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D istribution am plitudes (DAs) are  th e  basic functions th a t contain  inform ation 

about the quark  m om entum . DAs are necessary to  describe hard  exclusive processes 

in quantum  chrom odynam ics. We describe a  m ethod of analytic evolution of DAs 

th a t have singularities such as nonzero values a t the end  points of th e  su p p o rt re­

gion, jum ps a t some points inside th e  suppo rt region and  cusps. W e illu stra te  th e  

m ethod by applying it to  th e  evolution of a  flat (constant) DA, an tisym m etric  flat 

DA, and then  use the  m ethod for evolution of th e  two-photon generalized d is trib u ­

tion  am plitude. O ur approach to  DA evolution has advantages over th e  s tan d a rd  

m ethod of expansion in Gegenbauer polynom ials [1, 2] and over a  straigh tfo rw ard  

iteration  of an initial d istribu tion  w ith  evolution kernel. Expansion in G egenbauer 

polynom ials requires an infinite num ber of te rm s in order to accurately  reproduce 

functions in the  vicinity of singular points. S traightforw ard iteration of an  in itia l d is­

tribu tion  produces logarithm ically divergent te rm s a t each iteration. In our m ethod  

the  logarithm ic singularities are sum m ed from th e  s ta r t, which im m ediately  pro­

duces a  continuous curve. A fterw ards, in order to  get precise results, only one or two 

iterations are needed.
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1

C H A PT E R  1 

IN TR O D U C TIO N

One of the  m ost interesting problem s in physics is understanding  had ron  s truc tu re . 

In 1973, Q uantum  C hrom odynam ics (Q CD) was proposed as th e  theory  of strong 

interactions [3] following the argum ent of G ell-M ann [4] and  Zweig [5, 6 ] in 1964 which 

states th a t the  hadrons are actually  com posed of more elem entary constituen ts, called 

quarks and gluons,  collectively known as partons. QCD was tested to  high precision 

for high energy interactions, b u t, we still need more inform ation ab o u t th e  s tru c tu re  

of hadrons. The difficulties of getting  inform ation ab o u t hadron s tru c tu re  can  be 

traced to  a property  of QCD nam ed confinement.  Due to  confinement, observation 

of free quarks and gluons is no t possible. B ut ano ther property  of Q CD , asymptot ic  

freedom, allows trea tm en t of quarks and  gluons as nearly  free partic les a t sho rt 

distances.

A sym ptotic freedom, i.e. th e  sm allness of th e  QCD coupling a t high m om enta, 

justifies the use of pertu rba tive  QCD (pQ C D ). A t the sam e time, th e  increase of th e  

QCD coupling in the  low energy region ( ~  1 GeV) prevents pertu rba tive  calculations 

for physical observables; therefore in th is  region param eters should be  ob ta ined  from 

phenomenological analyses.

Reactions which allow access to  th e  nonpertu rba tive  region a t tr a c t  th e  a tten tio n  

of m any researchers among th e  hadronic physics com m unity. Deep Inelastic S ca tte r­

ing (DIS) is one of th e  processes which has a  very im portan t role of determ ining  th e  

s truc tu re  of hadrons. In DIS, the  large v irtua lity  of th e  probe enables factorization 

of pertu rba tive  (hard) and nonpertu rba tive  (soft) contributions. A t short d istances, 

the reaction is governed by pQ C D , since the  running  coupling constan t of Q CD  be­

comes small, providing weaker in teraction  between quarks and gluons. T he rest of 

the inform ation, which is non-pertubative , is factorized into DIS form  factors and  

these form factors (structu re functions) can be m easured experim entally.

In QCD, the structu re  functions depend on th e  m om entum  Q  of th e  probe. T he 

Q 2 dependence is known as th e  evolution of the d istribution  functions. In Q CD , 

the scaling of structu re  functions is v io lated  producing the evolution. T his phe­

nom ena can be described in term s of scale dependent parton  d istribu tion  functions,
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fq/g(x, fj2). where // is usually tin; scale of th e  probe Q.  The s tru c tu re  functions 

are the  convolution of these parto n  d istribu tions and coefficient functions, which are 

given as a power scales in the  strong coupling constan t a s(fi). T he evolution of th e  

parton  distributions is governed by th e  D okshitzer-G ribov-Lipatov-A ltarelli-Parisi 

(DGLAP) equations [7 9].

The photon-pion transition  7 7 * —> n°  plays a  key role among exclusive processes 

since it is th e  cleanest exclusive process to  te s t QCD predictions. T he scattering  

am plitude a t large transferred m om entum  Q 2 factorizes as a convolution of th e  pro­

cess independent d istribution  am plitude (DA), t p (x , n ), and  process dependent hard  

scattering  am plitude. T he evolution of d istribu tion  am plitudes is governed by th e  

Efrem ov-Radvushkin-Brodsky-Lepage (ERBL) equations [1, 2].

A nother reac tion which is receiving a  lot of a tten tio n  is Deeply V irtua l C om pton 

Scattering (DVCS). This reaction has lead to  th e  proposal of new n o n -p ertu rba tive  

objects called Generalized Parton Distributions  (G PD s) [10-15]. T hese functions arc: 

hybrids of form factors, parton  d istribu tions, and  d istribu tion  am plitudes. T heore ti­

cal models for building G PD s have to  satisfy som e nontrivial requirem ents. O ne way 

to  build G PD s satisfying these requirem ents is modeling w ith D ouble D istribu tions 

(DDs) [13, 14, 16]. I11 particular, one m ay assum e some simple A nsatz  for a  DD at a 

low scale p. and then  evolve it into th e  m oderately  large m om entum  transfer region. 

To do this, one needs to  incorporate efficient m ethods of QCD evolution.

In this thesis, we illustrate  a new analytic: m ethod for evolution of d is tribu tion  

am plitudes and generalized d istribu tion  am plitudes. We also show how to  ex tend  our 

m ethod for th e  DGLAP evolution equation  and th e  evolution of double d istribu tions.

O ur approach to  DA evolution has advantages over th e  s tan d ard  m ethod  of ex­

pansion in G egenbauer polynom ials [1, 2] and over a straightforw ard itera tion  of 

an initial d istribu tion  w ith evolution kernel. Expansion in G egenbauer polynom i­

als requires an  infinite num ber of term s in order to  accurately reproduce functions 

in the  vicinity of singular points. S traightforw ard iteration  of an in itia l d is trib u ­

tion produces logarithm ically divergent term s a t  each iteration. I11 our m ethod  th e  

logarithmic: singularities are sum m ed from  th e  s ta rt, which im m ediately  produces 

a continuous curve. Afterwards, in order to  get precise results, only one or two 

iterations are needed.
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One of the  m otivations for studying  the evolution of singular d is tribu tion  am ­

plitudes is modeling GPDs. A well known property  of G PD s is th a t  they  are noil- 

analytic a t border points x  =  ± f .  For one-loop diagram s, this noii-analy ticity  m ay 

take the  form of cusps, jum ps, and even delta-functions. Thus, one needs to  develop 

m ethods of evolution for singular in itia l distributions. A simple exam ple of a singular 

d istribution  is given by flat d is tribu tion  am plitudes, <p(x) =  const, which do no t van­

ish a t the x  =  0, x  = 1, boundaries of the  DA support region. We first dem onstra te  

the application of the  m ethod on flat DA. O ur m ethod allows to  easily establish  th e  

m ajor evolution p a tte rn  (x x )f w ith t  =  ln[ln(p/A )] for a flat DA, and  provides 

an algorithm  for an analytic calculation of corrections to  it. T he m ethod  was also 

applied to  a DA <p(x) — sign (a: — 1 /2 ) th a t has a jum p at x  -- 1 /2 , in th e  m iddle of 

the support interval, w ith DA being antisym m etric w ith  respect to  th a t point.

This m ethod is then  extended for studying  the evolution of generalized d is trib u ­

tion am plitudes (GDAs) [17]. Sim ilarly to  G PD s, these  functions are lion-analytic 

a t kinem atics-dependent points x  =  ( ,  1 — (  inside th e  support interval. T he evo­

lution of G PD s is further com plicated by th e  fact th a t  G PD  evolution kernels also 

depend on skewness (  (or ( ) .  Unlike G PD s, GDAs evolve according to  th e  sam e 

(■-independent ERBL kernels as th e  usual DAs, which allows us to  concen tra te  on 

studying im plications due to  the  noil-analytic: s tru c tu re  of the in itial d is tribu tion . A 

particu lar object th a t we consider is th e  tw o-photon GDA [18] re la ted  to  th e  reaction  

t l (Pi ) l ' (p2 ) ■ hi QCD lowest order, it is proportional to  th e  V V  —» V V  

ERBL evolution kernel, bu t th e  evolution of its  In Q2 derivative, in th e  leading log­

arithm  approxim ation, is governed by the  qq —> qq ER B L kernel.

T he thesis is organized as follows: The res t of th is  chapter is dedicated  to  basic 

inform ation necessary to  explain some properties of our m ethod including QCD, Deep 

Inelastic Scattering, and Factorization. In C hapter 2, we discuss th e  basic ideas of 

our m ethod. In particular, we convert the  evolution equation  to th e  form  in which th e  

convolution integral has the s tru c tu re  of the “plus prescrip tion” w ith  respect to  th e  

integration variable y. The evolution equation is fu rther simplified by choosing th e  

A nsatz absorbing the  extra te rm  generating contributions, tha t are logarithm ically  

singular a t the end points of th e  support region. Applying this m ethod  for an in itia lly  

flat DA in C hapter 3, we find th a t,  for any small positive value of th e  evolution 

param eter t, the flat DA evolves into a function vanishing at the end points w ith its 

shape dom inated by the  [x(l — ar)]t factor. T hen  we analytically  calculate the  lowest
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corrections to  this approxim ation. In C hap ter 4, we also apply th is  m ethod  to  the  

antisym m etric flat DA th a t initially takes opposite values for x  <  1 /2  and  x  > 1/2. 

Such a DA is the  sim plest exam ple of an in itia l d is tribu tion  w ith a ju m p  inside the  

support region (in th is case in the m iddle of th e  region). For further applications, we 

consider a case of an antisymmetric jum p  <j>(x =  £_) =  —<P(x =  C+) an a rb itra ry  

position x  =  £ inside th e  support region. A fterw ards, we derive th e  form ulas th a t  

are used in C hapters 5-7, where we apply th e  approach to  the evolution of th e  two- 

photon generalized d istribu tion  am plitude ipQ( x , ^ , Q 2). Its logarithm ic derivative 

w ith respect to  Q 2 satisfies th e  ER B L evolution equation , with in itia l conditions 

given by a function ip{x, C) that has b o th  jum ps (discontinuities in th e  value of th e  

function ip(x, ( ) )  and cusps (discontinuities in th e  value of th e  derivative d(f (x.  Q / d x )  

at the “border” points x  =  Q x  =  1 — £. T he struct ure of p(x,Q)  is discussed in 

C hapter 5, where it is proposed to  sp lit it into a  part th a t has antisym m etric jum ps a t 

the  border points, and  a  continuous rem ainder th a t  has cusps there. Evolution of th e  

"jump" p a rt of the  tw o-photon GDA is considered in C hap ter 6 , w hile evolution of th e  

•‘cusp” p a rt is considered in C hap ter 7. In C h ap te r 8 , we dem onstrate  th e  application 

of our m ethod to  D G LA P evolution equation, w ith  a nonsingular p a rto n  d is tribu tion  

function. In th e  last chapter, wTe dem onstra te  th e  application of a  modified version 

of our m ethod to  evolution of double d istribu tions.

1.1 QUANTUM  CHROMODYNAMICS

The fundam ental theory of strong in teractions is Q uantum  C hrom odynam ics 

(QCD). QCD is a non-Abelian gauge theory  w ith gauge group SU(3). T he th e­

ory is based on renorm alizability of gauge field theories discovered by ’t Hooft and  

Veltman [19-21]. QCD involves local sym m etries and the  force carriers for Q CD are 

colored gluons, which have zero m ass and spin 1. QCD is based on th e  invariance 

under non-Abelian SU(3) group of local phase, transform ations am ong th ree  colors, 

w ith the Lagrangian

( 1)
Q

where is the non-abelian field s treng th  tensor

C i; 1 =  -  a y ,  -  g . h i c K A i  ■ (2 )
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and ( D ^ i j  is the covariant derivative

(DII)ij =  Sijdl i + i g a^ 2 ^ - A l .  (3 )
a

gs is the QCD coupling constant and f abc are th e  s tru c tu re  constan ts of SU(3) algebra. 

The term  gsf abcA buA l  is very essential. It corresponds to  th e  interaction of gluon fields 

w ith each o ther through three; or four gluon vertices. Tin; only param eters  of th e  

theory are the  coupling constant gs and  the masses of quarks. For in term ediate  

m om enta ~  1 — 10 GeV, tin; masses of light quarks m ight he set to  zero while th e  

masses of heavy quarks might be set to  be infinitely large. Thus, th e  only p aram eter 

in this situation  is tin; coupling constan t gs.

Tin; coupling "constant" between quarks is no t really a constant. O n the  contrary, 

it depends on the  distance between quarks. One. m ay assume th a t  a dim ensionless 

QCD observable R  should be independent of Q 2 for Q A> rnq. The only energy scales 

in the. QCD Lagrangian arc; the  quark  masses. Since tin; relevant ones are  very light, 

it would be expected th a t the scaling p roperty  would be set at low Q 2. However, th is 

is no t tru e  in a renorrnalizable field theory. A scale is introduced w hen calculating th e  

observable; R  w ith pertu rba tion  theory  because; of logarithm ically diverging integrals. 

In orele;r to  reuiormalize the  theory, a scale should be introduced. As a result of this, 

th e  dimensionless observable R  does not scale anym ore. It has logarithm ic scaling 

violations, so the; coupling constan t a s = g2J A n  of QCD becomes a  running  coupling 

constant. Its running is controlled by th e  be;ta function. The; remorm alization group 

equation may be solve*! exactly a t th e  eme b o p  level. One; can then  derive a s a t some 

scale Q,  as a  function erf its value a t th e  remorm alization scale; p,

? a s (u2) „ 11 2
a.s{Q = y y  y r , 2W, u  ( r a , 2 \ w ith do =  — n c -  - n f  , (41 +  (doas(^ 2)/47r) \u{Q2/ f i 2) 3 3

where; n c is the mimbe;r of quark  colors anel ny is num ber of "active;" (theisc not 

trea ted  as infinitely he;avy) flavors in th e  theory. One; can rewrite; a s( Q2) as

47T
a ^ Q ] =  do ln(Q 2/A 2) ' (5)

The; j)arame;t.e;r A is the; QCD se ale;. Its nume;rie'al value; for three aetive; quark  flavor is 

about 2(10 Me?V. From this relatieni. it can be; seen th a t a s —> 0 as Q  —> oc (asymptotie-

freeelenn) [22. 23] anel. on the e>the;r hanel. QCD be;ce>me;s strongly e'onple;el a t Q  ~  A.
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FIG . 1: M easurem ents of Qs as a funetion of Q [24],

In other words, the  m om entum  scale A is th e  scale a t which <x3 becom es strong  as 

Q 2 decreases. In Fig. 1, a sum m ary  of m easurem ents o f a s(Q2) is presented  as a  

function of energy scale Q. T he d a ta  points are  based on the Q CD  calculations for 

combined world average value of a s( M z )■
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1.2 DEEP INELASTIC SCATTERING

One of th e  ways to  test p e rtu rba tive  QCD is deep inelastic sca tte rin g  (DIS). 

