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ABSTRACT

Line strengths have been calculated in the form of Einstein A coefficients and f-values for a large number of
bands of the A2Π–X2Σ+ and B2Σ+–X2Σ+ systems and rovibrational transitions within the X2Σ+ state of CN
using Western’s pgopher program. The J dependence of the transition dipole moment matrix elements (the
Herman–Wallis effect) has been taken into account. Rydberg–Klein–Rees potential energy functions for the A2Π,
B2Σ+

, and X2Σ+ states were computed using spectroscopic constants from the A2Π–X2Σ+ and B2Σ+–X2Σ+ transitions.
New electronic transition dipole moment functions for these systems and a dipole moment function for the X2Σ+

state were generated from high level ab initio calculations and have been used in Le Roy’s level program to
produce transition dipole moment matrix elements (including their J dependence) for a large number of vibrational
bands. The program pgopher was used to calculate Einstein A coefficients, and a line list was generated containing
the observed and calculated wavenumbers, Einstein A coefficients and f-values for 290 bands of the A2Π–X2Σ+

transition with v′ = 0–22, v′′ = 0–15, 250 bands of the B2Σ+–X2Σ+ transition with v′ = 0–15, v′′ = 0–15 and 120
bands of the rovibrational transitions within the X2Σ+ state with v = 0–15. The Einstein A coefficients have been
used to compute radiative lifetimes of several vibrational levels of the A2Π and B2Σ+ states and the values compared
with those available from previous experimental and theoretical studies.

Key words: astronomical databases: miscellaneous – methods: laboratory: molecular – molecular data – opacity –
stars: abundances – techniques: spectroscopic

Online-only material: color figures, machine-readable tables

1. INTRODUCTION

CN is an important molecule in astronomy and has been
known for more than a century. Electronic spectra of CN consist
of many transitions which span the near infrared to the vacuum
ultraviolet regions. Of the known electronic transitions, the
A2Π–X2Σ+ (red) and B2Σ+–X2Σ+ (violet) systems have been
studied extensively because of their detection in a wide variety
of sources. This free radical has been identified in comets
(Greenstein 1958; Ferrin 1977; Johnson et al. 1983; Fray et al.
2005), stars (Fowler & Shaw 1912; Lambert et al. 1984), the Sun
(Uitenbroek & Tritschler 2007), circumstellar shells (Wootten
et al. 1912; Wiedemann et al. 1991; Bakker & Lambert 1998),
interstellar clouds (Turner & Gammon 1975; Meyer & Jura
1985) and the integrated light of galaxies (Riffel et al. 2007). The
CN lines of the violet system were also identified in the spectra
of the Red Rectangle nebula, HD 44179 (Hobbs et al. 2004).
The presence of CN in astronomical environments makes it a
useful probe of C and N abundances, as well as isotopic ratios,
which provide information on nucleosynthesis and chemical
evolution (Wang et al. 2004; Riffel et al 2007; Savage et al.
2002). Interstellar lines of the CN B2Σ+–X2Σ+ transition have
been used to measure the temperature of the cosmic background
radiation, for example by Leach (2004, 2012), who has found
the cosmic temperature to be 29 ± 2 mK higher than the
cosmological temperature of 2.725 ± 0.001 K, measured by
the COBE satellite. This difference was attributed, in part, to the
interaction between the A2Π and B2Σ+ states.

Recently, the high-resolution H-band spectra of five bright
red giant stars recorded with a high-resolution Fourier

transform spectrometer at the Kitt Peak National Observatory
have been analyzed by Smith et al. (2013). This study was aimed
at determining the chemical abundances of several elements in-
cluding the cosmochemically important isotopes, 12C, 13C, 14N,
and 16O, based on near infrared spectra of CN, OH, and CO.
The abundance analysis of these stars was obtained by spectral
synthesis using a detailed line list prepared for the Sloan Digital
Sky Survey III Apache Point Galactic Evolution Experiment. In
another recent investigation, Adamczak & Lambert (2013) have
studied the chemical composition of weak G-band stars (a rare
class of G and K giants with unusual isotopic abundances), and
concluded that the atmospheres of these stars are highly contam-
inated with CN-cycle products. In these atmospheres the abun-
dance of 12C is reduced and that of 13C and 14N is increased, with
the constraint that the sum 12C + 13C + 14N is conserved. The
under-abundance of 12C is a factor of 20 larger than for normal
giants and the 12C/13C ratio approaches the CN-cycle equilib-
rium value of about three in some of these atmospheres. Again,
extensive use is made of the CN red system for abundance and
isotopic analysis. The infrared vibration–rotation bands have
been observed in an astronomical environment by Wiedemann
et al. (1991). The fundamental band (around 2000 cm−1) was
observed in the carbon star IRC+10126, and four lines were used
to derive the CN column density and the rotational temperature.

On the experimental side, extensive studies of the A2Π–X2Σ+

(Ram et al. 2010a) and B2Σ+–X2Σ+ (Ram et al. 2006) transitions
of 12C14N have been reported recently. The red and violet
systems of the 13C14N (Ram et al. 2010b; Ram & Bernath 2011,
2012) and 12C15N (Colin & Bernath 2012) isotopologues have
also been analyzed.
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There have been several studies of the infrared vibration–
rotation bands (Davis et al. 1991; Horká et al. 2004) as well
as microwave and millimeter-wave studies of the X2Σ+ ground
state (Hempel et al. 2003; Hübner et al. 2005; Dixon & Woods
1977; Skatrud et al. 1983; Johnson et al. 1984; Ito et al. 1991;
Klisch et al. 1995) that provided measurements of the pure
rotational transitions for the v = 0 to 10 vibrational levels. An
experimental dipole moment of 1.45 ± 0.08 D for the X2Σ+ state
was measured by Thomson & Dalby (1968), on which current
available rotational line intensities in spectroscopic databases
are based (Pickett et al. 1998; Müller et al. 2001). Other
theoretical values include 1.48 D (Das et al. 1974), 1.36 D
(Urban et al. 1994), and 1.416 ± 0.008 D (Neogrády et al.
2002). Langhoff & Bauschlicher (1989) calculated a full dipole
moment function using the MRCI method, which resulted in an
equilibrium dipole moment of 1.35 D. Their value for the square
of the 1–0 band transition dipole moment (TDM; 7.5 × 10−4 au)
was also in good agreement with an experimental value (7.5 ±
3.1 × 10−4 au) reported by Treffers (1975), although there is
clearly a large uncertainty in the experimental value. Intensities
based on the Thomson & Dalby (1968) dipole moment are still
in general use, for example recently by Riechers et al. (2007)
and Bayet et al. (2011). A new calculation using a high level of
theory, a large basis set and a greater range of bond distances
would be of use in creating a larger and more accurate list of
intensities, and to help to resolve the discrepancies highlighted
above.

