Old Dominion University

ODU Digital Commons

Electrical & Computer Engineering Faculty

Publications Electrical & Computer Engineering

2013

Integration of Multispectral Face Recognition and
Multi-PTZ Camera Automated Surveillance for
Security Applications

Chung-Hao Chen
Old Dominion University, cxchen@odu.edu

Yi Yao
Hong Chang
Andreas Koschan

Mongi Abidi

Follow this and additional works at: https://digitalcommons.odu.edu/ece fac pubs

b Part of the Computer Sciences Commons, and the Electrical and Computer Engineering

Commons

Repository Citation

Chen, Chung-Hao; Yao, Yi; Chang, Hong; Koschan, Andreas; and Abidi, Mongi, "Integration of Multispectral Face Recognition and
Multi-PTZ Camera Automated Surveillance for Security Applications"” (2013). Electrical & Computer Engineering Faculty Publications.
77.

https://digitalcommons.odu.edu/ece_fac_pubs/77

Original Publication Citation

Chen, C. H, Yao, Y., Chang, H., Koschan, A., & Abidi, M. (2013). Integration of multispectral face recognition and multi-PTZ camera
automated surveillance for security applications. Central European Journal of Engineering, 3(2), 253-266. doi:10.2478/
$13531-012-0065-6

This Article is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted for
inclusion in Electrical & Computer Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information,

please contact digitalcommons@odu.edu.


https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_fac_pubs/77?utm_source=digitalcommons.odu.edu%2Fece_fac_pubs%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

/
Cent. Eur. J. Eng. « 3(2) + 2013 « 253-266 VERSITA
DOI: 10.2478/s13531-012-0065-6

Central European Journal of Engineering

Integration of multispectral face recognition and
multi-PTZ camera automated surveillance for security
applications

Research Article

Chung-Hao Chen', Yi Yao?, Hong Chang?®, Andreas Koschan®, Mongi Abidi®

1 Electrical and Computer Engineering,
Old Dominion University,
23529 Norfolk VA, USA

2 GE Global Research Center,
12309 Nikayuna NY, USA

3 Electrical Engineering and Computer Science,
The University of Tennessee,
37996 Knoxville TN, USA

Received 27 December 2012; accepted 28 February 2013

Abstract: Due to increasing security concerns, a complete security system should consist of two major components, a
computer-based face-recognition system and a real-time automated video surveillance system. A computer-
based face-recognition system can be used in gate access control for identity authentication. In recent studies,
multispectral imaging and fusion of multispectral narrow-band images in the visible spectrum have been employed
and proven to enhance the recognition performance over conventional broad-band images, especially when the
illumination changes. Thus, we present an automated method that specifies the optimal spectral ranges under
the given illumination. Experimental results verify the consistent performance of our algorithm via the observa-
tion that an identical set of spectral band images is selected under all tested conditions. Our discovery can be
practically used for a new customized sensor design associated with given illuminations for an improved face
recognition performance over conventional broad-band images. In addition, once a person is authorized to enter
a restricted area, we still need to continuously monitor his/her activities for the sake of security. Because pan-
tilt-zoom (PTZ) cameras are capable of covering a panoramic area and maintaining high resolution imagery for
real-time behavior understanding, researches in automated surveillance systems with multiple PTZ cameras have
become increasingly important. Most existing algorithms require the prior knowledge of intrinsic parameters of
the PTZ camera to infer the relative positioning and orientation among multiple PTZ cameras. To overcome this
limitation, we propose a novel mapping algorithm that derives the relative positioning and orientation between two
PTZ cameras based on a unified polynomial model. This reduces the dependence on the knowledge of intrinsic
parameters of PTZ camera and relative positions. Experimental results demonstrate that our proposed algorithm
presents substantially reduced computational complexity and improved flexibility at the cost of slightly decreased
pixel accuracy as compared to Chen and Wang’s method [18].

Keywords: PTZ cameras * Surveillance systems « Multispectral images
© Versita sp. z o.o.
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automated video surveillance system. Face recognition
has been widely used and has attracted significant re-
search attention because of its wide range of applica-
tions in security and surveillance. Appearance varia-
tions caused by changes in lighting conditions constitute
a major deteriorating factor of the system’s recognition
rate [1]. Multispectral images have been used to improve
face recognition under various illuminations. There are
two advantages of multispectral images over conventional
images, which we took into consideration as our inspira-
tion of utilizing multispectral images for face recognition.
First, it is well known that humans tend to easily spot
any color changes in the skin tones. The main obstacle
for the universal color use in machine vision applications
is that the cameras are not able to distinguish changes
of surface color from color shifts caused by varying illu-
mination [28]. Multispectral images in visible domain can
provide a new avenue to separate the color of a subject
and the illumination. Second, with multispectral images,
we have the freedom to emphasize and/or suppress the
contribution of images from certain narrowbands. Some of
the approaches employed near infrared images that pro-
vide more information than the conventional images in the
visible spectrum [2]. Pan et al. [3] used narrow-band spec-
tral images in near infrared. Our previous work regard-
ing the fusion of narrow-band spectral images [4] in the
visible spectrum was the first performance comparison be-
tween multispectral images and conventional broad-band
images. The fusion of a total or a subset of 25 band im-
ages can outperform conventional images for face recog-
nition, especially when the probe and gallery images are
acquired under different illuminations. This is due to the
freedom to emphasize and/or suppress the contribution of
images from certain narrow bands, when using multispec-
tral images. Contrarily, conventional monochromatic and
RGB images provide only one- or three-broad-band re-
sponses.

