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ABSTRACT

ANALYTIC EVOLUTION OF SINGULAR DISTRIBUTION
AMPLITUDES IN QCD

Asli Tandogan
Old Dominion University, 2014
Director: Dr. Anatoly Radyushkin

Distribution amplitudes (DAs) are the basic functions that contain information
about the quark momentum. DAs are necessary to describe hard exclusive processes
in quantum chromodynamics. We describe a method of analytic evolution of DAs
that have singularities such as nonzero values at the end points of the support re-
gion, jumps at some points inside the support region and cusps. We illustrate the
method by applying it to the evolution of a flat (constant) DA, antisymmetric flat
DA, and then use the method for evolution of the two-photon generalized distribu-
tion amplitude. Our approach to DA evolution has advantages over the standard
method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward
iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer
polynomials requires an infinite number of terms in order to accurately reproduce
functions in the vicinity of singular points. Straightforward iteration of an initial dis-
tribution produces logarithmically divergent terms at each iteration. In our method
the logarithmic singularities are summed from the start, which immediately pro-
duces a continuous curve. Afterwards, in order to get precise results, only one or two

iterations are needed.
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CHAPTER 1

INTRODUCTION

One of the most interesting problems in physics is understanding hadron structure.
In 1973, Quantum Chromodynamics (QCD) was proposed as the theory of strong
interactions [3] following the argument of Gell-Mann [4] and Zweig [5, 6] in 1964 which
states that the hadrons are actually composed of more elementary constituents, called
quarks and gluons, collectively known as partons. QCD was tested to high precision
for high energy interactions, but, we still need more information about the structure
of hadrons. The difficulties of getting information about hadron structure can be
traced to a property of QCD named confinement. Due to confinement, observation
of free quarks and gluons is not possible. But another property of QCD, asymptotic
freedom, allows treatment of quarks and gluons as nearly free particles at short
distances.

Asymptotic freedom, i.e. the smallness of the QCD coupling at high momenta,
justifies the use of perturbative QCD (pQCD). At the same time, the increase of the
QCD coupling in the low energy region (~ 1 GeV) prevents perturbative calculations
for physical observables; therefore in this region parameters should be obtained from
phenomenological analyses.

Reactions which allow access to the nonperturbative region attract the attention
of many researchers among the hadronic physics community. Deep Inelastic Scatter-
ing (DIS) is one of the processes which has a very important role of determining the
structure of hadrons. In DIS, the large virtuality of the probe enables factorization
of perturbative (hard) and nonperturbative (soft) contributions. At short distances,
the reaction is governed by pQCD, since the running coupling constant of QCD be-
comes small, providing weaker interaction between quarks and gluons. The rest of
the information, which is non-pertubative, is factorized into DIS form factors and
these form factors (structure functions) can be measured experimentally.

In QCD, the structure functions depend on the momentum @ of the probe. The
@Q? dependence is known as the evolution of the distribution functions. In QCD,
the scaling of structure functions is violated producing the evolution. This phe-

nomena can be described in terms of scale dependent parton distribution functions,



fao(z. p?). where p is usually the scale of the probe Q. The structure functions
are the convolution of these parton distributions and coefficient functions, which are
given as a power series in the strong coupling constant ag(u). The evolution of the
parton distributions is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) equations {7 9.

The photon-pion transition yy* — 7° plays a key role among exclusive processes
since it is the cleanest exclusive process to test QCD predictions. The scattering
amplitude at large transferred momentum @? factorizes as a convolution of the pro-
cess independent distribution amplitude (DA), ¢(z, 1), and process dependent hard
scattering amplitude. The evolution of distribution amplitudes is governed by the
Efremov-Radyushkin-Brodsky-Lepage (ERBL) equations [1, 2].

Another reaction which is receiving a lot of attention is Deeply Virtual Compton
Scattering (DVCS). This reaction has lead to the proposal of new non-perturbative
objects called Generelized Parton Distributions (GPDs) [10-15]. These functions are
hybrids of form factors, parton distributions, and distribution amplitudes. Theoreti-
cal models for building GPDs have to satisfy some nontrivial requirements. One way
to build GPDs satisfying these requirements is modeling with Double Distributions
(DDs) [13, 14, 16]. In particular, one may assume some simple Ansatz for a DD at a
low scale g, and then evolve it into the moderately large momentum transfer region.
To do this, one needs to incorporate efficient methods of QCD evolution.

In this thesis, we illustrate a new analytic method for evolution of distribution
amplitudes and generalized distribution amplitudes. We also show how to extend our
method for the DGLAP evolution equation and the evolution of double distributions.

Our approach to DA evolution has advantages over the standard method of ex-
pansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of
an initial distribution with evolution kernel. Expansion in Gegenbauer polynomi-
als requires an infinite number of terms in order to accurately reproduce functions
in the vicinity of singular points. Straightforward iteration of an initial distribu-
tion produces logarithmically divergent terms at each iteration. In our method the
logarithmic singularities are summed from the start, which immediately produces
a continuous curve. Afterwards, in order to get precise results, only one or two

iterations are needed.



One of the motivations for studying the evolution of singular distribution am-
plitudes is modeling GPDs. A well known property of GPDs is that they are non-
analytic at border points r = ££. For one-loop diagraus, this non-analvticity may
take the form of cusps, jumps. and even delta-functions. Thus, one needs to develop
methods of evolution for singular initial distributions. A simple example of a singular
distribution is given by flat distribution amplitudes, ¢(x) = const, which do not van-
ish at the x = 0, x = 1, boundaries of the DA support region. We first demonstrate
the application of the method on flat DA. Our method allows to easily establish the
major evolution pattern (zz)t with ¢t = 2—}%‘- In{ln(u/A)] for a flat DA, and provides
an algorithm for an analytic calculation of corrections to it. The method was also
applied to a DA ¢(x) = sign(x — 1/2) that has a jump at x = 1/2, in the middle of
the support interval, with DA being antisymmetric with respect to that point.

This method is then extended for studying the evolution of generalized distribu-
tion amplitudes (GDAs) [17]. Similarly to GPDs, these functions are non-analytic
at kinematics-dependent points r = ¢, 1 — ¢ inside the support interval. The evo-
lution of GPDs is further complicated by the fact that GPD evolution kernels also
depend on skewness ¢ (or £). Unlike GPDs, GDAs evolve according to the same
¢-independent ERBL kernels as the usual DAs, which allows us to concentrate on
studying implications due to the non-analytic structure of the initial distribution. A
particular object that we consider is the two-photon GDA [18] related to the reaction
Y (@)v(q') = v(p1)v(p2). In QCD lowest order, it is proportional to the VV — VV
ERBL evolution kernel, but the evolution of its In Q2 derivative, in the leading log-
arithin approximation, is governed by the gg — gg ERBL kernel.

The thesis is organized as follows: The rest of this chapter is dedicated to basic
information necessary to explain some properties of our method including QCD, Deep
Inelastic Scattering, and Factorization. In Chapter 2, we discuss the basic ideas of
our method. In particular, we convert the evolution equation to the form in which the
convolution integral has the structure of the “plus prescription” with respect to the
integration variable y. The evolution equation is further simplified by choosing the
Ansatz absorbing the extra term generating contributions, that are logarithiically
singular at the end points of the support region. Applying this method for an initially
flat DA in Chapter 3, we find that, for any small positive value of the evolution
parameter t, the flat DA evolves into a function vaunishing at the end points with its

shape dominated by the [z(1 — z)]* factor. Then we analytically calculate the lowest



corrections to this approximation. In Chapter 4, we also apply this method to the
antisvinmetric flat DA that initially takes opposite values forr < 1/2 and x > 1/2.
Such a DA is the simplest example of an initial distribution with a jump inside the
support region (in this case in the middle of the region). For further applications, we
consider a case of an antisymmetric jump ¢(r = () = —o(r = (4 ) at an arbitrary
position r = ( inside the support region. Afterwards, we derive the formulas that
are used in Chapters 5-7, where we apply the approach to the evolution of the two-
photon generalized distribution amplitude ¥9(z,(, Q?%). Its logarithmic derivative
with respect to Q? satisfies the ERBL evolution equation, with initial conditions
given by a function ¢(z, ¢) that has both jumps (discontinuities in the value of the
function ¢(x, ¢)) and cusps (discontinuities in the value of the derivative d¢(x. () /0x)
at the“border” points x = ¢, x = 1 — (. The structure of p(r,() is discussed in
Chapter 5, where it is proposed to split it into a part that has antisymmetric jumps at
the border points, and a continuous remainder that has cusps there. Evolution of the
“jump” part of the two-photon GDA is considered in Chapter 6, while evolution of the
*cusp” part is considered in Chapter 7. In Chapter 8, we demonstrate the application
of our method to DGLAP evolution equation, with a nonsingular parton distribution
function. In the last chapter, we demonstrate the application of a modified version

of our method to evolution of double distributions.
1.1 QUANTUM CHROMODYNAMICS

The fundamental theory of strong interactions is Quantum Chromodynamics
(QCD). QCD is a non-Abelian gauge theory with gauge group SU(3). The the-
ory is based on renormalizability of gauge field theories discovered by 't Hooft and
Veltman [19-21]. QCD involves local symmetries and the force carriers for QCD are
colored gluons, which have zero mass and spin 1. QCD is based on the invariance
under non-Abelian SU(3) group of local phase transformations among three colors,

with the Lagrangian

1 ) = . ¥
Locp = _ZFIEIC;)F(G)#V + lzwé [vyu(Dy)ij +1im] wé, (1)
q

where £, is the non-abelian field strength tensor

F;y = 0, A% — 0, A% — g farc AL AL . (2)



and (D,);; is the covariant derivative

: _ XL )
(Dy)i = 050, +igs > AL (3)

a

g, is the QCD coupling constant and fgp are the structure constants of SU(3) algebra.
The term g fabcAZAﬁ is very essential. It corresponds to the interaction of gluon fields
with each other through three or four gluon vertices. The only parameters of the
theory are the coupling coustant gy and the masses of quarks. For intermediate
momenta ~ 1 — 10 GeV, the masses of light quarks might be set to zero while the
masses of heavy quarks might be set to be iufinitely large. Thus. the only parameter
in this situation is the coupling coustant g;.

The coupling “constant”™ between quarks is not really a coustant. On the contrary,
it. depends on the distance between quarks. Oune may assume that a dimensionless
QCD observable R should be independent of Q2 for Q > m,. The only encrgy scales
in the QCD Lagrangian are the quark masses. Since the relevant ones are very light,
it would be expected that the scaling property would be set at low Q2. However, this
is not true in a renormalizable field theory. A scale is introduced when calculating the
observable R with perturbation theory because of logarithimically diverging integrals.
In order to renormalize the theory, a scale should be introduced. As a result of this,
the dimensionless observable R does not scale anymore. It has logarithmic scaling
violations, so the coupling constant a; = ¢2 /47 of QCD becomes a running coupling
constant. Its running is controlled by the beta function. The renormalization group
equation may be solved exactly at thie one loop level. Oune can then derive ag at sowme

scale @, as a function of its value at the renormalization scale p,

_ a:(12) 2
) = T A e e g W

where n. is the number of quark colors and ny is number of “active™ (those not

treated as infinitely heavy) flavors in the theory. Oue can rewrite ag(Q?) as
4

as(Q%) = G m(O2/AY) (5)

The parameter A is the QCD scale. Its numerical value for three active quark flavor is
about 200 MeV. From this relation, it can be seen that ag, — 0 as Q@ — o< (asymptotic

freedom) [22. 23] aud. on the other hand. QCD becomes strougly coupled at Q ~ A.
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FIG. 1: Measurements of a, as a function of Q [24].

In other words, the momentum scale A is the scale at which ag becomes strong as
Q? decreases. In Fig. 1, a summary of measurements of a,(Q?) is presented as a
function of energy scale Q. The data points are based on the QCD calculations for

combined world average value of az(Az).



1.2 DEEP INELASTIC SCATTERING

Omne of the ways to test perturbative QCD is deep inelastic scattering (DIS).
“Deep” means that wavelength of the photon is much smaller than the size of the
target hadron. Thus, the photon can probe very small distances compared to the
hadron. “Inelastic” corresponds to high energy leptons destructing the target hadron
and causing the formation of new hadrons; i.e. the target hadron is converted into a

large number of hadrons in the process.