Jørgensen & Larsson (1990) have calculated the molecular
opacities for the A2Π–X2Σ+ transition of CN at temperatures
ranging from 1000 K to 6000 K. In this study the rotational lines
of different isotopologues of CN were calculated for transitions
between vibrational levels v = 0–30 of the ground and excited
states using a limited set of older spectroscopic constants and
isotopic relationships.

There have been many experimental studies of the lifetimes
of the A2Π state (Jeunehomme 1965; Katayama et al. 1979;
Snedden & Lambert 1982; Nishi et al. 1982; Duric et al. 1978;
Taherian & Slanger 1984; Lu et al. 1992; Huang et al. 1993;
Halpern et al. 1996) and the B2Σ+ state (Nishi et al. 1982; Duric
et al. 1978; Jackson 1974; Luk & Bersohn 1973) over the past
four decades. It has been noted that the experimental lifetimes of
the A2Π state reported by different groups show poor agreement
with each other. For example, the values reported by Katayama
et al. (1979) are lower than the values of most of the other
experimental studies. Their values range from 2.5 μs for v = 2,
to 4 μs for v = 9 of the A2Π state. On the other hand, Snedden &
Lambert (1982) have reported much higher values ranging from
14.2 μs for v = 0, to 5.2 μs for v = 10, based on an analysis
of the solar spectrum. However, the most recent experimental
values of Taherian & Slanger (1984; 6.67 ± 0.60 μs for v =
2 to 4.3 ± 0.85 μs for v = 5) and Lu et al. (1992; 6.96 ±
0.3 μs for v = 2 to 3.38 ± 0.2 μs for v = 5) show better
agreement, at least for the lower vibrational levels. In contrast,
the experimental lifetimes of the B2Σ+ state obtained in different
studies agree reasonably well with each other (Nishi et al. 1982;
Duric et al. 1978; Jackson 1974; Luk & Bersohn 1973).

There are also several theoretical studies of spectroscopic
properties and radiative lifetimes of the A2Π and B2Σ+ states
(Cartwright & Hay 1982; Larsson et al. 1983; Lavendy et al.
1984; Knowles et al. 1988; Bauschlicher & Langhoff 1988;
Shi et al. 2010). It is found that the majority of the A2Π state
theoretical results agree well with each other, but these lifetimes
are considerably larger than the experimental values discussed

above. In the case of the B2Σ+ state, the theoretical values agree
well with each other as well as with the experimental results. It
is still unclear why the experimental and the theoretical lifetimes
of the A2Π state do not agree, other than the fact that measuring
relatively long lifetimes in the near infrared is experimentally
challenging, and long lifetimes in general are more sensitive to
experimental issues such as collisional effects and molecules
moving out of the field of view.

The calculation of molecular opacities and absolute line
intensities of astrophysical molecules has attracted attention
in recent years because they are needed to obtain molecular
abundances and isotopic ratios. Recently, Li et al. (2012)
calculated Einstein A coefficients and absolute line intensities
for the E2Π–X2Σ+ transition of CaH using a theoretical TDM
from high level ab initio calculations. In a similar study, Einstein
A coefficients and line strengths have been calculated for the
Swan system of C2 by Brooke et al. (2013). In the present
paper we report on the similar calculations of line intensities
of the A2Π–X2Σ+ and B2Σ+–X2Σ+ transitions of CN, and the
X2Σ+ state rovibrational transitions. These calculations have
been performed using our experimental measurements and
spectroscopic constants (Ram et al. 2010a, 2006), and newly
calculated TDMs.

2. SUMMARY OF SPECTROSCOPIC WORK

The spectra used for measuring the rotational line positions of
the red (Ram et al. 2010a) and violet (Ram et al. 2006) systems
of 12C14N were observed using different experimental sources
including a microwave discharge, nitrogen afterglow and high
temperature furnace. The spectra recorded using the nitrogen
afterglow source provided extensive bands for both transitions
involving high vibrational levels. For the A2Π–X2Σ+ transition,
a rotational analysis of 63 bands was obtained, with v = 0–22
in the A2Π state and v = 0–12 in the ground state (Ram et al.
2010a). For the B2Σ+–X2Σ+ transition, 57 bands involving v =
0–15 in both the ground and excited states (Ram et al. 2006)
were analyzed. The final data set of the two transitions included
the existing infrared vibration–rotation measurements by Davis
et al. (1991), Horká et al. (2004), and Hübner et al. (2005)
in addition to the available microwave and millimeter wave
measurements of the ground state (Hempel et al. 2003; Hübner
et al 2005; Dixon & Woods 1977; Skatrud et al. 1983; Johnson
et al. 1984; Ito et al. 1991; Klisch et al. 1995).

In this previous work, a least-squares fitting program, lsqwin,
was used to fit the rotational lines. Several perturbations in the
observed bands are caused by X2Σ+ ∼ A2Π, A2Π ∼ B2Σ+ and
B2Σ+ ∼ a4Π interactions (Kotlar et al. 1980; Ito et al. 1988a,
1988b, 1992; Ozaki et al. 1983a, 1983b), and rotational lines
affected by perturbations were given lower weights. A more
detailed description of the observed perturbations is available in
the previous paper (Ram et al. 2010a).