In this paper, as an extension of our previous study in
spectral range selection for face recognition [5], we inves-
tigate the robustness of our algorithm, focusing on two
critical steps: probability density function (PDF) estima-
tion and divergence computation. The efficiency of PDF
estimation depends on the selection of the kernel func-
tion, which may depend on the distribution of the actual
input data, in our case the similarity scores of the genuine
and imposter sets. The characteristics of the input data
may vary according to a large variety of factors, such as
the recognition engine and illumination conditions. This
raises the question of whether the performance of the band
selection algorithm depends on the characteristics of the
input data. If the answer is yes, the use of kernel function
and distance measure needs to be optimized empirically in

advance according to the specific set of input data, which
impedes the application of the proposed selection algo-
rithm in a plug-and-play manner. To maximize its uni-
versal applicability, it is desired that the performance of
the proposed algorithm is robust to the selection of the
aforementioned parameters.

Once a person is authorized to enter a restricted area, we
still need to continuously monitor his/her activities for the
sake of security. Due to fatigue, the possibility of missing
alarms is high, even for well-trained security personnel.
These issues lead to the need for a real-time automated
surveillance system that automatically detects, tracks, and
records security violations. Surveillance systems [10, 11]
with multiple PTZ cameras became popular in the past
decade, because of their capacity to simultaneously cover
wide area and maintain high resolution imagery. Due to
the time-varying relations among PTZ cameras, how to
coordinate multiple PTZ cameras by means of changing
their poses to achieve a better observation of the object of
interest remains challenging. Even though there is a vast
amount of literature on automatically calibrating larger
camera networks [12, 13], those works mainly deal with
stationary perspective cameras.

Thus, the works of Chen and Wang [14, 18] and Everts et
al. [19] proposed to use known intrinsic parameters of PTZ
cameras to direct their poses, namely pan, tilt, and zoom
values, whenever a change is needed. In other words, we
have to individually calibrate each PTZ camera [15, 16]
to obtain their intrinsic parameters beforehand. This im-
pedes their direct application to automated surveillance
systems with changing configurations and a larger number
of PTZ cameras. In particular, due to errors in the estima-
tion of intrinsic parameters of PTZ camera, the works of
Chen and Wang [14, 18] need one more optimization pro-
cess, sensitivity analysis, to obtain the pose relation be-
tween PTZ cameras. This increases the system'’s computa-
tional complexity in the calibration process. To overcome
their limitations, we propose a novel mapping approach
that directly derives a unified polynomial model between
the pan, tilt, and zoom values of PTZ cameras with un-
known intrinsic parameters and setups in the scene.

In summary, the contributions of this paper are: (1) The
robustness and consistency of the proposed algorithm is
verified by the observation that identical band ranges are
selected via various implementations for different input
data. Therefore, with the most basic implementation of the
Gaussian kernel and Jeffrey divergence, a smaller number
of narrow-band images can be selected according to the
illumination conditions and fused for an improved recog-
nition performance; (2) Our approach is able to derive the
relation of pan, tilt, and zoom values between any pair
of PTZ cameras without prior knowledge of their intrin-
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sic parameters and relative positions. In comparison with We propose using the band separation between the gen-

the reference algorithm [18], our proposed approach not uine and imposter sets to select the optimal spectral range
only reduces the dependence on the knowledge of intrin-
sic parameters of PTZ camera, but improves the degree of
autonomy and reduces the system’s computational com-
plexity at the cost of slightly decreased pixel accuracy. In

general, this slightly decreased pixel accuracy does not

of face images for given illumination conditions. Figure 1
illustrates the pipeline of the face recognition algorithm
with our automated band selection mechanism. Based on
the features extracted from probe and gallery images, sim-
ilarity scores for all pairs of probe and gallery images are
affect the overall performance for the application of auto- computed. Then, band selection is performed as follows.
mated surveillance systems, as long as the desired object

can be seen within the field of view and can be com-

(1) The distribution of the similarity scores of the genuine
and imposter sets are estimated using kernel functions.
pensated by consistent labeling approaches [27] without (2) Divergence is calculated to quantitatively describe the
added cost. separation between these two distributions. (3) The op-
timal m bands can be chosen by sorting the divergence
The remainder of this paper is organized as follows. Sec- values in a descending order. The m bands corresponding
to the first m divergence values in the sorted sequence
are selected. Finally, the images from the selected bands

are fused and fed into a classification engine that outputs

tion2 presents our band selection algorithm and describes
various implementations of PDF estimation and diver-
gence computation. Section3 shows our cooperative map-

ping method. Experimental results are given in Section4
and conclusions are drawn in Section5.