P’M Fap

FIG. 2: Kinematic of DIS. The four-momenta of incoming and outgoing leptons are
kand k', g = k' — k, P is the four-momenta of the hadron with mass A7,

The general form of the scattering is [ + A — I’ + X, where [ and I’ are leptons,
h is the hadron target and X is the sum of all possible hadron states. The incoming
momenta of the hadron and lepton are P and k, respectively. Outgoing momentum
of the lepton is k" and the transferred momentum ¢ is ¢ = k — k’. The DIS process

is characterized by the following invariant quantities:

Y = Z ‘ 2 = % (the fraction of lepton’s energy) ,
W2 = (P+q)? = M? +2Mv — Q7 (mass squared of the final system) ,
2
= (k+ P)* = Q + M? (CM energy squared).



The virtual photon sub-process is characterized by the following quantities

Q= —q*=2(FE' — k- k)

~ 4EE’sin(6/2) (neglecting the lepton masses) .

P . .
y=1 T E — E’ (the lepton’s energy loss in the hadron rest frame),
]
Q2
TBj = o7 (the fraction of the hadron’s momentum carried by struck quark),
Mv

which are called Bjorken variables. The deep inelastic limit (Bjorken limit) is specified
by

Q* Mv > A’ r — fixed . (6)

If the incoming and outgoing leptons are electrons or muons, the hadron is probed by
electromaguetic interactions. In pure electromagnetic case, the virtual vector particle
is a photon. Neglecting the contribution of weak currents, the relevant Lagrangian

is given by the following expression,
Lint,em - ngmA# , (7)
where

VS ZQQ&A/MQ (8)
q

is the corresponding electromagnetic (EM) current, with @4 being the charge of the
quark q.

The scaling phenomenon was proposed in 1969 by Bjorken [25] before the parton
mnodel. Scaling means that as Q% — oc the structure functions become independent

()K)f_QQ,

Fi(2,Q%)| @200 = Fl2). (9)

This relation can be explained by assuming that the transverse mormentin of partons
in the infinite-momentuin frame of the proton is small. In other words, if quarks were
non-interacting, then no further structure would be resolved no matter how much
Q? increases. According to QCD predictions, however, with increasing Q? quarks
start to emit hard gluons. This emission causes logarithmic scaling violation. While

the probability of finding a quark at small z increases with Q2. the probability of



9

finding it at high z decreases. since high momentum quarks emit gluons while losing
momentum. Emission of hard gluons from guarks leads to the evolution of structure
functions. As Q? — oc, the number of gluons emitted by quarks increases at high
x. These emitted gluons may split into ¢g pairs or two gluons. This process causes
both the softening of the initial quark moinentum distributions and to the growth of

glion density and gq sea as r decreases.
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FIG. 3: Bjorken scaling violation [24]



1.3 FACTORIZATION

The scope of perturbative QCD (pQCD) would be rather limited if its predictions
were ouly limited to infrared safe observables. Thus. probing the partonic structure
of hadrons or making predictions of high energy cross section processes with the
existing information of hadron structure would be impossible. Factorization [26, 27]
is one of the important properties of pQCD which provides the foundation of the
parton model. Partonic cross sections which are not infrared safe by themselves are
factorizable into short-distance (hard) and long-distance (soft) parts. The short-
distance part is infrared safe while the long-distance part has infrared singularities.
This separation (factorization) provides the connection of partonic cross sections,
which are calculable, to hadronic cross sections which are experimentally measurable.

Factorization pertains to the infrared singularities associated with long-distance
interactions. These singularities are absorbed into non-perturbative but experimen-
tally measurable objects. These objects are parton distribution functions (PDF) in
the inclusive processes such as DIS and DA in exclusive processes such as meson
production in photon-photon collisions or DVCS. In some sense, factorization is siin-
ilar to the absorption of ultraviolet divergences into measurable physical constants
in renormalization theory.

The factorization may be illustrated by the example of the pion form factor
F.(Q?). For large Q2. it factorizes as

F(@) = [ e [ g 0@ 10 Q) ). (10)
A perturbation expansion of amplitude T'(z,y, Q?) is given by
T(x,y, Q%) = as(Q*)1p(x,y, Q%) + aZ(Q*)1a(2.y. Q°) + . .. (11)
1T's is the Born term of the hard scattering amplitude and is equal to
4 167

TB(:v.y,QQ):SQZ(I_x)(l_y), (12)

and (z.Q?) is the pion distribution amplitude. It is related to the pion wave func-

tion and describes how the longitudinal momentum of a fast-moving pion is shared
among constituents helonging to a particular Fock component. All the soft gluon
contributions. i.c. infrared singularities of the form [a, log(Q?/m?)]™ are absorbed

into p(x. Q%). where m is the mass used to regularize the divergence.
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Fig. 4 depicts how the distribution amplitude o(r. Q?) is generated from infinite

number of soft gluon exchanges.

T

FIG. 4: Ilustration of how distribution amplitude is formed by infinite number of
soft gluon exchanges.

In this chapter, we explained elementary information necessary for understanding
the basics of the analytic method for the evolution of singular distribution amplitude.
Next chapter we demonstrate the basics of the ERBL evolution and the evolution
kernel, We also summarize the standard way of calculating the ERBL evolution

equation.
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CHAPTER 2

EVOLUTION OF SINGULAR DISTRIBUTION

AMPLITUDES

2.1 EVOLUTION EQUATION: BASICS

Evolution equations predict the parton distributions for any scale p’ using the
measured parton distribution at a scale g In order to describe this dependence of
the parton distributions on the renormalization scale, g and g’ should be large enough
so that running coupling constants ag(p¢) and a,(i') are small. Evolution kernels are
the key objects of evolution equations. In the following section, derivation of the
leading-order (LO) evolution kernel for the DA in hard exclusive reactions (ERBL

kernel) is illustrated.
2.1.1 DERIVATION OF LO ERBL KERNEL

The leading order (LO) ERBL kernel represents the amplitude for a quark with
fractional momentuin y and antiquark with (1 —y) to becamne a quark with fractional
momentuin r and antiquark with (1 — ) by exchange of a gluon. There are two
diagrams contributing to the LO kernel, the triangle diagram and the self energy
diagram. We will begin with calculation of triangle diagram.

The triangle diagram in Fig. 5a contributes to the matrix element
(O] (—2/2)7y10(2/2)P). We can expand this expression in a Taylor series

O15(=2/2)7" v(z/2)|P) = Y~ 28 (0] (0)

N=0

Lad Rd
1/81!18_112_
9 .

Ot KX pO)|P)  (13)

After the Taylor expansion, non-local operators become local operators (Fig. 5b).

Matrix elements of twist-2 local operators here may be parametrized by

0] (0) { R S } w(0)[P) = {PYPM PR PR Y f . (14)
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z/2 —2/2

yh yr yP k—yP yP

a b

FIG. 5: Triangle diagram contributing to the LO ERBL kernel

where {...} corresponds to the symmetric traceless combination of the momentum
vectors. One way to get symunetric traceless combinations is to multiply the tensor
by nuny, ny,...my, with nhaving the property n? = 0.

The loop momentum integral for the reduced matrix elements fy can be written

then as
fnv= /d4k¢ (kn)N J(Pn)NFL L (15)
The evolution of the DA may be written in matrix form as introduced in Ref. [1]

Ar
b () = S Zneful) (16)
H k=0

Another way to write the evolution equation of ¢(x) is the kernel form [2]. To this

end, treating fx’s as the moments of some function ¢(x)

1
v = /O No(z) de. (17)

we introduce the parton distribution amplitude ¢(z). The integral over k for ¢(x)

o(z) = /d“"z"kyi()’ (a: - ]53%) e (18)

may be written as

Defining the kernel

1 N
[ Vet de =3 zw. (19)
0

k=0
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we convert the matrix form of evolution equation into the kernel form as

1
uﬁ—lv;(a“-u) - /0 V(e y)ple. p)dy . (20)

In our example of the calculation of the non-forward ERBL kernel V(z.y), ac-
cording to (18), the vertex can be replaced by #9 (:r — %) The one loop diagram
depicted in Fig. 5 in light-cone gauge is governed by

o o Te{ Py (k — P)ik~"}
Vilz,y) = /d4 : k(kz +i€)((k — P)? + ie)((k — yP)? + ie)

(k= yP)um + (k —yPlny] (. kn
x[g“”_ (F—yP)-ntic ]"(“’_Fﬁ)‘ (21)

To handle the UV divergences, we here used dimensional regularization [28].
The momentum k in light-cone components may be written using Sudakov

parametrization [29] as
k=xP+an+ky,
d* %k = d**k,dodr
K =k% +ar,

PP=n-ki=n-p=0, 2P-n=1. (22)

The relation of 4 matrices in 4 — 2¢ dimension Y7777y, = =2979PyY + 2e7¥P~°

provides simplification of trace,

K = Pty = =20 (K — P) + 2¢(k — Pk (23)

Analysis of integral I can be divided in two parts: the part woth metric tensor g,
and the rest of the terms. The integral with metric tensor, I, is given by

_ 2, Te{ PkpK} _kn
= /d4 k(kQ +ie)((k — P)2 +ie)((k — yP)? + ie)(s (”3 Pn>

B N 2P - k)(k-n) — (P -n)k?

=4(-2(2 - 26))/”[4 R T (= PR+ )= g P T )
N kn

X 0 (l‘ - FE)

= 4((2 - 2¢)) /dz_%klda

i3

"oz 1 &2 vie)(alz — 1) + ks +ie)(al(z — y) + K + i)

(24)
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Integral I; has three poles in the intervals x > 1. r < 0, 0 <r <yand y < xr < 1.
Fig. 6 shows the calculation of poles in these regions. In the intervals x > 1 and
r < 0. the contour could be closed from top and from bottom. respectively producing
zero result. For the intervals 0 < x < y and y < x < 1, the contour could be closed in

such a way that only one pole is included inside the contour. Results for the intervals

z>1 O<z<y

2 3
e o o v
1 2 3
<0 y<zr<l1
123 PN

FIG. 6: Poles of integral I,

O<r<yandy<x <1 are

dQ«Qek.—L £
kL oy

when 0 < r <y = 4(2 — 26)/

221,
when y < x < 1= —4(2 —26)/‘1 2“?
ki ¥
Integral I; becotnes
d?——?fk ; -
I =4(2 - 26)/ L0 < y)— Z0@E <) . (25)
ki Yy Y

The second part of the integration, I3 is

]2 — / d4—2€k

To{P(K — yP)k — Pk} + Te{ Pk — Pk — v P)}

(k2 +ie)((k — P)2 +ie)((k —yP)2 + ie)(((k —yP) - n) + ie) (26)
where traces can be simplified as
Te{P(k - yP)(k — P)tkp}t = 8(k-n)(P-n)[k* — 2k P (27)

Tr{Prh(k — P)tk(k —yP)} = 8K*(P-n)lk-n- P n]. (28)
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The integration becomes

sz/fﬁwﬂmw
4a3(3 — 1) + k2 (43 — 2)0(x — 3)

. . , . 29
(@3+ k% +ie)(a(3 — 1)+ ki +ie)(a(3 —y) + k2 +ie)(3—y)/2 (29)
In the interval 0 < x < y, integration I, is
—A(xr — 2 .2 —
12 — 4(2 _ 26) /d2—2ekl = 4(2 l)kl —:2]‘J_(41‘ 2)
r(-Za-0+8) (-Ze-n+ k)@ -y
d2~26k.
= I (30)
ki ylz—vy)
In the interval y <z < 1, I is
_ 2 2 -9
4(2 — % / d2_26k_j_ e 4.’Z'k_]_ + kJ"CEle )
(=1 (~shz +42) (5@ -y +K2) @ —v)
2-—26/€ T
__ [Tk 7 (31)

K2 glr—y)’

By adding all the components of integral I, one gets the following expression,

1:4@-&{/£Z?1K%+a§éa)mx<m—(§+ﬁ§§w)my<m]wm

It is important to notice that integral I is divergent when x = y.

The self energy diagrams are the other contributing diagrams to the LO ERBL
kernel. We are not representing all the steps for the self energy diagram since all the
necessary procedure is explained during the calculation of the one loop integral. The

self energy contribution, Va(x, y) is equal to
1
Vlwy) = =8y —a) [ deWatzy (33)
0
This term provides canceling = y divergencies in Vi (z. y). Combination
1
Vitwy) = 8y = ) [ dailzm) (34)
0

type of relations are called “plus-prescription”, see e.g. [8], where it was used for

DGLAP equations. It satisfies

/I[V(x. y)lidz =0. (35)
)
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76 (z — y) no (z —y)
yPp, yP
k gP gP k
yP -k -
yP -k
yP yP

FIG. 7: Self energy diagram contributing LO ERBL kernel

This relation for V(z,y) reflects the fact that the axial current is conserved for
massless quarks, i.e. it is not renormalized.