In the present study, the same lines were fitted using the
computer program pgopher, written by Western (2010). As
mentioned by Ozaki et al. (1983b), the B2Σ+, v = 10 level is
perturbed by v = 24 in the A2Π state, and the only change
made to the dataset was that the weights of some perturbed
rotational lines of bands with v = 10 in the B2Σ+ state
were readjusted, and only the constants T, B, D, and γ were
floated. Without any adjustment of the weights, the calculated
term values of the B2Σ+, v = 10 level for higher J changed
erratically with increasing J (so much so that at very high J
(>100), the term values were negative), because of incorrect
magnitudes of the higher order constants used in the previous
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fit (Ram et al. 2006). The new pgopher fit was obtained
using the previous constants as initial values and, as expected,
the new spectroscopic constants were slightly modified after
fitting the A2Π–X2Σ+, B2Σ+–X2Σ+ and X2Σ+ rovibrational lines
simultaneously in a combined fit. Most of the spectroscopic
constants agree within the previous error bars except for some
higher order constants. The updated spectroscopic constants for
the X2Σ+, A2Π, and B2Σ+ states have been provided in Tables 1
(X2Σ+ and B2Σ+) and 2 (A2Π). The equilibrium spectroscopic
constants of the three states were derived using the usual
spectroscopic methods. Several vibrational levels of the A2Π
and B2Σ+ states are affected by perturbations, and therefore the
values for the affected levels were given lower weights or were
completely de-weighted to determine the equilibrium constants.
The equilibrium constants for the X2Σ+ and B2Σ+ states are
provided in Table 1, and for the A2Π state in Table 2.

3. METHOD OF CALCULATION

The line (v′J′←v′′J′′) intensity in an electronic transition of
a diatomic molecule is proportional to the square of the TDM
matrix element,

〈ψv′,J ′ (r)|Re(r)|ψv
′′
,J

′′ (r)〉, (1)

where Re(r) is the electronic TDM (Bernath 2005). Given the
electronic wavefunction ψel(r) as a function of internuclear
distance, Re (r) can be calculated from the following equation:

Re (r) = 〈ψ ′
el(r)|μ(r)|ψ ′′

el(r)〉, (2)

where μ(r) is the electric dipole moment operator.
Equation (2) can be evaluated using ab initio methods to solve
the electronic Schrödinger equation and obtain the necessary
electronic wavefunctions. The effective potential energy func-
tion, VJ(r) = V + Vcent used to obtain the vibrational wave-
functions ψv,J in Equation (1), can be obtained from the
Rydberg–Klein–Rees (RKR) method using spectroscopic con-
stants (Bernath 2005) or ab initio calculations.

In previous work on HCl (Li et al. 2011), CaH (Li et al.
2012), and C2 (Brooke et al. 2013), it has been found that the
calculation of TDM matrix elements 〈ψv′,J ′ (r)|Re(r)|ψv′′,J ′′ (r)〉
can be greatly simplified using the program level, developed
by Le Roy (2007). This program is able to calculate vibrational
wavefunctions and vibration–rotation energy levels by solving
the one-dimensional radial Schrödinger equation for diatomic
molecules.

pgopher calculates Einstein A coefficients using the follow-
ing equation (Bernath 2005):

AJ ′→J
′′ = 3.13618932 × 10−7ṽ3 SJ ′J ′′

(2J ′ + 1)
, (3)

where the line strength used here SJ ′J ′′ is the TDM (in debye
squared) summed over the degenerate M components of the both
states and the possible polarizations of the light:

SJ ′J ′′ =
∑

p,M ′,M ′′
|〈ψν ′J ′M ′ |μp|ψν

′′
J

′′
M

′′ 〉|2. (4)

This is often factored into a product of a dimensionless rotational
line strength factor and a vibronic TDM:

AJ ′→J
′′ = 3.13618932 × 10−7ṽ3

SΔJ

J
′′

(2J ′ + 1)

× |〈ψv′,J ′ (r)|Re(r)|ψv
′′
,J

′′ (r)〉|2 (5)

in which SΔJ
J ′′ is the rotational part of the line strength (the

Hönl–London factor), ν̃ is the transition wavenumber (cm−1),
Re is the electronic TDM in debye and Einstein A-values are in
s−1. However, this is not possible here because of the way we
account for the (effective) J dependence of the vibronic TDM.

The Einstein A-values are converted into f-values (oscillator
strengths) using the following equation:

fJ ′←J
′′ = 1.49919368

1

ν̃2

(2J ′ + 1)

(2J
′′ + 1)

AJ ′→J
′′ . (6)

In the present case, we have calculated the potentials of the
electronic states using the B(v) and G(v) constants (Tables 1
and 2) using the rkr1 program of Le Roy (2004). The RKR
potentials of the upper and lower states and the electronic TDMs
from high level ab initio calculations, Re(r), are then employed
in level to calculate the wavefunctions, ψv,J .

