletons are the 

visibility graph, Voronoi diagram, subgoal network, and the silhouette [75]. The second group 

of approaches is cell decompositions. A world space is triangulated into a mesh. An 

optimized path graph is extracted from this mesh. Dijkstra's shortest path searching algorithm 

is usually used to search the shortest path in the path graph. The third group is called the 

potential field approach, in which a scalar function is constructed from the information of 

obstacles and contractions. The path is determined by performing steepest gradient descent on 

the potential function [76]. In recent years, a path planning problem is introduced to new or 

hybrid techniques such as fuzzy logic [77, 78], neural network [79], ant colony optimization 

(ACO) [80, 81], Dijkstra's algorithm and ant system algorithm [82], the artificial potential 

field approach with simulated annealing [83, 84], particle swarm optimization (PSO) [85], 

genetic algorithm with simulated annealing [86], and genetic algorithms (GA) [87-94]. 

Each method has its own strength over others in certain aspects. Unfortunately, there 

are some deficiencies such as computational complexity, local optimization, and adaptability 

when we use those algorithms to deal with path planning in complex environments. For 

instance, in a large-scale background environment, the computational cost of algorithms 

based on skeleton or cell decomposition approaches is very high and the approximate optimal 

solutions cannot always be obtained. The potential field methods provide simple and effective 

motion planning for practical purposes. However, a potential field approach has a major 

problem which is that a vehicle may be trapped at a local minimum before reaching its goal. 

Even in global search methods such as genetic algorithms, ACO or PSO it often takes a long 

time for planners to escape from local optimal solution once the evolution converges to a 

local optimal plan. This is called premature convergence. Although there are some successful 
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applications to compute near-optimal paths for UAVs, sometimes, premature convergence 

may prevent search algorithms from reaching global optimal solutions. The main reason for 

the premature convergence is usually addressed by the lack of diversity. Parallel evolution 

including several populations is one approach to overcome premature convergence via 

increasing the diversity. However, this approach also increases the computational cost. In 

addition to premature convergence problem, almost for all reported genetic algorithms, the 

individuals of the first population are assumed to be generated randomly. This is simple but 

will lead to large quantities of infeasible paths if used in path planning. Although some of 

these infeasible paths might become feasible solutions after certain genetic operations, they 

cause several problems such as more computational time or meaningless work. To overcome 

these problems, this article emphasizes a new Voronoi supported multi-frequency vibrational 

genetic algorithm (mVGA). Basic contributions of this study are the improvement of initial 

population by using a clustering method and Voronoi diagram in three-dimensional (3D) 

space, and genetic algorithm enhancement by using quantification and qualification of 

diversity in the population 

Optimization Method 

In path planning problems mVGA is selected as an optimization method. The details of 

the optimization method are given in the previous sections. 

Initial Population Enhancement 

The aim of the optimization process is to optimize design variables which represent the 

optimal path. The time of optimization process and also the result of it heavily depend on the 

initial points. Improper initial population may cause time consuming process and premature 

convergence. Therefore, proper and robust initial population is very important for the 

optimization. Before proceeding to initial population enhancement method we will explain 

the preliminaries such as representations of path and terrains. 

Path Representation 

Path parameterization plays a key role since it defines the design variables. Bezier 

curves or splines have been widely adopted when computing smooth, dynamically feasible 

trajectories for UAVs. Smooth path is an important feature for UAV flight dynamics because 

aerial vehicles can not fly on line segments like land vehicles. Additionally, smooth path 

prevents the vehicle from sharp turnings which would be harmful for the structure. The other 

advantage of employing Bezier curve is that the path can be represented using a relatively 

smaller number of parameters than using a complete geometric description of the path. This 

results in a small computational cost. Coordinate transformation between aerial vehicle and 
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the terrain model is not taken into consideration because the test cases are implemented in 

demonstrative terrain models. 

Terrain Modeling 

Two different 3D surface representation methods; trigonometric function based terrain 

modeling and city surface based terrain representation are used to simulate the topology of 

the configuration space. The function of trigonometric based terrain modeling is given by 

z(x, y) = sinO> + a) + fesin(x) + c cos(d(yJx2 + y2)) , „ . , 
/ , , (3.33) 

+ecos(y) + fsin(f(y]x +y )) + gcos(x) 

where a, b, c, d, e, f, and g are real constant numbers. Different constants generate different 

terrain models. On the other hand, 160 buildings (rectangular prisms with different heights) 

are used to simulate city type environment. It is possible to model the real city or city regions 

by using city map and building height info. An example model is generated via x, y matrixes 

based on the random building locations and z matrix based on the random building heights. 

Both terrain models are depicted in Fig. 3.23 and 3.24. 

Figure 3.23 Sinusoidal terrain modeling 

Figure 3.24 City type surface modeling. 
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These surface models are used to simulate environments of path planning problems. 

Sinusoidal terrain model is a mathematically continuous model. A city type terrain model is a 

discrete and discontinuous model. However, GA can handle both types of models. 

Initial Population 

Initial population is described as follows 

P = Pr+Pv (3.34) 

where Pr is the random based population, Pv is the remaining population. Random based 

population includes the individuals generated by using random number operators. The design 

variables; (xb yb z,) are randomly generated within the terrain model bounds and amplitude 

bound of UAV. However, the first and the last point coordinates are fixed to start point and 

end point, respectively. The remaining population includes the individuals generated by using 

Voronoi diagram. 

Voronoi diagram based individuals 

A Voronoi diagram for a set of N points /?,, l<i<N, in the Euclidean plane is a 

partitioning of the plane into N polygonal regions, one region associated with each point/?,. A 

point/?, is referred to as a Delaunay point. The Voronoi region VfpJ associated with point/?, is 

the locus of points closer to /?, than to any of the other N-l points. The Voronoi edge 

separating V(pj) from V(pj) is composed of the points equidistant from /?, and Pj. Not all 

Voronoi edges are bounded; some extend to infinity. The intersection of Voronoi edges 

occurs at vertices called Voronoi points. The construction of Voronoi diagrams is reviewed in 

[95]. 

As expressed in introduction section, Voronoi diagrams are efficiently used to find 

threat avoiding paths. However, Voronoi diagrams are two dimensional; therefore, they don't 

care about the altitude restrictions. Additionally, these diagrams include straight lines and 

UAV cannot fly on these straight lines due to flight mechanics. To solve 2D plane problem, 

Krozel et al. [96] studied to polygonize the counter data of mountains. Vertices from 

mountain polygon obstacles are used as Delaunay point locations to model the obstacles. To 

solve line segments problems, Jong et al. [97] used B-spline path templates. In his study, in 

conjunction with the high-level path planner, the proposed algorithm finds the corresponding 

local path segments and stitches them together, while preserving the smoothness of the 

composite curve. As a high level path planner he used a cell decomposition algorithm. 

Different from these studies we propose a simpler method. 
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Voronoi diagram needs to N Delaunay points. To get these points we can use a simple 

approach; filtering and clustering. At the beginning, the terrain model can be filtered in 

accordance with the altitude limitation of UAV. Simply, if the point of the terrain model is 

higher than the UAV altitude limitation then this point is placed in obstacle/dangerous points 

group keeping the location info of the group in memory; otherwise, it is excluded. Secondly, 

dangerous points are clustered and cluster centers are found by using fuzzy c-means 

clustering method [98]. The numbers of cluster center, N, is predicted before the clustering 

process. Thirdly, cluster centers are used as threats to construct Voronoi diagram. A Voronoi 

diagram is constructed from the known cluster center locations. However it would be 

assumed that it is difficult to get data clustered exactly. Therefore there are some defective 

cluster centers. These centers cause unsafe Voronoi edges. But this is just the beginning of the 

optimization process and genetic process eliminates these deficiencies during the 

optimization. In the following figures an example part of sinusoidal terrain model (Fig. 3.25), 

filtration of model points (3.26), and generated cluster centers (3.27) are depicted. 

Lt .^""^ l^-^K 1 

Figure 3.25 Example part of sinusoidal surface modeling. 
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Figure 3.26 Filtered dangerous points of sinusoidal surface modeling. 
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Figure 3.27 Cluster centers of dangerous points. 

These cluster centers are used as Delaunay points to construct Voronoi diagram. 

Example Voronoi diagram is depicted in Fig. 3.28. 

Delaunay point Voronoi vertex Voronoi edge 

Figure 3.28 Voronoi diagram based on cluster centers. 

After constructing a Voronoi diagram, the start location and end location need to be 

connected to the Voronoi vertices. We simply connect the start location and the end location 

to the nearest several nodes of the Voronoi diagram. Similarly, proper Voronoi vertices 

between start and end points of the path are selected and these vertices are used as control 

points of the Bezier curves. An example implementation is depicted in Fig. 3.29 and resulted 

path is shown in Fig. 3.30. 
Arrival point 

Departure 
point 

Voronoi vertex as 
Bezier control point 

Figure 3.29 Voronoi vertices based Bezier curve. 
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Figure 3.30 Constructed path (white color) based on Bezier curve. 

These constructed path solutions are Voronoi based initial individuals. The number of 

Voronoi vertices on the constructed path determines the number of control points of Bezier 

curve, shortly (xb yu). The third coordinate (z,) is determined as altitude limitation of UAV. 

Fitness Function 

The evaluation function of an individual measures the cost of a candidate path. The 

fitness function is designed to accommodate three different optimization goals: minimize the 

distance flown, maintain a smooth trajectory preventing sharp turns, and satisfy the clearance 

providing the safe distance for UAV from terrain. We have proposed a linear combination of 

these three factors. The general description of the fitness value is given below 

where Fj is the suboptimization goal, a} weighting constant. The first concern is the length of 

the curve Fj, and is calculated by the given expression 

1 = &(*,•. - *<)2+(yM -y<?+(*,« - *,f} (3.36) 
(=1 

where n is the curve discretization number; x, y, and z values are the curve discrete 

coordinates. The second concern is the passing ratio of the curve through the terrain boundary 

F2, and is calculated by the given expression: 

V (ZCurve ~ ZSurface )<"D 

F 2 = £ [ orzCune>zAI ] (3.37) 

punishment +1 
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where SD is a safe distance determined by user, zAl is an altitude limitation for UAV, zCurve is 

the discrete path curve coordinate, and zSurface is the terrain model coordinate. This expression 

penalizes the curve that passes through the solid boundary. So, the penalty value is 

proportional to the number of discretised curve points located under the solid surface. The 

third concern is the curvature angle ratio of the curve F3, which is calculated by the given 

expression: 

^ ,6 <e ( 3 3 8 ) 

,„! punishment +1 

where 0iJ+1 is the angle between the extension of the line segment connecting Bezier control 

points i and i+1, 6T is the safe turning angle determined by user for the UAV. This concern is 

designed to prevent the aerial vehicle from exceeding the lateral and vertical acceleration 

limits. Because the flight envelope determines the maximum radius of turns for flying objects. 

