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Modeling daily production of aquatic macrophytes 
from irradiance measurements: a comparative analysis 

Richard C. ~immerman',*, Alejandro ~abello-pasini2, Randall S. ~ l b e r t e ' , ~  

' Department of Biology, University of California at Los Angeles, Los Angeles, California 90024, USA 
Marine Sciences Research Center, State University of New York, Stony Brook, New York 11794, USA 

Biological Science and Technology Program, Office of Naval Research, Arlington, Virginia 22217, USA 

ABSTRACT The importance of submerged aquatlc macrophytes to coastal ecosystems has generated 
a need for knowledge of minlmum l ~ g h t  levels that wlll support the ma~n tenance  and restoration of 
healthy populations Our goals were (1) to evaluate the s e n s ~ t ~ v ~ t y  to natural, non-sinusoidal fluctua- 
tlons in irradiance I of analytical integration techniques for calculating daily carbon gain (2)  to evalu- 
ate the H,,, (the daily period of I-saturated photosynthesis) model of daily production re la t~ve  to mod- 
els based on Instantaneous photosynthesis vs Irradiance ( P v s  I )  and (3) to provlde some guidance for 
the temporal dens~ ty  of Irradiance data r equ~red  for accurate estimation of dally carbon gain Monthly 
measures of the P v s  I response of an eelgrass Zostera manna  L population were  used to p ~ e d l c t  rates 
of dally carbon galn from continuous in sjtu recordings of I Dally ~n teg ra t ed  I was not a reliable pre- 
dictor of daily product~on Numencal (iterative) integration of H,,, was much more r e l~ab le  but r e q u ~ r e d  
repeated measures of I within a day as did numencal in tegra t~on of P vs I Analytical (non-iterative) 
models based only on observations of l,, (noon) could not p red~c t  daily production accurately Ana- 
lyt~cal models of P v s  I and H,,, agreed with each other, however, indicating that the analyt~cal  models 
may be useful where the daily pattern of I is sinusoidal Given the h ~ g h  degree  of temporal vanability 
in coastal 11ght environments continuous monltonng of hght ava~ lab~ l i t y  may be required for calcula- 
tion of daily production and rehable management of aquatlc macrophyte populations 

KEY WORDS: Light requirements . Photosynthesis . Prunary productivity . Seagrasses - Submerged 
aquatic macrophytes . Carbon budge t .  H,,, 

INTRODUCTION 

Light availability is the most important factor regu- 
lating the depth distribution, abundance and produc- 
tivity of submerged aquatic macrophytes (SAM) that 
inhabit critical, yet extremely fragile, ecosystems in 
shallow coastal embayments and estuaries throughout 
the world (e.g. Backman & Barilotti 1976, Dennison 
& Alberte 1982, 1985, 1986, Duarte 1991). Estuaries 
are vulnerable to anthropogenic alteration of water 
quality, particularly with regard to light availability. 
Increased turbidity caused by eutrophication, chronic 
upstream erosion and periodic dredging has dramati- 

'Address for correspondence. Hopklns Manne  Station, Paci- 
f ~ c  Grove, California 93950, USA 

cally reduced light penetration in many estuarine 
water columns, thereby reducing the depth distnbu- 
tion, density and productivity of SAM (Zieman 1975, 
Orth & Moore 1983, Cambridge & McComb 1984, 
Shepherd et  al. 1989, Carter & Rybicki 1990, Larkum 
& West 1990, Zimmerman et  al. 1991, Monroe et al. 
1992). 

Protection of SAM in coastal environments requires 
a shift in management emphasis from monitoring 
environmental deterioration to the improvement of 
coastal zone water quality so that critical macrophyte- 
based ecosystems can be maintained and even 
expanded (Dennison et  al. 1993). To that end,  sub- 
marine irradiance (I, photosynthetically active radia- 
tion) has become a routinely measured parameter of 
water quality (Batiuk et  al. 1993, Morris & Tomasko 
1993, Dring & Liining 1994). 

O Inter-Research 1994 
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Light attenuation coefficients and instantaneous 
submarine I are relatively easy to measure, and light 
requirements of SAM have been calculated from the 
generally observed correlation between the mean 
coefficient of diffuse attenuation (K) and the depth 
limit of colonization (Duarte 1991). However, light 
levels that ensure the maintenance of SAM abundance 
or colonization depth limits have been difficult to 
establish using low frequency (weekly to monthly) 
observations. 

Among SAM species investigated, seagrasses do not 
penetrate deeper than the mean isolume correspond- 
ing to 10% of the in-water surface irradiance (Io), but 
this correlation lacks resolving power on depth scales 
shorter than about 10 m. Furthermore, different spe- 
cies appear to have different minimum light require- 
ments (Batiuk et al. 1993), and persistence of some 
species requires mean isolumes greater than 30 % of I. 
(Onuf 1991, Dennison e t  al. 1993, Dunton & Tomasko 
1994). In addition, different mean light requirements 
have been reported for the same species growing 
in different habitats (Ostenfeld 1908, Borum 1983, 
Dennison 1987, 1991, Kenworthy e t  al. 1991), and the 
apparent light requirement of a single species growing 
within a single estuary appears to increase as the 
variance in light availability increases (Zimmerman et 
al. 1991). Thus, the correlation between mean light 
attenuation and maximum colonization depth appears 
to require extensive site- and population-specific cali- 
bration in order to generate a useful predictor of 
environmental suitability. 

