








4

PAA-mediated DNA transfer
CM Edelblute et al.

Molecular Therapy — Methods & Clinical Development (2016) 16028 Official journal of the American Society of Gene & Cell Therapy

The proposed mechanism in the current approach is electrophys-
ical, i.e., when sufficient electrostatic charge is deposited on the 
cell membrane it causes outward electrostatic stress that induces 
electroporation and subsequent entry of plasmid DNA into the cell. 
Plasma-induced electrostatic stress can be strong enough to rupture 
the membrane after plasma exposure, e.g., bacterial decontamina-
tion,9,10,13,47 but the lower field strength used in this study avoids this 
effect. Plasma operating parameters, including the applied voltage, 
remained constant in this study where only the distance between 
the plasma reactor and the target site was adjusted. The size of the 
port where the PAA exits compared to the size of the intradermal 
plasmid DNA injection is much smaller, suggesting charge disper-
sal across a relatively larger area would be necessary for transfer. 

We were able to achieve this by increasing the distance between 
the plasma reactor and the skin. Based on our results in vivo, the 
increased air flow dispersal permitted by a 10 mm distance versus a 
3 mm distance to the target site allows for a more widespread accu-
mulation of electrostatic charge, enhancing plasmid DNA delivery 
and resulting in higher expression levels and deeper expression dis-
tribution within the PAA-exposed tissue.

The novel nonthermal plasma reactor presented provides effec-
tive plasmid DNA delivery in vivo, with skin as the target tissue. 
Though a significant increase in expression is achieved, compared 
to some other DNA transfer methods expression levels are lower. 
Current nonviral methods have their disadvantages. Direct injection 
is the most widely used nonviral DNA transfer platform, yet delivery 

Figure 4 GFP expression in mouse skin biopsies. An indirect staining protocol using a biotinylated anti-GFP primary antibody and secondary antibody, 
streptavidin eFluor 605 was performed on sections fixed in 4% paraformaldehyde. 4’, 6-diamidino-2-phenylindole dihydrochloride (DAPI) nuclear 
stain was used to determine expression localization. (a–c) sham control without injection of plasmid DNA or plasma-activated air (PAA) exposure 
on DAPI (left column) and TRITC (center column) fluorescence channels, overlaid image in right column. (d–f) injection only control. Three-minute PAA 
exposure at a distance of 3 mm (g–i) and 10 mm (j–l). n = 6. Scale bar = 100 μm. 200×.
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levels are poor and expression is localized solely at the site of injec-
tion. Sonoporation, using ultrasonic waves to deliver microbubble-
contained compounds is limited by proximal organs and bones. 
Mechanical massage, a noninvasive pressure-based gene delivery 
approach, yields peak expression 6 hours after the plasmid DNA 
is introduced. This level drops to baseline soon after, and repeat 
injections and massage must be administered to achieve the same 
effect.29,30 Electrotransfer shows promise for drug and gene ther-
apy, though temporary pain was reported by patients after pulse 
application. Expression levels achieved with electrotransfer are 
approximately eightfold higher than what we achieved with PAA 
in this study.48–50 However, there was no observable tissue damage 
from PAA exposure, as is a concern with electrotransfer at higher 
field strengths. Compared to all of these aforementioned methods, 
PAA does not require any direct electrode contact with the target 
to facilitate DNA transfer. We therefore emphasize that PAA would 
make a good noncontact alternative if multiple treatments are nec-
essary, or to minimize patient discomfort.

This plasma system generating PAA is portable and scalable to 
accommodate delivery to larger areas.33 The level of expression 
achieved with PAA may be advantageous for some therapies where 
overexpression of the transgene could lead to toxic effects. Our work 
did not systematically determine parameters needed for controlled 
expression, a critical aspect for therapeutic development. These studies 
could augment the potential use of cold plasmas in healthcare settings.

Nonetheless, due to its noncontact application this method would 
be attractive to both patients and healthcare professionals. Certain 
cohorts of patients including the young and elderly, or those with 

diabetes or cancer are more susceptible to infection and other treat-
ment complications, and would assume a lower risk using non-invasive 
delivery methods. In the future, histological analysis will be necessary 
to determine the local impact of PAA exposure on tissue. Our results 
prove PAA can be used to deliver plasmid DNA in vivo with skin as the 
delivery target, providing both the kinetic and distribution expression 
patterns achieved with this platform at the current operating param-
eters. PAA-mediated delivery warrants further exploration as an alter-
native or supplemental DNA transfer approach.