The weight constants, aJt are determined experimentally. In test cases â  is selected as high 

number. 

Test Cases and Results 

The new improved algorithm is tested and compared in different environments. The 

first environment is selected as a sinusoidal terrain model. The second environment is 

selected as a city type surface modeling. For both test cases the job is to fly from departure 

point to an arrival point under described conditions. 

Sinusoidal Terrain Results 

The test case is given in Fig. 3.31. The mission of UAV is to depart from departure 

point and arrive at arrival point under certain conditions. At first, four different genetic 

algorithms are tested in this case. These algorithms are described in accordance with mutation 

types. The features of these algorithms are tabled in Table 3.5. The first two algorithms are 

labeled as regular genetic algorithms such as RGA, and RGA2. In these algorithms classical 

mutation strategy applications are performed including Gaussian and uniform mutations. 

VGA is named as vibrational genetic algorithm and the first vibrational mutation operator is 

applied to get global diversity in the population. mVGA is labeled as multi-frequency 

vibrational genetic algorithm and both vibrational mutation operators are applied to get global 

and local diversity in the population. Blx-a is used for all algorithms. The data for fitness 

function is given in Table 3.6. 



Method 
RGA, 
RGA2 

VGA 
m-VGA 

Table 3.5 Genetic algorithms' features 
Mutation 

Gaussian; Pi, 0.5; y, 0.75 
Uniform; Rm, 0.05 
Vibrational:/}, 5; wy, \;f},, 0.5 
Vibrational:/;, 5; w,, l;fi,, 0.5; f2,2; w2, 1; ft, 2.5 

Fitness scaling selection Elite T 
Rank roulette 1 100 

Run 
20 

Crossover 
Blx-a; a,0.5 

S 
10 

Figure 3.31 An example constructed path (white color) with different views by mVGA. 

sD 
0.05 

Table 3.6 Fitness function data 
dT zM ai a2 a3 

60° 5 5 10 1 

All algorithms are run 20 times and the averaged best individual fitness function values 

versus generations are plotted in Fig. 3.32. According to this figure VGA and m-VGA 

outperformed regular genetic algorithms. VGA reaches the value of 0.002 (1/averaged./„„,) at 

83rd generation while RGA2 reaches the same value at 100th generation. Therefore, VGA 

decreases 17% the required generation number. mVGA looks very efficient in this case. 

mVGA reaches the value of 0.002 at 12th generation. It decreases 78% the required generation 

number. 
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Figure 3.32 The fitness values of algorithms versus generations 

Additionally, mVGA is supported by initial population enhancement and the resulted 

values are compared with pure mVGA. The algorithms are again run 20 times and the 

averaged best individual fitness values are plotted in Fig. 3.33. 
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Figure 3.33 The fitness values of algorithms including m-VGA and Voronoi supported m-
VGA versus generations 

Fig. 3.33 shows that the enhancement of initial population cause significant 

improvement in fitness function values. It improves the algorithm almost 100 %. mVGA 

reaches the value of 0.0022 at 100th generation while Voronoi supported mVGA starts with 

the value of 0.0021. On the other hand, the number of individuals generated by Voronoi 

diagram; Pv and the algorithm performances are depicted in Fig. 62. It seems that the main 

point is to add a reasonable individual within the population. Because increase in Pv does not 

results in performance improvement. 

X10"" 

Figure 3.34 The resulted fitness values of algorithms at 100th generation versus the number of 
individuals generated by Voronoi diagram; Pv. 

City Type Terrain Results 

The test case is given in Fig. 3.35. Similar to previous test cases, the mission of UAV is 

to depart from departure point and arrive at arrival points above the city under certain 

conditions. At first, two different genetic algorithms including VGA and mVGA are tested in 

this case. The features of these algorithms are tabled in Table 3.7. The data for fitness 

function is given in Table 3.8. 



Arrival 

Departure 

Figure 3.35 An example constructed path (white color) with different views by m-VGA. 

Table 3.7 Genetic algorithms' features 
Method 
VGA 
m-VGA 

Mutation 
Vibrational://, 5; w,, \;0,, 0.5 
Vibrational:/,, 5; w,, \;P,, 0.5; / , 2; w2, Ufa, 2.5 

Fitness scaling selection Elite T 
Rank roulette 1 100 

Run 
20 

Crossover 
Blx-a; a,0.5 

S 
10 

SD 
0.05 

Table 3.8 Fitness function data 
6T zA, a} a2 a3 

60° 5 5 10 1 

All algorithms are run 20 times and the averaged best individual fitness function values 

versus generations are plotted in Fig. 3.36. 
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Figure 3.36 The fitness values of algorithms versus generations 

According to this figure mVGA outperformed VGA. VGA reaches the value of 0.0092 

(I/averaged^,,,,) at 100th generation while m-VGA reaches the same value at 50th generation. 

Therefore, m-VGA decreases 50% the required generation number. The efficiency of mVGA 

is a bit lower than the previous case (sinusoidal terrain case). This may originate from the 

terrain data. The sinusoidal terrain model is an exact model and the computation of fitness 
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values are based on continuous functions. However, a city terrain model is a discrete model. 

Therefore, it is considered as the reason for the lower efficiency. 

Additionally, m-VGA is supported by initial population enhancement and the resulted 

values are compared with pure mVGA. The algorithms are again run 20 times and the 

averaged best individual fitness values are plotted in Fig. 3.37. Fig. 3.37 shows that the initial 

effect is not significant as the previous case. However, the effect of Voronoi based 

individuals on the process is very significant. mVGA reaches the value of 0.0083 at 100th 

generation while Voronoi supported m-VGA reaches the same value at 11th generation. This 

means 89% decrease in required generation number. 
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Figure 3.37 The fitness values of algorithms including m-VGA and Voronoi supported m-
VGA versus generations 

Conclusion 

Although genetic algorithms are global search methods they are suffered from 

premature convergence and low convergence rates. Instead of classical applications this 

article showed that periodic mutation applications based on vibrational mutation operators 

provide classified but efficient diversity in the population. In addition to a new mutation 

strategy, the initial population is improved by using Voronoi diagrams, and hence the 

convergence is seriously accelerated. 

3.4 VGA Enhanced With NN in RCS Problems 

Within this study, multi frequency vibrational genetic algorithm [mVGA] is used to 

accelerate the genetic algorithm for radar cross section minimization problem. 

Introduction 

In today's World there is no point in considering military aerodynamic configuration 

development without including a stealth feature. It plays a key role in the configuration 
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layout. For aerodynamic configuration design, the key element is a radar cross section, RCS, 

with some consideration of infrared, mainly from the back of the aircraft. Clearly, flat 

surfaces normal to the incoming waves are bad, and reflect strongly back to the radar 

transmitter, thus surfaces should be angled to reflect the waves in other directions. The 

optimal shapes have sharp corners in directions where the RCS is minimized and exhibit 

corrugations. Designers work to decrease RCS target values [levels] in different sectors. 

These sectors are front sector, sides, and rear sector which is often emphasizes infrared [99, 

100]. Optimization of RCS has commonly relied on evolutionary algorithms mainly genetic 

algorithms [101-104]. There are also some gradient-based optimization techniques [105, 106]. 

An optimization under the concerns of aerodynamics and electromagnetic is very complex 

and multi-objective process, hi this test case only the RCS feature is considered and the shape 

of the aircraft is optimized to minimize the RCS under the limitations of aircraft 

configuration. RCS is a function of target configuration, frequency, incident polarization, and 

receiver polarization [107]. The frequency is fixed as 0.015 GHz. Incident and receiver 

polarization angles are taken as fixed values. Thus the target configuration is determined as 

optimization issue. 

Optimization Method 

The present neural network coupled multi-frequency vibrational genetic algorithm is an 

improved version of the multi-frequency vibrational genetic algorithm (mVGA). It is an 

iterative algorithm for which a flow chart is presented in Fig. 3.38. An initial population is 

generated by using a random number operator based on baseline shape or parameters. In the 

present test case, the Matlab function newrb is used to generate neural network. In a set of 

training data, the input parameters are the design variables of individuals (such as 

parameterized air vehicle geometry for RCS minimization) in the population, while the output 

parameters are their RCS performance values to be improved. There are some important 

points which require careful tuning during the use of neural network model in the present 

methodology, mVGA. The steps of the neural network coupled with the present mVGA 

methodology are as follows. First, the cost function calculations in the current population are 

performed to get their fitness values. Secondly, the neural network is trained after threshold 

generation point (the threshold is selected as the 10th generation in the present 

implementation) by using the individuals in the current and previous populations and their 

fitness values. However, the training set needs to be limited. For the present test case, it is 

limited with the last 100 data set. For this training, individuals in the population are used as 

the input and their fitness values are used as the output. Lastly, the mutations are applied and 

the temporal neural network population is generated. It is taken 40 as AT in the application. 

After the generation of the neural network population, the fitness values of network 
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population are estimated by using trained neural net. Then, some of them, which have greater 

fitness values than the elite individual (in the present use, the best two are selected) are placed 

in the new population to be used as candidates at the next step of the algorithm. 

0O 
Neural Network Training 

\<~\r 
Radial Basis Layer Linear Layer 

p v 

Initial Population Generation 

Cost Function Evaluations 

Fitness Scaling & Selection 

Generation of Temporal 
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Cost Function Evaluations 
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GH Fitness Ordering & Selection 
for local diversity 

Yes - STOP 

n 

Convergence 

v 

No 

Elitism I W Crossover 

Local-controlled diversity tool 

Global-random diversity tool 

Mutations 

G> 
Figure 3.38 Flow chart of mVGA algorithm 

Model Representation and RCS Solver 

Radar cross section reduction problems of modified Harpy air vehicle is considered. A 

three dimensional model of vehicle is represented by using 727 points and 1415 triangular flat 

facets. The original model is depicted in Figure 3.39. The circular section of fuselage is 

parameterized by Bezier curve including four control points by considering y and z axes 

symmetries. The design parameters are selected as winglet angle which is between y axis and 

the winglet z axis, and three Bezier control points of fuselage including y and z coordinate 

values. The wing geometry and remaining control points of Bezier curve are kept fixed. Initial 

populations are generated by using a random number operator based on the original vehicle 

form. 
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Figure 3.39 Original shape of Harpy air vehicle in different views 

The radar cross section value of ith triangular flat plate, <7„ in the plane f equal to 0° 

and the total RCS value, a„ at q>, 0 angles are given by the following equations, respectively: 

Waft 12) 2 

f} = kaism9<xej 

1415 
<r, = I oj(«y) 

i=l 

4 2' 
(sin£) (sm2/J-2/?) 

J-+ 73 P 4/? 

(3.39) 

where 0 and q> angles define the direction of propagation of the incident waves, k is 2n/k, and 

A is wavelength [108]. The triangle is oriented in Fig. 3.40. As approximate method, physical 

optics (PO) approximation based on the code, Pofacets 3.0.1 is used to obtain RCS data by 

computing the scattered field of the collection of triangular simple facets [109]. 