Transparency of estuarine water columns can be 
highly variable in time and space (Liining & Dring 
1979, Cloern 1987, Stross & Sokol 1989, Carter & 

Rybicki 1990, McMahon et al. 1992, Valiela et al. 1992, 
Pinckney & Zingmark 1993), and brief periods of 
extreme attenuation, rather than the mean condition, 
may be the principal determinant of SAM survival and 
depth distribution (Zimmerman et al. 1991, Gaines & 

Denny 1993, Dring & Liining 1994). Proper evaluation 
of the effects of extreme attenuation events on SAM 
populations requires a more mechanistic approach 
than permitted by simple correlation of colonization 
depth with mean values of K taken a t  low frequencies. 
A first step toward a n  increased mechanistic under- 
standing can be achieved by calculation of daily car- 
bon budgets based on measured rates of Instantaneous 
I, photosynthesis, respiration and growth (Dennison 
& Alberte 1982, Wetzel & Neckles 1986, Zimmerman 
et al. 1989, Fourqurean & Zieman 1991, Kraemer & 

Alberte 1993). 
Fundamental to all carbon budget models, regard- 

less of their structural complexity, is the calculation 
of production by an appropriately scaled ecosystem 
'big leaf' or canopy (Rastetter et al. 1992) from some 

measure of I. The relationship between growth (or pro- 
duction) and the daily integral of light intercepted by 
the leaf canopy can be linear (Charles-Edwards et al. 
1986), but light absorption by the leaf canopy is seldom 
measured in aquatic systems. Incident I is measured 
more commonly, but its relation to production, both 
daily and instantaneous, is strongly non-linear (Black- 
man 1905). If the daily pattern of I is sinusoidal, 
the daily production integral can be estimated from 
a quasi-analytical (non-iterative) polynomial and a 
single daily measure of the maximum irradiance at 
solar noon (I,,,) (Thornley & Johnson 1990, McBride 
1992). However, large errors in the daily production 
estimate can be introduced when the daily in situ 
pattern of I deviates from sinusoidal. 

The daily production integral also can be calculated 
by numerical integration, i.e. the iterative summation 
of instantaneous photosynthesis vs irradiance ( P  vs I )  
throughout the day. Although nurnencal (iterative) 
integration is unaffected by non-sinusoidal variations 
in I, it requires essentially continuous measurement of 
I throughout each day. In sinusoidal light environ- 
ments, the analytical (non-iterative) and numerical 
(iterative) methods will produce identical estimates of 
daily production. The extent to which these integrals 
differ provides a quantitative evaluation of the poten- 
tial error introduced into a production model by the 
use of only I, and the assumption that I follows a daily 
sinusoidal trajectory. 

The non-linear relationship between P and I is also 
the basis for the computationally simple H,,, (the daily 
period of I-saturated photosynthesis) model (Evans 
1972, Dennison & Alberte 1982, 1985). In this ap- 
proach, daily carbon gain is calculated as the product 
of P, (the maximum rate of irradiance-saturated photo- 
synthesis) and the total time that I exceeds the irradi- 
ance required to saturate photosynthesis (Ik). The 
attractive feature of this model is that time, rather than 
I, is integrated to produce a numerical index (H,,,,) that 
is related linearly to daily production. H,,, can be cal- 
culated directly (non-iteratively) from I,,, if the daily 
pattern of I is sinusoidal (Zimmerman et al. 1987), or 
integrated numerically (iteratively) if continuous meas- 
ures of I are available. The H,,, model assumes P = 0 
when I i Ik, whether integrated analytically from I,,, or 
numerically from successive measures of I. Theoreti- 
cally, this can lead to underestimation of daily carbon 
gain (Richardson et al. 1983, Fourqurean & Zieman 
1991, Henley 1993). 

Although carbon budget calculations often assume 
th.e daily pattern of I to be sinusoidal (e.g.  Kremer & 

Nixon 1978, Dennison & Alberte 1985, Zimmerman et 
al. 1987, Fourqurean & Zieman 1991), the effect of non- 
sinusoidal variations on carbon budget calculations 
have not been evaluated with real time-series observa- 
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tions of I. In this study, a continuous record of I from 
an eelgrass bed located in a central California, USA, 
estuary was used to compare the ability of analytical 
(sinusoidal light environment assumed) and numerical 
(no assumption about temporal light distribution) pro- 
cedures to predict rates of daily carbon gain using 
simple models of Pvs I for a hypothetical 'big leaf'. The 
goals of this analysis were (1) to evaluate sensitivity of 
the analytical integration techniques to non-sinusoidal 
fluctuations in I recorded in situ, (2) to evaluate the H,,, 
model of daily production relative to models based on 
instantaneous P vs I and (3) to provide some guidance 
for the temporal density of irradiance data required 
for accurate estimation of daily production by SAM 
in variable light environments. 