MATERIALS AND METHODS
Plasma system
The reactor has been previously described.10,33,40 Briefly, it consists of two paral-
lel glass dielectric plates; separated by spacers, with aluminum foil electrodes 
placed perpendicular to the applied air flow, creating an inter-electrode gap 
of 2.0 cm in the discharge chamber. Sliding plasma discharges were formed 
at solid-gas interface along the glass dielectric layer in the discharge chamber 
measuring 2.6 × 2.0 × 0.038 cm. For operating parameters used in this study, the 
high-voltage electrode was pulsed biased positively by applying a pulsed volt-
age of 12 ± 0.5 kV peak voltage, 50 ns rise time, 100 ns duration (full width at half 
maximum) at a repetition rate of 500 Hz. Ambient air supplied at a flow rate of 5 
SLM from a Whisper AP 300 fish tank air pump was used as the input gas.

For PAA-mediated plasmid DNA delivery in the animal model, the exit 
slit of plasma reactor was oriented longitudinally above the injection site, 
creating two equal hemispheres on either side of the reactor’s outer limits 
(Figure  5). The same set-up position was used for PAA-mediated plasmid 
DNA delivery to the human skin model.

Plasmids
Endotoxin-free plasmids gWizLuc and gWizGFP were commercially prepared 
to ensure quality (Aldevron, Fargo, ND) and suspended in sterile injectable 
saline at 2 mg/ml. For all experiments, 100 µg in a 50 µl volume of respective 
plasmid DNA was used per experimental or control sample or animal.

Recellularized dermis
The dermal constructs utilized contained three components. DermACELL 
(LifeNet Health, Virginia Beach, VA) which are decellularized skin grafts, 
human primary dermal fibroblasts (ATCC, Manassas, VA) and a human 
Keratinocyte cell line (HaCaT). Fibroblasts were maintained in culture with 
Dulbecco’s Modified Eagle Medium, 10% fetal bovine serum, 1% penicillin/
streptomycin at 37 °C and 5% CO2. HaCaT cells were maintained in culture 
using both the same media formulations and growth conditions as the fibro-
blasts. Prior to use, DermaCell grafts were washed in Dulbecco’s phosphate-
buffered saline and cut into 12 mm disks using a biopsy punch, then washed 
twice with Dulbecco’s Modified Eagle Medium media.

Recellularizing the dermal constructs was performed using a previously 
developed and validated protocol.51 Briefly, the procedure is performed in 
a 12-well plate. DermaCell is placed in the well and then 1 × 106 fibroblasts/
disk were placed on the reticular face of the dermis. After one week of 
growth, 1.5 × 105 HaCaT cells/disk were added to the papillary face of the 
graft (disk is turned over). Following overnight incubation, the grafts were 
moved to the upper chamber of Transwell Permeable Supports (Corning 
Incorporated, Life Sciences, Tewksbury, MA). The bottom well was filled with 
media, while the top well was left void of media. Recellularized dermis was 
cultured for 3 weeks with daily media changes before PAA-mediated plas-
mid DNA delivery.

Viability analysis
PrestoBlue Cell viability assay (Molecular Probes, Carlsbad, CA) was used to 
measure the metabolic activity of recellularized dermis following PAA expo-
sure. Briefly, the constructs were incubated with the PrestoBlue reagent for 
two hours, after which 850 µl of each well was transferred in duplicate to 
a 24-well plate. Fluorescence was recorded by setting excitation and emis-
sion at 560 and 590 nm respectively. Duplicate experimental wells were 
averaged. Control wells containing reagent only were averaged and sub-
tracted as background from the fluorescence value of each experimental 
well. Measurements were taken 2, 24, and 48 hours postexposure. Percent 
viability was determined by dividing the fluorescence intensity of samples 

Figure 5 Orientation of plasma reactor in vivo. The reactor was placed 
longitudinally above the site of injection at the respective height of the 
treatment condition: 3 or 10 mm. This created two equal hemispheres 
beyond the outer limits of the plasma-activated air (PAA) exit slit. 
A surgical drape was placed around the site of injection prior to PAA 
exposure.
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injected with plasmid DNA alone and PAA-exposed constructs by controls 
that were not injected or exposed to PAA at each respective time point.