3.1. Calculation of Transition Dipole Moments

The new calculations of the CN red and violet TDMs were
carried out with a modified version of MOLPRO 2002.6 (Werner
& Knowles 2012). The one electron basis set used started
with the cc-pVQZ basis set of Dunning (1989). However to
treat core–valence correlation, we followed the procedure of
Schwenke (2010) and uncontracted the s functions and added
three tight p functions, three tight d functions, two tight f
functions, and one tight g function. This basis was augmented
by two sets of diffuse functions per angular momentum. The
first set was included to improve the description of low lying
atomic excited states (Schwenke 2010) while the second set
was included to describe Rydberg orbitals—however the results
including the Rydberg orbitals are not reported in this work.
The molecular orbitals were determined by state-averaged
multi-configuration Hartree–Fock calculations, using dynamic
weighting of the state energies (Deskevich et al. 2004). The
1s like orbitals on C and N were kept doubly occupied in
all configurations and the active space consisted of 4 a1,
2 b1 and 2 b2 orbitals. In the state averaging, we included
21 A1 states, 20 B1 and 20 B2 states, and 19 A2 states, all
of doublet spin. In our version of the dynamic weighting,
rather than basing the weights on the lowest energy root, we
used the average of the lowest energy a1, b1, and b2 roots.
The weight was taken to be unity for states with energies
less than this average. These molecular orbitals were then
used to compute wavefunctions using the internal-contracted
Multi-Reference Configuration Interaction method (Knowles
& Werner 1988, 1992; Werner & Knowles 1988). In these
calculations, all electrons were correlated. All calculations
included scalar relativity via the Douglas–Kroll–Hess method
(Douglas & Kroll 1974; Hess 1985, 1986). The X2Σ+ and A2Π
state wavefunctions were taken from calculations of a single
root. The B2Σ+ state wavefunction was taken from a projected
state calculation that ignored the small non-orthogonality with
the X2Σ+ wavefunction. Calculations were carried out for 44
internuclear distances ranging from 100 bohr to 1 bohr (52.92Å
to 0.5292 Å), with step sizes 0.05 bohr (0.02646 Å) near the
minima of the X2Σ+, A2Π, and B2Σ+ states. The transition
moments were computed from these wavefunctions in the length
formulation. The calculated TDM functions for the A2Π–X2Σ+

and B2Σ+–X2Σ+ transitions and the dipole moment function for
the X2Σ+ state are provided in Table 3. Calculations were also
carried out with the same procedure, but using the one electron
basis derived the same way from the cc-pVTZ basis set. The
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Table 1
Spectroscopic Constants (in cm−1) for the X2Σ+ and B2Σ+ States of 12C14N

State and Equilibrium Constants v Tv Bv Dv × 105 Hv γv γDv

0 0.0 1.891090248(84) 0.640771(18) 6.277(17)E−12 7.25393(56)E−3 −9.1(11)E−9
1 2042.42135(11) 1.873665679(78) 0.641647(18) 5.984(17)E−12 7.17190(82)E−3 −1.12(12)E−8
2 4058.54930(11) 1.856187457(76) 0.642639(18) 5.678(18)E−12 7.0801(12)E−3 −1.75(15)E−8

X2Σ+ 3 6048.34449(17) 1.83865289(13) 0.643809(23) 5.510(34)E−12 6.9798(14)E−3 −2.43(36)E−8
ωe = 2068.68325(99) 4 8011.76770(17) 1.82105955(22) 0.645051(29) 5.204(52)E−12 6.8636(16)E−3 −3.67(52)E−8
ωexe = 13.12156(45) 5 9948.77678(17) 1.80340446(25) 0.646440(35) 5.014(91)E−12 6.7213(16)E−3 −5.87(76)E−8
ωeye = −0.005426(74) 6 11859.32865(19) 1.78568518(26) 0.647525(51) . . . 6.5456(17)E−3 . . .

ωeze = −9.82(40)E−5 7 13743.37581(21) 1.76789886(23) 0.649207(93) . . . 6.3134(16)E−3 . . .

Be = 1.8997872(28) 8 15600.87043((26) 1.75004067(30) 0.65094(18) . . . 6.0118(18)E−3 . . .

α1 = −0.0173802(27) 9 17431.75566(40) 1.73210142(28) 0.65297(56) . . . 5.6130(25)E−3 . . .

α2 = −2.235 (69)E−5 10 19235.96013(45) 1.71404986(30) 0.66358(75) . . . 5.2324(30)E−3 . . .

α3 = −6.64(48) E−7 11 21013.29410(84) 1.695088(22) 0.192(14) −9.19(23)E-9 1.434(16)E−2 −8.111(76)E−5
re (Å) = 1.17180630(86) 12 22765.7282(10) 1.677608(27) 1.231(21) 1.099(47) E-8 1.3297(18)E−1 −2.274(11)E−4

13 24488.7305(13) 1.659501(23) 0.6610(68) . . . 1.777(20)E−2 . . .

14 26185.6928(18) 1.641413(46) 0.742(27) . . . 1.179(25)E−2 . . .

15 27856.2000a 1.62261(12) 0.617(46) . . . 3.5(17)E−3 . . .

0 25797.87041(49) 1.9587206(15) 0.659524(62) . . . 1.7153(60)E−2 −6.81(31)E−7
1 27921.46673(58) 1.9380395(52) 0.67308(33) . . . 1.8162(95)E−2 −8.96(93)E−7

B2Σ+ 2 30004.90702(83) 1.916503(12) 0.7031(32) . . . 1.839(15)E−2 −2.40(69)E−6
Te = 25752.590(12) 3 32045.94782(75) 1.894182(17) 0.7115(69) . . . 2.453(18)E−2 −7.3(13)E−6
ωe = 2162.223(30) 4 34041.97171(62) 1.8704798(76) 0.7451(17) . . . 2.117(11)E−2 −5.18(41)E−6
ωexe = 19.006(22) 5 35990.0982(24) 1.847108(28) 0.9139(61) . . . 4.27(96)E−3 1.693(45)E−4
ωeye = −0.1346(65) 6 37887.42564(54) 1.8193419(61) 0.8099(12) . . . 2.524(10)E−2 −8.53(31)E−6
ωeze = −0.03673(85) 7 39730.53557(59) 1.790760(14) 1.1049(67) . . . 6.098(67)E−3 . . .

ωeηe = 0.001430(37) 8 41516.64447(62) 1.7621439(66) 0.9058(14) . . . 3.488(11)E−2 −1.985(36)E−5
Be = 1.96797(41) 9 43242.98520(78) 1.730286(14) 0.9254(67) . . . 1.576(12)E−2 −1.937(41)E−5
α1 = −0.01881(18) 10 44908.7939(11) 1.696076(40) 0.313(40) . . . 2.4897(38)E−1 −1.7970(62)E−3
α2 = −0.000643(16) 11 46511.39737(85) 1.664979(12) 1.0253(31) . . . 2.161(16)E−2 −1.866(62)E−5
re (Å) = 1.15133(12) 12 48053.7308(11) 1.629785(33) 1.846(22) . . . −9.17(26)E−3 −7.56(25)E−5

13 49537.3409(13) 1.598044(22) 1.0871(61) . . . 3.344(25)E−2 −2.565(72) E−5
14 50964.5889(26) 1.564126(94) 1.207(41) . . . 3.49(49)E−3 . . .