"Dec])” m eans th a t wavelength of th e  photon  is much sm aller th a n  th e  size of th e  

target hadron. Thus, the  photon  can probe very small distances com pared to  th e  

hadron. “Inelastic" corresponds to  high energy leptons destructing  th e  ta rg e t hadron  

and causing the form ation of new hadrons; i.e. th e  ta rge t hadron is converted into a 

large num ber of hadrons in the  process.

FIG. 2: K inem atic of DIS. The four-m om enta of incom ing and outgoing leptons are 
k  and k f, q — k'  — k, P  is the four-m om enta of th e  hadron  with m ass M .

The general form of the  scattering  is I + h  —> I' +  X .  where I and  V are leptons. 

h is the hadron target and X  is th e  sum  of all possible hadron sta tes . T he incom ing 

m om enta of the hadron and lepton are P  and k,  respectively. O utgoing  m om entum  

of the lepton is k'  and the  transferred  m om entum  q is q — k — k'. T he  DIS process 

is characterized bv the following invariant quantities:

y  =  j —— =  — (the fraction of lep to n ’s energy) ,
K * i H/

P, M

k

W 2 = ( P  +  q)2 — Jl/ 2 +  2M u  — Q 2 (m ass squared o f the final sy s te m ) , 

O 2
s =  (k  +  P ) 2 =   ---- 1- M 2 (CM energy squared).



8

T he virtual photon sub-process is characterized by th e  following quan tities

If th e  incoming and outgoing leptons are electrons or m uons, the hadron  is probed  by 

electrom agnetic interactions. In pure electrom agnetic case, the v irtua l vector partic le  

is a  photon. Neglecting the con tribu tion  of w eak currents, the relevant Lagrangian 

is given by th e  following expression.

is the  corresponding electrom agnetic (EM ) curren t, w ith Q q being th e  charge of th e  

quark  q.

The scaling phenom enon was proposed in 1969 by Bjorken [25] before th e  p a rto n

This relation can be explained by assum ing th a t th e  transverse m om entum  of partons 

in the infinite-rnom entuin frame of the  pro ton  is small. In other words, if quarks were 

non-interacting, then  no further s tru c tu re  would be resolved no m a tte r  how much 

Q2 increases. According to QCD predictions, however, w ith increasing Q 2 quarks 

s ta r t to (unit hard gluons. This emission causes logarithm ic scaling violation. W hile 

the probability  of finding a quark  a t sm all x  increases w ith  Q 2, the  p robability  of

Q 2 = —q2 = 2 ( E E '  - k - k ’)

«  4 E E '  sin2(# /2 ) (neglecting th e  lepton m asses),

(the fraction of th e  hadron 's  m om entum  carried by struck  quark).

which are called Bjorken variables. T he deep inelastic lim it (Bjorken lim it) is specified

Q2, M u  A2, x  —¥ fixed . (6 )

cm  n ’ (7)

where

(8 )

model. Scaling means th a t as Q 2 —> oo th e  s tru c tu re  functions becom e independent 

of Q 2,

F i {x , Q2) IQ2.+30 =► F ( x ) . (9)



9

finding it at high x  decreases, since high m om entum  quarks emit gluons while losing 

mom entum . Emission of hard gluons from  quarks leads to  the evolution of s tru c tu re  

functions. As Q 2 —» oc. the num ber of gluons em itted  by quarks increases a t high 

x.  These em itted  gluons may split in to  qq pairs or two gluons. T his process causes 

bo th  th e  softening of th e  initial quark  m om entum  distributions and  to  th e  grow th of 

gluon density and qq sea as x  decreases.

Ts
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FIG. 3: Bjorken scaling violation [24]
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1.3 FACTORIZATION

The scope of pertu rba tive Q CD (pQ CD) would be ra th e r  lim ited if its predictions 

were only lim ited to  infrared safe observables. Thus, probing the  parton ic  s tru c tu re  

of hadrons or m aking predictions of high energy cross section processes w ith  th e  

existing inform ation of hadron s tru c tu re  would be impossible. Factorization [26, 27] 

is one of th e  im portant properties of pQ CD  which provides th e  foundation of th e  

parton  model. Partonic cross sections which are not infrared safe by them selves are 

factorizable into short-distance (hard) and long-distance (soft) p a rts . T he sh o rt- 

distance; part is infrared safe while; th e  long-distance p a rt has infrared singularities. 

This separation (factorization) pre>viele;s the  ee>nneetion of partonic cross sections, 

which are; caleailable, to  haelronic e*re>ss sex-tions whieli are; experim entally  m easurable.

Factorization perta ins to  the; infrared singularities associated w ith  lemg-elistance 

interactions. These singularities are absorbexl into non-pertu rba tive  b u t experim en­

tally m easurable objects. These; ob jects are parton distribution funct ions  (P D F ) in 

the; inedusive processes such as DIS and  DA in exclusive processes sueli as meson 

proeluctiem in photon-pliotou collisions or DVCS. In som e sense, factorization  is sim ­

ilar to  the  abse>rption of u ltraviolet divergences into m easurable physical constan ts  

in renorm alization the;ory.

The; factorization may be illu stra ted  by th e  e;xample of the  pion form factor 

Fk(Q2). Feu large Q 2. it factorizes as

F A Q 2) =  f  dx f  d y ^ ( y , Q 2) T ( x , y , Q 2) ip(x,Q2) . (10)
Jo Jo

A perturbatiem  expansion of amplitude; T ( x , y , Q 2) is given by

T{x,  y, Q 2) = a s (Q2)TB(x,  y, Q 2) +  a 2s(Q2)T2( x , y , Q 2) +  . . .  (11)

T b is th e  Beun form of the; liarel scattering  am plituele anel is equal to

A 1 (\'jr
Tb (x , y, Q 2) =  (12)

3 Q 2(1 -  x ) ( l  — y)

anel p ( x , Q 2) is the; pion elistributie)n amplituele;. It is related  to  the; pion wave func­

tion anel describes how the longituelinal m om entum  of a fast-m oving pion is shared  

am ong constituents belonging to a particu la r Fock com ponent. All th e  soft gluon 

eontributions. i.e. infrared singularities of the form [a* log (Q2/ m 2)}n are1 absorbed  

into p( x .  Q2). where; m is the; mass use;el to  regularize; th e  divergence;.
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Fig. 4 depicts how the d istribu tion  am plitude ip{x.Q2) is generated  from infinite 

num ber of soft gluon exchanges.

x

u x u z x

+  . . .

FIG. 4: Illustration of how d istribu tion  am plitude is formed by infinite num ber of 
soft gluon exchanges.

In th is chapter, we explained elem entary  inform ation necessary for understand ing  

the basics of the analytic m ethod for th e  evolution of singular d is tribu tion  am plitude. 

Next chapter we dem onstrate the  basics of th e  ERBL evolution and  th e  evolution 

kernel, We also sum m arize the  s tan d a rd  way of calculating th e  ER B L evolution 

equation.
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C H A PT E R  2 

EVOLUTION OF SIN G U LA R  D ISTR IBU TIO N  

AM PLITUDES

2.1 EVOLUTION EQUATION: BASICS

Evolution equations predict the  parto n  d istribu tions for any  scale / /  using th e  

measured parton  d istribu tion  at a scale p. In order to  describe th is dependence of 

the  parton  d istributions on the  renorm alization scale, fi and jJ should be larger enough 

so th a t running coupling constants <as(p) and cts (/J.r) are small. E volution kernels are 

the key objects erf evolution equations. In th e  following section, derivation  of th e  

leading-order (LO) evolution kernel for the DA in hard  exclusive reactions (ERBL 

kernel) is illustrated.

2.1.1 DERIVATION OF LO ERBL KERNEL

The leading order (LO) ERBL kernel represents th e  am plitude for a  quark  w ith  

fractional m om entum  y  and an tiquark  w ith (1 — y)  to  becam e a quark  w ith  fractional 

m om entum  x  and an tiquark  w ith (1 — x)  by exchange of a gluon. T here  are two 

diagram s contributing to  th e  LO kernel, the  triangle  diagram  and tin*, self energy 

diagram . We will begin w ith calculation of triang le  diagram .

The triangle diagram  in Fig. 5a con tribu tes to th e  m a trix  elem ent 

(0|U’( — z / 2 ) Y v { z / 2 ) P ) . We can expand this expression in a Taylor series

OC
m ( - z / 2 ) Y v ( z / 2 ) \ p )  =  a s )

n =o AH

After the Taylor expansion, non-local operators become local operato rs  (Fig. 5b). 

M atrix elements of twist-2 local operato rs here m ay be param etrized  by

( «->■<-> «-* \

[ t-(o ) |P )  =  { p vp ^ p ^ . . . p ^ } j n  , (14)



FIG. 5: Triangle diagram contributing to the LO ERBL kernel

where { .. .}  corresponds to th e  sym m etric trace'less com bination of th e  m om entum  

vectors. One way to  get sym m etric traceless com binations is to  m ultip ly  the  tenso r 

by n un ^ ln M.2...nMN w ith n  having th e  p roperty  n 2 = 0 .

The loop m om entum  integral for th e  reduced m atrix  elements /.v can be w ritten  

then as

The evolution of the  DA may be w ritten  in m atrix  form as introduced in Ref. [1]

A nother way to  w rite the  evolution equation of cp(x)  is tin; kernel form [2]. To th is  

end, trea ting  /jv ’s as the m om ents of some function <f(x)

(15)

V j - f N ( n )  =  ̂ ' 2 Z Nk f k ( f i ) (16)

we introduce the  parton  d istribu tion  am plitude ip(x). T he  integral over k  for <f(x) 

may be w ritten  as

(18)

Defining the kernel
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we convert th e  m atrix  form of evolution equation  into th e  kernel form  as

f  V ( x , y ) ? { x , n ) d y .  (20)
dy Jo

In our exam ple of th e  calculation of the  non-forw ard ERBL kernel V ( x , y ), ac­

cording to (18), the  vertex can be replaced by if 6 (x  — ~ ) . T he one loop d iagram  

depicted in Fig. 5 in light-cone gauge is governed by

Tr{p'y>t ( t  -  P ) 0 7"}
Vl {x,y)  = J  d4~2ek

(.k 2 +  ie)((k -  P ) 2 +  ie){{k -  y P ) 2 +  ie)
{k -  y P ) lxn v +  (k  -  yP)„n fl

9ni' 4 ! * - £ ) ■  (21)(k — y P )  ■ n  + ie

To handle the  UV divergences, we here used dim ensional regularization  [28]. 

The m om entum  k  in light-cone com ponents m ay be w ritten  using Sudakov 

param etrization  [29] as

k = x P  +  a n  +  k± , 

d4~2tk = d2~2tk ± d a d x , 

k 2 = k \  + a x  ,

P 2 = n  ■ k± = n  ■ p — 0 , 2P  ■ n  — 1. (22)

The relation of 7  m atrices in 4 — 2e dim ension = ~  2 7 <T7 P7 1/ +  2e7 I'7 p7 £7

provides simplification of trace,

-  f > ) 0  7 " -  - 2  ## (#  -  f )  +  2e(# -  f > ) 0  . (23)

Analysis of integral I  can  be divided in two parts: th e  p a r t woth m etric tensor g^v 

and the rest of the  term s. The integral w ith m etric tensor, I u  is given by

, = f d* - » k ______________ - n m m ______________ s ( x - P \
1 J  (k2 +  ie)((k -  P ) 2 +  ie)((k  — y P ) 2 +  ie) \  n ~

X d i X  P n

P n  J
2 ( P  ■ k) ( k  ■ n) — (P ■ n ) k 2 

( k2 +  P) ( ( k  — P ) 2 +  ie)((k — y P ) 2 +  ie)
kn

4 (—2(2 -  2e)) j  d4~2ek-̂

/■
4((2 - 2 e ) )  I d2~2tk ± da

k 2±
(a x  + k 2± + ie) (a(x  — 1 ) +  k± +  i e ) (a(x  — y) + k \  + ie)

(24)
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Integral / j has three poles in the intervals x  >  1. x  <  0, 0 < x  < y  and  y < x  < 1. 

Fig. G shows the calculation of poles in these regions. In the; intervals x  > 1 and  

x < 0 . the contour could Ire closed from to p  and from bo ttom , respectively producing 

zero result. For tin; intervals 0 < x  < y  and  y < x  < 1, th e  contour could be closed in 

such a way th a t only one pole is included inside; the  contour. Results for the  intervals

X  >  1

1 2 3

x <  0 
1 2 3

0 <  x <  y  
2 3

y  <  x  <  1

FIG . G: Poles of integral I\

0 < x  < y  and y < x  < 1 are

d2 2tk± x
when 0 <  x < y =$■ 4(2 — 2c) J
when y < x  < I => —4(2 — 2e) /  ,  _

J  k± y

k ±  y  
<P~*kL x

Integral I\ becomes

Ii = 4(2 -  2e)
c P - ^ k

k±
- 6 { x  < y) -  ^ 6{x < y)
y  y

(25)

The second part of th e  integration, I 2 is

12 =  J  d4~2ek

T r { P ( t  -  ~  ~  V f ) }
(k2 +  ie)({k -  P ) 2 +  ie)((fc -  y P )2 +  ie) { ( (k -  y P ) • n)  +  ie) 

when; traces can be simplified as

T r =  8(fc ■ n ) ( P  ■ n) [k2 — 2k ■ P)

T r -  y P ) }  =  8 k2{ P  ■ n) {k ■ n -  P  ■ n] .

(2G)

(27)

(28)
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The integration becomes

I 2 =  J  d2~2ek ± d ad 3

4 a3 ( 3  -  1) +  k \ [ 4 3  - 2 )5{x -  3)
( a3  + k]_ + ie)(a(3 — 1) +  k± -f i e ) (a(3  -  y)  +  k \  +  ie)(,5 — y ) / 2  '

In the  interval 0 <  .r < y. in tegration / 2 is

/ 2 =  4(2 -  2e) +  ------------
x (— - ! )  + Ai )  (-^O* -y)  + kl )  (x -  v)

/ k \  y ( x  -  y ) '

I11 the  interval y < x  < 1, I2 is

—4 x k \  +  k \ (  4x  — 2)
4 ( 2 - 2  f  f  k2 -

J  { x - l ) ( K~ ^ l x  +  k2± ) [ - ^ i { x - y ) 4 - k 2± ) { x - y )

rf2~2̂  * (31)
-  y)

By adding all th e  com ponents of in tegral / ,  one gets th e  following expression,

„ s f  d2~2ek± \ f x  x  \  .. . ( x  x  \

1 = 4(2  - 2e) J ^ r  \ y  + H x  < y ) - { v + % " 1

/
.(32)

I t is im portan t to  notice th a t integral I  is divergent w hen x  — y.