Figure 3.40 Coordinates of a perfectly conducting triangular plate 
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Fitness Function and Results 

RCS reduction problem of modified Harpy air vehicle at incidence angles q> equal to 0° 

and 6 equal to 0 °, observation angles <p from 0° to 360 ° 6 equal to 90 ° cut; TM-polarized 

incident wave at a frequency of 10 GHz was investigated via VGA and mVGA separately. 

The fitness value is based on bistatic RCS values. However, the fuselage volume is bound 

with a design fuselage volume value due to structural and missionary concerns, and the 

winglet angle is limited to certain values due to aerodynamical and stability concerns. The 

objective function value,/to be minimized, 

/ = k max {a, } + Cfl(</ -a2f + C V ( F * -V)2] 
min L J 

\a if 45° < a <135° 
a, = 

(3.40) 

a if otherwise 

where a, is the RCS values for the observation angles <p from 0° to 360°, a is 90° which is the 

design winglet angle, V* is the design volume value of the original vehicle form. The 

weighted factors are selected as 1, 0.1, and 100 respectively in the implementations. The 

features of VGA and mVGA are given in Table 3.9. In both optimization processes rank 

method is used as fitness scaling, roulette method is used as selection method. The population 

size is taken as 10, the number of maximum generation is taken as 100. 

Table 3.9 The features of algorithms 
Method Mutation Crossover 
VGA fr,-wrp1 4/1/0.5 

m-VGA i'-**4'/™ fr2-y2-p2 2/1/0.4 

Blx-a 0.5 

Blx-a 0.5 

The comparison of the results among VGA and mVGA is shown in Fig. 3.41. The plot 

gives objective function values belong to average best individuals,,/^,,, (over independently 20 

runs) against generations. The original and minimized air vehicle RCS distributions and 

optimized form (from one of 20 independent runs of mVGA optimization algorithm) are 

shown in Fig. 3.42 and Fig. 3.43 correspondingly. Fig. 3.44 shows the evolutionary fuselage 

sections. 
30 

20 

10 

' \ 

^̂ *̂ v ^ 

' 
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III-VCJA . 

-
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20 40 60 

generations 
80 

Figure 3.41 Fitness value change against generations 
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Figure 3.42 Original and minimized RCS distributions 

Figure 3.43 Optimized shape of Harpy air vehicle in different views 
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Figure 3.44 Evolutionary forms of fuselage cross section 

As can be seen in Fig. 3.41 VGA reached the objective function value which is below 

zero within 750 objective function computations based on computational RCS code, while 

mVGA reached the same value within 350 RCS calculations. The difference among them is 

clear after the threshold generation point. This result indicates that mVGA approach 

decreased RCS solver calls about 53% with respect to VGA process. In Figure 3.42 it is 

plotted that the maximum RCS value of the original air vehicle form is around 32 dBsm at q> is 

equal to 90°. This value is significantly decreased below to zero at the end of 35th generation 



93 

of mVGA optimization process. The circular shape of fuselage is changed to triangular form 

having sharp corners. The winglet angle is increased to 98° from original value 90°. 

Conclusion 

The present study introduced a new neural network coupled multi-frequency vibrational 

genetic algorithm (mVGA) to speed up the optimization algorithm and overcome problems, 

such as, deficient diversity and premature convergence. Then, the present approach employed 

neural network concept to provide local but controlled diversity within the population in 

addition to random global diversity. The average best-individual-fitness values of employed 

algorithms were recorded for a fair comparison between them. To demonstrate its merits, 

mVGA was applied to RCS minimization test case. 

3.5 Optimization of Parameters for Benchmark Test Functions 

In this section, v-PSO and the comparative PSO algorithms are tested using different 

test functions including unimodal and multimodal benchmark functions. The selected test bed 

is given in Table 3.10. These functions have different characteristics which may result in 

different convergence criteria. Usually increase in dimensions for the test functions makes the 

convergence more difficult except for the Griewank function. An interesting phenomenon of 

Griewank function is that it is more difficult for lower dimensions than higher dimensions. 

Table 3.10 Definitions of test functions 
Test 

function m search range f(x*) 

f, Ackley 

f Cosine 
12 mixture 

f3 Ellipsoidal 

f4 Exponential 

fi Griewank 

f6 Rastrigin 

f7 Rosenbrock 

fa Schwefel 

f9 Zakharov 

•20eJ-O^^xf -e^fi|>os(2^))+20+e [-30, 30]D [0,0,...,0] 

J x / ' - O . l j 008(5**,) 

I (*, - 02 

/«1 

- ( e x p ( - 0 . s £ *,2)) 
(-i 

i + —— y x?-f\cosA 
4000 £ ' L,.\ \fi 

It 

1 0 H + £ [xf - 1 0 008(2**,)] 
i = l 

£[100(* / + 1 -x (
2 ) 2 + (* , - l ) 2 ] 

< = i 

418.9829/1 - £ *(sin(>/pcj) 
i = l 

I*,2 + (l|*,)2+(l7*,)4 

i=i (=1 •* ;=i * 

[-1,1]D 

[-n,n]D 

[-1,1]° 

[-600, 600]D 

[-5.12,5.12]° 

[-30, 30]D 

[-500, 500]° 

[-5.12,5.12]° 

[0,0,...,0] 

[1,2,...,n] 

[0,0 0] 

[0,0,...,0] 

[0,0,...,0] 

[1,1 1] 

[420.9687..., 
420.9687] 

[0,0,...,0] 

-O.ln 

0 

-1 

0 

0 

0 

0 

0 
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Parameter Settings for PSO Algorithms 

The test procedure includes two different bundles. The first bundle contains the 

algorithm sensitivity to different function dimensions as D is equal to 10, 20, and 30 with 

fixed generation rate as 10,000 and fixed population rate as 20. The second bundle contains 

the behaviors of the algorithms related to different population sizes as 10, 20, and 30 with 

fixed dimensions as D is equal to 30 and fixed function evaluations as 200,000. All 

algorithms are run 100 times and the results are averaged. Peculiar settings are in the 

followings: C; and c2 are equal to 2.05 for c-PSO; C/ and c2 are equal to 2, winitiai and wfimi are 

equal to 0.6, 0.2, respectively for w-PSO; ct and c2 are equal to 2, winitiai and wfinal are equal to 

0.6, 0.2, respectively, diow is equal to 0.5 for g-PSO; ct is equal to 1.5, c2 is equal to 2, w is 

equal to 0.05,/is equal to 10, A is equal to 1, elite count is 3 for v-PSO. 

Fixed Iteration Rate-Fixed Population Size 

The resulting values are tabulated in Table 3.11(a) and 3.11(b). The performances of 

four algorithms with different dimensions are tabulated in terms of means and averaged CPU 

times for nine test functions. The test runs were executed on an off-the-shelf laptop computer 

that has an Intel Centrino Duo processor with 32-bit accuracy. The mean value is calculated 

in accordance with 95% confidence interval ratio. The best results among four algorithms are 

shown in bold. The averaged global best individual values versus generations for D is equal 

to 30 are shown in Fig. 3.45. 

Table 3.11(a) First test bundle results 

f 

fl 

f2 

n 

u 

fs 

n 

fr 

f> 

D 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 

c-PSO 
Mean 

0.1040±0.0659 
1.7684±0.2544 
3.8334±0.3806 
-0.9483±0.0158 
-1.533±0.0485 
-2.0261±0.0692 
0±0 
9.6e-30±7.0e-30 
6.3e-26±l.le-25 
-l±2.2e-18 
-l±2.15e-17 
-l±5.14e-14 
0.0915±0.0093 
0.0586±0.0478 
0.2238±0.1616 
8.6760*0.7852 
38.4849±2.1134 
84.6011±4.6683 
1.2868±0.3710 
2.6809±1.7206 

7.7424±4.S362 
836.04±61.8981 

2.375e+3±l 12.69 
4.146e+3±177.38 

tcpu 
1.612 
1.964 
2.406 
1.557 
1.938 

2.318 
4.288 
6.586 
7.893 
1.468 
1.78 
2.136 
2.174 
2.577 
3.043 
2.133 
2.635 
3.146 
1.714 

2.08 
2.524 
2.732 
4.222 

5.451 

w-PSO 
mean 

2.5e-15±9.9e-17 
0.0231±0.0322 
0.0266±0.0374 
-0.9970±0.0041 
-1.9512±0.0162 

-2.8167±0.0286 
7.8e-33±1.2e-32 
2.4e-29±2.5e-29 
3.6e-28±2.8e-28 

-1±0 
-l±1.7e-17 

-l±5.4e-18 
0.0742±0.0075 
0.0291±0.005 
0.0153±0.0035 
5.1837±0.5259 
23.7496±1.6545 
53.5088±2.5935 
3.5771*1.6449 
25.5461±9.9943 
36.2898±8.5554 
842.7311±59.72 
2.1577e+3±101 

3.62e+3±158.35 

tcpu 
1.5219 
1.7922 
2.163 
1.4688 
1.74 
2.11 
1.9672 
2.125 
2.458 
1.371 
1.593 
1.877 
2.075 
2.396 
2.835 
2.055 
2.483 
3.004 
1.707 
2.101 
2.549 
2.185 
3.093 
3.945 

10 2.043e-247±0 2.136 2.3e-230±0 2.186 
f9 20 1.7e-62±2.36e-62 2.35 1.0e-40*1.9e-40 2.369 

30 4.85e-20±9.4e-20 2.642 2.3e-ll±2.6e-ll 2.685 
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Table 3.11(b) First test bundle results 

f 

fl 

fl 

n 

u 

fs 

u 

fi 

A 

A 

D 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 

S-PSO 
Mean 

3.258e-4±4.5e-5 
0.0013±1.8e-4 
0.0027±3.7e-4 
-0.9998±3.1e-5 
-1.9979±2.1e-4 
-2.9942±5.1e^t 
1.308e-7±3.1e-8 
4.8e-6±7.0e-7 
2.98e-5±3.5e-6 

-l±1.5e-6 
-0.9999±9.2e-6 
-0.9998±1.9e-5 
0.0549±0.0046 
0.0222±0.0041 
0.0166±0.004 
0.0398±0.0389 
2.82S9±0.6476 
14.1188±2.24 

