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ABSTRACT 

 

COUPLING METAPROTEOMICS WITH TAXONOMY TO DETERMINE RESPONSES OF 

BACTERIOPLANKTON TO ORGANIC PERTURBATIONS IN THE WESTERN ARCTIC 

OCEAN 

 

Molly P. Mikan 

Old Dominion University, 2019 

Director: Dr. H. Rodger Harvey 

 

 

Understanding how the functionality of marine microbial communities change over time 

and space, and which taxonomic groups dominate distinct metabolic pathways, are essential to 

understanding the ecology of these microbiomes and the factors contributing to their regulation 

of  elemental cycles in the oceans. The primary goal of this dissertation was to investigate the 

community metabolic and taxonomic responses and the degradation potential of two 

compositionally distinct marine microbiomes within the shallow shelf ecosystem of the Chukchi 

Sea after rapid fluctuations in algal organic matter availability. Novel bioinformatics tools were 

collaboratively developed and used together with community proteomics (metaproteomics) to 

characterize and quantify changes in bacterial community functioning and taxonomic 

composition over time. 16S rRNA sequencing was employed to confirm bacterial taxonomic 

dynamics. These approaches were linked to particulate analyses for lipids and amino acids in 

order to track temporal changes in organic substrate composition. Results obtained using these 

improved methodological standards and the multidisciplinary approach demonstrated that 

organic perturbations within these systems stimulated changes to microbial taxonomic 

composition and functionality. The removal of organic particles seen within the control initiated 

a divergence between the two microbiomes while substrate abundance, as algal inputs, led to a 

convergence in community function. Despite the functional and taxonomic overlap seen as 

dominant features characterizing the responses to rapid influxes of algal organic matter, unique 

metabolic traits differentiated the major bacterial groups of each microbiome. This was most 

apparent in the recycling of nitrogen and carbon as well as substrate acquisition, suggesting that 

conditions which select for certain bacterial groups in the western Arctic Ocean may impact local 

chemical gradients. The large dataset of information obtained from this dissertation provides 



insight into the timing and characterization of Arctic bacterial community responses to 

environmental perturbations and in turn how they influence changes in substrate composition 

through selective degradation of labile lipid classes. In addition, this work demonstrates the 

applicability of trait-based methodologies to inform on how environmental conditions may drive 

niche formation within complex microbial communities. 
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NOMENCLATURE 

 

Functional traits: “Morphological, physiological, phenological, or behavioral features measured 

on organisms that can ultimately be linked to their performance.” Violle et al. [1] 

Functional-trait ecology: An ecosystem-based approach recognizing that “the health of an 

ecosystem may depend not only on the number of species present, but also on the diversity of 

their traits.” Cernansky [2]  

Functional redundancy: “The ability of one microbial taxon to carry out a process at the same 

rate as another under the same environmental conditions.” Allison and Martiny [3] 

Strict functional redundancy: “The coexistence of organisms that share the exact same set of 

functions and that can readily replace each other.” Galand et al. [4] 

Metabolic plasticity: “The potential [of bacterioplankton populations] to achieve similar 

ecosystem process rates [in response to environmental disturbances].” Lindh et al. [5] 

Community resilience: “The rate at which microbial composition returns to its original 

composition after being disturbed.” Allison and Martiny [3] 

Community resistance: “The degree to which microbial composition remains unchanged in the 

face of a disturbance.” Allison and Martiny [3] 

Replacement effect: “Replacement of OTUs, leading to changes in community composition and 

functioning.” Lindh et al. [5] 

Priming effect: “Short-term changes in the turnover rate of [soil] organic matter induced by the 

addition of carbon and/or nutrients [to soil].” Bird et al. [6] 

Insurance hypothesis: “Any long-term effects of biodiversity that contribute to maintain or 

enhance ecosystem functioning in the face of environmental fluctuations.” Yachi and Loreau [7] 
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CHAPTER 1 

 

1. INTRODUCTION AND OVERVIEW 

 

Microbes regulate major biogeochemical cycles within the global ocean, with profound 

impacts to ocean-atmosphere exchange, primary productivity and carbon sequestration (e.g., [8-

10]). Identifying the factors that regulate the structuring and functionality of in situ, and largely 

uncultured, complex marine microbial communities (i.e., microbiomes) has been a fundamental 

research goal for decades (e.g., [11]). Standard measures of microbial activity such as bacterial 

production, enzymatic activity and compositional changes to substrates within the environment 

(e.g., [12-15]) have historically been used to show that taxonomically distinct communities are 

not functionally uniform, supporting evidence that some microbes are better equipped to respond 

to stimulus by initiating specific chemical transfers and/or reactions (e.g., [16-20]). Recent 

progress has indicated that the organic matter environment (e.g., chemical composition and 

concentration) is an essential regulatory factor influencing microbial community composition 

and activity, which simultaneously alters both the abundance and composition of organic matter 

substrates used for growth and energy production (e.g., [17, 19, 21, 22]). Linking bacterial 

activity to ecosystem function and unraveling the taxonomic identify of the microbes that 

dominate distinct community functions remains a primary research goal in marine microbial 

ecology. 

The advancement of -omic methodologies (genomics, transcriptomics, proteomics, and 

metabolomics) has provided molecular-level insights into the physiological diversity of 

microbes, which have been used to identify specific responses to environmental stimuli with 

implications to oceanic biogeochemical cycles (e.g., [23-28]). In particular, the application of 

tandem mass spectrometry to identify and quantify protein profiles within natural systems has 

exponentially increased over the past decade. Due to the tight cellular regulation of protein 

synthesis and internal degradation, protein abundances reflect the metabolic status of a single cell 

or community of organisms [29]. Provided that proteins dominate the majority of functions 
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within the cell, protein abundances can serve as useful proxies for cellular function, informing on 

the response and adaptation to environmental conditions [30, 31]. 

Each of the -omic technologies contains some inherent limitations, especially when 

applied to complex communities within natural systems [32]. As traditional (medical) proteomics 

techniques were developed with single organisms or target molecules in mind, the transfer of this 

powerful methodology to analyze complex communities of organisms (i.e., metaproteomics) 

reveals a range of bioinformatic challenges, many of which have yet to be dissected and 

overcome. The methodological constraints are further amplified when employing 

metaproteomics techniques to track communities of organisms whose genomic profiles may, or 

may not, be categorized. This latter concern is prevalent in environmental microbial 

communities, where it is thought that a myriad of organisms remain uncharacterized. In addition, 

these methods are all known to produce astounding amounts of data, lending to additional 

bioinformatics hurdles that require statistical checks and verification of data quality prior to 

reporting. Thus, methodological consistency between research groups, reproducibility of results 

and unbiased analysis must be considered in order to compose robust ecological conclusions 

from this type of data across oceanic regions.  

The first steps of this dissertation were spent in collaboration with an interdisciplinary 

team of scientists to coalesce oceanography, biochemistry, bioinformatics, and computer 

sciences with the goal to construct, test, and apply rigorous methodological standards to the 

processing of complex microbial metaproteomics data. These collaborative efforts improved 

methodological standards [33-36], a critical contribution to the field of environmental 

metaproteomics. These methodological advancements benefit microbial ecology research efforts 

by providing the framework to identify and quantify statistically significant changes to functions 

over time (or differences between communities or treatments), in addition to allowing 

identification and quantification of taxonomic associations with those functions. Specifically, 

these are important features applicable to the development of trait-based approaches in the study 

of systems ecology. 

Integrating the new innovative metaproteomics methods with standard methods to 

identify bacterial community composition (16S rRNA sequencing) and organic geochemistry, 
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this dissertation addresses important topics in the field of marine microbial ecology, including 1) 

functional responses of complex microbial communities to rapid organic substrate perturbations, 

2) how the organic environment restructures the compositional and functional properties of 

microbiomes and 3) the enzymatic capacity of microbiomes to alter the organic geochemistry of 

substrates. Direct measures of bacterial community composition and metabolism in parallel with 

select particulate organic matter (POM) composition profiles were tracked over time, providing a 

rare opportunity to investigate how bacterioplankton respond to perturbations in their organic 

environment and how these community dynamics in turn influence changes in POM 

composition. Such reactions occur continually in the global oceans but the relationship between 

organic chemical composition and microbial functional and structural responses is poorly known. 

The geographic focus was the western Arctic Ocean (specifically within the Chukchi Sea) where 

both the seasonal timing of primary production and the important role of microbial recycling 

might provide valuable insight into nutrient and carbon cycling. 

In the first research chapter of this dissertation (Chapter 2) I examined metaproteomes 

from two Arctic microbiomes collected from the Bering Strait subsurface chlorophyll maximum 

and the Chukchi Sea bottom water over a short shipboard incubation to track the functional and 

taxonomic responses of these communities to rapid perturbations of the organic environment (by 

first removing POM >1.0 µm in size and then simulating algal bloom conditions compared to a 

control treatment where POM was removed without subsequent algal inputs). Using a novel 

peptide-based enrichment analysis, significant changes (p-value < 0.01) in biological and 

molecular functions associated with carbon and nitrogen recycling were observed. Under both 

organic matter conditions, Bering Strait surface water core microbiomes increased peptides 

correlated to protein synthesis, carbohydrate degradation and cellular redox processes while 

decreasing C1 metabolism within the first day. Taxonomic examinations of the functional 

progression revealed that the core microbiome collectively responded to algal substrate inputs by 

synthesizing carbon prior to select bacterial groups utilizing and re-allocating nitrogen 

intracellularly. Incubations of Chukchi Sea bottom water microbiomes showed similar, but 

temporally delayed, functional responses to identical conditions. This has important implications 

for the timing and magnitude of measured microbial responses to organic perturbations within 

the Arctic Ocean and provides unbiased analysis of how community-level functional 

composition could contribute to predicting biogeochemical gradients in the ocean. 
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Throughout the global ocean, the base of the food web is characterized by tight biological 

connections dominated by primary producers and heterotrophic bacterioplankton. In the highly 

productive, shallow shelf ecosystem of the Chukchi Sea, however, frequent temporal uncoupling 

can occur due to changes in sea ice dynamics and nutrient availability in a warming climate. 

How potential changes in primary productivity substrate availability will impact oxidation by in 

situ heterotrophic bacterioplankton is partially dependent on the activity of the community (i.e., 

taxonomic composition and function). The second research chapter (Chapter 3) describes the 

integration of 16S rRNA and metaproteomics datasets to investigate the responses of the two 

compositionally distinct Arctic bacterial communities following organic matter perturbation, 

revealing that rapid shifts in substrate availability influenced taxonomic and metabolic changes 

to both microbiomes. In particular, I revealed that the addition of algal organic substrates led to a 

convergence of metabolic functioning between the two microbiomes while the controlled 

incubation conditions (resource limitation as POM removal) drove taxonomic composition and 

function to become more distinct. An important outcome was that time and environment 

differentiated traits between microbiomes (i.e., surface water bacteria access carboxylic acid 

more rapidly under algal substrate abundance) and taxonomic composition can influence what 

traits are expressed (i.e., a non-dominant bacterial class, Planctomycetia, reduces nitrate to 

produce energy), possibly leading to the formation of unique niches within a natural community 

after organic matter perturbations. Lastly, results gathered from this work that may benefit 

modeling efforts incorporating trait-based mechanisms with taxonomic associations are 

discussed.  

Taxonomic composition of microbial communities may be influenced by the availability 

of organic matter and nutrients (e.g., [19, 37, 38]) yet how compositionally distinct microbiomes 

impact changes to organic composition during degradation and the timeframe over which this 

occurs remains unclear. In the third research chapter (Chapter 4), temporal changes to the 

composition of POM injected into the incubations were tracked with lipid and amino acid 

analyses to address the question of degradation efficiencies. In addition, I sought to link these 

compositional shifts within the particulate substrates with bacterial enzymatic profiles and 

taxonomy derived from the metaproteomic datasets. As evidence for bacterial enzymatic 

expression increased and bacteria became more abundant, selective losses of lipid classes 

occurred even as bulk particulate measures increased. These results collaboratively indicate that 
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select portions of the substrates were bioavailable over this time frame, as they were susceptible 

to enzymatic attack and degradation by the Arctic Ocean bacterioplankton. The results also 

demonstrated some distinction in degradation potential of the labile lipids depending on the 

origin of the microbial community. An important observation was that the surface water 

community appeared more effective at recycling fatty acids than the bottom water community 

while the latter microbiome decreased an algal pigment to a greater degree over the ten day 

incubation period. Regardless of these differences in the scale of degradation, a common order of 

lipid class loss occurred over time. Increases of bacterial enzymes specific to ester hydrolysis 

occurred prior to the decreases in lipid concentrations, suggesting a link between these two 

datasets.  
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CHAPTER 2 

 

2. METAPROTEOMICS REVEAL THAT RAPID PERTURBATIONS IN ORGANIC 

MATTER INPUTS STIMULATE FUNCTIONAL RESTRUCTURING IN ARCTIC OCEAN 

MICROBIOMES
1
 

 

2.1 Introduction 

In the surface ocean, primary production driven by phytoplankton growth dynamics is the 

essential process for the transfer of carbon from inorganic to organic pools and structures the 

food web for higher trophic consumers. While a fraction of this organic material (OM) supports 

upper trophic levels, the microbial loop recycles the majority of OM in the water column with 

only a small fraction eventually sequestered in the deep oceanic sediments [10]. Linking 

microbial functionality to biogeochemical cycling has remained a primary objective of microbial 

ecology for decades. This functionality is predominantly regulated by a complex mixture of 

Bacteria, Archaea, and Eukarya. In particular, the bacterioplankton component differs in their 

uptake ability of organic matter [16, 39]. This differential response of bacteria to organic 

substrates has led to the observation that the heterotrophic community, and the associated core 

metabolic genes, may be structured by organic substrate availability [38]. As the complexity and 

often trace-level concentrations of thousands of metabolites make them a challenge to track in 

the ocean, researchers are exploring the use of technologies to track the physiological response 

of the microbial community to the changing chemical compositions in order to understand the 

local chemical environment as well as the dynamic relationship between microbiota and their 

environment [18, 26, 38, 40]. 

Since proteins carry out the majority of molecular functions and are tightly regulated 

within the cell, their characterization, quantification, and timing of expression can serve as a 

biologically relevant proxy for the organism’s current phenotype. Consequently, changes in a 

metaproteome (i.e., community proteome) in response to changes in local environmental 

                                                 
1
 A manuscript version of this chapter is being submitted to the ISME Journal, March 2019 
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conditions should reflect temporally relevant metabolic strategies of a natural microbiome. 

Several studies have successfully linked bacterial metabolic responses to important 

biogeochemical cycles, with some reporting high taxonomic resolution [23, 24, 40-43]. These 

discovery-style metaproteomic analyses have shown insights into the physiological responses of 

oceanic bacteria, revealing shifts in order- or genus-level taxonomy and detailed functionality 

through time (e.g., [24, 41]). Nevertheless, as most metaproteomic pipelines are adaptations of 

traditional single-species proteomic approaches, there are inherent complications that emerge 

when multiple species are analyzed in a single sample [44, 45], in particular the assignment of an 

identified peptide to multiple protein sequences from the provided genome [46, 47].  In the case 

of a native oceanic microbiome where many species are present and few are cultured, a single 

peptide can be conserved across many proteins which may differ not only in predicted functions, 

but map to proteins across multiple species, genera, families, or even phyla [34, 48-51]. 

Using a novel metaproteomics approach, I report the response of two Arctic microbial 

communities to rapid changes in organic availability within short-term shipboard incubations. 

Before experimental manipulations were initiated, metagenomes of the native microbial 

population were completed to generate a site-specific reference database for peptide 

identification [34]. Then, a mass spectrometry-based metaproteomics analysis was completed on 

incubation samples to track temporal functional responses and 16S rRNA sequencing was 

completed to resolve taxonomic distributions of the microbial populations through time. To track 

microbial responses to organic matter input and minimize artifacts associated with bottle effects, 

experimental incubations were short term (10 days) and carried out at near in situ temperatures 

(0°C). To address the critical need to identify and trace relevant metabolic strategies of the 

microbiome expressed as proteins, a novel peptide-based strategy was developed that avoids 

protein inference and instead, using a site-specific metagenome, creates a lowest common 

ancestor assignment for each peptide on a functional and taxonomic tree. This new approach was 

coupled to a biological enrichment strategy to identify statistically significant shifts in 

community function through the quantification and comparison of all peptides associated with a 

function through time, thereby allowing unbiased reporting of all peptides identified [36]. Once 

those changing functions were revealed, each functional shift was followed by a detailed 

taxonomic analysis using the peptide data and supported by taxonomic assignments through 16S 

rRNA sequencing.  
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With this methodology, the accuracy in reporting functions distributed among different 

taxonomic groups of a mixed community is increased, the statistical robustness is enhanced and 

the resolution is more amenable to large scale functional modeling efforts. The simultaneous 

measurement of expressed metabolic responses to rapid OM perturbation without limiting the 

analysis to specific processes or taxonomic groups allowed the comprehensive metabolic 

response of the entire Arctic microbial community to be determined over time. With this novel 

method I demonstrate that natural Arctic microbiomes undergo functional restructuring related to 

carbon (C) and nitrogen (N) cycling shortly after rapid perturbations to their organic substrate 

environments thereby revealing implications for broader biogeochemical cycles. 

2.2 Methods 

2.2.1 Seawater sample collection  

Seawater was collected from the subsurface chlorophyll maximum (SCM) of the Bering 

Strait and from the bottom waters of the Chukchi Sea (Figure 1) as described in May et al. [33]. 

Water was collected from different depths and sites to target microbiomes that were expected to 

be taxonomically distinct based upon physicochemical parameters (Figure 2). Waters were 

filtered by sequential size fractionation through 10.0 µm and 1.0 µm filters to isolate the free-

living bacteria from eukaryotic grazers > 1.0 µm in size and to remove particulate organic matter 

(POM) before incubation. Initial genomic content from the Bering Strait and Chukchi Sea were 

collected in order to establish a site-specific metagenomics database for peptide identification. 

For the metagenome, 7 L of 1.0 µm filtered water from each station was isolated onto 0.2 µm 

polycarbonate (PC) filters (Whatman Nuclepore), immediately frozen in liquid nitrogen and 

stored at -80 ºC until DNA extraction. 
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Figure 1 - Sample location map. Map showing locations of water sampling from the Bering 

Strait (BSt; 7m; 65° 43.44” N, 168° 57.42” W) and the Chukchi Sea (CS; 55.5 m; 72° 47.624” N, 

164° 53.89” W). 
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Figure 2 – Water column profiles. Salinity, Temperature, Chlorophyll a and nutrient 

concentrations from the water column of the Bering Strait (BSt) (solid line) and Chukchi Sea 

(CS) stations (dashed line). Water was collected from 7 m in the BSt (integrated chlorophyll a: 

226.88 mg/m
2
) and 55.5 m from the CS (integrated chlorophyll a: 2.64 mg/m

2
). Data was 

provided by Lee Cooper: http://arcticstudies.org/hannashoal/data.html. 

 

http://arcticstudies.org/hannashoal/data.html
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2.2.2 Shipboard incubation set-up with organic amendments 

To examine bacterial community response to organic amendments, 60 L of 1.0 µm 

prefiltered seawater from the Bering Strait and 60 L of 1.0 µm prefiltered seawater from the 

Chukchi Sea were incubated shipboard for ten days at 0 ºC in the dark. The first 40 L of seawater 

from each station were distributed among two, 20 L carboys to act as biological replicates. Each 

was supplemented with in situ algal organic matter (aOM) between 5.0-10.0 µm in size (Table 

1). The organic matter substrate was collected, filtered and then concentrated from the 

subsurface chlorophyll maximum of the Bering Strait and was considered to be primarily of algal 

origin based on C/N ratios ~5 at day 0 (Table 1). Before addition, the algal substrate was frozen 

to kill cells and encourage cell lysis and release of bioavailable dissolved organic matter (DOM) 

to the bacterial community. Before subsampling, water from each biological replicate was 

collected, and then mixed prior to filtration. 20 L of the 1.0 µm prefiltered seawater from each 

station received no aOM input after POM >1.0 µm was removed to examine bacterial responses 

to incubation conditions and residual DOM, thus functioning as the control treatment (POM 

removal). At the initial time of sampling and on days 1, 6 and 10 of the incubation experiments, 

a total of 1.8 L of water were passed through a 1.0 µm filter, collected onto duplicate or triplicate 

0.2 µm PC filters, flash frozen in liquid nitrogen and stored at -80 °C for bacterial 

metaproteomics analysis. Bacterial abundance and compound analysis method details (total 

hydrolysable amino acids, organic carbon & nitrogen) can be found in Supplementary text 1. 

2.2.3 16S rRNA: DNA extraction, library construction, and sequencing  

Methods for 16S rRNA isolation and amplicon sequencing followed Fadeev et al. [52]. 

Briefly, samples of bacterial DNA were isolated from filter membranes in a combined chemical 

and mechanical procedure using the PowerWater DNA Isolation Kit prior to using it as the 

template for PCR amplification (MO BIO Laboratories, Inc., Carlsbad, CA, USA). Library 

preparation was performed according to instructions provided by Illumina: 16S Metagenomic 

Sequencing Library Preparation (Illumina, Inc., San Diego, CA, USA). 16S rRNA sequences 

were obtained on the Illumina MiSeq platform in a 2 × 300 bp paired-end run as well as in a 2 × 

250 bp paired-end run on the Illumina HiSeq platform (CeBiTec Bielefeld, Germany).   
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Table 1 – Bacterial and particulate measurements. Bering Strait (BSt) and Chukchi Sea (CS) 

bacterial and particulate organic matter (POM) measurements from the 10 day incubation 

experiments. BDL = below detection limit. sd = standard deviation. Dark grey cell = estimated 

value (see details in Supplementary text 1). aOM input = algal organic matter input; POM 

removal = control treatment where POM >1.0 µm was removed without aOM input. THAA = 

total hydrolysable amino acids. ON = organic nitrogen; OC = organic carbon. PC = 0.2 µm 

polycarbonate filters (Whatman Nuclepore). GF/F = glass fiber filters (Whatman).  

        aOM input 

Station Analysis  Filter  Initial day 0 day 1 day 6 day 10 

B
er

in
g
 S

tr
ai

t,
 7

 m
 (

6
5
° 

4
3
.4

4
” 

N
, 
1
6
8

° 
5
7
.4

2
” 

W
) 

bacterial measurements 
 

          

cell counts (cells/ml) 
0.2 µm PC  

< 10 µm 
5.02E+05       2.46E+06 

cell counts (cells/ml) 
0.2 µm PC  

< 1 µm 
2.02E+05         

bacterial ON (µg/l) GF/F 59.9 30     64 

bacterial OC (µg/l) GF/F 209 BDL     193 

bacterial THAA (µg/l)  

(sd) 
GF/F     

16.9 

(15.4) 
  25.0 (2.1) 

POM measurements 
 

          

POC (mg/l)  

(sd) 
GF/F   

0.24 

(0.02) 

0.27 

(0.02) 

0.34 

(0.01) 

0.33 

(0.00) 

PON (mg/l)  

(sd) 
GF/F   

0.05 

(0.01) 

0.05 

(0.01) 

0.07 

(0.00) 

0.08 

(0.00) 

particulate C/N     4.80 5.40 4.86 4.13 

particulate THAA 

(µg/l) (sd) 
GF/F     

89.56 

(36.29) 
  

176.50 

(50.20) 

C
h
u
k
ch

i 
S

ea
, 

5
5
.5

 m
 (

7
2
° 

4
7
.6

2
4
” 

N
, 

1
6
4
° 

5
3
.8

9
” 

W
) 

bacterial measurements 
 

          

cell counts (cells/ml) 
0.2 µm PC  

< 10 µm 
5.14E+05 3.18E+05   1.28E+06 2.22E+06 

cell counts (cells/ml) 
0.2 µm PC  

< 1 µm 
2.07E+05         

bacterial ON (µg/l) GF/F 24.5 23.2     54.5 

bacterial OC (µg/l) GF/F BDL BDL     107 

bacterial THAA (µg/l)  

(sd) 
GF/F     

12.4 

(2.5) 
  66.8 (1.2) 

POM measurements 
 

          

POC (mg/l)  

(sd) 
GF/F   

0.20 

(0.00) 

0.20 

(0.00) 

0.31 

(0.00) 

0.26 

(0.01) 

PON (mg/l)  

(sd) 
GF/F   

0.04 

(0.00) 

0.04 

(0.00) 

0.07 

(0.00) 

0.06 

(0.00) 

particulate C/N     5.00 5.00 4.43 3.33 

particulate THAA 

(µg/l) (sd) 
GF/F     

55.90 

(2.50) 
  

150.26 

(0.43) 
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Table 1 – continued. 

        POM removal 

Station Analysis  Filter  Initial day 0 day 1 day 6 day 10 

B
er

in
g
 S

tr
ai

t,
 7

 m
 (

6
5
° 

4
3
.4

4
” 

N
, 
1
6
8
° 

5
7
.4

2
” 

W
) 

bacterial measurements 
 

          

cell counts (cells/ml) 
0.2 µm PC  

< 10 µm 
5.02E+05       1.23E+06 

cell counts (cells/ml) 
0.2 µm PC  

< 1 µm 
2.02E+05         

bacterial ON (µg/l) GF/F 59.9 24.5     34.1 

bacterial OC (µg/l) GF/F 209 BDL     BDL 

bacterial THAA (µg/l)  

(sd) 
GF/F           

POM measurements 
 

          

POC (mg/l)  

(sd) 
GF/F           

PON (mg/l)  

(sd) 
GF/F           

particulate C/N             

particulate THAA (µg/l) 

(sd) 
GF/F           

C
h
u
k
ch

i 
S

ea
, 

5
5
.5

 m
 (

7
2
° 

4
7
.6

2
4
” 

N
, 

1
6
4
° 

5
3
.8

9
” 

W
) 

bacterial measurements 
 

          

cell counts (cells/ml) 
0.2 µm PC  

< 10 µm 
5.14E+05     2.82E+05   

cell counts (cells/ml) 
0.2 µm PC  

< 1 µm 
2.07E+05         

bacterial ON (µg/l) GF/F 24.5 16.3     16.3 

bacterial OC (µg/l) GF/F BDL BDL     BDL 

bacterial THAA (µg/l)  

(sd) 
GF/F           

POM measurements 
 

          

POC (mg/l)  

(sd) 
GF/F           

PON (mg/l)  

(sd) 
GF/F           

particulate C/N             

particulate THAA (µg/l) 

(sd) 
GF/F           
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2.2.4 16S rRNA: Bioinformatic and Statistical Analyses 

Methods for 16S rRNA sequencing followed methods detailed in Fadeev et al. [52]. 

Briefly, the raw paired-end reads were primer-trimmed using cutadapt [53], quality trimmed 

using trimmomatic v0.32 [54] and merged using PEAR v0.9.5 [55]. Clustering into operational 

taxonomic units (OTUs) was done with Swarm algorithm using default parameters (v2.0) [56]. 

One representative sequence per OTU was taxonomically classified using SINA (SILVA 

Incremental Aligner; v1.2.11; Silva reference database release 128) at a minimum alignment 

similarity of 0.9, and a last common ancestor consensus of 0.7 [57]. OTUs which were not 

taxonomically assigned as bacteria or occurred with only a single sequence in the whole data set 

were excluded from further analysis. Pearson correlation (rcorr function, Hmisc package in R) 

was used to test for linear correlation of relative abundance data between genera composing 

>5% of total abundances. 

2.2.5 Metagenomics: sample preparation and data analysis 

To produce a protein sequence database from which all peptide tandem mass spectra 

could be correlated, a metagenome was completed by combining filtered bacteria present at the 

initial time points from both the Bering Strait and Chukchi Sea. DNA from filters collected from 

initial Bering Strait and Chukchi Sea waters were extracted for bacterial metagenome sequencing 

following the protocol in Wright et al. [58]; this was followed by library preparation using the 

Kapa Hyper Kit,  as previously described [33]. Libraries were quality checked and then 

sequenced on an Illumina HiSeq 2500 (PE100) in one lane. Raw sequencing reads were 

deposited in the NCBI Short Read Archive under accession number SRP071900. MOCAT was 

used to process raw reads, remove human contaminating sequences, assemble the reads and 

generate protein sequences [59]. This generated a protein FASTA file with  459,118 protein 

sequences and >41 million unique tryptic peptide sequences from which all peptide tandem mass 

spectra can be correlated and scored (metagenome predicted protein database is available at 

ProteomeXchange: PXD008780). 
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2.2.6 Metaproteomics: sample preparation and data analysis  

Metaproteomic sample preparation and liquid chromatography and tandem mass 

spectrometry (LC-MS/MS) followed methods detailed in Timmins-Schiffman et al. [34]. Briefly, 

filters were sliced (2 mm
2
) and submerged in 100 µl of 6 M urea and 600 µl of 50 mM 

NH4HCO3. Cells were lysed with a sonicating probe (5 x 20s) and between sonication events 

each filter was flash-frozen in liquid nitrogen to reduce protease activity. The lysate was 

removed and proteins were reduced and alkylated using dithiolthretol (DTT) and iodoacetimide 

(IAM), respectively. Samples were then digested with Trypsin (1:20 enzyme to protein) for 12 

hours at room temperature on a shaker. Resulting peptides were desalted with C18 centrifugal 

spin columns, dried down and resuspended in 2% ACN, 0.1% formic acid prior to analysis with 

a nanoAcquity UPLC (Waters Corp, Milford, MA) inline with a Q-Exactive-HF (Thermo Fisher 

Scientific, Waltham, MA). Prior to injection into the LC-MS/MS, biological replicates were 

combined due to low protein concentrations and then were analyzed in duplicate on the Q-

Exactive in random order using a 90 minute gradient (5%-30% ACN, 0.1% formic acid, 300 

nl/min), data dependent acquisition (DDA) top 20, with an MS1 scan range of 400-1000 m/z. 