T he self energy diagram s are the  o ther con tribu ting  diagram s to  th e  LO ER B L 

kernel. We are not representing all th e  steps for the  self energy d iagram  since all th e  

necessary procedure is explained during  the  calculation of the one loop integral. T he 

self energy contribution, Vi{x .y )  is equal to

V2 ( x , y )  = - 6 ( y - x )  f  dzVx( z , y )  (33)
Jo

This te rm  provides canceling x  =  y  divergencies in Vi (x , y ) .  C om bination

Vi (x , y )  -  S(y  -  x) f  d z V i ( z , y )  (34)
Jo

type of relations are called “p lus-preserip tion” , see e.g. [8 ], where it was used for 

D GLAP equations. It satisfies

[  [V(x,y)]+dx = 0 . (35)
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jlS (x  -  y)

y P
y P - k

vL6 (x  -  y )

FIG . 7: Self energy d iagram  c

y P

This relation for V ( x , y )  reflects th e  fact th a t the ax ia l current is conserved for 

massless quarks, i.e. it is not renorm alized.

In the  leading logarithm  approxim ation, th e  relevant ERBL evolution equation  

[1 , 2 ] reads

d(p(x, t ) rl
dt

[  [V(x,y) \+ 
J 0

<f(y> t)dy, (36)

when; t =  2Cp In ln ( / i /A ) /60 is the  leading logarithm  Q C D  evolution param eter,

1
V ( x , y )

X /

_y (
X

+ —
M

— 1 -

y - x
1

x  - y

9(x < y) 

0{y < x) (37)

x  =  y regulated by the plus prescription

[V"(x, y)\+ = V ( x , y )  -  6{y -  x)  f  V ( z , y ) d z  ,
Jo

(38)

w ith respect to  the first argum ent x.

In general. DAs <fx(a:.y) depend on tin; norm alization  scale y.  tend ing  to  the  

“asym ptot ic ” shape .

(x) =  - x ) . (39)
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in the [i —> oc limit, for any intial pion DA. A s tandard  way [1. 2] to  th is  result is to  

expand the initial pion DA over the  eigenfunctions

V?(a\/i) = a : ( l  2x -  1 ) kn{y) (40)
n = 0

of the evolution kernel. Each G egenbauer projection then  changes as

[In ln(/L£0/ A)/  In \ n(n/A)]yn^3° when \i increases. All anom alous dim ensions \ n are 

positive, except for Ao which is zero, hence only the  ~  x { \  — x)  p a r t survives for 

t —> oc. For a pion DA given by a  sum  of a few G egenbauer polynom ials, th is  

m ethod gives a convenient analytic expression for the  DA evolution. However, if th e  

initial DA does not vanish a t  th e  end points, or has jum ps inside th e  support region, 

one should formally take an infinite num ber of G egenbauer polynom ials. In p ractice, 

this means th a t one should sum  over a large num ber of term s to  get a  reasonably  

precise (point by point) result for th e  evolved DA.

A nother way to  handle evolution of singular DA is th e  m ethod we are going to  

describe in this thesis. To begin w ith , we need to  do some rearrangem ents to  th e  

evolution equation. In explicit form th e  evolution equation  is

1= J0 “  V(y,x)<p(x, t )]  dy  . (41)

It is clear th a t the singularities of V ( x ,  y)  an d  V ( y , x )  a t  x  = y  cancel each o ther 

in the integrand above, even though  the  su b trac tion  there does not look like a 

“+ ”-prescription w ith respect to  th e  in tegration variable. Adding and  su b trac tin g  

V(x,y) ip(x)  in the integrand, we ob ta in  the equation

=  ~  [V{y,x)  -  V ( x , y ) } dy  (42)

in which the  first te rm  has th e  s tru c tu re  of th e  “+ ”-prescription w ith  respect to  th e  

integration variable, so th a t l / ( x  — y)  s ingularity  of V ( x , y )  is canceled by zero of 

(p{y,t) — (p(x,t)  a t x  = y. The in tegral in the  second te rm  in Eq. 42

v(x ) = -  f  [V(y , x )  -  V ( x , y ) } dy  (43)
do

is also finite. Taking the A nsatz

<p( x . t )  =  e tv(x)^ ( x , t ) (44)



19

we obtain for <1>(x,t) the equation

= f 1 V (x, t) -  4>(.r, t)\ dy
Jo

(45)

which does not have the second term . T he solution for T(.r, t) m ay be w ritten  as a 

stales in t.

2.2 DISTRIBUTION AM PLITUDES (DA) AND THEIR  
EVOLUTION WITH G EGENBAUER EXPANSION:

O ne of the m ost im portan t applications of pQ C D  is to  predict th e  asym pto tic  

behavior of hadronie form factors. T he sistribu tion  am plitude tp(xi , . t 2, . . . , xn, Q 2) is 

a function related  to  the h ad ro n ’s wave function and describes how th e  longitudinal 

m om entum  of a fast-moving hadron is shared am ong constituen ts belonging to  a 

particu lar Fock com ponent. T he reason for th e  Q 2 dependence is th a t  all th e  soft 

gluon contributions of the  form (q s In (Q2/ m ) 2)n are factorized in to  th e  DA. T his 

dependence of DA on Q2 is governed by the ER B L evolution equation (36).

The s tandard  way of calculating evolution of the  DA is expanding th e  in itia l DA 

<f(x, Qq) over the  eigenfunctions of th e  evolution kernel V ( x . y )

w ith C f being (n2 — l ) / 2 n c — 4 /3  and  n c being num ber of colors. T he general 

solution for th e  evolution equation in te rm s of G egenbauer polynom ials is

(46)

w ith the functions 4>n( f ) satisfying th e  recurrence relation

$n+iOr) =  V ( x , y )  ^ j ^ j ^ ^ i { y ) [ v ( y ) - v ( x ) } n 1 dy . (47)

(48)

where j n is 11011-singlet anom alous dim ension given by

(49)

? ( x h Q)  =  ^ 2  k n{Q2) C l /2{x l - x 7), (50)
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w ith th e  kn(Q2) dependence oil Q 2 given by

M < ? 2 ) =  e ’" ' K ( Q l )  =  M Q o )  ( ! « )  "/  ” . ( 5 1 )

o to
The orthogonality  relation of G egenbauer polynom ials C n is given bv.

m  -  e ^ H O C ^ J H O  = ^ n 2{2n + t ) l )  ‘ (52)

Hence, the  Gegenbauer polynom ials Cr / 2(2x — 1) form an orthogonal anti com plete 

basis w ith the weight x{ \  — x)  and Eq. (52) can be w ritten  w ith th e  in tegral lim its 

form 0 to  1 w ith th e  change of variable £ =  2x  — 1,

x x C l /2{2x -  1)CH2(2x  -  1 )dx =  ^ ^ ^ 2̂  +  3 ) ^

This orthogonality relation can be used to  ex trac t the coefficients k n,

M O 2 ) -  ,  4 f , ”u + ! > 9 '  [ '  d x C ^ ( 2 x ^ l ) ^ x .  Q 7 ) .  ( 5 4 )(n + l ) (n  +  2) J0

The general solution becomes

DC

(f(x. Q 2) = x x ^ e ~ tlnC l /2{2x -  l ) k n(Ql)
n —0

DC'

=  x x J 2 M Q 2) / a s( Q l r n/3oC 3J 2(2x -  1 )kn { Q l ) . (55)
n = 0

The meaning of th is equation is th a t if th e  anom alous dim ension is g reater th a n  zero, 

then  the term s die off as powers of a s( Q2)/ a s (Ql)  — ln(Q g/A 2) / \n{Q2/ K 2). This 

means th a t for large Q 2, the DA approaches th e  first te rm  of the  expansion, i.e., its 

asym ptotic shape x { \  — x).  The expansion in Eq. (55) converges if i f ( x % Q 2) vanishes 

at the endpoints of interval [0, 1]. In the, next chapter, application of th e  G egenbauer 

expansion m ethod is illustrated  on flat and anti-sym m etric d istribu tion  am plitudes. 

The com parison between the  ou tp u t of Gegenbauer polynom ial expansion and  our 

analytic m ethod is also dem onstrated .
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C H A PT E R  3

EVOLUTION OF FLAT DA

One of the  m otivations to  study  a fiat DA <Pq (x ) =  1 is th a t it is the, sim plest 

exam ple of a function th a t does no t vanish a t the end points x  =  0 and  x  =  1. 

A nother m otivation for choosing a flat DA is B aB ar d a ta  [30] on th e  7*7  —» 7r° 

transition  form factor correspond to  approxim ately  logarithm ic In Q 2 raise of th e  

com bination Q 2F~f*inu(Q2) in the region of very high m om entum  transfers 10 to  40 

GeV2, where the  pertu rba tive  QCD approach [2] pred ic ts nearly constan t behavior 

for this com bination. It was proposed [31, 32] to  explain the B aB ar “puzzle1' by 

assum ing th a t the pion d istribu tion  am plitude is “flat,1': <fn(x) = f n.

First, we study  the evolution of a  flat DA w ith  th e  Gegenbauer expansion. One 

may check the  expansion of a  flat function in te rm s of G egenbauer polynom ials before 

tu rn ing  the evolution on to  illu stra te  th e  efficiency of th is  m ethod on a  function th a t  

does not vanish a t the end points.

l = x ( l - x )  Y
n=0,even

4(2 n  +  3)
(n +  l ) (n  +  2)

C f 2( 2 ; r - 1 ) (56)

r F ( r . t  =  0 )

0.6

0 0.5 1
0 .2

0:

f F ( z . t  =  0 )

FIG. 8: Expansion of flat d istribu tion  am plitude in term s of G egenbauer polynom ials: 
3 term s. 30 term s and 50 term s.

Fig. 8 shows th a t G egenbauer polynom ial expansion needs m any te rm s to  work 

for a function which does not vanish a t end po in ts x  = 0 and x  =  1 even before 

the evolution is tu rned  011. Despite th e  fact th a t  the  expansion was not an efficient 

m ethod for expanding a flat d is tribu tion , one m ay check th e  m ethod 011 th e  evolution
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of a flat DA. All anom alous dim ensions are positive, 7n > 0 except th e  first one which 

is 70 =  0. T he first few anom alous dim ensions for <Pq ( x ) =  1 are

.. 50 364
7o — 0 , 7 2  — — . 7 4  — ~^r ' ■' (o7)

This m eans th a t for large Q2, a flat DA is going to  evolve into th e  first te rm  in th e

expansion which is xx .  The coefficients k n(t = 0) are calculated w ith  Eq. (54). Only

term s w ith n  =  even  survive. The first few term s are equal to

k0(t =  0) =  6 /* dx  C q / 2 ( 2 x  -  1) =  6 ,
Jo 

k2(t =  0 ) = 7-  dx  C l /2(2x  -  1) =  I ,

o n  r l  9 2
k 4(t — 0) = —  d x C l /2(2x  -  1) =  —  , • • ■ (58)

io  J 0 io

A fter calculating kn(Ql),  one can evaluate th e  DA to  a  different Q 2 by using Eq. 

(55), i.e. th e  evolution of DA.

*?(x.t =  0.2) A * .  * =  0.2) y(x.< =  0.2)
1 4     1 '     1 4  ---------------------

FIG. 9: F la t function expanded in term s of G egenbauer polynomials: 2 term s, 30 
term s and 50 term s.

As seen in Fig. 9. th e  G egenbauer expansion produces functions which are oscil­

lating. However, there is no physical reason for these structures. T hey  only appea r 

because of th e  na tu re  of G egenbauer polynom ials, which was also illu stra ted  for th e  

fiat DA before the  evolution was tu rn ed  on. In order to  get th e  expected sm ooth  

function, one needs to  sum  a  large am ount of term s. T he  necessity for sum m ation  of 

a large am ount of term s, even for the  sim plest singular DA, suggests th a t one needs a 

more efficient analytic m ethod for singular functions. In th e  next section, we present 

an analytic m ethod which provides th e  desired results w ith  one or two iterations.

i
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3.1 SINGULAR PART

It is instruc tive to  consider first an  auxiliary  situa tion  when th e  evolution kernel 

is given by the  singular part only

V smg{x,y)  = 8(x < y) + {x -o  x. y -> y) (59)

of the QCD kernel. In this case;

vsin*(x) = -  f  [F sing(y, x)  -  Using(ar, y))dy = 2 + ln(xx)  (60)
Jo

and the recurrence relation is given by

* " + l( r )  =  /  v ( x ' y) ) ” '- * » < * >  * v -  ( o n

or, explicitly for th e  first term s,

$ i(* )  =  / V ( ;r ,y ) [ $ 0( y ) - d ) 0(.T)]dy. (62)
Jo
J f l  -

V ( x . y )  [$ 0(y )ln  ( ^ 1 )  +  $ i(y )  -  $ iO r)l dy , (63)
q L \ X X /  J
r t  1 — —

$ 3(*) -  /  U(x.y)[«I>o(y)ln2 ( ^ ) + 2 d > 1( y ) l n ( ^ ) + « I > 2(y )-< I> 2(x)1dy .(64)
J q L \ £ X  /  \ £ £ /  J

In th is approxim ation, we can w rite

^ smg(x ,f )  =  (xx)‘ e2( ^ $ o (z )  +  ^hi(a:) +  ^yd>2(x) +  ^ $ 3  0*0 +  • • • (65)

If we take the  fiat DA for t =  0, i.e., $ (x ,0 )  =  1, th is gives

<h0(x) =  1 (6 6 )

d>x(x) =  0 ’ (67)

$ 2(ar) — - 2  In x  In x  (6 8 )

<F3(;r) =  31n(xx) l n x l n x  +  2 [lna;Li2(a’) +  ln x L i2(;r)]

—4 [Li3(:r) +  Li3(x)] +  8£(3) (69)

The graphical results for the expansion com ponents are given in Fig. 10.

As far as

[V(x , y ) \+dx  =  0 , (70)
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v r { x ) <$ng(x)

-0.4

- 0.8

0 0.5 1
x

4

3

2

X
0.5

FIG . 10: Expansion com ponents 'b ^ O 'r )  an d  <I>3ing(.x).

evolution does not change th e  norm alization in tegral for ip(x.t).  In particu la r, if we 

expand <p(x,t) in t

t r

n = 0
n!I '

we should have

(71)

/  (pn (x) dx = Sn0 . (72)
Jo

However, when we take the singular kernel case A nsatz

<̂ sing(x ,t)  =  et{2+]n{x£])<S>{x,t) ,

the (t l n x x ) N term s are sum m ed to  all orders, while th e  series over tpn (x)  is restric ted  

to  some finite order A . As a  result, th e  approxim ates <p(N)(x,t) are not norm alized 

to  1. In particu lar, if we keep th e  term s up to  ^O ^)* th e  norm alization in tegral is 

given by

h(t) = J \ f ™ ( x , t ) d x  =  (1 -  <2 k H> ~  -  * ( 2  +  2 ( )] }

(73)

with H n being harm onic num bers and  ipk the  polygam m a function. O ne can check 

th a t I2(t) = 1 + 0 ( t 3). For th e  next approxim ation , i.e., for (p*£*(x, t),  th e  norm aliza­

tion integral is / 3(t) = 1 +  C?(t4), etc. For t),  the norm alization in tegral

I x  (t ) will tend  to  1 for all t.
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I Ih' norm alization integrals versus t are shown in Fig. 11. For approxim ations 

involving <I>o(.r) and ^ ( i r ) .  th e  calculations were done analytically, while th e  curve 

corresponding to  inclusion of <I>̂mg(x . t )  was calculated  numerically. As seen from  

Fig. 11. adding m ore term s brings th e  norm alization closer to 1.