5.5279±2.9 
32.501±9.5 
68.0813±19.3 
815.1561±64.3 
2.1798e+3±120.9 
3.47e+3±149.3 
1.819e-5±3.1e-6 
0.001 l±9.6e-5 
0.01±6.15e-4 

tcpu 
1.634 

1.95 
2.307 
1.568 
1.883 
2.255 
1.852 
2.081 
2.378 
1.422 
1.625 
1.901 
2.125 
2.483 
2.946 
2.111 
2.537 
3.033 
1.6742 
2.072 
2.495 
2.232 
3.021 
3.781 
2.132 
2.358 
2.673 

v-PSO 
mean 

1.84e-15±2.9e-16 
2.84e-15±1.5e-16 

4.93e-15±3.4e-16 
-1±0 
-2±0 

-3±0 
2.5073e-22±le-22 
1.0444e-16±2e-17 
9.2336e-14±le-14 
-1±0 

-l±3e-18 
-l±le-17 

0.0209±0.006 
0.0026±0.002 
8.8568e-4±0.001 
0±0 
0±0 
5.6843e-16±le-lS 

1.0818±1.349 
6.5075±4.554 
31.5511*8.43 
620.8131±50.4 
1.3384e+3±68.5 

2.1395e+3±103J 
0±0 
7.6e-102±le-101 
2.5575e-41±3e-41 

tcpu 
1.717 
1.957 
2.296 
1.644 

1.921 
2.26 
2.031 
2.282 
2.614 

1.55 
1.771 
2.039 

2.251 
2.553 

2.991 
2.21 
2.621 
3.068 
1.922 
2.317 

2.75 
2.371 
3.128 

3.971 
2.924 

2.625 
2.915 

The best performance belongs to v-PSO in 22 test cases over 27 test cases of the 

function evaluations fi,f2,f4,fs,f6,fs,f9. The best performances of/j seem to be c-PSO and w-

PSO in accordance with the dimension. The best performances off? belong to c-PSO and v-

PSO related to dimension. Usually c-PSO has shorter generation numbers to converge a local 

optimum than w-PSO and g-PSO. This is a typical result because c-PSO guaranties 

convergence to an optimum but not necessarily a global one. After a while it loses its 

diversity and tackles local optimum positions. However c-PSO shows the best performance in 

unimodal Rosenbrock test function. The second best performance of Rosenbrock function is 

v-PSO. w-PSO and g-PSO seems to have similar performance characteristics. g-PSO has the 

second best performance for fh f2, f5, f6, fs function evaluations. c-PSO is the second best 

algorithm forf3 andyj,. The CPU times required to 200,000 function evaluations for each 

algorithm are close to each other except f8 function evaluation. Although c-PSO 

outperformed for 10-dimensional case of/j function the required CPU time for c-PSO is the 

longest one among others. The accuracy and the efficiency superiorities of v-PSO can be 

clearly seen in Fig. 3.1. It converges within 102 or 103 generation number to the values which 

other ones converge about 104 generation number. 
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Figure 3.45 Averaged best function values versus generations for test functions. 

Fixed Evaluation Rate-Fixed Dimension Rate 

The averaged best function values versus population sizes such as 10, 20, and 30 for D 

is equal to 30 are shown in Fig. 3.46 and in Table 3.12. The mean value is calculated in 

accordance with 95% confidence interval ratio. The best results among four algorithms are 

shown in bold. The similar results are observed comparing with the previous analysis. v-PSO 

has the best performance in the function evaluations offl,f2,f4,f5,f6,fa,f9. w-PSO has the best 

performance in f3 function evaluation. c-PSO and v-PSO are the best related to population 

sizes in/7 function test. Fig. 3.46 shows an interesting result in the relationship between the 

performance and the population size. Generally v-PSO has similar performances for all 

population sizes. It means that v-PSO provides better efficiency in lower population sizes. 

However, the other algorithms' performances significantly depend on the population. 

Typically, larger population size means better performance for them except for v-PSO. The 
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main reason for this result is that v-PSO provides enough diversity within the population even 

in low population size. The other algorithms need larger population size to have enough 

diversity in the population. 

f 

fl 

h 

h 

A 

f> 

A 

h 

A 

f> 

p -

10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 
10 
20 
30 

Table 3.12 Second test bundle results 
c-PSO 
mean 

9.412±0.6149 
4.6684±0.4644 
2.2994±0.2776 
-1.4844±0.0918 
-1.9673±0.0767 
-2.1842±0.071 
0.0037*0.0037 
9.5e-27±1.2-e26 
6.6e-27±1.3e-26 

-l±8.8e-5 
-l±2e-13 
-l±le-16 

0.8154±0.275 
0.1233±0.064 
0.0431*0.01 

104.3609±5.25 
81.8152±3.98 
73.6367±3.7 

83.5977*18.45 
3.0857*0.75 
12.6086*4.19 

4.6531e+3±142 
3.978e+3±149 
3.7372e+3±140 
1.39e-5±2.7e-5 
4.38e-21±7e-21 
2.13e-19±2e-19 

w-PSO 
mean 

1.5913*0.4344 
0.0902*0.067 
0.0116*0.023 
-2.6113*0.05 
-2.833*0.03 
-2.8714*0.03 

9.35e-26±9e-26 
4.58e-28*3e-28 
1.70e-28±le-28 

-l±le-17 
-l±3e-18 
-l±2e-18 

0.0339*0.01 
0.0167*0.003 
0.0153*0.003 
69.9753*3.63 
52.8919*2.42 
44.8626*2.45 

105.1452*56.29 
59.968*23.31 
74.1099*20.47 
3.9629e+3±161 
3.5837e+3±147 
3.4045e+3±134 
1.021e-9±2e-9 

2.57e-ll±2e-ll 
1.2e-7±1.2e-7 

g-PSO 
Mean 

0.0803*0.096 
0.0026±3.7e^» 
0.0027±3.9e-4 
-2.996±3.3e^» 

-2.9937*6. le-4 
-2.9928±7.3e-4 
4.4497e-5±4e-6 
3.49e-5±1.3e-6 
2.9598e-5±4e-6 
-0.9999±le-5 
-0.9998*1.74 
-0.9997±2e-5 
0.0223*0.005 
0.0155*0.003 
0.0153*0.003 
12.1629*2.31 
13.5722*1.77 
15.4020*1.98 

133.3642*62.5 
93.8152*53.8 
72.2343*17.6 

3.6985e+3±194 
3.5119e+3±188 
3.5136e+3±152 

0.0059±3e^t 
0.0105±6e-4 
0.0161*0.001 

v-PSO 
mean 

4.583e-15±3e-16 
4.9738e-15±3e-16 
5.0449e-15*3e-16 

-3*0 
-3*0 
-3*0 

6.5765e-17±le-17 
8.7906e-14±le-14 
2.8231e-12±5e-13 

-l±le-17 
-l±le-17 
-l±le-17 

0.0016*0.002 
0.0011*0.001 

5.9021e-4*0.001 
0*0 

1.1369e-15±le-15 
5.6843e-16*le-15 

30.9127*7.5 
28.2183*6.7 
23.0551*5.2 

2.2246e+3±123 
2.1888e+3*110 
2.2258e+3±107 
6.39e-58±8e-58 
1.48c-41±2e-41 
4.52e-32±4eJ2 

-0.9998 

-0.9999 / 

/ 
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Figure 3.46 Averaged best function values versus population sizes for selected test functions. 
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Conclusions 

Vibrational PSO is shown to be a good remedy to catch the big wave toward the global 

optimum. Its efficiency is clearly observed in the multi-modal functions tested herein. v-PSO 

tends to decrease the required objective function evaluations down to %50 or even less and it 

yields more accurate results than the other selected algorithms for comparison. 

Further, the performance of these selected algorithms seems to depend on die 

population size. Their performance improves when the population size is increased, which, in 

turn, affects the diversity in the population. What is demonstrated in the present paper is that 

v-PSO is virtually independent of the population size. It does not need more individuals 

because the periodic mutations provide enough diversity in the swarm. 

3.6 Aerodynamic Optimization of 2D Airfoil in Transonic Flow 

New improved v-PSO algorithm variants are directly applied to an engineering problem 

and compared with other current three algorithms namely c-PSO, w-PSO, and g-PSO. The 

selected engineering issue is shock wave reduction problem in 2D aerodynamic optimization. 

Background and Literature Review 

Several different search methods are studied to solve shock wave reduction problem 

besides gradient-based algorithms, such as simulated annealing, ant colony optimization, 

artificial neural networks, and genetic algorithms to solve aerodynamic problems. Another 

approach that is gaining popularity is PSO algorithm. In recent studies PSO algorithms are 

applied to design wing in structural and aerodynamical objectives. Tan et al. [110] 

demonstrated the fast convergence capabilities of both the swarm and the evolutionary 

algorithm (EA) of airfoil shape optimization problems. In his comparative study the EA 

exhibited marginally higher efficiency over the swarm for single objective airfoil design 

problems while the swarm performed better on the multiobjective examples. Ng et al. [ I l l ] 

and Ray et al. [112] have demonstrated that PSO algorithm is capable of handling different 

forms of airfoil shape optimization problems. Venter et al. [113, 114] presented that the 

particle swarm optimization algorithm is able to reliably find the optimum design and it is 

capable of dealing with die unique challenges posed by multidisciplinary optimization as well 

as the numerical noise and truly discrete variables present in the optimization of a typical 

transport aircraft wing. He also demonstrated an example of using parallel computing in a 

synchronous and asynchronous manner. Khuranal et al. [115] showed that particle swarm 

optimization and artificial neural networks can be coupled in a surrogate model approach. 

However, these studies also showed that PSO algorithm needs to be more efficient than in die 

current forms. Our improved algorithms are used to solve shock wave reduction problems of 
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NACA64A410 airfoil at 2"angle of attack, Mach number with 0.75, and Re number with 

6.5xl06. 

Airfoil Representation and Flow Solver 

An airfoil curve is represented by two Bezier curves including upper and lower curves 

and each Bezier curve is governed by m control point which is equal to 12. Initial populations 

are generated by using a random number operator based on NACA64A410 airfoil control 

points. The two control points (0, 0) and (1, 0) at the leading and trailing edges are fixed. It is 

commonly considered that the *, control point axis is fixed, and the design parameters are 

only the>>, coordinates of the control points. Therefore, totally 22 design parameters for upper 

and lower curves are taken to be optimized. 

During the optimization process relatively cheap computation solver is used. In this 

approach, the pressure coefficient (Cp) and pressure distribution around an airfoil for inviscid 

compressible flow can be determined by solving Euler equations instead of full Navier-Stokes 

equations. For 2D flows around an airfoil, using finite volume technique and Roe flux 

splitting scheme the time dependent compressible Euler equations were solved. Similarly 

computationally cheap elliptic partial differential equation solution method is used to generate 

a structured O-mesh grid domain around an airfoil. However, CFL3D v6.4, Navier-Stokes 

code for solving 2D flows on structured grids was used to perform the numerical validation of 

the simulations. CFL3D solves the time-dependent conservation law form of the Reynolds-

averaged Navier-Stokes equations. The spatial discretization involves a semi-discrete finite-

volume approach. Due to high Reynolds number, the flow was assumed fully turbulent. One-

equation Spalart-AUmaras model was used to compute turbulent eddy viscosity. The 

commercial CFD meshing software, GridGen v 15.06, was used to generate the computational 

grid with clustering in the normal direction. The resolution of the utilized C-type 

computational grid is 281x121. Normal spacing for the first grid line of the surface of the 

airfoil was 0.00001c where c is the airfoil chord length. The generated grid structures for 

original airfoil shape are depicted in Fig. 3.47(a) and 3.47(b). 