The mass spectrometry proteomics data can be found at ProteomeXchange Consortium via the 

PRIDE [60] partner repository (https://www.ebi.ac.uk/pride/archive/projects/PXD008780). All 

database searches were performed using Comet [61] version 2015.01 rev. 2 against concatenated 

target and decoy versions of the Bering Strait/Chukchi Sea metagenome-derived proteome, as 

previously described [34]. Prior to further analysis, Comet results for technical replicates were 

combined. Peptide-spectrum matches were retained at a 1% false discovery rate (FDR) based on 

target-decoy competition optimized by the Percolator algorithm [62, 63]. Mass spectrometry 

samples from the Chukchi Sea control incubation at day 1 were compromised and excluded from 

analysis. Analysis using the traditional proteomic pipeline (i.e., trans-proteomic pipeline – TPP 

[64]), that includes protein inference and grouping on all identified peptides revealed that 35% of 

all identified peptides correlated to >1 protein sequence in the Bering Strait/Chukchi Sea 

metagenome-derived proteome.  

2.2.7 Peptide-based Gene Ontology (GO) enrichment analysis  

The abundance of Gene Ontology (GO) functional categories for molecular functions, 

biological processes and cellular components [65, 66] were quantified using the method 

https://www.ebi.ac.uk/pride/archive/projects/PXD008780
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described by Riffle et al. [36]. Briefly, each peptide was associated with all metagenome proteins 

containing it, and then those proteins were matched by BLAST to UniProtKB/TrEMBL 

(downloaded April 28, 2015), keeping the top matches with maximum e-value 1E-10. The GO 

annotations of each top match (and their ancestors) were used to construct a directed acyclic 

graph (DAG) containing all GO terms associated with the peptide, and the spectral count for 

each GO term was increased by the spectral count of the peptide. Once all peptides were 

processed, the spectral count for each term was then divided by the total spectral count to obtain 

the relative abundance. 

To determine the relative contribution of each taxon to each GO term, every peptide was 

assigned the taxon representing the lowest common ancestor (LCA) of all of the top BLAST hits 

for the metagenome proteins containing the peptide (in-house Python script; released as open 

software 2018: MetaGOmics [36]). The spectral counts for the LCA and all ancestor taxa were 

incremented by the spectral count for each respective peptide, and after all peptides were 

examined this spectral count was divided by the spectral count for the GO term. This produced a 

proportion of all spectra for a GO annotation that was unambiguously contributed by each taxon. 

At most, the relative contribution of all taxa at the same taxonomic level (e.g., class) would be 1 

if all peptides for that GO term resulted in a LCA at the class level or more granular. Although 

tables with all the taxonomic distributions for the functions across all time points and incubations 

were provided (Datasets 1-4), one taxonomic level must be selected in order to compare datasets 

at a functional level. Here functional changes at the class level are reported in order to utilize as 

much of the peptide evidence as was possible without being too broad on the classification level.  

Using class level resolution, 85% of the total peptide spectrum matches (PSMs) were utilized in 

the Bering Strait incubations (2,276,392 PSMs) (Figure 3). Reporting at the genus or family 

level, however, would have resulted in a 53% or 33% loss in total available peptide data, 

respectively. When peptides could not be matched to a taxon or they were matched to a LCA less 

granular than class (e.g., phylum), the relative contributions at the class level added up to less 

than 1. When this occurred, the difference was assigned to an Unclassified taxonomic group. 

After this calculation, non-bacterial PSM counts were removed from further analysis (Appendix 

1). 
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An enrichment analysis of GO functions was performed using methods described 

previously [36]. Briefly, each pair of mass spectrometry runs was compared against one another, 

first performing Laplace-correction on the spectral count of each GO term, and the log2 fold 

change calculated for the relative abundance of each GO term (Figure 4). For this study, 

sequential time points within each experiment were compared (i.e., initial Bering Strait sample 

compared to day 1, day 1 compared to day 6, and day 6 compared to day 10). Terminal GO terms 

(those most specific in the DAG) with Bonferroni-corrected p-value < 0.01 from a two-tailed test 

of proportions were considered significant and were included in the enrichment analysis. All 

source code for calculating GO spectral counts, taxonomic analysis, and comparing results 

between samples is available at https://github.com/metagomics/mmikan-metaproteomics-2018. 

2.3 Results & Discussion 

2.3.1 Peptide and 16S rRNA taxonomic assignments 

Within the Bering Strait and Chukchi Sea microbiomes, metaproteomics data identified 

peptides correlating to 30 and 25 bacterial classes, respectively (Appendix 2), and 16S rRNA 

OTUs corresponded to 53 and 63 classes, respectively (Appendix 3). Alphaproteobacteria, 

Flavobacteriia (referred to as Flavobacteria) and Gammaproteobacteria bacterial classes 

represented greater than 75% of the metaproteomics identifications in the Bering Strait and 66% 

in the Chukchi Sea over the 10 day incubations (Figure 5). From the 16S rRNA identifications, 

these three classes also had similarly high contributions at over 91% and 86% of abundances, 

respectively, demonstrating that these major classes dominated both the expressed functions and 

taxonomic distributions irrespective of OM perturbation. These comparisons demonstrate that a 

peptide-based analysis complements traditional 16S rRNA sequencing for identifying dominant 

taxonomic classes within a complex community, as well as providing active functions at the time 

of collection. An important caveat, however, is that the two methods for taxonomic identification 

were not identical, indicating that structure of a microbiome does not necessarily equal 

community function (e.g., [23, 67-69]).  

 

 

  

https://github.com/metagomics/mmikan-metaproteomics-2018
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Figure 3 – Peptide spectra taxonomic categorization. Distribution of taxonomic assignments 

that can be reported for all peptide spectrum matches (PSMs) passing confidence threshold for 

A) Bering Strait and B) Chukchi Sea metaproteomics data. Note that in both figures, more PSMs 

were assigned a species-level designation than a genus level designation. This is counterintuitive 

and results from the inconsistencies found within the taxonomic databases. Many taxonomic 

assignments were missing genus-level information and because this was an automated data 

processing step, manual interpretations were not completed to retain reproducibility. 
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Figure 4 - DAG example. Example of part of a Gene Ontology (GO) directed acyclic graph 

(DAG) displaying cellular component functional changes within the Bering Strait (BSt) 

microbiome between day 1 and day 6 under algal organic matter input (aOM). The GO accession 

number is shown in parentheses, followed by log2 fold changes and a two-tailed test of 

proportions p-value (Bonferroni corrected) for each term. Blue shading represents terms with a 

decrease in function over time and yellow shading represents terms with an increase in function 

over time. Terminal GO terms with a p-value < 0.01 were considered significant, and were 

included in the enrichment analysis. 
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To increase the community taxonomic resolution, 16S rRNA OTUs were also organized 

into genera comprising >5% of total abundances (Figure 6; Dataset 5). This resulted in eleven 

genera dominating bacterial abundances in both the Bering Strait and Chukchi Sea microbiomes 

throughout the incubations. At the genus level, the 16S rRNA revealed less compositional 

stability under OM perturbation compared to temporal changes at the class level. For example, 

the consistently high abundances of Gammaproteobacteria within the Chukchi Sea incubation 

concealed inverse changes between Gammaproteobacterial genera Balneatrix spp. and the 

unclassified Oceanospirillales spp. within the control incubation (r = -0.97, p < 0.01).  

Incubation results also documented that community taxonomic restructuring was 

dependent on the native initial microbiome (i.e., Chukchi Sea or Bering Strait), the OM treatment 

and time after perturbation (Figure 6). For example, Polaribacter spp. increased after the 

addition of algal-derived OM (aOM input) within both the Bering Strait and Chukchi Sea, 

displaying inverse relationships with Pelagibacter spp. (referred to as SAR11) (r = -0.98, p < 

0.01), the unclassified Oceanospirillales spp. (r = -0.89, p < 0.01) and the sum of all other genera 

that contributed less than 5% abundances (‘Other’) (r = -0.72, p < 0.01). This suggests that 

Arctic Polaribacter spp. effectively outcompete other genera when labile substrates become 

abundant. Differences in the proteomic response time after perturbation was apparent between 

the two microbiomes, with largest changes in bacterial restructuring after aOM input delayed 

within the Chukchi Sea incubation (restructuring occurred between days 2 and 4 rather than 

between days 0 and 2 as in the Bering Strait microbiome). Class-level analysis of 

metaproteomics data corroborated a temporal offset in Flavobacterial activity between 

microbiomes after an influx of algal substrates (Figure 5). Within the Chukchi Sea, unclassified 

Oceanospirillales spp. and Pelagibacter spp. dominated the initial community, but declined late 

in the incubation within the control (6-10 days after POM removal) while Balneatrix spp., 

Colwellia spp. and Acinetobacter spp., plus those genera that contributed less than 5% 

abundances (‘Other’), appeared to benefit from POM removal within the control. Opportunistic 

genera and, in particular, less abundant microbes in the Arctic Ocean, can have the metabolic 

flexibility to fill dynamic niches by accessing complex OM under substrate limitation [70], 

which may explain the observed shift in the taxonomic distribution after POM removal.  
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Figure 5 - Bacterial taxonomic classes over time. Changes in A) Bering Strait (BSt) and B) 

Chukchi Sea (CS) bacterial community taxonomic classes under variable organic matter 

conditions (aOM input = algal organic matter input; POM removal = control treatment where 

particulate organic matter (POM) >1.0 µm was removed without aOM input) during shipboard 

experiments over ten days seen as the relative abundance contribution of major taxonomic 

classes (>1%) from the BSt proteome dataset (protein) and by 16S rRNA sequencing (rRNA). 

Symbol * = class comprises >1% of proteome dataset but <1% of 16S rRNA dataset and symbol 

^ = class comprises >1% of 16S rRNA dataset but <1% of proteome dataset. Mass spectrometry 

samples from the Chukchi Sea incubations at day 1 within the control were compromised and 

excluded from analysis.  
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Figure 5 – continued. 

B) 
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Figure 6 - 16S rRNA genera. Dominant bacterial genera in the A-B) Bering Strait (BSt) and C-

D) Chukchi Sea (CS) microbiomes under each organic perturbation (aOM input = algal organic 

matter input; POM removal = control treatment where particulate organic matter (POM) >1.0 µm 

was removed without aOM input). Genera with at least 5% of relative abundance at any time 

within the experiments were represented, and otherwise were combined into the ‘Other’ category 

comprising 347 genera. Genera with similarity percentages (SIMPER %): Polaribacter spp. 

(11.5%) and Owenweeksia spp. (3%) belong to Class Flavobacteria; Genera Balneatrix spp. 

(11.5%), unclassified Oceanospirillales spp. (10.5%), unclassified Colwelliaceae spp. (3%), 

Colwellia sp. (2.5%), Pseudoalteromonas spp. (0.5%), SAR92 clade (3%) and Acinetobacter 

spp. (0.5%) belong to Class Gammaproteobacteria; Genera Pelagibacter spp. (SAR11 clade) 

(6%) and Sulfitobacter spp. (4.5%) belong to Class Alphaproteobacteria. All data are included in 

Database 5.  
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Figure 6 – continued. 
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Figure 6 – continued. 
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Figure 6 – continued. 
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2.3.2 Temporal changes in community functions 

Within the Bering Strait and Chukchi Sea microbiomes, tens of thousands of PSMs 

matched to thousands of Gene Ontology (GO) functions (Table 2), which were identified at high 

functional and taxonomic resolution. The goal, however, was to discover significantly changing 

functions through time in an unbiased, data-driven process. In order to report the greatest percent 

of the peptide data (Figure 3), GO functional assignments and class-level taxonomic information 

were extracted to compare the temporal progression of functions and the bacterial classes 

associated with those functions. In the Bering Strait microbiome, the peptide-based enrichment 

analysis of terminal GO terms between time points identified 71 functions with significant 

changes in abundance (p-value < 0.01); these 71 functions self-organized into 7 hierarchical 

clusters that uncover time-dependent functions acting on the cycling of carbon and nitrogen after 

OM perturbations (Figure 7; Table 3). As was also seen with the taxonomic data, shifts in 

microbial functionality predominantly occurred within the first 6 days after OM perturbation, 

with smaller changes between day 6 to day 10 (Supplementary text 1). This indicates that under 

both OM scenarios, the Bering Strait bacterial community structure and its proteome remodeling 

occurred soon after perturbation (i.e., within 6 days) and then was largely maintained to the end 

of the incubation at day 10. 

Over the 10 day incubation period, Bering Strait bacterial abundances increased 12-fold 

from initial abundances under aOM input conditions compared to only a 6-fold increase when 

POM was removed within the control (Table 1). This is consistent with the close correspondence 

often seen between bacterial abundances and labile substrate availability from phytoplankton 

blooms (e.g.,[19]). Community-wide proteome remodeling occurred under both OM addition and 

the control (Figure 7), likely a response to nutrient resource fluctuations or limitations due to 

rapid increases in bacterial abundances [26, 69, 71], ‘bottle effects’ or grazing pressure of 

organisms <1.0 µm in size [72]. Consistent with greater increases in cell abundances, aOM input 

treatment resulted in a greater number of significantly changing Bering Strait bacterial functions 

over the incubation period (n=64) compared to the control where POM was removed (n=50) 

(Figure 7, Table 3). Although 24 functional terms were shared between experimental conditions, 

the timing and degree of the remaining responses were highly variable, demonstrating that OM  
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Table 2 - Mass spectrometry & gene ontology data. Total number of peptides, peptide 

spectrum matches (PSM), PSMs matching Gene Ontology (GO) terms, and total GO terms per 

time point for A) Bering Strait (BSt) and B) Chukchi Sea (CS) bacterial incubations. BSt and CS 

= initial bacterial community sample. aOM input = algal organic matter input; POM removal = 

control treatment where particulate organic matter (POM) >1.0 µm was removed without aOM 

input. n.d. = no data (mass spectrometry samples from the Chukchi Sea incubations at day 1 

within the control were compromised and excluded from analysis). 

A) 

 

          

Treatment Time peptides PSMs 

GO 

PSMs 

GO 

terms 

 

BSt 3038 5435 5008 1091 

aOM 

input 

day 1 5162 10028 9588 1418 

day 6 5960 11611 11192 1767 

day 10 5929 11557 11101 1770 

POM 

removal 

day 1 5235 9503 9025 1522 

day 6 6496 12722 12133 1768 

day 10 5858 11365 10793 1622 
 

B) 

 

          

Treatment Time peptides PSMs 

GO 

PSMs 

GO 

terms 

 
CS 1408 2297 2027 744 

aOM 

input 

day 1 292 422 396 540 

day 6 3953 7545 7243 1570 

day 10 3990 7388 7047 1552 

POM 

removal 

day 1 n.d. n.d. n.d. n.d. 

day 6 2133 3759 3439 1036 

day 10 2524 4386 3946 1157 
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Figure 7 - Functional shifts in the Bering Strait microbiome over time. Heatmap of Bering 

Strait (BSt) Gene Ontology (GO) functions with significant peptide spectrum match (PSM) log2 

fold changes (Bonferroni-corrected p-value < 0.01 from a two-tailed test of proportions) between 

time points per experiment. Column 1: initial BSt microbiome sample (indicated here as day 0) 

compared to day 1 with algal organic matter inputs (aOM), column 2: day 1 to day 6 with aOM, 

column 3: BSt to day 1 within the control (particulate organic matter, POM, removal), column 4: 

day 1 to day 6 with the control (POM removal). Color shading indicates the degree of log2 fold 

change as seen in the Color Key. Functions (with log2 fold changes) are outlined in Table 3.   
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Table 3 - Changing functions in Bering Strait microbiome. Log2 fold changes for Gene 

Ontology (GO) functions that changed significantly over time (Bonferroni-corrected p-value < 

0.01 from a two-tailed test of proportions) within the Bering Strait (BSt) incubations. A negative 

value = a decrease over time. BSt represents the initial microbiome. d1 = day 1; d6 = day 6. aOM 

= algal organic matter inputs; POMr = particulate organic matter removal as control treatment. 

  

Cluster 

# 

Function 

code 
GO function 

GO 

category 

BSt to 

d1 aOM 

d1 to d6 

aOM 

BSt to 

d1  

POMr 

d1 to d6     

POMr 

2
 -

 P
ro

te
in

 s
y
n
th

es
is

 &
 A

T
P

 s
y
n
th

as
e 

ac
ti

v
it

y
 

1 
large ribosomal subunit 

rRNA binding 
mf 1.59       

2 regulation of translation bp 2.85       

3 
peptidyl-prolyl cis-trans 

isomerase activity 
mf 1.46   1.27   

4 
protein peptidyl-prolyl 

isomerization 
bp 1.47   1.28   

5 small ribosomal subunit cc 1.13 -0.94 0.86 -0.67 

6 translation bp 0.99 -0.88 0.69 -0.65 

7 
structural constituent of 

ribosome 
mf 1.72 -1.74 0.79 -0.77 

8 ribosome cc 0.96 -1.82 0.68 -0.79 

9 large ribosomal subunit cc 0.87 -1.25 0.72 -0.57 

10 tRNA binding mf 1.47 -0.97 0.96 -0.66 

11 unfolded protein binding mf   -0.68   -0.57 

12 protein folding bp 0.37 -0.61   -0.45 

13 

proton-transporting ATP 

synthase activity, 

rotational mechanism 

mf   -0.56     

14 

plasma membrane ATP 

synthesis coupled proton 

transport 

bp   -0.50     

15 

proton-transporting ATP 

synthase complex, 

coupling factor F(o) 

cc   -1.37     

16 
DNA-templated 

transcription, termination 
bp   -1.99     

17 rRNA binding mf   -1.86 0.99   

18 intracellular cc 0.74 -0.89 0.45   

1
 

19 glycolytic process bp 3.53       
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Table 3 – continued. 

Cluster 

# 

Function 

code 
GO function 

GO 

category 

BSt to 

d1 aOM 

d1 to d6 

aOM 

BSt to 

d1  

POMr 

d1 to d6     

POMr 
6
 -

 a
m

in
o
 a

ci
d
 s

y
n
th

es
is

 &
 e

n
er

g
y
 c

o
n
v
er

si
o
n
 

20 
transferase activity, 

transferring acyl groups 
mf       1.44 

21 
glutamine family amino 

acid biosynthetic process 
bp       1.70 

22 coenzyme binding mf       0.93 

23 
ligase activity, forming 

carbon-nitrogen bonds 
mf       0.92 

24 
ligase activity, forming 

carbon-sulfur bonds 
mf       1.34 

25 
dicarboxylic acid 

metabolic process 
bp       1.28 

26 
valine biosynthetic 

process 
bp       1.68 

27 
isoleucine biosynthetic 

process 
bp       1.59 

28 

oxidoreductase activity, 

acting on the CH-NH2 

group of donors 

mf       1.79 

29 
serine family amino acid 

metabolic process 
bp       2.48 

30 
ketol-acid 

reductoisomerase activity 
mf   1.66   1.72 

31 

ATP-binding cassette 

(ABC) transporter 

complex 

cc   1.88   1.55 

32 
4 iron, 4 sulfur cluster 

binding 
mf   1.30   1.68 
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Table 3 – continued. 

Cluster 

# 

Function 

code 
GO function 

GO 

category 

BSt to 

d1 aOM 

d1 to d6 

aOM 

BSt to 

d1  

POMr 

d1 to d6     

POMr 
3
 -

 t
ra

n
sl

at
io

n
 b

in
d
in

g
 &

 c
ar

b
o
h

y
d
ra

te
 e

n
er

g
y
 c

o
n
v
er

si
o
n

 

33 membrane cc       -0.16 

34 transport bp -0.36       

35 RNA binding mf       -0.58 

36 
nucleoside-triphosphatase 

activity 
mf 0.39       

37 protein binding mf 0.45       

38 
translation factor activity, 

RNA binding 
mf 0.55       

39 ATP binding mf 0.27       

40 
alpha-amino acid 

metabolic process 
bp     0.98   

41 receptor activity mf -0.76 0.44   -0.23 

42 cell outer membrane cc -0.88       

43 lyase activity mf   0.84     

44 
monocarboxylic acid 

metabolic process 
bp   0.72     

45 metal ion binding mf   0.57     

46 

oxidoreductase activity, 

acting on the aldehyde or 

oxo group of donors 

mf   1.19     

47 tricarboxylic acid cycle bp   1.44   1.74 

48 
oxidation-reduction 

process 
bp   0.72   0.98 
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Table 3 – continued. 

Cluster 

# 

Function 

code 
GO function 

GO 

category 

BSt to 

d1 aOM 

d1 to d6 

aOM 

BSt to 

d1  

POMr 

d1 to d6     

POMr 
4
 -

 n
it

ro
g
en

 r
ea

ll
o
ca

ti
o
n
 &

 v
it

am
in

 B
 s

y
n
th

es
is

 

49 
glutamate-ammonia 

ligase activity 
mf   1.83     

50 
pyridoxal phosphate 

binding 
mf   1.82     

51 
glutamine biosynthetic 

process 
bp   1.85     

52 enzyme regulator activity mf   1.99     

53 
nitrogen compound 

transport 
bp   1.99     

54 nitrogen fixation bp   1.59     

55 
formate-tetrahydrofolate 

ligase activity 
mf   2.53     

56 

folic acid-containing 

compound biosynthetic 

process 

bp   2.57     

57 
tetrahydrofolate 

metabolic process 
bp   2.26     

58 
glutamate synthase 

(NADPH) activity 
mf   3.38     

59 
regulation of nitrogen 

utilization 
bp   3.42     

60 
glutamate biosynthetic 

process 
bp   3.17     

61 
thiamine biosynthetic 

process 
bp   3.75     
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Table 3 – continued. 

Cluster 

# 

Function 

code 
GO function 

GO 

category 

BSt to 

d1 aOM 

d1 to d6 

aOM 

BSt to 

d1  

POMr 

d1 to d6     

POMr 

5
 -

 e
n
er

g
y
 c

o
n
v
er

si
o
n
 &

  
ca

rb
o
h
y
d
ra

te
 

m
et

ab
o
li

sm
 

62 

oxidoreductase activity, 

acting on NAD(P)H, 

quinone or similar 

compound as acceptor 

mf     2.99   

63 
nicotinamide nucleotide 

metabolic process 
bp     2.90   

64 
nucleoside diphosphate 

phosphorylation 
bp     2.54   

65 metal ion transport bp     3.77   

66 
single-organism catabolic 

process 
bp   1.22 2.36   

67 

single-organism 

carbohydrate metabolic 

process 

bp   0.96 2.18   

7
 -

 f
o
rm

at
e 

&
 v

ir
al

 

ac
ti

v
it

y
 

68 molybdenum ion binding mf -2.13   -1.73 2.17 

69 
formate dehydrogenase 

(NAD+) activity 
mf -2.99   -2.21 2.26 

70 
outer membrane-bounded 

periplasmic space 
cc -1.45 0.89 -0.94 1.18 

71 viral capsid cc -2.64   -2.55   
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perturbation directs community functionality without major alterations to the taxonomic 

distribution at the class level (Figure 5). 

Despite the differences in bacterial abundance and POM carbon and nitrogen 

concentrations between the OM perturbation experiments (Table 1), ten GO functions associated 

with protein synthesis changed similarly in both OM environments through time (#3-12, cluster 

2) (Figure 7; Table 3). The comprehensive and immediate increase in protein synthesis peptides 

across the Bering Strait incubations by day 1 suggests that the microbial community, under 

contrasting OM conditions, stimulated cellular growth prior to division. Although some caution 

is warranted since microbial community responses can be influenced by incubation conditions 

(e.g. removal of grazers or artifacts (‘bottle effects’) associated with container based incubations 

[72]), protein synthesis is frequently the first functional response of bacteria to environmental 

stimulus, such as carbon or nutrient addition [38, 69, 73, 74]. This includes ribosomal proteins 

that are important indicators of cellular activity and are shown to correlate with growth phases of 

some bacteria [71]. 

Coinciding with the high energy requirements of bacterial biomass production was the 

increase across a suite of functions related to carbohydrate metabolism (#19, #36-39, #62-67), 

with some of the largest log2 fold changes at day 1 (vs. the initial Bering Strait sample) under 

both OM perturbation treatments (ranging from 2.2 – 3.8) (Figure 7). Carbohydrates are among 

the first substrates to be consumed from diatom-derived OM pools [75] as they are largely 

bioavailable to marine bacteria (e.g.,[18, 76, 77]). The increase in glycolysis-related peptides 

(#19, cluster 1) and corresponding essential functions (#36-39, cluster 3) [78] after aOM input 

indicate that cellular adenosine triphosphate (ATP) was in high demand as the microbes 

incorporated substrates and started building new proteins [79]. Similarly, one day after POM 

removal, a cluster of functions involved in the electron transport chain for energy flow and 

storage (#62-65; cluster 5) during carbohydrate metabolism (#66-67) suggest that early energy 

acquisition from carbon sources and ATP generation from glucose was a cellular priority at this 

time. While glucose as an energy source increased at day 1, the utilization of small molecules 

decreased, as evidenced by decreases in two primary cofactors in one-carbon (C1) metabolism, 

NAD
+
-formate dehydrogenase (FDH) and molybdenum (Mo) ion binding (FDH/Mo, #68-69, 

cluster 7). C1 metabolism is widespread among microorganisms and allows them to efficiently 
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transfer the otherwise volatile C1 molecules. Access to this metabolic pathway provides 

specialized microbes the ability to utilize a wide range of organic carbon molecules for energy 

production [80], in particular compounds that arise as by-products of the degradation process.  

By day 6 of the Bering Strait experimental incubations, protein synthesis (cluster 2) 

declined within both OM environments, as metabolic functions related to energy production and 

resource utilization continued to increase (Figure 7). The increase of peptides associated with the 

TCA cycle (#43-48, cluster 3) and formate C1 metabolism (#55-57 in the aOM input treatment; 

#68-69 in the control) at day 6 indicates that small carbon-based metabolites were being 

mobilized and recycled. These C1 molecules appeared to be important carbon sources in the 

Bering Strait before the incubations started and again at day 6, suggesting this may be the 

secondary carbon-based response as carbohydrates become depleted. Similar responses between 

OM perturbation treatments also included increases in the expression of peptides from the ATP-

binding cassette (ABC) transporter complex (#31, cluster 6), suggesting additional investments 

in nutrient uptake under differing OM environments. These important transmembrane complexes 

have high substrate-specificity and substrate-affinity, which increases cellular OM assimilation 

efficiency [81], and represents an important response under nutrient extremes across the global 

ocean [67, 82, 83].  

2.3.3 Changes in community function under contrasting organic matter perturbations 

An increase in intracellular nitrogen transport and regulation (#49, #51, #53-54, #58-60, 

cluster 4) between days 1 and 6 after aOM input to the Bering Strait microbiome aligned with the 

widespread decrease in peptide abundances associated with protein synthesis at day 6  (Figure 7). 

Included in this cluster was an increase in N-fixation peptide expression (#54), further suggesting 

a need for the bacteria from this community to acquire nitrogen at that time. These N-fixing 

genes recruit and coordinate other enzymes involved in the N-fixation pathway in addition to 

assimilating atmospheric N2. In rapidly responding cells, this intracellular coordination provides 

rapid access for reduced nitrogen to be incorporated into various critical system-complexes that 

support peptide synthesis (e.g., nitrogenase, transporters, RNA, amino acids, etc.). Additionally, 

there was substantial peptide evidence that the recently acquired N was being redistributed 

intracellularly with increases in glutamine synthetase (GS) (#49, #51) and glutamate synthase 

(glutamine:2-oxoglutarate aminotransferase, GOGAT) (#58, #60). The enzymes in the 
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GS/GOGAT pathway are central to intracellular ammonium assimilation and distribution [84], 

where the primary products can be used in the synthesis of new amino acids or other N-rich 

molecules [85]. The increase of these nitrogen-based biochemical processes were in response to 

post-bloom conditions since increases in these metabolic functions were absent in the control. 

The Bering Strait microbiome continued to undergo tightly regulated metabolic 

transitions in response to aOM input days after receiving these substrates, as seen by the tight 

clustering of internal bacterial nitrogen cycling and vitamin B synthesis functions (#50, #55-57, 

#61, cluster 4). The synthesis of thiamine (vitamin B1), a crucial vitamin and coenzyme involved 

in diverse and essential metabolic processes including amino acid and carbon metabolism and 

the regulation of gene expression [86], increased nearly 4-fold (cluster 4; #61). It has been 

observed that the presence of algal exudates during blooms can signal vitamin synthesis in some 

heterotrophic bacteria, representing a symbiotic relationship between coexisting microfauna 

(e.g.,[19, 87]). In addition, the increased abundance of pyridoxal phosphate (vitamin B6) binding 

(#50) and formate tetrahydrofolate (THF) pathway peptides (#55-57) (involving vitamin B9) 

indicate that bacteria from the Bering Strait were stimulated by the algal OM to transfer C1 

derivatives from THF during the synthesis of purines or amino acids [67, 88-90]. 

The controlled experimental incubations where POM was removed without subsequent 

aOM input provided insights into primary functional dynamics in the Bering Strait microbiome 

under reduced resources. In general, the taxonomic composition (at the rank of genus) of the 

starting and ending Bering Strait community structure changed little (Figure 6) and there was 

less proteome remodeling under POM removal compared to aOM input. Even so, a functional 

shift measured exclusively 6 days after POM removal was evident by increases in peptides 

involved in the metabolism and mobilization of intracellular molecules, such as amino acids 

(#21, #26-27, #29-30) (Figure 7). The transport and metabolism of amino acids is a core function 

of marine microbes [87] and is a strictly regulated process to meet energy requirements [91]. 

Intracellular reallocation of amino acids and the deconstruction of proteins to generate individual 

amino acids, peptides, and signaling molecules provide an energetically low-cost mechanism to 

efficiently conserve and recycle carbon and nitrogen. This can conserve needed energy to drive 

critical cellular functions. Further, the increase in formate oxidation peptides (FDH/Mo #68-69, 

cluster 7) on day 6 (versus day 1) indicated that simple C1 molecules became an important 
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source for energy production under POM removal at that time [80, 92, 93] or that internal 

formate concentrations had increased and this enzyme complex was employed as a removal 

mechanism to promote growth [83].  