In the leading logarithm approximation, the relevant ERBL evolution equation
[1, 2] reads

O (x,t)

1
p =/0 [V (x, )]+ ¢(y. t)dy, (36)

where t = 2CFr Inln(u/A) /b is the leading logarithm QCD evolution parameter,

Viz,y) = E (1 n yixﬂ Bz < y)
+ F (1 + 5‘)] By < ) (37)

is the evolution kernel (we use & =1 — x and g = 1 — y), which has a singularity for

x = y regulated by the plus prescription

1
V(z.y)ls = V(z.y) - 6y — 2) /0 V(zy)dz. (38)

with respect to the first argument r.
In general, DAs ¢, (2, 1) depend on the normalization scale y, tending to the

“asymptotic” shape.

F5(@) = 6 frr(l —z). (39)
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in the g — oc limit. for any intial pion DA. A standard way [1, 2] to this result is to

expand the initial pion DA over the eigenfunctions

plap) =21 —x)Y_ C¥*(2r — 1)kn(p) (40)
n=0
of the evolution kernel. Each Gegenbauer projection then changes as

nln(ue/A)/ InIn(p/A)]™/% when g increases. All anomalous dimensions A, are
positive, except for Ao which is zero, hence only the ~ x(1 — x) part survives for
t — oc. For a pion DA given by a sum of a few Gegenbauer polynomials, this
method gives a convenient analytic expression for the DA evolution. However, if the
initial DA does not vanish at the end points, or has jumps inside the support region,
one should formally take an infinite number of Gegenbauer polynomials. In practice,
this means that one should sum over a large number of terms to get a reasonably
precise (point by point) result for the evolved DA.

Another way to handle evolution of singular DA is the method we are going to
describe in this thesis. To begin with, we need to do some rearrangements to the

evolution equation. In explicit form the evolution equation is

(. t) '
Pl - [ W velnt) = Vi) el dy (41)

0
It is clear that the singularities of V(z,y) and V(y,x) at z = y cancel each other
in the integrand above, even though the subtraction there does not look like a
“4"-prescription with respect to the integration variable. Adding and subtracting

V(z,y)pe(x) in the integrand, we obtain the equation

©w 1 1
——‘9*59?” 2/0 Viz, y)ely. t) — oz, t)dy — <p(:r,t)/0 V(y,z) - V(e.y)ldy (42)

in which the first term has the structure of the “+7"-prescription with respect to the
integration variable, so that 1/(x — y) singularity of V(x,y) is canceled by zero of

¢(y,t) — @(x,t) at x = y. The integral in the second term in Eq. 42
1
e) == [ Wiga) - Viw)ldy (43)
0
is also finite. Taking the Ansatz

clx.t) = @ d(x,t) . (44)
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we obtain for ®(z.t) the equation

od(z. t ! () —p
“(5{_) :/ V(z. )= @p(y. 1) — (1)) dy. (45)
- 0
which does not have the second term. The solution for ®(x,t) may be written as a
series in t

D(rt) =S %—,@n (46)
n=0

with the functions ®,(r) satisfying the recurrence relation

n

1
Ppy1(x) :/0 Viz,y) [,Z_;(—_T“T)Tﬁ y) [v(y) —v(@)]”™ — @p(x) | dy . (47)

2.2 DISTRIBUTION AMPLITUDES (DA) AND THEIR
EVOLUTION WITH GEGENBAUER EXPANSION:

One of the most important applications of pQCD is to predict the asymptotic
behavior of hadronic form factors. The sistribution amplitude ¢(xy, 7o, ..., T, Q?) is
a function related to the hadron’s wave function and describes how the longitudinal
momentum of a fast-moving hadron is shared among constituents belonging to a
particular Fock component. The reason for the Q? dependence is that all the soft
glion contributions of the form (a, In(Q?/m)?)* are factorized into the DA. This
dependence of DA on Q? is governed by the ERBL evolution equation (36).

The standard way of calculating evolution of the DA is expanding the initial DA

w(x, Qo) over the eigenfunctions of the evolution kernel V(z,y)

i
/ C32(22 — 1)V (2, y)dz = —3aCY2(y) | (48)
4]

where 7, is non-singlet anomalous dimension given by

n+1
=Cfr{l1- +4 49
" F (n+1)(n+2) JZ; j (49)
with Cp being (n? — 1)/2n. = 4/3 and n, being number of colors. The general

solution for the evolution equation in terms of Gegenbauer polynomials is

Pl2:.Q) = 212 Y ka(Q%)CY (1 — 12). (50)

n=0
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with the k,(Q?) dependence on Q% given by

N 111(Q2/A2) ";'71/3()
ke (Q2) = €'k, (O2) = K (O2 0 _ -
(@) = €' hn(@QR) = n(Q2) (———-——III(QQ i (51)
The orthogonality relation of Gegenbauer polynomials C;q{/ s given by.
1
. +2)(n+1)
de(1 — e2O32 (6032 :Onm(n =
[ a1 = CHHOCHHE) = b (52)

Hence, the Gegenbauer polynomials c¥ 2(2:): — 1) form an orthogonal and complete
basis with the weight (1 — ) and Eq. (52) can be written with the integral limits

form 0 to 1 with the change of variable £ = 22 — 1,

1
_ . (n+2){n+1) .
/0 rEC3?(2r — 1)C3?(2x — 1)dx = 6o 120 1 3) (53)
This orthogonality relation can be used to extract the coeflicients &y,
, 4(2n + 3) /1
ko (Q%) = dx C32 (22 — 1)p(z. Q). 54
The general solution becoies
¢
p(2.Q%) =z )y e O (22 — 1)kn(QF)
n=0
=22 ) [04(Q%) /(@) *CI2(2x — 1)kn(QF) . (55)
n=0

The meaning of this equation is that if the anoinalous dimension is greater than zero,
then the terms die off as powers of a(Q?)/as(Q2) = In(Q3/A?)/In(Q?*/A?). This
means that for large Q2. the DA approaches the first term of the expansion, i.e., its
asymptotic shape x(1 —x). The expansion in Eq. (55) converges if ¢(z, Q?) vanishes
at the endpoints of interval [0, 1]. In the next chapter, application of the Gegenbauer
expansion method is illustrated on flat and anti-syvmmetric distribution amplitudes.
The comparison between the output of Gegenbauer polynomial expansion and our

analytic method is also demonstrated.
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CHAPTER 3

EVOLUTION OF FLAT DA

One of the motivations to study a flat DA @b (z) = 1 is that it is the simplest
example of a function that does not vanish at the end points * = 0 and = = 1.

Another motivation for choosing a flat DA is BaBar data [30] on the v*y — #°

transition form factor correspond to approximately logarithmic InQ? raise of the
combination Q2F,..(Q?) in the region of very high momentum transfers 10 to 40
GeV?, where the perturbative QCD approach {2] predicts nearly constant behavior
for this combination. It was proposed [31, 32] to explain the BaBar “puzzle” by
assuming that the pion distribution amplitude is “flat™: ¢, (z) = fr.

First, we study the evolution of a flat DA with the Gegenbauer expansion. One
may check the expansion of a flat function in terms of Gegenbauer polynomials before
turning the evolution on to illustrate the efficiency of this method on a function that
does not vanish at the end points,

o0

o 4(2n + 3) P ‘
1=2z(1 x)n;%m(nﬂ)(nw)cg?(zx 1) (56)

F
s (r it =0
14 ( 0

FIG. 8: Expansion of flat distribution amplitude in terms of Gegenbauer polynoiials:
3 terms. 30 terms and 50 terms.

Fig. 8 shows that Gegenbauer polynomial expansion needs many termns to work
for a function which does not vanish at end points r = 0 and r = 1 even before
the evolution is turned on. Despite the fact that the expansion was not an efficient

method for expanding a flat distribution, one may check the method on the evolution
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of a flat DA. All anomalous dimensions are positive, v, > 0 except the first one which

i

is 70 = 0. The first few anomalous dimensions for ¢} (r) = 1 are

50
9

364
45

Yo=0.7=—.7= (57)

This means that for large Q2, a flat DA is going to evolve into the first term in the
expausion which is xZ. The coefficients k,(t = 0) are calculated with Eq. (54). Only

terins with n = even survive. The first few terins are equal to

1
ko(t = 0) = 6/ drCo? (22 = 1) =6,
0

7 3/2 7
kz(t:()):g/ dz G2z —1) = 3,
0
22 [t 22
ka(t =0) = = A dxC§/2(2x—1):1—5g... (58)

After calculating k,(Q3), one can evaluate the DA to a different Q% by using Eq.

(53), 2.c. the evolution of DA.

plr.t = 0.2)
| E—

plr.t = 0.2)
14 [

FIG. 9: Flat function expanded in terms of Gegenbauer polynomials: 2 terms, 30
terms and 50 terms.

As seen in Fig. 9. the Gegenbauer expansion produces functions which are oscil-
lating. However, there is no physical reason for these structures. They only appear
because of the nature of Gegenbauer polynomials, which was also illustrated for the
flat DA before the evolution was turned on. In order to get the expected smooth
function, one needs to sum a large amount of terms. The necessity for summation of
a large amount of ters, even for the simplest singular DA, suggests that one needs a
more efficient analytic method for singular functions. In the next section, we present

an analytic method which provides the desired results with one or two iterations.
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3.1 SINGULAR PART

It is instructive to consider first an auxiliary situation when the evolution kernel

is given by the singular part only

Vitey) = () oa<a @y ) (59)
yly — )
of the QCD kernel. In this case
voin8(r) = / [VSiRe(y, 1) — VSP8(2, y)|dy = 2 + In(xT) (60)

and the recurrence relation is given by

1 n 77\ n—1
Buis(e) = [ Vi) [Z ) () —%(x)} dy. (61

1=0

or, explicitly for the first terms,
1

Bie) = [ Vi) - Bo@)dy. (62)
0
1

b)) = [ View) (B (L) + 2iy) - #i(2)] dy. (63)
[¢]

Rl

)+ 22(y) — Da(a)] dy (64)

Ri

T x

1
By(z) = / V(z.y) [cp (y) In? (yy) 120, (y) In (y
0
In this approximation, we can write
sing t 2t t t3 34
(e, t) = (xZ) e | Polx) + tPi(x) + 2'<I>2( x)+ 3—‘<I>3(a:) +...) . (65)
If we take the flat DA for ¢t =0, i.e., ®(x,0) = 1, this gives

Po(x) = 1 (66)
Bi(z) = 0 ' (67)
Py(x) = -2lzrlnz (68)
$3(r) = 3ln(zz)nzrnz + 2 [lnz Lix(x) + InZ Lix(7)]

—4 [Liz(x) + Lis(7)] + 8¢(3) (69)

The graphical results for the expansion components are given in Fig. 10.

As far as

/1[V(rsy)]+dw =0, (70)
0
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FIG. 10: Expansion components ®3"8(z) and ®5"8(x).

evolution does not change the normalization integral for ¢(z.t). In particular, if we

expand ¢(z,t) in t

o tn
pla.t) =3 palr) = - (71)
n=0
we should have
1
/ wn(z)dr = dpo . (72)
0

However, when we take the singular kernel case Ansatz
(Pz'smg(l,’ t) — et(2+ln(za‘:))(b(x’t) ,

— 7 - . - .
the (tlnxZ)V terms are summed to all orders, while the series over ¢, (z) is restricted
to some finite order N. As a result, the approximates ¢(n)(z,t) are not normalized
to 1. In particular, if we keep the terms up to $o(x), the normalization integral is

given by

tFQ 1 t 2 2
,QF(—(Z—;—EQ—})Z{I-—t [(He — Hyyn)® — ¥1(2 4+ 28)] }

(73)

1
() = / 8 (2, 1) d —
0

with H, being harmonic numbers and ¥ the polygamma function. One can check
that Ir(t) = 1+ O(t?). For the next approximation, i.e., for ¢?§Sg(as, t), the normaliza-
tion integral is I3(t) = 1 + O(t*), ete. For gv—-)(z,t), the normalization integral

In(t) will tend to 1 for all ¢.

4
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The normalization integrals versus t are shown in Fig. 11. For approximations
involving ®o(x) and ®,(x). the calculations were done analytically, while the curve
correspouding to inclusion of ®378(x.t) was calculated numerically. As seen from

Fig. 11. adding more terius brings the normalization closer to 1.

Normalization

4 o

1 R

-~ -~ -
0.6
0.2
_ B T
0 0 05 1

FIG. 11: Nornnalization factor calculated for terms including only ®g(x) (short-

dashed line), ®o(x) and $y(x) (long-dashed line) and Po(x), Po(x) and P3(x) (solid
line).