2. Band selection approach

Face recognition starts typically with image preprocess-
ing including segmentation and normalization. Afterward,
salient features are extracted based on which similarity
scores of a pair of face images, one as the probe and the
other as the gallery, are calculated. Let Sikj denote the
similarity score between the gallery image of the i'" sub-
ject and the probe image of the j subject collected at
the k' band. The similarity scores in each band can be
divided into two groups, referred to as the genuine Gy
and imposter /; sets. The genuine and imposter sets are
defined as: Gy : {Sf, i = j} and I, : {Sf, i # j}, respec-
tively. The genuine set contains the similarity scores with
probe and gallery images from the same subject while the
imposter set consists of similarity scores with the probe
and gallery images from different subjects. Without loss
of generality, we assume that a higher similarity score in-
dicates a better match. ldeally, the genuine and imposter
sets should cluster at the high and low end of the score
scale, respectively, without overlap so that an appropri-
ate threshold can be derived to completely separate the
genuine matches from the imposter ones. Under such con-
ditions, a perfect 100% recognition rate can be achieved.
However, in practical situations, there usually exist over-
lapped regions between these two sets. An important cri-
terion in evaluating the effectiveness of the recognition
system is the separation between the similarity scores
of the genuine and imposter sets. Please refer to our
previous work [5] for detailed discussions regarding band
separation.

the recognition rate.
Probe & Spectral Range| | Image
Gallery Images Selection Fusion
¥, T
v v
Feature Divergence Face
Extraction Computation Classification
'Y
¥ AT
Similarity Score PDF Recognition
_Conputation Estimation R
Figure 1. lllustration of the algorithm pipeline. The proposed band

selection algorithm is highlighted in bold

To achieve automated selection of optimal multispectral
bands, we need an accurate estimation of the PDFs of
the genuine pc(x) and imposter p;,(x) sets for the k"

band and a qu

aration between them.

performance of

antified measure D to evaluate the sep-
In this paper, we investigate the
the proposed algorithm with various im-

plementations of PDF estimation and divergence compu-

tation.

Our motivation is to show that our algorithm is

sufficiently robust so that its performance is independent

of the implementation of the PDF estimation and diver-

gence computation. This is an attractive attribute and is
important for practical implementation.
From the similarity scores of various subjects, the dis-

tributions of th
Dik(x), are esti
(KDE) [6]:

e genuine and imposter sets, pc(x) and
mated by using kernel density estimation

N

1 x — Sk
K 1 , 1
th.kz ( he .« ) 0
Sk
, (2
N(N—’I)h/k;j%l h/k ) ()
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where K() denotes the kernel function with the property of
[ K(t)dt =1, hglhx is the smoothing parameter, and
N is the total number of subjects.

The quality of a kernel estimate depends on both the
shape of the kernel and the value of its smoothing param-
eter. The following kernel functions are commonly used:
triangle (1 —|¢t|), Gaussian \/% exp(—1%/2), Epanechnikov
%(1 —t2), biweight/quaritic %(1 —t2)?, triweight %(1 —1)3,
and cosine % cos(5t). The Gaussian function is defined in
(—00, 00) while others are defined in [-1, 1].

As its name suggests, the smoothing parameter controls
the smoothness of the density estimate. A smaller smooth-
ing parameter leads to spiky estimates. The bias in the
density estimate is small but the variance is large. In
contrast, a larger smoothing parameter results in over-
smoothing with a smaller variance but a larger estimation
bias. Minimizing the asymptotic mean integrated square
error (AMISE) [7] is the most commonly used method of
choosing the smoothing parameter, which is normally de-
noted as hAMISE:

1/3

havise = [NU(K)ZU

where p(K) = ZI_OZO xK(x)Ki(x)dx, p(K) =
[ X*K(x)dx, and o(p’) = [7 p'(x)’dx with
Ki(x) = ono K(x)dx. A more advanced approach of
estimating the smoothing parameter explores a more
complicated criterion that considers the trade-off between
the estimation bias and variance. The optimal param-
eter hjcomp is obtained by minimizing the information
complexity (ICOMP) defined as follows [8]:

ICOMP(K,h) = 2nln(n—1)+2nln(h) +

—Ziln ZK(%) +

i=1 i

+26 (cov(é)) , (4)

where the covariance matrix is given by Cov(f) =
/:_?‘1 IA?IA—_i”. .‘A—_?‘1 is the Inverse Fisher Information Matrix
(IFIM) and R is the estimated outer-product form of the
Fisher information. n represents representative principal
components. The C; (o) information complexity is defined
by:

. trace ( Cov(6) R
G (cOv(e)) =2 rank((cc,v(é))) —%ln‘Cov(@)’,

)

where trace refers to the trace of the matrix. Equation
(4) measures the lack of fit of the model, and Equa-
tion (5) measures the complexity of the estimated IFIM,
which gives a scalar measure of the celebrated Cramér-
Rao lower bound matrix. This takes into account the ac-
curacy of the estimated parameters. The minimum value
of ICOMP reveals the feature variable-subset is optimal
in dimensionality and information content. More details
behind the derivation of this formulation are available
in [22]. In this paper, we only use generic algorithm (GA)
as searching method along with the use of ICOMP criteria
as the fitness function. How to use a GA-based procedure
with informational complexity as the fitness function em-
ployed in this work is detailed in Bearse and Bozdogan [8].