Normalization
1.4

FIG. 11: Norm alization factor calcu lated  for term s including only <I>o(.r) (short- 
dashed line), (Fo(^) and <I>2(ir) (long-dashed line) and  ‘bo^r). <b2(;r) and  $ 3(2:) (solid 
line).

In this situation, it makes sense to  in troduce th e  '‘norm alized A nsatz” , in which 

i f(x,  t.) is approxim ated by th e  ratio

VN {x, t )  =  ifi{N)( x , t ) / I N (t) ,

so th a t the correct norm alization of th e  N t h  approx im ant is guaran teed  for all t. In 

particular, this gives

t r (2 +  2 1) 1 — t2 In x In a-
v ^ . t )  =<**) r2 (1  +  f ) 1 _ ( 2 [ ( H t _ Wl +2t | 2_ t , (2 +  2()] • ( « )

As seen from th is form ula (and also from Fig. 12, th e  initial flat function im m e­

diately (for w hatever small positive; t) evolves into a function vanishing a t th e  end 

points with its shape dom inated by the  (x x ) 1 factor.
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<psmg( x , t )
1.4

FIG. 12: Evolution of th e  flat DA under the  singular p a r t of th e  evolution kernel: 
the curves shown correspond to  t — 0 (red), t =  0.3 (black), t =  0 .6  (blue), t =  1.0 
(purple).

3.2 ADDING NON-SINGULAR PART

W hen the  whole QCD evolution kernel is taken  into account, we have;

v(x)  =  — f  [V(y, x) — V(x ,  y)}dy = 3 /2  +  x ln x  +  x ln  x  (75)

_  t;sing^x j _  1^2  _  x  hi x  — x  In x  .

Following the same steps as in the previous section, we calculate th e  expansion term s 

for the initial flat d istribu tion  am plitude:

$ !(x )  = 0

$o(a0 = 1 (76)

(77)

d>2(a-) —x  ln x [ l +  (x — 1/ 2 ) lux] +  x ln a :[ l +  (x +  1/ 2 ) lux] — In x  lu x

(78)

W ith these term s taken into account we have

(70)
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U nfortunately, for th is form it is im possible to  analy tically  calculate th e  norm aliza­

tion integral even for th e  lowest term . C om pared to  th e  Ansatz used for th e  singular 

part of the evolution kernel, the A nsatz

<p(x, t) =  etr(x)$(;r, t) -  eit/2{xi x x )t^ { x .  t) (80)

has an ex tra  overall factor . N ote th a t  th e  function x~xx~x is finite

a t the end points x  =  0 , 1 , where i t  takes its m inim al value for th e  in terval [0 , 1] 

(equal to 1), and  has a  m axim um  for x  =  1 /2 , where it equals 2. Thus, th e  factor 

e~x!2x ~ xx~ x enhances th e  x x  profile in th e  m iddle (by a  factor of 2 / s /e  ~  1 .2 ) and  

suppresses it at th e  end points (by l / \ / e  ~  0.6). T his is a rather m ild m odification, 

and w hat is most im portan t, it  does not change the  ~  xl (or ~  x l ) behavior a t  the; 

end points. So, it makes sense to  use th e  (expansion

3 0  J.71

[x~xx ~ xf  =  ^ ^ (  — l ) ” 0z In a; +  x  ln ^ ) n — , (81)
n = 0  ^  ’

in powers of t and combine it w ith th e  expansion for <&(x,t). This corresponds to  

A nsatz

<p(x,t) =  ( x x f e 3̂ 2 ^ $ 0(#) +  t ^ ^ x )  +  | j $ 2(a;) +  - - , (82)

whose expansion coefficients $ n(x) can be straightforw ardly  obtained from  (I>n(.r)'s. 

In particular, chi(rr) =  — (a:ln:r +  S ln ^ ) ,  and  <f>2(:r) =  ^ { x )  +  (x ln a ; +  x  lu x )2. T he 

graphical results are shown in Fig. 13.

<t>i{x) <fo{x)
0.7

0.5

0.3

0 0.5 1
X

-0 .4

- 0.8

x
0.5

FIG. 13: Expansion com ponents in the  full kernel case: ‘̂ ( . r )  and  ^ C # )-
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Now. the  norm alization integral for th e  lowest te rm s can be calcu la ted  an a ly ti­

cally:

m  .  [  * „ < * . r n  =  ( i  -  ~  +  ! < - « .  +  * « , ) ) .  m

where H n are harm onic num bers. Fig. 14a shows th e  norm alization versus t.

Normalization

FIG . 14: a) N orm alization factor calculated  for te rm s including only $ 0(^) (dot- 
dashed line), €*o(a:) and ^ (^ O  (dashed line) and  <E>o( ^ ) 1 ®2 (x) and (I>3(a:) (solid line).

Again, we m ay switch to  th e  norm alized A nsatz  formed by the  ra tio  

( f (N)(x , t ) / IW(t). For a flat initial d is tribu tion , th is  gives

( r (2 +  2 t) 1 -  f (z ln r r  +  x ln z )u,(x, ) -  (xx) p2(1 + t ) 1 _ tj 2{t +  1} +  t ( _ Ht + Hl+2t)/2 ' ( }

The evolution of the flat d istribu tion  am plitude w ith  full kernel is shown in Fig.

15.
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FIG . 15: Evolution of flat DA for th e  full kernel ease: th e  curves shown correspond 
to  t  — 0 (red), t =  0.3 (black), t — 0 .6  (blue), t =  1.0 (purple).

The com parison of th is analytic m ethod and  th e  s tandard  way of calcu lating  

th e  evolution, i.e., G egenbauer expansion, is illu stra ted  in Fig. 16. W hile w ith  

our m ethod, one can achieve the  resu lts  w ith only tw o iterations, th e  G egenbauer 

expansion m ethod still need more te rm s in addition  to  th e  fifty te rm s calculated.

<p(x, t — 0 .2 )
1.4

0.2

0

0.6

X
0 0.5

FIG. 16: F la t DA at t — 0.2; The dashed  curve is th e  analytic calcu la tion  and  th e  
solid curve is th e  G egenbauer expansion w ith 50 term s.
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C H A PT E R  4 

EVOLUTION OF AN TI-SY M M ETR IC  FLAT DA

Evolution equations may be applied also in situa tions when the d is trib u tio n  am pli­

tude is antisym m etric w ith  respect to  th e  change x  -> 1 — x.  An in teresting  exam ple 

is the  D -term  function D(x)  th a t appears in generalized parton  d istribu tions. Thus, 

let us consider the evolution of th e  DA th a t in itia lly  has th e  form

f  1 0 <  x  ^  1 /2  ,
AoOr) =  <

[ - 1  1/2 < x  < 1 .

Before applying our analytic m ethod to  th is  anti-sym m etric DA, th e  application  of 

the  Gegenbauer expansion m ethod should be studied. T he first, few coefficients in 

Eq. (54) gives the following few coefficients,

ki ( t  =  0 ) =  f  d x C ^ 2(2 x — 1) =  —5 .
d JO

k 3(t =  0) =  y f  d x C l /2{2x -  1) =  ,
5  J o  3

h { t  =  0) -  f l d x C l /2{ 2x  -  1) =  , • • • (85)

Once the  coefficients kn(t = 0) are known, one can  calcu la te  the DA a t different t by 

using Eq. (55), analogous to  the flat DA case.

*>(jr. t ■= 0 .2 )  v ( t . t  0 . 2 )  t  =  0 .2 )

06-

0.2 I

x
0  5 10

0 6

0.2 q

x
0.50

0 6

0.2

x
0 .5 10

FIG. 17: Evolution of anti-sym m etric DA at t  =  0.2 w ith  the G egenbauer expansion 
m ethod: 2 term s. 30 term s and 50 term s.

Once again more term s in the  sum m ation  lead to  a sm oother curve, bu t one needs 

a large am ount of term s in the  sum m ation  to  get th a t sm ooth curve. Sim ilar to  th e



flat DA ease, a sm ooth curve is th e  expected stru c tu re  since th e re  is no physical 

reason for the  wiggles produced by G egenbauer polynom ials.

4.1 SINGULAR PART

Since we have dem onstrated  th e  reason why Gegenbauer expansion is not an  

effective m ethod for the anti-sym m etric DA, our analy tic  m ethod can be applied to  

th is case. The v(x)  function is th e  sam e because it depends only on kernel V ( x .  y).  

Thus we can use the  A nsatz (44) and  expansion (46). Since cpo(x) is no t ju s t a 

constant, the first expansion coefficient (j?) is nonzero. Let us s ta r t w ith  th e  

singular p a rt of the kernel. Then we get

We see th a t then; are logarithm ic term s In 11 — 2x\ singular for x  — 1 /2 . T hese term s 

are natura l, since each half of th e  an tisym m etric DA on its interval is expected to  

evolve similarly to  a flat DA on th e  0 <  x  <  1 interval. This observation suggests 

th e  Ansatz

W ith  this definition of 4>(x,t), the  In |1 — 2x\ term s are elim inated from (I>i(x):

$ i(x )
2 h i [ i 4 s ] 0 < I  <  1 /2  ,

<p(x, t) — e2t( x x ) t \l — 2x |2f(l?(x, t) . (8 6 )

$ i(x )  =  —2 l n x  9(0 < x  ^  1/ 2 ) — { x  —> x}  . (87)

For the  expansion com ponent <1*2 (x), we have

+  ln(l — 2x)[41n2 +  4 lux  — 2 lux +  ln(l  — 2x)]

— 4Li2(x) +  4Li2(2x) +  2Li2 ~z
Lx.

+  2Li2 ■ X +  4Li2 _^ X > -  {x ->• x} . (8 8 )
I x  — 1 x

T he graphical results for th e  expansion com ponents are shown in Fig. 18. 

T he evolution of ^sing(ay t) to  th is accuracy can be obtained from
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FIG . 18: Expansion coefficients for th e  an tisym m etric DA: a) ^ mg(a:), b) <I>2ng(x).
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FIG. 19: Evolution of antisym m etric DA under the singular p a r t of th e  kernel for 
t = 0 , t  =  0.3, t = 0.6, t =  1

As shown in Fig. 19, the in itia l step  function evolves in to  a function which is zero 

a t the  end points and in the m iddle point.



33

4.2 ADDING NON-SINGULAR PART OF THE KERNEL

Since the nonsingular part does not add  In x  and in x  term s to  v(x) ,  we m ay 

proceed w ith the same A nsatz

= ezt^ { x x ) t \\ — 2x\2ify(x,  t ) , (90)

but the expansion com ponents change; (see Fig. 20).

$ i(x ) 4>2(x)

0.5

o.o
-0.5 -2

-4
X

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 20: Expansion com ponents (h i(x ) (a) and T 2 (x) (b) in the case of th e  full kernel.

The d istribu tion  am plitude is now bu ilt using

cp(x, t) =e i/2t( xx ) t \l -  2x\2t ( p 0(x)  +  t $ i ( x )  +  ^4>2(x )^  , (91)

For the  first coefficient we have

$ i(x )  =  0(0 <  x  ^  l / 2 ) { — 2 x ln 2  — 21nx  — ( x ln x  +  x ln x ) } — { x  —» x }  , (92)

and for th e  second,

f 7T2
<h2(x) — 0(0 < x  ^  1/2) < ~~2 ~x + 2 In2 + 2 x ln 2  +  lnx[2  +  8 In 2 +  17 In a;]

— (x — 21n(l — 2x )[lnx  — lnx] T- 2(5x — 3) ln 2 1 n (l — 2x)

-  ln2( l  — 2x)  — 6x  In2 x  +  In x  In a;

+  x  In x(4 In 2 +  In x  +  In x  +  2 ln( 1 -  2x)  +  2 In x)

+  2x Li2 ( +  Li2 ( 1  +  Li2 (x) -  Li2(2x)
2x x

(1 +  2x)Li2 +  Li2 -  2Li2 

{a: —> x}  .

2x  -  1

(93)
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FIG. 21: Evolution of th e  antisym m etric DA in th e  full kernel case. T he curves for 
t — 0 (red), t =  0.3 (black), t = 0.6 (blue), t =  1.0 (purple) are shown.

As may be seen from Fig. 19, th e  resulting curves are ra th e r dost; to  those ob ta ined  

when only th e  singular part of th e  kernel was taken  into account. Thus, we observe 

th a t th e  tn series converges ra th e r rapidly  as far as t <  1. W hen t > 1, th e  DAs 

is close to  the  asym ptotic form, and one can sw itch to  th e  solution in th e  form  of 

the Gegenbauer expansion. Tin: sam e com parison of th is  analytical m ethod  and  

Gegenbauer expansion done in for the  flat DA is also done for th e  an ti-sym m etric  

case. The com parison is illustrated  in Fig. 22

<p(x, t = 0 .2)

0.6

0.2 H

x
0.5 10

FIG. 22: A nti-sym m etric DA a t t =  0.2; T he dashed  curve is the  analy tical calcula­
tion and th e  solid curve is the  G egenbauer expansion w ith  50 term s.
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4.3 EVOLUTION OF JUM PS

A nother exam ple of a singularity is given by DAs w ith  a jum p, th e  sim plest case 

being

a 0 <  x  ^  (j , 

b Q < x  < 1 .

The part of th e  first iteration ^ ( r )  generated  by the  singular p a r t of th e  kernel

$ o (* ’C \ a <b)

4 ^ sing(x ,C ;a ^ )  =
(a — b) In 

— (a — b) In
(l-z g

*-C
(i-CA

contains logarithm ic term s In |£ — ar| singular for x =  ( .  Their s tru c tu re  m ay In; u n ­

derstood in th e  following way. T he original function '*Pq(x , Q\a.b) m ay be represented 

as a sum  of a constant | ( a  +  b) and  a function | ( a  — 6 )sign(£ — x)  th a t  jum ps by 

6 — a a t the point, x  — £. The constant p a rt has no singularities a t x  =  C- so one can  

apply the  original | ( a  +  b) (xx) t(b A nsatz to  it. while for the jum ping  p a rt one m ay 

use the  A nsatz

e2t( x x )
1 -  x/Q 21

1_ - x g Y
1 - X J 6{x > C)

1 — X

I>0 , 0  +  'L (u C d )

9{x < Q

(94)

T he part containing square brackets is in tended to  take care of th e  evolution of th e  

jum p at x  =  However, th is p a rt by construction  vanishes at x  =  while one would 

expect, th a t evolution tends to  convert <pJ ( x , Q  a,b)  in to  a  universal ^-independen t 

function proportional to  x x  or x x ( l  — 2x)  (depending on the sym m etry  of th e  func­

tion). Thus, there should be also a p a rt regular at th e  jum p point. T he function 

^ (x .C , t) is introduced to  satisfy th is requirem ent. It vanishes for t =  0, b u t eventu­

ally becomes the  dom inant part.