Figure 3.47(a) Structured O-type grid around NACA64A410 airfoil 
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Figure 3.47(b) Structured C-type grid around NACA64A410 airfoil 

Objective Function 

The objective function values are based on drag (Co) and lift (CL) coefficients ratio. 

However, the maximum thickness of an airfoil is bound with design maximum thickness 

value. The objective function/to be minimized, 

/ = ^ + 10 (CL-CJ+100 (t'-t)2 

c„ = 
if 

if cL<c\ 

(3.41) 

where CL and t are the design lift coefficient, equal to 0.885, and design maximum thickness 

ratio, equal to 0.1, respectively. During the optimization processes the same flow conditions 

are taken into consideration. 

Methodology 

The baseline airfoil shape is optimized in accordance with given flow conditions by 

using five PSO algorithms including c-PSO, w-PSO, g-PSO, v-PSO, and mv-PSO. v-PSO 

does just include the first vibrational mutation operator given in Eq. (2.44). mv-PSO includes 

both vibrational mutation operators. It is also supported by neural network application 

expressed in terms of controlled diversity. The swarm size is selected as 10; the maximum 

generation number is selected as 100. The problem dimension is fixed to 22 as the control 

points of Bezier curves. The other features peculiar to the algorithms are given in Table 3.13. 

All algorithms are run 20 times and the averaged global best particle values versus 

computational fluid dynamics (CFD) calls are taken into consideration for fair comparison. 

Additionally, the schematic diagram of mv-PSO (it also includes v-PSO) is depicted in Fig. 

3.48. 
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Table 3.13 The features of PSO algorithms 
Algorithm Cl Cz D,„ A. 

c-PSO 
w-PSO 
g-PSO 
v-PSO 

mv-PSO 

-
wini= 0.6; wend= 0.2 
w,„,= 0.6; wend= 0.2 
w,„,= 0.6; wend= 0.2 
w,m= 0.6; wend= 0.2 

2.05 
2 
2 
2 
2 

2.05 
2 
2 
2 
2 

10" 
/;=15 ^1=0.5 

f,=15,f2=2 ^,=0.5M2=0.5 

In mv-PSO application, two networks are trained after threshold generation point (in the 

implementation threshold is selected as 10th generation) by using the particles in the current 

and previous swarms and their cost function values. The first network is trained for CL 

estimation. The second network is trained for CD estimation. However the training set is 

limited to certain number (in the implementation the training set is limited with the last 100 

data set which means the last 10th generations). 

Initial swarm 
Generation 

6 

New 
Swarm 

Objective function 
Evaluations 

Neural Network-CL 

Neural Network-CD 

Pt updates 

Pg updates 

Particle Updates 

Global random . . . 
Diversity - Tool H 

K> Local controlled 
Diversity - Tool 

Results 

Figure 3.48 Flow chart of mv-PSO 

The optimization process results are depicted in Fig. 3.49. In this figure averaged global 

best particle objective function value and CFD calls are plotted. Among the classical PSO 

algorithms including c-PSO, w-PSO, and g-PSO the best performance belongs to w-PSO 

algorithm. It reaches the value of 24.08 in terms of l/averaged/„,„ at 100th generation which 

means 1000 CFD calls. c-PSO is the poorest algorithm reaching the value of 22.13 at 100th 

generation. c-PSO is seriously suffered from the lack of diversity and trapped by local 

optimums. The performance of g-PSO is close to w-PSO. However, it is not good as w-PSO. 
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On the other hand, v-PSO outperforms the regular PSOs. It reaches the value of 24.1 at 56* 

generation which means 560 CFD calls. This result also means 44% decrease in required 

generations comparing with w-PSO. After 45th generation v-PSO shows the efficiency of 

mutation applications and escapes from trapped regions. At the end of optimization process v-

PSO reaches the value of 24.89. 

CFD calls 
Figure 3.49 Optimization process results for PSO algorithms 

mv-PSO does outperform all algorithms. After 13th generation the controlled diversity 

tool shows its affects on optimization process. This is an expected situation because the 

activation of neural nets starts with 10th generation. After this threshold generation, the local 

controlled diversity tool places new individuals into a swarm and these particles accelerate the 

optimization process. The random global diversity tool also provides global search capability 

to the algorithm. mv-PSO reaches the value of 24.19 at 36th generation. This means 64% 

decrease in required CFD calls comparing with w-PSO. Additionally, it reaches the value of 

24.89 at 44th generation which means 440 CFD calls while v-PSO reaches the same value at 

1000 CFD calls. In this comparison mv-PSO decreases 56% of the required CFD calls. mv-

PSO provides the value of 26.39 at 100th generation. 

In Table 3.14 and Table 3.15 the original and an example optimized airfoil features are 

presented in accordance with Euler solver and CFL3D solver, respectively. The validation 

results show that using Euler solver in optimization process provides correct direction for the 

search. This is beneficial because using a cheap CFD code is crucial for a short design cycle. 

According to the Euler solver results, the optimization process keeps the lift coefficient 

almost fixed while decreasing the drag coefficient by 40%. This results in a 65% increase in 

CJCD ratio. On the other hand, CFL3D results show that the optimization process has a little 

bit deficiency on keeping the lift coefficient fixed. The process decreases lift almost by 3% as 
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compared with the original value. However, it also decreases the drag coefficient by 57% 

which is very effective. This results in a 122% increase in CJCD ratio. 

Table 3.14 Aerodynamic feature comparisons in accordance with Euler solver 
Euler solver 

QL Co Ci/Cp 
Original 0.8847 0.0578 15.3062 
optimized 0.8860 0.035 25.31 

Table 3.15 Aerodynamic feature comparisons in accordance with CFL3D solver 
CFL3D solver 

CL Op Cj/Cj) 
Original 0.7036 0.03332 21.11 
optimized 0.6814 0.01450 47 

In Fig. 3.50(a) the original and optimized airfoil shapes are depicted. In Fig. 3.50(b) the 

typical pressure coefficient distributions are shown. Based on Euler solver results of Cp 

distribution here we can say that the optimization process almost eliminates the shock wave. 

However, CFL3D results show that the situation is a bit different. Fig. 3.51 shows Mach 

counters around airfoils based on CFL3D solution result. On the left side of this figure, Mach 

counters are cumulated around 0.6c on the original airfoil surface. This area is a strong 

normal shock wave region. On the left side, we see that strong normal shock is divided and 

the first part is located around 0.5c on the optimized airfoil surface. This is a relatively softer 

shock wave. After a soft shock wave, the flow accelerates and goes down through the trailing 

edge. We recall that this result is an example result. In stochastic optimization process the 

results are almost always different due to a random nature of algorithms. Therefore, each time 

different airfoil shape is formed at the end of optimization process, as shown below. 

o.os 

o 
p 0.04 

0 

-0.04, 

0 0.2 0.4 0.6 0.8 1 
X/C 

Figure 3.50(a) Original and typical optimized airfoil shapes. 

^ ^ ^ ^ ^ CfftrtEdtMbl 
OH0BINACAMM1O 
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Figure 3.50(b) Typical pressure coefficient distributions for original and optimized airfoils 
(Euler based on the left side, CFL3D based on the right side) 

x/c x/c 
Figure 3.51 Mach number counters around original (left side) and optimized airfoils. 

Conclusions 

In this application v-PSO decreases the required objective function evaluations down to 

%44 compared with the closest result achieved by w-PSO. However, the diversity provided 

by vibrational mutation operator is a global random diversity. In some cases this type of 

diversity may not be enough to catch the correct wave. In addition to global random diversity 

the local controlled diversity combining with elite particles in the swarm and neural nets may 

help faster convergence. mv-PSO is a promising algorithm for faster and more accurate 

results in long but real optimization processes. This neural network supported algorithm 

provides a 64% decrease in required CFD calls. Both v-PSO and mv-PSO are still population 

based evolutionary algorithms and promising candidate solution methods for other 

optimization problems. 

f . . . 1 . . . 1 1 . . . 
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3.7 Optimization of AFC on an Airfoil at Transonic Regime 

Introduction 

Engineering design of an airplane wing roughly consists of three stages: 1) conceptual 

design such as determining the span length, maximum thickness, taper ratio, sweep angle, and 

aspect ratio; 2) preliminary design including airfoil shape and its optimization; and 3) detailed 

design including the detailed plan for manufacturing of the wing. In a preliminary design 

phase, designers start with a good baseline design and then improve its performance by using 

some optimization techniques. For transonic commercial aircraft wing design, the primary 

goal is to improve the wing performance at the cruise conditions without severe penalty at 

off-design conditions. The main issue in this stage is a shock wave reduction problem. A 

wave drag is caused by the formation of shock waves around the wing. Shock waves radiate 

away a considerable amount of energy that is experienced by the aircraft as drag. The 

magnitude of the rise in drag is impressive, typically peaking at about four times the normal 

subsonic drag. Due to this energy consumption, it is highly beneficial to eliminate the effects 

of shock wave at design phases. It may be worth recalling that a mere 10% reduction in the 

total drag of an aircraft translates into a saving of billions in annual fuel cost for the 

commercial aircraft in the world [116]. Optimization is a key concept to reduce the effects of 

shock wave and it is heavily based on the reforming of an airfoil shape in a passive way. 

Although, passive control enhances the aerodynamic performance at the design point, it may 

have harmful effects at off-design conditions. Furthermore, it may not be practically 

applicable for the current designs in service. An Active flow control may be an alternative 

remedy. In this context, active flow control may offer new solutions for the performance 

maximization of existing designs [117]. 

Active Flow Control (AFC) has been the subject of the major research areas in fluid 

mechanics for more than the past two decades. There are lots of studies to enable active flow 

control benefits on airfoils at subsonic speeds [118-120]. However, there are a few studies 

related to shock wave reduction problems based on active flow control at transonic flows. The 

small disturbance close to the shock can result in large changes in the aerodynamics of the 

airfoil at transonic and supersonic speeds [121]. Experimental study by Smith and Walker 

[122] has shown that applications of strong suction in the strong adverse pressure gradient 

increases lift. Qin and Zhu [123] showed that lift could be increased by application of suction 

in the vicinity of the shock; however, this is obtained with an increase in drag. Injection of 

momentum accelerates the inviscid outer flow over the airfoil ahead of the shock induces 

weak compression waves that soften the adverse pressure gradient [124]. In those studies, 

only one actuator was used for suction/blowing. As a result of this study, it was seen that one 
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actuator is not enough to obtain the desired goal. Vadillo and Ramesh [125] have investigated 

the same result that three synthetic jet actuators on the upper surface of the airfoil were 

needed to achieve the goal of enhancement in L/D with minimum change in transonic drag. 

