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Editorial

Mesoscopic methods in engineering and science

Matter, conceptually classified into fluids and solids, can be completely described by the microscopic physics of its con-
stituent atoms or molecules. However, for most engineering applications a macroscopic or continuum description has usu-
ally been sufficient, because of the large disparity between the spatial and temporal scales relevant to these applications and
the scales of the underlying molecular dynamics. In this case, the microscopic physics merely determines material proper-
ties such as the viscosity of a fluid or the elastic constants of a solid. These material properties cannot be derived within the
macroscopic framework, but the qualitative nature of the macroscopic dynamics is usually insensitive to the details of the
underlying microscopic interactions.
The traditional picture of the role of microscopic and macroscopic physics is now being challenged as new multi-scale

andmulti-physics problems begin to emerge. For example, in nano-scale systems, the assumption of scale separation breaks
down;macroscopic theory is therefore inadequate, yet microscopic theorymay be impractical because it requires computa-
tional capabilities far beyond our present reach. This newclass of problemsposes unprecedented challenges tomathematical
modeling as well as numerical simulation and requires new and non-traditional analysis and modeling paradigms. Meth-
ods based on mesoscopic theories, which connect the microscopic and macroscopic descriptions of the dynamics, provide
a promising approach. They can lead to useful models, possibly requiring empirical inputs to determine some of the model
parameters, which are sub-macroscopic, yet indispensable to the relevant physical phenomena. The area of complex fluids
focuses on materials such as suspensions, emulsions and gels, where the internal structure is relevant to the macroscopic
dynamics. An important challenge will be to construct meaningful mesoscopic models by extracting all the macroscopically
relevant information from the microscopic dynamics.
There already exist mesoscopic methods such as the Lattice Gas Cellular Automata (LGCA), the Lattice Boltzmann

Equation (LBE), Discrete Velocity Models (DVM) of the Boltzmann equation, Gas-Kinetic Schemes (GKS), Smoothed Particle
Hydrodynamics (SPH) and Dissipative Particle Dynamics (DPD). Although these methods are sometimes designed for
macroscopic hydrodynamics, they are not based upon the Navier–Stokes equations; instead, they are closely related to
kinetic theory and the Boltzmann equation. Thesemethods are promising candidates for effectively connectingmicroscopic
and macroscopic scales and thereby substantially extending the capabilities of numerical simulations. For this reason,
they are the focus of the International Conferences on Mesoscopic Methods in Engineering and Science (ICMMES,
http://www.icmmes.org).
The Fifth ICMMES Conference was held in the University of Amsterdam, Amsterdam, The Netherlands, June 16–20, 2008.

This special issue of Computers and Mathematics with Applications devoted to this conference includes twenty six selected
papers on a wide range of topics related to the focus areas of ICMMES: Theory and numerical analysis of the LBE and its
boundary conditions [1–4], large-eddy simulations using the LBE [5,6], numerics and models for multi-phase and multi-
component fluids [7–10], complex fluids in porous media [11–14], biological [15] and non-Newtonian flows [16], nano-
scale thermal conduction in silicon [17], multi-scale and hybrid approaches for complex fluids and soft matter [18–20],
implementation of LBE algorithms on GPU [21], and various applications in computational fluid dynamics including mixing
layers in shallow water equations [22], sound generation [23,24], forced convection [25], and heat transfer [25,26]. The
usefulness of the LBE method is attested to by the wide range of applications.
The editors would like to thank the referees who have helped to review the papers in this special issue. The organizers

of the ICMMES-2008 and the ICMMES Scientific Committee would like to acknowledge the support from The University
of Amsterdam, The National Science Foundation of the United States under the Grant CBET 0827259, Old Dominion
University, Foundation for Fundamental Research on Matter of the Netherlands, J.M. Burgerscentrum Research School for
Fluid Mechanics, Netherlands Organisation for Scientific Research, Norit Process Technology B.V., OSPT Research School
Process Technology, Shell Nederland B.V., and NEC Europe Ltd.
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