Let us discuss a more general case, when a function has antisym m etric jum ps a t 

some locations x  =  Q. “A ntisym m etric’1 m eans th a t th e  function approaches from  

opposite values on the  sides of a jum p, so th a t  "on average" it is zero a t th e  ju m p  

points. Then one can try  the A nsatz

p(x ,  t) =  <I>(a’, t) +  T (x . t) (95)
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where

d>(x. t) =  et|l'(x)+u'(x)1$ 0(x) . (96)

w ith the function v:(x) ~  In | r  — £,j in tended  to  absorb m ajor features of tin; 

evolution of th e  sta rting  d istribu tion  ip(x, t = 0 ) =  in the vicinity  of th e  ju m p

points, while th e  rem ainder vI; (x. t) is expected to  be a  regular function vanishing for 

t =  0. As a result, we get the following equation:

— 1 V { x , y ) \ ^ ( y , t )  — ^ { x A ) ) d y - V  v ( x ) ^ { x , t )
dt

-l
/ 'Jo

+ f  V( x , y )  [<&(y, t) — 3>(a\ i)] dy — w(x)<&(x, t ) . (97)
Jo

This is an inhomogeneous evolution equation for T (x . t), w ith s ta rtin g  condition 

^>(x,t =  0) =  0. For its derivative a t t — 0 we have

chf ( r ,  t)
dt - ft=0 Jo

V{x ,  y)  [d>0{y) ~  $o(a0] dy -  m(x)<f>0( r )  =  y ( x ) . (98)

To avoid singularities at th e  ju m p  points, we should adjust w ( x )  in such a  way 

as to  make x ( x ) a  continuous function of x .  T hen  T(.r, t) ~  t x ( x )  for small t. T he 

corrections to  th is approxim ation can be found by iterations. Namely, we represent 

^ ( x , t )  — Y l n=i ^ n ( x -t) and s ta r t w ith

T i ( x , t )  =  j  d r  |  J  V ( x , y )  [<&(y, T)  — & ( X i T ) \  d y  — w ( x ) < f > ( x , T ) ^  , (9 9 )

generating fu rther term s using

T n+i(a \f )  =  J  d r  |  J  V { x , y) n{y, r)  -  ^ n {x , t)] dy + v{x)^ tn{ x , t ) ^  . (100)

Since the derivative of i(tc, t )  for t  — 0 is given by y (x ), we can w rite

f y i ( x , t )  = t  x ( x )  +  f  d r  f  V ( x , y )  [ S $ ( y , T )  — d $ ( x , r ) \  d y  — w ( x ) 6 $ ( x , t )
Jo Jo

= t  x ( x )  +  S ^ i ( x . t )  . (191)

Here, r)<h(j. r )  =  T(.r. r )  — d)o(a’) is d ie  deviation of the  A nsatz function Tf-r. r )  from 

its r  = 0 shape. For small r ,  the function <5<I>(.r, r )  has a  ra ther sh arp  behavior a t th e  

jum p points x  =  Co and  this results in a ra th e r sharp  behavior of 6 ^ i ( x . t )  a t these 

points. Since each iteration  T n+i(a :,t) is generated  linearly  from a  previous T„(:r. t )
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one (see Eq. (100) ). it makes sense to  split T (.r. t) in to  a "smooth" p a rt d>x ( x . t )  

generated by iterations of t \ { x )  and th e  rem ainder Sty ( x . t )  generated  by itera tions 

of chi'i(,r. t). Thus, we have

ip(x, t) =  d>(a\ t) +  d^(a-. t) +  ^ x(x, t ) , ( 10 2 )

where the  first two term s, <&(ar, t) and  dd'(x, t) have a  ra th e r sharp  behavior a t  th e  

jum p points for small t , while ^ x(x, t) has a sm ooth  behavior.

In this chapter, we dem onstrated  our analy tic  m ethod for general cases of singular 

DAs. Next chapter, we will illu stra te  th e  application of th e  m ethod to  th e  evolution 

of tw o-photon generalized d istribu tion  am plitude.
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C H A PT E R  5 

STRUCTURE OF PH O TO N GENERALIZED  

D ISTR IBU TIO N  AM PLITUDE

Using photons is a  very effective tool for testing  Q uan tum  C hrom odynam ics (Q CD ). 

The kinem atic possibilities provided by tin; tw o-photon s ta te  are plenty, so th e  two- 

photon s ta te  a ttrac ts  a tten tion  not only in experim ental studies b u t also in theore tical 

studies.

Due to  these advantages of pho ton  studies, the parto n ic  s tru c tu re  of th e  pho ton  

has been discussed in lots of paper beginning w ith  Ref. [33]. In Ref. [34], in order to  

describe the  factorization of th e  non diagonal kinematic s of Deeply V irtu a l C om pton 

Scattering (DVCS), (7*7  —¥ 7 7 ), G eneralized Paxton D istribu tions (G PD s) are used. 

G PD s are developed to  explain one of th e  im portan t problem s of Q C D , th a t  is 

understanding the  in ternal s tru c tu re  of hadrons. G eneralized d istribu tion  am plitudes 

(GDAs) [16-18, 35, 36] which are rela ted  to  G PD s by crossing, are 11011-p ertu rb a tiv e  

objects which describe the  transition  from a  quark-antiquark  or a gluon-gluon pair 

into a hadron pair [17]. Two-meson GDAs are crossed-channel analogs of th e  m eson 

Generalized P arton  D istributions (G PD s). GDAs param etrize th e  m a trix  elem ents 

of light-cone operators between th e  vacuum  and a system  of hadrons, while G PD s 

param etrize the  m atrix  elem ent of th e  same operators between two different hadron  

states. The definition of the quark -an tiquark  GDA, for the m ost stud ied  system  

(7r+ 7r~) [18], is

/
dx~
— (103)

Similar to  two-meson GDAs, tw o-photon GDAs describe the tran sitio n  of a quark- 

antiquark  or a gluon-gluon pair into a photon  pair. Analogous to  th e  rela tion  betw een 

two meson GDAs and th e  meson G PD s, two photon G DA s have th e  sam e crossing 

relation with photon GPDs.

Prediction of a G PD  or GDA for any scale p  by using the m easured ones at a 

scale p ' is defined as evolution of G PD s or GDAs, w here p  and p ' are large enough
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so th a t a s(fj,) and a s(n') are small. This part of the s tu d y 's  focus is th e  evolution of 

the non-singlet vector tw o-photon GDA [18], which was calculated for th e  reaction 

“ t l ' (Pi) l (P2 )- The evolution of th e  nonsinglet vector p a rt of th e  d ipho ton  

GDA is governed by the; ERBL evolution equation. T he usual way, i.e. G egenbauer 

expansion, was used in Ref. [37]. T he result was calculated w ith  a finite num ber 

of term s which have num erical instabilities around  th e  points where in itia l GDA is 

discontinuous. In order to get a  reliable resu lt for th e  evolution of a non-singlet 

di-photon GDA, an infinite sum  of G egenbauer polynom ials is needed.

FIG. 23; P arto n  p ic tu re  for th e  tw o-photon GDA

In the  lowest QCD order, th e  non-singlet tw o-photon GDA is given by [38]

%'q{x . Q, Q2) =  ^ l ^ o g ^ L y ^ a y O  , (104)

where th e  function <p(:r,C) is p roportional to  the; V V  —> V V  com ponent,

* * . o  =  -  o  +  -  0

-  c -  x)  -  x(2x -~ -  x ) . ( lo s )

of the  ERBL evolution kernel m atrix . QCD corrections induce, fu rth er evolution of 

th e  photon GDA.

Namely, its derivative with respect to  In Q 2 obeys th e  ERBL evolution equation  

w ith the  qq -> qq kerned considered above. In w hat follows, we study  ER B L evolution
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of the  function ^ ( x .  £. t) which for th e  s ta rtin g  evolution point t =  0 coincides w ith 

y (x - 0 -
The function *g(x,C) is antisymmetric- w ith  respect to  i  f t  x  in terchange and  

sym m etric w ith respect to  £ <-> C interchange. Thus, w ithout loss of generality, we 

m ay choose £ <  1/2. Then 0 <  £ <  C <! l i  and  it makers sense; to  explicitly  w rite  th e  

function in each of the  three regions:

*--(1 . 0  =  [C2 + e  -  2x] 0 (0  <  x  <  o  -  C(|  :  ^ 0 (C <  X <  0

-  i [ C ! +  C2 - 2x ] 0 ( C < x < l ) T  (106)

T he function is discontinuous a t x  = Q and  x  =  (\

$ ( * , 0

0.5

0.0

 I
0.80.2 0.4 0.60.0

FIG. 24: Tw o-photon GDA profile function <J>(x, £) at values £ — 0 .1 : 0.2; 0.4.

Fig.24 show's the x-profile of the  twTo-photon GDA at different £ values. As x  ap ­

proaches G the lim iting value of the  function from th e  left is v?(C-> C) =  - 1  -  C 

while from the  right wre have v?(C+. C) =  ~~C T ^ '  80 ^ u> .)um P A(C+’C) —
y?(C~,C) =  1 is equal to  1. A ccording to  our discussion in the preceding section, 

to  trea t the  evolution of a  jum p, we should represent th e  initial function as a sum  of 

a function continuous in th e  vicinity of each jum p , and a function (f i(x ,£ )

th a t has an antisym m etric jum p of necessary size. T he function i f i (x ,  0  will also 

specify the initial form of the <]>-part of th e  evolution A nsatz (95) for th is function, 

so wTe will denote it as <I>i.o(x, 0 - F °r simplicity, we w'ill choose it to  he given by
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linear functions of x  in each of the three regions. As a result.

t x  -  1 — 2«r —
<I>i.o(j.C) =  -  2^0(0 < x  < 0  +  t̂ 0(C <  x  <  1) +  2q~3~2^)0(C <  x  <  C) • (107)

The function $ i.o (# .C ) *s discontinuous at x  =  £ and x  — £ , see F ig .25 a, where it is 

shown for C — 0.2. The function $ 2 .0 (2:, C) specifying in itia l shape o f the continuous 

part (see Fig.25 b),is obtained as the difference between <p(x: Q  and $ 1 ,0 (2:, £).

$ i , o ( x ,C  =  0.3) $ 2 ,0 (2 ;, < - 0 . 3 )

0.6
0.4:
0.2:

0.4

0.2

0.0

- 0.2
-n.4
- 0.6

- 0.2

-0.4
X

0.0 02 0.4 0.6 0.8 1.0 0.8 1.00.0 0.2 0.4 0.6

FIG. 25: (a) The x-proffle of G D A  $ 1 .0 (2 :, £) at C =  0.3. (b) Initial function $ 2 .0 (2:, C) 
for C =  0.3.

In this chapter, we illustrated the tw o-photon generalized distribution am plitudes. 

We also introduced a separation to  th e  tw o-photon G DA as jump part and cusp part. 

Next chapter, we dem onstrate the evolution of the jum p part.
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C H A PT E R  6

EVOLUTION OF THE JU M P  PART OF THE

TW O -PH O TO N  GDA

In this chapter, we present th e  evolution of tU oC ^C )’ i.e. jum p p a rt of tw o-photon 

GDA. As presented in Fig. 25a, $ lt0(x,C ) has jum ps a t x  — (  and  x  =  Q. Ite ra tio n  

of the  initial function 4>i.o(.r,0 w ith  evolution kernel gives

3 / ‘Jo

6(0 < x  < C <  l / 2 ) l ( l — A Q ~  + ~  [ x x \ n x  +  (1 -  x x )  lux] 
I A  A

-  1«(C -  x ) ~  ln (C -  x)  +  

1 - 4 C

InC + In C (1-30/C

C(1 -  20

2 ( 1 - 2 0

[(x -  C) lu(C -  x)  +  (C -  x)  ln(C -  x)] |  -  { x  -> x}

— 2x
+ 9(( < x < 0  , 2(1 _ 2<-} 

+  ln(:r — 0  — ln(C — x)

, 1 - 4 C

( l -40  + lnC(l-30/C

2C(1 -  2 0
x 2 +  x 2 ,

—---------   In ( —
2(1 -  2 0  Va-

(x — C) hi (a; — C) — (C “  x ) hi(C — x)  +  % hi x  — x  In x

x
(108)

As expected, 3>i,i(:r, 0  has logarithm ic singularities

-  ln(C -  x)6(x  <  0  +  ln(ar -  Q)6 (C < x  < 1/ 2 ) -  { x  -> x }  (109)

for x  =  C and x  = Q (see Fig. 26).

The sum  of these term s m ay be w ritten  as 2 (ln \x — C| +  hi \x — CD'I’i ^ .  C) phis 

regular term s, which suggests to  take th e  A nsatz (95) w ith  w(x)  con tain ing  2(ln \x — 

C| +  hi \x — CD- Namely, let us try  th e  function w0( x . Q  given by

w0(x.  C) =  4 +  2 In \x — Cl +  2 In |x — Cl ■ ( 1 10 )
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* ! , ! ( * ,  C =  0.3)

- 2
- 4

X
0.0 0.2 0.4 0.6 0.8 1.0

FIG . 26: F irst ite ra tion  for £ =  0.3.

T he constant, part “4V was chosen to  m ake th e  integral of Wo(x) closer to  zero (it, 

vanishes both  for £ =  0 and £ =  1 ), i.e. to  keep th e  overall norm alization  of th e  

A nsatz factor closer to  1 . T he resulting function (which gives th e  first te rm  of th e  

'I '-part of th e  A nsatz (Eq. 95)) is given by

$ i°i Og O  =  $1,10*50 -  u>o0*5£)$i0*5£) ( i n )

and  shown in Fig. 27.

=  0-3)
0.4

0.2

0.0

- 0.2

0.4
1.0 *0.0 0.2 0.4 0.6 0.8

FIG . 27: Correction functions ^ [° ](x ,£  =  0.3) with wq A nsatz.

One can see th a t, after the  sub traction  of singularities, we still have finite jum ps
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for x  =  C and x  =  Q. Explicit calculation gives

^ ( C + . O  -  M n lO -O  =  4 +  21n ( |l  -  2<|)

+  (2 —C ) l n C + ( 2 - C ) l n C -  - « h ( 0  • ( H 2 )

A dding tei(C)4>i.o(o\ C) to  C), we ob ta in  the  correction function t ylA(x,  Q  =

X(tr,C) th a t is continuous at th e  border points x  = Q and x  = £ (see Fig. 28).