Once the PDFs of the similarity scores from the genuine
and imposter sets are estimated, the remaining question
is how to quantitatively evaluate the distance between
the two PDFs. Probabilistic distance measures are ex-
ploited. To simplify the notations, we use p4 (x) and p; (x)
to represent the density functions of two sets, which in
our case are the genuine and imposter sets. Table 1 de-
fines a list of probabilistic distance measures often found
in literature [9]. These distances have the following rela-
tions. (1) The Bhattacharyya distance is a special case
of the Chernoff distance with a; = &, = 15 (2) The Ma-
tusita distance is related to the Bhattacharyya distance
by Dy = /2[1 —exp(—Dg)]. (3) The relation between
the Kullback-Leibler and Jeffrey divergence (a symmet-
ric version of the Kullback-Leibler divergence) is given
by Dy (p1.p2) = Dki (p1llp2) + Dki (p2l|p1)- (4) The Kol-
mogorov distance is a special case of the Lissack-Fu dis-
tance with o = 1.

3. Cooperative mapping approach

The setup of a pair of PTZ cameras is shown in Figure 2.
We choose the coordinate of the zero position of a selected
camera as the reference world coordinate, where pan and
tilt angles are both set to 0. A point P; = (X;, Y;,Z)"
in the reference world coordinate is projected onto the j*"
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Table 1. Listof probabilistic distances and their definitions, where 0 < a1, a» < 1, &1 + a2 = 1, and 1y and s, are prior probabilities of classes 1

and 2, respectively

Distance Definition
Bhattacharyya Dg (p1, p2) = —log { VvV P1(x)p2(x dx}
Chernoff De (p1.p2) = —log { [y p7? (x) p3' (x) dx}

Kullback-Leibler

Jeffrey Dy =
Matusita
Patrick-Fisher Dpr (p1,p2)
Lissack-Fu Dir = [y Ip1(x
Kolmogorov

x) 71 — p2 (x) 2| [

Dk = fx lp1(x)m

Dkt (p1llp2) = [y p1(x) log 55 dx
p1(x) = p2 ()] log L0 dx

pa(x)

v (p1, p2) :\/fx \/P1 ) —V/p1(x ] dx

\/fx [p1 (X) 1 — pa (x) 1) dx
(x) 1 + p2 (x) m2]" dx
— pa(x)m2dx

PTZ camera’s image coordinate (x;;, y;;, A;;) by

Xi/' fzaom,/' Szoom,j Xzoom,/'
Yij = 0 Qzo0m,j fzanm,j Yzoom,j
Aij 0 0 1
cosOr; 0 —sinOr;
0 1 0
sinfr; 0 cosOr;
1 0 0 X;
0 cosOp; sinOp;||Yi] (6
0 —sinBp; cosOp;| | Z

where 8p ; and 07 ; represent the pan and tilt angles of the
j™" PTZ camera, respectively. (Xz00m,j1 Yzoom,j) Tepresents
the principal point in the j PTZ camera. f,om, denotes
the focal length of the j!*

represent the aspect ratio and skew of the j PTZ camera.

. Qzoom,j @Nd S,40m ; respectively

ln essence, (inom,/'r yzoom,j)r fzoom,j: azoam,jr and Szoom,/' are
subject to the changes of zoom value Z; of the j* camera.
The same point is projected onto piy = (x, yc, 1), the

center of the image coordinates of the h" PTZ, by proper

pan, tilt, and zoom values:

Xc fzoam,h Szoom,h Xzaom,j
Yyc = 0 azoum,hfzaom,j yzaom,j
1 0 0 1

cosOry 0 —sinfry,

0 1 0
sinBr, 0 cosBr,
1 0 0 X;
0 cosBpy, sinBpy |||+t (7)

0 —sinBpy cosbpy| | Z

where t,; denotes the translation vector between the op-
tical center of the h'" and " PTZ cameras.

257
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P.
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Figure 2. Typical setup of a pair of PTZ cameras
Based on the point correspondences, two equations can so as to solve for ép,h, ém, and ZL,. In essence, to avoid
be derived from, the needed knowledge of internal and external parame-
ters of each PTZ camera in the scene, we propose to use a
set of polynomials to directly relate (xin, Yin, Op.n, O1.1, Z1)
Xi 1 0 0 . .
and (xi, yi, Op,, 07, Z;) from a training set. The train-
Yo|] = |0 cosBp;, sinBpy |- ing set is collected from tracking the same object in two
) PTZ cameras where the centroid of the object stays at
Z; 0 —sinBpy cosBpy, . th
k ' the image center of the h™" camera, but can be anywhere
B . . -th . . . .
0507y O —sin6ry in the Ln.1age. of the j came_ra. Thts object l!’l both im-
ages maintains a constant-sized pixel resolution for the
0 1 0 ' future applications such as behavior understanding, face
sinBr, 0 cos6ry recognition, and so forth. As a result, once Equation (9),
ot Tt Tt || Op.n = Ip(xij. Yij, O j, 07,1, Z))
0 azoam,::fzaom,h azoaynj,t:vog;j;m,h Ye| = thl QT'h - fT(Xij’ yij’ GP'j’ QT'j’ Z]) (9)
0 0 1 1 Zy = f7(xij, yij, Op,j, O7,j, Z))
1 0 0 cosOr; 0 sinfr; is derived, we can direct the h'" PTZ camera to the posi-

tion where the i object is supposed to be placed at its
image center with a desired pixel size, which is based on