METHODS 

Photosynthesis vs irradiance models. A highly sim- 
plified, l-compartment model of gross photosynthesis 
was employed in this analysis. Symbols used for the 
models, and their definitions, are summarized in Table 
1. Losses, e.g. respiration, DOC (dissolved organic car- 
bon) release, and grazing, were ignored because these 
processes are not directly dependent on the non-sinu- 
soidal variations in instantaneous irradiance (I), which 
was the focus of this analysis. The model macrophyte 
was homogeneous in space with respect to the func- 
tional P vs I response and in its exposure to I, because 
these complexities are not directly responsive to the 
non-sinusoidal variations in I. Thus, the temporal vari- 
ation in instantaneous P depended only on measured 
temporal fluctuations in I. 

Two commonly used non-linear models, originally 
proposed by Jassby & Platt (1976; Eq. 1) and Webb et 
al. (1974; Eq. 2), were used to describe the basic Pvs  I 
relationship: 

where P,,, defines the maximum (or asymptotic) rate 
of photosynthesis and Ik determines the threshold 
for irradiance-saturation of photosynthesis. Although 
the mathematical formulation of P vs I can have a 
significant impact on the daily integral of photo- 
synthesis (McBride 1992), instantaneous values of P 
produced by the Jassby-Platt (Eq. 1) and Webb et 
al. (Eq. 2) formulations differ by a maximum of only 
4.8% at the inflection points of the curves (Fig. 1). The 
value of Ik defined by Eq. ( l ) ,  however, is 33 % higher 
than the value of Ik defined by Eq. (2). Although this 
difference in Ik produces a trivial difference in the 
estimate of P from a given value of I (McBride 1992), it 
can have a significant effect when Ik is used as a direct 
parameter in the daily integration of P, as in the H,,, 
model. 

Time series observations of irradiance. Time series 
of irradiance were recorded using a pair of spherical 
( 4 ~ )  quantum sensors (LI-COR Model 193SA) placed 
in the Elkhorn Slough National Estuarine Research 
Reserve, in Monterey Bay, California, during 1991 and 
1992. The sensors were deployed in an unvegetated 
location adjacent to a Zostera marina bed to avoid 
shading by the leaf canopy. One sensor was placed 
at the sediment surface, while the other was located 
0.5 m above the first at a height equivalent to the top of 
the leaf canopy. The upper sensor was covered by 
at least 0.5 m of water at  all times. The irradiance 
(pm01 quanta m-' S-') was recorded from both sensors 
at 15 min intervals and stored in a LI-COR Model 1000 
data logger. Diffuse attenuation coefficients (K)  were 
calculated according to Beer's Law using recorded 
differences in I between the 2 sensors only from 
10:OO and 14:00 h each day to minimize any upward 
bias in K caused by low sun angles (McPherson & 
Miller 1993). The sensors were cleaned by SCUBA 
divers and the data logger was cycled every 14 d. 
Accumulation of small amounts of fouling between 

Table 1. Symbols, definitions and units used for model parameters 

Symbol Definition Units 

I Instantaneous irradiance, PAR pm01 quanta m-2 S" 

Maximum daily irradiance (in water) at solar noon 
Light-saturation threshold for photosynthesis 
Light-dependent rate of photosynthesis 

Maximum, light-saturated rate 
of photosynthesis, normalized to biomass 

Daylength or photoperiod 
Daily period of irradiance-saturated photosynthesis 
Coefficient of diffuse attenuation, from Beer's Law 

pm01 quanta m-2 ss '  

pm01 quanta m-2 S- '  

pm01 C g.-' FW min-' 
pm01 C g.' FW m ~ n - '  

h 
h 

m- '  
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-. I - -  Tanh Model 

I - Exponential Model 

I I I 
I I 

Irradiance 
(pmol quanta m-' S-') 

Fig. 1 Hypothetical photosynthesis vs irradiance (P vs I) 
curve demonstrating the ability of the tanh and exponential 
(exp) models to predict values of P from given values of I. 
Although the curves follow sim~lar trajectories, the value of I ,  
(irradiance requlred to 'saturate' P) generated from the tanh 
model is 33% higher than Ik derived from the exponential 

model 

cleanings had no measurable effect on recorded values 
during the 14 d periods, as evaluated by the difference 
in I immediately before and after cleaning. 