2.3.4 Bacterial classes of Bering Strait community functions 

Many microbial species adapt to fill a particular environmental niche, yet across multiple 

taxa some functional redundancy may be required to maintain the stability of a complex 

ecosystem (e.g.,[87]). Metaproteomics provide a snapshot of cellular functions within a diverse 

microbiome at the time of sampling as well as insight into taxonomy because each peptide that 

contributes to the GO functions also has a taxonomic designation (Datasets 1-4). Tracking the 

Bering Strait microbiome within both simulated bloom (aOM input) and oligotrophic (control 

where POM was removed) environments, I found that many temporally controlled community 

functions were conserved among the major taxonomic groups (Figure 8) irrespective of the fact 

that temporal taxonomic restructuring was evident at the class level when examining the 

complete metaproteomic and 16S rRNA datasets (Figure 5). To an extent, this broad redundancy 

in functional roles may reflect the level of taxonomic resolution (i.e., class level) used in the 

present analysis [5, 94], however Aylward et al. [38] showed that even at a detailed bacterial 

classification (i.e., OTUs), rapid responses to algal dynamics can be dominated by broad 

functional redundancies. However, tracking community functionality with an unbiased method in 

the current work also revealed that unique shifts in bacterial classes occurred across time and 

between the OM perturbations.  
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Figure 8 - Bacterial classes associated with changing community functions. Peptide spectrum 

match (PSM) values for the six major Bering Strait (BSt) microbiome taxonomic categories for 

incubations A) with algal particulate organic matter input (aOM) and B) the substrate limited 

control (POM removal). The sizes of bubbles are scaled to PSM counts by area. 

Alphaproteobact. = Alphaproteobacteria; Gammaproteobact. = Gammaproteobacteria. Clusters 

with function code identifiers are presented in Table 3.  

 

A) 
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Figure 8 – Continued. 

B) 
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Within the Bering Strait bacterial community, a taxonomic shift related to carbohydrate 

degradation (#19) was seen as peptides associated with the glycolytic process transitioned from a 

minor bacterial class within the in situ bacterial community to the dominant bacterial classes one 

day after aOM input (Figure 8A). This evidence of competition for labile resources within the 

bacterial community occurred as the core microbiome responded to a new supply of algal-

derived carbohydrates at a more rapid pace than the minor bacterial class. It has been shown that 

different bacterial clades are physiologically poised to respond to a particular stimuli (e.g., [17, 

18, 20, 95]), initiating metabolic-specific niches and divergent ecological strategies [96]. 

Examples of this in the dataset were seen by Alphaproteobacteria being important in all 

community-level changes in carbohydrate-related functions within Bering Sea incubations 

independent of OM environment (#19, #47-48, #66-67), while Flavobacterial activity for the 

TCA cycle (#47-48) was dependent on organic conditions within the incubations (Figure 8). 

Further, few Gammaproteobacteria-specific peptides were associated with glycolysis-related 

functions (#19), but several peptides specific to the TCA cycle were observed under both OM 

scenarios (#47-48). This dynamic response by the core microbiome corroborates previous 

findings by Teeling et al. [24] that broad microbial classes occupy different ecological niches 

during algal-derived carbohydrate oxidation. Unique to this study, however, was the use of an 

unbiased biological enrichment analysis to discover and reveal functional shifts representative of 

carbon and nitrogen acquisition, reallocation and degradation processes independent of 

taxonomic origin.  

Although Alphaproteobacteria were important across a majority of functions related to 

carbohydrate metabolism and protein synthesis, Bering Strait Flavobacteria dominated increases 

of the peptides associated with these functions (Figure 8). This dominance is indicative of a 

competitive advantage by Flavobacteria to rapidly respond to fluctuating OM conditions, such as 

increased pulses in OM typically observed during phytoplankton blooms [22, 24, 97]. The data 

suggests that their advantage under these conditions might be connected to a metabolic capability 

to efficiently exploit algal-derived carbohydrate substrates in order to fuel biomass production 

prior to division. The timing of these metabolic increases at day 1 suggests that these functions 

provide Flavobacteria with a mechanistic advantage under heterogeneous substrate 

environments, enabling them to rapidly respond and effectively compete in a complex 

community.  
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Flavobacterial functional response to the aOM input was apparent within the community 

proteome: increasing from 15% to >23% (days 0-1), an increase sustained to the end of the 

experiments under aOM input only (Figure 5). In this high substrate environment, the 

community-level increase in expressed activity (proteome) by Flavobacteria at day 1 preceded 

their increased contribution to community structure at day 6,  as measured by a change in relative 

16S rRNA sequence abundance from 32% at day 1 to 46% at day 6. This suggests that the ability 

to rapidly convert energy from carbohydrates into protein synthesis contributed to a trend 

towards compositional dominance, however with a temporal delay on the order of days. A 

preferential benefit occurred for the genus Polaribacter spp., as their relative abundances 

increased steadily between days 0-2 to reach 30% of total community structure under aOM input 

(Figure 6). Consistent with the proteome response by Flavobacteria to aOM input conditions, 

Polaribacter spp. have been found to increase enzymes that hydrolyze bonds within poly- and 

monosaccharides following phytoplankton blooms [24],supporting the idea that the increase in 

Polaribacter spp. measured in these Arctic microbiome incubations resulted from a specialized 

nutritional strategy that allowed them to dominate the ecological niche of algal-derived organic 

substrate-based growth.     

An important observation was that although the Alphaproteobacteria class was 

functionally active towards the end of the incubations (days 6-10) contributing 36-46% of total 

community peptides identified, their community abundance decreased to equal only 16-26% of 

16S rRNA sequences at this time (Figure 5). Decreasing abundances of Alphaproteobacteria are 

a characteristic feature of this class following phytoplankton blooms [24]. The functions 

associated with this class from the current experiments highlight its metabolic flexibility under 

diverse OM environments. For example, Alphaproteobacteria increased formate-related 

metabolic pathways at day 6, but peptide evidence for the fate of this C1 substrate differed 

depending on the OM environment; high substrate additions initiated biomass production (i.e., 

amino acids and purines) while energy production resulted from conditions within the control. 

Both of these enzymatic functions (formate-THF ligase and FDH/Mo) have also been measured 

at variable depths and seasons in Alphaproteobacteria from the NW Atlantic [67] and Southern 

coastal ocean [41]. Specifically, FDH/Mo is widely distributed within the genome of the 

dominant Alphaproteobacterial clade (Pelagibacter spp.) and this specialization to access C1 

compounds as a source of energy delineates a niche for this bacterium to utilize a diversity of 
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organic compounds across a range of marine environments [80]. The divergent nutritional 

strategy seen in this study as a response to OM environment reflects the ability of 

Alphaproteobacteria to preferentially divert the same substrate into different metabolic pathways 

dependent on resource availability, representative of the strong niche diversification within this 

bacterial class [98]. 

Alphaproteobacteria is a very diverse bacterial class, and includes abundant taxonomic 

groups that characteristically target low molecular weight, labile OM [19, 99]. Within the current 

dataset, Alphaproteobacteria dominated a majority of the ABC transport complex (#31, cluster 6) 

and contributed to >93% of the increase in abundance at day 6 under both OM perturbation 

environments (Figure 8). ABC transporters are well-represented within Alphaproteobacterial 

genomes [98, 100] and this class dominates community expression of these transporters across 

diverse marine environments (e.g., [24, 67, 83]). Different modes of substrate acquisition are 

another way in which bacterial groups form resource-dependent ecological niches. In particular, 

transporters can be sensitive indicators of cellular adaptation [101] and substrate availability [18, 

24]. The scavenging of a range of ambient monomers provides certain taxa within the ubiquitous 

Alphaproteobacteria class with a competitive advantage under heterogeneous conditions 

throughout the world’s oceans.  

Six days after aOM input, Alphaproteobacteria-assigned peptides drove the observed 

shifts in nitrogen transport, regulation and reallocation, plus vitamin synthesis (cluster 4) (Figure 

8). Specific genera within this class of bacteria can degrade a diverse suite of substrates, 

allowing them to rapidly utilize phytoplankton exuded metabolites [21, 67, 98]. The dominance 

of Alphaproteobacteria nitrogen regulatory proteins has been observed previously during a 

natural phytoplankton bloom [67] and after carbon additions [71]. Specifically, peptides 

associated with the GS/GOGAT pathway were expressed by Alphaproteobacteria, evident of 

their ability to rapidly redistribute ammonium intracellularly. Proteins associated with this 

metabolic pathway are  reported to be among the most abundant proteins identified under both 

replete ammonia [102]  and oligotrophic conditions [83]. Further, the vitamin thiamine was 

specifically expressed by Alphaproteobacteria. This is a class with few clades that have the 

ability to synthesize thiamine, some of which may rely on phytoplankton hosts as a source of this 

vitamin [103]. These results suggest that temporal increases in nitrogen transfer and intracellular 
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cycling, plus vitamin synthesis, defined an important niche of Bering Strait Alphaproteobacterial 

functionality when algal-derived substrates were abundant in the environment, even as total 

relative abundances of this class decreased (Figure 5).  

Consistent with other nitrogen-related functions, a majority (65%) of the peptides related 

to nitrogen fixation at day 6 were assigned to the Alphaproteobacterial class (Figure 8). Although 

reporting genus-level resolution would have limited the taxonomic assignment to 50% of the 

total peptides (Figure 3), all taxonomic levels associated with a peptide are embedded in this 

unique data-structure taxonomic resolution (Datasets 1-4). Exploring the finer taxonomic 

resolution of nitrogen fixation peptide assignments revealed that 70% of the 50% of peptides 

could be assigned a specific genera were assigned to Sulfitobacter spp. Although the significance 

or reason for nitrogen fixation to increase in the late stages of aOM degradation in the Bering 

Strait is not understood, discovering that Sulfitobacter spp. dominates the detected signal when 

looking at genus-level resolution potentially reveals a distinguished niche within the nitrogen 

pathway that favors this successful bacterium of the Bering Strait community (Figure 6A). 

2.3.5 Delayed functional response in the bottom water microbiome of the Chukchi Sea 

The Chukchi Sea bottom water Arctic microbiome was incubated in parallel to the Bering 

Strait experiments to compare the universality of the functional and taxonomic patterns 

identified. Despite the depth of origin and geographic separation, aOM input stimulated bacterial 

growth (Table 1) with the same three taxonomic classes comprising the core microbiomes of the 

Bering Strait and Chukchi Sea, however in different proportions (i.e., Gammaproteobacteria 

contributed to >46% of the Chukchi Sea 16S rRNA temporal sequences while representing 

<35% in the Bering Strait) (Figure 5B). Similar between microbiomes, the genus Polaribacter 

spp. (Flavobacteria) benefited from the high substrate environment, however the increased 

growth of this clade in the Chukchi Sea was delayed by 2 days compared to Bering Strait 

incubation (day 2-4 instead of days 0-2 in the Bering Strait) (Figure 6). This suggests that within 

a matter of days, this dominant degrader of algal-derived organic matter effectively competes 

with other genera for growth substrates within the shallow shelf system of the western Arctic 

Ocean, independent of geographic origin or depth in the water column. Unique to the Chukchi 

Sea was a large increase in the Colwellia clade (Gammaproteobacteria) within the high substrate 



45 
 

environment, while the rise of genus Balneatrix spp. (Gammaproteobacteria) was a dominant 

feature by the end of the control incubation, where POM was removed.  

The peptide enrichment analysis revealed that the three dominant bacterial classes seen in 

the Bering Strait aOM additions also dominated changes for the same functional expressions in 

the Chukchi Sea community (Figure 9; Dataset 3). These community-wide metabolic functions 

were primarily controlled by Chukchi Sea Gammaproteobacteria and Flavobacteria, with 

decreased Alphaproteobacterial influence compared to the Bering Strait. For example, in the later 

phase of the Chukchi Sea incubations (days 6-10), Alphaproteobacterial abundances were at a 

minimum, responsible for <8% of total community peptides (Figure 5B). Gammaproteobacteria 

dominated the observed changes in peptide-based metabolic activity within the Chukchi Sea 

microbiome, specifically on day 1 with a surge in protein synthesis peptides. 

Using an identical method to measure temporal GO term enrichment in the Chukchi Sea 

microbiome, as was completed for the Bering Strait, resulted in similar broad functional 

responses to increases in algal-derived substrates (Figure 10; Table 4). Specifically, several 

functions that significantly changed through time in the Chukchi Sea under aOM input were 

parent or sibling terms to functions that changed in the Bering Strait microbiome, but 

importantly, were delayed in their expression (e.g., peptides associated with multiple translation 

and carbohydrate metabolism terms increased at day 6 in the Chukchi Sea opposed to day 1 in 

the Bering Strait). Using functional traits as the primary metric, it appears that the initial 

bacterial response to high concentrations of algal inputs are similar between microbiomes across 

locations and water masses in the Arctic Ocean, albeit with a temporal offset as seen by increases 

in protein synthesis and carbohydrate metabolism. Several key functional shifts identified during 

Bering Strait incubations (e.g., vitamin B and nitrogen regulation) did not significantly change in 

the Chukchi Sea microbiome, suggesting that microbiomes with similar core taxonomic profiles 

may not be functionally equivalent when organic substrates are high, such as immediately 

following the decline of a phytoplankton bloom. This has important implications for both the 

timing and magnitude of response to organic inputs and a potential constraint on taxonomy alone 

as a predictor of functional response. 
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Figure 9 - Chukchi Sea bacterial classes for Bering Strait functions. Chukchi Sea (CS) 

peptide spectrum match (PSM) values for the six major taxonomic categories showing greatest 

PSM counts associated with the 71 significantly changing GO functions from the Bering Strait 

after algal organic matter input (aPOM). Bubble sizes are scaled to PSM counts by area. 

Alphaproteobact. = Alphaproteobacteria; Gammaproteobact. = Gammaproteobacteria. Clusters 

with function code identifiers are presented in Table 3. All PSM data to accompany this figure 

are available in Dataset 3, including a detailed breakdown of the ‘Other’ category. 
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Figure 10 - Chukchi Sea functional shifts under algal substrate inputs. Heatmap of Chukchi 

Sea (CS) Gene Ontology (GO) functions with significant peptide spectrum matches (PSM) log2 

fold changes (Bonferroni-corrected p-value < 0.01 from a two-tailed test of proportions) between 

time points with algal organic matter input (aOM): column 1: initial CS microbiome (CS) sample 

compared to day 1, column 2: day 1 to day 6, column 3: day 6 to day 10. Color shading indicates 

the degree of log2 fold change as seen in the Color Key. Functions with log2 fold changes are 

outlined in Table 4. 
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Table 4 - Changing functions in Chukchi Sea microbiome with algal inputs. Gene ontology 

(GO) functions from the Chukchi Sea (CS) incubations that changed significantly (Bonferroni-

corrected p-value < 0.01 from a two-tailed test of proportions) over time and their log2 fold 

changes under algal organic matter input (aOM input). 

Cluster # Function # GO function CS to day 1 

day 1 to day 

6 

day 6 to day 

10 

4 1 oxidoreductase activity -1.43 1.94 0.00 

4 2 oxidation-reduction process -1.52 2.09 0.00 

4 3 DNA binding -1.13 1.48 0.00 

4 4 receptor activity -2.16 1.91 0.39 

4 5 
regulation of transcription, DNA-

templated 
-2.25 0.00 0.00 

4 6 protein refolding -1.78 0.00 0.00 

4 7 transport -1.41 0.00 0.30 

2 8 hydrolase activity 0.00 0.90 0.00 

2 9 
DNA-directed RNA polymerase 

activity 
0.00 1.11 0.00 

2 10 transcription, DNA-templated 0.00 1.39 0.00 

2 11 protein folding 0.00 1.01 -0.60 

2 12 unfolded protein binding -1.20 1.02 -0.61 

2 13 ATP binding -0.67 0.84 -0.35 

2 14 membrane 0.00 0.00 0.22 

2 15 
cellular macromolecule biosynthetic 

process 
-0.60 0.00 0.00 

2 16 ribosome 0.00 0.00 -0.56 

2 17 ribosomal subunit 0.00 0.00 -0.60 

5 18 transmembrane transporter complex 0.00 0.00 1.36 

5 19 
outer membrane-bounded 

periplasmic space 
0.00 0.00 1.35 

5 20 respiratory chain 0.00 0.00 2.18 

5 21 
proton-transporting ATP synthase 

complex, catalytic core F(1) 
1.48 -1.40 0.00 
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Table 4 – Continued. 

Cluster # Function # GO function CS to day 1 

day 1 to day 

6 

day 6 to day 

10 

3 22 regulation of cellular process 0.00 2.09 0.00 

3 23 
cellular component organization or 

biogenesis 
0.00 2.40 0.00 

3 24 structural constituent of ribosome 0.00 1.75 -0.56 

3 25 rRNA binding 0.00 1.61 -0.57 

3 26 translation 0.00 1.60 -0.39 

3 27 organic substance catabolic process 0.00 2.79 0.00 

3 28 cofactor metabolic process 0.00 2.83 0.00 

3 29 proteolysis 0.00 2.65 0.00 

3 30 magnesium ion binding 0.00 3.13 0.00 

3 31 cellular catabolic process 0.00 3.13 0.00 

3 32 ligase activity 0.00 3.11 0.00 

3 33 protein transport 0.00 3.07 0.00 

3 34 tricarboxylic acid cycle 0.00 3.20 0.00 

3 35 coenzyme binding 0.00 3.24 0.00 

1 36 pyruvate metabolic process 0.00 4.50 0.00 

1 37 isomerase activity 0.00 4.34 0.00 

1 38 single-organism catabolic process 0.00 4.74 0.00 

1 39 phosphorylation 0.00 4.73 0.00 

1 40 
single-organism carbohydrate 

metabolic process 
0.00 4.70 0.00 

1 41 
glutamine family amino acid 

metabolic process 
0.00 3.78 0.00 

1 42 
alpha-amino acid biosynthetic 

process 
0.00 3.77 0.00 
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2.4 Conclusions 

Our understanding of how the primary functions of natural microbiomes change spatially 

and temporally in ocean systems is incomplete without information on functional responses 

across broad taxonomic groups. The recent demonstration by Coles et al. [104] that simulated 

microbiomes with limited functional genes can be modeled to recreate biogeochemical gradients  

should inspire a new era of multi-“omic” data delivery. Taking a discovery-based 

metaproteomics approach, I tracked environmentally relevant and statistically significant 

changes in primary metabolic functions of an oceanic microbiome. The operative functions 

identified in these complex systems showed coordinated timing across the bacterial classes in 

response to realistic algal OM input: 1) the uptake and degradation of carbon, 2) protein 

synthesis and ATP generation, 3) redox-driven activation of proton gradients, and 4) reallocation 

of cellular nitrogen and vitamin synthesis. These temporal responses, many of which were 

observed in both Bering Strait and Chukchi Sea microbiomes, predominantly occurred within the 

first 6 days after OM perturbations, providing important time constraints for future experiments 

and simulation-based organic carbon and nitrogen modeling. Additionally, this method yields 

complementary taxonomic distributions as 16S rRNA data at the class level, demonstrating that 

access to both taxonomy and expressed metabolism is possible with one proteomic analysis. In 

doing so, I was able to examine who was doing what across time. 

  The broader perspective of this enrichment method encourages researchers to consider a 

complete metaproteomics dataset rather than select favorite enzymes or element-specific 

pathways or transporters. The observation that many functional responses crossed major bacterial 

class levels suggests that functional composition, not taxonomy, may be the most relevant factor 

for the development of realistic stratified biogeochemical profiles in the coastal ocean, 

corroborating recent models [104]. This proteomic analysis significantly contributes to the 

important question: Does taxonomy matter when modeling oceanic biogeochemical cycling 

through time or depth? Can we focus our efforts on modeling expressed functional traits within a 

microbiome? I anticipate that the results and methods presented here can help guide the selection 

of key, site-specific microbial functions for the purpose of forecasting oceanic biogeochemical 

gradients. 
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CHAPTER 3 

 

3. ORGANIC MATTER PERTURBATIONS DRIVE COMPOSITIONAL AND 

FUNCTIONAL SHIFTS IN ARCTIC OCEAN MICROBIOMES 

 

3.1 Introduction 

The Bering Sea and much of the Chukchi Sea are highly productive systems, and due to 

their shallow shelves are important regions for both carbon cycling and sequestration [105, 106]. 

In shallow shelf systems of the Arctic regions, primary productivity (PP), zooplankton grazing 

and bacterial oxidation at the base of the food web can become uncoupled, contributing to 

elevated organic inputs reaching the shelf sediments, which in turn supports a productive benthic 

ecosystem and an abundance of higher trophic pelagic species [107-109]. These ecosystem-scale 

impacts driven by the dynamics of bacteria and PP [105] (e.g., regional carbon cycling and the 

richness of specific fisheries) are not limited to the Arctic Ocean region  (e.g., [110]) and 

highlight the important ecological role that bacteria play within the global ocean [111].  

The Arctic sea ice extent, age and thickness have steadily decreased within the time 

frame of a decade [112], which contributes to increasing anomalies in spatial and temporal 

heterogeneity of PP within the water column [113]. Because bacterial dynamics can be tightly 

linked to PP [114] and physiochemical conditions within the Arctic Ocean ecosystem [115, 116], 

they are also subject to changing sea ice conditions and water mass currents. Periods of reduced 

sea ice extent increase stratification of the water column, decreasing nutrient availability for 

phytoplankton in the subsurface chlorophyll maximum (SCM) and negatively influencing both 

PP and bacterial community numbers [117]. In addition, areas of increased PP as a result of 

earlier ice retreat and a longer ice-free season [113, 118] may intensify the already low ratios of 

bacterial production to primary production measured in the polar oceans compared to more 

temperate regions, but may also be moderated by higher bacterial degradative efficiencies with 

increasing water temperatures [119]. How potential changes in PP will impact the balance of OM 

availability for consumption or eventual sequestration in the sediments is dependent on the 
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intricate relationship between environmental controls over PP and its oxidation by bacteria and 

higher level consumers. 

Even under cold water conditions in the high latitude oceans, native microbial 

communities effectively recycle organic matter [120, 121], which offshore, primarily originates 

from diatoms [122]. Bacterial taxonomic composition, metabolic strategies and enzymatic 

activities have been reported from cold water marine systems [5, 24, 123] all of which can be 

impacted by environmental conditions [124]. As tight biological connections often dominate the 

base of the food web of the Chukchi Sea and Bering Strait region, a central goal is to understand 

how rapid changes seen in OM inputs will influence community responses by the dominant 

degraders and recyclers in this system. The goals of this chapter were to investigate how rapid 

shifts in OM availability, as OM perturbations, influenced changes in Arctic bacterial community 

taxonomic composition of two native microbiomes and to quantify the metabolic responses 

under variable conditions.  

To accomplish these goals, microbiomes were collected via size fractionation from the 

Bering Strait subsurface chlorophyll maximum (SCM) and from bottom waters of the northern 

Chukchi Sea for experimental shipboard incubations. At each site in situ particulate organic 

matter >1.0 µm in size (POM) was initially removed. Each remaining microbiome was then 

incubated in the dark at 0°C for ten days under conditions of either A) left unamended to act as 

an oligotrophic control under negligible POM concentrations, or B) supplemented with algal-

derived organic matter >5 µm in size (aOM) collected from the Bering Strait SCM, concentrated 

and lysed prior to addition to mimic conditions during the decline of an algal bloom. Free-living 

bacterial community taxonomic compositions were tracked over time with 16S rRNA 

sequencing. Bacterial metabolism was tracked with metaproteomics (matched to a site-specific 

metagenomics library) and a peptide-based functional enrichment analysis was employed [36] to 

characterize and quantify functional differences between the two microbiomes and to identify the 

associated taxonomic classes. 

Specific hypotheses guided the analysis: 1) the same rapid OM perturbation, aOM input 

or the control (POM removal), would lead to similar changes in taxonomic composition and 

function (i.e., convergence) of two distinct free-living Arctic communities over a time frame of 
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10 days, and 2) metaproteomic differences between the two microbiomes would reflect the 

mechanisms operative within each community that contribute to adaptation and niche 

differentiation under variable OM environments. The results indicate that changes induced to the 

OM environment influenced the relationship between microbial composition and function, with 

potential implications for local nutrient and carbon cycling. 

3.2 Additional Methods 

Methods which were consistent throughout the three research chapters are described in 

detail in Chapter 2. Additional methods specific to the results described in this chapter are 

provided here. 

3.2.1 Hierarchical clustering 

Dissimilarity between variables (gene ontology (GO) terms that differed significantly 

between stations) was performed with the dist function in R, and was measured with the 

Euclidean distance metric. Hierarchical clustering was performed using the hclust function in R 

with the complete linkage method, which maximizes the dissimilarity between merged variables 

and the rest of the variables, represented as node height. Cutting the dendrograms at a height of 4 

(h=4) resulted in 10 clusters differentiating GO functions between the two stations. A heatmap of 

the log2 fold changes between microbiomes for the GO terms were created using the heatmap.2 

function in gplot package in R.  

3.2.2 Beta-diversity statistics 

All multivariate statistics were carried out on normalized 16S rRNA OTU abundance 

data with the vegan package in R and included all sampling time points (days 0, 1, 2, 4, 6, 10). 

The two sample sites were assumed to be independent of one another based on origin; the Bering 

Strait SCM sample was collected from warmer and less saline Bering Shelf Anadyr Water, 

which is a mixed water mass from the Anadyr Water and Bering Shelf Water [125] while the 

Chukchi Sea bottom water sample was collected from the colder and more saline Pacific winter 

water mass [115, 126] with high nutrient concentrations (Figure 2).  Normalized 16S rRNA OTU 

abundance data was used to build a Bray-Curtis dissimilarity matrix (vegdist function) and a non-

metric multidimensional scaling (nMDS) plot was created with the dissimilarity matrix using the 
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metaMDS function on two reduced dimensions to observe spatial patterns between samples 

based on the variables of station, treatment and time. Ordination stress was low (0.089) and 

scatter around the regression line was tight (Figure 11), both indicating good representation of 

the data.  

A permutational analysis of variance (PERMANOVA) was run on the Bray-Curtis 

dissimilarity matrix (adonis function) to test for statistical differences in bacterial structure 

between variables (null hypothesis: Ho = “the centroids of the groups, as defined in the space of 

the chosen resemblance measure, are equivalent for all groups”) [127]. A PERMANOVA was 

chosen over an analysis of similarities (ANOSIM) test because the latter is limited to categorical 

variables and cannot handle continuous variables (i.e., time). In addition, PERMANOVA has 

been found to be a more robust and powerful measure of difference in taxonomic structure 

within ecological datasets [127]. An analysis of similarity percentages (SIMPER) (simper 

function) was run on the Bray-Curtis dissimilarity matrix to identify which OTUs drove 

compositional patterns between groups (beta-diversity between station or treatment) (Appendix 

4). This function is biased for highly skewed data, where the more abundant and variable OTUs 

will have more sway.  

3.2.3 Alpha-diversity statistics 

A Shannon Diversity Index was completed in R (diversity function). The histogram 

displays a slight skew for the diversity measure (Figure 12), however a Shapiro-Wilk test of 

normality (Ho: population is normally distributed; α = 0.01) provided evidence that the diversity 

values had a normal distribution (p = 0.03). Therefore, a mixed model analysis of variance 

(ANOVA) was performed (aov function) to measure if microbiome diversity was dependent on 

time, treatment or station (Ho: There is no difference in diversity between variables; α = 0.01). 

Time did not have significant influence on diversity (p = 0.38), so this variable was excluded to 

simplify the model. Station and treatment both impacted microbial diversity (p < 0.01), and 

because both of these variables are categorical, Shannon diversity could be compared with a post 

hoc Tukey honest significance differences (HSD) test (TukeyHSD function is a pairwise 

comparison between groups with corrections for multiple comparisons). 
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Figure 11 - Shepherd plot. Ordination stress in the non-metric multidimensional scaling 

(nMDS) plot was low (0.089) and scatter around the regression line was tight, both indicating 

good representation of the data.  
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Figure 12 - Histogram. Histogram of Shannon diversity indices showing a normal distribution, 

based on a Shapiro-Wilk test of normality (α > 0.1). 
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3.2.4 Test of linearity 

To determine if a linear relationship existed between bacterial structure and function, a 

test of significant correlation was run on dissimilarity values. The Bray-Curtis dissimilarity 

measures from the normalized 16S rRNA OTUs for each data point were used to compare 

bacterial community structure between the two microbiomes over time. To compare function 

between microbiomes, the sum of the number of GO terms with significant differences was used 

at each time point. A Pearson correlation test (Ho: true correlation is equal to 0) was completed 

in the vegan package of R (cor.test function). This test was also used to test for correlation 

between GO and OTU richness.  