0 cosOp; —sinbp; 0 1 0

0 sinBp; cos6Bp; sinfr; 0 cosfr; the pan, tilt, zoom values and the image coordinates of the
i object in the j PTZ camera.

fmlmJ _f:anm,] _f:an”;j Xij Our cooperative mapping methodology is inspired by the

0 1 Yzoom,j gl ® work of Chen et al. [24]. They pointed out that exist-

Szoom.jfzoom,j  Gzoom.jfzoomj Y ing algorithms [21, 25, 26] in the area of spatial map-

0 0 1 Aij ping between the omnidirectional and PTZ cameras need
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to have prior knowledge of project models of cameras,
namely internal and external parameters, and the envi-
ronment geometry. This impedes their direct application
to surveillance systems with changing configurations. This
is similar to surveillance systems with multiple PTZ cam-
eras. Thus, our proposed cooperative method can be di-
vided into two phases, the data acquisition phase and
the data fitting phase. Figure 3 illustrates the flow chart
of these two phases. The purpose of data acquisition
phase is to collect desired information to relate directly
(X,h Yin, Q,D h QT h» Zh) and (X,/, Yij» QPI' 97’,, ) The pur-
pose of data fitting phase is to derive Equation (9) by the
collected data set from data acquisition phase.

r
:D"ﬂ ;E:ﬂmn A Single Moving Object

Size Preserving T racking

| Size Preserving Tracking
with PTZ Camera j

with PT Z Camera h

I

| oot ol

Figure 3. lllustration of our proposed cooperative mapping method

3.1. Data acquisition phase

At first, a single object moves around randomly in the
overlapped field of views (FOVs) of the j* and h'"
PTZ cameras to collect its motion trajectory including
(X, Yin, Op.n, B0, Zy) and (Xi,',yi,n 9P,,', QT,erj)- The
centroid of the object stays at the image center of the A"
camera but can be anywhere in the image of the j cam-
era. This object in both images maintains a constant-sized
pixel resolution for the future applications such as behav-
tor understanding, face recognition, and so forth. Since
the focus of this paper is not developing a size preserving
tracking approach, we utilize the algorithm proposed by
Fayman at al. [22] in here. Once (xin, Yin,  Op.p, O, Zn)
and (xij, yij, Opj, 67, Z;) are collected, we enter to data
fitting phase to obtain Equation (9).

3.2. Data fitting phase

Since the derivations for pan, tilt, and zoom functions are
similar, in the following discussion, we will take the pan
angle, @p,h = fp(xij, yij, Opj, 07, Z;), as an example to
save space. In general, we first fit a model with all possible
predictor variables [17, 23] with different n'"-order terms
such as Qp,j,
xiZj,Zin/yij,yfl-, Xl"/ Xijyf’j’1, ..., and QT/%, Let w;, with
i =1, ...k, represent these k predictor variables. The pan

n . n . n " i
Qpr/' 97"/, ceey Qply Z/: sy Z/ e XL]' ytjr

angle in a complete model can then be expressed as:
éP,h(C) =Yoo+ viwi + 2wz + ...+ VWi + Ec, (10)

where y; denotes the model fitting parameter and ¢ is a
random error term with E {ec} = 0.

Usually not all predictor variables are equally significant.
A subset of these variables can be found forming a reduced
model:

éP,h(R) =Yoo+ vimi+yawa+ ...+ ygwg + g, (11)

where g < k and eg is a random error term with E {eg} =
0. Let SSE¢ and SSEg denote the sum of squared error
of the complete and reduced models:

SSEc = ©}Opc+
— Op We c(WE W) ' Wp cOpc,
SSER = ©pgOpr +

— Op R Wrr(W W r) ' W 2Op . (12)

where Op /Op r is the vector of all response variables in
a complete/reduced model and Wp ¢/Wp r is the vector of
all predictor variables wy/w, in a complete/reduced model.
Intuitively, if wy, wy, ...,
contributing variables, the complete model should have a

and wy are important information

smaller prediction error than the reduced model: SSE- <
SSEg. The greater the difference (SSEg — SSE() is, the
stronger is the evidence to support the complete model
that wy, wa, ..., wi are significant information contributing
terms and to reject the reduced model: Hy : yg11 = vg12 =

