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Fig. 4. Superimposition of the 3D virtual prototype and the system installed onboard through the AR wearable device. 

Fig. 5. Measurements and quality control of the system installed onboard through the AR wearable device. 

Current tools fail to quantify ripple effects and subsequent delays in the defense of shipbuilding sector [31]. We argue that 
without that knowledge is not possible to develop a timely understanding of the impacts of cybersecurity disruptions on schedules, 
adjust a response (e.g., reconfigure operations), and prevent significant losses. As trends in cyber-attacks suggest using intelligent 
actors to learn from systems vulnerabilities [33], supply chains may conceal more dire plans to disrupt long-term operational 
effectiveness, including supplying goods during periods of critical need [17]. 

To overcome these limitations, we propose developing an Artificial Intelligence-based cybersecurity supply network framework 
that characterizes shipbuilding supply networks and determines ripple effects from disruptions caused by cyberattacks to the supply 
network. By representing and replicating the collective behavior of relevant shipbuilding supply network nodes, shipbuilders can 
monitor and measure the effects of cybersecurity disruptions and test the reconfiguration options that minimize the detrimental 
impact on the supply network. It also enables the study of individual and simultaneous failure of one or more nodes and propagation 
effects across the network as a whole. This framework extends a novel risk management framework developed by Diaz and Smith 
[30, 31] and Smith, Diaz [34] that considers complex tiered networks and systemic hyper-vulnerabilities and is currently under 
development in the port security cyber-physical setting. 

The definition of the intrinsic vulnerabilities of the systems entails undermining their security [35]. We employ a systemic 
perspective based on extensions to the Functional Dependency Network Analysis (FDNA) that considers: cyber threats [36, 37]; 
systems vulnerabilities [38, 39]; the risks associated with the cyber-attacks; security risks related to the loss of confidentiality, 
integrity, or availability (C.I.A. triad) of information [40]; and the countermeasures to deal with cybersecurity issues [39]. The 
cybersecurity evaluation framework proposed in this work seeks to extend Diaz, Smith, et al (2021) by examining emergent 
behavior and vulnerabilities to assess the effects of cybersecurity breaches on suppliers. The new method, Adaptive Risk Network 
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Dependency Analysis (ARNDA), is an extension of the so-called Systems Operational Dependency Analysis (SODA) [41]. SODA 
improves FDNA [42, 43] by enabling partial dependency analyses, progressive absorption, tiered structures, and embedding risk 
profiles. 

Both FDNA and SODA fail to consider hierarchies such as those observed in the shipbuilding multi-tier supply network and 
the simultaneous propagation effects that may lead to hyper-vulnerability. Hierarchical structures and hyper-vulnerable 
dependencies [44] are two critical components prevalent in supply networks [30, 31]. Figure 7 presents a hypothetical supply 
network for a watertight door on a naval vessel. Figures 7(a)-(c) show a high-level modeling process in which nodes (suppliers) 
are identified, connected, analyzed, and scored. 

Our method allows for combining a probabilistic, graphical, real-time Bayesian Network with functional dependencies leading 
to lower computational costs and integrating parameters with intuitive meaning to tiered suppliers [41]. Figure 8 presents the 
application of ARNDA to a hypothetical functional dependency network that represents port operational nodes' operability in the 
context of a cyber-physical space. In the shipbuilding context examined in this paper, the extension of ARNDA will capture risk 
events, embed node risk profiles and interdependencies and determine ripple effects in the shipbuilding supply network space. 
Thus, stakeholders can prioritize investments [30] and analyze supplier reconfigurations that minimize the cyberattack disruptions 
via optimization.  

3. Summary and Future Endeavors 

The introduction of digitalization technologies in the industrial world is never straightforward. Still, for shipbuilding, this 
represents a more significant challenge due to the traditionally employed approaches for design and production. However, the 
necessity of reorganizing production processes and increasing product quality requires adopting innovative tools to support the 
development of a new industry concept. In this framework, the most disruptive technologies belonging to the Industry 4.0 notion 
are those based on the interaction between humans and virtual reality. The possibility of creating 3D virtual prototypes that can be 
both inspected as real environments and verified on the actual ship was at the base of the methodology proposed in the present 
paper, implemented by exploiting one of the most modern design tools. The 3D VP of the selected systems was verified through 
the use of VR and AR wearable devices, highlighting all the advantages of such methodology. These consist of early identification 
of design errors and necessary modifications, rapid and efficient quality control performance, and the importance of simultaneous 
data sharing between all the parties involved in the ship design and production. 

Applying Industry 4.0 technologies mentioned above could also lead to a reduction in design and production times. This may 
also lead to a cost reduction, with increased attractivity for the company. Besides, customer satisfaction could also benefit from 
adopting such technologies. Indeed, he may be involved during the design phase by either presenting the project development 
status or proposing alternative construction solutions that could be verified through the Virtual Prototype to achieve a high level 
of customization of the final product. On the other hand, it is important to take into account the potential limitations of the VR and 
AR technologies. These limitations may include the reduced comfort of wereable AR glasses and devices, the battery runtime and 
the adequate lighting conditions in both the shipyard and on-board, as well as the personnel lack of experience in using and fully 
exploiting the technologies. Speaking about the risks related to data management and treatment coming from the application of 
VR and AR technologies in naval shipbuilding and repair domains, it is also crucial to consider that the benefit of using a real-time 
data-driven approach to constantly evaluate supply network disruption risk due to a cyberattack on suppliers and sub-tier suppliers. 
We have proposed the refinement of a framework that combines a stochastic, real-time Bayesian Network with functional 
dependencies. This approach extends the Systems Operational Dependency Analysis (SODA). The extension creates a multi-
layered approach that enables modeling backward and forward risk propagations. The method allows aggregating granular behavior 
under a node that represents collective behavior. More importantly, the technique overcomes limitations in modeling absorbing 
states from binary [0-1] to broader ranges representing progressive transitions instead of abrupt state changes. The new approach, 
ARNDA, allows the embedding hierarchical structures and risk profiles. It identifies dynamic potential emergent systemic hyper-
vulnerabilities prevalent in real-world operational systems by its ability to capture high levels of activity and exposure of nodes 
simultaneously.  

Risk analysts and managers must identify their supplier portfolio's hidden risks. In general, managers are expected to gauge 
these risks as an individual or a sub-sample of suppliers might cause undesirable risk levels that may make operational integrity 
vulnerable. Likewise, these tools facilitate the anticipation of actions that makes the firm resilient, as vulnerability might develop 
if risks are not timely recognized and adequately mitigated. Future research endeavors include adapting ARNDA to the shipbuilding 
context and building a prototype that follows the conceptual model lines described in this paper. Also, granular firm-to-firm 
connectedness to model degrees of dependency among nodes.  
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Fig. 6. Overlapping industry sectors that converge in shipbuilding supply chains. 

 

 
Fig. 7. High-level modeling process in which suppliers(nodes) are labeled, connected, and analyzed. 
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Fig. 8. Application of ARNDA to a hypothetical port cyber-physical space and different operability levels changing dynamically. 
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