Estimates of daily photosynthesis. Daily production 
values calculated by numerical integration (the itera- 
tive summation of P vs I) are virtually identical for 
Eqs. (1) & (2). Therefore estimates of daily production 
generated by numerical (iterative) integration of 
Eq. (1) from the complete irradiance time series 
recorded by the upper sensor were used as a bench- 
mark against which the other integration models were 

Table 2. Monthly values of photosynthesis vs irradiance 
(P vs I) parameters used to drive daily production from I. 
P,: maximum rate of light-saturated photosynthesis (pm01 C 
g-' FW min-l), Ik: light-saturation threshold for photo- 

synthesis (pm01 quanta m-2 s- ')  

Month Prn Tanh I ,  Exp Ik 

August 1991 0.69 317 238 
September 0.55 128 96 
October 0.88 115 8 6 
November 0.72 119 89 
December 0.77 128 96 
January 1992 1 05 77 58 
February 1.22 106 80 
March 1.02 123 92 
April 0.53 82 62 
May 0.48 77 58 
June 0.45 84 63 
July 0 41 84 63 
August 0.49 100 7 5 

evaluated. Parameter values (P, and Ik) were scaled 
monthly to observed P vs I responses from eelgrass 
shoots collected in Elkhorn Slough (Table 2 ) .  

Tbe relationship between daily production and 
daily integrated I was determined from numerical 
integrations of P vs I calculated from Eq. (1) and daily 
integrated I, both calculated from the time series of 
instantaneous I (upper sensor) measured at 15 min 
intervals each day. The relationship was evaluated 
statistically using the non-linear, direct-fit routine 
from the NONLIN package of SYSTAT (Wilkinson 
1990). 

Temporal predictability of daily production was 
determined from the time required for successive daily 
estimates to become statistically uncorrelated. Product- 
moment correlation coefficients (r) for the time series 
of daily P were calculated for 10 sets of data consisting 
of 10 successive days of observations using lags of 
1 to 4 d. 

Quasi-analytical (non-iterative) approximation of the 
time-integral of Eq. (1) was calculated assuming I to be 
a sinusoidal function of time ( t )  since sunrise: 

I = I, sin 1 x 6 )  

where I,,, is the value of I (in water) recorded at solar 
noon and D is daylength. Substituting for I in Eq. ( l ) ,  
P was redefined as a function of time ( t ) :  

P = P, tanh -sin - [; (31 
The daily integral of P was then approximated by poly- 
nomial expansion because direct analytical integration 
of Eq. (4) is impossible: 

D L Pdt = P,D -0.0038+0.71 

This relation was va l~d  over the domain 0 I (Im/Ik) < 20, 
spanning a range of conditions from total darkness to 
extremely bright sunlight where I,,, = 20 Ik that should 
encompass most Light environments experienced by 
SAM (e.g.  if I, = 2000 pm01 quanta m-2 S- ' ,  Ik = 
100 pm01 quanta m-2 S- ' ) .  Daylength (D) was adjusted 
daily assuming a sinusoidal function with a mean of 
12 h (D = 12 h on the vernal and autumnal equinoxes) 
and an amplitude of 2 h (D = 14 h on the summer 
solstice, 10 h on the winter solstice): 
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( Julian Date + l 0  
D = 12-2cos 2n 

365 

Analytical values of H,,, were calculated for each 
day according to: 

Like Eq. (5), this relationship assumed I to be a sinu- 
soidal function of time since sunrise (Fig. 2). Thus, 
~ i n - ~ ( l ~ / l , )  defines the fraction of the day (in radians) 
between sunrise (or sunset) and the time when 
I = Ik. Since I varies sinusoidally, multiplication of 
[ ~ i n - ~ ( l ~ / l , ) ]  by 2/71 provides the total portion of the day 
when I < Ik. Subtraction from 1 converts the proportion 
to H,,, (unscaled). Multiplication by D scales H,,, to 
daylength. The value of I recorded at solar noon each 
day was used as I,. As with the polynomial integration 
of P vs I (Eq. 5),  H,,, estimates were determined from 
single daily records of I, and daily adjustments of 
D (Eq. 6). Daily values of H,,, were also integrated 
numerically for the recorded time series of I by sum- 
ming the 15 min time intervals in which I exceeded 
Ik each day, analogous to the numerical integration of 
Pvs I. Daily production estimates were then calc'ulated 
as P,H,,, for both the numerical and analytical integra- 
tion of H,,,. The H,,, model assumes P = 0 during peri- 
ods when I I,, and therefore should underestimate 
daily production. 

RESULTS 

Time series observations of irradiance 

The day-to-day vanation in integrated submarine 
irradiance was so great at  the depth of the eelgrass 
canopy in Elkhorn Slough that no obvious seasonal 
pattern was observed (Fig. 3a), even though there are 
predictable seasonal amplitudes in daylength of 2 h 
and in maximum incident I (in air) of almost 1000 pm01 
quanta m-2 S- '  at this latitude. Periodic events of 
extremely high K (low I) persisted from 1 to 10 d. The 
longest of these events was caused by water column 
turbidity associated with a rainy period in February 
and March 1992. Other extreme attenuation events of 
short duration (1 to 2 d)  were generally associated with 
sediment loading and resuspension from storms and 
spring tides. 