In this situation, it makes sense to introduce the “normalized Ansatz”, in which

p(x, t) is approximated by the ratio

vy(z,t) = ooz, t)/In(t) .

so that the correct normalization of the Nth approximant is guaranteed for all t. In

particular, this gives

(2 + 2t) 1 —t?lnz Inz
I2(1+¢) 1 — 2 [(H, — Hig2)? —vi(2+2t)]

wolz, t) =(xT)" (74)

As seen from this formula (and also from Fig.12, the initial flat function imme-
diately (for whatever small positive t) evolves into a function vanishing at the end

points with its shape dominated by the (xZ)t factor.
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FIG. 12: Evolution of the flat DA under the singular part of the evolution kernel:
the curves shown correspond to ¢ = 0 (red). ¢t = 0.3 (black), t = 0.6 (blue), ¢t = 1.0

3.2 ADDING NON-SINGULAR PART

/0 V{y,x) = V(x,y)]dy

When the whole QCD evolution kernel is taken into account, we have

3/2+xlnz+xlnx

) =1

(75)
for the initial flat distribution amplitude:
x

v () —1/2—zlnx —ZInZ .
Following the same steps as in the previous section, we calculate the expansion terms
Do

T

Oy(x) =zlwz[l + (z—1/2)nz]+ Tzl + (x+1/2)InZ] - Inzlnz
. I -
+1'L12 (—;) +CCL12 (—-

(76)
:)
With these terms taken into account we have

2

5‘%@’)) :

Yiylr.t) = /2 (£¥7%)t (1 +

(79)
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Unfortunately, for this form it is impossible to analytically calculate the normaliza-
tion integral even for the lowest terin. Compared to the Ansatz used for the singular

part of the evolution kernel, the Ausatz
oz, t) = e DP(x, t) = 2 (2%5%) D (z. 1) (80)

has an extra overall factor [e/2x=*77%]* . Note that the function r7*z7% is finite
at the end points z = 0, 1, where it takes its minimal value for the interval [0, 1]
(equal to 1), and has a maximum for x = 1/2, where it equals 2. Thus, the factor
e~ 122277 enhances the xZ profile in the middle (by a factor of 2/\/e = 1.2) and
suppresses it at the end points (by 1/4y/e & 0.6). This is a rather mild modification,
and what is most important, it does not change the ~ z' (or ~ z*) behavior at the

end points. So, it makes sense to use the expansion

n

[z=% 27 %' = Z(—l)”(a: Inz +zlnz)" % , (81)
n=0 :

in powers of ¢t and combine it with the expansion for ®(x,t). This corresponds to

Ansatz
- - £ .
Qp([p, t) = (x;i‘)t e‘(St/2 ((1)0(1') -+ tq)l(.l') + 5(1)2(1') + .. ) s (82)

whose expansion coefficients ®,,(z) can be straightforwardly obtained from ®,(z)s.
In particular, ®1(z) = —(zlnz + #In z), and Oy(x) = ®y(z) + (zlnzx + ZIn 7). The

graphical results are shown in Fig. 13.

¢1(z) P2(x)
0.7 g 0
0.5 -04-
0.3- -08
00 o5 1 0 0.5 1

FIG. 13: Expansion components in the full kernel case: ®1(z) and ®y(z).
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Now. the normalization integral for the lowest terms can be calculated analyti-

cally:

! 2(1+1t) t t
= P ; — t/ - 7 —_ JR £
Ii(t) _/0- eaylr, t)dr = e* 2F(2 %) (1 20+ 1) + 2( H;, + H1+2t)), (83)

where H, are harmonic numbers. Fig.14a shows the normalization versus t.

Normalization
1**:‘-“;"*
0.6
0.2
00 0.5 1

FIG. 14: a) Normalization factor calculated for terms including only ®o(x) (dot-
dashed line), ®g(z) and ®y(z) (dashed line) and ®g(x), Po(z) and P3(x) (solid line).

Again, we may switch to the normalized Ansatz formed by the ratio
ez, t)/In(t). For a flat initial distribution, this gives

n(z,t) = (xa‘;)‘ ['(2+ 2t) l—t(xzher+zhnz)
Ly by} = F2(1 +t) 1— f/2(t + 1) +t(__Ht +H1+2t)/2 .

(84)

The evolution of the flat distribution amplitude with full kernel is shown in Fig.

15.
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FIG. 15: Evolution of flat DA for the full kernel case: the curves shown correspond
to t =0 (red), t = 0.3 (black), t = 0.6 (blue), t = 1.0 (purple).

The comparison of this analytic method and the standard way of calculating
the evolution, 1.¢., Gegenbauer expansion, is illustrated in Fig. 16. While with
our method, one can achieve the results with only two iterations, the Gegenbauer

expaunsion method still need more terms in addition to the fifty terms calculated.

FIG. 16: Flat DA at t = 0.2; The dashed curve is the analytic calculation and the
solid curve is the Gegenbauer expansion with 50 terms.
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CHAPTER 4

EVOLUTION OF ANTI-SYMMETRIC FLAT DA

Evolution equations may be applied also in situations when the distribution ampli-
tude is antisymunetric with respect to the change x — 1 — x. An interesting example
is the D-term function D(z) that appears in generalized parton distributions. Thus.

let us consider the evolution of the DA that initially has the form

1 O0<ax<g1/2,
wolr) =
-1 1/2<ax<1.
Before applying our analytic method to this anti-symmetric DA, the application of
the Gegenbauer expansion method should be studied. The first few coefficients in

Eq. (54) gives the following few coefficients,

kit = 0) = 10 dmc3/2(2:c— 1) =
( (
kg(t:()):J/ dzr C22 (22 ):~§.
ks(t = /d C3 (2 1):—1—;.--- (85)

Once the coefficients k, (¢ = 0) are known, one can calculate the DA at different ¢t by

using Eq. (55), analogous to the flat DA case.

oflxr.t = 0.2)
1- I

FIG. 17: Evolution of anti-synunetric DA at ¢t = 0.2 with the Gegenbauer expansion
method: 2 terms, 30 terms and 50 terins.

Once again mwore terms in the summation lead to a smoother curve. but one needs

a large amount of terms in the summation to get that smooth curve. Similar to the
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flat DA case. a smooth curve is the expected structure since there is no physical

reason for the wiggles produced by Gegenbauer polvnomials.
4.1 SINGULAR PART

Since we have demonstrated the reason why Gegenbauer expansion is not an
effective method for the anti-symunetric DA, our analvtic method can be applied to
this case. The v(x) function is the same because it depends only on kernel V(z.y).
Thus we can usc the Ansatz (44) and expaunsion (46). Since go(z) is not just a
constant, the first expansion coeficient ®;(x) is nonzero. Let us start with the

singular part of the kernel. Then we get

-2In[Z] O<z<1/2,

2ln [£5] 12<x<1.

by (x) =

We see that there are logarithmic terms In |1 — 2| singular for x = 1/2. These terms
are natural, since each half of the antisyminetric DA on its interval is expected to
evolve similarly to a flat DA on the 0 < x < 1 interval. This observation suggests

the Ansatz
oz, t) = e*(xz)!1 — 22| P(x, t) . (86)
With this definition of ®(z,t), the In |1 — 2z| terms are eliminated from @, (z):
O(r) =-2mz0<x<1/2)—{x > z}. (87)
For the expansion component ®2(z), we have

2
Oor(x) =6(0 <z < 1/2){—2—:7;— +5n*z —2mzlnr

+In(1 —22)[4In2+4lnzxr — 2Inz + In(1 — 2z)]
— 4Lig(x) + 4Liz(22) + 2Ly E]

1-2
}+4Liz[ i
x

The graphical results for the expansion components are shown in Fig.18.

+ 2Liy [

T _ i
P }—{:r—);r}. (88)

The evolution of ggng(x. t) to this accuracy can be obtained from

ol t) =* (x7)H1 — 2x]* <¢0(I) + tdy(x) + gi'(bg(a:)) . (89)
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FIG. 18: Expansion coefficients for the antisymmetric DA: a) ™8 (z), b) ®3"8(z).
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FIG. 19: Evolution of antisymmetric DA under the singular part of the kernel for
t=0,t=031t=06,t=1

As shown in Fig.19, the initial step function evolves into a function which is zero

at the end points and in the middle point.
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4.2 ADDING NON-SINGULAR PART OF THE KERNEL

Since the nonsingular part does not add Inx and InZ termns to v(xr), we may

proceed with the saimme Ansatz
olx,t) = 32(zz)t|1 — 22|2P(x.t) . (90)

but the expansion components change (see Fig. 20).

®2(2)

10
o5
0.0/
-0.5:
-10.

FIG. 20: Expansion components ®;(x) (a) and ®o(z) (b) in the case of the full kernel.

The distribution amplitude is now built using
oz, t) =¥ (7)1 — 22| (cpo(:c) +td(x) + §<I>2(;r)) , (91)
For the first coefficient we have
Pi(z)=0(0<z<1/2){-20m2-2InZx — (ElnzZ+zhz)}—{z >z}, (92)

and for the second,

2

Oy(x) =00 <z < 1/2){—%:2 + 21 +2xn2 + InZ[2 + 82+ 17In 7]

—(x —2In(1 — 22)[InZ — Inz] + 2(5z — 3) In21In(1 — 2z)
—In*(1 -2z)— 6’z +InZlnzx

+alnz(dln2+InZ+Inz+2In(l - 2z)+2In7)
1 -2 1-2
+ 27 [Li2 ( - “r) + Lip ( _ I) + Lig(z) — Li2(2x)}
2r z

- (1+20)Liz (%) +Liz (g) ~ 2L (21"31 1) }

—{r — &} . (93)
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FIG. 21: Evolution of the antisynunetric DA in the full kernel case. The curves for
t = 0 (red), t = 0.3 (black), t = 0.6 (blue), t = 1.0 (purple) are shown.

As may be seen from Fig.19, the resulting curves are rather close to those obtained
when only the singular part of the kernel was taken into account. Thus, we observe
that the t" series converges rather rapidly as far as ¢ < 1. When ¢t 2 1. the DAs
is close to the asymptotic form, and one can switch to the solution in the form of
the Gegenbauer expansion. The same comparison of this analytical method and
Gegenbauer expansion done in for the flat DA is also done for the anti-symmetric

case. The comparison is illustrated in Fig. 22

FIG. 22: Anti-symmetric DA at t = 0.2; The dashed curve is the analytical calcula-
tion and the solid curve is the Gegenbauer expansion with 50 terms.



4.3 EVOLUTION OF JUMPS

Another example of a singularity is given by DAs with a jump. the simplest case
being

7 a O<r<C.
@y (x,Cra,b) =
b (<r<1l.

The part of the first iteration ®;(xr) generated by the singular part of the kernel
(a — b)In [(—f_’Tﬂgc] 0<zr<C.

—(a —b)1In [(f—_—fﬁ] (<r<1

Oy "8z, C1a,b) =

contains logarithmic terms lu | — z] singular for x = ¢. Their structure may be un-
derstood in the following way. The original function g (z. ¢: a.b) may be represented
as a sum of a constant %(a + b) and a function %(a — b)sign(¢ — x) that juinps by
b — a at the point r = . The constant part has no singularities at x = {, so one can
apply the original %(a + b)(xz)!d Ansatz to it, while for the jumping part one may
use the Ansatz

, 2t
w&@maw:%;ém@t(%¥§>9@<g

1—z/0\* ,
+ (——f:—%——) O(x > ()| P(x,¢) + ¥(x, (. t) . (94)
The part containing square brackets is intended to take care of the evolution of the
jump at xr = ¢. However, this part by construction vanishes at x = ¢, while one would
expect that evolution tends to convert ¢”(x,¢:a,b) into a universal ¢-independent
function proportional to zZ or zZ(1 — 2z) (depending on the symmetry of the func-
tion). Thus, there should be also a part regular at the jump point. The function
W(x, ¢, t) is introduced to satisty this requirement. It vanishes for t = 0, but eventu-
ally becomes the dominant part.