Although AFC provides such degrees of improvements, the sensibility of aerodynamic 

performance to active flow control design parameters makes it a nontrivial and expensive 

problem [126]. Therefore, the designer has to optimize a number of different parameters 

related to active flow control. Yagiz and Kandil [127] evaluated the capability of weakening 

the shock waves to improve the aerodynamic performance in transonic conditions by using 

surface suction/blowing on airfoils via gradient-based optimization process. They selected the 

suction/blowing speed and angle as design parameters for different number of control points 

keeping the locations fixed. However, the missing parameter, the location of actuator is also 

an important design variable for such a case. 

The desired goal in this study is to improve the aerodynamic performance on airfoils in 

transonic conditions by using optimization of surface suction/blowing parameters. For this 

reason a non-gradient based global optimization algorithm, Particle Swarm Optimization 

method is used to search the optimal design variables. We also compared the results by using 

gradient-based algorithm for selected cases. During the optimization process time-dependent 

turbulent Spalart-Allmaras model in CFL3D developed at NASA Langley Research Center is 

used for solving 2D flows on structured grids. Computations were performed for flow past a 

NACA64A010 airfoil in transonic flow at Mach 0.78, angle of attack 0.5° with and without 

AFC. The NACA64A010 airfoil was tested by Smith and Walker [122] at transonic speeds 

with surface suction. This test was used to validate the numerical study. 

Numerical Model for Flow Analysis 

An existing Navier-Stokes solver, CFL3D v6.4, for solving 2D/3D flows on structured 

grids was used to perform the numerical simulations. CFL3D solves the time-dependent 

conservation law form of the Reynolds-averaged Navier-Stokes equations. An implicit 

approximately factored, finite volume, upwind and multigird algorithm is used for the 

solution. Due to high Reynolds number, the flow was assumed fully turbulent. One-equation 

Spalart-Allmaras model was used to compute turbulent eddy viscosity. The governing 

equations, which are the thin-layer approximations to the three-dimensional time-dependent 

compressible Navier-Stokes equations, can be written in terms of generalized coordinates as 

dQ t d(F-FJ | d(G-Gv) | d(H-Hv) 
8t d<* dt] df 

(3.42) 
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A general, three-dimensional transformation between the Cartesian variables (x, y, z) 

and the generalized coordinated (£ //, f) is implied. The variable J represents the Jacobian of 

the transformation: 

J = 
d(x,y,z,t) 

(3.43) 

In Eq. (3.42), Q is the vector of conserved variables, density, momentum, and total 

energy per unit volume, such that 

J J 

P 
pu 
pv 
pw 

(3.44) 

The inviscid flux terms are 

J J 

pU 

pUu + £xp 
pUv+4yP 

pUw+^p 

(e + p)U-4,p 

J J 

pv 
pVu + ijxp 

pVv+t]yp 
pV\V+TJzp 

(e + p)V-7jlP 

J J 

pW 

pWu + Cxp 
pWv+,Zyp 

pWw+£zp 

{e+p)W-ZlP 

(3.45) 

The contra variant velocities are given by 

tf = £« + £ v + £ w + £ 

V = t]xu + T]yv+r]2w+T}l (3.46) 

The viscous flux terms are 

&*+&„ + &* 
4A+4yby + 4A 

H.=-
J 

v J J 

0 

nA+iyby+iA 

(3.7) 

The shear stress and hear flux terms are defined in tensor notations (summation 

convention implied) as 
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T „ =-
M„ 

Rer 

**=VV, 

ydxj dx, dxk " 

(3.48) 

%=~ 
M„n 

Re, ft(r-l) cfct. 

The pressure is obtained by the equation of state for a perfect gas 

P = (y-l) e-^(u2+v2+w2) 
2 

(3.49) 

The above equations have been nondimensionalized in terms of the free-stream density, 

px , the free-stream speed of sound, am and the free-stream molecular viscosity, JJ^. The 

chain rule is used to evaluate derivatives with respect to (x, y, z) in terms of (£ r\, £)• 

Consistent with the thin-layer assumption, only those derivatives in the direction normal to 

the wall (0 are retained in the shear stress and heat flux terms. Eq. (3.42) is closed by the 

Stokes hypothesis for bulk viscosity (X+2ju/3=0 ) and Sutherland's law for molecular 

viscosity. The details of the code can be found in the reference by Rumsey et ah [128]. 

The actuator is modeled as a boundary to accurately compute the mass flow through a 

solid boundary. A constant rate of change in mass flow, Cqu, is established. Mass flow 

coefficient, Cq, is gradually increased from zero to a constant value within Ts, time for stable 

initiation and then Cq will remain fixed. It is also defined as the ratio between the boundary 

and free stream mass flows. 

C = 

]cqjt 
0 

(pu) 
(P«)„ 

(3.50) 

A two-level multi-grid technique was used to achieve the convergence acceleration. 

The calculation is initiated from a steady state solution obtained for the flow in the absence of 

any jets. Then, the control cases are started from this steady solution until the residual value 

goes to 10"9. 

Optimization Algorithms 

In this study two different optimization algorithms are used. The first one is v-PSO. The 

details of the algorithm were given in the previous section. During the optimization processes 

the swarm size, S, is taken as 10, the inertia weight, w, is decreased linearly starting from 0.6 

and ending to 0.3 related to maximum iteration number, G which is equal to 100. The 
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mutation frequency,^, is equal to 5, scale factor, A, is equal to 0.5, c, is equal to 2, c2 is equal 

to 2. In computational phase two-level parallelization is implemented. The first parallelization 

is applied in the swarm. Each particle objective function value within the swarm is computed 

on different processors in a parallel way. The flow solver code is also appropriate for parallel 

computing. Therefore, the second level parallelization is applied in flow solver. 

As a second optimization algorithm, sequential quadratic programming (SQP) is used. 

SQP is one of the most powerful methods among the mathematical nonlinear programming 

techniques. However, it has a major distinguishing disadvantage convergence toward local 

optimum point. Non-gradient based methods such as PSO have the quality to escape from the 

local minimums. To escape from the local minimum, many initial points for all cases were 

used in this study. In this method, we first generate a quadratic approximation to the objective 

function using the Taylor series expansion of the objective function. The solution of the 

quadratic problem is used to determine the search direction at a given point. The quadratic 

problem is expressed as follows: 

minVf(x)Ts + -dTHs 

subject to (3.51) 

Vgj(x)Ts + gj(x)<0 

The search direction vector, s, is the design variable for this quadratic problem. The 

matrix H is initially the identity matrix, which is a positive definite matrix. To approach the 

Hessian of the objective function H is updated on the subsequent iterations [129]. Gradient 

based optimization process is summarized as follows: 

r / = 0,* = *° 

|- I = J + 1 

Calculate f(x,x),gj(x'A),j = \,m 

Identify the set of critical constraints, Jc 

Evaluate Vf(x" ),Vgj{x'A),j eJc 

Determine a search direction, s 

Investigate a one dimensional search to find, a 

Set x' =x'A+as 

L Check for convergence, if not go to second step. 
LStop 
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Design Parameters and Objective Function 

A nonlinear-constrained optimization problem for an airfoil can be expressed as 

follows: 

min / =£2. 
XeR° CL 

subject to: (3.52) 
-CL+C'L<0 

xL < x < xu 

where CL* is the design lift coefficient. In PSO algorithm the cost function description can be 

converted into unique equation by using weighting number such as 

/=^+io(c;-c i2)2;c > ; v c*<r\ 
«*D cL [cL if cL< cL\ 

In both optimization processes the following design parameters are used: mass flow 

coefficient, Cq, centre location of actuator, xc, and suction/blowing angle relative to the local 

tangent, p. Depending on the number of actuators used in AFC the design parameter vector x 

is composed of different combinations based on given parameters. In the first three test cases 

the centre locations of the actuators are kept fixed, the velocities and angles are selected as 

design variables. However, for the last three cases the locations of the actuators are also 

selected as additional design variables. For all cases the width of the actuator is kept fixed as 

0.035c used in experiment. The design variables and fixed locations for the first three cases 

are depicted in Fig. 3.52. The first location, 0.7075c, is selected as a validation point. This 

location is used by Smith and Walker [128] in their experimental studies as the hinge line of 

the trailing edge flap. The third location, 0.5125c, is placed in behind of the shock wave. 

Under selected flow conditions the center of normal shock wave is occurred about 0.5100c. 

The second location, 0.61775c, is placed between the first and the third locations. 

Grid Generation 

Two dimensional, 10% thick symmetric NACA64A010 airfoil was utilized. Two 

different grid morphologies are used during the simulations. The first one is the grid with 

clustering in the normal direction and in the vicinity of jets to resolve the details of the flow 

for the first three cases. The second grid is used for the last three cases and the travel area of 

the actuator locations between 0.5500c and 0.9600c is made dense. The resolution of the first 

utilized C-type computational grid is 407x121; the second one is 449x121. Normal spacing 

for the first grid line of the surface of the airfoil was 0.000001c. Fig. 3.53 shows the grids 
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used in the simulations. The grid is divided into four sub blocks to implement the parallel 

computing for faster computation. 

0.05 

-0.05 

Figure 3.52 The design parameters for active flow control 

Figure 3.53 Computational grids used in simulations 

The NACA64A010 airfoil was tested by Smith and Walker [128] at different transonic 

speeds with surface mass injection downstream of the hinge line of the trailing edge flap. The 

validation cases used in this study had a Reynolds number of 2.9 million based on airfoil 

chord, Mx = 0.78, a — 0.5°, corresponding to one of the wind tunnel experiments. The region 

of suction was located between 0.69c and 0.725c which is downstream of the shock position 

without active flow control. The suction coefficient was -0.06429 and the suction angle was 

84° to the airfoil surface. 

Fig. 3.54 shows the comparison of the pressure distributions for both computation and 

experiment with and without flow control. Also, the solution sensitivity to the grid used is 

illustrated in Table 3.16. In numerical tests, three sets of grid and another computational result 

given by Quin et al. [130] have been used. Normalized first cell height, y+ values, based on 

the height of the first wall-bounded cell, are below unity for all meshes considered here. The 

solutions obtained on the course and fine grids are reasonably good. The results obtained on 

these three different grid sizes are reasonably grid-converged results and prove the solution 

sensitivity. The results are seen to be in qualitative agreement with experiment. As can be 
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seen from Table 3.16 the measured lift for the controlled case and drag for the non-control 

values are different than the present results. The reason may be due to the fixtures mounted on 

the airfoil in the experiment, which was not calculated in the computation. 

Table 3.16 Grid sensitivity for NACA64A010 aerofoil test cases 

without 
control 

with 
control 

grid size 
449 * 121 
407 * 121 
241 * 69 

Experiment7 

Computation 16 

449 * 121 
407 * 121 
241 * 69 

Experiment7 

Computation16 

cL 
0.2121 
0.2111 
0.2121 
0.2000 
0.2166 
0.2821 
0.2773 
0.2751 
0.2400 
0.2795 

cD 
0.01050 
0.01059 
0.01071 
0.01300 
0.01110 
0.01406 
0.01376 
0.01378 
0.01400 
0.01380 

Figure 3.54 Comparison of pressure distributions for NACA64A010 aerofoil without and 
with suction 

Results - Fixed location(s) Optimizations 

The effect of mass flow coefficient and angle for different number of actuators at fixed 

locations are investigated. For that reason three cases depending on the number of actuators 

are studied. At first only one actuator is considered. Then, the number of actuators is 

increased to two and finally three actuators are used to control the flow on the airfoil upper 

surface. 