The mean K measured between 10:OO and 14:OO h 
showed a high degree of day-to-day variability (Fig. 3b). 
Although there was no clear seasonal pattern in mean 
h: there was some suggestion of a seasonal pattern in 
the variance component. The attenuation coefficient 
was most variable from December to March, which 

Sunrise Sunset 

Time of Day 

Fig. 2. Diagrammatic representation of H,,, (daily period of 
I-saturated photosynthesis), as defined for a cloudless day. On 
cloudless days, H,,, can be estimated from knowledge of 
daylength (D) and maximum noon irradiance (I,). According 

to this definition, P =  0 when I < Ik 

corresponds to the rainy season in central California. 
During this period, winter rains were responsible for 
episodic runoff which greatly increased the load of 
suspended particles in the water column of Elkhorn 
Slough. In addition, the spring low tides that also 
resuspend sediments occur during the afternoons in 
winter, complicating the temporal pattern of variation 
in K. 

In sinusoidal light environments, the daily time- 
integral of I (Eq. 3) is a linear function of I, and 
daylength (D): 

D D 2 l = o ~  dt = J t=o  I, sin - d t  = - ( 1 , ~ )  (3 
This relationship also permits calculation of the upper 
and lower limits of the daily light integral to be 
expected from seasonal changes in D over any range of 
I,,,. In sinusoidal light environments, the daily light 
integral will be constrained by the seasonal amplitude 
in D, which ranges from 10 to 14 h at the latitude of 
Elkhorn Slough. Measured values of I1 outside these 
bounds can result from non-sinusoidal variations in I, 
particularly around noon, that might affect the deter- 
mination of I,. The correlation between the light inte- 
gral and I,,, (in water) measured in Elkhorn Slough was 
statistically significant (r = 0.76, n = 171, p 0.01), but 
I, was not a quantitatively reliable predictor of the 
daily light integral (Fig. 4). Fully 42% of the variation 
in the light integral remained unexplained after linear 
regression against I,,, ( r2  = 0.58). Furthermore, 73 % of 
the measured daily integrals fell outside the theoretical 
boundaries set by the lower and upper limits of D (10 
and 14 h, respectively) indicating that observed noon 
irradiances (assumed to be I,) were not reliable pre- 
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0 
Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun 

1991 1992 

Fig. 3. (a) Time series of daily integrated irradiance at the 
Elkhorn Slough study site. Although there was a high degree 
of variation in daily irradiance (I), no seasonal pattern was 
evident from these data. (b) Time series of dffuse attenuation 
coefficient (K).  Day-to-day variations were most dramatic 

during the winter (December to March) rainy season 

I, (pm01 quanta m'* S- ' )  

Fig. 4 .  Daily integrated ~rradiance (I) plotted as a function of 
the instantaneous I (in water) irradiance (upper sensor) at 
solar noon (I,). Lines represent the upper and lower bounds 
for the light integral predicted from sinusoidal theory for 

daylengths of 14 and 10 h ,  respectively 

dictors of daily integrated I. Thus, the dally integral of 
light availability in Elkhorn Slough was not well 
approximated by sinusoidal theory. 

Estimates of daily net production 

The variability in instantaneous I produced a high 
degree of variability in the time series of daily produc- 
tion calculated by numerical integration of Eq. (1). As 
with the light data, there was no obvious seasonal pat- 
tern (Fig. 5a). In addition, there was virtually no corre- 
lation between sequential estimates of daily produc- 
tion (Fig. 5b). The correlation (r) of daily production on 
any given day with the estimate from the following day 
was statistically insignificant (r = 0.48, n = 10, p > 0.05) 
for 10 sets of 10 successive days of observations. Thus, 
it was impossible to estimate daily production from any 
given observation even 1 d into the future. Correla- 

0 

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun 

1991 1992 

0 1 2 3 

Lag Time (d) 

Fig. 5. (a) Time series of daily production calculated from 
numerical integration of the tanh P vs I model, using con- 
tinuous recording of irradiance. (b )  Correlation coefficient 
plotted as a fun.ct.~on of lag perlod (d) for 10 sets of 10 sequen- 
tial days of numerically integrated production data. Error 
bars indicate 95X8 confidence limits of the mean for each lag. 
With n = 10, r must exceed 0.58 to be statistically significant 

at p = 0.05 
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tions of production estimates separated by more than 
1 d were even lower. Clearly, this lack of correlation in 
successive daily production estimates was caused by 
the high degree of day-to-day variability in the tempo- 
ral distribution of I, both within and between days. 

The relationship between numerically integrated 
production and numerically integrated daily I showed 
a non-linearity reminiscent of the instantaneous P vs I 
response, and could be described by Eqs. (1) or (2), the 
same formulations as the instantaneous P vs I response 
curve (Fig. 6). Even though all of the irradiance time- 
series data were used in summing both daily P and the 
daily integral of I, the predictive reliability of this 
model was poor (r2 = 0.53), especially when the daily 
integral of I exceeded 4 m01 quanta m-' d-l. 