Let us discnuss a more general case, when a function has antisymmetric jumps at
some locations x = ¢, “Antisymunetric” means that the function approaches from
opposite values on the sides of a jump. so that “on average” it is zero at the jump

points. Then one can try the Ansatz

clat) = Ola, t) + V(. t) . (95)
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where
D(x.t) = et[“(x)*“'(m)](bo(x) . (96)

with the function w(z) ~ >, In|r — ¢ intended to absorb major features of the
evolution of the starting distribution ¢(x,t = 0) = ®p(x) in the vicinity of the jump
points, while the remainder WU(x, t) is expected to be a regular function vanishing for

t = 0. As a result, we get the following equation:

b ) 1
dqj(‘().:’ 2 = [) V(r,y) [\P(y t) — ¥(zx, t)] dy + v(z)¥(zx,t)

This is an inhomogeneous evolution equation for ¥(z,t), with starting condition
U(zx,t =0) = 0. For its derivative at £ = 0 we have

o¥(xz,t)

T = [ Vi) o) - o(e)] dy - w(@bol@) = xta). (09

t=0

To avoid singularities at the jump points, we should adjust w(z) in such a way
as to make x(x) a continuous function of z. Then ¥(x,t) =~ tx(z) for small ¢t. The
corrections to this approximation can be found by iterations. Namely, we represent
U(x,t) = >, Vu(x.t) and start with

¢ 1
Uy(r, t) = /0 dr {/0 Viz,y) [®(y.7) — O(z,7)] dy — w(x)(b(x,'r)} , (99)

generating further terms using

t i
U, 1(x. t) E/O dr {/0 Viz,y) [Yoly, 7) — Uu(x, 7)) dy+v($)\11n(:c,7')} . (100)

Since the derivative of Wy(x,t) for t = 0 is given by x(z), we can write

t 1
Viat) =tx(@)+ [ dr [ Vi) (50 7) - 50(e. 1) dy — w(z)b®(a,7)
0 0
=tx(x) +o¥y(z.t) . (101)
Here, 0®(z.7) = ®(x.7) — Pp(x) is the deviation of the Ansatz function &(z, 7) from
its 7 = 0 shape. For sinall 7, the function d®(x, 7) has a rather sharp behavior at the

junp points x = ;. and this results in a rather sharp behavior of 60, (x.¢) at these

points. Since each iteration W, (x,t) is generated linearly from a previous ¥, (z, t)
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one (see Eq. (100) ). it makes sense to split W(z,t) into a “smooth” part W, (z.t)
generated by iterations of tx(x) and the remainder dW(x.t) generated by iterations

of 0¥, (x.t). Thus. we have
gla.t) = Oz, t) +0V(x.t) + U, (x,t) . (102)

where the first two terms, ®(x,t) and d¥(r,t) have a rather sharp behavior at the
jump points for small ¢, while ¥, (z,¢) has a smooth behavior.

In this chapter, we demonstrated our analytic method for general cases of singular
DAs. Next chapter, we will illustrate the application of the method to the evolution

of two-photon generalized distribution amplitude.
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CHAPTER 5

STRUCTURE OF PHOTON GENERALIZED

DISTRIBUTION AMPLITUDE

Using photons is a very effective tool for testing Quantum Chromodynamics (QCD).
The kinematic possibilities provided by the two-photon state are plenty, so the two-
photon state attracts attention not only in experimental studies but also in theoretical
studies.

Due to these advantages of photon studies, the partouic structure of the photon
has been discussed in lots of paper beginning with Ref. {33]. In Ref. [34], in order to
describe the factorization of the non diagonal kinematics of Deeply Virtual Compton
Scattering (DVCS), (v*v = v7), Generalized Parton Distributions (GPDs) are used.
GPDs are developed to explain one of the important problems of QCD, that is
understanding the internal structure of hadrons. Generalized distribution amplitudes
(GDAs) [16-18, 35, 36] which are related to GPDs by crossing, are non-perturbative
objects which describe the transition from a quark-antiquark or a gluon-gluon pair
into a hadron pair [17]. Two-meson GDAs are crossed-channel analogs of the meson
Generalized Parton Distributions (GPDs). GDAs parametrize the matrix elements
of light-cone operators between the vacuum and a systemn of hadrons, while GPDs
parametrize the matrix element of the samne operators between two different hadron
states. The definition of the quark-antiquark GDA, for the most studied system
(rtm™) [18]. is

®; " (2,4) :/%eﬁizwr<7f(p’)7r(p)llﬁq(r‘)“ﬁw‘Q(U)l()) (103)

Similar to two-meson GDAs, two-photon GDAs describe the transition of a quark-
antigquark or a gluon-gluon pair into a photon pair. Analogous to the relation between
two meson GDAs and the meson GPDs, two photon GDAs have the same crossing
relation with photon GPDs.

Prediction of a GPD or GDA for any scale p by using the measured ones at a

scale p' is defined as evolution of GPDs or GDAs, where g and g’ are large enough
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so that as(p) and ag(y') are small. This part of the study’s focus is the evolution of
the non-singlet vector two-photon GDA [18], which was calculated for the reaction
¥ (@)¥(d') = v(p1)v(p2). The evolution of the nonsinglet vector part of the diphoton
GDA is governed by the ERBL evolution equation. The usual way, i.e. Gegenbauer
expansion, was used in Ref. [37]. The result was calculated with a finite number
of terms which have numerical instabilities around the points where initial GDA is
discontinuous. In order to get a reliable result for the evolution of a nou-singlet

di-photon GDA, an infinite sum of Gegenbauer polynomials is needed.

Y

FIG. 23: Parton picture for the two-photon GDA

In the lowest QCD order, the non-singlet two-photon GDA is given by [38]

2 2

Nee
< g log

272

(2., Q%) = plz, C) (104)

m2
where the function o(x, ) is proportional to the VV — V'V component,

_ 222 -¢) T(2x — ) .

¢(I,C)—“C——9($*C)+ R 8(x - ¢)
—~ ff@zi_@e(g - ) - EQ—’f?-é—i—gg(i— ), (105)

of the ERBL evolution kernel matrix. QCD corrections induce further evolution of
the photon GDA.
Namely, its derivative with respect to lnQ? obeyvs the ERBL evolution equation

with the gg — gq kernel considered above. In what follows, we study ERBL evolution



40

of the function o(z.¢.t) which for the starting evolution point ¢ = 0 coincides with
e(x. Q).

The function ¢(x.¢) is antisvinmetric with respect to r « 7 interchange and
svimuetric with respect to ¢ < ¢ interchange. Thus. without loss of generality, we
may choose ¢ < 1/2. Then 0 < ¢ < ¢ < 1, and it makes seuse to explicitly write the

function in cach of the three regions:

#lx.Q) = {gé [+ ¢ -2z] 00z < Q- 591—{—21)9(( <z <()
- ZIZ [P+ —2r]0(( <z < 1)} . (106)
The function is discontinuous at 2 = ¢ and r = (.
1.0 T~ p

0.5-

FIG. 24: Two-photon GDA profile function ®(z.¢) at values ¢ = 0.1:0.2;0.4.

Fig.24 shows the x-profile of the two-photon GDA at different ¢ values. As z ap-
proaches ¢, the lmiting value of the function from the left is ¢(¢_,{) = -1 — ¢ 11—__2—‘;,
while from the right we have ({4, () = —( 1T'.—2—<§ so that the jump ¢((4,¢) —
2(C_,¢) = 11is equal to 1. According to our discussion in the preceding section,
to treat the evolution of a juinp, we should represent the initial function as a sum of
a function oz, ¢) coutinuous in the vicinity of each jump, and a function ¢ (x, ¢)
that has an antisvinmetric jump of necessary size. The function ¢ (x, ¢) will also
specify the initial form of the ®-part of the evolution Ansatz (95) for this function,

so we will denote it as @y o(x, ). For simplicity. we will choose it to be given by
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linear functions of x in each of the three regions. As a result,

1—2rx

me(( <r<(). (107)

Brofar.¢) = = 3B <7< () + -2%9(5 cr<l)d

The function ®;o(x. () is discontinuous at r = ¢ and x = . see Fig.25 a, where it is
shown for ¢ = 0.2. The function ®,(z, () specifying initial shape of the continuous

part (see Fig.25 b).is obtained as the difference between ¢ (x,¢) aud @, o(x. ().

P1o(z,¢ = 0.3) N P20(r(=03)
04 06
: 04
02 02
00 0.0°
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. N Nz -ue .
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FIG. 25: (a) The z-profile of GDA @, o(z,¢) at ¢ = 0.3. (b) Initial function ®;4(z, ¢)
for ¢ = 0.3.

In this chapter, we illustrated the two-photon generalized distribution amplitudes.
We also introduced a separation to the two-photon GDA as jump part and cusp part.

Next chapter. we demonstrate the evolution of the jump part.
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CHAPTER 6

EVOLUTION OF THE JUMP PART OF THE

TWO-PHOTON GDA

In this chapter, we present the evolution of ®q¢(x, (), i.e. jump part of two-photon
GDA. As presented in Fig. 25a, ®; o(x,¢) has jumps at z = ¢ and r = (. Iteration

of the initial function ®, o(x, ) with evolution kernel gives

1
Dri(2.¢) = / V(. 9)[®10(y.C) — Brolz. )] dy

=00<r<(< 1/2){(1 —4¢) ——E + jé: [zZlnz + (1 — 2Z) ln 7]

In¢+1Ind(1—-3¢)/C_
20-20)

[(x — (¢ —z)+((—x2)In(C - x)]} —{z — 7}

—In(¢-2)—n(¢ —x) +

B 1—-4¢
¢(1 - 2¢)
1-2x

+0(C<x<() {m[(l —4¢)+In¢ (1 —30/@
+In(z —¢) - In( — )

1-4¢ 7 _ . o
M[( C)ln(aj"Q”’(C“x)hl(g'—x)+£Chlx—.rlnx}

r? + 72 r
——qn (=] . 108
T3 “(x>} (108)
As expected, @1 1(z, () has logarithmic singularities
—{({—x)fx <) +In(lz — )P ({ <x<1/2) - {xr = T} (109)

for r = ¢ and = = { (see Fig. 26).
The sum of these terms may be written as 2(In|x — ¢| +In |z — {[)®,(z.¢) plus
regular terms, which suggests to take the Ansatz (95) with w(x) containing 2(In |z —

¢| 4+ Inlr — ¢]). Namely, let us try the function wo(z.¢) given by

wolz.¢) =4+ 2|z - |+ 2|z — (| . (110)
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®1,4(2,¢ = 0.3)

FIG. 26: First iteration @ 1(x,¢) for ¢ = 0.3.

The constant part “4” was chosen to make the integral of we(z) closer to zero (it
vanishes both for ( = 0 and ¢ = 1), i.e. to keep the overall normalization of the
Ansatz factor closer to 1. The resulting function (which gives the first term of the

U-part of the Ansatz (Eq. 95)) is given by
Ui (@, ¢) = Prale, €) — wol, )1 () (111)

and shown in Fig. 27.

v (z,¢=03)
04 -

02

00 02 04 06 08 107

FIG. 27: Correction functions \pﬂ(x ¢ = 0.3) with wy Ansatz.

Oune can see that, after the subtraction of singularities, we still have finite jumps
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for x = ( and r = {. Explicit calculation gives

(¢ ) — (¢ Q) = 4+ 2In(]1 - 2¢])
+@2-Ol¢+2-Oln¢ = —wi(Q) . (112)

Adding w1 ()P 6(x, () to \I/(O)(r {), we obtain the correction function ¥, ;(x,{) =

x(z,¢) that is continuous at the border points r = ¢ and z = { (see Fig. 28).
1
Yia(z. Q) =x(z.{) = / V(z.y)[®10(y. ) — Pro(z, ¢)] dy — w(z, {)Po(x. ()]
0

=00<zr<(< 1/2){ (1-— 4()——— + — [:r:rln:r+ (1 — zZ)In 7|

20 ¢

20z -¢) , ¢ —2x( ,
+ 1_24, lll(c—.l')-l—mhlc-—Zhl(l—?()

1-3¢—2z+20¢2+¢), > 1-2¢(x+3¢() - }

51 = 20) In¢ <(1~24) In(¢ — x)
(2 -2

—{ar—+:i~}+0(<<x<<{2(11 e [0 - 10 +m =
+{(2 - ()ln(,’—!—?ln(l—?{)]—|~2C(gr1 ln(:r—()

2—4¢ - 4C o
—m(c-—x))ln(( 1‘)+§al_—2c)[ﬂclnx—xlnx]

2+ (F .
T (E)} ‘ (113)

\111 1(.’13 <—03)

00 02 04 06 08 10

FIG. 28: Correction functions \I’(l(?l)(l‘, ¢ = 0.3) with modified Ansatz.

This corresponds to the following ®-part of the Ansatz (Eq. 95)

=i\ 2t
Py(2.(.t) =) (“ - Tl/c_”;{, 2l C') (¢ 1o(.€) - (114)




for the function ¢ (xr.¢.¢). The function ®q(x. . 1) is illustrated in Fig. 29.
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FIG. 29: Ansatz function ®;(xr.{ = 0.3.¢) for t = 0. 0.2, 0.3, 0.5.