3.3 Results 

3.3.1 Comparative taxonomic composition of the Bering Strait and Chukchi Sea  

At the start of the incubations (day 0), 16s RNA analysis showed that bacterial taxonomic 

composition between the two sites were distinct as demonstrated by the separation along axis 1 

of the non-metric multidimensional scaling (nMDS) plot (Figure 13). In addition, Bray-Curtis 

dissimilarity between these initial microbiomes was BC: 0.53-0.54 (n = 2) (Figure 14A, 

Appendix 5), confirming a difference in composition was present in the original microbiome 

samples. Three bacterial classes, Alphaproteobacteria, Flavobacteria and Gammaproteobacteria, 

dominated the initial core microbiomes, contributing approximately 90% of OTU abundances at 

both locations (Figure 15A). Despite this dominance, the relative distribution among these core 

classes differed at each site. Within the Bering Strait microbiome, each core class represented 

nearly equivalent total relative abundances (28-34%). In contrast, Gammaproteobacteria 

dominated initial OTU abundances (50%) within the Chukchi Sea, which was significantly 

higher than in the Bering Strait (two-sample t test assuming unequal variances: t = -38.40, p < 

0.001) and Flavobacterial abundance were significantly lower at 9% (t = 37.02, α = 0.05, p = 

0.018). Alphaproteobacteria abundances were equivalent between stations (p > 0.05).  
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Figure 13 - NMDS. A non-metric multidimensional scaling (nMDS) plot comparing Bray-Curtis 

dissimilarity of normalized bacterial operational taxonomic units (OTUs) from 16S rRNA 

sequencing from stations Bering Strait (BSt) and Chukchi Sea (CS) over the 10 day experiment 

and under the two organic perturbations (control treatment where particulate organic matter was 

removed (POM removal) and substrate treatment where algal organic matter was added (aOM 

input)). Ordination stress = 0.089. A permutational analysis of variance (PERMANOVA) 

confirmed that bacterial composition between the two stations were statistically different at α = 

0.01 (p < 0.01) and that treatment and time variables were significant at α = 0.05 (treatment, p = 

0.012 & time, p = 0.011). 
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Figure 14 - Bray-Curtis dissimilarity trends. Bray-Curtis (BC) dissimilarity values over time 

comparing response of free-living bacterial composition between A) microbiomes Bering Strait 

(BSt) and Chukchi Sea (CS) as a function of organic perturbations (control treatment where 

particulate organic matter was removed (POM removal) and substrate treatment where algal 

organic matter was added (aOM input)), B) OM perturbation within each microbiome, and C) 

shifts in bacterial composition at each time point compared to the initial microbiome at day 0. 
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Figure 14 – Continued. 
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Figure 15 - Initial compositions of bacterial communities. The relative abundances of 

bacterial community composition at the start of the incubation experiments (day 0) in the Bering 

Strait (BSt) and Chukchi Sea (CS) based on normalized operational taxonomic units (OTUs) 

from 16S rRNA sequences for A) the 3 dominant bacterial classes, Alphaproteobacteria (Alpha), 

Flavobacteria (Flavo) and Gammaproteobacteria (Gamma), and the ‘Other’ category, which is a 

sum of the remaining classes. aOM input = algal organic matter input; POM removal = control 

treatment where POM >1.0 µm was removed without aOM input. Significance tests (2-tail t-test 

assuming unequal variance) was used to determine difference of relative abundances of each 

class between the initial microbiomes (significantly different means (n=2) denoted * = α of 0.01, 

** = α of 0.05). B) Alpha (order), Flavo (genus) and Gamma (order) taxonomic classifications at 

greater detail; taxonomic group was included if >5% in one sample and otherwise those groups 

that made up <5% abundances were summed into a residual category (e.g., ‘Alpha <5%’). 
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Figure 15 – Continued. 
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An examination at a higher taxonomic resolution showed that the Pelagibacter spp. 

composed the highest relative abundances within Class Alphaproteobacteria at day 0, 

contributing roughly 65% within the Bering Strait and 75% within the Chukchi Sea (Figure 

15B). The Rhodobacterales order composed 30% of Alphaproteobacteria within the Bering Strait 

while only contributing 10% to the Class within the bottom water sample, the latter microbiome 

which also had a high contribution by the Rhodospirillales order (~10%). Genus Polaribacter 

spp. of Class Flavobacteria had high relative abundances in the Bering Strait (30%) and Chukchi 

Sea (~20%), followed by Owenweeksia spp. (20% & 15%, respectively). Unique to the Chukchi 

Sea bottom waters were the high contributions of NS4 (30%) and NS9 (10%) marine groups, 

which composed <5% of Class Flavobacteria within the Bering Strait. Within the Class 

Gammaproteobacteria, the Oceanospirillales and Cellvibrionales orders had by far the greatest 

relative abundances within both the Bering Strait (80% & 15%, respectively) and Chukchi Sea 

(90% and 5%, respectively). 

The difference seen between the Bering Strait and Chukchi Sea bacterial compositions 

measured at day 0 continued when all temporal samples were considered (Figure 13). A 

permutational analysis of variance (PERMANOVA) confirmed that bacterial composition 

between the two stations were statistically different at α = 0.01 (p < 0.01) and that treatment and 

time variables were significant at α = 0.05 (treatment, p = 0.012 & time, p = 0.011). An analysis 

of similarity percentages (SIMPER) identified that 17 out of over 24,000 OTUs within the 

dataset contributed to 50% of the dissimilarity between the two Arctic microbiomes and 166 

OTUs contributed to the top 80% of dissimilarity (Appendix 4). The OTUs associated with only 

3 genera contributed to 34% of the dissimilarity measured between stations, each with a 

contribution of ~11% and included Balneatrix spp. and an unclassified Oceanospirillales spp., 

both within the Oceanospirillales order of Gammaproteobacteria, along with Polaribacter spp. 

of Flavobacteria. Genera Pelagibacter spp. (SAR11 clade) and Sulfitobacter spp. 

(Rhodobacterale order), both of Class Alphaproteobacteria, drove 6% and 5% dissimilarity, 

respectively. Pelagibacter spp. decreased abundances over the incubation period, which was 

consistent between both microbiomes. Balneatrix spp. was a dominant genus with no clear trend 

throughout, except for relatively large temporal fluctuations within the control (Figure 6); in the 

Chukchi Sea, the genus doubled in relative abundance over the 10 days while in the Bering 

Strait, it reached similar abundance by day 4 but then dropped again by day 10. Another 
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dominant feature was the large relative increases of Polaribacter spp. to reach ~30% total 

abundance after aOM input for both microbiomes, although the timing of these changes were 

dependent on microbiome origin. Further, high relative abundances of Sulfitobacter spp. in the 

Bering Strait and the unclassified Oceanospirillales spp. in the Chukchi Sea highlight some of 

the varied community compositions of the major bacterial genera. 

3.3.2 Organic perturbations, community composition and bacterial abundance over time 

Over the first 2 days of incubation, OM perturbation (i.e., treatment of aOM input or the 

control where POM was removed) had little influence on community composition (Bray-Curtis 

values, BC: <0.15) (Figure 14B). By day 4, however, a treatment-induced taxonomic shift 

occurred, as dissimilarity values increased to >0.5 (Figure 14B) and intra-community separation 

between OM treatments was seen along both nMDS axes (Figure 13). Changes in taxonomic 

abundances over time revealed that only a few genera drove a majority of the dissimilarities 

between OM treatments. For example, within both microbiomes, temporal increases in 

Polaribacter spp. under aOM input was not matched within the control incubations (Figure 6). 

OM perturbations appeared to have a greater influence over taxonomic composition within the 

Chukchi Sea microbiome, where BC values remained high between days 4-10 (Figure 14B). 

Compositional differences between Chukchi Sea OM perturbations included the relatively high 

abundances of Balneatrix spp. within the control and the aggregated increase of genera with 

relatively low abundances (‘Other (<5%)’) (Figure 6). Conversely, aOM input during this time 

stimulated increases in genera of the family Colwelliaceae, % increases that rivaled that of the 

Polaribacter spp.  

Following aOM input into the incubations, there was a peak in taxonomic dissimilarity 

between the Bering Strait and Chukchi Sea microbiomes by day 2 (BC: 0.71) (Figure 14A), at a 

time when Flavobacterial relative abundances were high within the Bering Strait (45%) but still 

low within the Chukchi Sea (12%) (Figure 16). This high dissimilarity did not persist by day 4 

(BC: 0.56) as Flavobacterial abundances increased to 30% within the Chukchi Sea microbiome, 

which likely contributed to the increased similarity in taxonomic composition at this time. At a 

finer taxonomic resolution, Polaribacter spp. reached >25% of total OTUs within both 

microbiomes, increases that occurred at day 2 within the Bering Strait compared to day 4 within 

the Chukchi Sea. This offset in Polaribacter spp. response between microbiomes likely explains 
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not only the peak in the BC values at day 2 under aOM input, but also the return to comparable 

dissimilarity values after this time (Figure 14A).  Independent of microbiome, the large increases 

in Polaribacter spp. under aOM input were inversely related to changes in relative abundances 

of unclassified Oceanospirillales spp. (r = -0.89, p < 0.01) and Pelagibacter spp. (r = -0.98, p < 

0.01). 

Within the control incubation where POM was removed, the Chukchi Sea bacterial 

community displayed very little increase in bacterial abundances by day 6 whereas the Bering 

Strait community experienced a 6 fold increase through day 10 (Table 1). Greatest dissimilarity 

between the microbiomes under this treatment occurred at day 4 (BC: 0.76) and remained 

elevated until the end of the incubations at day 10 (BC: 0.66) (Figure 14A). 

Gammaproteobacteria had highest abundances within the Chukchi Sea under these conditions 

when Flavobacterial abundances remained low, whereas in the Bering Strait, bacterial 

contributions were more equivalent among these dominating classes (Figure 16) and appear to 

explain these dissimilarity trends within the control. 

3.3.3 Alpha diversity 

Biodiversity is an important factor of bacterial community functioning and stability 

during environmental change (e.g.,[7]) and was followed using the Shannon index. Bacterial 

biodiversity was higher at the initiation of the incubation experiments (day 0) within the 

microbiome collected from the Bering Strait SCM layer (average = 4.75, n = 2, standard 

deviation = 2.49E-03) compared to the microbiome collected from Chukchi Sea bottom waters 

(average = 4.20, n = 2, standard deviation = 1.64E-02) (Appendix 6). A mixed model analysis of 

variance (ANOVA) assessed if significant differences in microbial diversity was dependent on 

categorical variables, station and treatment, or the continuous variable as time. The results 

indicated that microbial diversity was not dependent on time (p = 0.38) nor treatment with all 

samples combined (ANOVA, p = 0.58) or when separating each microbiome (Bering Strait, p = 

0.38; Chukchi Sea, p = 0.07). However, the interaction between station and treatment had 

significant impacts on diversity (p < 0.01). The higher diversity within the initial water sample 

from the Bering Strait was maintained throughout the 10 days under both treatments (Tukey 

Honest Significance Differences tests: aOM input, p < 0.01; POM removal at α = 0.05, p = 

0.016) (Figure 17). The Chukchi Sea microbiome with aOM input resulted in the lowest overall   
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Figure 16 - High temporal resolution of 16S rRNA bacterial classes. Bacterial community 

taxonomic classes (relative abundances) from 16S rRNA sequences (days 0, 1, 2, 4, 6, 10). 

Classes with a minimum of 1% at one time point are shown, otherwise they are summed into the 

‘Other <1%’ category. Organic perturbations consisted of the control, where particulate organic 

matter was removed (POM remova) or algal organic matter was added (aOM input). 
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Figure 17 - Boxplot of Shannon diversity indices. Boxplot comparing Shannon diversity 

indices between microbiomes, Bering Strait (BSt) and Chukchi Sea (CS), with organic 

perturbations: the control where particulate organic matter was removed (POMr) or algal organic 

matter was added (aOM input). A mixed model analysis of variance (ANOVA) and Tukey 

honest significant difference test confirmed that Shannon diversities differed between 

microbiomes due to aOM input (p < 0.01) and in the control (POMr) (at α < 0.05, p = 0.016). 

Further, a significant difference in diversity occurred between microbiomes with opposite 

perturbations, BSt within the control versus CS after aOM input (p < 0.01).  
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diversity, which was significantly lower than the Bering Strait bacterial diversity under both 

aOM input and the control where POM was removed (Tukey, p < 0.01). 

3.3.4 Peptide and Gene ontology (GO) identification 

The Bering Strait microbiome contained a greater abundance of peptide spectrum 

matches (PSM) before and 10 days after OM perturbations, however, the increases measured 

over time were greater within the Chukchi Sea (100% vs 100-200%, respectively) (Table 2). 

Under aOM input, the increases in peptide expression were presumably linked to the relatively 

large increases in PSMs associated with Flavobacteria (Figure 5). Their increased activity was 

offset by a few days; Flavobacterial PSMs increased in the Bering Strait microbiome at day 1 

(from 15% to 30%) but in the Chukchi Sea, this increase occurred between days 1-6 (from 9% to 

46%). The 16S rRNA data (Figure 16) provided a different temporal resolution and indicated 

that Flavobacteria relative abundances of the Bering Strait increased at day 2 (from 32% to 45%) 

while in the Chukchi Sea, the increase occurred between days 2-4 (from 12% to 30%). 

3.3.5 Comparative proteomic responses between microbiomes: Bering Strait community 

functions 

An enrichment analysis on all gene ontology (GO) terms that matched to peptide 

sequences returned 81 functions with statistically different PSM counts (p-value < 0.01) between 

the Chukchi Sea and the Bering Strait microbiomes over the 10 day incubation experiments. 

These GO terms grouped into 10 hierarchical clusters (Figure 18; Table 5). Within the initial 

Bering Strait community, 17 GO terms were more abundant than within the Chukchi Sea 

microbiome. Those with log2 fold differences >1 included magnesium ion binding (#37), organic 

substance catabolism (#38, #59) and outer membrane-bounded periplasmic space (#52). The 

remaining GO terms that were significantly greater in the initial samples from the Bering Strait 

(log2 fold differences <1) included functions in clusters 4 & 5 related to translation and 

transcription (#30-32, #57-58, #73-79) and transport (#17).  

Within one day following aOM additions, the Bering Strait microbiome showed 26 

functions more abundant than seen in the Chukchi Sea community. Cluster 9 contained those 

with the largest log2 fold differences (>3), which were related to peptidyl-propyl isomerization 
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(#55-56) and protein transport (#54). Cluster 4 represented Bering Strait functions that were 

higher at this time, and included a number of terms of translation (>2 log2 fold differences, #57-

64) as well as transcription, organic substance metabolism, energy production and conversion, 

and binding activity with proteins, ATP and metal ions (#65-79). By day 6 and 10 under aOM 

input, the Bering Strait microbiome was binding and transporting the monosaccharide xylose 

(#13-14) to a greater degree than the Chukchi Sea community (log2 fold differences ranging from 

3.78-5.26). Folic acid-containing compound biosynthesis (vitamin B9) (#9) also had a higher 

expression at day 6 (>3) and the ABC transport complex was also significantly more abundant 

(#52-53, ~2 log2 fold differences) at this time. Log2 fold differences between 1-2 also occurred in 

this time frame, including 4 iron, 4 sulfur binding (#5), molybdenum ion binding (#8) and 

nitrogen fixation (#34), plus few terms with <1 greater abundance (i.e., the formation of C-N 

bonds (#35), protein folding (#72) and organonitrogen compound synthesis (#15-16)). 

By day 6 after initiation of the control conditions where POM was removed without 

subsequent addition of aOM, Bering Strait microbiome functions with >1.5 log2 fold differences 

compared to the Chukchi Sea microbiome occurred within clusters 2, 3 and 9 and were related to 

glutamine synthesis (#41-42), peptidyl-prolyl isomerization (#49, #56), synthesis of two 

branched chain amino acids with hydrophobic side chains (#47, #51), DNA metabolism (#43), 

ATP binding cassette (ABC) transport cellular components (#52-53) and a number of molecular 

functions of carboxylic acid conversion (#39, #44, #48, #50) and acid-thiol ligase activity (#46) 

(Figure 18, Table 5). At the end of the incubation (day 10), many of these functions continued to 

be more abundant within the Bering Strait microbiome, including the formation of C-N bonds 

(#35), polypeptide folding (#49, #56), ABC transporters (#52-53), energy conversion involving 

alcohol side chains (#50) and isoleucine synthesis (#51). 
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Figure 18 - Heatmap of GO functions differentiating microbiomes. Dendrogram and heatmap 

of Gene Ontology (GO) functions and significant log2 fold differences (Bonferroni-corrected p-

value < 0.01 from a two-tailed test of proportions) of peptide spectrum matches (PSM) between 

microbiomes Bering Strait (BSt) and Chukchi Sea (CS) at each time point (Initial, 1, 6, 10) 

during the incubations; Organic perturbation included either the removal of particulate organic 

matter (POM) to act as the control, or algal organic matter (aOM) input. Blue shading indicates 

degree of log2 fold difference with significantly greater functional abundances in the BSt 

metaproteome and red shading indicates degree of log2 fold difference with significantly greater 

functional abundances in the CS metaproteome. Functions with log2 fold change values are 

outlined in Table 5.   
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Table 5 - Functional differences between microbiomes. Gene Ontology (GO) functions and 

significant log2 fold differences (Bonferroni-corrected p-value < 0.01 from a two-tailed test of 

proportions) of peptide spectrum matches (PSM) between microbiomes Bering Strait (BSt) and 

Chukchi Sea (CS) at each time point (Initial, d1, d6, d10). Organic perturbation included either 

the control where particulate organic matter was removed (POM removal) or algal organic 

matter (aOM) input. A negative log2 fold difference indicates significantly higher PSM values 

within the BSt metaproteome and a positive value indicates significantly higher PSM values 

within the CS metaproteome. Function order matches the heatmap in Figure 18. Note: spectral 

data was missing for CS at day 1 within the control, therefore a comparison between 

microbiomes was not possible for the samples where POM was removed. 

        POM removal aOM input 

ID # GO function 
Cluster 

# 
Initial d1 d6 d10 d1 d6 d10 

1 protein refolding 1 0.65 0 1.06 0.9 0 0 0 

2 integral component of membrane 1 0 0 1.07 1.04 0 0.53 0.69 

3 inorganic diphosphatase activity 1 0 0 2.09 1.55 0 0 0 

4 
hydrogen-translocating 

pyrophosphatase activity 
1 0 0 2.26 1.67 0 0 0 

5 4 iron, 4 sulfur cluster binding 1 1.3 0 0.9 0.89 0 -1.3 0 

6 
protein transport by the Sec 

complex 
1 0 0 0 2.05 0 0 0 

7 amino acid transport 1 0 0 0 2.75 0 0 0 

8 molybdenum ion binding 1 0 0 0 0 0 0 -1.7 

9 
folic acid-containing compound 

biosynthetic process 
8 0 0 0 0 0 -3.2 0 

10 photosystem II 6 0 0 0 0 3.79 0 0 

11 chloroplast thylakoid membrane 6 0 0 0 0 3.79 0 0 

12 thylakoid 6 0 0 0 0 3.79 0 0 

13 monosaccharide binding 7 0 0 0 0 0 -3.8 -5.3 

14 D-xylose transport 7 0 0 0 0 0 -3.8 -5.3 

15 
organonitrogen compound 

biosynthetic process 
5 0 0 0 0 0 0 -0.2 

16 cellular biosynthetic process 5 0 0 0 0 0 0 -0.2 

17 transport 5 -0.29 0 0 0 0 0 0 

18 cytoplasm 5 0.45 0 0 0 0 0 0 

19 

monovalent inorganic cation 

transmembrane transporter 

activity 

5 0 0 0.56 0 0 0 0 

20 ion transmembrane transport 5 0 0 0.58 0 0 0 0 

21 proton transport 5 0 0 0.68 0 0 0 0 

22 electron carrier activity 5 0 0 0.81 0 0 0 0 

23 plasma membrane 5 0 0 0.6 0.58 0 0 0 

24 cell outer membrane 5 0 0 0.52 0.48 0 0 0 

25 
substrate-specific transporter 

activity 
5 0 0 0 0.56 0 0 0 
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Table 5 – continued. 

        POM removal aOM input 

ID # GO function 
Cluster 

# 
Initial d1 d6 d10 d1 d6 d10 

26 
monovalent inorganic cation 

transport 
5 0 0 0 0.61 0 0 0 

27 transporter activity 5 0 0 0 0 0 0 0.34 

28 membrane 5 0 0 0 0 0 0.22 0.4 

29 
generation of precursor 

metabolites and energy 
5 0 0 0 0 0 0 0.72 

30 single-organism cellular process 5 -0.7 0 0 0 0 0 0 

31 RNA binding 5 -0.77 0 0 0 0 0 0 

32 
small molecule metabolic 

process 
5 -0.92 0 0 0 0 0 0 

33 

proton-transporting ATP 

synthase complex, catalytic core 

F(1) 

5 0 0 0.78 0 1.28 0 0 

34 nitrogen fixation 5 0 0 0 0 0 -1.5 0 

35 
ligase activity, forming carbon-

nitrogen bonds 
5 0 0 0 -1 0 -0.8 0 

36 respiratory chain 5 0 0 0 0 0 0 1.65 

37 magnesium ion binding 5 -2.46 0 -1.5 0 0 0 0 

38 cellular catabolic process 5 -2.21 0 0 0 0 0 0 

39 
monocarboxylic acid metabolic 

process 
2 0 0 -1.5 0 0 0 0 

40 cofactor binding 2 0 0 -1 0 0 0 0 

41 glutamine biosynthetic process 2 0 0 -1.9 0 0 0 0 

42 
glutamate-ammonia ligase 

activity 
2 0 0 -1.9 0 0 0 0 

43 DNA metabolic process 2 0 0 -2 0 0 0 0 

44 
dicarboxylic acid biosynthetic 

process 
2 0 0 -2.8 0 0 0 0 

45 cell cycle 2 0 0 -2.7 0 0 0 0 

46 acid-thiol ligase activity 2 0 0 -3 0 0 0 0 

47 valine biosynthetic process 2 0 0 -2.5 0 0 0 0 

48 
transferase activity, transferring 

acyl groups 
2 0 0 -2.4 0 0 0 0 

49 
peptidyl-prolyl cis-trans 

isomerase activity 
2 0 0 -2 -1.9 0 0 0 

50 

oxidoreductase activity, acting on 

the CH-OH group of donors, 

NAD or NADP as acceptor 

2 0 0 -2.2 -1.8 0 0 0 

51 isoleucine biosynthetic process 2 0 0 -2.5 -2.3 0 0 0 

52 
outer membrane-bounded 

periplasmic space 
3 -1.67 0 -1.9 -2.1 0 -2 0 

53 
ATP-binding cassette (ABC) 

transporter complex 
3 0 0 -3 -3.3 0 -2 -1 
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Table 5 – continued. 

        POM removal aOM input 

ID # GO function 
Cluster 

# 
Initial d1 d6 d10 d1 d6 d10 

54 protein transport 9 0 0 0 0 -3.2 0 0 

55 isomerase activity 9 0 0 0 0 -4 0 0 

56 
protein peptidyl-prolyl 

isomerization 
9 0 0 -2 -1.9 -3.6 0 0 

57 translation 4 -0.93 0 -0.4 -0.5 -2.4 0 0 

58 structural constituent of ribosome 4 -0.88 0 -0.3 -0.5 -2.7 0 0 

59 
organic substance catabolic 

process 
4 -1.75 0 0 0 -2.2 0 0 

60 rRNA binding 4 0 0 0 0 -2.5 0 0 

61 
cellular component organization 

or biogenesis 
4 0 0 0 0 -2.4 0 0 

62 
carboxylic acid metabolic 

process 
4 0 0 0 0 -2.8 0 0 

63 tRNA binding 4 0 0 0 0 -2.2 0 0 

64 regulation of cellular process 4 0 0 0 0 -2 0 0 

65 unfolded protein binding 4 0 0 0.71 0.55 -1.3 0 0 

66 ATP binding 4 0 0 0.3 0 -0.8 0 0 

67 oxidation-reduction process 4 0 0 0 0 -1.4 0 0 

68 metal ion binding 4 0 0 0 0 -1.5 0 0 

69 
regulation of primary metabolic 

process 
4 0 0 0 0 -1.7 0 0 

70 
regulation of macromolecule 

metabolic process 
4 0 0 0 0 -1.7 0 0 

71 receptor activity 4 0 0 0 0 -1.5 0 0.31 

72 protein folding 4 0 0 0 0 -1.4 0 -0.4 

73 ribosome 4 -0.61 0 0 0 -1.3 0 0 

74 DNA binding 4 -0.52 0 0 0 -1.6 0 0 

75 transcription, DNA-templated 4 -0.82 0 0 0 -1.6 0 0 

76 
DNA-directed RNA polymerase 

activity 
4 -0.86 0 0 0.48 -1.3 0 0 

77 
single-organism biosynthetic 

process 
4 -0.82 0 0 0 -1 0 0 

78 intracellular 4 -0.59 0 0 0 -1 0 0 

79 
nucleoside-triphosphatase 

activity 
4 -0.67 0 0 0 -0.7 0 0 

80 nitrate reductase activity 10 4.79 0 5.64 4.52 5.21 0 0 

81 monooxygenase activity 10 4.56 0 3.02 3.63 5.47 0 0 
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3.3.6 Comparative proteomic responses between microbiomes: Chukchi Sea community 

functions 

Five GO terms were more abundant within the initial Chukchi Sea microbiome compared 

to the Bering Strait, including functions associated with nitrate reductase and monooxygenase 

activities (#80-81, log2 fold changes of 4.79 and 4.56, respectively) and 4 iron, 4 sulfur ion 

binding (#5, log2 fold change 1.3), protein refolding (#1, log2 fold change 0.65) and a general 

cellular component term, cytoplasm (#18, log2 fold change 0.45). After aOM input, 12 GO terms 

were detected at a greater abundance within the Chukchi Sea microbiome. At day 1, these 

functions included 3 cellular components of photosynthesis, all with log2 fold changes of 3.79 

(cluster 6, #10-12). Under aOM input, nitrate reductase and monooxygenase activities were only 

significant at day 1, although the differences were large (log2 fold changes of 5.21 and 5.47, 

respectively) and ATP synthase complex was also greater at this time. After day 1 of aOM input, 

only one GO term was identified in the Chukchi Sea with a log2 fold change >1, respiratory 

chain (#36). The other GO functions at day 6 and 10 included all general terms; receptor activity 

(#71), component of membrane (#2), transporter activity (#27), membrane (#28) and generation 

of precursor metabolites and energy (#29) with log2 fold differences <1. 

From day six to ten after initiation of the control (POM removal), 21 GO terms with 

significantly higher abundances within the Chukchi Sea microbiome were included in clusters 1 

(#1-7), 5 (#19-26, #33), 4 (#65-66, #76) and 10 (#80-81). Similar to the initial microbiomes, 

nitrate reductase and monooxygenase activities (#80-81) had largest differences between the two 

microbiomes. Functions in cluster 1 with log2 fold differences >2 included molecular functions 

related to energy production by pyrophosphate hydrolysis (#3-4) and the transport of proteins 

and amino acids (#6-7). As in the initial microbiomes, protein refolding (#1) and 4 iron, 4 sulfur 

ion binding (#5) functions continued to be elevated within the Chukchi Sea microbiome 6-10 

days after POM removal. The functions with greater abundance in the Chukchi Sea microbiome 

from cluster 5 involved ion transport (#19-26, #33), including the ATP synthase complex (#33). 

Lastly, functions from cluster 4 included a transcription term (#76) and binding of protein and 

ATP (#65-66). 
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3.4 Discussion 

At the community level, water mass, OM perturbations and time all appear to contribute 

to the structuring of bacterial taxonomy and functionality in these shallow shelf Arctic Ocean 

ecosystems. It has previously been suggested that depth is a principle driver in determining 

bacterial taxonomic composition in the northern Chukchi Sea, where different water masses act 

as boundaries to dispersal [115]. The Bering Strait SCM sample was collected from warmer and 

less saline Bering Shelf Anadyr Water, which is a mixed water mass composed of Anadyr Water 

and Bering Shelf Water [125] while the Chukchi Sea bottom water represents the colder and 

more saline Pacific winter water mass [115, 126] with higher nutrient concentrations (Figure 2). 

The different water masses likely contributed to the compositional distinction measured in the 

initial microbiomes, despite the close proximity of the two stations in oceanographic terms. 

The addition of labile algal organic matter to the Bering Strait and Chukchi Sea 

microbiomes stimulated large increases in bacterial abundance within the 10 day incubations, 

demonstrating that at a community level the two microbiomes were similarly equipped to access 

labile material for growth and replication. This response was expected, as increases in bacterial 

abundance after algal blooms is a dominant feature within the global ocean [19], including the 

Arctic Ocean [128]. Within the control incubation, where POM was absent, however, changes in 

bacterial abundance over the 10 days within each microbiome were considerably different, 

indicating that the Bering Strait microbiome was more adapted to rapid perturbations in OM 

concentrations while the Chukchi Sea microbiome displayed greater sensitivity. This difference 

was unexpected, given that incubation temperatures were 2°C cooler compared to Bering Strait 

in situ conditions (from 2.06°C to 0°C under incubation) while the Chukchi Sea underwent a 

nearly 2°C increase in temperature (from -1.72°C to 0°C) and the assumption that in the cold 

ocean, bacterial abundance and production is not only dependent on OM concentrations, but also 

on temperature [110, 129]. The divergent response in bacterial abundance under POM removal 

may be a consequence of the significant differences in bacterial diversities between the 

microbiomes, where the more diverse Bering Strait community maintained a greater stability and 

capacity to adapt to disturbed environmental conditions [7, 130]. It appears that differences in 

diversity may lead to distinct changes in abundance for a specific Arctic microbiome and may be 

a factor in predicting ecosystem responses to OM perturbations.  
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Both communities underwent some successional shift in bacterial composition from their 

original compositions dependent upon both time and treatment (Figure 14), consistent with the 

theory that bacterial community taxonomic composition is selected by the environment (e.g., 

[124, 131]). The consistency in the early compositional shifts (days 0-2) between stations and 

treatments indicates that changes to bacterial composition measured were likely a response to 

isolation (‘bottle effects’) [132]. Structural rearrangement as a consequence of initial microbiome 

taxonomic composition or OM perturbation was therefore resistant until 2+ days after 

incubation, when it became evident that the Chukchi Sea microbiome was more sensitive than 

the Bering Strait microbiome to OM disturbances, corroborating abundance data. However, 

following definitions outlined by Allison and Martiny [3], neither microbiome was completely 

resilient or resistant to the OM disturbances over a ten day period, with shifts in composition 

occurring as early as day 1. Although structural rearrangement also occurred within the Bering 

Strait, it was less extensive, especially within the control where there was a return of bacterial 

composition towards more similar initial community composition than the other scenarios, 

demonstrating a resiliency to this specific OM perturbation within the more diverse microbiome 

[133]. A longer incubation time would be needed to determine if the surface microbiome would 

return to its initial bacterial composition. 