= yx = 0. Conversely, the acceptance of the reduced
model suggests that the additional predictors in the com-
plete model, wyy1, Wyy2, ..., W, introduce no improvement
to fitting accuracy. The predictors, wy, w, ..., wy in the
reduced model are sufficient and more significant informa-
tion contributing terms than predictors, Woit, Wos2, s Wi
In other words, this becomes a model selection prob-
lem. Thus, we use the recently proposed extension to
Akaike's information criterion called information complex-
ity (ICOMP) [8] as our fitness function, which is briefed
in Section 2. ICOMP has been proved more efficient than
existing fitness functions such as Ftest used in [20, 23].
Other than its efficiency, another rationale for ICOMP as
our fitness function is that it combines a badness-of-fit
term with a measure of complexity of a model by taking
into account the interdependencies of the parameter esti-
mates, as well as the dependencies of the model residuals.
This can increase the accuracy of estimation [23].
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4. Experimental results

First, the performance as well as robustness of the band
selection method is investigated via a variety of choices
of kernels, smoothing parameters, and distance measures.
Two experiments are conducted with gallery and probes
images collected from different illuminations. Next, we
compare our proposed cooperative mapping approach with
the reference algorithm [18] in an indoor surveillance sys-
tem including two Pelco PTZ cameras(Spectra Il SE dome
with 640 x 480 pixels, 0° ~ 360° pang angle, 0° ~ 90°
tilt angle, and 1 ~ 184 zoom position).

4.1. Fluorescent gallery and halogen probe

In this experiment, the spectral bands of multispectral face
images under halogen light are selected via the proposed
algorithm while gallery images are under a different in-
door lighting, fluorescent light. There are 25 sets of probe
images, sub-spectral narrow-band images between wave-
length 480 nm and 720 nm with an increment of 10 nm. We
investigate the ranking results via various distance mea-
sures of these 25 bands. The PDFs are estimated using
different kernel functions with the smoothing parameter
optimized by the AMISE and ICOMP criteria.

Table 2 lists the top three bands with the highest sepa-
ration between the genuine and imposter sets. It is obvi-
ous that regardless of the different combinations of kernel
functions, smoothing parameters, and distance measures,
the same band range, 610 nm-640 nm, is identified. We
could conclude that the ranking results of bands are robust
to the selection of parameters. The normalized distances
with respect to the band wavelength are shown in Fig-
ure 4. To save space, only the results based on the Gaus-
sian and cosine kernels with hanse are shown. Similar
observations apply to other combinations. Even though
the distances show various values at certain wavelength,
the trends and ranking results from the largest distance
values to the smallest distance values are clearly similar.
For example, the top band is 610 or 620 nm for all the
tested kernels and distance measures. The above exper-
iment verifies the robustness of the proposed algorithm.
We now study the recognition performance of the images
obtained by the fusion of multispectral narrow-band im-
ages of the chosen bands. Figures 5 and 6 demonstrates
the rank-one recognition rate of various probes, includ-
ing the single subspectral band, conventional broadband,
and fused images from two and three bands. As expected,
the fused images from the selected narrowbands yield a
higher recognition rate, indicted by an increase of 20%
relative improvement in the rank-one rate in comparison
with the conventional broadband image set.

The rank-one recognition rate for (610 nm, 630 nm, and
640 nm) and (610 nm, 620 nm, and 640 nm) are the same
(97.14%), as shown in Figure 5, which outperforms the
conventional broad-band images by approximately 8.58%.
This demonstrates the effeteness of our band selection

algorithm.
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Figure 4. Normalized probability distances along the visible spec-
trum based on the Jeffery divergence (JD), Bhattacharyya
distance (BD), Matusita distance (MD), and Patrick-Fisher
distance (PFD). (a) Gaussian kernel and (b) cosine ker-
nel. The smoothing parameter is obtained by AMISE. The
distance values are normalized to [0, 1] for comparison
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Figure 5. Rank-one recognition rate of different probe sets, includ-
ing conventional broad-band images, single sub-spectral
images, and fused images from selected spectral range in
the experiment of fluorescent gallery and halogen probes

4.2. Fluorescent gallery and daylight probe

In this experiment, a more challenging lighting condition,
daylight, is used for probe sets. To simulate practical
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Table 2. The top three bands selected by different distance measures with four different kernels for the experiment of fluorescent gallery and

halogen probe

hamise
Gaussian Triangle Epanechnikov Cosine
Jeffrey 610 620 640 610 620 640 610 620 640 610 620 640

Bhattacharyya 610 630 640 610 630 640 610 630 640 610 630 640

Matusita

610 630 640 610 630 640 610 630 640 610 630 640

Patrick-Fisher 610 630 640 610 630 640 610 630 640 610 630 640

hicomp
Gaussian Triangle Epanechnikov Cosine
Jeffrey 610 620 640 610 620 640 610 620 640 610 620 640