Polynomial integration of P (Eq. S), based on a single 
daily measure of I,, was not a reliable predictor of 
the numerical integration of P vs I (Fig. 7, Table 3). In 
addition to the high residual uncertainty (r2 = 0.71), 
daily production estimates were upwardly biased by 
an average of 59 pm01 C g- '  FW d-l, relative to the 
numerical integration of Eq. (1). 

As with the polynomial integral, estimating daily P 
by analytical integration of H,,, (Eq. 7) from single 
daily measurements of I,,, proved to be inaccurate, 
regardless of the formulation of Ik (Fig. 8, Table 3). The 
H,,, period was 0 on 30 (18 % of the time) and 19 ( l  l % 
of the time) occasions using values of Ik calculated from 
the tanh and exponential formulations of Pvs I, respec- 
tively. The high degree of scatter in the H,,, estimates 
of daily P obscured the presence of systematic biases 

0 3 6 9 1 2 1 5  
Daily Integrated I 
(mol quanta m-' d-l) 

Fig. 6. Numerically integrated daily production plotted as a 
function of integrated daily irradiance (I). The line represents 
a direct least-squares fit of I ~ t o  jlusing the exponential Pvs I 
model of Webb et al. (1974). The high degree of scatter makes 
any mathematical relationship between JP and I1 unreliable 
for predicting daily production, especially when jl exceeded 

4 m01 quanta m-2 d-l 

0 100 200 300 400 500 600 700 

Daily Production 
(pm01 C g-' FW d-l) 

Fig. 7. Polynomial integration of daily production plotted as a 
function of daily production calculated by the numerical 
integration of P vs I. Solid line: perfect agreement between 
the 2 measures (slope = 1, intercept = 0); dashed line: linear 
regression results. Regression statistics can be found in Table 3 

in the relationships, but residual errors were suffi- 
ciently large to preclude the practical application of 
single measurements of I, for the calculation of Hsal 
values and daily production rates regardless of the 
P v s  I formulation used to calculate Ik (Table 3 ) .  

In contrast to the analytical (non-iterative) integrals 
of P vs I and H$,,, numerical (iterative) integrations of 
H,,, were reasonable predictors of daily production 
(Table 3). When H,,, was based on the tanh calculation 
of Ik (Eq. l ) ,  the regression slope was essentially 1, but 
the negative intercept indicated a downward bias 
(underestimate) of 40 pm01 C g-l FW d-l in the calcu- 
lation of daily P (Fig. 9a, Table 3). Daily P was esti- 
mated to be zero on 8 (5 5% of the time) of the 171 days 
when Idid not rise above Ik, hence H,,, was undefined. 

Agreement between the numerically integrated H,,, 
calculation of daily P and the numerical integration of 
P vs I increased when H,,, was based on the exponen- 
tial calculation of Ik (Eq. 2; Fig. 9b). AS with the tanh 
formulation, the regression slope was not significantly 
different from 1. There was a slight improvement 
in the overall correlation ( r2  = 0.94), and a consider- 
able upward shift in the y-intercept such that the 
underestimate of daily production was reduced by 
58% (Table 3). The value of H,,, was undefined on 
only 6 (4 % of the time) of the 171 days included in 
the analysis. 

Although analytical estimates based on single daily 
observations of I, were not reliable predictors of daily 
P in Elkhorn Slough, the H,,,-based estimates showed 
remarkable agreement with estimates calculated by 
the polynomial integral (Fig. 10, Table 3). Serious dis- 
agreement between the analytical H,,, and polynomial 



Mar. Ecol. Prog. Ser. 114: 185-196, 1994 

Table 3. Regression parameters from comparisons of production estimates plotted as dashed lines in Figs. 7 to 10. Variables are 
listed as independent (ordmate) and dependent (abscissa) based on their orientation in Figs. 7 to 10. Standard errors of slopes 

and intercepts are listed in parentheses 

I Independent variable Dependent variable Slope Intercept r df I 
Numerical integral of P 

Fig. 7 Polynomial integral of P 1.03 (0.05) 59 (78) 0.71 169 

Fig. 8a 
Fig. 8b 

Fig. 9a 
Fig. 9b 

Analytical integral of H,,, 
Tanh model 
Exponential model 

Numerical integral of H,,, 
Tanh model 
Exponential model 

Polynomial integral of P Analytical integral of H,,, 
Fig. 10a Tanh model (all data) 1.09 (0.03) -83 (60) 0.87 169 
Line not plotted Only data >200 1.1mol C g-l FW d" 0.98 (0.01) -28 (21) 0.96 131 
Fig. lob  Exponential model (all data) 1.09 (0.02) 4 8  (45) 0.92 169 
Line not plotted Only data >200 pm01 C g-' FW d-l 0.99 (0.004) -3 (6) 0.997 141 

0 
0 100 200 300 400 500 600 700 

Daily Production 
(pmol C g-l FW d ') 