According to the Ansatz given in Eq. (95), after fixing the function w(zr) from
the requirement of continuity of x{(z, ). one should deal with the evolution equation
Eq. (97) for the W-part of the Ansatz. This equation specifies that 0¥, (x, (. t)/0t
for t = 0 is given by x(2.¢). Thus, for small t, we can approximate ¥, (x,(,t) by
tx(x.¢). As one can sce from Fig. 30,left, the correction due to the ¥ term is rather

small for t = 0.2. It just reduces somewhat the amplitude of oscillations.

Wl(z7C,t = 02) (pl(fl,', <,t = 05)
02 0.15
T 0.10°
' 0.05° R
0.0- 0.00°
-0.1- -005:
: -0.10°
-02: -0.15: / :
00 : : : : : 00 02 To4 06 08 10
a b

FIG. 30: Effect of inclusion of ¥y (z, ) correction for t = 0.2 (a) and t = 0.4 (b);
¢ = 0.3 in both cases. Red line corresponds to ¢ (z, (. t) without correction and blue
corresponds to ¢y (x. (. t) with correction.

However, the correction becomes more and more visible with growing ¢, see Fig.
30b. where the evolved function is shown for ¢ = 0.4 with and without the first
U-type correction term included. The total function is now clearly nonzero at the

“border” points x = ¢ and x = 1 — ¢. This is because x(x.() is nonzero at these
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points.  As we discussed, the W-part becomes dominant for large ¢ and brings the
shape of ¢ (x. €. t) to the asymptotic form 7 (2x — 1) of the antisynunetric DAs. We
can see that, for t = 0.4 already. the total function resembles the asymptotic shape
xx(2xr — 1). However. for such large t values the simplest linear-t approximation for
¥ (r, (. t) is too crude, and one should go beyond the first iteration.

As argued in the discussion after Eq. (95), it makes sense to split ¥(z,,,t)
into a part generated by iterations of tx(x, {), and the remainder W (r, , t) given by

iterations of the terms reflecting the deviation
00(z,(t) = ®(x.(:t) — Doz, (), (115)

of the Ansatz function ®(x,(;t) from its t = 0 form ®e(x,{). The starting termn
0¥i(z,,(,t) has a sharp behavior at the jump points of ®g(x, (). acquiring an infinite
slope there as t — 0 (see Fig. 31a). The next iteration 6Wa(x.,(,t) is shown in Fig.
31b.

The decomposition explained for
U(z,(,t) = tx(z.C) + 6¥(x, t) (116)

is informative in this case because of the infinite derivative parts of ¥(z,(,t). As
illustrated in Fig. 31, even though 0V (z,{ = 0.2,¢ = 0.2) has almost infinite
derivative parts at the borders r = ¢ and x = (, it is still continuous. Up to this
point of the calculation, all iterations are calculated analytically, however 0¥ (z(, t)
is calculated numerically. As indicated in Fig. 31 and Fig 32, contribution from W,

and 6W¥, is very small and can be neglected.

50, (z,¢ = 0.3,t = 0.2) §Ws(z,¢ = 0.3, = 0.2)
0025. A : B 0.03°
0.015- 0.015-
0 0
_0015. ~-0.015.
~0.025- . 003 A/
0 02 04 06 08 1. 0 0.2 04 0.6 0.8 1.
a b

FIG. 31: (a) 0W (x. (. t). (b)) (x.(,t) (( = 0.2 and t = 0.2).
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The amplitudes of both 0¥ and 0¥, are very small compared to the amplitude
of &(x.(.t). As suggested in the previous section W(x,(.t) = tx(x.{) is a good
approximation. In Fig. 32, ®(z.(.¢) with 0¥ (z.(.t) and 0¥,(xr. ) is depicted.
Contribution from 0¥(x, {,t) is negligible.

@ C=03¢t=02) &+ 00, + 067,
02 0'2; Fo¥L 0¥
0.1 01°
0.0- o.oiE
-01 o1
-o.zir

-02

00 03 o4 06 08 10

FIG. 32: (a) ®(x.(.t), (b)P(x, (. t) and 0P (x,(,t) + 0Wa(x, (. t). (¢ = 0.2 and
t=0.2)

In this chapter, we represented the application of our method to the jump part of
the two-photon generalized amplitude. Next chapter, we demonstrate the evolution

of the cusp part of the two-photon GDA.
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CHAPTER 7

EVOLUTION OF THE CUSP PART OF THE

TWO-PHOTON GDA

7.1 DECOMPOSITION

In this section, we study the evolution of the second function, namely ¢o(z. ).

Its initial form ®,5(x. () is continuous for x = ¢ and z = ¢ and is given by

_ 2 _
@2_o<z,c>:—(§) e e D e a1 -2
1— 22\ 1+¢—4¢ _
—(1_2<> g e <) (117)

as shown in Fig. 33.

®2,0(2,¢ = 0.3)

06
04
02
00

-02-

04

—-U.6;: :

00 02 04 06 08 10

FIG. 33: Initial function ®49(x,¢) for ¢ =0.2.

We can separate this function
1+ ¢ — 4¢?
2(1-¢)

into a term proportional to a linearized function

Dy o(z, () = By o(x,¢) + PS4z, () (118)

1 —2x
1-2¢

(Iﬂz;.o(x,g) :59(x<§)—{1'—>1—1‘}— ( )9(C<x<§), (119)
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and the remaining curvy part

_22(z—0),

S, (x.¢) 7 (r<)—{r—>1-1}. (120)

7.2 EVOLUTION OF THE LINEARIZED PART

Since $9o(x, () is a continuous function vanishing at the end points, the easiest
way to get its evolution is to use a straightforward ¢ expansion with coefficients given
by successive iterations of the evolution kernel with ®;4(x, (). The first iteration of

By (x, ) gives

00 < < () = =
W{‘HB[CIHC— Clll(:l

+(1- 2{)[z+xi‘lnx+ (1 —:vi)lni:}

(I)f’l‘.l(xv C) =

+ (=) In{¢ —2) - (( —x) ln(f—x)} —{x — 7}

(¢ <z <) ¢, =
e {(1—21)[1+Zlnd

e () (-5) - () (-5)

+ 'U(CL‘)‘I)%‘O(CL‘. (). (121)

8 vy

Here, as usual, v(z) is 3/2+xInZ + Z Inz. The structure of the result is very similar
to that of ®,;. However, the potentially singular logarithmic terms In |z — ¢] and
In |z — {| are accompanied in this case by (z — ¢) or (z — ) factors, respectively, and
vanish at these points, though having singular derivatives there. Thus, the function

o1 (x, ¢ = 0.2), shown in Fig. 34, is continuous at points z = ¢ and x = (.
7.3 EVOLUTION OF CURVY PART

Initially, the support region for the curvy part ®S,(x,(¢) is restricted by two

segments 0 < < ¢ and ¢ < x < 1, as shown in Fig. 33.



FIG. 34: First iteration function for linear part &L, (x,¢ = 0.2).

Its first iteration is given by

gﬁ:—ﬂﬂéfjil{ﬂ%—4C+%ﬂ+2hﬂ3+l-(%+am5
— 28 Im(+ 227 — O Inzx

+22(¢ —x)In(¢ — ) — 2Z(¢ —x)In(¢ — x)} —{r — 7}

(¢ <z <)
¢¢
+22(¢ —2)Inz +2(1 — 2x)¢In¢

{_(1 —22)¢% - 2z(z ~ ¢)Inx

+2x(z — O hufxr — ¢) — 22(¢ — 2) In(¢ - x)} + v(z) @5 o (z, ). (122)

25(z.¢ = 03) 0 T (=03
0.0{ - 00t
-0.1 -02°
T N s seos 0% "%o o2 04 a6 o8 id®

a b

FIG. 35: Left: Initilal curvy function ®5q(x.¢) for ¢ = 0.2. Right: First iteration
function for curvy part ®F (. ¢) for ¢ = 0.2.
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One can see from Fig. 35 that evolution spreads the function into the ¢ < x < ¢
interval. Combining the results for the linearized and curvy parts. we arrive at the

evolution pattern generated for po(x.,(:t) by the first iteration (sce Fig. 36).

®2 (z,¢ = 0.3, t)
O.6i

FIG. 36: Evolution of ¢o(z,(,t) at t = 0 (red), t = 0.2 (black), ¢t = 0.3 (blue) and
t = 0.5 (purple).

7.4 TOTAL RESULT

Adding the result for ®;(z, (. t) obtained in previous sections, we end up with

the evolution of the total function ®(z,, t) illustrated in Fig. 38.

FIG. 37: Evolution of total GDA ®(x.(,t) at t = 0 (red), t = 0.1 (black), t = 0.2
(blue) and ¢t = 0.3 (purple).

We can now compare our results with the results from Beivad ef.al. [38]. They
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have calculated the evolution of the two-photon GDA with Gegenbauer expansion.
including 41 terms in Gegenbauer expansion in the intervals 0 < r < (and { < = < 1.
However, 201 terms were included in the region ¢ < x < ¢. They have reported that
there is instability in the vicinity of £ = ¢ and 2 = ¢ because of the nature of
the Gegenbauer expansions. We have emphasized the necessity of a new method
other than the Gegenbauer expansion for evolution of singular DAs in the previous
chapters. As one can see, our approach results in a smooter curve with only one or

two Iterations.

p(z,¢ = 0.4,1)

[¥] o. e 3 o8 P

00 02 04 06 08 10 T

FIG. 38: Comparison between analytic result presented here and the numerical result
from Ref. [38] at ( = 0.4 and t = 0 (red), t = 0.1 (black), t = 0.2 (blue).



CHAPTER 8

EVOLUTION IN DGLAP REGION

The parton model completely ignores the dynamical role of gluons by neglecting the
gluons radiated by quarks. As shown in Fig. 39, a gluon can be emitted by the quark
before or after the virtual photon interacts with it (@ and b). Another possibility in
the order of aay, is that a gluon constituent in the hadron can contribute to DIS via

pair production, i.e. v*g = ¢g (c and d).

AN

FIG. 39: O(aay) contributions to ep — eX.

One of the experimentally observable consequences of these diagrams may be
illustrated by considering a frame, in which the proton and the virtual photon are
moving towards each other, say the proton in the +1z direction and the virtual photon
in the —x direction. In this frame, the struck gquark moves along the same axis as
the incoming photon. In the parton model, final hadron states are produced in the
direction of the virtual photon, with a spread of transverse momentumn pr about
300 MeV, or inverse hadron size, according to the uncertainty principle. However,
if gluons are emitted in DIS, then the jets produced by gluons and the struck quark
have pr relative to the direction of the virtual photon.

The ep cross-section can be written in terms of the eq cross-section

(2.Q%) = Z /O iz /0 dyfo()d(z — zy)

o) Jo

Jp

Ly (2. Q?) N
- Z/ Y ) T, (123)
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The total cross section of an eq collision for the diagrams a) and b) in Fig. 39 contains

logarithmic dependence on Q?

€q(a* — o2 %s P (r)] -—Q2 124
g (/Q“‘*qg)—eq% o 2a(Z) Ogm2 . (124)
where Py (x) is the LO quark-quark DGLAP kernel and given by
1+2°
P (x) = .
ae () (1_I)+ (125)

LO quark-quark DGLAP kernel reflects the fact that a quark with momentum frac-
tion  could have come from a parent quark with a larger momentum fraction y. The

usual way to write the evolution equation in the DGLAP region is

df (z,t) /1 dy (:r) ‘
— = —P -] . 126
. Pwir (S (126)
This equation might also be written as
df (z.t) /1 dy [z ‘
A ekt A =ZpP|= . 12
7 AR b f(y) (127)

There are quite a few ways to solve the DGLAP evolution equations: Mellin transfor-
mation [39, 40], Laguerre mehod [41, 42] and “brute-force” iterations [43] are some of
the ways to solve the DGLAP equation. There are also various other analytic calcu-
lations in the literature [44 47]. Numerical calculations [48, 49] are also widely used.
The aim of this chapter is to demonstrate the application of our analytic method to
the LO DGLAP evolution equation.

For our method, we use the notation P(z,y) instead of the splitting function as a
function of the ratio of x to y, namely P(x/y) in Eq. (127) and rewrite the evolution

equation as

1
gl . / %P(x,y)ﬂy). (128)

The “+”-prescription is also encountered in the DGLAP case which regulates the
singularities. Evolution equation can be arranged in such a way that “+”-prescription
acts on the second variable, y in this case, as we have done with the ERBL case
explained in Chapter 2.