Bhattacharyya 610 630 640 610 630 640 610 630 640 610 630 640

Matusita

620 630 640 610 630 640 610 630 640 610 630 640

Patrick-Fisher 610 620 640 610 630 640 610 630 640 610 630 640

face recognition, stable indoor fluorescent light is used for
gallery images while all the probes are acquired under
varying daylight. The spectral range is selected among
13 sets of narrow-band spectral images from wavelength
480 nm to 720 nm with an increment of 20 nm. Identical
bands (640 mm, 680 mm, and 720 mm) are selected from
various implementations of the proposed algorithm. The
fused images from these selected bands produce a 97.14%
rank-one recognition rate, 2.86% higher than that of the
broad-band images, as shown in Figure 6.

| |
64046804720 97.14 ‘
- 680+720 97.14 ‘
2
o i 1 |
= 720 97.14 ‘
Broad-band 9428
g2 94 96 98 100

Rank-one recognition rate {3:)

Figure 6. Rank-one recognition rate of different probe sets, includ-
ing band 680 nm, 700 nm, 720 nm, broad-band image,
and fused images from selected spectral range in the ex-
periment of fluorescent gallery and daylight probe

4.3. Comparisons for mapping approaches

To compare the accuracy between our and the reference
algorithms [18], we conduct the following experiment. In
our cooperative mapping approach, a total of 825 sam-
ples uniformly distributed in the scene are collected by
a single moving person as the training set for the corre-
spondence functions, which are shown in Equation (13)
based on Equation (9). Figure 7 shows the estimation
error in pan values, where Figure 7(a) and 7(b) indicate
the estimation error in comparison with the original sam-
ple set (825 sample) and relative pan angles (0° ~ 360°),
respectively. Figure 8 shows the estimation error in tilt
values, where Figure 8(a) and 8(b) indicate the estima-
tion error in comparison with the original sample set (825
sample) and relative tilt angles (0° ~ 90°), respectively.
Figure 9 shows the estimation error in zoom values, where
Figure 9(a) and 9(b) indicate the estimation error in com-
parison with the original sample set (825 sample) and
relative zoom positions (1 ~ 184). The estimation error
is based on how many degrees the system is supposed
to pan, tilt, or zoom to keep the object in the center of
image. In average, the estimation error in pan angle is
less than = 6.3. The estimation error in tilt angle is less
than £8.5. The estimation error in zoom value is less than
+19.5. For the reference algorithm, we manually calibrate
two PTZ cameras to learn their intrinsic parameters fist.
This manual intervention impedes their direct application
to surveillance systems with changing setups and larger
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number of PTZ cameras in the scene:

A

Opn = 155.376 — 16.6120p, + 37.41207,; +
—10.290x; + 2.977y; + 5.46903 ; +
— 23.36407; + 2.067x7 — 0.8040p 07 +
+ 6.7640p,1x; — 1.94007 ;y; — 0.658x;y;,

Orn = —7.964 —29.95507; — 6.465y; — 0.90007 ; +
+ 24.06007 ; — 0.558y7 — 1.3860p x; +
+0.72910p,y; — 1.94007 y,,

Zy, = —0.439+0.73240p; — 0.6218Z; + 0.1221y, +
+0.081703 ; + 0.08607 ; + 0.593477 +
+0.0218x7 — 0.0141y7 + 0.01530p,07, +
+0.072307 y; + 0.0596Z;x; + 0.0596.Z;y; +
+ 0.0125x;y;. (13)
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Figure 7. Estimation errors in pan values: (a) comparison to the
original sample set (825 samples), (b) relative pan angle
(0° ~ 360°)

Then we have 20 points forming a rectanqular pattern in a
1 meter high table to estimate pose relationship based on
back projections. Afterwards, we compare their accuracy
to infer pixel correspondences between two PTZ cameras,
where a single moving person is tested in the scene. Ta-
ble 3 illustrates the comparison between our and reference
algorithms. In Table 3, the averaged pixel distance devi-
ation indicates the distance between the centroid of the
object in the image and image center (320 x 240), when
normalized with respect to the half of image width (320).

g 3
[
B |
= gl 2
£ 5
8
B '
w g 1
o
o
B ol 1
=N
&
] 100 200 300 400 500 600 T0D 800
Sample Index
()
T T T T T T T T
g g
£
B2t
54
w
i)
=
]
E-4r
n
w sl
0 0 20 0 40 50 60 o 80 20
Tilt Angle [Degres)
(b)

Figure 8. Estimation errors in tilt values: (a) comparison to the
original sample set (825 samples), (b) relative tilt angle
(0° ~ 90°)

The averaged pixel size deviation indicates the difference
between the derived pixel size of the object and the de-
sired pixel size (50 x 170 = 7500 pixels), when normalized
with respect to the desired pixel size (7500). We can see
that our proposed approach reduces the dependence on
the knowledge of intrinsic parameters of the PTZ cam-
era and improves the degree of autonomy at the cost of
slightly decreased pixel accuracy, as compared to Chen
and Wang' method.