^i.i(^C) = X ( x , 0  = [  V ( x , y ) [ $ i . 0( y , Q  -  $i.oOe 0 ]  dy -  w(x,  £)4>o0r. C)]
J o

{
 X 1
(1 -  4 0  —  +  —  [xx In x  +  (1 — x x ) In x\

+
2 ( x  -  £)  , £  -  2 x £  . _ x

1 - 2 C
ln(£ — x )  + ln £  -  - l n ( l  -  2 0  

2£ ( l - 2£) S C

l - 3 £ - 2 s  + 2:r£(2 +  0 1  ̂ l -2 £ (a r  + 3£) ^
+ — — 111 c “  ~ « i  - s c ) - h , ( c ■ -r ) )

C2 - 2 C
— {a* —> x }  +  0 ( £  <  x  <  £)

+  (2  — £) hi £ +  2 ln ( l — 2£)

2 -  4£

1 -  2 x

2( 1 - 2 0  
x  -  £

(1 —4 0  +  hiC
C

+

+

2<(1 -  2 0
x 2 +  x 2
-----------c hi

2(1 -  2 0

( C - £ ) ) l n ( C - 0  +

2 C ( l - 2 0  
l - 4 £

2£(1  -  2 0

hi(ar -  0

X  111 X  — X  111 x

(113)

t f lt i ( x , £  =  0 .3 )

0.4

0.2

0.0

- 0.2

-0 .4
X

0.6 0.8 1.00.0 0.2 0.4

FIG. 28: Correction functions £ =  0.3) w ith  modified A nsatz.

This 95)

( x ^ . t )  = e t v ™  ( U C ^ i . o ^ . O .  ( 1 1 4 )
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for the function ^ i ( .r .£.£)• T he function <&i(x,£.i) is illustrated  in Fig. 29.

$ l ( x ,  C,t)
0.4

0.2

0.0

- 0.2

-0 .4
X

0.6 0.8 1.00.0 0.2 0.4

FIG . 29: A nsatz function ^ ( a u  £ =  0.3, t )  for t  =  0. 0.2, 0.3. 0.5.

According to  th e  A nsatz given in Eq. (95), after fixing the function w ( x )  from  

the  requirem ent of continuity of y (:r,£ ), one should deal w ith the  evolution equation  

Eq. (97) for the  T -p art of th e  A nsatz. This equation  specifies th a t  rF IM x.G  t ) / d t  

for t  =  0 is given by x ( x - 0 -  Thus, for small t ,  we can approxim ate 'F1(.x,C, t )  by 

£y(a\£). As one can see from Fig. 30,left, the correction due to th e  T  te rm  is ra th e r  

small for t  — 0.2. It ju s t reduces som ew hat th e  am plitude of oscillations.

iP l ( x ; C; t  — 0.2) <Pl(x,  £, t  =  0.5)

0.2 0.15 
0 .1 0 : 

0.05 ̂  
0.00 i. 

-0.05 ̂  
- 0.10 
-0.15^

0.0

-0.1
- 0.2

X X0.4 0.6 0.8 1.00.0 0.2 0.8 1.00.0 0.2 0.4 0.6
a b

FIG. 30: Effect of inclusion of ^ i.i(ar, C) correction for t  — 0.2 (a) and  t  =  0.4 (b); 
£ =  0.3 in bo th  cases. Red line corresponds to  ( f i ( x , £, t )  w ithout correction and  blue 
corresponds to  i f i ( x , Q , t )  w ith correction.

However, the  correction becomes m ore and m ore visible with growing t ,  see Fig. 

30b. where the  evolved function is shown for t  — 0.4 w ith and  w ithou t th e  first 

T -tvpe correction term  included. The to ta l function is now7 clearly nonzero at th e  

■■border" points x  =  £ and x  =  1 — £. This is because x ( x - 0  nonzero at these
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points. As we discussed, the  'I'-part becom es dom inant for large t and  brings th e  

shape of y?i(x. (,, t) to  th e  asym ptotic form  x x ( 2 x  — 1) of th e  antisym m etric DAs. We 

can see th a t, for t = 0.4 already, the  to ta l function resembles th e  asym pto tic  shape 

x x ( 2 x  — 1). However, for such large t values th e  sim plest linear-1 approx im ation  for 

\h(x,C, t) is too crude, and  one should go beyond the first iteration.

As argued in th e  discussion after Eq. (95), it m akes sense to  split 4/(ay ,£ , t) 

into a p a rt generated by iterations of Q,  an d  the rem ainder d 'h(x . Q, t ) given by 

iterations of the term s reflecting the deviation

of the  A nsatz function <!>(£,£; t) from its  t =  0 form 'ho(a". () . T he s ta r tin g  te rm  

<5’P i ( £ , , C, t) has a  sharp  behavior a t th e  jum p po in ts of 'h0 (.r, () . acquiring an  infinite 

slope there as t —> 0 (see Fig. 31a). T he next ite ra tio n  dfl>2( x , C  t) is shown in Fig. 

31b.

Tht: decom position explained for

is inform ative in th is case because of th e  infinite derivative parts  of 4/(;r,C,f).  As 

illustrated  in Fig. 31, even though <5Ti (.r, £ =  0 .2 , t =  0.2) has alm ost infinite 

derivative p arts  a t the  borders x  =  £ and  x  — it is still continuous. Up to  th is  

point of th e  calculation, all iterations are calculated  analytically, however dT(.rC, t) 

is calculated numerically. As indicated in Fig. 31 and F ig 32, con tribu tion  from  5 'F1 

and 54' 2 is very small and  can be neglected.

d<h(a;,C;f) =  <h(x,CU) -  d>0( x , C ) , (115)

C, t ) ~  £y(x, C) +  ^ ( x ,  t) (116)

8V i(x,C = 0.3, t = 0 .2 ) <5tf2(x,< -  0.3, t = 0 .2 )
0.025 0.03

0.015

0

-0.015

-0.025
X x

0 0.2 0.4 0.6 0.8 1. 0 0.2 0.4 0.6 0.8 1.

a b

FIG . 31: (a) (b )d 'I 'i(x . C, t) (C =  0.2  and t =  0 .2 ).
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The am plitudes of bo th  d'fT and 4 T 2 are very sm all com pared to  th e  am plitude 

of 4>(;r.(\f). As suggested in th e  previous section ~  C) is a good

approxim ation. In Fig. 32, ‘I>(#,£,£) w ith  Q, t) and d v l^ x . C) is depicted .

C ontribution from <5T(.r, Q. t) is negligible.

$(x,C =  0.3, t =  0.2)

0.2
0.2

0.1

o.o o.o
-o.i- 0.1

- 0.2- 0 .2 -

X 0.0 0.2 0.4 0.6 0.8 1.00.2 0.4 0.6 0.8 1.00.0
a b

FIG. 32: (a) <&(x,Q.t), (b)$>(:r, £, t) and  d\l/1(x, £, t) -f CG). (C =  0.2 and
t =  0 .2 )

In th is chapter, we represented th e  application of ou r m ethod to  th e  ju m p  p a rt of 

the tw o-photon generalized am plitude. Next chapter, we dem onstrate  th e  evolution 

of the cusp part of the  tw o-photon GDA.

I
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C H A PT E R  7 

EVOLUTION OF THE C U SP PART OF TH E  

TW O -PH O TO N GDA

7.1 DECOMPOSITION

In this section, we study  the evolution of th e  second function, nam ely 

Its  initial form d^ .o^-C ) is continuous for x  =  Q and  x  — C and is given by

as shown in Fig. 33.

x \  1 +  C -  4C2 +  4(C -  x)
C )  2 ( 1 - C )
1 - 2 x \  1 +  C - 4 C 2

9{x < Q) -  {a: —> 1 — x)

1 - 2 C J  2 ( 1 - 0

^2,o(*,C =  0.3)

0.6
0.4
0.2
0.0

-0.2;
-0.4;
- U .6 x

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 33: In itial function d>2,o(^,C) f°r C =  0-2. 

We can separate this function

* 2 .o (* ,0  =  -  1 1 ,5  ~ 5 2 * 1 , ( ^ 0  +  $£„(*■ 0
2(1 - 0

into a term  proportional to a linearized function

x
$2.oix ’0  = - 6 ( x < 0 ~ { x ^ l - x }

1 -  2x

1 - 2 C
9 ((  <  x <  0

^ 2( ^ 0 -

(117)

(118)

(119)
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and the rem aining curvy part

$£<>(*• 0  = 2X(X ^  6(x < C) -  -> 1 -  x}  . ( 120)

7.2 EVOLUTION OF THE LINEARIZED PART

Since 4>2,o(^"C) i*s a continuous function vanishing a t the  end poin ts, th e  easiest 

way to  get its  evolution is to  use a  straightforw ard  tn expansion w ith coefficients given 

by successive iterations of th e  evolution kernel w ith <I>2,o(-r, ()■ T he first ite ra tion  of 

$ 2 .o ( ^ 0  gives

Here, as usual, v(x)  is 3 /2  +  x  In x  +  x  In x.  T he s truc tu re  of the resu lt is very sim ilar 

to  th a t of d>2.i- However, the  potentially  singular logarithm ic term s In \x — £| and

vanish at these points, though having singular derivatives there. Thus, th e  function 

$2.1(t C — 0-2), shown in Fig. 34, is continuous a t points x  — £ and  x  =  £.

7 .3  EVOLUTION OF CURVY PART

$2.1 (*»C) =

+  (1 — 2£) x  +  x x  In x  +  (1 — x x )  ln x

+  n(T)$2.oO ’0 - ( 121 )

In \x — Cl are accom panied in th is case by (x — £) or (x  — £) factors, respectively, and

Initially, the  support region for th e  curvy p a rt $ 2.0 (ar,£) is re s tric ted  by two

segments 0 <  x  <  £ and £ <  x  < 1, as shown in Fig. 33.
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-0 .3 )

-2
x

0.0 0.2 0.4 0.6 0.8 1.0

FIG . 34: F irst iteration  function for linear p a r t } (a\ C =  0.2).

Its first iteration  is given by 

0(0  <  x  < £)
4>2.1

cc
|x [3 ;r  — 4£ +  2£2] 4- 2[xx(3 +  a’ — C) +  C] 0i x

— 2x£ In C +  2 x x ( x  — £) In x

+  2x ( (  — x)  ln(C — x)  — 2x(£ — x)  ln(£  -  x )   ̂ — {x  -> x }  

9(C < x  < C)

CC
— (1 — 2 x ) (  — 2 x ( x  — ( ) l n x

+  2x ( (  — x)  lu x  +  2(1 — 2x)£ In C

+  2x(x  -  C) In(x -  C) -  2x(C -  x )ln (C  -  x ) \  + v { x ) ^ 0{x, Q  .

0.4
0.2

0.20.1

0.00.0

- 0.1 - 0.2

- 0.2 -0 .4 -X 0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

(122)

X

FIG. 35: Left: Initilal curvy function (I>2 0(x, £) f°r C =  ^-2 . R ight: F irst ite ra tion  
function for curvy part for £ =  0 .2 .
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One can see from Fig. 35 th a t evolution spreads th e  function into the  C <  x  < C 

interval. Com bining the  results for th e  linearized and  curvv parts , we arrive a t th e  

evolution p a tte rn  generated for %  the; first iteration (see Fig. 36).

<p2( x ,  C =  0.3, t )

0.6
0 .4 ;
0.2
0.0

- 0 .2 ;
- 0 .4 ;
-0 .6

X
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 36: Evolution of <£2(25 a t t =  0 (red), t =  0.2 (black), t =  0.3 (blue) and  
t =  0.5 (purple).

7.4 TOTAL RESULT

Adding th e  result for $ i ( x , £ , t )  ob ta ined  in previous sections, we end up w ith  

the  evolution of the to ta l function <E>(:r,£,f) illu stra ted  in Fig. 38.

ip(x,  C =  0.3, t )

0.0

-0.5

- 1.0

0.0 0.2 0.4 0.6 0.8

FIG. 37: Evolution of to ta l GDA (F(x,C G ) a t t — 0 (red), t — 0.1 (black), t =  0.2 
(blue) and t = 0.3 (purple).

We can now com pare our results w ith  th e  results from  Beiyad ct.al. [38]. T hey
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have calc ulated  th e  evolution o f th e  tw o-photon GDA w ith  G egenbauer expansion, 

including 41 term s in G egenbauer expansion in th e  intervals 0 < x  < Q and  C, < x  < 1 . 

However. 201 term s were included in the region Q < x  < Q. They have repo rted  th a t 

there is instability  in th e  vicinity of x  = (  and  x  — £ because of th e  n a tu re  of 

the  Gegenbauer expansions. We have em phasized th e  necessity of a  new m ethod  

other th an  th e  G egenbauer expansion for evolution of singular DAs in th e  previous 

chapters. As one can see, our approach results in a sm ooter curve w ith  only one or 

two iterations.

tp(x,  C =  0 .4 , t)

0.5

0.0

-0 .5

- 1.0

0.0 0.2 0.6 0.80.4

FIG . 38: Com parison between analy tic  result presented here and the  num erical resu lt 
from Ref. [38] a t £ =  0.4 and t =  0 (red), t =  0.1 (black), t  =  0.2 (blue).
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C H A PT E R  8

EVOLUTION IN D G LAP REGION

T he parton  model com pletely ignores th e  dynam ical role of gluons by neglecting th e  

gluons rad ia ted  by quarks. As shown in Fig. 39, a gluon can  be em itted  by th e  quark  

before or after the v irtual photon  in teracts w ith  it (a and  b). A nother possibility  in 

the  order of a a s is th a t a gluon constituent in th e  hadron  can co n trib u te  to  DIS via 

pair production, i.e. 7 *g —> qq (c and d).

One of th e  experim entally observable consequences of these d iagram s m ay be 

illustrated  by considering a frame, in which th e  pro ton  and  the v irtua l pho ton  are 

moving tow ards each other, say th e  p ro ton  in th e  -t-x d irection and th e  v irtu a l pho ton  

in the  —x  direction. I11 th is frame, th e  struck quark  moves along th e  sam e axis as 

the incoming photon. In the parton  model, final hadron states are produced in th e  

direction of th e  v irtual photon, w ith  a spread of transverse m om entum  pj- abou t 

300 MeV, or inverse hadron size, according to  th e  uncertain ty  principle. However, 

if gluons are em itted  in DIS, th en  th e  je ts  p roduced  by gluons and  th e  struck  quark  

have pr  relative to  the  direction of th e  v irtual photon.

The ep cross-section can be w ritten  in te rm s of th e  eq cross-section

a b c d

FIG . 39: 0 ( a a s) con tribu tions to  ep —> e X .

(123)



The to ta l cross section of an eq collision for the  diagram s a)  and b) in Fig. 39 contains 

logarithm ic dependence on Q 2

creg(7 *q -> qg) = e2qa0 ( j ^ p <n(.x ) loS ~ 2  )  • ( 1 2 4 )

where Pqq(x)  is the L() quark-quark  D G LA P kernel and given by

' 1 + x"
<125)

LO quark-quark D GLAP kernel reflects the  fact th a t a quark  w ith  m om entum  frac­

tion x  could have come from a  paren t quark  w ith  a larger m om entum  fraction y. T he 

usual way to  w rite the evolution equation  in th e  D G LA P region is

d f ( x , t )  f 1 dy . „ ( x
dt

This equation might also be w ritten  as

df(x ,  t) dy f  x

f * P w ( - ) -  (1 2 0
J x  y  \ y j

r * L P ( i
J x  y  Vi

, , f ( y ) -  (127)dt J x y \ y j
There are qu ite  a few ways to  solve th e  D G LA P evolution equations: M ellin transfo r­

m ation [39, 40], Laguerre mehod [41, 42] and “brute-force” iterations [43] are some of 

the ways to  solve the  D GLAP equation. T here are also various o th e r analy tic  calcu­

lations in th e  literatu re  [44 47]. N um erical calculations [48, 49] are  also widely used. 