Based upon the results obtained from these shipboard incubations, I addressed one of the 

hypotheses that the taxonomic composition of two distinct free-living Arctic communities would 

become more similar as a response to rapid aOM exposure. The structural rearrangement that 

occurred after aOM input within each microbiome over a ten day period (Figure 14) occurred in 

similar ways to one another by days 4-10, as evidence by the return of Bray-Curtis values 

comparing the two stations to those from the initiation of the experiments. This suggests that 

high aOM concentrations supplied from diatom phytodetritus did not drive the two microbiomes 

to taxonomically converge or diverge by day 10, but that availability of labile substrates drove 

the same bacterioplankton taxonomic groups to benefit. Indeed, the increase by Polaribacter spp. 

to nearly 30% of total bacterial composition after aOM input was a dominant response within 

both microbiomes, lending support to the characterization of this genus and the Flavobacterial 

class as highly responsive to substrates originating from phytoplankton blooms  [24, 134]. This 

class is capable of close association with phytoplankton by moving into their phycosphere [135, 

136] and have been found to be positively correlated with silicate [135], an important element in 
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the cell wall of diatoms. These results suggest that origin within cold waters may impact the 

response time of Flavobacteria to convert bioavailable substrates from phytoplankton into energy 

for growth, as the timing for increases in abundance was delayed by 2 days within the bottom 

water microbiome.  

The large relative increases by Polaribacter spp. under aOM input over the ten days 

indicates that the adaptability by this genus comes at the expense of community resilience, at 

least over a short time frame, as seen by the lack of a return by the two microbiomes to pre-

perturbation conditions. This response to aOM input may in part be a consequence of the diverse 

set of enzymes belonging to Flavobacteria that degrade algal-derived carbohydrates and allow 

the rapid transport of large molecules across their cell membrane [20, 24, 134], enabling this 

taxonomic group to effectively compete with other bacterioplankton for early access to substrates 

from phytoplankton blooms. Missing from the current observations were a succession of 

Flavobacterial genera (i.e., Ulvibacter spp. and Formosa spp.) to shift dominance within the 

class [24], which may be a reflection of the short incubation time of 10 days. 

Under aOM input, the increase in Polaribacter spp. was balanced by the temporal decline 

of the ubiquitous oligotrophic bacteria Pelagibacter spp. (SAR11 clade), a pattern that also 

occurs in Antarctic waters [134]. Some members of Pelagibacter spp. do not respond to shifts in 

nutrient availability and instead rely on background OM pools under both high and low nutrient 

concentrations, one characteristic that makes them highly efficient competitors in the global 

ocean [100, 137]. In these incubations, however, the decline in Pelagibacter spp. was a dominant 

feature independent of station or OM perturbation (Figure 6), suggesting a negative response by 

this genus to incubation conditions beyond the OM environment. Pelagibacter spp. has been 

measured to decline in abundance with depth in situ [115], which was attributed to a decrease in 

the efficiency of the proteorhodopsin family of proteins under increased darkness. As the 

experiments were carried out in the dark, this may be one explanation for their decreasing 

temporal abundances.  

Directly comparing the two Arctic microbiomes, it was evident that OM conditions 

within the control incubations led to more unique taxonomic compositions over the 10 day time 

frame (i.e., partial divergence), rather than the hypothesis that both OM perturbations would 
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drive the two microbiomes towards compositional convergence. This trend within the control 

was primarily influenced by taxonomic rearrangement within the Chukchi Sea microbiome, 

further indicating that there was less compositional resiliency by the bottom water microbiome 

after the POM disturbance, resulting in a replacement effect [5]. Increases in 

Gammaproteobacteria to reach 62% of total class abundance by day 10 drove this community 

restructuring, with Balneatrix spp. contributing much to the increase. The results show that a 

majority of the taxonomic restructuring that increased dissimilarity between the microbiomes 

was due to a rearrangement of the most abundant bacterial taxonomic groups. This is in 

agreement with other work that dominant taxa are responsible for environmentally-dependent 

bacterial compositional changes within the Arctic Ocean [138] and suggests that measurements 

of the most abundant taxa are of primary importance when detecting compositional restructuring 

within this ecosystem with potential impacts to carbon cycling.  

In addition to identifying significant differences in ecosystem measures of bacterial 

biodiversity and composition between the two Arctic communities, this research highlighted 

community-scale mechanisms related to substrate transport, energy production and growth that 

differentiated how two naturally occurring microbiomes functionally responded to the same OM 

perturbations. Trait-based methods are imperative to delineate microbial functionality which can 

be important indicators of ecosystem functioning [68]. This approach allowed us to address the 

2
nd

 hypothesis that functional differences between the microbiomes would inform on 

mechanisms at play within each community that contribute to adaptation and niche 

differentiation to certain OM conditions. This idea is supported by observations that biological 

characteristics of bacteria with differing trophic strategies provide some indication for how niche 

diversification within an ecosystem may develop [139].  

A peak in functional dissimilarity between the two Arctic microbiomes occurred one day 

after aOM input and was primarily a consequence of the widespread increase in transcription, 

translation, protein transport and carboxylic acid metabolism by Bering Strait 

Alphaproteobacteria, Flavobacteria and Gammaproteobacteria (Dataset 1). Functional 

convergence between Arctic microbiomes occurring within 6 days after aOM input tracked 

results for taxonomic convergence, reflecting a temporal offset by Chukchi Sea Flavobacteria to 

synthesize new proteins as a response to carbon and nutrient inputs [69]. This trend indicates that 
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although two Arctic microbiomes may have different alpha biodiversities, and therefore may not 

be equivalent in their resiliency or productivity under environmental fluctuations [7, 133], certain 

dominant bacterial classes within each may be equipped to adapt in functionally and structurally 

similar ways as a response to high inputs of algal derived OM, such as during phytoplankton 

blooms. The trait-based observations for Flavobacteria in the Chukchi Sea microbiome suggests 

that this bacterium efficiently competes with other dominant bacterial groups within the 

community for access to phytoplankton-derived substrates that it allocates for growth [134], 

which presumably contributed to their large increase in abundance at a community scale. In areas 

of the Arctic Ocean where PP is anticipated to increase, these findings suggest that Flavobacteria 

will play an important role in the early remineralization of aOM irrespective of its location in the 

water column or initial abundances.  

The aOM input treatment was designed to mimic the degradation phase of a 

phytoplankton bloom and the results one day after perturbation suggest that a priming effect on 

degradation [6] influenced the Bering Strait microbiome to more rapidly hydrolyze substrates 

(i.e., carboxylic acids) for energy production to support growth compared to the Chukchi Sea 

community. This may reflect the environment in which the microbiomes originated. For 

example, collected from the subsurface chlorophyll maximum of the water column, Bering Strait 

bacteria may be adapted to episodic fluxes in aOM concentrations in situ as phytoplankton 

populations bloom and sink, therefore impacting the differences measured in response rates [5]. 

In addition, the aOM substrates were collected from the same water as the Bering Strait 

microbiome, possibly explaining the rapid response of this community to the reintroduction of 

this organic material. The greater biodiversity measured within the Bering Strait microbiome 

could have contributed to this rapid response at day 1 as the controlling organisms would have a 

higher likelihood of being present to impact community functioning [7, 130, 140]. Although 

these specific metabolic responses to aOM input occurred more rapidly within the Bering Strait, 

the community-scale increase in total metabolic activity within the Chukchi Sea was comparably 

larger (PSMs +100% compared to +200%, respectively) and may indicate a particularly high 

plasticity within the Chukchi Sea community to the added substrates [5, 141].  

Even as the microbiomes converged at 6 days after aOM input, Bering Strait 

Alphaproteobacteria acquired and metabolized small substrates (e.g., sugars through ABC 
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transporters) in higher quantities than within the Chukchi Sea (Dataset 1), which suggests that 

this bacterium of the SCM microbiome was adapted to access these labile substrates more 

efficiently compared to the deeper microbiome. In particular, the high levels of binding and 

transport of the monosaccharide xylose within the Bering Strait microbiome corroborates recent 

results from the central Arctic Ocean that surface bacterial populations in ice-free water have 

greater xylan hydrolysis activities than communities from deeper in the water column [142]. 

Although Balmonte et al. [142] reported no compositional affiliation with the hydrolysis of these 

substrates, the trait-based approach used in the current study indicates that the binding and 

transport of the carbohydrate xylose through ABC transporters was solely associated with 

Alphaproteobacteria at this time, an indication of heterotrophic mechanisms that define a niche 

for this bacterium in the SCM to compete for labile substrates.  

An increase in the number of GO terms differentiating the Bering Strait from the Chukchi 

Sea 6 days after POM removal compared to the start of the incubation indicated functional 

divergence occurred as time progressed within the control. In particular, substrate limitation 

accentuated how energy conversion and production characterized metabolic strategies of the 

bacterioplankton depending on the originating community. For example, the dominance of 

Bering Strait Alphaproteobacteria (47-95% of PSMs) related to transport and energy conversion 

fueling amino acid synthesis (clusters 2 & 3) (Dataset 2) reflects the importance of these 

biomolecules for Alphaproteobacterial metabolism when substrates are scarce in the surface 

Arctic Ocean [143]. In the Chukchi Sea, however, ion transport and energy production were 

largely associated with Gammaproteobacteria (#19-26, >50%) while functions related to energy 

production for polypeptide transport (#3-4, 6-7) were directed by an ambiguous bacterial class 

(Inconclusive) (42-55%) (Dataset 4).  

Chukchi Sea bottom water Class Planctomycetia utilized nitrate as an energy source (#80, 

81) at a significantly higher abundance than in the Bering Strait, with the highest log2 fold 

differences of the experiments (4.5 – 5.6) (Datasets 3 and 4). Nitrate concentrations are typically 

low in the surface waters of the Chukchi Sea and Bering Strait regions in late summer [144], 

however relatively high nitrate concentrations were measured within the bottom waters of the 

Chukchi Sea at the time of water sampling (Figure 2) and the elevated nitrate reductase activity 

is suggestive of intense denitrification. In addition, deviation (N*) from the N:P of the Redfield 
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Ratio using the equation [NO3
-
] – 16[PO4

3-
] + 2.9 [145], further supports the enrichment analysis 

that denitrification was occurring (value for 55 m in the Chukchi Sea was around -11). 

Planctomycetia appears to be ubiquitous within the Chukchi Sea at various depths [138, 146] and 

this type of nitrogen metabolism by Planctomycetia has been measured in deep sea sediments 

near hydrothermal vents [147]. Although I could not identify which of the three prokaryotic 

nitrate reductases were expressed here [148], the enrichments over time provided evidence that 

nitrate was more important as an electron acceptor during organic matter remineralization within 

the bottom water community. A number of other GO functions enriched within the Chukchi Sea 

and also associated with Planctomycetia may be related to the nitrate reductase activity, such as 4 

iron - 4 sulfur cluster binding, oxidation-reduction process and metal ion binding. 

The shipboard incubations captured functional differences between two Arctic 

microbiomes to OM perturbations over a ten day period. As the results did not include an 

analysis of how biodiversity influenced long-term functional changes, I cannot directly address 

the ‘insurance hypothesis’ [7]. From this work, however, it is apparent that early metabolic 

responses (<10 days) by these free-living bacterial communities to increased labile substrates 

occurred more rapidly within a more diverse microbiome, and that a majority of these functions 

were related to protein synthesis one day after the perturbation occurred. The advantage of a 

higher biodiversity, however, did not persist, as functional differences by day 10 after aOM input 

were nearly equivalent between the two microbiomes. Further, this did not translate when POM 

concentrations were decreased, when the less diverse bacterial community had slightly higher 

functional responses over this short time frame. It is likely that, in addition to biodiversity 

influencing the differences in timing and functionality between microbiomes, differences in 

initial bacterial composition may also impact function [149]. 

The relationship between taxonomy and functional traits within microbial communities is 

of primary importance to better predict and understand impacts to biogeochemical cycling, but as 

discussed by Violle et al. [1] and others [150, 151], this connection between these important 

bacterial factors is not well defined and limits our ability to effectively represent the suite of 

microbial diversity in biogeochemical models. Galand et al. [4, 68], however, showed that 

significant relationships between bacterial production and phylogenetic similarity can occur, and 

that environmental stimulus potentially contributes to shifts in community structure, which are in 
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turn drivers of functional changes within microbial communities. In the current work, a 

comparison of bacterial compositional dissimilarity and the number of significant differences of 

GO functions between two microbiomes after OM perturbation showed a significant positive 

correlation at α = 0.05 (r = 0.79, n = 6, p = 0.034) between the two important metrics of 

microbial ecology, taxonomic structure and community function (Figure 19). The results that 

structure and function are related corroborate with other work, including from cold marine 

waters [5, 123] and contests the idea of strict functional redundancy [4, 94].  

Unique to this study, I also showed how these metrics varied temporally as a 

consequence of the OM perturbation and the functions that distinguished the two Arctic 

microbiomes. In particular, the later portion of the experiments (days 6-10) drove the correlation 

between taxonomic structure and function and were dependent on the OM perturbation (Figure 

19). The functions responsible for the high dissimilarity within the control did not only include 

degradative enzyme activity [123] (i.e., nitrate reductase) but encompassed a collection of GO 

terms related to energy production and conversion matched with ion transport and amino acid 

synthesis. In contrast, this work highlights that Arctic phytoplankton blooms may induce an early 

(i.e., day 1) temporal offset in the early structural and functional rearrangement within 

microbiomes, but that over a longer time frame of 10 days, a high degree of functional 

convergence occurs between them. Previous reports suggest that major bacterial groups acquire 

labile substrates under high organic concentrations in a generalist behavior [137]. The results 

presented here agrees that a rapid increase in algal substrates leads to enhanced functional 

redundancy in two communities that regularly experience high input of algal-derived OM. In 

addition, these findings also demonstrate that time was an important factor to reach functional 

similarity between microbiomes.  
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Figure 19 - Structure-function relationship. Relationship between structural dissimilarity 

(based on Bray-Curtis dissimilarity of normalized 16S rRNA OTUs) and functional dissimilarity 

(based on number of GO terms with significant differences) between the two Arctic 

microbiomes. Based on a Pearson correlation test, the relationship was significant at α = 0.05 (r 

= 0.79, n = 6, p = 0.034). Organic perturbation included either particulate organic matter (POM) 

removal (the control) or algal organic matter (aOM) input. 
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Given the relationship measured between taxonomic structural and functional trait 

dissimilarities over time, it is remarkable that among the thousands of GO functions identified 

between the Bering Strait and Chukchi Sea metaproteomes (Table 2), no more than 35 terminal 

GO functions differentiated the two microbiome proteomic landscapes at any one time. 

Therefore it is difficult to dispute that some degree of partial redundancy must occur in 

compositionally distinct natural microbial communities, as this functional overlap would provide 

resiliency to intact populations [87]. An estimate of water transit time between the two locations 

is on the order of months [126], which is longer than the response times measured here. 

Therefore, water column transport and mixing between sites is an unlikely explanation for the 

partial functional redundancy measured between microbiomes. 

The increasing popularity of applying functional traits instead of solely using traditional 

taxonomic methods (biodiversity or species richness) to analyze and predict spatial and temporal 

ecosystem functioning and response (e.g., [1, 104]) builds from the concept that functional 

diversity is a more powerful indicator of community productivity than traditional taxonomic 

measures (e.g., [140, 152]). A simple comparison of all Gene Ontology data as a proxy for 

richness of community function and all OTUs as an indicator of community compositional 

richness returned no linear correlation between the two (p > 0.05). As a first step this suggests 

that within these two Arctic Ocean microbiomes, an increase in compositional richness did not 

increase functional richness, which is not consistent with bacterioplankton ecology from the 

Mediterranean Sea [4] but corroborates this idea that taxonomic measures are not equivalent to 

functional measures. If available, a recommendation would be to incorporate a range of methods 

to increase the scope of descriptive data when investigating the functioning of complex 

communities in relation to ecosystem dynamics.    

3.5 Conclusions 

The Chukchi Sea region is characterized by tight benthic-pelagic coupling, dynamic 

cycles of phytoplankton blooms and recent climatic changes, including projected impacts to the 

timing, quantity and quality of phytoplankton blooms. Much of the primary production is 

recycled by the microbial loop and this dissertation revealed that the timing of bacterial response 

to inputs of phytoplankton-derived substrates may be dependent on initial community taxonomic 
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composition. Although a number of ecosystem measures (bacterial biodiversity, composition and 

metabolic functions) significantly differentiated them, similar community-wide responses to 

aOM input were apparent, measured as comparable shifts in bacterial abundance, taxonomic 

composition and metabolic functions. However, even as the microbiomes converged under the 

high substrate environment, certain bacterial classes and their functions differentiated the 

microbiomes based on origin (e.g., Bering Strait Alphaproteobacteria binds and transports small 

sugars through ABC transporters).  

The increase in community metabolism within both microbiomes within the control 

incubation conditions was not matched by equivalent increases in bacterial abundances between 

stations, and drove the microbiomes apart structurally and functionally. These results suggest 

that during periods where POM concentrations are reduced, the taxonomic composition of Arctic 

microbiomes will likely diverge, along with community functionality related to energy 

conversion and production. Overall, this trait-based method revealed that different bacterial 

groups drove functional differences between microbiomes (i.e., Chukchi Sea Planctomycetia 

controlled nitrate reductase), which implies that conditions which select for certain bacterial 

groups may have impacts on local biogeochemical cycling. 

These findings also contribute to the ongoing discussion regarding functional redundancy 

versus niche separation in natural microbiomes (e.g., [3]), with particular relevance for the 

incorporation of microbial taxonomic data into oceanic-scale biogeochemical models. An 

important issue for such models are what type of bacterial community details will impact the 

accuracy of representing rates of ecologically-important biogeochemical cycles [3]. The results 

presented here suggest that, for the Chukchi Sea region, distinguishing microbial origin and 

community taxonomic composition for predicting mechanistic responses is especially important 

under environmental conditions when labile substrates are comparatively scarce. Alternatively, 

under scenarios where aOM substrate concentrations are high, such as during phytoplankton 

blooms, these results suggest that the incorporation of data describing community function and 

composition may provide minimal benefit for predictive models after initial restructuring of the 

microbiomes has occurred (>6 days). These conclusions can assist modeling efforts by 

identifying 1) which physiological traits to focus on, 2) temporal resolution appropriate for 

variable functions and 3) taxonomic associations. Lastly, it is clear that scale matters; although 
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redundancy exists when analyzing a large quantity of functions (i.e., the complete metaproteome 

of natural bacterial communities), pinpointing those functions that differentiate microbiomes 

show that relatively few functions may impact the biogeochemical environment (e.g., nitrogen 

cycling). Such processes accentuate the niche separation occurring within the communities, even 

at a broad taxonomic classification of class. 
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CHAPTER 4 

 

4. SELECTIVE LOSS OF ALGAL BIOMARKERS BY DISTINCT ARCTIC OCEAN 

MICROBIOMES AND EVIDENCE OF ENZYME ACTIVITY THROUGH 

METAPROTEOMICS 

 

4.1 Introduction 

The availability of labile organic matter (OM) and nutrients regulate microbial 

community composition and functionality in a variety of marine environments (e.g., [19, 37, 

38]). In cold regions of the ocean, OM source and abundance also appears to be an important 

factor for the growth rate and structuring of prokaryotic communities [153, 154]. Despite the 

lower temperatures, complex communities of cold water marine bacteria show degradation 

kinetics comparable to other systems and preferentially degrade labile fractions of OM over the 

timescale of days to change the composition and concentration of OM (e.g., [14, 77]). Previous 

Arctic research has suggested that composition of marine bacterial communities may regulate 

enzymatic activity for degradation [123], however it remains uncertain how compositionally 

distinct microbiomes impact changes to OM composition during degradation, and if functional 

enzymatic expression is selective or broadly seen across a community. Analysis completed in the 

2nd chapter showed that the input of algal substrates led to functional converging of the two 

microbial communities over a 10 day period, although they remained compositionally unique 

throughout the incubations. Here, I characterized temporal changes in organic composition of the 

particulate organic matter (POM) and followed lipids and amino acids as specific biochemical 

components within each microbiome to determine if the two communities had similar 

degradation potentials for this fraction of the POM. A hypothesis was that selective loss of lipid 

classes and amino acid concentrations of the added particles would be comparable between 

microbiomes and would have similar temporal patterns irrespective of differences in initial 

community composition.  

While there is a broad history within the literature on tracking removal of specific 

biochemical constituents by microbiomes (e.g., [75, 155, 156]), there is little research linking 
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bacterial function using –omic methodology to geochemical data. The coupling of such 

information within models can lead to a greater understanding of how microbial processes 

control and respond to environmental biogeochemical gradients [25, 157, 158], with implications 

for carbon and nutrient cycling. In the current work, I took a multidisciplinary approach to 

collectively determine if community taxonomic structure (16S rRNA sequencing) of two natural 

Arctic Ocean microbiomes and their enzymatic functionality measured through metaproteomic 

assessment were linked to changes in the lipid composition of algal-derived particles. In the first 

two chapters, I discovered that enzyme expressions distinguishing the microbiomes and time 

progression were limited to a handful of functions related to internal nitrogen cycling and energy 

conversion. Therefore, I did not expect to identify additional enzymes with significant temporal 

changes or differences between microbiomes, however I hypothesized that similar patterns 

between the two methodologies, bacterial enzyme profiles and shifts in POM lipid composition, 

could be identified. Further, because some labile compounds appear readily accessible to most 

major bacterial groups (e.g., [18]) without necessarily impacting bacterial community 

composition (e.g., [154]), I expected the same bacterial classes within each Arctic microbiome to 

be responsible for the enzyme profiles associated with lipid degradation. The specific hypothesis 

being tested was that bacterial classes associated with degradative lipid enzymes would be the 

same within each microbiome over the short time-frame of 10 days. 

4.2 Additional Methods  

Methods which were consistent throughout the three research chapters are described in 

detail in Chapter 2. Additional methods specific to the results described in this chapter are 

provided here. 

4.2.1 Particulate organic carbon and nitrogen 

For particulate organic carbon and nitrogen (POC & PON) analysis, 400 ml of water 

from the algal organic matter addition incubations (aOM input) were filtered through combusted 

25mm glass fiber filters (Whatman GF/F) and frozen at -80°C.  Filters were thawed, acidified 

drop-wise with HCl (aq) for an hour in a clean desiccator, and transferred to a 60ºC oven to dry. 

Samples were repackaged in combusted foil packets for analysis by standard methods [159].  
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4.2.2 Lipid extraction and analysis 

Particle samples (1 L) collected onto combusted GF/F filters were extracted wet via 

microwave-assisted solvent extraction (MASE; MARS-5 system) with 2:1 dichloromethane : 

methanol (DCM:MeOH) (see Harvey et al. [159] and references therein). Total lipid extract 

(TLE) was evaporated to dryness. Base hydrolysis of total lipid used 0.1N KOH with 5α-

cholestane and C19:0n fatty acid serving as the internal standards for the neutral and polar 

fractions, respectively. The entirety of the particle extract was hydrolyzed and used to measure 

individual markers. 

Following base hydrolysis of total lipid, neutral lipids were partitioned with 9:1 hexane : 

diethylether. Following acidification with concentrated hydrochloric acid (aq), polar fatty acids 

were similarly partitioned. Neutral components were derivatized using BSTFA to form their 

trimethylsilyl (TMS) products, and fatty acids were converted into their corresponding methyl 

esters using boron trifluoride (10% in methanol). Both fractions were quantified with an Agilent 

6890N gas chromatograph with flame ionization detector (GC-FID) and identified with an 

Agilent 6890 gas chromatograph coupled to an Agilent 5973N mass spectrometer (GC-MS).  

Both instruments utilized a 60m DB5-MS column. Chromatographic details are described in 

Belicka et al. [160] but with an inlet temperature of 250°C. Neutral lipids were analyzed in detail 

and individual components were also categorized and summed as total alcohols, sterols, 

tocopherols, or glycerol monoethers. For identification of double bond positions of fatty acids, a 

portion of fatty acids were converted to picolinyl esters [161] to provide confirmatory 

fragmentation information. Polyunsaturated fatty acids and fatty acids in low concentration were 

also validated by comparison of retention time and mass spectra of a 52-component fatty acid 

methyl ester standard (Nu-Chek Prep, Inc.).   

4.2.3 Particulate amino acids 

Samples for amino acid analysis (1 L) were collected onto 47 mm combusted GF/F filters 

and frozen until analysis. Filters were sliced into 1/4 (for Chukchi Sea) or 1/8 (for Bering Strait) 

pieces and technical duplicates or triplicates per sample were prepared in parallel. A blank filter 

was also prepared to correct for lab contamination. Particulate total hydrolysable amino acid 

(THAA) analysis by gas chromatography-mass spectrometry (GC-MS) followed methods 
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outlined in Moore et al. [162]. Briefly, 75-100 µl of Norvaline were added to each sample to act 

as an internal standard prior to a 4 hour acid hydrolysis with 6 M HCl at 100-110°C [163], 

followed by a pH-adjustment with sodium carbonate to obtain a pH range 1.5-5. Solid phase 

extraction and derivatization (with propyl chloroformate and propanol) was completed with an 

EZ:Faast method (Phenomenex). Samples were then evaporated under N2 gas and redissolved in 

an 80:20 Isooctane:Chloroform solvent. Amino acids were separated using gas chromatography 

(Agilent 7890A, Santa Clara, CA) with a DB-5 MS capillary column (0.25 mm ID, 30 m); oven 

temperature increased from 110°C to 280°C at a rate of 10°C per minute and held for 5 minutes, 

followed by ionization and structural identification via mass spectrometry (Agilent 5975C, Santa 

Clara, CA) with helium as the carrier gas. Selective Ion Monitoring was used to isolate and 

measure individual THAAs by identifier ions (masses provided by Phenomenex). Final 

quantification was made by peak integration, comparison to the internal standard and a blank-

subtracted correction.  

4.2.4 Enzyme profiles and taxonomic assignments 

Gene ontology (GO) terms and peptide spectrum matches (PSMs) from the complete 

Bering Strait and Chukchi Sea datasets were mapped to enzyme commission numbers (EC#). 

The conversion data file was downloaded from the Gene Ontology website 

(http://www.geneontology.org/page/download-mappings) [65, 66, 164] on December 19, 2018. 

Nomenclature of the EC#s were downloaded from the ENZYME database 

(https://enzyme.expasy.org/cgi-bin/enzyme/enzyme-search-cl?3) [165, 166] on December 19, 

2018. Taxonomic assignments at the class level for select EC#s were identified from the Bering 

Strait and Chukchi Sea GO databases (Datasets 1-4) and PSMs were assigned to each class to 

quantify taxonomic contribution to each enzyme function. 

4.3 Results 

4.3.1 Changes in fatty acid composition 

Total fatty acid concentrations of added particles and aggregates at day 1 were higher 

within the Bering Strait (43.4 µg/mg POC) compared to the Chukchi Sea (25.4 µg/mg POC), 

however fatty acid distributions were comparable (Figure 20; Table 6). Monounsaturated 

http://www.geneontology.org/page/download-mappings
https://enzyme.expasy.org/cgi-bin/enzyme/enzyme-search-cl?3
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(MUFA) and saturated (SFA) fatty acids dominated the total fatty acid composition, ranging 

from 38.1-39.4% and 41.4-42.6%, respectively. Polyunsaturated fatty acid (PUFA) and odd + 

branched chain fatty acid (Odd + br FA) distributions were lower, ranging from 14.5-15.8% and 

3.5-4.7%, respectively. Total fatty acid concentrations either remained stable or increased 

between days 1-6, then sharply decreased by day 10 (Figure 20). Over the ten days, total fatty 

acid concentrations declined by 41.2% in the Bering Strait incubation and by 22.3% in the 

Chukchi Sea incubation (Table 7). Variable changes in fatty acid classes occurred between day 1 

to day 6 when SFA concentrations increased within the Chukchi Sea microbiome experiment and 

MUFA concentrations increased within the Bering Strait (Figure 20) before both decreasing by 

day 10. Over the 10 days, a greater loss of SFA concentrations occurred in each microbiome 

(47.5% and 33.9% over ten days, respectively) compared to total fatty acids and relative loss of 

PUFAs were highest (60.0-66.4%) among all classes (Table 7). In both microbiomes there was a 

substantial increase in Odd + br FAs concentrations during the incubations, increasing by 70.5% 

in the Bering Strait and 137% in the Chukchi Sea (Table 7), with these fatty acid classes 

accounting for >11% of fatty acid class distributions by day 10 (Table 6). Small increases in the 

relative abundance of MUFAs also occurred within each microbiome (Table 6), however, 

appeared to be a consequence of their slower degradation since absolute concentrations over the 

10 day incubations declined by 38.6% in the Bering strait and 12.1% in the Chukchi Sea 

treatment (Table 7).  
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Figure 20 - Fatty acid concentrations over time. Fatty acid class concentrations (µg/mg POC) 

of the particles from the Bering Strait (BSt) and Chukchi Sea CS microbiomes over days 1 (d1), 

6 (d6) and 10 (d10). 
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Table 6 - Fatty acid distributions. Fatty acid compound class distributions (% of total) for the 

A) Bering Strait and B) Chukchi Sea. 

 

A) 

Fatty acid class Compound day 1 day 6 day 10 

SFA C12:0n 0.2 0.5 0.2 

  C14:0n 8.9 7.4 6.8 

  C16:0n 20.5 13.2 16.6 

  C18:0n 7.3 4.6 9.8 

  C20:0n 0.0 0.2 0.0 

  C22:0n 0.9 0.5 0.4 

  C24:0n 0.1 0.1 0.1 

  C26:0n 0.1 0.1 0.1 

MUFA C14:1** 0.2 1.5 1.5 

  C16:1** 36.9 1.9 1.6 

  C16:1 (n-7) 0.3 34.5 28.8 

  C18:1* 0.0 0.1 0.1 

  C18:1 (n-9) 3.1 1.9 2.0 

  C18:1 (n-11) 0.1 7.8 8.8 

  C20:1** 0.9 1.5 0.5 

PUFA C16:2 0.5 0.7 0.7 

  C16:2 0.0 0.0 0.0 

  C16:3 0.0 0.3 0.3 

  C16:3 0.0 0.7 0.8 

  C16:4 0.9 0.9 0.6 

  C18:2 2.0 0.6 0.6 

  C18:2** 0.2 0.4 0.4 

  C18:3 0.1 0.1 0.1 

  C20 PUFA 0.4 0.2 0.1 

  C20:4 (n-6) 0.1 0.1 0.1 

  C20:5 (n-3) 10.4 7.9 4.6 

  C22:6 (n-3) 1.0 0.8 0.8 
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Table 6A – Continued. 