Animal model
A murine model using BALB/c mice was employed. All procedures were 
approved by the Old Dominion University Institutional Animal Care and 
Use Committee. A total of 20 female 8-week-old BALB/c mice of the same 
age were used for this study. Mice were anesthetized during all deliveries. 
To anesthesize, animals were placed in an induction chamber infused with a 
mixture of 3–5% isofluorane and 97% oxygen gas for several minutes. After 
anesthetized, mice were fitted with a standard rodent mask supplied with 
2–3% isofluorane and oxygen to maintain a surgical plane of anesthesia. 
After exposure, each mouse was monitored continuously until recovered 
from anesthesia, as indicated by their ability to maintain sternal recumbency 
and to exhibit purposeful movement.

Temperature measurements
An infrared probe (NationSkander California, Anaheim, CA) was used for 
recording temperature measurements at the mouse skin surface of each 
exposed site. The infrared probe was not used while the plasma reactor was 
in operation. Instead, the temperature was measured immediately before 
and after application of a 3-minute exposure of PAA at a 3 mm distance.

PAA exposure
Recellularized dermal constructs cultured for 3 weeks were split into three 
groups. One hundred micrograms of gWiz-LUC was intradermally injected in 
a volume of 50 μl (2 mg/ml) to the constructs. The experimental group was 
exposed to 3 minutes of PAA at a distance of 10 mm immediately following 
injection of plasmid DNA. An injection only control and a control without 
injection of plasmid DNA were included for comparison.

For the in vivo study, each mouse received two experimental sites, one 
each on opposing flanks. gWizLuc was injected intradermally to shaved 
flanks in a 50 µl volume (100 µg total, 2 mg/ml) immediately before PAA 
exposure. The plasma reactor was placed longitudinally above the injection 
site at a constant distance of either 3 or 10 mm. Operating parameters were 
set as previously described. An exposure duration of 3 minutes was tested, 
where the reactor remained stationary during the entire exposure.

Luciferase expression
Luciferase gene expression in the recellularized dermal constructs was mea-
sured 24, 48, 72, and 120 hours after PAA exposure. Old media was removed 
and replaced with fresh media containing 150 μg/ml Luciferin. Samples were 
incubated in the dark for 5 minutes and then imaged with a Caliper In Vivo 
Imaging Spectrum whole body imaging system (PerkinElmer, Waltham, MA). 
Luciferase expression was quantified as total flux measured in photons per 
second.

Kinetic luciferase expression in vivo was monitored over a 28-day period 
using a Caliper In Vivo Imaging Spectrum whole body imaging system 
(IVIS). For imaging, the animals were anesthetized in the same manner as 
described for delivery. Anesthesia was maintained in the imaging chamber 
by use of an anesthesia block supplying five nose cones. Once the animals 
were anesthetized, an intraperitoneal injection of 200 µl D-luciferin at a con-
centration of 15 mg/ml, was given. The mice were imaged 5 minutes after 
the luciferin injection, representing peak signal detection.

Each mouse received one specific delivery parameter on both of its flanks. 
In addition, the opposing flank was blocked during PAA exposure using a 
surgical sheet, allowing for sole exposure of the injection site. Kinetic lucifer-
ase expression in BALB/c mice following PAA exposure was measured nine 
times over a 28-day period. Images were taken on days 1, 2, 4, 7, 9, 14, 17, 21, 
and 28 post-PAA exposures. A region of interest was drawn around the sites 
with positive signal. An area of unexposed skin was also measured and sub-
tracted as a background measurement from total flux values. The average of 
each experimental condition was determined ± standard error of the mean.

GFP expression
Recellularized dermal constructs cultured for 3 weeks were split into three 
groups. One hundred micrograms of gWiz-GFP was intradermally injected in 
a volume of 50 μl (2 mg/ml) to the constructs. The experimental group was 
exposed to 3 minutes of PAA at a distance of 10 mm immediately following 

injection of plasmid DNA. An injection only control and a control without 
injection of plasmid DNA were included for comparison.