T he aim  of th is chapter is to  dem onstra te  the application  of our analy tic  m ethod  to  

th e  LO D GLA P evolution equation.

For our m ethod, we use th e  no ta tion  P ( x , y )  instead of the sp litting  function as a 

function of th e  ratio  of x  to y, nam ely P ( x / y )  in Eq. (127) and rew rite  th e  evolution 

equation as

df(x,  t ) f l dy
[  * L p ( x , y ) f ( y ) .  (128)

J x  ydt
The “+ ”-prescription is also encountered in the D G L A P case w hich regula tes th e  

singularities. Evolution equation can be arranged in such a  way th a t “+ ”-prescrip tion  

acts on the  second variable, y  in th is case, as we have done w ith  th e  ER B L case 

explained in C hapter 2.

df {x , t )  f 1 dy
f  - P { x , y ) [ f ( y ) - f ( x ) ]  + f ( x )  [  

Jo y  Jo

P { x , z )  P ( z , x )
M , d z .  (129)
dt “

T he first te rm  of the  expression becom es visibly regular as f ( x )  — f ( y )  cancels th e

singularity of the kernel. The second integral is also regular. In th e  next section, we

present an application of our m ethod in the D G LA P region.
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8.1 EVOLUTION OF (1 -  x)3 PARTON DISTRIBUTION FUNCTIO N

Here we study  a regular function (1 — x ) 3. T he reason for choosing a regular 

function is th a t singular PD Fs are not encountered in ac tual models of PD Fs. F irst, 

we present our results w ith  the  singular p a rt of th e  kernel and la te r we represent, th e  

result w ith the  full kernel as it was done for th e  ERBL case.

Singular Part

The singular p a rt of the  kennel is given by

p *(x ' y)  =  7 —~ r 9 ( x / y  < 1 ) .

The second integral in Eq. (129)

s(*)

1 -  x / y

P { x , z )  P ( z , x )

(130)

di (131)

is going to  be the  same for all the. itera tions, for th a t reason it can be taken out as 

an overall factor. Tin; function s(x)  is given by

”1 r R s((u  z) Ps((z,x)~s(x)  =  f  
Jo x

dz  =  2 +  21n x  .

Therefore, one can propose the  ansatz as

f ( x , t ) =  f (x , t ) .

where F{x.  t) can be w ritten  as a  Taylor series in t,

tnpn{x)F ( X, t) =
n —0

n\

The recurrence relation for the  expansion com ponents pn is given by

n\
Pn+i(x) = f  — P { x , y )

Jo y E
.€=0

(n -  £)W
P e ( y ) L * e - p n(x)

the explicit expression for the first expansion com ponent pi(x)  is given by

f 1 dy
P i ( x )

y
■P(x.y) \p0(y) -  /90(^)]

x [x(o — 3a?) +  2 (3 — 3a: +  x 2) hr a?] .

(132)

(133)

(134)

(135)

(130)
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PlU) P?S_X>_....       **(*)
4.

0.

X
0.2 0.4 0.6

0.0
0.5

• 1.0

2.0

3.0 :

3.5; X0.0 0.2 0.4 0.6 0.8 0.80.0 0.4 06

FIG. 40: Expansion com ponents p\las(x)  and  p2

Expressions of expansion com ponents p2(.r) and  p${x)  are only graphically  presented  

because of the  lengthiness of th e  expressions. T he graphical results for th e  expansion 

com ponents are represented, in Fig. 40. T he parto n  d istribu tion  function f ( x , t )  in 

term s of expansion com ponents is given by

/O r, t) = e2t x 2t ^po(x)  + t p i ( x ) +  ^ p 2(^) +  (137)

Fig. 41 shows the  norm alization versus t. where t runs from zero to  0.5. Sim ilar to  

the ERBL case, the norm alization approaches one as m ore expansion com ponents 

are added, as expected.

N o r m a l i z a t i o n  

2.0 ;

1.5  ^  ^

1.0 ;-—- ^ — — -  _   -------------— ;

0 .5 ;

0.0 _   f
0.0 0.1 0.2 0.3 0.4 o s

FIG . 41: Blue line is the  norm alization including po(x)  and p i(x ), green line is th e  
norm alization including po(x), pi (x)  and  P2 (x)  and red line is the  norm alization  
including po(x),  pi(x) ,  p2(r)  and p?,{x) which was calculated num erically

T he evolution of the initial (1 — x )3 parton  density is shown in Fig. 42.
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0 x 0 0.10 0.75 1

a b

FIG . 42: (a) S tarting  from blue line: t  =  0 (red), t  =  0.2 (black), t =  0.4 (blue). 
t — 0.5 (purple) and (b) Closer look to  0 < x  <  0.2 region

Adding the Non-Singular Part

W hen the  full D GLAP kernel is taken  into account. s (x )  which is th e  second te rm  

in Eq. (129) becomes

' l r P{{x,  z) P { { z , x ) '
i{x) = [  

Jo X

1
dz  — -  +  x  +  2 In #  — ln x  (138)

Therefore, A nsatz for full D GLAP kernel m ight be m odified as

f ( x , t )  =  e ^ +1/2)tx 2ta-” tF(a:, t ) . (139)

Evolution of (1 — x )3 parton  d istribu tion  function is shown in Fig. 43.
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4

2

0
0.750.5 10

14
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2

x  0 X
0 02

FIG. 43: S tarting  from blue line: t — 0 (red), t =  0.2 (black), t =  0.4 (blue), t =  0.5 
(purple) and (b) Closer look to  0 <  x  < 0.2 region
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The results are consistent w ith th e  expected  results of of D GLA P evolution. O ur 

m ethod required only two iterations. Sim ilar to  th e  ERBL evolution, the re  is an 

upper limit on t. In other words, our m ethod is effective up to  t «  0.5. F u rth er 

calculations can be perform ed w ith o th e r m ethods m entioned in th e  beginning of 

this chapter, such as the Mellin transform ation .
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C H A PT E R  9

EVOLUTION OF DO UBLE D ISTRIBUTIO N S

V irtual C om pton Scattering is a process th a t includes tw o photons, a t least one of 

them  is virtual. T he use of deeply v irtua l C om pton scattering  (DVCS) was suggested 

by Ji [10] a n d  Radyushkin [14] as a too l to  ex trac t new structu re  functions of th e  nu­

cleon. DVCS provides a  new ground to  investigate th e  quark  and th e  gluon s tru c tu re  

of the  nucleon and has led to  the in troduction  of ob jects called G eneralized P a rto n  

D istribution [10-15]. These objects are  proposed to  describe th e  soft part, of th e  

DVCS process. W ith  tod ay ’s knowledge, G PD s are th e  only tools provide com plete 

inform ation on th e  accessible s tru c tu re  of th e  nucleon. T he lim iting cases of G PD s 

are given by from factors, parton  densities and  d istribu tion  am plitudes.

C onstruction of theoretical models for G PD s is an  inherent p a r t of the ir s tu d ­

ies. These m odels should satisfy several nontriv ial requirem ents th a t  follow from  th e  

most general principles of quan tum  field theory. In th is  context, one could m ention 

polynom iality [15], positivity  [50-52], herm itie ity  [16], tim e reversal invariance [15], 

etc. There are two ways to  model G PD s. O ne way is a  direct ca lcu la tion  in spe­

cific dynam ical models such as the bag model, the  chiral soliton m odel, light cone 

formalism, etc-. D irect calculation has some difficulty in meeting these conditions. 

The second way is modeling w ith Double Distributions  (DD) [13, 14, 16]. W ith  th is 

approach these com plicated conditions are au tom atically  satisfied by th e  relevant 

Feynman diagram s in p ertu rba tion  theory. In particu lar, analysis of sim ple one-loop 

diagram s is th e  basis of the factorized DD A nsatz [52] (FDDA) th a t  is a s tan d ard  

element of codes generating models for G PD s.

In fact, the com m only used version of the FDD A  involves an assum ption  of uni­

versality of the  DD profile function, w hich, though  supported  by one-loop exam ples, 

was not shown to  be a m andatory  p roperty  of double distributions. A possible way 

to  go beyond the  one-loop analysis, bu t still rem ain w ith in  the p e rtu rb a tio n  theory  

framework, is to  incorporate pQ CD  evolution equations. Namely, th e  s tra teg y  is to  

take the expression for some one-loop d iagram  as the s ta rtin g  function for evolution, 

and use evolved p a tte rn s  lor m odeling G PD s.
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Im plem entation of such a program  faces som e technical difficulties. In particu la r, 

a well known property  of G PD s is th a t they  are lion-analytic at border po in ts x  =  ± £ . 

For one-loop diagram s, this non-analvtic ity  m ay take; th e  form of cusps, jum ps, and  

even delta-functions.

In th is section, we will introduce some basic p roperties of DDs and  we will present 

the  evolution of an approxim ation to  th e  delta  function.

9.1 DOUBLE DISTRIBUTION BASICS

If the  long-distance inform ation is collected in th e  nonforward m a trix  elem ent 

(p — r | 0 (0 , z)  |p) | z-2=0 of quark  gluon light cone operators, one needs to  gener­

alize usual parton  d istribu tions while applying pQ CD  to  deeply v irtua l C om pton  

scattering  (DVCS) 7 *(q)N(p)  —> 'y(g') N{p' )  and  h ard  exclusive elect rep roduction  

7 *(q)N(p)  —► 1 l (q' )  N (//) pr oe<;ss<:s [10 , 11 , 13, 14, 52 54). These types of m atrix  

elements can be param etrized bv double d istribu tions (D D 'sj.

T he kinem atic variables of hard  electroproduction  processes are  given by th e  

initial m om entum  of the nucleon p  and  m om entum  transferred r  =  p  — p'  . In order 

to  present the  im portan t features of th e  process, the  kinem atics can be set to  q'2 =  0 

(nnnentum  of the final photon or m eson), p2 — 0, r 2 =  0 and p. q' are light-cone 

4-vectors. The requirem ent p’2 =  (p +  r ) 2 =  p 2 in th is lim it results in p  ■ r  =  0 which 

can be satisfied only if the two light-like m om enta p  an d  r  are p roportional to  each 

other: r =  £p. where £ is equal to  th e  Bjorken variable £ =  XBj — Q 2/ 2 ( p  ■ q).

Factorization of the hard electroproduction process 7 *(<?)Ar(p) —» M ( q ' ) N ( p ') , 

accum ulates all the  nonperturbative inform ation in th e  nonforward m a trix  elem ent 

(p — r | £’(0)£’(z) |p ). I11 th e  forward lim it r  =  0, Fourier transfo rm ation  of th e  

m atrix  element provides the usual p a rto n  d istribu tions. For quark  operato rs, th e  

double d istributions are defined by th e  following representation [52]:

Here th e  relation between th e  two com ponents of th e  double d is tribu tions and

ip' . s '  | %’a{0)zE(Q, z: A)ipa(z)  | p , s )  1^=0 (140)

x 9 ( x  -t- y < 1) dx dy  +  — -  u(p \  s ' ) (zr  — rz)u(p.  s)
AM
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the quark  and an tiquark  parton  densitiesare

"1 —x f l —x
f  Fa( x . y : t  = 0) dy = f a(x) ; [  Fs (x, y: t =  0) dy = f a( x ) , (141)

Jo Jo

P arton  picture of the  double d is tribu tion  is depicted  in Fig. 44.

xp 4- yr. xp — yr

p — r

FIG. 44: P arto n  p ic tu re  for double d istribu tions

D ouble d istributions F(x ,  y; t) are logarithmically divergent. This requires th e  

dependence of the d istribution  F(x ,  y: t) on th e  renorm alization scale y .  This y

dependence F(x ,  y \ t \ y )  is governed by th e  following evolution equation.

y ^  Fa( x , y : t \ y )  =  f  f  d^dyd{^  +  y < 1)
Jo Jo b

x R ab(x, y \ y )  Fb(£, y , t  | y)  , (142)

where a, b corresponds to  quark or gluon.

T he integration of F(x ,  y: f| y)  over y  corresponds to  parton  d is trib u tio n  function  

f a( x \ y )  whose evolution is governed by D G LA P equations

A ^ / a ( 2-|M) =  /  Pab{x / Of b{ Z \ n ) ~  ■ (143)

This relation suggests that, the kernel R ab(x,y\  7) should satisfy th e  following rela­

tion,

n 1 —X 1
R ab( x . y , ^ r ]) d y = - P ab(X/ 0 .  (144)

) s
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Moreover, integration of F ( x , y , t \  y )  over x  corresponds to  the d is tribu tion  am pli­

tude. which implies th a t the kernel R GG(x.y:  rj) should satisfy also th e  following

relation.

In th is thesis we are going to  work only w ith  th e  quark  kernel whose explicit form

is

The last term  corresponds to  th e  “+ ” -prescrip tion explained in th e  previous sections. 

Kernel w ithout th e  “+ ”-prescription p a rt is singular a t l / ( x  — £), l / ( y  — rj) and  

l / ( y  — fj). T he integral variable 2 in th e  last te rm  can be selected as x / £ .  y/ i]  or y/f]  

depending 011 the  chosen singularity.

9.1.1 SINGULAR PART

Once again, it is instructive to  s tu d y  the singular p a r t first. T he singular p a r t of 

the  kernel is

(145)

For th e  gluon kernel the  relation is

[  ^  R GG(x, y:£, r] :g)dx  = V GG(y, r j :g) . (146)

CF- l  6(0 < x / f  <  m m { y / r ] , y / g }

(147)

-  y/rj) +  ) i 8 ( x / i  -  y/rj)

(148)

Lets concentrate on th e  first term .

8 ( x / Z ~ y / r i ) (149)
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and try  to  find the  term  for th is term . T he de lta  function can be rearranged  as 

£6(x -  y^/rj).

I

i-y
dx

0(0 < x / j  < l ) x / £  
(1 - x / 0

- 6 ( x / £  -  y/rj)
n

0 . (150)

I

, 0(0 <  x / £  < l ) x / £ r 
dx-

*7(1 - x / € )
0(0 < y/rj  < 1 )y/r)

5 (x  -  yt /ri )F(Z,rj)  

F ( 0 , . y ) . (151)
*7(1 -  v / v )

It means th a t for plus-type d istribu tion  th e  su b trac tio n  te rm  for th e  first p a r t of th e  

singular kernel should be

0(0 < y/ f j  < l )y/ r j
-F(Z,r}), (152)

r](l -  y/rj)

i.e., z  in Eq. 148 is 2 =  z'/rj. Now we m ay s tu d y  th e  evolution equation  for only 

th is term ,

d F ( x , y \ t )  f 1 f l 0(0 <  x / £  < l ) x / £
dt I IJ o Jo

f lJo Jo

£r?( 1 - x / O  

6(1 -  x / £ )S ( y  -  ri)0(€ +  rj < 1) 

11 z ' h  dz'

F ( f , r}; t ) 6 ( x / £  -  y/rj )0(i  +  r? <  1 )d£drj

£ J  o 1 -  z h  v

After some simple algebra, the  following expression is achieved 

d F ( x , y \ t )  f 1 0(0 < y/r] < l)y/r] f  x t ]

(153)

dt v O-vh)  +IJo

-  F ( x ,  y\ t )0(x  +  y  <  1) f
Jo

y F  dz'
(154)

to y - z  y

In the first te rm  of the expression above, we have two step  functions w hich ind icate  

the  upper and lower limits of r) in tegration . T he in tegration  line is dem onstra ted  in 

Fig. 45

At this point of the calculation, one can change z'  to  r) and add  and  su b tra c t y  

to  the nom inator of the, second term .