One-actuator Optimization 

The center of suction/blowing actuator is placed on 0.7075c point. The design parameter 

vector and bounds are described as follows 

x=[Cqp\T 

-0.1 <Cq< 0.025 
3°<p<176° 

(3.54) 
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Due to the global nature of the PSO algorithm and relatively small number of design 

parameters, the optimization process takes only two generations. At the end of optimization 

Cq has taken the maximum suction velocity as -0.1 and /? became the minimum angle as 3° 

which is almost parallel to the local airfoil surface. The changes of aerodynamic coefficients 

such as CL and CD versus computational fluid dynamics (CFD) calls belong to the best 

particle are depicted in Fig. 3.55. According to these figures both coefficients are increased 

due to suction operation. However the aerodynamic performance based on L/D is also 

increased. The reason is that the increment in CL is larger than the increment in CD. After 

suction operation at optimal values CL is increased 9.76%, on the other hand CD is increased 

2.17%. As a result, the re-described objective function value (l/j) increases by 7.43%. The 

change in aerodynamic performance versus CFD calls in PSO is shown on the left side of Fig. 

3.56. The right figure in Fig. 3.56 depicts the same objective function change versus CFD 

calls in SQP optimization process. In this gradient based optimization process totally six 

different initial points (i.p.) are tested to escape from local optimums. After these six SQP 

optimization processes the same optimal values found in PSO process are determined. In PSO 

process a total of 20 CFD calls are needed to reach the optimal values. However in SQP 

processes a total of 66 CFD calls are needed to get the same optimal values. Additionally SQP 

processes are done in accordance with try and error approach. Therefore, the sequential 

computations are executed. Although sequential computations are implemented only the best 

SQP process and PSO process are compared in terms of computation time on the lower part 

of Fig. 3.56. One CFD call takes approximately 24 minutes based on Intel 2.4-gigahertz quad-

core processor. According to this figure PSO approach is much more time-efficient than SQP 

approach. 
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Figure 3.55 The change of aerodynamic coefficients during the generations 
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Figure 3.56 The change of aerodynamic performance in PSO and SQP 

Two-actuator Optimization 

The centers of suction/blowing actuators are placed on 0.7075c and 0.61775c points. 

The design parameter vector and bounds are described as follows 

x=[C,1yS1C<?
2^2f 

-0.1 <Cq'< 0.025 ( 3 5 5 ) 
3°<p<176° |'"1,2 

PSO optimization process takes only four generations. At the end of optimization Cq
U2 

have taken the maximum suction velocity as -0.1 and fi1'2 became the minimum angle as 3°. 

The changes of aerodynamic coefficients such as CL and CD versus CFD calls belong to the 

best particles are depicted in Fig. 3.57. Similar to previous operation both coefficients are 

increased due to suction operations. After suction operations at optimal values CL is increased 

16.86%, on the other hand CD is increased 3.21%. As a result l//is increased 13.25%. The 

change in aerodynamic performance versus CFD calls in PSO is shown on the left side of Fig. 

3.58(a). The right figure in Fig. 3.58(a) depicts the same objective function change versus 

CFD calls in SQP optimization process. Totally five different initial points are tested to 

escape from local optimums. After these five SQP optimization processes the same optimal 

values found in PSO process are determined. In the PSO process a total of 40 CFD calls are 

needed to reach the optimal values. However in SQP processes a total of 48 CFD calls are 

needed to get the same optimal values. Although sequential computations are implemented 
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only the best SQP process and PSO process are compared in terms of computation time in 

Fig. 3.58(b). Similar to previous optimization process the PSO approach is much more time-

efficient than the SQP approach. 
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Figure 3.57 The change of aerodynamic coefficients during the generations 
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Figure 3.58(b) The change of aerodynamic performance versus time in PSO and SQP 

Three-actuator Optimization 

The centers of suction/blowing actuators are placed on 0.7075c, 0.61775c, and 0.5125c 

points. The design parameter vector and bounds are described as follows 

x = [Cq
1 pl Cq

2 ? C9
3 f?f 

-0.1 <Cq' < 0.025 
3°<p<176° I'"1,2,3 

(3.56) 
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PSO optimization process takes eleven generations. At the end of optimization C,1'2'3 

has taken the suction velocity as -0.0864, -0.1, and -0.0977, respectively. /?'•2'3 became the 

minimum angle as 3°. The changes of aerodynamic coefficients such as CL and CD versus 

CFD calls belong to the best particle are depicted in Fig. 3.60. After suction operations at 

optimal values CL is increased 22.03%, on the other hand CD increases by 4.82%. As a result 

l//"increases by 16.46%. The change in aerodynamic performance versus CFD calls in PSO is 

shown on the left side of Fig. 3.59. The right figure in Fig. 3.59 depicts the same objective 

function change versus CFD calls in SQP optimization process. Totally four different initial 

points are tested to escape from local optimums based on the previous experience. After these 

four SQP optimization processes slightly different optimal values are determined. In SQP 

process all Cq variables are determined as -0.1 suction velocity, however all angle values are 

the same as they are in the PSO process. In SQP process the aerodynamic performance is 

16.26% which is slightly smaller than it is in the PSO process. A total of 110 CFD calls are 

needed to reach the optimal values in PSO process. However in the SQP processes a total of 

65 CFD calls are needed to get the same optimal values. The best SQP process and PSO 

process are compared in terms of computation time on the lower part of Fig. 3.59. Although 

SQP is more efficient than the PSO process in terms of CFD calls, the PSO approach is more 

time-efficient than the SQP approach. 

24, . . . 1 24r 

22 

* 20 

18 

16 

i f~ 

7| 

i i i 4.
 

-1
 1 

4- 
-

1 1 

PSO 

^ 20 

40 80 120 
CFD calls 

160 0 10 20 
CFD calls 

5 20 

96 192 288 384 480 600 
t (minutes) 

Figure 3.59 The change of aerodynamic performance in PSO and SQP 



117 

0.28 

0.27 

0.25 

cr1 

0.23 

0.21 

0 40 80 120 160 0 40 80 120 160 

CFD calls CFD calls 

Figure 3.60 The change of aerodynamic coefficients during the generations 

Results - Variable Location Optimizations 

The effect of mass flow coefficient, angle, and the location of center of actuator for a 

different number of actuators are investigated. Similar to previous case studies three cases 

depending on the number of actuators are studied. At first, only one actuator is considered. 

Then, the number of actuators is increased to two, and finally three actuators are used to 

control the flow on the airfoil upper surface. 

One-actuator Optimization 

The design parameter vector and bounds are described as follows 

x=[Cqpxcf 
-0.1 <Cq< 0.025 

3°<p<176° *• ; 

0.55c <xc< 0.96c 

PSO optimization process takes only four generations. At the end of optimization Cq 

has taken the maximum suction velocity as -0.1, /? became the minimum angle as 3°, and the 

location arrived at 0.5561c which is close to shock wave. These are the same as the fixed 

location case except the location. However the remaining story is different. The changes of 

aerodynamic coefficients such as CL, CD and the aerodynamic performance 1//" versus CFD 

calls belong to the best particle are depicted in Fig. 3.61. After suction operation at optimal 

values and optimal location CL increases by 8.02%, on the other hand CD decreases by 1.33%. 

As a result \lf increases by 9.46%. This result is reasonable better than fixed location 

optimization case for one-actuator. Another valuable point is that the drag is decreased due to 

location change. 
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Figure 3.61 The change of aerodynamic coefficients and performance during the generations 

Two-actuator Optimization 

The design parameter vector and bounds are described as follows 

-0.1 <Cq'< 0.025 

3°<0<176° | , = u (3.58) 

0.70c<Xc < 0.90c 
0.55c <xc

2< 0.65c 

To avoid the geometrical interaction 0.05c distance is kept between the actuators. PSO 

optimization process takes six generations. At the end of optimization both Cq variables have 

taken the maximum suction velocity as -0.1, similarly both p angles became the minimum 

angle as 3°, the first location xc
l arrived at 0.5724c which is close to shock wave and the 

second location xc
2 arrived at 0.7000c . These are the same as the fixed location case except 

the locations. The changes of aerodynamic coefficients such as CL, CD and performance \lf 

versus CFD calls belong to the best particle are depicted in Fig. 3.62. After suction operations 

at optimal values and optimal locations CL increases by 17.68%, on the other hand CD 

increases by 1.71%. As a result 1/fincreases by 15.69%. This result is much better than fixed 

location optimization case for two-actuator. 
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Figure 3.62 The change of aerodynamic coefficients and performance during the generations 

Three-actuator Optimization 

The design parameter vector and bounds are described as follows 
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x = [C/ fi1 x? C2 p1 x2 C,3 fi xcY 
-0.1 <Cq'< 0.025 

3°<0<176° |'-1A1
 ( 3 5 9 ) 

0.85c<Xc <0.96c 
0.70c<x2 <0.80c 
0.55c<xc

3 <0.65c 

Similar to previous case study, to avoid the geometrical interaction among the actuators 

0.05c distance is kept between the actuators. PSO optimization process takes eleven 

generations. At the end of optimization C,1'2,3 have taken the suction velocity as -0.1, -0.077, 

and -0.1, respectively. /?''2 '3 became the minimum angle as 3°, the first location xc
l arrived at 

0.5889c which is close to shock wave, the second location xc
2 arrived at 0.7700c, and the third 

location xc
3 arrived at 0.9600c. The changes of aerodynamic coefficients such as Q, CD and 

the performance l//-versus CFD calls belong to the best particle are depicted in Fig. 3.63. 

After suction operations at optimal values and optimal locations CL increases by 37.48%, on 

the other hand C# increases by 14.29%. As a result, \lf increases by 20.7%. This result is 

much better than fixed location optimization case for three-actuator. 
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Figure 3.63 The change of aerodynamic coefficients and performance during the generations 

Comparative Evaluations 

Both studies showed that the number of actuators and their locations have important 

effects on an aerodynamic performance. In Fig. 3.64 the relationship between the number of 

actuators and performance is depicted. Usage of more actuators on the airfoil surface provides 

more increase in aerodynamic performance. However this increase looks like an exponential 

curve. Selection of location of the actuator is also another emphasized point. Instead of 

determining the locations based on guess usage of optimized locations provide more efficient 

results. As can be seen in Fig. 3.64 using only two actuators at proper locations can provide 

almost the same level aerodynamic performance increase as the usage of three actuators. 
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Figure 3.64 The effect of location and the number of actuators on an aerodynamic 
performance 

On the other hand, using of actuator causes to change in the location of shock wave 

center. In all cases the location of shock wave center proceeded through downstream. On the 

left side of Fig. 3.65(a) the pressure counters are shown for fixed location case of one-actuator 

usage. Due to suction operation at 0.7075c point a local suction pocket is generated. Because 

of this local suction pocket the shock wave is located to 0.5625c which is much farther than 

the original place, 0.5100c. On the right side of Fig. 3.65(a) the pressure counters are shown 

for optimized location case of one-actuator usage. Similar to fixed location case suction 

operation at 0.5561c point a local suction pocket is generated. Because of this local suction 

pocket the shock wave is forwarded to 0.5350c. The effects of both suction operations on 

pressure coefficient can be seen in Fig. 3.65(b). Selected fixed location causes a sharp 

increase and then sharp decrease in Cp distribution. However suction at the optimal location 

causes relatively small and smooth decrease and then determinately increase in Cp 

distribution. In both operations forwarded shock wave locations are clearly observed 

comparing with no-suction case. 