 

Fatty acid class Compound day 1 day 6 day 10 

Odd + br C13:0i 0.0 0.7 0.5 

  C13:0a 0.0 0.2 0.2 

  C13:0n 0.0 0.1 0.1 

  C14:0i 0.1 0.4 0.5 

  C15:0i 0.8 1.8 2.3 

  C15:0a 0.4 0.7 1.2 

  C15:0n 0.7 0.7 0.8 

  C15:1** 1.5 5.8 6.5 

  C16:0i 0.0 0.0 0.0 

  C17:0a 0.0 0.0 0.1 

  C17:0n 0.4 0.3 0.8 

  C17:1* 0.2 0.4 0.3 

  Methylphytanate 0.0 0.0 0.0 

  C21:0n 0.2 0.1 0.2 

  C21:1* 0.1 0.1 0.1 

  C23:0n 0.1 0.1 0.1 

  C25:0n 0.1 0.1 0.1 

Summary % SFA 38.1 26.5 34.0 

  % MUFA 41.4 49.1 43.3 

  % PUFA 15.8 12.8 9.0 

  % Odd + br 4.7 11.5 13.8 
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Table 6 – Continued. 

 

B) 

Fatty acid class Compound day 1 day 6 day 10 

SFA C12:0n 0.0 0.0 0.0 

  C14:0n 9.2 2.4 6.4 

  C16:0n 24.0 28.3 19.4 

  C18:0n 4.4 17.6 7.1 

  C20:0n 0.5 0.6 0.4 

  C22:0n 1.0 1.3 0.3 

  C24:0n 0.1 0.1 0.0 

  C26:0n 0.2 0.2 0.0 

MUFA C14:1** 0.0 0.2 1.8 

  C16:1** 36.5 29.5 37.4 

  C16:1 (n-7) 0.0 0.5 0.0 

  C18:1* 0.1 0.1 0.1 

  C18:1 (n-9) 1.8 1.5 2.2 

  C18:1 (n-11) 1.4 3.7 5.1 

  C20:1** 2.8 1.8 1.7 

PUFA C16:2 0.0 0.3 0.4 

  C16:2 0.0 0.0 0.0 

  C16:3 0.0 0.0 0.2 

  C16:3 0.0 0.3 0.8 

  C16:4 0.8 0.1 0.2 

  C18:2 0.7 0.2 0.3 

  C18:2** 2.6 2.0 2.2 

  C18:3 0.1 0.0 0.1 

  C20 PUFA 0.3 0.0 0.3 

  C20:4 (n-6) 0.3 0.0 0.0 

  C20:5 (n-3) 9.1 2.4 2.6 

  C22:6 (n-3) 0.6 0.3 0.4 
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Table 6B – Continued. 

 

Fatty acid class Compound day 1 day 6 day 10 

Odd + br C13:0i 0.0 0.3 0.2 

  C13:0a 0.0 0.0 0.1 

  C13:0n 0.0 0.0 0.0 

  C14:0i 0.0 0.0 0.3 

  C15:0i 0.1 0.2 2.1 

  C15:0a 0.0 1.0 0.9 

  C15:0n 0.8 0.8 0.1 

  C15:1** 0.1 1.5 4.9 

  C16:0i 0.7 0.0 0.0 

  C17:0a 0.1 0.1 0.1 

  C17:0n 0.7 1.5 0.9 

  C17:1* 0.2 0.1 0.4 

  Methylphytanate 0.0 0.0 0.0 

  C21:0n 0.1 0.0 0.1 

  C21:1* 0.6 1.1 0.6 

  C23:0n 0.1 0.2 0.0 

  C25:0n 0.0 0.1 0.0 

Summary % SFA 39.4 50.5 33.5 

  % MUFA 42.6 37.2 48.2 

  % PUFA 14.5 5.7 7.4 

  % Odd + br 3.5 6.6 10.8 

Key: Monounsaturated fatty acids (MUFA), saturated fatty acids (SFA), polyunsaturated fatty 

acids (PUFA), odd + branched chain fatty acids (Odd + br FA). *: several isomers combined, **: 

multiple isomers summed because bond positions could not be verified. i = iso branched, a = 

anteiso branched, n = normal chain length. 
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Table 7 – Changes in fatty acid concentrations. Changes in particulate organic matter (POM) 

fatty acid concentrations (µg/mg POC) between day 1 and day 10 of the incubation experiments.  

 

Microbiome Fatty acid class % change 

Bering Strait SFA -47.5 

  MUFA -38.6 

  PUFA -66.4 

  Odd+br FA +70.5 

  Total (µg/mg POC) -41.2 

      

Chukchi Sea SFA -33.9 

  MUFA -12.1 

  PUFA -60.0 

  Odd+br FA +136.8 

  Total (µg/mg POC) -22.3 

Key: Monounsaturated fatty acids (MUFA), saturated fatty acids (SFA), polyunsaturated fatty 

acids (PUFA), odd + branched chain fatty acids (Odd + br FA). 
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4.3.2 Particulate neutral lipids 

Total neutral lipid concentrations of the particles at day 1 were higher in the Bering Strait 

(13.4 µg/mg POC) than in the Chukchi Sea (7.2 µg/mg POC) (Figure 21). However, distribution 

patterns of the major neutral lipid classes at this time were comparable between incubations; 

alcohols (25.9-31.5%), phytol (46.6-52.8%), sterols (13.5-15.9%) and alkanes (5.3-7.6%) made 

up the largest % contributions to the total neutral lipid fraction (Figure 21; Table 8). In both 

microbiome incubations, concentration losses of phytol, the isoprenoid side chain of chlorophyll 

a, were highest (32.9% in the Bering Strait and 46.8% in the Chukchi Sea) (Table 9). Total loss 

in alcohols (<15.5%) and sterol (<18%) concentrations were low over the ten days, however 

concentrations losses of one dominant sterol class, 27Δ5,24 + 28Δ5,22 (abbreviations for sterol 

compounds are available in the key below Table 8), surpassed total sterols with a 30% loss in 

each microbiome. Differentiating the two microbiomes was a 105.0% increase in alkane 

concentrations within the Chukchi Sea over the 10 day timeframe and a 48.3% loss of glycerol 

monoether concentrations within the Bering Strait (Table 9).  

4.3.3 Biomarkers 

Individual and groups of fatty acid and neutral lipid biomarkers were categorized to track 

changes in those structures that could be assigned to biota-specific classes (Table 10). As the 

diatom-specific fatty acid distributions decreased from >78.5% to <67.3% over the 10 days, fatty 

acids with a bacterial origin (Odd + br FAs) increased from <4.7% to >10.8%% at day 10 (Table 

11A). Vascular plant biomarkers of terrestrial origin were low (<0.5%) for all time points within 

each microbial incubation. Neutral lipid biomarkers primarily included those with an algal 

(specifically diatom) origin, which were highly dominated by phytol (Table 11B). Trends for the 

neutral lipids tracked those for the fatty acid biomarkers, further indicating loss of diatom-

specific lipid classes over time (>50.2% to <44.1%), irrespective of the bacterioplankton 

community present.  
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Figure 21 - Neutral lipid concentrations over time. Neutral lipid class concentrations (µg/mg 

POC) of the particles from Strait (BSt) and Chukchi Sea (CS) microbiome incubations over days 

1 (d1), 6 (d6) and 10 (d10). 
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Table 8 - Neutral lipid distributions. Neutral lipid compound class distributions (% of total) for 

the A) Bering Strait and B) Chukchi Sea. 

 

A) 

Neutral lipid 

class 
Compound day 1 day 6 day 10 

Alcohols C12:0 Alc (straight chain unless *) 0.0 0.2 0.0 

  C13:0 Alc 0.0 0.0 0.0 

  C14:0 Alc 1.3 1.5 0.6 

  C15:0 Alc 0.3 0.6 0.5 

  C16:0 Alc 3.2 3.0 2.4 

  C16:1 Alc 1.6 1.6 1.7 

  C18:0 Alc 11.9 15.5 20.8 

  C18:0 Alc (*isoprenoid) 0.2 0.2 0.1 

  C20:0 Alc 0.5 0.5 0.6 

  C20:1 Alc 4.2 3.7 2.9 

  C20:1 Alc (*isoprenoid) 0.7 0.8 0.7 

  C22:0 Alc 0.3 0.3 0.6 

  C22:1 Alc 6.9 5.8 3.0 

  C23:0 Alc 0.0 0.0 0.0 

  C24:0 Alc 0.2 0.2 0.2 

  Phytol 46.6 44.2 40.3 

Alkanes C19:0 Alk 0.1 0.1 0.1 

  C20:0 Alk 0.4 0.3 0.4 

  C21:0 Alk 0.7 0.7 0.9 

  C22:0 Alk 0.6 0.5 0.9 

  C23:0 Alk 0.8 0.6 1.1 

  C24:0 Alk 0.9 0.6 1.0 

  C25:0 Alk 0.9 0.8 1.2 

  C26:0 Alk 0.7 0.6 0.9 

  C27:0 Alk 0.6 0.6 0.7 

  C28:0 Alk 0.4 0.5 0.5 

  C29:0 Alk 0.3 0.4 0.4 

  C30:0 Alk 0.5 0.6 0.6 

  C31:0 Alk 0.2 0.3 0.4 

  Squalene 0.6 0.4 0.5 
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Table 8A – Continued. 

 

Neutral lipid 

class 
Compound day 1 day 6 day 10 

Sterols 24-norcholesta-5,22-dien-3β-ol 0.7 0.7 0.9 

  
27-nor-24-methylcholesta-5,22-dien-

3β-ol -OR- cholesta-5,22-dien-3β-ol  
0.4 0.5 0.6 

  cholest-5-en-3β-ol 1.9 2.0 2.1 

  

cholesta-5,24-dien-3β-ol 

(desmosterol) & 24-methylcholesta-

5,22-dien-3β-ol (brassicasterol) 

6.1 5.6 5.6 

  
24-methylcholest-5,24(28)-dien-3β-ol 

(24-methylenecholesterol) 
3.4 3.4 4.1 

  24-methylcholest-5-en-3β-ol 0.2 0.3 0.4 

  24-ethylcholest-5-en-3β-ol & contam 0.2 0.2 0.4 

  
24-ethylcholest-5,24(28)-dien-3β-ol 

(24-ethylenecholesterol) 
0.3 0.6 0.7 

  24-ethylcholest-7-en-3β-ol 0.3 0.5 0.4 

Ketones 6,10,14-trimethylpentadecanone 0.1 0.2 0.3 

  C18:0 ketone 0.2 0.2 0.2 

  α-tocopherol 0.3 0.3 0.3 

  C20:1 glycerol monoether 0.2 0.2 0.1 

Summary % Alcohols 31.5 34.0 34.2 

  % Phytol 46.6 44.2 40.3 

  % Alkanes 7.6 7.1 9.6 

  % Sterols 13.5 13.9 15.1 

  % Ketones 0.4 0.4 0.4 

  % Tocopherols 0.3 0.3 0.3 

  % Glycerol Monoethers 0.2 0.2 0.1 
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Table 8 – Continued. 

 

B) 

Neutral lipid 

class 
Compound day 1 day 6 day 10 

Alcohols C12:0 Alc (straight chain unless *) 0.0 0.2 0.1 

  C13:0 Alc 0.0 0.0 0.0 

  C14:0 Alc 0.5 0.9 1.7 

  C15:0 Alc 0.3 0.4 0.7 

  C16:0 Alc 2.5 2.3 6.6 

  C16:1 Alc 1.3 1.6 2.8 

  C18:0 Alc 9.6 7.2 8.3 

  C18:0 Alc (*isoprenoid) 0.0 0.0 0.0 

  C20:0 Alc 0.0 0.0 0.0 

  C20:1 Alc 4.5 4.7 3.8 

  C20:1 Alc (*isoprenoid) 0.6 0.6 0.6 

  C22:0 Alc 0.0 0.0 0.0 

  C22:1 Alc 5.7 4.2 3.8 

  C23:0 Alc 0.9 1.2 1.7 

  C24:0 Alc 0.0 0.0 0.0 

  Phytol 52.8 46.3 37.7 

Alkanes C19:0 Alk 0.1 0.1 0.1 

  C20:0 Alk 0.4 0.4 1.3 

  C21:0 Alk 0.8 1.1 2.2 

  C22:0 Alk 0.4 1.6 1.5 

  C23:0 Alk 0.6 1.2 2.1 

  C24:0 Alk 0.6 1.2 1.9 

  C25:0 Alk 0.6 1.4 1.6 

  C26:0 Alk 0.8 3.6 2.0 

  C27:0 Alk 0.3 1.4 0.7 

  C28:0 Alk 0.1 0.9 0.2 

  C29:0 Alk 0.0 0.6 0.0 

  C30:0 Alk 0.1 0.6 0.1 

  C31:0 Alk 0.1 1.6 0.3 

  Squalene 0.4 0.4 0.3 
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Table 8B – Continued. 

 

Neutral lipid 

class 
Compound day 1 day 6 day 10 

Sterols 24-norcholesta-5,22-dien-3β-ol 0.7 1.9 0.8 

  
27-nor-24-methylcholesta-5,22-dien-

3β-ol -OR- cholesta-5,22-dien-3β-ol  
0.0 0.0 0.0 

  cholest-5-en-3β-ol 2.3 1.7 2.9 

  

cholesta-5,24-dien-3β-ol 

(desmosterol) & 24-methylcholesta-

5,22-dien-3β-ol (brassicasterol) 

6.9 4.9 6.3 

  
24-methylcholest-5,24(28)-dien-3β-ol 

(24-methylenecholesterol) 
4.5 4.2 5.8 

  24-methylcholest-5-en-3β-ol 0.4 0.5 0.5 

  24-ethylcholest-5-en-3β-ol & contam 0.5 0.7 0.6 

  
24-ethylcholest-5,24(28)-dien-3β-ol 

(24-ethylenecholesterol) 
0.4 0.3 0.4 

  24-ethylcholest-7-en-3β-ol 0.2 0.2 0.2 

Ketones 6,10,14-trimethylpentadecanone 0.0 0.0 0.0 

  C18:0 ketone 0.2 0.2 0.3 

  α-tocopherol 0.0 0.0 0.0 

  C20:1 glycerol monoether 0.0 0.0 0.0 

Summary % Alcohols 25.9 23.2 30.1 

  % Phytol 52.8 46.3 37.7 

  % Alkanes 5.3 16.0 14.5 

  % Sterols 15.9 14.4 17.4 

  % Ketones 0.2 0.2 0.3 

  % Tocopherols 0.0 0.0 0.0 

  % Glycerol Monoethers 0.0 0.0 0.0 

Key: full compound description (abbreviation) for sterols mentioned in text or Table 3. 24-

norcholesta-5,22-dien-3β-ol (26Δ5,22); cholesta-5,24-dien-3β-ol (desmosterol) & 24-

methylcholesta-5,22-dien-3β-ol (brassicasterol) ((27Δ5,24) + (28Δ5,22)); 24-methylcholest-

5,24(28)-dien-3β-ol (24-methylenecholesterol) ((28Δ5,24(28))); 24-ethylcholest-5-en-3β-ol & 

contam ((29Δ5)). 
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Table 9 - Changes in neutral lipid concentrations. Changes in particulate neutral lipid 

concentrations (µg/mg POC) between day 1 and day 10 of the microbial incubation experiments. 

 

Microbiome Neutral lipid class 

% 

Change 

Bering Strait Alcohols -15.5 

  Phytol -32.9 

  Alkanes -1.4 

  Sterols -13.1 

  Ketones -6.5 

  Tocopherols -15.6 

  Glycerol Monoethers -48.3 

  Total (µg/mg OC) -22.3 

      

Chukchi Sea Alcohols -13.3 

  Phytol -46.8 

  Alkanes 105.0 

  Sterols -18.0 

  Ketones -2.6 

  Tocopherols NA 

  Glycerol Monoethers NA 

  Total (µg/mg OC) -25.5 
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Table 10 - Lipid biomarkers. Fatty acid and neutral lipid biomarkers indicative of origin and 

reactivity (with citations). Abbreviations for neutral lipid sterol compounds are available in the 

key below Table 8. 

 

Total fatty acids   

bacterial  all odd & branched (but specifically C15 & C17) are bacterial in origin 

(Kaneda [167]) 

    

algal high 16:1w7 (MUFA); 16:0 (SFA); 20:5w3 (PUFA); 14:0 (SFA) 

(Volkman et al. [168]) 

  low 22:6w3 (PUFA) (Belicka et al. [169]) 

  dominance of C16 over C18 PUFAS (Belicka et al. [169]) 

    

vascular plants even-carbon SFA, >C24 (Belicka et al. [169] + references therein) 

    

specifically recalcitrant SFAs (Fagervold et al. [37]) 

specifically labile Unsaturated FAs (Harvey and Macko [156]) 

  PUFAs (Hu et al. [170]) 

    

Neutral lipids   

algal  phytol (Harvey and Macko [156]) 

  28Δ5,24(28) (Belicka et al. [169] + references therein) 

  29Δ5 

    

mixed sources (including 

diatoms, other algae & 

zooplankton) 

cholesterol (Belicka et al. [169] + references therein) 

26Δ5,22 

27Δ5,24 + 28Δ5,22 (Rontani et al. [171]) 

  

 specifically labile phytol (Harvey and Macko [156]) 
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Table 11 – Distributions of lipid biomarkers. Lipid biomarker relative distributions (%) over 

time for A) Fatty acids and B) neutral lipids. Biomarkers used for quantitative analysis are 

identified in Table 10. 

 

A) 

  Bering Strait Chukchi Sea 

origin day 1 day 6 day 10 day 1 day 6 day 10 

bacterial 4.7 11.5 13.8 3.5 6.6 10.8 

bacterial (only C15+C17) 4.1 9.7 11.9 2.0 5.0 9.4 

algal 78.5 67.5 60.8 79.6 63.8 67.3 

terrestrial 0.3 0.2 0.2 0.2 0.4 0.0 

 

B) 

  Bering Strait Chukchi Sea 

origin day 1 day 6 day 10 day 1 day 6 day 10 

diatom 50.2 47.7 44.7 57.7 51.2 44.1 

diatom (only phytol) 46.6 44.2 40.3 52.8 46.3 37.7 

mixed source (incl. algal) 8.7 8.4 8.6 9.9 8.5 10.0 
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4.3.4 Particulate amino acids  

Total hydrolyzable amino acid concentrations of the added POM substrate (POM-

THAA/POC) at day 1 were comparable between the Bering Strait (282.15 µg THAA/mg POC) 

and Chukchi Sea (277.42 µg THAA/mg POC), with concentrations almost doubling by day 10 

(Table 12). Of the 11 amino acid groups quantified by GC/MS, leucine was the most prominent 

amino acid within the POM added to the Bering Strait at day 1 (mole% of 52.2% +/- 17.6%), and 

was most abundant in both microbiomes by day 10 (39.0% +/- 21.0% & 29.9% +/- 3.5%) (Figure 

22). Proline was one of the dominant THAAs in Chukchi Sea particles at day 1 (25.0% +/- 

7.0%), with decreasing distribution by day 10 (14.3% +/- 5.1%) while it was relatively 

unchanged within the Bering Strait POM over time (9.1% +/- 4.8% to 9.8% +/- 3.4%). Glycine 

was another THAA with a decreasing temporal trend within Chukchi Sea particles, with changes 

measured from 18.9% (+/- 4.5%) to 8.7% (+/- 0.9%), a decrease that was also missing in the 

Bering Strait POM composition.  

4.3.5 Bacterial enzyme profiles 

To examine the bacterial enzymatic response of the microbial communities to the 

introduction of algal organic matter, enzyme commission (EC) numbers were assigned to gene 

ontology (GO) functions and the peptide spectrum matches (PSMs) for each EC category were 

summed to classify and quantify enzymatic changes over time. The number of EC identifications 

increased over time within both microbiomes, from <203 at the initial sample to >388 at day 10 

(Table 13). In addition, the percent coverage of EC categories assigned PSMs also increased over 

time (<31.2% to >40.7%) (Table 13). Initial microbial enzyme profiles at this broad 

categorization were variable between the Bering Strait and Chukchi Sea microbiomes at the time 

of collection from the water column (i.e., initial time point), with hydrolases and transferases 

together composing 76.6% of total enzyme distributions within the Bering Strait and 67.4% 

within the Chukchi Sea (Figure 23). The distribution of initial Bering Strait bacterial 

oxidoreductases (14.0%) were about half of what they were in the Chukchi Sea (26.5%), while 

isomerases and ligases had greater distributions in the Bering Strait (both ~4% versus ~1% in the 

Chukchi Sea). By day 10, temporal shifts in enzyme distributions occurred within each 

microbiome that resulted in more comparable broad enzymatic profiles between the Arctic 

bacterioplankton communities, with hydrolase and transferase combined contributions  
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Table 12 - Amino acid concentrations. Total hydrolyzable amino acid concentrations of the 

added particles normalized to particulate organic carbon (POC) concentrations (µg THAA/mg 

POC) for each microbiome, Bering Strait and Chukchi Sea, on days 1 and 10 of the incubation 

experiments.  

 

Time Day 1 Day 10 

Microbiome 

Bering 

Strait 

Chukchi 

Sea 

Bering 

Strait 

Chukchi 

Sea 

VAL 16.54 28.59 24.12 33.18 

ALA 16.76 36.87 34.93 83.83 

GLY 11.14 36.34 22.64 31.40 

LEU 146.21 66.33 200.26 187.95 

aILE 19.33 12.28 28.14 34.07 

PRO 25.59 73.72 49.93 79.73 

ASP 5.57 6.39 81.02 43.50 

GLU 1.61 2.28 3.06 4.23 

PHE 34.59 12.11 68.41 63.40 

TYR 4.40 1.95 20.89 6.50 

LYS 0.42 0.57 2.24 0.30 

Totals 282.15 277.42 535.65 568.08 

Key: VAL = valine, ALA = alanine, GLY = glycine, LEU = leucine, aILE = α-isoleucine, PRO = 

proline, ASP = aspartic acid + asparagine, GLU = glutamic acid + glutamine, PHE = 

phenylalanine, TYR = tyrosine, LYS = lysine. 
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Figure 22 - Amino acid distributions. Mole % of total hydrolyzable amino acids (THAAs) on 

A) day 1 and B) day 10 of the incubation experiments. Error bars represent standard deviations 

for each amino acid (BSt = Bering Strait, n=3; CS = Chukchi Sea, n=2). 

 

A) 

 
 

B) 

 
Key: VAL = valine, ALA = alanine, GLY = glycine, LEU = leucine, aILE = α-isoleucine, PRO = 

proline, ASP = aspartic acid + asparagine, GLU = glutamic acid + glutamine, PHE = 

phenylalanine, TYR = tyrosine, LYS = lysine. 
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Table 13 – Enzyme Commission number data. Count of bacterial enzyme commission 

numbers (EC#) assigned to gene ontology (GO) functions and the summed percent of total 

peptide spectrum matches (%PSM) at each time point that match to an EC number for the 6 

broadest EC categories over the 10 day incubation experiments of Bering Strait and Chukchi Sea 

microbes. Broad EC categories: 1: oxidoreductases, 2: transferases, 3: hydrolases, 4: lyases, 5: 

isomerases, 6: ligases.  

 

  Bering Strait Chukchi Sea 

Time EC# %PSM EC# %PSM 

Initial 203 31.21 120 26.64 

day 1 291 36.19 68 45.96 

day 6 451 42.25 386 44.51 

day 10 446 40.67 388 43.25 
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Figure 23 – Enzyme commission category distributions. Broad enzyme commission (EC) 

category distributions (% of total) of the bacteria from the A) Bering Strait and B) Chukchi Sea 

samples over ten days incubation time.  

 

A) 
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decreasing to ~60% while lyases (4.1-6.0%), isomerases (6.2-6.6%) and ligases became more 

abundant (9.2-10.3% of total enzyme distributions) (Figure 23). 

Hydrolases specifically acting on acid anhydrides (>69%) and peptide and ester bonds (4-

15% each) were the most abundant hydrolase classes within both microbiomes, while 

glycosylase activities remained relatively minor (<3%) (Table 14). No lipase enzymes, which are 

specific to lipid degradation, were detected after translating GO functions into EC categories. 

Yet, a majority of lipase enzymes fall under the more broad EC category of hydrolases acting on 

ester bonds (EC:3.1) [165, 166] and made up between 5.3-7.2% of total hydrolases initially, with 

distributions generally doubling by day 10 in each microbiome (Table 14). More specifically, 

lipase enzymes are categorized as carboxylic ester hydrolases (EC:3.1.1) and phosphoric diester 

hydrolases (EC:3.1.4) [165, 166], both of which were identified within the dataset. Regardless of 

their importance in lipid degradation, both of these ester hydrolase classes made up a small 

fraction (<1%) of total hydrolases and were not consistently present across all time points (i.e., 

neither enzyme group was detected at day 1 in the Chukchi Sea). Relative abundances of these 

enzymes (per GO PSMs) appeared to peak at day 6 and then decrease at day 10, except for 

Chukchi Sea phosphoric diester hydrolases, which had a slight increase between these days 

(Figure 24). Taxonomic assignments of bacterial classes for these enzymes indicated that 

Flavobacteria and Alphaproteobacteria were largely responsible for their expression in both 

microbiomes, however the distributions were variable. In general, Alphaproteobacteria appeared 

important for activity of both enzyme groups within the Bering Strait microbiome compared to 

the Chukchi Sea, where Flavobacteria had a more prominent association with these enzymes.  
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Table 14 - Hydrolase distributions. Bacterial enzyme commission (EC) categorical 

distributions (%) of hydrolases (EC:3.-) for the A) Bering Strait and B) Chukchi Sea. 

 

A) 

GO 

Accession 

EC 

number 
Hydrolase EC name 

Bering Strait 

initial day 1 day 6 day 10 

GO:0016788 EC:3.1 Acting on ester bonds  7.21 11.32 15.34 14.14 

GO:0016798 EC:3.2 Glycosylases 2.19 1.41 1.75 1.87 

GO:0016801 EC:3.3 Acting on ether bonds 0.00 1.49 1.50 1.20 

GO:0008233 EC:3.4 
Acting on peptide bonds 

(peptidases) 
13.79 9.41 10.41 10.27 

GO:0016810 EC:3.5 

Acting on carbon-nitrogen 

bonds, other than peptide 

bonds 

0.47 0.35 2.18 3.20 

GO:0016817 EC:3.6 Acting on acid anhydrides 77.43 78.15 70.07 69.91 

GO:0016822 EC:3.7 
Acting on carbon-carbon 

bonds 
0.00 0.07 0.06 0.00 

 

B) 

GO 

Accession 

EC 

number 
Hydrolase EC name 

Chukchi Sea 

initial day 1 day 6 day 10 

GO:0016788 EC:3.1 Acting on ester bonds  5.34 3.85 11.37 11.82 

GO:0016798 EC:3.2 Glycosylases 2.91 2.88 1.78 2.48 

GO:0016801 EC:3.3 Acting on ether bonds 1.46 0.96 0.71 0.89 

GO:0008233 EC:3.4 
Acting on peptide bonds 

(peptidases) 
11.17 3.85 14.39 14.70 

GO:0016810 EC:3.5 

Acting on carbon-nitrogen 

bonds, other than peptide 

bonds 

0.00 0.00 1.42 1.59 

GO:0016817 EC:3.6 Acting on acid anhydrides 79.61 85.58 72.91 68.92 

GO:0016822 EC:3.7 
Acting on carbon-carbon 

bonds 
0.00 0.00 0.00 0.00 
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Figure 24 - Bacterial ester hydrolases. Bacterial taxonomic class distributions among enzyme 

ester hydrolases over time (as percentage of enzyme commission peptide spectral matches) for 

carboxylic acid hydrolases (EC3.1.1) from the A) Bering Strait and B) Chukchi Sea 

metaproteomes, as well as for phosphoric diester hydrolases (EC:3.1.4) from the C) Bering Strait 

and D) Chukchi Sea. 
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4.4 Discussion 

In the shallow shelf system of the Chukchi Sea, POM quality in bottom water differs 

from the surface ocean during early autumn, suggesting that the bacterial community residing at 

a greater depth receives a more degraded source of organic matter compared to the surface [172]. 

This may lead to a metabolic adaptation of the community at depth to access refractory material 

as an energy source [123]. Indeed, in Chapter 2, while tracking community functions that shifted 

over time within the microbiomes collected from the surface water of the Bering Strait and 

bottom water of the Chukchi Sea, I identified some ecologically significant distinctions in 

response to algal organic additions. Therefore, I questioned how lipid degradation patterns of 

added particles would compare between the two microbiomes, and if I could identify differences 

in enzyme profiles that might explain lipid diagenesis over a short time frame. This analysis also 

included an assessment of which taxonomic bacterial classes expressed these degradative 

enzymes in each community. 

The POM collected from the Bering Strait chlorophyll subsurface maximum was 

presumed to have a primarily autochthonous origin [173]. Although fatty acid and neutral lipid 

concentrations in the particles at day 1 were lower than what has previously been reported from 

POM collected near the surface of the Chukchi Sea water column, many of the lipid class 

distributions were comparable to these previous distributions, such as particularly high 

contributions by MUFAs, SFAs and phytol, an algal-derived alcohol [169]. Specific lipid classes 

are particularly useful geochemical biomarkers of organic matter origin (e.g., [75, 156, 169]) and 

confirmed a primarily algal origin with a particularly strong diatom signal. For example, the high 

contribution of PUFAs associated with diatoms and low contribution of long chain fatty acids 

derived from vascular higher plants verified the marine origin of the particulate additions. Initial 

POC:PON ratios ~5 (Table 1) agreed with the biomarker data that the added POM substrate 

originated primarily from an algal source, although it was enriched in nitrogen compared to 

POM previously collected from Chukchi Sea surface waters [169]. Inconsistent with the lipid 

composition and POC:PON, the POM-THAA/POC concentrations at day 1 of the incubation 

experiments were low for typical concentrations indicative of a phytoplankton or bacterial source 

[174]. Considering the preceding evidence that the POM was composed of algal organic matter, 

the possibility that the POM-THAA/POC values originated from a methodological constraint to 
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only quantify 11 amino acids seems more likely than a macrophytic origin [174] or previous 

degradation of labile components [175]. 