9 J ^ = f ^ J ^ F T^ \  P J n _
dt, J y T ) - y  \ y  J  Jo V - y

+  F(x ,  y: t )0(x  +  y <  1) (155)
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*x

FIG . 45: The triangle on the left is th e  integral dom ain before th e  change of variable 
(z ' —> eta)  and th e  right triangle is th e  in tegral line and th e  lim its after th e  change 
of variables. The integral is divergent when x  — £ and y  = T] (poin t on C - 1 line) 
which is regularized by the u+ ” prescription. The line from 0 to  (  — 1 represents 
the  line of integration for the second p a rt of th e  singular kernel.

T he integral can be arranged as it was done in previous chapters, to  m odify th e  

plus-prescription w ith respect to  second variable.

d<p(x, t) 
dt fJo

V(x,y)[<p(y,t)  -  p ( x , t ) ] dy  -  tp(x 

y/{x+y)

d F { x , y ; t )  dr]

, t )  f\v(y, 
Jo

x)  -  V{x , y ) ] dy  (156)

So we add and sub tract j ^ x+v  ̂ J n - F { x , y \ t )  which resu lts  in

dt
f'+* J v _  \F f  

Jv v -  y L V' y V-y
+  F ( x .  y; t) /  

Jv

F  [ ,rj\t ) — F ( x , y ; t )
XT]  

v V 
dt]

v - y
+  F ( x , v , t )  r

Jo

dr]

v - y

+  F ( x , y \ t ) 9 ( x  +  y <  1). (157)

Here, we have combined the two integrals under one integration, and  th e  resu lt of 

the  integration is

F ( x , y : t )  f  = F ( x , y : t ) l n  — I 'j  (158)Jy V-y \ x + y J
For the second term  in Eq. 148. we follow the  same procedure. This tim e the  te rm
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for the plus-type distribu tion  is f 1 In th is  ease, we have

d F ( x .  y: t) 
dt fJo

\ p  (jJL  %T): t \ -  F(x , y \  t)
y ~ 7i i  \ y  J

■i
+  F( x ,  y ■ t) f  J f y — + F(x ,  y; t) !  

Jo y -  n J v

dr) 

v y - v

F ( x , y ; t )  fy

+  F(x ,  y\ t )6(x  + y < 1),

where the  combined integral is equal to

dr)
F { x , y : t )  f

Jo y
-  =  in —- —
v  y ~ l

So the  final result, which does not include any divergent integrals is

d F ( x , y ; t) 
dt

/ *

J  V

dr)

y y - v
dr)

V
+ r j n

Jo y -

+ F ( x , y ; t)

XT)
F  ( - r , T ) : t j  -  F( x .  y; t) 

y ( l - x -  y)
2 +  In

y( x  + y)

(159)

(160)

(161)
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9.1.2 EVOLUTION OF (y( 1 -  .r -  y))10 DOUBLE DISTRIBUTION

As ail application of this rearranged  evolution equation, we can  s tu d y  an approx­

im ation to the delta  function. The im portance of study ing  the evolution of th e  d e lta  

function is because of the appearance of d e lta  functions in D -term s appearing  in 

GPDs. As an illustration, we studied  the  function F ( x , y , t  =  0) =  (y (l — x  — y) )a. 

In th is work, we are using a =  10. T he first correction te rm  is calculated  analytically. 

The graphs below show the ar-profiles and  y-profiles of th e  F(x.  y, t) =  (y ( l — x  — y ))10 

. The y-profiles are norm alized in order to  make the  change in th e  shape of th e  func­

tion visible when th e  evolution is tu rn ed  on. The figure below shows th e  ar-profile 

and y-profile a t different x  values of th e  function F(x .  y. t — 0 )(y ( l — x  — y ))10. To

F(x,t) N F(x.(l-x)y*=0.2)

y

FIG. 46: rr-profile a t t =  0 (red), t — 0.2(black) and t = 0.4 (blue) and  y profiles a t 
x  — 0(red), x  = 0.3(black) and  x  — 0.5 (blue) for evolution of (y (l — x  — y ))10.

sum m arize, in th is chapter we gave and  in troduction  to  double d is tribu tions and  the ir 

evolution. We presented an exam ple for evolution of D Ds by study ing  the evolution 

of F ( x 7y , t = Q) = ( y ( l - x -  y ))10.
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CONCLUSION A N D  FU T U R E  APPLICATIO NS

T he introduction of the  factorization theorem  has broadened th e  spectrum  of ap ­

plications of pertu rba tive  QCD. Factorization  provides the  absorb tion  of th e  11011- 

pertu rba tive  (long-distance) p a rt of an  event into th e  objects which can th en  be 

m easured experim entally, leaving th e  p ertu rb a tiv e  p a rt (short-distance) to  be calcu­

lated. The objects which contain  th e  non-pertu rba tive  inform ation are the  d is tr i­

bution am plitudes and parto n  d istribu tion  functions. T he evolution of d is trib u tio n  

am plitudes and parton  d istribu tion  functions provides inform ation ab o u t these non- 

pertu rba tive  objects a t different m om entum  transfer Q 2. In o ther words, if th e  DA 

(or PD F) is known at an energy level Q 2, one can evolve th is function to  differ­

ent energies. The evolution of DAs and  P D F s are governed by ER B L and D G L A P 

evolution equations.

T he s tandard  m ethod of calculating the  ER B L evolution is th e  G egenbauer ex­

pansion. This m ethod is a very effective way to  calcu late the evolution of regular 

DAs, i.e. DAs which are zero a t end points x  =  0 and  x  — 1 and continuous w ith in  

th a t interval. In the case of a singular DA, th e  m ethod of expansion in G egenbauer 

polynom ials requires an infinite num ber of te rm s in order to  elim inate singularities in 

the  initial distributions.W e present a new approach, which is very efficient in applica­

tion to  functions th a t do not vanish a t th e  end points or have jum ps and  cusps inside 

the  support region 0 <  x  < 1. W hile th e  G egenbauer expansion produces logarith ­

mically divergent term s a t each iteration , in our m ethod th e  logarithm ic singularities 

are sum m ed from the s ta rt, which im m ediately  produces a  continuous curve, w ith  

oidy one or two iterations needed afterw ards in order to  get precise results.

F irst, we applied our m ethod to  an  in itia l DA th a t  is constan t in th e  whole 

0 <  x  <  1 interval. The evolution kernel is stud ied  in two parts, singular and whole. 

T he reason for this separation is to  investigate the singularities corresponding to  

th e  singular part of the kernel. T he evolution equation  was arranged in such a  way 

th a t the  first term  in th e  evolution equation  has a s truc tu re  of a  -prescrip tion  

w ith respect to the integration variable. The second te rm  in the arranged  evolution 

equation, which is also finite can be absorbed  in the  exponential as an overall factor,
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i.e. p ( x , t )  — etv<-x^ ( x . t ) .  Then, &(x . t )  can be w ritten  as a series in t. T he 

leading term  gives x x  evolution w ith  th e  change of th e  evolution p aram eter t. For 

the  accom panying factor, two fu rther term s in th e  t N expansion were found. We 

have com pared our results w ith  the  ones from G egenbauer expansion. F ifty  te rm s of 

G egenbauer expansion could still not provide th e  desired asym ptotic form while only 

two iterations were sufficient w ith  our m ethod.

We also applied the m ethod to  an  initial an tisym m etric DA which is constan t 

in each of its two parts  0 <  x  < 1 /2  and  1/2 <  x  <  1. In th is  case, the re  is an 

ex tra  fac to r|l — 2x\2t th a t takes care of the  jum p  in th e  middle a t x  =  1 /2 . Two 

correction term s were also calculated. T he results show good convergence for t < 1 /2 . 

Com parison of our m ethod and  th e  G egenbauer expansion is presented. I t should 

be noted th a t for t > 1/2, th e  evolved DA is ra th e r close to th e  asym pto tic  form, 

and one can use th e  s tandard  m ethod of the  G egenbauer expansion which is well 

convergent for such functions.

Then we applied our m ethod for studying  th e  evolution of th e  (logarithm ic Q 2 

derivative of the) tw o-photon GDA. T he initial DA of th e  tw o-photon GDA is zero 

a t end points x  =  0 and x  =  1, b u tr  it has jum ps and  cusps at x  — Q and  x  =  We 

separated the initial DA into two parts , the jum p  p a r t and  the cusp part.

Jum p p a rt includes antisym m etric jum ps a t x  = Q and  x  =  We in troduced  an 

A nsatz in the form of

tp(x, C, t) =  $(ar, C, t) +  tf(a \ C, t ) , (162)

where <h(:r,£,t) =  0  w ith  w(x)  absorbing m ajo r features of th e

evolution of the  s tarting  d istribu tion  in th e  vicinity of th e  jum p points. T(,/', t) is 

a regular function vanishing a t t =  0. T he first expansion com ponent of th e  ju m p  p a rt 

has logarithm ic singularities as expected. These te rm s are absorbed in th e  A nsatz. 

However, resulting function of th e  first correction has still jum ps after sub trac tio n  of 

singularities a t x  =  £ and x — (.  To avoid these singularities, we ad ju sted  th e  A nsatz 

in such a  way to  make d\P(x,C, t ) / d t  a t t — 0 ( \ ( x , Q )  a  continuous function. For 

small t, th e  deviation of the A nsatz function <&(x, C  t) from its t — 0 shape, called 

M>(2:, C, t), has a ra ther sharp  behavior a t x  =  £ and x  — Q. This resu lts  in a ra th e r 

sharp behavior of (j'h„(a;, £, t), which is th e  correction function to  T(;r. <(. t). For th is 

reason we split $ ( x , ( , f )  into sm ooth  p a rt fyx (x . X, t )  and  the rem ainder S^ f ( xX- t ) -
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T he final s truc tu re  of our A nsatz is

r ( x ,  t) =  <f>(.r, C-1) +  d'<k(.r, C-1) +  vkx(;r- (. t) . (Ib3)

We have shown th a t th e  am plitudes of ci'I'i an d  are  very sm all com pared to  

the am plitude of 4>(a\£,t). This result, shows th a t ~  t x { x , Q  is a good

approxim ation and is calculable analytically.

In cusp part of the calculation, we split th e  function into a linearized and  a 

curvy part. The linearized p a rt is calculated  w ith  straightforw ard t n expansion. We 

presented the first iteration for th e  linearized p a rt. The evolution of th e  curvy  p a r t 

showed th a t evolution spreads the  support region of th e  function in to  the  whole 

interval 0 <  x  < 1. The in itial support region for th e  curvy part is 0 <  x  <  £ and  

Q < x  < 1. while after evolution tu rn s  on the  function spreads in to  th e  £ <  x  < Q 

region.

We have also presented the  application of our m ethod to th e  D G L A P evolu­

tion equation and the  evolution of double d istributions. For th e  D G L A P case, we 

have shown th e  evolution of a simple non-singular P D F , (1 — x ) 3. O ur resu lts show 

consistency w ith th e  expected results up  to  t «  0.5. For the evolution of double 

distributions, we have shown results for evolution of function [y{ 1 — x  — y)]10 as an  

approxim ation to  a D elta function.

T he results presented in th is  thesis were published in Refs. [55-57]. T he m ethods 

developed may Ire extended to  generalized p a rto n  distributions. In that, case, two 

strategies are possible. The first s tra teg y  is to  use a d irect evolution equation  for 

G PD . In th a t case, bo th  the  G PD  and  th e  evolution kernel depend on th e  skewness 

param eter £, which is analogous to  th e  p aram eter Q encountered in th e  tw o-plioton 

GDA studies. A nother strategy  is to  use th e  evolution equation for th e  double 

d istribution  F(f i ,  a; t). In this case, no skewness p aram eter is present in th e  evolution 

equation, and dependence on £ appears after one perform s th e  conversion of th e  

double d istribu tion  into a G PD . In b o th  cases, various aspects of our m ethods of 

analytic evolution may be used. In particu lar, G PD s are nonanalytic a t th e  bo rder 

points x  ±  £, having there cusps, while model DDs m ay have a singular s tru c tu re  

(jumps, delta  functions) present in the ir in itial shape.
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A P P E N D IX  A

ANALYTIC EXPRESSIO NS

$ i . i ( x , C ) =  [  V(a\i/)[<&i.o(y,C) -  3>i.o(xX)}dy 
Jo

(  X  I
9(0 < x  <  £ <  1/2) |  (3 — 4C) —  +  —  [ x ^ ln x +  (1 — x x )ln ;r]  

< -  *  [ln(C -  *) +  ln(C -  , ) ]  +  hlC t h l C ( 1 . - 3C)/C *c
1 - 4 C

C(1 -  2 0

+  #(C <  x  <  0  

1 - 4 C

2C(1 -  2 0
2(x -  0

2(1 - 2 0

[(x -  0  ln(C -  x )  +  (C -  x)  In(C -  x)] |  -  { x  -»■ x }

1 — 2r r - i______ — (1 +  4C) H- In C (1 — 3C)/C

(x — C) lxx(^ — C) — (C — x ) ln (C ~  x) + x l w x  — x l n x

1 - 2 C
m * - a -  2f _ 2f  m < - x )  +

x 2 +  X 2 
2 ( 1 - 2 0

In (164)
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A .2 x(:r-C)

X(a:.C) =® i.i(a:,C) =  f  V(x , y) [&i .0(y, C) -  $i.oOr,0]<*y ~  iv(x,()<$>0(x,C)]
Jo

f X  I
— 0(0 < x  < (  < 1/2) |  (1 — 4 0  —  +  ^  ^  ln x  +  (1 — x x )  In x]

-  N <  _  , ,  + hl(c- _ ,)]  + , n < + 0 r W <  ,

1 ^  [(•>■ - O M <  -  x )  +  ( < - * ) M C  - * ) ]  -  7 M l  -  2 0
C(i - 2 0  7 7 "  c

- 7 j £  [(1 +  c) In C +  (2 — C) 111 C] j* ~ { x ~ * x }

2x  
2(1 - “2C)

+  6>(C <  x  <  C ) | 2 ^  ( l - 4 0  +  l n C ( l - 3 C ) / C

+  1 - 4 C (x  — C) ln(a: — ( )  — (£ — x )  ln (£  — a:) +  x  In x  — x \ w x
2C(1 -  2 0
2 ( x - Q  2 ( ( , - x )  - x 2 + x 2 / x \

+  T 3 2 T  '" (X -  0  -  i b r  “ 1(C “  * ’ +  2 ( 1 3 2 0  H x )

+  2(0 2/ 0  [2 M l  -  2 0  +  (1 +  0 1 i> <  +  (2 -  0 1 » < ]  }  (165)
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