15 52340.0287(20) 1.53238(13) 1.220(60) . . . 8.61(17)E−2 −2.334(28)E−4

Note. Numbers quoted in parentheses are one standard deviation error in the last digits. a Value kept fixed.

4



T
h

e
A

stroph
ysical

Jou
rn

al
Su

pplem
en

t
Series,210:23

(15pp),2014
February

B
rooke

et
al.

Table 2
Spectroscopic Constants (in cm−1) for the A2Π State of 12C14N

Equilibrium Constants A2Π Value Constants v = 0 v = 1 v = 2 v = 3 v = 4

Te 9243.29599(53) Tv 9115.685517(89) 10903.41299(22) 12665.56753(23) 14402.13990(19) 16113.12043(18)
ωe 1813.28845(74) Av −52.65443(18) −52.58078(50) −52.50526(49) −52.43236(32) −52.35628(25)
ωexe 12.77789(27) ADv × 104 −2.1998(31) −2.1979(93) −2.211(14) −1.9577(89) −1.8620(86)
ωeye −0.001775(24) AHv × 109 4.959(43) 5.826(86) 7.96(24) 4.650(73) 4.307(82)
Be 1.7157690(24) Bv 1.70713832(13) 1.68986156(35) 1.67254021(59) 1.65516963(35) 1.63775143(36)
α1 −0.0172528(35) Dv × 106 6.14473(18) 6.15575(20) 6.16910(37) 6.18175(21) 6.19839(22)
α2 −1.402(88)E-5 Hv × 1012 3.921(17) 3.552(19) 3.418(49) 2.734(19) 2.424(20)
α3 −9.75(50)E-7 qv × 104 −3.87336(79) −3.9632(27) −4.0548(51) −4.1331(25) −4.2558(41)
re(Å) 1.23304492(86) qDv × 108 0.9695(12) 1.0617(44) 1.143(13) 1.1065(33) 1.2038(47)

pv × 103 8.3764(65) 8.475(22) 8.364(30) 8.138(16) 8.067(16)
pDv × 107 −2.835(12) −3.486(44) −3.43(11) −2.548(39) −2.107(48)

Constants v = 5 v = 6 v = 7 v = 8 v = 9 v = 10 v = 11

Tv 17798.49608(24) 19458.25763(28) 21092.46228(67) 22700.05200(57) 24283.17980(48) 25840.12165(54) 27371.2054(10)
Av −52.28969(38) −52.24814(51) −52.3431(12) −50.6597(11) −51.4574(10) −51.4287(12) −51.3129(21)
ADv × 104 −1.416(15) −0.770(26) −5.46(16) 1.43(13) −3.725(56) −3.515(72) −2.54(37)
AHv × 107 −0.0588(29) −0.0102(26) 4.69(15) −9.92(15) 0.202(20) 0.352(34) −1.43(57)
Bv 1.62028792(67) 1.60279825(96) 1.5851663(73) 1.5676896(73) 1.5497799(20) 1.5319138(24) 1.513983(16)
Dv × 106 6.22247(34) 6.25696(53) 5.629(17) 5.167(25) 6.3091(17) 6.3134(20) 6.208(47)
Hv × 109 0.002878(34) 0.003575(66) . . . −1.228(26) 0.00364(31) . . . . . .

qv × 104 −4.3526(81) −4.629(17) 5.16(14) 6.97(12) −5.052(21) −5.067(15) −5.42(11)
qDv × 106 0.01087(16) 0.01702(26) 0.909(37) −1.915(32) 0.0278(14) . . . . . .

pv × 101 0.08079(27) 0.08062(43) 0.0964(15) 1.3920(21) 0.20683(86) 0.1558(10) 0.1487(18)
pDv × 104 −0.00562(17) 0.00084(10) −0.4116(66) −2.827(14) −0.04373(85) −0.0145(13) . . .

PHv × 107 . . . . . . 2.247(23) . . . . . . . . .

Constants v = 12 v = 13 v = 14 v = 15 v = 16 v = 17 v = 18

Tv 28876.3676(12) 30355.5525(12) 31808.62750(86) 33235.49687(69) 34635.99988(82) 36009.8741(34) 37357.20769(79)
Av −51.1664(23) −51.0043(19) −50.8025(15) −50.6074(12) −50.3830(14) −50.5251(55) −49.8632(13)
ADv × 103 −0.390(23) −0.273(13) −0.446(14) −0.3251(83) −0.2443(92) −1.226(70) −0.3412(98)
Bv 1.496057(18) 1.477919(16) 1.459615(15) 1.4412985(90) 1.4229173(95) 1.404828(77) 1.3853108(96)
Dv × 106 6.372(53) 6.311(43) 6.329(45) 6.390(23) 6.556(22) 5.65(31) 6.572(25)
qv × 103 −0.587(23) −0.508(12) −0.698(12) −0.6739(87) −0.5708(82) −2.91(36) −0.678(12)
pv × 102 1.476(30) 1.321(20) 1.747(20) 1.481(13) 1.236(14) −1.83(15) 1.507(17)

Constants v = 19 v = 20 v = 21 v = 22

Tv 38677.42665(88) 39970.4623(14) 41235.86275(98) 42473.3725(12)
Av −49.4910(12) −49.1747(28) −48.7582(16) −48.3969(12)
ADv × 104 −2.591((92) −6.14(57) −5.76(20) . . .

AHv × 106 . . . 2.80(11) . . . . . .

Bv 1.366389(11) 1.347266(25) 1.327242(16) 1.307745(21)
Dv × 106 6.663(30) 4.855(88) 6.211(49) 7.221(65)
qv × 103 −0.5859(79) 0.127(20) −1.177(17) −0.698(11)
pv × 102 1.688(14) 0.360(42) 2.860(24) 1.575(21)
pDv × 105 . . . −1.97(24) . . . . . .