Fig. 8. Daily production estimated from analytical approxima- 
tion of (a) H,,, (tanh model) and (b) H,,, (exponential model) 
plotted as a function of daily production calculated by the 
numerical integration of P v s  I. Solid lines: perfect agreement 
between the plotted measures (slope : 1, intercept = 0); 
dashed lines: linear regression results. Regression statistics 

can be found in Table 3 

0 
0 100 200 300 400 500 600 

Daily Production 
(pmol C g-l FW d-I) 

Fig. 9. Daily product~on calculated from numerical integration 
of (a] H,, (tanh model) and (b) HS* (exponential model] plot- 
ted as a function of daily production calculated by the numer- 
ical integration of P vs I Solid h e s :  perfect agreement be- 
tween the plotted, measures (slope = 1, intercept = 0); dashed 
lines: linear regression results. Regression statistics can be 

found in Table 3 
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I a .  Tanh Model 600 - 

0 100 200 300 400 500 600 700 

Polynomial Integral of P 
(pmol C g-l FW d ~ ' )  

Flg. 10. Daily production estimated from analytical approxi- 
mation of (a) H,,, (tanh model) and (b) H,,, (exponential 
model) plotted as a function of the polynomial integral of 
photosynthes~s (P). Solld hnes: perfect agreement between 
the plotted measures (slope = 1, intercept = 0); dashed lines: 
linear regression results. Regression statlstlcs can be found 

In Table 3 

integral occurred only on days when I, remained near 
Ik and H,,, approached 0. The high value of Ik pro- 
duced from the tanh formulation (Eq. 1) caused H,,, to 
consistently underestimate daily P and to show less 
agreement with the polynomial integral in comparison 
to the integral of H,,, determined from the estimate of 
Ik derived from Eq. (2) (Fig. 10a). Agreement between 
the polynomial integral of P and the analytical integral 
of H,,,P, based on the exponential formulation of Ik 
(Eq. 2), however, was virtually perfect for values of 
daily P 2 200 pm01 C g- '  FW d-I (Fig. lob ,  Table 3) .  
Thus, the exponential formulation of Ik may be prefer- 
able to the tanh formulation for the application of H,,, 
to rates of daily production. 

DISCUSSION 

Most aquatic Light monitoring programs, as currently 
implemented, focus on the collection of Secchi disk or 

in situ irradiance data for the calculation of water 
column attenuation coefficients (K), and stations are  
visited at  infrequent (weekly to monthly) intervals 
(Batiuk et al. 1993, Dennison et al. 1993, Morris & 

Virnstein 1993). In addition, extreme turbidity events 
are often left unsampled, since the storms and high 
winds that generate them often prevent manual 
sampling. The high-frequency variations in light atten- 
uation observed in Elkhorn Slough probably are  
typical of coastal environments where water column 
turbidity is affected by physical and biotic factors 
operating on a variety of time scales. This notion is 
supported by the occurrence of processes such as wind 
and tidal mixing, storm runoff and phytoplankton 
blooms which can combine to produce turbid pulses 
with chaotic periodicity (Cloern 1987, Stross & Sokol 
1989, Carter & Rybicki 1990, Zimmerman et  al. 1991, 
McMahon et al. 1992, Valiela et  al. 1992, Dring & 
Liining 1994). In this study, the time scale for decorre- 
lation of daily integrated P was on the order of 1 d. 
Thus, characterization of water transparency or SAM 
productivity would be impossible if samples were 
taken at weekly intervals, as has been found for 
benthic microalgae (Pinckney & Zingmark 1993). 

The diffuse attenuation coefficient (K) calculated 
from Beer's Law is commonly used to predict habitat 
suitability for SAM (Liining & Dring 1979, Duarte 1991, 
Batiuk et al. 1993, Dennison et al. 1993). In practice, 
K is usually assumed to be a 'quasi-inherent' optical 
property of the water column, enabling the effects of 
atmospheric scattering and sun angle to be ignored 
(Kirk 1983). Although this assumption may be valid in 
optically deep water (Siege1 & Dickey 1987), it is not 
necessarily true in coastal environments where the 
optical depth is shallow. In Tampa Bay, Florida, USA, 
solar angle alone caused K to vary as much as 50% 
within a single day (McPherson & Miller 1993). Thus, 
time of day becomes a critical component if the goal is 
to estimate I throughout the water column. Continuous 
measurements at  a minimum of 2 depths will be 
required to resolve accurately the temporal variation in 
both incident I and K for many applications. If the goal 
is to predict SAM production, then continuous data 
should be collected at the primary depths and sites 
of interest; extrapolations to other locations and/or 
depths should be performed with caution. 

Numerical integration of Pvs  I provides the best esti- 
mate of daily production, assuming accurate estimates 
of I can be obtained. The daily integral of I may pro- 
vide a relative index of light availability, but it could 
not provide an  accurate estimate of daily carbon gain 
in the case examined here,  even though it was also 
calculated from continuous recordings of I.  This results 
from the fundamentally non-linear relationship be- 
tween P and I. 
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Polynomial integration of P vs I and analytical inte- 
gration of H$,,, both calculated from single daily ob- 
servations of I,, were also poor predictors of daily pro- 
duction calculated from the numerical integration of 
P vs I. Even if the daily production integral could be 
pred~cted accurately from single daily measures of I,, 
the time scale for successive daily production estimates 
to become completely uncorrelated was so short that 
low frequency (days to weeks) measures of K were 
clearly inadequate for determining SAM productivity. 