For the in vivo study, each mouse received two experimental sites, one each 
on opposing flanks. The flanks were shaved prior to injection of plasmid DNA. 
gWizGFP was injected intradermally in a 50 µl volume (100 µg total, 2 mg/ml) 
immediately before PAA exposure. A surgical drape was used to prevent expo-
sure of the opposing flank. The plasma reactor was placed longitudinally above 
the injection site at a constant distance of 10 mm. Exposure distance and dura-
tion were chosen per the luciferase expression profile achieved at these parame-
ters. Operating parameters were set as previously described. All exposures were 
performed in a biosafety cabinet. After PAA exposure, each mouse was moni-
tored continuously until recovered from anesthesia, as indicated by their ability 
to maintain sternal recumbency and to exhibit purposeful movement.

Animals were humanely euthanized 48 hours after PAA exposure. Sterile 
skin biopsy punches measuring 12 mm in diameter were used to harvest the 
tissue at the location where the plasmid DNA was injected. Both the recel-
lularized dermis and the mouse skin punches were fixed in 4% paraformal-
dehyde at this time point. Fixed samples were transferred to a solution of 
equal parts Optimal Cutting Temperature compound and 1× Dulbecco’s 
phosphate-buffered saline, and placed on a rotator overnight. The follow-
ing day, the solution was replaced with 100% Optimal Cutting Temperature 
compound, and placed back on a rotator overnight. The samples were 
embedded in Optimal Cutting Temperature compound, frozen at −80 °C, 
cryosectioned, and mounted to glass slides for staining and observation.

Immunostaining
All washes and staining procedures were performed in the dark to prevent fluo-
rescence bleaching. A 0.05% phosphate-buffered saline with Tween20 stock 
containing 1× Dulbecco’s phosphate-buffered saline and Tween20 was the 
diluent for all solutions unless otherwise stated. To permeabilize the tissue, each 
slide was covered with 0.1% TritonX and incubated at room temperature for 20 
minutes. The solution was aspirated, and then washed with 0.05% phosphate-
buffered saline with Tween20. Sections were blocked in 4% bovine serum albu-
min for 1 hour. After blocking, a goat polyclonal anti-GFP antibody (fluorescein 
isothiocyanate conjugated) (ab6662, Abcam, Littleton, CO) was added to each 
slide in a 200 µl volume at a 1:100 dilution in 4% bovine serum albumin. Sections 
were incubated in the primary antibody overnight at 4 °C.

Following overnight incubation, the sections were washed in 0.05% 
 phosphate-buffered saline with Tween20 for 5 minutes on a rotator. This 
washing procedure was repeated four times for a total of five washes. The 
nuclear dye 4’, 6-diamidino-2-phenylindole dihydrochloride was added at 
a 1:200 dilution to each slide to determine localization of expression. After 
5 minutes, grafts were washed once and coverslips were mounted with 
VECTASHIELD HardSet mounting medium (Vector Laboratories, Burlingame, 
CA). The samples were stored at −20 °C until imaging.

Immunofluorescence micrographs were taken on an Olympus IX71 fluo-
rescence microscope using an Olympus DP71 CCD camera (Olympus, Center 
Valley, PA). Micrographs were taken at a total magnification of 200× on the 
4’, 6-diamidino-2-phenylindole dihydrochloride and fluorescein isothiocya-
nate fluorescence channels. All micrographs were taken at the same expo-
sure conditions for accurate comparison. Images using both filters were 
overlaid to detect GFP expression.

Statistical analysis
Statistical significance between groups in the recellularized dermis model was 
determined using an unpaired t-test. Results are expressed as the mean ± stan-
dard error of the mean. Significant results were determined with respect to 
injection only controls. A P value less than 0.05 was considered significant.

Statistical significance between the groups for the murine model was 
determined by one-way analysis of variance with Student-Newman-Keuls 
multiple comparisons test (GraphPad Software, La Jolla, CA). Results are 
expressed as the mean ± standard error of the mean. Significant results were 
determined with respect to injection only controls. A P value less than 0.05 
was considered significant.
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