1 1
Y20 [ W peire - s+ st [ |22 - 222 @ aa)

The first term of the expression becomes visibly regular as f(x) — f(y) cancels the

singularity of the kernel. The second integral is also regular. In the next section, we

present an application of our method in the DGLAP region.



8.1 EVOLUTION OF (1 - r)* PARTON DISTRIBUTION FUNCTION

3

Here we study a regular function (1 — x)°. The reason for choosing a regular

function is that singular PDFs are not encountered in actual models of PDFs. First.
we present our rvesults with the singular part of the kernel and later we represent the

result with the full kernel as it was done for the ERBL case.

Singular Part

The singular part of the kernel is given by

Piry) = Y ey <1y, (130)

L—xz/y

The second integral in Eq. (129)

s(z) = (/01 [P(‘Z’Z) - P(fc“”)} dz) (131)

is going to be the same for all the iterations, for that reason it can be taken out as

an overall factor. The function s(z) is given by

s(x) = /01 [PS((x’Z) - PS((Z’I)} dz=2+2hz. (132)

z x

Therefore, one can propose the ansatz as
flz,t) = e*®F(x,t). (133)

where F(z.t) can be written as a Tayvlor series in ¢,

Flz.t) = Y tnp;‘(x) . (134)
n=0 ’

The recurrence relation for the expansion components p, is given by

n

1 !
praata) = [ LPGa.y) {Zm_—-”f)—,—ﬁm(yxbz;%pnu) . (135)

y =0
the explicit expression for the first expansion component py(zx) is given by

1
pr{r) = /%P(ry)[po(y)—po(r)]

T

= z[z(5-3x)+2(3-3z+2%)Inz] . (136)
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FIG. 40: Expansion components pi " 8(x) and p3"8(x)

Expressions of expansion components pp(x) and ps(x) are only graphically presented
because of the lengthiness of the expressions. The graphical results for the expansion
components are represented, in Fig. 40. The parton distribution function f(x,t) in

terms of expansion components is given by

2 3
fot) = &z (Po(il?)+tpl(ﬂf)+%P2(ﬂf)+g—!ﬂ3(ﬂ?)) (137)

Fig. 41 shows the normalization versus ¢, where ¢ runs from zero to 0.5. Similar to
the ERBL case, the normalization approaches one as more expansion components

are added, as expected.

Normalization
20 _ -
- - .
1.5- — N
- -
. :
e —
1.0 - e -
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0.0- _ t
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FIG. 41: Blue line is the normalization including po(x) and pi(x), green line is the
normalization including po(x), pi1(x) and pa(x) and red line is the normalization
including po(x), p1{x), p2(x) and ps(x) which was calculated numerically

The evolution of the initial (1 — z)? parton density is shown in Fig. 42.
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FIG. 42: (a) Starting from blue line: t = 0 (red), t = 0.2 (black), t = 0.4 (blue),
t = 0.5 (purple) and (b) Closer laok to 0 < r < 0.2 region

Adding the Non-Singular Part

When the full DGLAP kernel is taken into account. s(x) which is the second term
in Eq. (129) becomes

B 'TP((z,z) P((z,z) 1 - ‘
3(30)—/0 [ . - dz = §+x+21nx—lnr (138)

Therefore, Ansatz for full DGLAP kernel might be modified as
flz,t) = @t/ Dtg2te=tp iy ¢). (139)

Evolution of (1 — )3 parton distribution function is shown in Fig. 43.
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FIG. 43: Starting from blue line: t = 0 (red). ¢ = 0.2 (black), t = 0.4 (blue). t = 0.5
(purple) aud (b) Closer look to 0 <z < 0.2 region



The results are consistent with the expected results of of DGLAP evolution. Our
method required only two iterations. Similar to the ERBL evolution, there is an
upper limit on £, In other words, our method is effective up to t =~ 0.5. Further
calculations can be performed with other methods mentioned in the beginning of

this chapter, such as the Mellin transformation.



CHAPTER 9

EVOLUTION OF DOUBLE DISTRIBUTIONS

Virtual Compton Scattering is a process that includes two photons, at least one of
them is virtual. The use of deeply virtual Compton scattering (DVCS) was suggested
by Ji [10] and Radyushkin [14] as a tool to extract new structure functions of the nu-
cleon. DVCS provides a new ground to investigate the quark and the gluon structure
of the nucleon and has led to the introduction of objects called Generalized Parton
Distribution [10-15]. These objects are proposed to describe the soft part of the
DVCS process. With today’s knowledge, GPDs are the only tools provide complete
information on the accessible structure of the nucleon. The limiting cases of GPDs
are given by from factors, parton densities and distribution amplitudes.

Construction of theoretical models for GPDs is an inherent part of their stud-
ies. These models should satisfy several nontrivial requirements that follow from the
most general principles of quantum field theory. In this context, one could mention
polynomiality [15], positivity [50--52], hermiticity [16], time reversal invariance [15],
etc. There are two ways to model GPDs. One way is a direct calculation in spe-
cific dynamical models such as the bag model, the chiral soliton model, light cone
formalism, etc. Direct calculation has some difficulty in meeting these conditions.
The second way is modeling with Double Distributions (DD) [13, 14, 16]. With this
approach these complicated conditions are automatically satisfied by the relevant
Feynman diagrams in perturbation theory. In particular, analysis of simple one-loop
diagrams is the basis of the factorized DD Ansatz [52] (FDDA) that is a standard
clement of codes generating models for GPDs.

In fact, the commonly used version of the FDDA involves an assumption of uni-
versality of the DD profile function, which, though supported by one-loop examples,
was not shown to be a mandatory property of double distributions. A possible way
to go beyond the one-loop analysis, but still remain within the perturbation theory
framework, is to incorporate pQCD evolution equations. Namely, the strategy is to
take the expression for some ()‘ll(‘,—l()()p diagram as the starting function for evolution,

and use evolved patterns for modeling GPDs.
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Implementation of snch a program faces some techuical difficulties. In particular.
a well known property of GPDs is that they are non-analytic at border points r = +£.
For one-loop diagrams. this non-analyticity may take the form of cusps, jumps. and
even delta-functions.

In this section. we will introduce some basic properties of DDs and we will present

the evolution of an approximation to the delta function.
9.1 DOUBLE DISTRIBUTION BASICS

If the long-distance information is collected in the nonforward matrix element
(p—r|O0,z) | p)| 220 of quark gluon light cone operators, one necds to gener-
alize usual parton distributions while applving pQCD to deeply virtual Compton
scattering (DVCS) ~*(q) N(p) — ~v(¢') N(p') and hard exclusive electroproduction
v*(q) N(p) — M(q') N(p')processes {10, 11, 13, 14, 52-54]. These types of matrix
elements can be parametrized by double distributions (DD’s).

The kinematic variables of hard electroproduction processes are given by the
initial momentum of the nucleon p and momentum transferred r = p — p’ . In order
to present the important features of the process, the kinematics can be set to g2 = 0
(mmentum of the final photon or meson), p? = 0, r? = 0 and p, ¢ are light-cone
4-vectors. The requirement p2 = (p+ r)? = p? in this limit results in p-r» = 0 which
can be satisfied only if the two light-like momenta p and r are proportional to cach
other: 7 = (p, where ¢ is equal to the Bjorken variable { = z5; = Q?/2(p - q).

Factorization of the hard electroproduction process v*(¢)N(p) — M{(¢)N(p'),
accumulates all the nonperturbative information in the nonforward natrix element
(p — r|¥(0)w(z)|p). In the forward limit » = 0, Fourier trausformation of the
matrix clement provides the usual parton distributions. For quark operators, the

double distributions are defined by the following representation [52]:
(8" | 0a(0)ZE(0, 22 A)pa(2) | Py s) | 220 (140)
_ ﬂ(p’.s')éu(p,s)/ / (e~ix(pz)~z‘y(rz)Fa(m’ yit) — eix(Pz)—iﬂ(rz)Fé(l.’y;t))
o Jo

x0(x +y < V)drdy+ —a(p',s')(2F — 72)u(p. s)

1
I
11 ‘ , N
/ / (e_“(pz)_ly(” oz yit) — FPITHORE (2 yit)) Oz +y < 1)dar dy

Here the relation between the two components of the double distributions and
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the quark and antiquark parton densitiesare

1-x 11—z
/ Fawyt=0)dy = falz) / Far.yit = 0)dy = falz). (141)
0 0]

Parton picture of the double distribution is depicted in Fig. 44.

xp + yr xp — yr

p p—r
FIG. 44: Parton picture for double distributions

Double distributions F(x,y:t) are logaritmically divergent. This requires the
dependence of the distribution F(z,y;t) on the renormalization scale p. This p

dependence F(x,y;t| @) is governed by the following evolution equation,

d 1 1
— Fy(x, vy, = <
Hgy FPala it ) /0/0 Zb:dédnﬁ(€+n<1)
x Rz, y:&,m) Fo(E,mit|p) (142)

where a. b corresponds to quark or gluon.
The integration of F(x,y:t| u) over y corresponds to parton distribution function

fa(z| 1) whose evolution is governed by DGLAP equations

d 1 ‘
pe-foe 1) = / Puale/€) o€ | 1) % (143)

This relation suggests that the kernel R%(x.y:; €. n) should satisfy the following rela-

tion,

1—-x 1
/0 R®(z.y:&.n)dy = EPab(”’/f) : (144)
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Moreover. integration of F(x.y:t|u) over x corresponds to the distribution ampli-
tude. which implies that the kernel R9OP(z.y: €, n) should satisfy also the following

relation,

1—
/ " ROz, y: €. m)de = VO9y, 1) (145)
0

For the gluon kernel the relation is

1-y
/O %RGG(r,y:f-, n:g)dr = V(y,n:g). (146)

In this thesis we are going to work only with the quark kernel whose explicit form

18

RQz.y: &) = %S‘CF%{H(O < z/¢€ < min{y/n, ¥/7}

000 < z/€ < Dx/E 1. 1. L
-2/ [;0(1/5 —y/m+ %é(r/f - y/n)]
— 81 —2/€)d(y — 1) B— + 2/0 - = zdz] } . (147)

The last term corresponds to the “+"-prescription explained in the previous sections.
Kernel without the “+"-prescription part is singular at 1/(z — &), 1/(y — n) and
1/(§ — 7). The integral variable z in the last term can be selected as /€. y/n or §/7

depending on the chosen singularity.
9.1.1 SINGULAR PART

Once again, it is instructive to study the singular part first. The singular part of

the kernel is

I

R e — 2cpk {6(0 < z/€ < )x/e

R (1—=z/¢)
— 61— 2/E)S(y — ) [2/0 z dz} } (148)

[% (/6 = i) + 26(a/€ ~ /)

1—=2

Lets concentrate on the first term,

(% {9(0 S(ﬂgié;)x/f [%5(91:/5 - y/n)“) . (149)
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and try to find the “+7 term for this term. The delta function can be rearranged as

£o(x — y&/n).

V100 < x/E < 1)z /€ B .
/o dr[ - 2/8) [ o(x/€ — y/n}]+—(). (150)
TV 0(0 < 2/€ < Da/E
/0 dr (= 2/6) 5(x — y&/mF(&.n)
60 <y/n < 1) y/n -
(L= 9/ F(&.n). (151)

It means that for plus-type distribution the subtraction term for the first part of the
singular kernel should be
00<y/ns1 y/nF
n(l —y/n)

t.e., z in Eq. 148 is z = 2//n. Now we may study the evolution equation for only

(& m), (152)

this term,

dF(xyt bO<c/E <o/ .
/ / en(1 — z/€) F(&, mit)o(x/€ — y/m)0(€ +n < 1)dédn

_ /O /0 [é(l — /)6y — (e + 1 < 1)

F(& n;t) /” 2'/n dZ’] .
% ged BN 153
e 5”01—2’/7777 (153)

After some simple algebra, the following expression is achieved

dF(x,y:t) 0<y/n<y/n xn '
— = /O L=/ F ( il t) O(n(z/y +1) < 1)dn

— Flz,y:t)f(xr +y < 1)/Oy

z d

. 154
— (154)

In the first term of the expression above, we have two step functions which indicate
the upper and lower limits of # integration. The integration line is demonstrated in
Fig. 45

At this point of the calculation, one can change 2’ to n and add and subtract y

to the nominator of the second term.

F{r y:t v y_d
oF(z.y:t) :/ _n_ (ﬁ,n;t> + Flz.yt)0(x +y < 1) ”
ot s -y \vy o 1TY

+ Flz,y:t)b(x+y < 1) (155)
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> T
1

FIG. 45: The triangle on the left is the integral domain before the change of variable
(2 — eta) and the right triangle is the integral line and the limits after the change
of variables. The integral is divergent when r = £ and y = 7 (point on { = 1 line)
which is regularized by the “+7 prescription. The line from 0 to ¢ = 1 represents
the line of integration for the second part of the singular kernel.