Temporal increases in bulk POC & PON concentrations were likely a result of particulate 

aggregation, as has been previously reported for diatom cultures [176]. Initiation of bulk POM 

decay at this low temperatures (0°C) may take longer than the 10 day time frame employed, 

while at warmer temperatures decomposition can occur more rapidly (e.g., [75, 110]). Although 

bulk POC and PON concentrations did not show a net decline over the 10 days, changes in the 

POM compositional indicators, such as decreasing POC:PON ratios between days 1-10 and 

increases in POM-THAA/POC indicate compositional changes were underway, such as 

ammonia adsorption, carbon removal during degradation or an increase in bacterial biomass on 

the particles [177, 178]. The latter two explanations are especially probable since cell numbers 

increased >1000%, matched with evidence of the loss of selective lipid classes. 

As bacterial enzymatic coverage (%) increased within both microbiomes, particulate 

diagenesis was evident over the 10 day incubation period. The 20-40% decline in total fatty acid 

concentrations over 10 days in the current work is comparable to other studies from a variety of 

environments, including for diatom degradation under oxic conditions at ambient temperatures 

[156]. However, the loss of fatty acid and neutral lipid concentrations over the 10 days while 

POC, PON and THAA concentrations increased was surprising as bulk POC and protein decay 

rates tend to be higher than lipid decay rates [75]. Temporal losses of selective lipid classes as 

bulk POM parameters increased demonstrates that portions of the added substrate were 

vulnerable to enzymatic attack by bacterioplankton from both the Bering Strait and Chukchi Sea, 

although degrees of decomposition were somewhat variable.  

Differences between the two Arctic microbiomes in the decay of lipid classes and amino 

acids opposes the 1
st
 hypothesis and indicates that community composition within this ecosystem 

may have an impact on the degree of degradation for these specific POM structures. For 

example, greater decreases in total fatty acid concentrations within the Bering Strait incubation 

suggests that there is a higher remineralization rate for POM fatty acids in the microbial 

community originating from the subsurface chlorophyll maximum. This pattern may be 

explained by a community-wide adaptation to rapid influxes of labile, algal-derived POM 
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compared to the bottom water microbiome of the Chukchi Sea. Unlike total fatty acids, the 

decrease of total neutral lipid concentrations over 10 days were comparable between 

microbiomes, indicating that both bacterial assemblages had nearly equivalent capacities for the 

degradation of this type of lipid. Different distributions of neutral class losses, however, 

distinguished the two microbiomes. For example, the Chukchi Sea microbiome demonstrated a 

greater ability to access phytol than the Bering Strait over a 10 day timescale. This is a surprising 

find, considering that the other major algal biomarker, PUFAs, decreased at similar 

concentrations between the two microbiomes. These inconsistencies suggest that compositionally 

distinct microbial communities contain some metabolic dissimilarity in the degradation potential 

of specific labile POM lipid compounds.  

Despite the variations in degree of degradation for some lipid classes, a predictive order 

of decomposition between microbiomes emerged within each lipid category (Fatty acids: 1. 

PUFAs, 2. SFAs, 3. total fatty acids, 4. MUFAs; neutral lipids: 1. phytol, 2. total neutrals, 3. 

alcohols & sterols), independent of significant differences in bacterial composition, which 

supports the 1
st
 hypothesis. Harvey and Macko [156] showed that the saturation of fatty acids 

impacts lability, particularly from a diatom source; unsaturated fatty acids degrade at a more 

rapid rate than saturated fatty acids. Although this trend was observed for the PUFAs, it was not 

true for the monounsaturated class (MUFA) concentrations, which had a relatively lesser degree 

of loss than the saturated class (SFA) over the ten days in each microbiome. In addition, sterols 

are generally classified as less labile than other lipid classes, however they can degrade by 

abiotic and biotic processes at a similar rate to total POC [171]. Evidence of sterol decay was 

lower than many fatty acid and neutral lipids, however their concentrations decreased to a greater 

degree than MUFA in the Chukchi Sea. Some selective loss of sterol classes (27Δ5,24 + 

28Δ5,22) over this short time frame of 10 days occurred and was unexpected, as previous decay 

of sterols was shown to be nonselective and only detectable after 40+ days in a comparable 

bacterial incubation experiment of diatoms, but at a warmer temperature [156].  

In addition to indicating substrate origin, certain lipid classes are useful as biomarkers to 

define paths and rates of degradation (e.g., [75, 156, 179]). An inverse relationship between 

bacterial biomarkers and algal biomarkers was noted (algal fatty acid significance at α = 0.05 

(Pearson r = -0.82, n = 6, p = 0.046); algal neutral lipid significance at α = 0.05 (Pearson r = -
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0.87, n = 6, p = 0.024)). This negative correlation suggests that as bacteria presumably colonized 

the particles, they remineralized algal-specific fatty acids and neutral lipids primarily composed 

of PUFAs and phytol, respectively. Corroborating this analysis was the 1000% increase in 

bacterial cell numbers, alongside increases in the particulate bacterial biomarkers, odd + 

branched chain fatty acids. The decline of PUFA concentrations was especially noteworthy and 

evident of their high degree of lability [170]. Although previous work has shown that bacterial 

assemblages are able to preferentially extract labile matter from a range of substrates without a 

change in bacterial composition [17, 154], the results presented here indicate that shifts in 

bacterial composition occurred as a response to the algal substrate input (Figure 6; Figure 14). In 

particular, PUFA concentrations have been shown to influence bacterial assemblages in cold 

water sediments [37] and suggests that their accessibility to both microbiomes may have 

contributed to the taxonomic converging of these two microbial communities over a time frame 

of a few days. 

As opposed to the degradative information obtained from individual lipid class data, only 

a modest amount of information on substrate lability was identified based on changes in 

distributions among the eleven amino acids measured; with few trends emerging to differentiate 

the two communities. In contrast with the selective preservation of amino acids associated with 

the cell wall of diatoms [175], mole percentage of glycine within the particles decreased over 

time within the Chukchi Sea microbiome experiment. This indicates that the reactivity of this 

amino acid to this microbial community was not solely controlled by its integration into a 

relatively refractory component of the diatom cell. Glycine is also considered of low nutritional 

value to heterotrophic bacteria and it is easily synthesized [14], further distinguishing the 

nutritional strategy by the bottom water community from the surface community. In contrast to 

the Chukchi Sea microbiome, mole percentage of leucine decreased within the Bering Strait 

incubations, however the high lability of this amino acid [14] was obscured by high standard 

deviations between technical replicates. Other amino acids that are good indicators of substrate 

lability such as glutamic acid, tyrosine, phenylalanine and isoleucine [14, 174] did not prove to 

be useful biomarkers of degradation for these Arctic microbiomes over this short time frame, as 

many of the mole percentages of these THAAs actually increased over the 10 day incubation 

period. Future work would benefit from employing a method with greater precision and one that 
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is capable of measuring a wide range of amino acids, such as in recent work by McMahon et al. 

[180]. 

The high abundance of acid anhydride hydrolases in both bacterial communities was 

expected as these bonds within substrates are readily hydrolyzed for easy energy acquisition (i.e., 

ATP contains two anhydride bonds). In the current dataset, although total bacterial hydrolases 

decreased over the ten days, the near doubling of ester-specific hydrolases over the same time 

frame is consistent with the evidence of particulate lipid degradation within both microbiomes. 

In particular, hydrolytic enzymes specifically related to organic matter degradation tend to 

increase within bacteria during phytoplankton blooms [181, 182] and can indicate which types of 

substrates are seen as ‘bioavailable’ for different bacterial taxa [24]. The delayed increase in the 

ester-specific hydrolases within the Chukchi Sea microbiome at day 6 compared to increases in 

the Bering Strait at day 1 has potential implications for degradation response rates for ester-

linked compounds of algal substrates in the bottom water of the western Arctic Ocean, 

corroborating earlier evidence of similar delays in the metabolic response (Chapter 2) and 

taxonomic restructuring of the Chukchi Sea microbiome (Chapter 3). The greater cumulative 

enzymatic diversity (# of EC classes) in the bacterioplankton collected from the SCM of the 

Bering Strait may indicate a wider range of functions are required to thrive in the highly episodic 

environment of the surface Arctic Ocean. This greater enzymatic diversity may translate into a 

more rapid response rate to increase enzymes specific to substrate availability, such as ester 

hydrolases to target labile fatty acids in diatom cells when they become abundant. Despite an 

initial response delay in one microbiome over another, a slightly longer period of time (6 days 

versus 1 day) showed that two Arctic microbiomes can recalibrate to become more 

enzymatically equivalent when labile substrates are in abundance. 

Although a search was conducted for bacterial lipases, as the class of enzyme that 

hydrolyze lipids, none were identified within the metaproteomic dataset. One reason that lipases 

may not have been identified is that they are primarily an extracellular enzyme [183] and 

therefore, if synthesized, might have been present as an exuded metabolite which would have 

been outside of the 0.2 µm filtration size cutoff for free-living bacteria. Second, these enzymes 

are produced primarily during fermentation [183] and although some of the degradation 
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processes occurring within the particles were likely anaerobic, the collection of free-living 

bacteria might have limited the detection potential.  

While no lipase-specific enzymes were identified within the EC dataset, the quantitative 

information available on carboxylic ester hydrolases (EC:3.1.1) and phosphoric diester 

hydrolases (EC:3.1.4), which encompass a majority of the lipase enzymes [165, 166], show that 

relative abundances of these bacterial enzymes peaked on day 6 before decreasing by day 10. 

The changes in carboxylic ester hydrolases are most appropriate to compare to decreasing 

concentrations of fatty acids, which are highly composed of ester-linkages. In addition, specific 

enzyme classes (i.e., carboxylesterases (EC:3.1.1.1)) are particularly important in hydrolyzing 

carbon for bacterial utilization [184]. It is conceivable that the increase in Bering Strait bacterial 

carboxylic ester hydrolases at day 6 had a temporally delayed impact on the decreases in the fatty 

acid class concentrations by day 10. Alternatively, this inconsistency with the timing of the peak 

in carboxylic ester hydrolases and decreases in labile fatty acids (i.e., PUFAs) may suggest that 

bacteria don’t necessarily need to increase lipases to access highly reactive lipid classes. This 

latter idea is supported by research showing that although lipase activity can correlate with some 

lipid classes (i.e., monounsaturated, short-chain saturated and branched-chain FAs indicating 

bacterial lipid synthesis), this relationship can be lacking for the highly labile PUFAs [185]. 

Relative increases in these hydrolases at day 6 may have had additional impacts, such as 

increasing relative abundances of certain lipid classes (i.e., Bering Strait MUFAs), possibly 

indicating intermediate degradation products. 

Preliminary connections between changes in particulate lipid classes and changes in the 

broad categories of bacterial hydrolases can be made using the current methodologies, partially 

supporting the 2
nd

 hypothesis. The identification of broad enzymatic categorization, however, 

requires a conservative interpretation and the limitations lead to methodological suggestions for 

future research. Without directly measuring shifts of specific enzymes, it is difficult to link 

bacterial activity to changes in particulate lipid class composition. Follow-up research projects 

that attempt to make these ecological connections would benefit from employing lipase enzyme 

assays (e.g., [185]) to complement the metaproteomic-based identification of enzyme categories. 

In addition, the large increase (2x) of bacterial phosphoric diester hydrolases within the Bering 

Strait compared to the Chukchi Sea at day 6 is hard to explain without detailed particulate lipid 
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data on phospholipids. However, a greater expression of this enzyme category from bacteria 

collected from the chlorophyll maximum may suggest that this surface water microbiome had a 

particularly high adaptation to attacking and accessing phospholipids as an energy source from 

diatom cell structures (i.e., cell walls). Lastly, the peptide-based enrichment analysis (Chapter 2) 

provided evidence of the rapid processing of carbohydrates that occurred within both 

microbiomes. Therefore, I believe that changes in the composition of particulate carbohydrates 

would have been an excellent candidate for matching with bacterial enzyme profiles within this 

dataset, however this analytical method was not included in the current study. Future research 

could benefit from such analysis. 

A limited number of bacterial lipase-relevant enzymatic groups, taxonomic associations 

and time points made it difficult to extrapolate the hydrolase group taxonomic data to an 

ecosystem level. The results, however, provide some preliminary evidence that taxonomic 

classifications for carboxylic ester hydrolases and phosphoric diester hydrolases reflected total 

taxonomic distributions within the metaproteomic dataset (Figure 5). Take, for example, the 

higher relative activity (i.e., % of metaproteome) of Bering Strait Alphaproteobacteria versus 

Chukchi Sea Flavobacteria, which may translate into greater specific hydrolase classes on 

particulate lipids. Bering Strait Alphaproteobacteria appeared to be more efficient at the 

degradation of carboxylic acids, as seen in the greater decrease in particulate fatty acid 

concentrations within this microbiome. Alternatively, the large increase in Flavobacterial activity 

and abundance between days 1-6 in both microbiomes was not seen in the carboxylic ester 

hydrolases, but seems to have played a role in the increase of phosphoric diester hydrolases. This 

complements previous investigations into the genome of this bacterial class, suggesting that they 

are capable of degrading algal biopolymers with a diverse resource of compound-specific 

enzymes common in algal cell walls [95]. Although not included in the current analytical 

methods, future research would benefit from including measurements of phospholipid 

composition of particles in combination with enzyme activities. 

4.5 Conclusions  

The coupling of microbial –omics with geochemical measures in the same study are 

infrequent [25]. The current chapter combined measures of bacterial enzymatic profiles 
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identified within the metaproteomic dataset with changes to particulate organic compositional 

indicators of lability. Integrating these results with results earlier chapters, I aimed to discern 

how the former influenced the latter. Although bulk POC, PON and POM-THAA/POC 

concentrations increased over the 10 day incubation period, the inverse relationship between loss 

of diatom-specific particulate lipid biomarkers and increase of particulate bacterial lipid 

biomarkers indicated that carbon was selectively degraded as bacteria colonized the particles. 

Further, this work shows that bacterioplankton collected from different water masses within the 

western Arctic Ocean have a predictable order of particulate lipid degradation, independent of 

differences in bacterial taxonomic composition. Earlier work (Chapter 3) showed that the rapid 

inputs of algal-derived organic matter drove functional convergence between the two 

microbiomes. Even under this homogenizing scenario, access to specific algal-derived particulate 

lipid classes (total fatty acids and phytol) differentiated the microbiomes, possibly a reflection of 

differences in bacterioplankton community taxonomy and capacities to adapt enzymatically to 

new substrates. Although less conclusive than the particulate compositional data, enzymatic 

profiles showed that bottom water bacterioplankton from the Chukchi Sea were enzymatically 

less diverse than the surface ocean community from the Bering Strait. Even so, the slightly 

greater collective expression of the Chukchi Sea enzymes provided the functionality to degrade 

lipid substrates to nearly equivalent degrees as the more enzymatically diverse Bering Strait 

community. The findings in this study corroborate earlier results (Chapters 2 and 3) that a high 

degree of functional consistency persisted between the two microbiomes over a ten day period, 

as seen in the similar profiles of metabolic response to and lipid degradation of algal-derived 

substrates.  
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CHAPTER 5 

 

5. CONCLUSIONS 

 

The complexity of natural bacterial communities and the environmental matrices in 

which they exist contribute to the difficulty of identifying how distinct taxonomic groups 

respond metabolically to changes, or perturbations, in their surroundings. In this dissertation, I 

aimed to address this problem and contribute to a major research goal in microbial ecology to 

connect bacterial activity to ecosystem functioning by applying a novel metaproteomics 

approach in combination with more traditional methods of taxonomic classification and organic 

matter compositional analyses. 

A major finding from this work was that functional redundancy was characteristic of the 

natural bacterial communities collected within the shallow shelf ecosystem of the western Arctic 

Ocean. Even as these redundancies were evident, the results from this dissertation demonstrated 

that methodological scale is important; redundancy dominated when viewing the complete 

metaproteomic dataset, however the temporal functions that differentiated the microbiomes may 

have implications for how compositionally distinct communities interact with and subsequently 

influence their local biochemical environments. The finding that few functional traits may be 

important to define the functioning of a whole ecosystem is not new and in fact, is making its 

way into mainstream science view [2]. Results gained from this dissertation also showed that 

organic perturbations influenced the compositional and functional restructuring within the 

microbiomes, leading to the identification of response processes that drove functional shifts 

under realistic environmental perturbations of high inputs of algal-derived organic substrates 

versus periods when substrates were at a minimum. The taxonomic associations of such 

functions, even at a broad classification, provided insight into traits of substrate acquisition, 

nutrient cycling and energy production that may contribute to adaptation and niche separation 

within microbiomes during periods of environmental stimulus. In the context of a warming 

Arctic Ocean where the timing, scale and characterization of biological response to organic 

perturbations are difficult to predict, results from these trait-based methods suggest that 
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environmental conditions which select for certain bacterial groups may impact local 

biogeochemical cycling. 

The first two research chapters (Chapters 2 & 3) showed that under environmental 

conditions where substrates become limited, initial bacterioplankton communities adapted by 

restructuring community composition and initiating divergent metabolic processes to access 

ambient organic substrates. Over the short incubation times of 10 days, this led to greater niche 

differentiation related to mechanisms of energy conversion and production. Under the high 

substrate environments seen as high inputs of marine phytoplankton, early temporal metabolic 

responses differentiated the two microbiomes, however within a matter of days semi-functional 

convergence was observed as the bacterial groups adapted in similar ways to access the 

substrates for growth and energy production. Regardless of the redundancies measured, it was 

evident that nitrogen metabolism was a key process differentiating the bacterial communities, 

likely a reflection of distinctive environmental forcing from the original oceanic environments at 

the time of collection and the specific metabolic capabilities of the initial bacterial classes. The 

third research chapter (Chapter 4) confirmed the high functional redundancy of these 

microbiomes over a ten day incubation period, primarily by the opportunistic bacterium of the 

Class Flavobacteria and members of Alphaproteobacteria to activate enzymes related to lipid 

substrate decomposition. This suggests that periods of intense primary productivity should result 

in nearly comparable degrees of remineralization independent of depth or initial bacterial 

composition in this shallow shelf ecosystem.  

The incorporation of microbial –omic methodologies together with geochemical analyses 

can prove to be a powerful tool to identify metabolic activities important in the structuring of 

biogeochemical profiles within the ocean [25]. The multidisciplinary approach employed within 

this dissertation was essential to unravel the intricacies in the timing and processing of substrates 

within different organic matter environments. The current work demonstrated how the coupling 

of methodologies can describe specific processes in a complex system because of the unique 

insights provided by each method: 1. identification of key community functions through a 

metaproteomic enrichment analysis, 2. assignment of taxonomic classes to these functions, 3. 

incorporation of traditional methods to assess changes in taxonomic composition (16S rRNA 
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sequencing), and 4. measurements of community functionality through particulate lipid class 

decomposition.  

Trait-based functionality of organisms and communities is becoming a more widely 

acknowledged and applied concept in systems ecology (e.g., [2, 140, 152]) and is trending to 

replace the sole use of traditional indicators such as biodiversity measures or the presence of 

specific species to analyze the productivity of a complex community and health of an ecosystem. 

For example, the use of functional diversity instead of taxonomic diversity alone is proving to be 

an accurate tool for the modeling of spatial distributions of ecosystem services and 

biogeochemical profiles [1, 104]. Still in its infancy, “functional-trait ecology” requires a 

standardized methodology to be designed in order to organize and characterize the vast quantity 

of molecular data available to researchers. The methods developed and employed during this 

dissertation, and their applications to complex, natural microbiomes during the early stages of 

organic matter decomposition contributes to this discussion. In particular, the trait-based 

methods were used to characterize and quantify microbial metabolic response to environmental 

conditions in a way that may benefit future experimental work and development of 

biogeochemical models for polar regions by identifying 1) which physiological traits to focus on, 

2) temporal resolution of metabolic responses and 3) taxonomic-trait associations. 

The datasets that were constructed throughout this research provide a rich resource of 

peptide data with high mass-accuracy, functional-taxonomic associations through gene ontology 

mapping and robust bioinformatics standards, as well as high taxonomic resolution through 

traditional 16S rRNA sequencing. All of this data will become publicly available for other 

researchers to probe in order to address future research questions relevant to complex polar 

bacterial communities and their functionality. The analysis completed thus far focused mainly on 

community-scale functions, followed by identification of which taxonomic groups dominated 

such expressions. Another powerful approach to access this dataset would be to complete 

characteristic profiles on different taxonomic groups (i.e., Flavobacteria) and track statistically 

changing functions solely identified within that group to further understand how each bacterium 

responded to the organic perturbations over time. This approach could lend support to definitions 

of niche formation in natural assemblages of bacteria. The results that came out of this 

dissertation also revealed areas of improvement for future research projects aiming to link 
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geochemical cycling of substrates with trait-based measures of microbial activity. This goal 

would benefit by widening the analytical window for particulate diagenesis. For example, the 

measurement of particulate carbohydrates would be useful, as environmental stimulus inducing 

metabolic responses related to carbohydrate recycling was apparent early in the incubations. In 

addition, inclusion of bacterial enzymatic activity assays of specific particulate biochemical 

classes (i.e., lipids, carbohydrates and amino acids) would also be recommended as a direct 

measure of enzymatic activity to compliment the enzyme commission classifications, and in 

general, to compliment the multidisciplinary scope outlined in this dissertation. 
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APPENDICES 

 

Appendix 1 - Non-bacterial classes. List of non-bacterial taxonomic classes that were assigned 

to peptides in the A) Bering Strait (BSt) and B) Chukchi Sea (CS) metaproteomes. BSt and CS = 

initial bacterial community sample. aOM = algal organic matter input treatment; POM removal = 

particulate organic matter removal control. 

A) 

Bering Strait 

    aOM input POM removal 

Non-bacterial classes BS day 1 day 6 day 10 day 1 day 6 day 10 

Actinopteri x x x x x x x 

Anthozoa x x x x x x x 

Chondrichthyes x           x 

Coscinodiscophyceae   x   x       

Gastropoda   x         x 

Liliopsida   x           

Mamiellophyceae x x x x     x 

Mammalia             x 

B)        

  

       

Chukchi Sea 

    aOM input POM removal 

Non-bacterial classes CS day 1 day 6 day 10 day 1 day 6 day 10 

Actinopteri x x x x 

NA 

x x 

Anthozoa     x x     

Chondrichthyes           x 

Coscinodiscophyceae             

Gastropoda           x 

Liliopsida             

Mamiellophyceae x x x x x x 

Mammalia     x       
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Appendix 2 - Presence of bacterial phyla and classes in metaproteome. Bacterial taxonomic 

phyla and classes for A) Bering Strait (BSt) and B) Chukchi Sea (CS) with peptide assignments 

in the metaproteomic dataset. x = presence; n.d. = no mass spectrometry data collected; blank = 

class not present at that time; Initial bacterial community samples = BSt and CS; aOM input = 

algal organic matter input; POM removal = substrate limitation within the particulate organic 

matter (POM) removal control. 

A) 

    Bering Strait (BSt)         

    

BSt 

aOM input POM removal 

Taxonomic phylum Taxonomic class day 1 day 6 
day 

10 
day 1 day 6 

day 

10 

Proteobacteria Acidithiobacillia       x       

Proteobacteria Alphaproteobacteria x x x x x x x 

Proteobacteria Betaproteobacteria x x x x x x x 

Proteobacteria Deltaproteobacteria   x x x x x x 

Proteobacteria Epsilonproteobacteria   x x x     x 

Proteobacteria Gammaproteobacteria x x x x x x x 

Proteobacteria Zetaproteobacteria         x     

Bacteroidetes Bacteroidia x x x x x x x 

Bacteroidetes Chitinophagia x x x x x x x 

Bacteroidetes Cytophagia x x x x x x x 

Bacteroidetes Flavobacteriia x x x x x x x 

Bacteroidetes Sphingobacteriia x x x x x x x 

Firmicutes Bacilli   x       x   

Firmicutes Clostridia     x   x x   

Firmicutes Negativicutes   x     x x x 

Actinobacteria Acidimicrobiia x x x x x x x 

Actinobacteria Actinobacteria x x x x x x x 

Chlorobi Chlorobia             x 

Chlorobi Ignavibacteria   x x x x x x 

Planctomycetes Phycisphaerae     x         

Planctomycetes Planctomycetia   x x   x     

Aquificae Aquificae         x     

Deferribacteres Deferribacteres x             

Deinococcus–Thermus Deinococci x             

Gemmatimonadetes Gemmatimonadetes   x         x 

Lentisphaerae Lentisphaeria             x 

Nitrospinae Nitrospinia x x x x x x x 

Nitrospirae Nitrospira x x         x 

Opitutales Opitutae x x x x   x x 

Verrucomicrobi Verrucomicrobiae x       x x x 
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Appendix 2 – Continued. 

B) 

Chukchi Sea (CS) 

    

CS 

aOM input POM removal 

Taxonomic phylum Taxonomic class 
day 

1 

day 

6 

day 

10 

day 

1 

day 

6 

day 

10 

Proteobacteria Acidithiobacillia       x 

n.d. 

    

Proteobacteria Alphaproteobacteria x x x x x x 

Proteobacteria Betaproteobacteria x x x x x x 

Proteobacteria Deltaproteobacteria x   x x x x 

Proteobacteria Epsilonproteobacteria x   x x x   

Proteobacteria Gammaproteobacteria x x x x x x 

Proteobacteria Zetaproteobacteria             

Bacteroidetes Bacteroidia x   x x x x 

Bacteroidetes Chitinophagia x   x x   x 

Bacteroidetes Cytophagia x x x x x x 

Bacteroidetes Flavobacteriia x x x x x x 

Bacteroidetes Sphingobacteriia x x x x x x 

Firmicutes Bacilli           x 

Firmicutes Clostridia x   x   x x 

Firmicutes Negativicutes             

Actinobacteria Acidimicrobiia x x x x x x 

Actinobacteria Actinobacteria x x x x x x 

Chlorobi Chlorobia x       x x 

Chlorobi Ignavibacteria     x x     

Planctomycetes Phycisphaerae             

Planctomycetes Planctomycetia x x x x x x 

Aquificae Aquificae             

Deferribacteres Deferribacteres x       x x 

Deinococcus–Thermus Deinococci             

Gemmatimonadetes Gemmatimonadetes     x     x 

Lentisphaerae Lentisphaeria         x x 

Nitrospinae Nitrospinia x x x x x x 

Nitrospirae Nitrospira x x x x x x 

Opitutales Opitutae   x x x x x 

Verrucomicrobi Verrucomicrobiae x     x     
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Appendix 3 - Presence of bacterial phyla and classes in 16S rRNA sequences. Bacterial 

taxonomic phyla and classes for A) Bering Strait (BSt) and B) Chukchi Sea (CS) with 

operational taxonomic units (OTUs) in the 16S rRNA dataset. x = presence; blank = class not 

present at that time; Initial bacterial community samples = BSt and CS; aOM input = algal 

organic matter input; POM removal = substrate limitation within the particulate organic matter 

removal control. Uncl = unclassified. 

A) 

 
  

Bacterial phylum Bacterial Class d0 d1 d2 d4 d6 d10 d0 d1 d2 d4 d6 d10

Proteobacteria AEGEAN-245 x x x x x x x

Proteobacteria Alphaproteobacteria x x x x x x x x x x x x

Proteobacteria Betaproteobacteria x x x x x x x x x x x x

Proteobacteria Deltaproteobacteria x x x x x x x x x x x x

Proteobacteria Epsilonproteobacteria x x x x x x x x x x x x

Proteobacteria Gammaproteobacteria x x x x x x x x x x x x

Proteobacteria JTB23 x

Proteobacteria Proteobacteria_unclassified x x x x x x x x x x x x

Proteobacteria SC3-20 x x x x x x x x x x x x

Proteobacteria SPOTSOCT00m83 x x

Proteobacteria TA18

Proteobacteria Zetaproteobacteria

Bacteroidetes Bacteroidetes_VC2.1_Bac22 x

Bacteroidetes Bacteroidetes_unclassified x x x x x x x x x x x x

Bacteroidetes Bacteroidia x x x x x x x x x

Bacteroidetes Cytophagia x x x x x x x x x x x x

Bacteroidetes Flavobacteriia x x x x x x x x x x x x

Bacteroidetes Sphingobacteriia x x x x x x x x x x x x

Lentisphaerae Lentisphaerae_unclassified

Lentisphaerae Lentisphaeria x x x x x x x x x x x

Lentisphaerae MSBL3 x

Lentisphaerae Oligosphaeria x x x x x x x x x x x x

Lentisphaerae R76-B128 x x x x x x x x

Lentisphaerae WCHB1-41 x x x

Planctomycetes BD7-11 x x x x x x x x x x x x

Planctomycetes OM190 x

Planctomycetes Phycisphaerae x x x x

Planctomycetes Pla3_lineage x

Planctomycetes Planctomycetacia x x x x

Planctomycetes SGST604 x x x x x x x x

Verrucomicrobia Arctic97B-4_marine_group

Verrucomicrobia OPB35_soil_group

Verrucomicrobia Opitutae x x x x x x x x x x x x

Verrucomicrobia Spartobacteria x x x x x x x

Verrucomicrobia Verrucomicrobiae x x x x x x x x x x x x

Bering Strait (BSt)

aOM input POM removal
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Appendix 3A – Continued. 