Note. Numbers quoted in parentheses are one standard deviation error in the last digits.
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Table 3
Transition Dipole Moments for the A2Π–X2Σ+ and B2Σ+–X2Σ+

Transitions and Dipole Moments for the X2Σ+ State of CN

Bond Length A2Π–X2Σ+ B2Σ+–X2Σ+ X2Σ+

(Å) (debye) (debye) (debye)

0.661472 −0.547032 −0.483782 −2.081250
0.793766 −0.692073 −0.629194 −2.122405
0.846684 −0.738059 −0.946864 −2.044511
0.899601 −0.769566 −1.229606 −1.936628
0.952519 −0.785822 −1.441672 −1.807347
1.005437 −0.790387 −1.581818 −1.674618
1.058354 −0.787775 −1.669979 −1.552390
1.084813 −0.784575 −1.700220 −1.497856
1.111272 −0.779533 −1.723350 −1.448287
1.137731 −0.772391 −1.739147 −1.402198
1.164190 −0.763250 −1.746233 −1.357881
1.190649 −0.752673 −1.743024 −1.314499
1.217108 −0.741135 −1.729314 −1.272498
1.243567 −0.728821 −1.705825 −1.233048
1.270025 −0.715778 −1.673746 −1.197683
1.296484 −0.701912 −1.633864 −1.166795
1.322943 −0.687165 −1.585993 −1.139411
1.349402 −0.671636 −1.529502 −1.114198
1.375861 −0.655481 −1.463860 −1.090024
1.402320 −0.638766 −1.389443 −1.066225
1.428779 −0.621491 −1.308087 −1.042734
1.455237 −0.603685 −1.222354 −1.019687
1.481696 −0.585470 −1.135044 −0.997045
1.508155 −0.567012 −1.048928 −0.974482
1.534614 −0.548437 −0.966394 −0.951523
1.561073 −0.529824 −0.889262 −0.927774
1.587532 −0.511263 −0.818813 −0.902968
1.719826 −0.420446 −0.577383 −0.752334
1.852120 −0.337551 −0.499411 −0.524666
1.984415 −0.265406 −0.492034 −0.195810
2.116709 −0.198443 −0.395970 0.111029
2.249003 −0.140957 −0.248862 0.235794
2.381298 −0.099951 −0.143183 0.238191
2.513592 −0.072877 −0.081517 0.201750
2.645886 −0.054734 −0.047096 0.160920
3.175063 −0.022232 −0.006540 0.061177
3.704241 −0.011713 −0.001039 0.030665
4.233418 −0.007035 −0.000171 0.019933
4.762595 −0.004436 −0.000026 0.014402
5.291772 −0.002854 −0.000001 0.011600
7.937659 −0.000558 −0.000016 0.006872
10.583545 −0.000156 −0.000015 0.005767
52.917725 −0.000031 −0.000015 0.010382

results were very similar to that obtained with the cc-pVQZ
basis set.

3.2. Matrix Elements from level, the Herman–Wallis
Effect, Conversion to Hund’s Case (a) Matrix

Elements, and Reported Line Strengths

level calculates vibronic TDM matrix elements using the
potentials calculated by rkr1 and the TDM functions de-
scribed above. In solving the radial Schrödinger equation,
level takes rotation into account by adding a centrifugal
term to the one-dimensional potential, which has the form
(N (N + 1) − Λ2)h̄/2μr2. level cannot include the effects of
electron spin, hence the use of N and Λ rather than J and Ω. This
is discussed further below.

The vibronic TDM matrix elements calculated by level
exclude the rotational part of the wavefunction (i.e., the part

that contains the orientation angle of the molecular axis), but the
rotation of the molecule affects the vibrational wavefunctions
due to centrifugal distortion, and therefore affects the TDM
matrix element, as these are proportional to the overlap of
the vibrational wavefunctions. This gives a (usually mild) J
dependence to a quantity that notionally does not involve
rotation, and is traditionally called the Herman–Wallis effect.
Strictly speaking, the Herman–Wallis effect applies only to
vibration–rotation transitions and not electronic transitions, but
the cause is the same, and so the term “Herman–Wallis” will be
used throughout this paper for simplicity.

To see how to take electron spin into account, consider the
expression for the rovibronic TDM matrix elements in a general
Hund’s case (a) basis (which includes the rotational part of
the wavefunction), as used in pgopher (Brown & Carrington
2003):〈

η′Λ; SΣ′; J ′M ′Ω′∣∣T k
p (μ)

∣∣ηΛ; SΣ; JMΩ
〉

=
∑

q

(−1)M
′−Ω′ √

(2J ′ + 1) (2J + 1)

(
J ′ k J

−Ω′ q Ω

)

×
(

J ′ k J
−M ′ p M

) 〈
η′Λ′|T k

q (J ′Ω′JΩ)|ηΛ
〉
. (7)

Here the rank of the transition operator, k, is 1 and the
component, q, is 0 for parallel bands and ±1 for perpendicular
bands. To allow for the Herman–Wallis effect we write the
vibronic TDM, 〈η′Λ′|T k

q (J ′Ω′JΩ)|ηΛ〉, as having a dependence
on J and Ω. This expression is used by pgopher to calculate
line strengths, and the Herman–Wallis effect can be included by
expressing the normally constant vibronic transition moment
as an arbitrary function of J′, Ω′, J, and Ω. We define a
dimensionless Herman–Wallis factor FTDM (mJ ′Ω′JΩ) as a ratio
to a reference value:

FTDM(mJ ′Ω′JΩ) =
〈
η′Λ′ ∣∣T k

q (J ′Ω′JΩ)
∣∣ ηΛ

〉
〈
η′Λ′ ∣∣T k

q (J ′ = Ω′Ω′J = ΩΩ)
∣∣ ηΛ

〉 , (8)

which gives the correction factor to the vibronic dipole moment,
where mJ ′Ω′JΩ is equal to J” plus a value based on ΔJ and
ΔΩ (see Section 3.2.1.2). In Equation (8), Ω is used in the
wavefunctions in the reference value in the denominator as it
represents the lowest possible values of J in both of the A2Π spin
components and in the B2Σ+ upper state. Please note that this
is not the standard definition of the Herman–Wallis factor; in
particular the correction must be made to the dipole moment to
allow for Hund’s case (a)/case (b) mixing rather than the square
of the dipole moment as is normally done for simpler systems.