The integral can be arranged as it was doue in previous chapters, to modify the
plus-prescription with respect to second variable,
Op(z, t) ! : -
5 = [ V@l t) — ez Oldy - e(z,t) | [V(y,2) = Viz,y)ldy (156)
0 0

So we add and subtract fyy/ (@+) n—d_%F (z,y;t) which results in

OF (z,y;t) /* dn [ <wn ) ]
bl ek X A A NP gt = F(a,y:t
5 Sy il (z,y;1)

Y dn

0 77—91

Y

r+y d
+F(a¢.,y;t)/ —n+F(:E,y;t)
y n—y

-

~

;‘:{_ dr
F(z.yt) fo" Y ;,—;Ly—

+ Fz,y;)0(x +y < 1). (157)

Here, we have combined the two integrals under one integration, and the result of

the integration is

ll

Ty d’l’] <I+y_1> -
F(x. :t/ — = Fr.y;t)In { ———— 158
wypt) [ S = Pl m (Y (159)

For the second termn in Eq. 148. we follow the same procedure. This time the term



» have
OF (x.y:t
ot o y—7
1
d
+ F(z.y:t) —’7—+F( )/ 7
. o Y= v Y1
F(a,yt)fu -
+ F(x.y:t)0(xr +y < 1). (159)
where the combined integral is equal to
F(x,y:t) 1 _dn — Y (160)
e vy y—1° |

So the final result. which does not include any divergent integrals is

OF (x,y;t) /% dn [ (.I‘T] ) }
—_— = — | F St ] — Flz,y:t
5 S il (z.y:t)
y _
ﬂ{F (ﬁ,n:t)—F(x,y:t):!
o Y—1n y

+ F(x,y;t) [2+1n (%)) . (161)
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9.1.2 EVOLUTION OF (y(1 - 2 — y))*°* DOUBLE DISTRIBUTION

As an application of this rearranged evolution equation, we can study an approx-
imation to the delta function. The importance of studying the evolution of the delta
function is because of the appearance of delta functions in D-terms appearing in
GPDs. As an illustration, we studied the function F(z,y,t = 0) = (y(1 — x — y))°.
In this work. we are using a = 10. The first correction term is calculated analytically.
The graphs below show the z-profiles and y-profiles of the F(zr,y.t) = (y(1—z—y))°
. The y-profiles are normalized in order to make the change in the shape of the func-
tion visible when the evolution is turned on. The figure below shows the z-profile

and y-profile at different x values of the function F(r,y,t = 0)(y(1 — = — y))!°. To

N Fx(1-x)yt=0.2)

03 04

FIG. 46: z-profile at t = 0 (ved), t = 0.2(black) and ¢t = 0.4 (blue) and y profiles at
x = O(red), = 0.3(black) and z = 0.5 (blue) for evolution of (y(1 — z — y))1°.

summarize, in this chapter we gave and introduction to double distributions and their
evolution. We preseuted an example for evolution of DDs by studying the evolution
of F(z,y,t =0) = (y(1 —z — y))".



CHAPTER 10

CONCLUSION AND FUTURE APPLICATIONS

The introduction of the factorization theorem has broadened the spectrum of ap-
plications of perturbative QCD. Factorization provides the absorbtion of the non-
perturbative (long-distance) part of an event into the objects which can then be
measured experimentally, leaving the perturbative part (short-distance) to be calcu-
lated. The objects which contain the non-perturbative information are the distri-
bution amplitudes and parton distribution functions. The evolution of distribution
amplitudes and parton distribution functions provides information about these non-
perturbative objects at different momentum transfer Q2. In other words, if the DA
(or PDF) is known at an energy level @2, one can evolve this function to differ-
ent energies. The evolution of DAs and PDFs are governed by ERBL and DGLAP
evolution equations.

The standard method of calculating the ERBL evolution is the Gegenbauer ex-
pansion. This method is a very effective way to calculate the evolution of regular
DAs, i.e. DAs which are zero at end points x = 0 and ¢ = 1 and continuous within
that interval. In the case of a singular DA, the method of expansion in Gegenbauer
polynomials requires an infinite number of terms in order to eliminate singularities in
the initial distributions. We present. a new approach, which is very efficient in applica-
tion to functions that do not vanish at the end points or have jumps and cusps inside
the support region 0 < r < 1. While the Gegenbauer expansion produces logarith-
mically divergent terms at each iteration, in our method the logarithmic singularities
are summed from the start, which immediately produces a continuous curve, with
only one or two iterations needed afterwards in order to get precise results.

First, we applied our method to an initial DA that is constant in the whole
0 < x <1 interval. The evolution kernel is studied in two parts, singular and whole.
The reason for this separation is to investigate the singularities corresponding to
the singular part of the kernel. The evolution equation was arranged in such a way
that the first term in the evolution equation has a structure of a “+7-prescription
with respect to the integration variable. The second term in the arranged evolution

equation, which is also finite can be absorbed in the exponential as an overall factor,
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ie. p(x.t) = e @®(x.t). Then, $(x.t) can be written as a series in ¢t. The
leading term gives xZ evolution with the change of the evolution parameter ¢t. For
the accompanying factor, two further terms in the ¢V expansion were found. We
have compared our results with the ones from Gegenbauer expansion. Fifty terms of
Gegenbauer expansion could still not provide the desired asymptotic form while only
two iterations were sufficient with our method.

We also applied the method to an initial antisymmetric DA which is constant
in each of its two parts 0 < z < 1/2 and 1/2 < x < 1. In this case, there is an
extra factor|l — 2z|? that takes care of the jump in the middle at z = 1/2. Two
correction terms were also calculated. The results show good convergence for t < 1/2.
Comparison of our method and the Gegenbauer expansion is presented. It should
be noted that for ¢ > 1/2, the evolved DA is rather close to the asymptotic form,
and one can use the standard method of the Gegenbauer expansion which is well
convergent for such functions.

Then we applied our method for studying the evolution of the (logarithmic Q?
derivative of the) two-photon GDA. The initial DA of the two-photon GDA is zero
at end points £ = 0 and & = 1, butr it has jumps and cusps at z = ( and z = (. We
separated the initial DA into two parts, the jump part and the cusp part.

Jump part includes antisymmetric jumps at £ = ¢ and z = . We introduced an

Ansatz in the form of
¢e(x, ¢ t) = ®(x, ¢ t) + ¥(x,(, 1), (162)

where ®(z,(,t) = ett@+w@AlP(x ¢) with w(zr) absorbing major features of the
evolution of the starting distribution in the vicinity of the jump points. U(z, (,t) is
a regular function vanishing at ¢ = 0. The first expansion component of the jump part
has logarithmic singularities as expected. These terms are absorbed in the Ansatz.
However, resulting function of the first correction has still jumps after subtraction of
singularities at z = ¢ and ¢ = ¢. To avoid these singularities, we adjusted the Ansatz
in such a way to make ¥ (x,(,t)/0t at t = 0 (x(z,()) a continuous function. For
small ¢, the deviation of the Ansatz function ®(z,{, t) from its t = 0 shape, called
6®(x, ¢, t), has a rather sharp behavior at 2 = ¢ and z = ¢. This results in a rather
sharp behavior of W, (z,(,t), which is the correction function to ¥(x, . t). For this

reason we split ¥(z. ¢, t) into smooth part ¥, (x. ¢, t) and the remainder 0¥ (x, ¢. t).



The final structure of our Ansatz is
L. 1) = B(x. (. t) + 6U(x.C.t) + Uy (x.(. t) . (163)

We have shown that the amplitudes of 0¥; and 9V, are very small compared to
the amplitude of ®(x,(,t). This result shows that ¥(r,(.t) = tx(x,() is a good
approximation and is calculable analytically.

In cusp part of the calculation, we split the function into a linearized and a
curvy part. The linearized part is calculated with straightforward " expaunsion. We
presented the first iteration for the linearized part. The evolution of the curvy part
showed that evolution spreads the support region of the function into the whole
interval 0 < r < 1. The initial support region for the curvy part is 0 < z < ¢ and
¢ < x < 1. while after evolution turns on the function spreads into the ¢ < x < ¢
region.

We have also presented the application of our method to the DGLAP evolu-
tion equation and the evolution of double distributions. For the DGLAP case, we
have shown the evolution of a simple non-singular PDF, (1 — z)3. Our results show
consistency with the expected results up to t = 0.5. For the evolution of double
distributions, we have shown results for evolution of function [y(1 — z — y)]*® as an
approximation to a Delta function.

The results presented in this thesis were published in Refs. {55-57]. The methods
developed may be extended to generalized parton distributions. In that case, two
strategies are possible. The first strategy is to use a direct evolution equation for
GPD. In that case, both the GPD and the evolution kernel depend on the skewness
parameter ¢, which is analogous to the parameter ¢ encountered in the two-photon
GDA studies. Another strategy is to use the evolution equation for the double
distribution F(3, a: t). In this case, no skewness parameter is present in the evolution
equation, and dependence on € appears after one performns the conversion of the
double distribution into a GPD. In both cases, various aspects of our methods of
analytic evolution may be used. In particular, GPDs are nonanalytic at the border
points r £ &, having there cusps, while model DDs may have a singular structure

(junps. delta functious) present in their initial shape.
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APPENDIX A
ANALYTIC EXPRESSIONS
A-]- (I)l.l(-'r’ C)

1
By1(2.C) = /0 V(2. 1) @10y C) - Bro(z, )] dy
—m0<x<g<uﬁ{w—a3%

(—x - In¢+In¢(1-3¢)/¢ _
c [ln((—x)+ln((-a¢)]+ 501 - X) z

11—«
¢(1-2¢)
+O(¢ <z < 5){-2-(13::2—21)[41 +4¢) +In (1 -3¢)/¢|
14
2¢(1-2¢) )

B _ B 2, =2 =
22D e - ¢) - FE P mC -2+ gt (%)} (164)

+ élz [z Inz + (1 — zZ) In T

(@ —In(¢ —a)+ ({ —z)In(¢ — r)]} —{z — 7}

+ [(a:—C)ln(a?—C)—(f—x)ln(f——x)—!—i‘lna‘j——aclna:}
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A.2 x(x.¢)

x(z.¢) =¥1(x.C) = /0 Vi(z,y)[®10(y. ) — Pro(x.¢)] dy — w(x, {)Po(x, ()]

=0<r<(< 1/2){(1 —4()5% +%[a’a‘:lnr+ (1 —xZ)Inz]

~ S22 (g — o)+ (€ — )] + BEEREC IO

- ((IT———%% [(x —In(¢ —z)+ (f—x)ln(f—x)] - %h‘l(l - 2¢)
— ;—C [(1 + ) Ind+ (2 —C)ln(]} —{z - 1}

+O(C<z< 5){5(11-:_%%[(1 —4¢)+ ¢ (1 = 30)/¢]

+ 2<1(1—“4§C) [(:r —Oln(z - - -—x)In(( —2)+xInx — ;rln.r]

N 2(x - () In(z — ¢) — 2(¢ — x) (- z) + _fi_t_f_?_)hl (f)

1=2¢ 1-2¢ 21 -2¢) "\z
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VITA

PERSONAL DATA

Name: Asli Tandogan
Address:  Department of Physics 4600 Elkhorn Ave
Norfolk, VA 23529

EDUCATION

August, 2007-August, 2014:  Ph.D. in Physics- Old Dominion University,
Norfolk, VA

August, 2007- August, 2008: MS in Physics- Old Dominion University.,
Norfolk, VA

January, 2006-June, 2007: MS in Physics- Middle East Technical University,
Ankara
September, 2002-January, 2006: B.Sc. in Physics- Middle East Technical University,

Ankara

PUBLICATIONS AND CONFERENCE NOTES

e “Analvtic evolution of singular distribution amplitudes in QCD”, A. V.
Radyushkin and A. Tandogan, Phys. Rev. D, 89:074003, Mar 2014

e “Studies of analytic evolution of Two-Photon Generalized Distribution Ampli-
tude in QCD", A. Taudogan and A.V. Radyushkiu. Int.J.Mod.Phys.Conf.Ser.,
25:1460037, 2014

e “Method of Analytic Evolution of Flat Distribution Amplitudes in QCD”, A.
Tandogan and A.V. Radyushkin, Int.J.Mod.Phys.Conf.Ser. 04 227-238, 2011



	Analytic Evolution of Singular Distribution Amplitudes in QCD
	Recommended Citation

	00001.tif