 
 

 

  

Bacterial phylum Bacterial Class d0 d1 d2 d4 d6 d10 d0 d1 d2 d4 d6 d10

Chloroflexi Dehalococcoidia

Chloroflexi JG30-KF-CM66

Chloroflexi KD4-96

Chloroflexi SAR202_clade x

Actinobacteria Acidimicrobiia x x x x x x x x x x x x

Actinobacteria Actinobacteria x x x x x x x x x x x x

Actinobacteria Actinobacteria_unclassified x x x

Candidate_division_OP3
Candidate_division_OP3_un

classified
x x x x x x

Candidate_division_SR1
Candidate_division_SR1_un

classified
x x

Candidate_division_WS6
Candidate_division_WS6_u

nclassified

Firmicutes Bacilli x x

Firmicutes Clostridia x x x x x x

Firmicutes Negativicutes

Cyanobacteria Cyanobacteria x x

Cyanobacteria ML635J-21 x x x x x

Bacteria_unclassified Bacteria_unclassified x x x x x x x x x x x x

Chlamydiae Chlamydiae x x

Fibrobacteres Fibrobacteria x x x x x x x x

Fusobacteria Fusobacteriia x x x x x x

Gemmatimonadetes Gemmatimonadetes

Gracilibacteria Gracilibacteria_unclassified x x x x x x x x x x x x

Hydrogenedentes
Hydrogenedentes_unclassifi

ed

Marinimicrobia_(SAR406_cla

de)

Marinimicrobia_(SAR406_cla

de)_unclassified
x x x x x x x x x x x x

Microgenomates
Microgenomates_unclassifie

d
x

Nitrospirae Nitrospira x x

Omnitrophica NPL-UPA2 x x x x x x x

Parcubacteria Parcubacteria_unclassified x x x x x x x x x x x x

PAUC34f PAUC34f_unclassified

Saccharibacteria
Saccharibacteria_unclassifie

d
x x x x x x x x x

Spirochaetae Spirochaetes x x x x x x

Tenericutes Mollicutes x x x x x x x x x x x

TM6 TM6_unclassified

WCHB1-60 WCHB1-60_unclassified

Bering Strait (BSt)

aOM input POM removal
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Appendix 3 – Continued. 

 

B) 

 
  

Bacterial phylum Bacterial Class d0 d1 d2 d4 d6 d10 d0 d1 d2 d4 d6 d10

Proteobacteria AEGEAN-245 x x x x x x x x x x x x

Proteobacteria Alphaproteobacteria x x x x x x x x x x x x

Proteobacteria Betaproteobacteria x x x x x x x x x x x x

Proteobacteria Deltaproteobacteria x x x x x x x x x x x x

Proteobacteria Epsilonproteobacteria x x x x x x x x x x x x

Proteobacteria Gammaproteobacteria x x x x x x x x x x x x

Proteobacteria JTB23 x x x x x x x x x

Proteobacteria Proteobacteria_unclassified x x x x x x x x x x x x

Proteobacteria SC3-20 x x x x x x x x x x x

Proteobacteria SPOTSOCT00m83 x x x x x x x x x x x x

Proteobacteria TA18 x x x x x

Proteobacteria Zetaproteobacteria x

Bacteroidetes Bacteroidetes_VC2.1_Bac22

Bacteroidetes Bacteroidetes_unclassified x x x x x x x x x x x

Bacteroidetes Bacteroidia x x x x x x x x

Bacteroidetes Cytophagia x x x x x x x x x x x x

Bacteroidetes Flavobacteriia x x x x x x x x x x x x

Bacteroidetes Sphingobacteriia x x x x x x x x x x x x

Lentisphaerae Lentisphaerae_unclassified x

Lentisphaerae Lentisphaeria x x x x x x x x x

Lentisphaerae MSBL3 x x x

Lentisphaerae Oligosphaeria x x x x x x x x x x x x

Lentisphaerae R76-B128

Lentisphaerae WCHB1-41 x

Planctomycetes BD7-11 x x x x x x x x x x x x

Planctomycetes OM190 x x x x x x x x x x x x

Planctomycetes Phycisphaerae x x x x x x x x x x x x

Planctomycetes Pla3_lineage x x x x x

Planctomycetes Planctomycetacia x x x x x x x x x

Planctomycetes SGST604 x x x x x x x x x x

Verrucomicrobia Arctic97B-4_marine_group x x

Verrucomicrobia OPB35_soil_group x x x x x x x x x x x x

Verrucomicrobia Opitutae x x x x x x x x x x x x

Verrucomicrobia Spartobacteria x x x

Verrucomicrobia Verrucomicrobiae x x x x x x x x x x x x

Chukchi Sea (CS)

aOM input POM removal
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Appendix 3B – Continued. 

 
 

 

  

Bacterial phylum Bacterial Class d0 d1 d2 d4 d6 d10 d0 d1 d2 d4 d6 d10

Chloroflexi Dehalococcoidia x

Chloroflexi JG30-KF-CM66 x x x x

Chloroflexi KD4-96 x

Chloroflexi SAR202_clade x x x x x x x x x x x x

Actinobacteria Acidimicrobiia x x x x x x x x x x x x

Actinobacteria Actinobacteria x x x x x x x x x x x x

Actinobacteria Actinobacteria_unclassified x x x x x

Candidate_division_OP3
Candidate_division_OP3_un

classified
x x x x x x x x x x x

Candidate_division_SR1
Candidate_division_SR1_un

classified

Candidate_division_WS6
Candidate_division_WS6_u

nclassified
x x

Firmicutes Bacilli x x x x

Firmicutes Clostridia x x x x

Firmicutes Negativicutes x

Cyanobacteria Cyanobacteria x

Cyanobacteria ML635J-21 x x x x x x x x x x x

Bacteria_unclassified Bacteria_unclassified x x x x x x x x x x x x

Chlamydiae Chlamydiae x x x x x x x x x x

Fibrobacteres Fibrobacteria x x x x x x x x x x

Fusobacteria Fusobacteriia x

Gemmatimonadetes Gemmatimonadetes x x x x x x x x x x x

Gracilibacteria Gracilibacteria_unclassified x x x x x x x x x x x x

Hydrogenedentes
Hydrogenedentes_unclassifi

ed
x x x x x x

Marinimicrobia_(SAR406_cla

de)

Marinimicrobia_(SAR406_cla

de)_unclassified
x x x x x x x x x x x x

Microgenomates
Microgenomates_unclassifie

d
x x

Nitrospirae Nitrospira x x x x x x x

Omnitrophica NPL-UPA2 x x x x x x x

Parcubacteria Parcubacteria_unclassified x x x x x x x x x x

PAUC34f PAUC34f_unclassified x x x x x x x x x

Saccharibacteria
Saccharibacteria_unclassifie

d
x x x x x x

Spirochaetae Spirochaetes x x

Tenericutes Mollicutes x x x x x x x x

TM6 TM6_unclassified x

WCHB1-60 WCHB1-60_unclassified x

Chukchi Sea (CS)

aOM input POM removal
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Appendix 4 – SIMPER analysis. An analysis of similarity percentages (SIMPER) of free-living 

bacterial operational taxonomic units (OTUs) from 16S rRNA sequencing, representing 80% of 

the difference in taxonomic composition between microbiomes. Analysis was run with all 

samples. Uncl = unclassified. 

 
 

 

  

SIMPER % phylum class order family genus

11.68 Proteobacteria Gammaproteobacteria Oceanospirillales Oceanospirillaceae Balneatrix

11.39 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Polaribacter

10.48 Proteobacteria Gammaproteobacteria Oceanospirillales Oceanospirillales_uncl Oceanospirillales_uncl

6.20 Proteobacteria Alphaproteobacteria SAR11_clade Surface_1 Surface_1_uncl

4.59 Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Sulfitobacter

3.24 Bacteroidetes Flavobacteriia Flavobacteriales Cryomorphaceae Owenweeksia

3.04 Proteobacteria Gammaproteobacteria Cellvibrionales Porticoccaceae SAR92_clade

2.75 Proteobacteria Gammaproteobacteria Alteromonadales Colwelliaceae Colwelliaceae_uncl

2.49 Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae
Rhodobacteraceae_un

cl

2.36 Proteobacteria Gammaproteobacteria Alteromonadales Colwelliaceae Colwellia

1.55 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae
Flavobacteriaceae_un

cl

1.44 Proteobacteria Gammaproteobacteria Oceanospirillales OM182_clade OM182_clade_uncl

1.44 Proteobacteria Deltaproteobacteria
SAR324_clade(Marine_g

roup_B)

SAR324_clade(Marine_gro

up_B)_uncl

SAR324_clade(Marine

_group_B)_uncl

1.31 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Ulvibacter

1.02 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae NS4_marine_group

0.98 Proteobacteria Deltaproteobacteria Desulfobacterales Nitrospinaceae Nitrospina

0.87 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Formosa

0.77 Proteobacteria Gammaproteobacteria Oceanospirillales SAR86_clade SAR86_clade_uncl

0.74 Bacteroidetes Flavobacteriia Flavobacteriales NS9_marine_group
NS9_marine_group_u

ncl

0.73 Proteobacteria Gammaproteobacteria Oceanospirillales Oceanospirillaceae Reinekea

0.72 Proteobacteria Gammaproteobacteria Oceanospirillales Oceanospirillaceae Pseudospirillum

0.69 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae NS5_marine_group

0.57 Bacteroidetes Sphingobacteriia Sphingobacteriales NS11-12_marine_group

NS11-

12_marine_group_unc

l

0.51 Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Planktomarina

0.49 Proteobacteria Gammaproteobacteria Alteromonadales Pseudoalteromonadaceae Pseudoalteromonas

0.46 Proteobacteria Proteobacteria_uncl Proteobacteria_uncl Proteobacteria_uncl Proteobacteria_uncl

0.44 Proteobacteria Alphaproteobacteria SAR11_clade SAR11_clade_uncl SAR11_clade_uncl

0.41 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae NS3a_marine_group

0.39 Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Arcobacter
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Appendix 4 – Continued. 

 

  

SIMPER % phylum class order family genus

0.34 Actinobacteria Acidimicrobiia Acidimicrobiales Sva0996_marine_group
Sva0996_marine_grou

p_uncl

0.32 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter

0.32 Proteobacteria Betaproteobacteria Methylophilales Methylophilaceae Methylotenera

0.31 Proteobacteria Gammaproteobacteria Oceanospirillales Oceanospirillaceae
Oceanospirillaceae_un

cl

0.28 Proteobacteria Gammaproteobacteria Order_Incertae_Sedis Family_Incertae_Sedis Marinicella

0.27 Proteobacteria Gammaproteobacteria Thiotrichales Piscirickettsiaceae
Piscirickettsiaceae_un

cl

0.26 Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Paraglaciecola

0.26 Planctomycetes OM190 OM190_uncl OM190_uncl OM190_uncl

0.23 Proteobacteria Alphaproteobacteria SAR11_clade Surface_2 Surface_2_uncl

0.22 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Wenyingzhuangia

0.22 Proteobacteria Gammaproteobacteria Oceanospirillales Oceanospirillaceae Oleispira

0.21 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae NS2b_marine_group

0.21 Bacteria_uncl Bacteria_uncl Bacteria_uncl Bacteria_uncl Bacteria_uncl

0.21
Marinimicrobia_(S

AR406_clade)

Marinimicrobia_(SAR40

6_clade)_uncl

Marinimicrobia_(SAR406

_clade)_uncl

Marinimicrobia_(SAR406_

clade)_uncl

Marinimicrobia_(SAR4

06_clade)_uncl

0.21 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae
AEGEAN-

169_marine_group

0.21 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Defluviicoccus

0.19 Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae
Rhodospirillaceae_unc

l

0.17 Proteobacteria Gammaproteobacteria Chromatiales Chromatiaceae Rheinheimera

0.15 Proteobacteria Betaproteobacteria Methylophilales Methylophilaceae OM43_clade

0.14 Proteobacteria Alphaproteobacteria Rickettsiales SAR116_clade SAR116_clade_uncl

0.14 Proteobacteria Alphaproteobacteria SAR11_clade Chesapeake-Delaware_Bay
Chesapeake-

Delaware_Bay_uncl

0.13 Bacteroidetes Flavobacteriia Flavobacteriales Cryomorphaceae NS10_marine_group

0.13 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae BAL58_marine_group

0.13 Proteobacteria Alphaproteobacteria SAR11_clade Surface_4 Surface_4_uncl

0.13 Proteobacteria Gammaproteobacteria Thiotrichales Thiotrichaceae Thiothrix

0.12 Bacteroidetes Cytophagia Cytophagales Flammeovirgaceae Fabibacter

0.12 Bacteroidetes Cytophagia Cytophagales Flammeovirgaceae Marinoscillum

0.11 Proteobacteria Alphaproteobacteria OCS116_clade OCS116_clade_uncl OCS116_clade_uncl

0.11 Actinobacteria Acidimicrobiia Acidimicrobiales Acidimicrobiaceae Illumatobacter

0.10 Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Candidatus_Aquiluna

0.09 Proteobacteria Alphaproteobacteria SB1-18 SB1-18_uncl SB1-18_uncl

0.09 Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Ascidiaceihabitans

0.07 Chloroflexi SAR202_clade SAR202_clade_uncl SAR202_clade_uncl SAR202_clade_uncl

0.07 Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae Alteromonas

0.06 Proteobacteria Gammaproteobacteria Oceanospirillales ZD0405 ZD0405_uncl

0.06 Proteobacteria Gammaproteobacteria BD7-8_marine_group BD7-8_marine_group_uncl
BD7-

8_marine_group_uncl

0.06 Actinobacteria Actinobacteria PeM15 PeM15_uncl PeM15_uncl
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Appendix 5 - Bray-Curtis dissimilarity matrix. Bray-Curtis dissimilarity matrix comparing the 

free-living bacterial community compositions of each microbiome, Bering Strait (BSt) and 

Chukchi Sea (CS), under both organic perturbations (particulate organic matter removal (POMr) 

or algal organic matter input (aOM)) on each day (d0, d1, d2, d4, d6, d10). Comparisons were 

based on normalized 16S rRNA operational taxonomic units (OTUs). 

 

  
BSt_d0_ 

POMr 

BSt_d1_ 

POMr 

BSt_d2_ 

POMr 

BSt_d4_ 

POMr 

BSt_d6_ 

POMr 

BSt_d10_ 

POMr 

BSt_d0_POMr 0 0.229877964 0.307468899 0.513042768 0.323761393 0.328396283 

BSt_d1_POMr 0.229877964 0 0.156080472 0.525846147 0.21550968 0.245519044 

BSt_d2_POMr 0.307468899 0.156080472 0 0.501297051 0.191583637 0.242197493 

BSt_d4_POMr 0.513042768 0.525846147 0.501297051 0 0.400623405 0.384979517 

BSt_d6_POMr 0.323761393 0.21550968 0.191583637 0.400623405 0 0.134853218 

BSt_d10_POMr 0.328396283 0.245519044 0.242197493 0.384979517 0.134853218 0 

BSt_d0_aOM 0.115894102 0.237866279 0.324115112 0.544321982 0.347762241 0.355333023 

BSt_d1_aOM 0.201312916 0.142527898 0.205964021 0.475199096 0.211163541 0.231142286 

BSt_d2_aOM 0.381602862 0.224370905 0.146659037 0.491828413 0.210857274 0.262881519 

BSt_d4_aOM 0.436614563 0.283127287 0.223912445 0.500537259 0.26553018 0.300900291 

BSt_d6_aOM 0.486225044 0.331323184 0.279405862 0.491123836 0.291467002 0.322368173 

BSt_d10_aOM 0.4788129 0.336778315 0.287390299 0.492244582 0.285133158 0.306358466 

CS_d0_POMr 0.550083258 0.655968064 0.720147989 0.821975014 0.731975654 0.725747062 

CS_d1_POMr 0.55349765 0.658332174 0.72115743 0.825374661 0.734852857 0.729162145 

CS_d2_POMr 0.527598105 0.628356653 0.692604032 0.788155038 0.701539743 0.695488845 

CS_d4_POMr 0.508318267 0.60900924 0.671457631 0.764539783 0.679789813 0.673178465 

CS_d6_POMr 0.506855309 0.604418768 0.666573521 0.764116166 0.674921143 0.666967777 

CS_d10_POMr 0.664229151 0.685118397 0.679897489 0.596743568 0.664207913 0.662318541 

CS_d0_aOM 0.54246095 0.649231771 0.713878548 0.813338545 0.723582228 0.715663568 

CS_d1_aOM 0.535011112 0.639019942 0.708069329 0.806437935 0.717060381 0.709643706 

CS_d2_aOM 0.501172063 0.602417033 0.668036505 0.761625439 0.67751054 0.670874798 

CS_d4_aOM 0.703075604 0.639945246 0.61516597 0.758856139 0.638657324 0.663478217 

CS_d6_aOM 0.713846631 0.641077829 0.614463634 0.746746783 0.638695249 0.659712279 

CS_d10_aOM 0.698413501 0.62415299 0.59893509 0.732029619 0.621197347 0.643226006 
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Appendix 5 – Continued. 

 

  
BSt_d0_ 

aOM 

BSt_d1_ 

aOM 

BSt_d2_ 

aOM 

BSt_d4_ 

aOM 

BSt_d6_ 

aOM 

BSt_d10_ 

aOM 

BSt_d0_POMr 0.115894102 0.201312916 0.381602862 0.436614563 0.486225044 0.4788129 

BSt_d1_POMr 0.237866279 0.142527898 0.224370905 0.283127287 0.331323184 0.336778315 

BSt_d2_POMr 0.324115112 0.205964021 0.146659037 0.223912445 0.279405862 0.287390299 

BSt_d4_POMr 0.544321982 0.475199096 0.491828413 0.500537259 0.491123836 0.492244582 

BSt_d6_POMr 0.347762241 0.211163541 0.210857274 0.26553018 0.291467002 0.285133158 

BSt_d10_POMr 0.355333023 0.231142286 0.262881519 0.300900291 0.322368173 0.306358466 

BSt_d0_aOM 0 0.223685728 0.400221515 0.456794647 0.496980273 0.494583218 

BSt_d1_aOM 0.223685728 0 0.25333392 0.318522922 0.356683666 0.36034554 

BSt_d2_aOM 0.400221515 0.25333392 0 0.15174701 0.204542467 0.216851824 

BSt_d4_aOM 0.456794647 0.318522922 0.15174701 0 0.119748141 0.179245368 

BSt_d6_aOM 0.496980273 0.356683666 0.204542467 0.119748141 0 0.154356912 

BSt_d10_aOM 0.494583218 0.36034554 0.216851824 0.179245368 0.154356912 0 

CS_d0_POMr 0.533788936 0.640304967 0.766824889 0.820235356 0.842500342 0.822829583 

CS_d1_POMr 0.53709832 0.64362785 0.766448645 0.819833872 0.843710308 0.825098701 

CS_d2_POMr 0.51290577 0.612965407 0.739046058 0.79260334 0.81576768 0.797341467 

CS_d4_POMr 0.497519629 0.591692423 0.717501454 0.770491646 0.791945144 0.7753631 

CS_d6_POMr 0.488945922 0.589220377 0.714087018 0.76811408 0.790394336 0.769451305 

CS_d10_POMr 0.677232118 0.673030791 0.683024326 0.691008344 0.700464362 0.710031558 

CS_d0_aOM 0.526727408 0.632812697 0.760803095 0.813728399 0.83626755 0.815379944 

CS_d1_aOM 0.518012766 0.62183509 0.754098968 0.806890176 0.828562221 0.808806313 

CS_d2_aOM 0.488119527 0.58500191 0.705890114 0.755214873 0.7765378 0.760496195 

CS_d4_aOM 0.692400977 0.666663602 0.590012616 0.556518868 0.567006109 0.559921042 

CS_d6_aOM 0.702919786 0.672248999 0.58495704 0.542642939 0.531123316 0.547261367 

CS_d10_aOM 0.68944404 0.657328315 0.568601004 0.52564779 0.52366664 0.529189216 
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Appendix 5 – Continued. 

 

  
CS_d0_ 

POMr 

CS_d1_ 

POMr 

CS_d2_ 

POMr 

CS_d4_ 

POMr 

CS_d6_ 

POMr 

CS_d10_ 

POMr 

BSt_d0_POMr 0.550083258 0.55349765 0.527598105 0.508318267 0.506855309 0.664229151 

BSt_d1_POMr 0.655968064 0.658332174 0.628356653 0.60900924 0.604418768 0.685118397 

BSt_d2_POMr 0.720147989 0.72115743 0.692604032 0.671457631 0.666573521 0.679897489 

BSt_d4_POMr 0.821975014 0.825374661 0.788155038 0.764539783 0.764116166 0.596743568 

BSt_d6_POMr 0.731975654 0.734852857 0.701539743 0.679789813 0.674921143 0.664207913 

BSt_d10_POMr 0.725747062 0.729162145 0.695488845 0.673178465 0.666967777 0.662318541 

BSt_d0_aOM 0.533788936 0.53709832 0.51290577 0.497519629 0.488945922 0.677232118 

BSt_d1_aOM 0.640304967 0.64362785 0.612965407 0.591692423 0.589220377 0.673030791 

BSt_d2_aOM 0.766824889 0.766448645 0.739046058 0.717501454 0.714087018 0.683024326 

BSt_d4_aOM 0.820235356 0.819833872 0.79260334 0.770491646 0.76811408 0.691008344 

BSt_d6_aOM 0.842500342 0.843710308 0.81576768 0.791945144 0.790394336 0.700464362 

BSt_d10_aOM 0.822829583 0.825098701 0.797341467 0.7753631 0.769451305 0.710031558 

CS_d0_POMr 0 0.115048176 0.179959662 0.261054363 0.207442572 0.675634844 

CS_d1_POMr 0.115048176 0 0.159069849 0.257345763 0.213104097 0.69128317 

CS_d2_POMr 0.179959662 0.159069849 0 0.183316337 0.139915946 0.644839297 

CS_d4_POMr 0.261054363 0.257345763 0.183316337 0 0.197592382 0.601225801 

CS_d6_POMr 0.207442572 0.213104097 0.139915946 0.197592382 0 0.619411043 

CS_d10_POMr 0.675634844 0.69128317 0.644839297 0.601225801 0.619411043 0 

CS_d0_aOM 0.086613506 0.127689317 0.184481911 0.265942967 0.213156239 0.659716202 

CS_d1_aOM 0.110032245 0.145350369 0.188016868 0.263559048 0.191913374 0.660774348 

CS_d2_aOM 0.172959249 0.184646622 0.145450796 0.204088252 0.164752024 0.600394769 

CS_d4_aOM 0.683585297 0.690932166 0.628282518 0.602829753 0.607640299 0.632192915 

CS_d6_aOM 0.732882445 0.736596742 0.69071955 0.666092734 0.669231936 0.655350184 

CS_d10_aOM 0.719277789 0.725358784 0.686786071 0.662182131 0.662075799 0.646761493 
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Appendix 5 – Continued. 

 

  CS_d0_aOM CS_d1_aOM CS_d2_aOM CS_d4_aOM CS_d6_aOM CS_d10_aOM 

BSt_d0_POMr 0.54246095 0.535011112 0.501172063 0.703075604 0.713846631 0.698413501 

BSt_d1_POMr 0.649231771 0.639019942 0.602417033 0.639945246 0.641077829 0.62415299 

BSt_d2_POMr 0.713878548 0.708069329 0.668036505 0.61516597 0.614463634 0.59893509 

BSt_d4_POMr 0.813338545 0.806437935 0.761625439 0.758856139 0.746746783 0.732029619 

BSt_d6_POMr 0.723582228 0.717060381 0.67751054 0.638657324 0.638695249 0.621197347 

BSt_d10_POMr 0.715663568 0.709643706 0.670874798 0.663478217 0.659712279 0.643226006 

BSt_d0_aOM 0.526727408 0.518012766 0.488119527 0.692400977 0.702919786 0.68944404 

BSt_d1_aOM 0.632812697 0.62183509 0.58500191 0.666663602 0.672248999 0.657328315 

BSt_d2_aOM 0.760803095 0.754098968 0.705890114 0.590012616 0.58495704 0.568601004 

BSt_d4_aOM 0.813728399 0.806890176 0.755214873 0.556518868 0.542642939 0.52564779 

BSt_d6_aOM 0.83626755 0.828562221 0.7765378 0.567006109 0.531123316 0.52366664 

BSt_d10_aOM 0.815379944 0.808806313 0.760496195 0.559921042 0.547261367 0.529189216 

CS_d0_POMr 0.086613506 0.110032245 0.172959249 0.683585297 0.732882445 0.719277789 

CS_d1_POMr 0.127689317 0.145350369 0.184646622 0.690932166 0.736596742 0.725358784 

CS_d2_POMr 0.184481911 0.188016868 0.145450796 0.628282518 0.69071955 0.686786071 

CS_d4_POMr 0.265942967 0.263559048 0.204088252 0.602829753 0.666092734 0.662182131 

CS_d6_POMr 0.213156239 0.191913374 0.164752024 0.607640299 0.669231936 0.662075799 

CS_d10_POMr 0.659716202 0.660774348 0.600394769 0.632192915 0.655350184 0.646761493 

CS_d0_aOM 0 0.101781246 0.164064575 0.678018511 0.727348325 0.714208869 

CS_d1_aOM 0.101781246 0 0.166339176 0.667795855 0.71509757 0.705603989 

CS_d2_aOM 0.164064575 0.166339176 0 0.588958096 0.637489996 0.632084806 

CS_d4_aOM 0.678018511 0.667795855 0.588958096 0 0.203802958 0.208026164 

CS_d6_aOM 0.727348325 0.71509757 0.637489996 0.203802958 0 0.114430533 

CS_d10_aOM 0.714208869 0.705603989 0.632084806 0.208026164 0.114430533 0 
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Appendix 6 – Shannon diversity index. Shannon diversity index values per microbiome (BSt = 

Bering Strait; CS = Chukchi Sea), treatment (POM removal = control where particulate organic 

matter was removed without subsequent addition of algal substrates; aOM = treatment where 

algal organic matter was added (aOM input)), and time (days 0, 1, 2, 4, 6, 10). 

Microbiome Treatment Day 
Shannon 

Diversity 

BSt POM removal 0 4.75 

BSt POM removal 1 4.76 

BSt POM removal 2 4.78 

BSt POM removal 4 4.82 

BSt POM removal 6 4.64 

BSt POM removal 10 4.84 

BSt aOM input 0 4.75 

BSt aOM input 1 4.67 

BSt aOM input 2 4.61 

BSt aOM input 4 4.46 

BSt aOM input 6 4.47 

BSt aOM input 10 4.67 

CS POM removal 0 4.18 

CS POM removal 1 4.33 

CS POM removal 2 4.38 

CS POM removal 4 4.47 

CS POM removal 6 4.58 

CS POM removal 10 4.68 

CS aOM input 0 4.21 

CS aOM input 1 4.20 

CS aOM input 2 4.42 

CS aOM input 4 3.68 

CS aOM input 6 4.23 

CS aOM input 10 4.33 
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SUPPLEMENTAL MATERIALS 

 

Supplementary text 1 - Materials and Methods. A complete description of all materials and 

methods that were used in Chapter 2, however separated from the main text due to space 

limitations for a manuscript submission to The ISME Journal: Multidisciplinary Journal of 

Microbial Ecology. 

Dataset 1 – Complete taxonomic inventory of peptide spectra for Bering Strait, algal 

organic matter (aOM) inputs. Each Excel Workbook file represents the metaproteomic data 

collected for all time points (initial, T0, T1, T6 & T10; separated by worksheets within 

workbook) from a particular experimental incubation (i.e., Bering St aOM, ChukSea aOM, 

Bering St particulate organic matter control (POM removal), ChukSea POM removal). Each 

worksheet contains the total number of spectra that correlate to each Gene Ontology term as 

broken down by taxonomic level. Column headers: GO Accession: Gene Ontology accession 

number (e.g., GO:0016887), GO Name: given name of the Gene Ontology category (e.g., 

ATPase activity), GO Aspect: 1 of 3 GO broad categories: molecular function, biological 

process, cellular component, Taxonomy ID: Uniprot defined taxonomic identification number 

(i.e., 135619 = Oceanospirillaceae), Taxonomy Name: Uniprot defined taxonomic name at 

defined taxonomic rank (i.e., Oceanospirillaceae; rank= order), Taxonomy Rank: taxonomic 

rank, Taxonomy PSM Count: total number of peptide spectral matches that correlate to defined 

gene ontology term at the defined taxonomic level (rank) (i.e., integers 1-n), Taxonomy PSM 

Ratio: the ratio of PSMs for the defined GO term at the specified taxonomic rank to the total 

number of PSMs for all taxonomic ranks (i.e., <1).  The taxonomic name “root” is a term that 

indicates it represents all taxonomic levels (superkingdom through species) and is listed as “no 

rank” under Taxonomic rank.  Example: ATPase activity has 91 PSMs at the no rank Taxonomic 

rank, and of those, 12 PSMs correlate to Oceanospirillaceae (rank= order).  The Taxonomy PSM 

ratio for Oceanospirillaceae is 12/91 = 0.14, or 14% of the ATPase activity peptide spectral 

matches can be correlated to the order Oceanospirillaceae. Unambiguous taxonomic 

classification per GO function at each taxonomic level is reported. Some peptides had a least 

common ancestor assignment at a less granular classification or had no taxonomic information; 

when the sum of PSM Ratios for any taxonomic level (e.g., class) per function was less than 1, 

the difference makes up the Unclassified taxonomic category. 

Dataset 2 - Complete taxonomic inventory of peptide spectra for Bering Strait, particulate 

organic matter (POM) removal. Legend description is identical to Dataset 1. 

Dataset 3- Complete taxonomic inventory of peptide spectra for Chukchi Sea, algal organic 

matter (aOM) inputs. Legend description is identical to Dataset 1. 

Dataset 4 - Complete taxonomic inventory of peptide spectra for Chukchi Sea, particulate 

organic matter (POM) removal. Legend description is identical to Dataset 1. 

Dataset 5 – Relative abundance of 16S rRNA sequences to the level of genus. BSt = Bering 

Strait microbiome; CS = Chukchi Sea microbiome; Days 0-10 (T0, T1, T2, T4, T6, T10); 

Organic matter perturbations (POMr = particulate organic matter removal; aOM = algal organic 

matter input). 
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