The FTDM (mJ ′Ω′JΩ) values can be calculated from the level
output, but a transformation is needed as the level output is
in terms of N. The required transformation can be derived by
considering the rovibronic TDM matrix elements in a general
Hund’s case (b) basis (Brown & Carrington 2003):〈

η′Λ′;N ′SJ ′M ′ ∣∣T k
p (μ)

∣∣ ηΛ; NSJM
〉

= (−1)J
′−M ′

(
J ′ k J

−M ′ p M

)
(−1)N

′+S+J+k

×
√

(2J ′ + 1) (2J + 1)

{
N ′ J ′ S
J N k

}

×
∑

q

(−1)N
′−Λ′ √

(2N ′ + 1) (2N + 1)

(
N ′ k N
−Λ′ q Λ

)

× 〈
η′Λ′ ∣∣T k

q

(
N ′, N

)∣∣ ηΛ
〉
. (9)
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The Herman–Wallis effect is included in the vibronic transition
moment, 〈η′Λ′|T k

q (N ′, N )|ηΛ〉 and these are the values available
directly from the level output. The transformation between
Hund’s case (a) and (b) basis sets is known (Brown & Howard
1976):

|ηΛ; NKSJM〉 =
∑
Σ,Ω

(−1)N−S+Ω
√

2N + 1

(
J S N
Ω −Σ −K

)

× |ηΛ; SΣ; JMΩ〉 , (10)

so by combining the above equations we can relate the required
Hund’s case (a) vibronic transition moments to the known case
(b) transition moments:〈

η′Λ′ ∣∣T k
q (J ′Ω′JΩ)

∣∣ ηΛ
〉

= (−1)J
′−Ω′

(
J ′ k J

−Ω′ q Ω

)−1 ∑
N,N ′

(−1)N−N ′+S+J+k+Λ

× (2N + 1) (2N ′ + 1)

(
J ′ S N ′
Ω′ −Σ −Λ′

) (
J S N
Ω −Σ −Λ

)

×
{
N ′ J ′ S
J N k

}(
N ′ k N
−Λ′ q Λ

) 〈
η′Λ′ ∣∣T k

q (N ′N )
∣∣ ηΛ

〉
.

(11)

See the Appendix for full details of the derivation. The sum is
over all N that contribute to a given J, in this case normally
J − (1/2) and J + (1/2).

The magnitude of the Herman–Wallis effect is mostly quite
small for CN, especially for the observed bands, though there
are some bands for which the effect is dramatic. Figure 1 shows
a typical band (the observed B2Σ+–X2Σ+ (9, 7) band) and an
extreme case (the weak, unobserved (10, 2) band).

3.2.1. The A2Π–X2Σ+ System

For the calculation of line strengths of the A2Π–X2Σ+ transi-
tion of CN, the equilibrium constants in Table 2 were used as
input to the rkr1 program. The potential curves (turning points)
were then employed in level along with the TDM, Re(r),
derived from high level ab initio calculations described above
(Table 3).

For most vibrational bands of the CN A2Π–X2Σ+ system,
the Herman–Wallis effect is calculated to be relatively small
(∼5%), but for some weaker bands the effect is large. The largest
difference between the matrix elements for reported rotational
transitions within a vibrational band and the reference matrix
element for that band (the denominator in Equation (8); the
maximum Herman–Wallis effect) is 8% for the 0–0 band, 5% for
the 6–8 band, and 67% for the 4–5 band (the greatest difference
for an observed band). It is above 50% for several unobserved
bands and one observed band. It was therefore decided that the
effect should be included in our calculations.

In calculating the centrifugal part of the potential,
(N (N + 1) − Λ2)h̄/2μr2, Λ = 1 is used by level for the A2Π
state. The effect of using Λ = 1 as opposed to Λ = 0 is mostly
small (<0.5%), but for some bands it has a large effect. The
bands in which this effect is large are mostly ones where the vi-
brational overlap is very small, and therefore any small alteration
in the wavefunctions is more likely to cause a disproportionally
large change in the overlap. The extent to which this change
occurs has been investigated before (Le Roy & Vrscay 1975),
where a formula for its prediction, using rotational constants and

Figure 1. Relative intensities of the CN B2Σ+–X2Σ+, 9–7 and 10–2 bands.
The black lines are calculated by using only one TDM matrix element for the
whole band and including no Herman–Wallis effect. The green dots include
the Herman–Wallis effect and the Hund’s case (b) to (a) transformation of the
matrix elements as described in the paper. The red lines are calculated by not
performing the Hund’s case transformation, and using the quantum number N
instead of J to account for the Herman–Wallis effect. For both panels of the
figure, the intensities have been calculated using a rotational temperature of
500 K, showing J up to 30.5. The 9–7 band was used as one example as this
has the largest Herman–Wallis effect for any observed band of the B2Σ+–X2Σ+

system. The 10–2 band is a typical example of the extent of the effect for the
very weak bands.

(A color version of this figure is available in the online journal.)

vibrational spacings, was presented. It can also be seen from the
centrifugal term that Λ will have more of an effect at lower
J-values.