Numerical integration of H,,, provided a more rea- 
sonable first-order approximation to the numerical 
integration of Pvs  I. Thus, the H,,, concept can be used 
to es t~mate  daily production even though the square- 
wave assumption of the model appears conceptually 
flawed (Richardson et al. 1983, Fourqurean & Zieman 
1991, Henley 1993). The key to successful application 
of H,,, clearly is tied to the value of I,. Although opera- 
tionally defined as the irradiance required to saturate 
photosynthesis, the mathematical definition of Ik is 
considerably different and subject to variation based 
on the formulation of P vs I. For example, the tanh 
function (Eq. 1) defines P= 0.?6Pm when I =  Ik while P= 
0.63Pm with the exponential function (Eq. 2). As a 
result, the H,,, period (defined as I > I,) is actually 
longer than the period when P = P,,,, based on instanta- 
neous P vs I. Furthermore, the length of H,,, is in- 
versely proportional to the value of Ik, Thus, it may be 
fortuitous that the exponential formulation (Eq. 2) pro- 
vided the best value of Ik for numerically integrating 
H,,, from the highly variable set of irradiance data 
collected from Elkhorn Slough. However, the almost 
perfect coherence between the analytical integral of 
(H,,,P,) defined by Eq.  (2)  and the polynomial integral 
of P vs I suggests that the exponential formulation 
provides the optimum general estimate of Ik for deter- 
mining H,,,. Thus, H,,, can be an excellent index of 
daily production, despite the theoretical flaw in its 
defi.nition (Richardson et al. 1983, Fourqurean & 
Zieman 1991, Henley 1993). 

Al.though the present study was carried out in an 
extremely turbid estuary (K-values can exceed 6.0), 
H,,, was undefined less than 10% of the time. Further- 
more, careful application of the H,,, model was able 
to provide very good first approximations to both the 
numerical and polynomial integration of P vs I. Thus, 
the H,,, model can be applied with confidence to cal- 
culations of daily production even in turbid estuaries. 

The concept of H,,, also may have significant ecolog- 
ical implications to seagrasses beyond daily production 
because it directly affects carbon transport and anoxic 
stress in root tissues anchored in permanently flooded 
sediments. Aerobic metabolism of root tissues in eel- 
grass depends directly on photosynthetic O2 produc- 
tion by the leaves (Smith et al. 1984). Eelgrass roots can 

tolerate prolonged anoxia providing there are ample 
carbohydrate supplies to support energy production 
and growth (Smith 1989, Kraemer & Alberte 1993). 
Root anoxia, however, blocks sucrose transport from 
leaves to roots in eelgrass seedlings (Zimmerman & 
Alberte unpubl.), as it does in many vascular plant 
species (Geiger & Sovonick 1975, Jackson & Drew 
1984, Saglio 1985). Thus, H,,, may provide useful 
indices of the daily period of root aerobiosis, sucrose 
transport and carbon partitioning in seagrasses, in 
addition to daily production. These issues will become 
more important as growth models develop more mech- 
anistic detail and improved predictive capacity. 

It appears that accurate determination of daily car- 
bon budgets for SAM will require continuous records 
of irradiance. Single daily measures of I were inade- 
quate to estimate daily production with an acceptable 
degree of precision in this data set. Thus, it is 
extremely unIikely that measures of I,,, or K made at 
weekly or monthly intervals will be of any ecological 
utility unless the environment is very predictable, in 
which case they probably could be estimated from 
first principles as described by Kirk (1983). Coastal 
seas and estuaries are unlikely places to find such 
stable conditions and the literature is rich with ex- 
amples of su.ch highly variable light environments 
(Luning & Dring 1979, Cloern 1987, Stross & Sokol 
1989, Carter & Rybicki 1990, Zimmerman et al. 1991, 
McMahon et al. 1992, Valiela et al. 1992, Pinckney & 
Zingmark 1993, Dring & Luning 1994). 

In recognition of the difficulty in measuring light 
availability, depth distributions of SAM have been 
proposed as low-technology barometers of estuarine 
habitat quality (Dennison et al. 1993). However, use of 
macrophytes as 'miner's canaries' seems inappropriate 
if the management goal is to reverse losses of SAM by 
improving water clarity. The model comparisons made 
here and other investigations (Zimmerman et al. 1991) 
demonstrate that submarine Iight availability must be 
measured with greater temporal and spatial resolution 
than is generally implemented. This will necessitate 
the exploitation of recent advances in electronic tech- 
nology that now enable field sites to be permanently 
instrumented with continuously recording light moni- 
toring equipment, as it is extremely unlikely that 
reliance on low-frequency measurement of I or K will 
generate useful data sets determining daily prod.uction 
of submerged aquatic macrophytes. 
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