Figure 10 and 11 show real-time video sequences for our
proposed, and Chen and Wang's approaches. In Figures
10 and 11, the j" PTZ camera uses Equation (13) to ob-
tain @p,h,@ph, and 2,1 to direct the h" PTZ camera to
place the object in the center of the image with desired
pixel size (7500) ideally. Figure 10 shows the example
where the single object is far away (18 meters) from the
ht" PTZ camera (The tilt angle of the h'" PTZ camera
is about 17°). Figure 11 shows the example where the
single object is close to (3 meters) the h'" PTZ camera
(The tilt angle of the h'" PTZ camera is about 75°). In
both Figures 10 and 11, the first row shows five different
locations in images of the j* PTZ camera, the second row
shows their respective pixel locations and sizes, derived
by our approach, in images of the h'" PTZ camera, and
the third row shows their respective pixel locations and
sizes, derived by Chen and Wang's approach, in images
of the h'" PTZ camera. In both examples, the averaged
pixel distance deviations are 12.6% and 10.3% for our pro-
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Figure 9. Estimation errors in zoom values: (a) comparison to the
original sample set (825 samples), (b) relative zoom posi-
tion (1 ~ 184)

posed, and Chen and Wang’'s methods, respectively. The
averaged pixel size deviations are 14.6% and 12.7% for
our proposed, and Chen and Wang's methods, respectively.
Figure 12 illustrates how we calculate their pixel distance
deviation and pixel size deviation.

Regardless of our proposed or Chen and Wang's methods,
a consistent labeling approach is needed to identify the
object of interest in both PTZ cameras after the occur-
rence of changing pose. Since this object of interest is
maintained within the field of view of the h'" PTZ cam-
era by both methods and maximal estimation errors for
pan and tilt angles are 6.3° and 8.5° for our proposed
method. Consistent labeling approaches can be carried
out without added cost in here, because existing con-
sistent labeling approaches such as scale-invariant fea-
ture transform (SIFT) [26] had been proved efficient when
viewing angle is less than 50 degree. In other words,
this slightly decreased pixel accuracy in our proposed ap-
proach has comparable result for the application of au-
tomated surveillance systems, as compared with Cheng
and Wang’s method. However, we reduce the dependence
on the knowledge of intrinsic parameters of PTZ camera,
thus holding the direct application to automated surveil-
lance systems with changing configurations and a larger
number of PTZ cameras.

Table 3. Comparison between our and reference algorithms

Averaged Pixel Averaged Pixel

Distance Deviation  Size Deviation

Our Method 11.1% 16.7%
Chen and Wang [18] 9.2% 15.2%

5. Conclusion

In this work, we investigated two studies: 1) using narrow-
band spectral images instead of conventional broad-band
images to improve recognition performance; 2) directly de-
riving a unified polynomial model between the pan and
tilt values of PTZ cameras with unknown intrinsic param-
eters and system setups in the scene. We demonstrated
the robustness and consistency of the automated band se-
lection algorithm under various implementations of kernel
functions, smoothing parameters, and distance measures.
An improved face recognition rate over the conventional
broad-band images was achieved under various illumina-
tion conditions by the fusion of images from the selected
bands. The robustness of the algorithm facilitates the ap-
plication of the proposed algorithm in a plug-and-play
manner that is independent of the characteristics of the
input data. The second proposed approach, which directly
derives a unified polynomial model between the pan and
tilt values of PTZ cameras with unknown intrinsic parame-
ters and system setups in the scene, has proven to reduce
the dependence on the knowledge of intrinsic parameters
of the PTZ camera, which most existing algorithms find
challenging. Experimental results showed that our pro-
posed method improves the feasibility and autonomy of the
spatial mapping between PTZ cameras and reduces sys-
tem’s computational complexity at the cost of slightly de-
creased pixel accuracy, as compared with the work of Chen
and Wang. This slightly decreased pixel accuracy can be
compensated by consistent labeling approaches without
added cost for the application of automated surveillance
systems along with changing configurations and a larger
number of PTZ cameras.
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Figure 10. Performance of our proposed and reference methods for a real-time multiple PTZ cameras system. The first row shows five different
locations in images of the j'" PTZ camera, the second row shows their respective pixel locations and sizes, derived by our approach,
in images of the h*" PTZ camera, and the third row shows respective pixel locations and sizes, derived by Chen and Wang’s approach,
in images of the h'" PTZ camera. In this experiment, the single object is far away (18 meters) from the h'" PTZ camera (The tilt angle
of the h'" PTZ camera is about 17°)

Figure 11. Performance of our proposed and reference methods for a real-time multiple PTZ cameras system. The first row shows five different
locations in images of the j' PTZ camera, the second row shows their respective pixel locations and sizes, derived by our approach,
in images of the h'" PTZ camera, and the third row shows respective pixel locations and sizes, derived by Chen and Wang’s approach,
in images of the h'" PTZ camera. In this experiment, the single object is close to (3 meters) the h'" PTZ camera (The tilt angle of the
ht" PTZ camera is about 75°)
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Figure 12. llustration of deviation calculation. (a) Object A repre-
sents the desired pixel position. Object B represents the
actual pixel position calculated by our proposed or Chen
and Wang’'s method. The distance deviation is calcu-
lated by the pixel distance between their mass points.
(b) Object A represents the desired size. Object B rep-
resents the actual pixel size calculated by our proposed
or Chen and Wang’s method. The size deviation is cal-
culated by the pixel size between their pixel sizes
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