Figure 3.65(a) The effect of actuator on pressure counters for one-actuator case 
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Figure 3.65(b) The effect of actuator on pressure coefficient for one-actuator case 

On the left side of Fig. 3.66(a) the pressure counters are shown for fixed location case 

of two-actuator usage. Due to suction operations at 0.7075c and 0.61775c points two 

separated local suction pockets are generated. Because of these local suction pockets the 

shock wave is located to 0.5400c. On the right side of Fig. 3.66(a) the pressure counters are 

shown for optimized locations case of two-actuator usage. Suction operations at 0.5724c and 

0.7000c points a unified local suction pocket is generated. Because of this local strong suction 

pocket the shock wave is forwarded to 0.5500c. The effects of both suction operations on 

pressure coefficient can be seen in Fig. 3.66(b). Selected fixed locations cause to sharp 

increases and then sharp decreases in Cp distributions. However suction operations at the 

optimal locations cause to relatively smooth decrease and then determinately increase in Cp 

distribution. In both operations forwarded shock wave locations are clearly observed 

comparing with no-suction case. 

Figure 3.66(a) The effect of location on pressure counters for two-actuator case 
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Figure 3.66(b) The effect of location on pressure coefficient for two-actuator case 

On the left side of Fig. 3.67(a) the pressure counters are shown for fixed location case 

of three-actuator usage. Due to suction operations at 0.7075c, 0.61775c, and 0.5125c points 

three separated local suction pockets are generated. Because of these local suction pockets the 

shock wave is located to 0.5525c. On the right side of Fig. 3.67(a) the pressure counters are 

shown for optimized locations case of three-actuator usage. Suction operations at 0.9600c, 

0.7700c, and 0.5889c points one unified local suction pocket and additionally one separated 

pocket are generated. Because of these local strong suction pockets the shock wave is 

forwarded to 0.5650c which is the farthest point among the other cases. The effects of both 

suction operations on pressure coefficient distributions can be seen in Fig. 3.67(b). Similar to 

previous case selected fixed locations cause to sharp increases and then sharp decreases in Cp 

distribution. However suction operations at the optimal locations cause to relatively smooth 

decrease and then determinately increase in Cp distribution. In both operations forwarded 

shock wave locations are clearly observed comparing with no-suction case. 

Figure 3.67(a) The effect of location on pressure counters for three-actuator case 
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Figure 3.67(b) The effect of location on pressure coefficient for three-actuator case 

In all cases forwarding the shock wave toward the trailing edge extends the supersonic 

region and shortens the subsonic area. Additionally optimization process enforces the suction 

locations to be unified for better aerodynamic performance. 

Conclusions 

Some validation cases have been done against the experimental data regarding pressure 

distribution, lift and drag coefficients. These validation studies guaranteed the prediction 

capabilities of the flow analyzer software. Additionally the grid sensitivity study was 

performed to ensure the numerical solution accuracy of the governing equations. 

In the first part of the case studies, numerical studies has been carried out to investigate 

the benefits of AFC to improve the aerodynamic performance of 2D aerofoil, NACA64A010, 

at transonic speed by using heuristic based optimization technique PSO and the gradient 

based optimization technique SQP. The suction/blowing angles and mass flow coefficients 

are taken as design parameters in one-actuator, two-actuator, and three-actuator AFC cases. 

Navier Stokes solver is coupled with both optimizers to obtain a flow solution for a given 

parameters and then trying to improve the aerodynamics of the airfoil via the optimizers. 

Unfortunately, the gradient based optimization method depends heavily on the initial points, 

so that several optimization runs with different initial values needed to escape from the local 

minimum points. Therefore, it is generally observed that PSO approach is much more 

efficient than SQP in terms of time and CFD calls. Using more actuators provide better 

aerodynamic performance. However, this trend is exponential. Suction operations result in 

increases in both aerodynamic coefficients in all cases. But increase in CL is more than 

increase in CD resulting better aerodynamic performance. The best result is provided by three-

actuator case with 16.46% increase in aerodynamic performance. Additionally the shock 
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wave location on the upper surface is moved toward the trailing edge resulting in extension of 

supersonic region in all cases. 

In the second part of the case studies, numerical studies has been carried out to 

investigate the benefits of AFC to improve the aerodynamic performance of the same airfoil 

under the same flow conditions by using PSO. The suction/blowing angles, mass flow 

coefficients, and the center locations of actuators are taken as design parameters in one-

actuator, two-actuator, and three-actuator AFC cases. Navier Stokes solver is coupled with 

PSO optimizer to obtain a flow solution for a given parameters and then trying to improve the 

aerodynamics of the airfoil via the optimizer. Similar to previous cases using more actuators 

provide better aerodynamic performance. Suction operations result in increases in CL and 

decrease or increase in CD. Especially optimization of one-actuator case gives interesting 

result because CD is decreased and CL is increased in this case. The best result is provided by 

three-actuator case with 20.7% increase in aerodynamic performance. All cases give better 

results than fixed location optimization processes. Additionally the shock wave location on 

the upper surface is moved toward the trailing edge resulting in extension of supersonic 

region in all cases. The other important point is that the optimization processes enforce the 

locations to be unified to provide general, not local suction operations. 

As a result, based on this study it is concluded that AFC can provide high aerodynamic 

performance enhancement by optimizing its parameters. However, AFC may not be sufficient 

to get more efficient designs. Therefore, using of both AFC and passive flow control 

techniques may be more promising at preliminary design phase. 
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SUMMARY AND CONCLUSIONS 

Optimization is to search the best solution under certain conditions. It is a powerful 

tool. Engineers who research in different scientific areas if "not must" but absolutely should 

study one of the optimization methods. Because the real world is not perfect, we always need 

to find better solutions. 

There are different methods of optimization. This variety originates from the real 

world. Different problems need different solution methodologies. It is a natural phenomenon. 

As such, however, it is difficult to find the universal solution method or even general trends. 

However we can point out some guidelines. 

Mathematical modeling of a natural phenomenon may be defined by finite increments. 

Differential equations are constructed with relative increments among the factors related to 

yield. Therefore, the gradients of these increments are essential to search the yield space. 

However, the landscape of yield is not simple. If the particular one being considered is 

simple, let's say convex, we can efficiently find the best solution by using these gradient 

information. If the landscape is complex, as it is in real engineering problems, the gradient 

information is not enough to find the best solution. It gives a better solution than the initial 

solution at hand, but it will probably not be the best solution. To compensate this deficiency, 

we can use multiple starting points. However, the required number of multiple points may not 

be cheap if the number of factors and also the number of factor levels are large. The 

systematical approach to find proper multiple points is to use one of DoE (Design of 

Experiments) methods. Factorial designs, such as 2k or 3k, are basic examples for DoE. Here k 

is the number of factors, 2 and 3 are the number of factor levels. We can easily observe from 

these simple expressions, that the increase in the number of factors or the number of levels, 

results in huge multiple points. Just for an example, if A: is 10 for 3-level factorization, the 

required multiple points are 59049; if A: is 11, the required multiple points are 177147. We 

recall that these multiple points are just the beginning for multiple searches. Another issue is 

the differentiability. Engineering design problems are usually nonlinear and they sometimes 

exhibit discontinuous derivatives for objective as well as the constraint functions. Due to 

these difficulties, non-gradient based algorithms have gathered more interest in recent 

decades. 

Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are 

popular, non-gradient based algorithms. Both are population based search algorithms and 

have multiple points for initiation. The difference of population-based from gradient based 

methodology is the nature of search methodology. The randomness is essential for this kind 
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of method. They are also referred to as stochastic optimization methods. These algorithms are 

simple, robust, and have high fidelity. However, they suffer from similar defects such as 

premature convergence, less accuracy, or large computational time. The premature 

convergence is sometimes inevitable due to the lack of diversity. As the generations of 

particles or individuals in the population evolve, they may lose their diversity and become 

similar to each other. To overcome this issue, we studied the diversity concept in GA and 

PSO algorithms. 

Diversity is essential for a healthy search, and mutations are the basic operators to 

provide variety within the population. After having a close scrutiny of the diversity concept 

based on qualification and quantification studies, we improved new mutation strategies and 

operators to provide beneficial diversity within the population. We referred to this new 

approach as multi-frequency vibrational GA or PSO. They were applied to different 

aeronautical engineering problems in order to verify the efficiency of these new approaches. 

These implementations were: applications in selected benchmark test functions, inverse 

design of two-dimensional (2D) airfoil in subsonic flow conditions, optimization of 2D airfoil 

in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) 

over 3D terrain environments, 3D radar cross section minimization problem for a 3D air 

vehicle, and active flow control over a 2D airfoil. 

From these test cases we observed that the newly developed algorithms outperform the 

current algorithms: 

• The principal role of this multi-frequency approach was to answer the question of 

which individuals/particles should be mutated and when they should be mutated. 

• The new mutation operators provided local and global diversities during the 

reproduction phases of the generations. 

• The new approach, when combined with an artificial intelligent method, such as, 

neural network or fuzzy logic process, it also introduced a random diversity and a 

controlled diversity. 

• The first improved mutation operator was applied to the whole population/swarm and 

this application provided global but random diversity in the population/swarm. The 

global diversity afforded a chance for the population to escape from all local optima. 

• The second improved mutation operator was applied to specifically the elite 

individual/particle in the population. This operation provided local diversity in the 

population. 

• The control provided by neural network or fuzzy logic offered controlled diversity 

leading to a fast convergence. With the neural network diversity tool, the elite 
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individual/particle was stochastically (random based) mutated. However, with the 

fuzzy logic diversity tool, the elite individual was deterministically mutated. 

• Due to still being population-based techniques, these methods were as robust as the 

plain GA or PSO algorithms. 

• Based on the results obtained, it was concluded that the variants of the present multi-

frequency vibrational GA and PSO were efficient and fast algorithms since they 

successfully avoided all local optima within relatively short optimization cycles. 

% 

For future work, it is planned to apply the newly developed algorithms to a multi-element 

airfoil design and the problem of sonic boom mitigation. 
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