3.2.1.1. Conversion to Hund’s case (a) matrix elements. The
CN A2Π state is Hund’s case (a) at low J and changes toward
Hund’s case (b) with increasing J, so it is not possible to avoid a
case (a)–case (b) transformation at some point in the calculation.
For example, in the v = 0 level, B = 1.707 cm−1, A =
−52.65 cm−1 and |BJ| ≈ |A| at J = 31. Given the level
output, Equation (11) is used to calculate the FTDM (mJ ′Ω′JΩ)
factors. For a particular combination of J-values, say J′ = 7.5
and J′′ = 8.5, the sum will require three transition moments
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Table 4
List of Observed and Calculated Positions and Calculated Intensities of the CN A2Π–X2Σ+ and B2Σ+–X2Σ+ Systems, and X2Σ+ State Rovibrational Transitions

eS′ eS′ ′ v′ v′ ′ J′ J′ ′ F′ F′ ′ p′ p′ ′ N′ N′ ′ Observed Calculated Residual E′ ′ A f Description

A X 0 0 1.5 2.5 1 1 e e NaN 2 9082.98330 9082.9702 0.01313 11.3536 7.685729E+3 9.310961E−5 pP1(2.5)
A X 0 0 2.5 3.5 1 1 e e NaN 3 9079.91520 9079.8980 0.01723 22.7030 1.152579E+4 1.571904E−4 pP1(3.5)
A X 0 0 3.5 4.5 1 1 e e NaN 4 9076.35990 9076.3587 0.00119 37.8337 1.405716E+4 2.046548E−4 pP1(4.5)
A X 0 0 4.5 5.5 1 1 e e NaN 5 9072.35580 9072.3561 −0.00032 56.7451 1.596585E+4 2.423418E−4 pP1(5.5)
A X 0 0 5.5 6.5 1 1 e e NaN 6 9067.89420 9067.8947 −0.00046 79.4362 1.751230E+4 2.736789E−4 pP1(6.5)

Notes. eS = electronic state, p = parity. In the A state, F = 1 refers to Ω = 0.5, and F = 2 to Ω = 1.5. In the B and X states, F = 1 refers to e parity, and F = 2 to
f parity. Observed = observed transition position (= “NaN” if line not observed in any study). Calculated = Position calculated by pgopher. Residual = observed -
calculated position. E′′ = lower state energy calculated by pgopher (relative to v′′ = 0 band origin). A = Einstein A. f = f-value.

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

Table 5
Comparison of Lifetimes (in μs) with the Selected Experimental and Theoretical Lifetimes of the v = 0–4 Vibrational Levels of the CN A2Π State

v This Work Experimental Theoretical

A2Π1/2 A2Π3/2 TS LHH DEL J KWHC BLT LGR CH LSA
(Ref 1) (Ref 2) (Ref 3) (Ref 4) (Ref 5) (Ref 6) (Ref 7) (Ref 8) (Ref 9)

0 11.08 11.29 8.50 ± 0.5 . . . 3.83 ± 0.5 . . . 11.16 11.2 11.3 11.1 8.1
1 9.60 9.76 8.02 ± 0.6 . . . 4.05 ± 0.4 7.29 ± 0.2 9.71 9.7 9.6 9.6 7.0
2 8.53 8.66 6.67 ± 0.6 6.96 ± 0.3 3.98 ± 0.4 7.05 ± 0.3 8.66 8.6 8.4 8.6 6.3
3 7.73 7.84 5.50 ± 0.5 5.09 ± 0.2 4.20 ± 0.4 6.95 ± 0.3 7.87 7.8 7.6 7.2 5.7
4 7.12 7.21 4.70 ± 0.2 3.83 ± 0.3 4.35 ± 0.4 6.58 ± 0.4 7.25 7.2 6.9 6.7 4.9

References. (1) Taherian & Slanger 1984; (2) Lu et al. 1992; (3) Duric et al. 1978; (4) Jeunehomme 1965; (5) Knowles et al. 1988; (6) Bauschlicher & Langhoff 1988;
(7) Lavendy et al. 1984; (8) Cartwright & Hay 1982; (9) Larsson et al. 1983.

from level with N′–N′′ equal to 7–8, 8–8, and 8–9 (the sum
formally includes N′–N′′ = 7–9 but this violates the selection
rule on N, and so its contribution calculated in Equation (11) is
equal to zero).

This equation must be used for each possible combination
of J′, Ω′, J′′, and Ω′′, and for a particular J′, J′′ there are
four possible combinations of Ω that have non-zero matrix ele-
ments, corresponding to <Ω′, Λ′, Σ′|Ω′′, Λ′′,Σ′′> = <+1.5, +1,
+0.5|+0.5, 0,+0.5>, <−1.5, −1, −0.5|−0.5, 0, −0.5>, <+0.5,
−1, −0.5|+0.5, 0, +0.5> and <−0.5, +1, +0.5|−0.5, 0, −0.5>.
The first and second are in fact symmetry related as the matrix
element is invariant to reversal of the signs of all the projections,
as are the third and fourth. This means that the resulting matrix
elements will be the same for the ones involving the Ω = ±1.5
spin component, and for the Ω = ±0.5 spin component.

The net effect of the transformation between N and J is that
the dipole moment for a particular J is a (weighted) average of
the dipole moment for a few values of N. As the dipole moment
is only varying slowly with N, the functions of N and J are
very similar, and this transformation only introduces a small
correction in this case, as shown in Figure 1.

3.2.1.2. Accounting for the Herman–Wallis effect. The
Herman–Wallis factors, FTDM (mJ ′Ω′JΩ) values (Equation (8))
are calculated using the new Hund’s case (a) matrix elements.
These FTDM (mJ ′Ω′JΩ) values can be expressed as a polynomial
according to the following equation:

FTDM(mJ
′ Ω′JΩ) = 1 + CmJ

′ Ω′JΩ + Dm2
J

′ Ω′JΩ

+ Em3
J

′ Ω′JΩ + . . . . (12)

There are six possible versions of this equation for the
A2Π–X2Σ+ transition, two for each change in J, corresponding
to the two possible spin components, Ω = ±0.5 and Ω = ±1.5,
in the A2Π state. The six different polynomials for each
band were fitted to Equation (12) with effective polynomial

orders (which were adjusted to give a good fit), using TDM
matrix elements up to the highest reported J-values, where
mJ ′Ω′JΩ is J′′ for ΔJ = −1, J′′−Ω′ for ΔJ = 0, and J′′+1
for ΔJ = +1. The resulting coefficients (C, D, E, etc.; six
sets for each band) were input into pgopher along with the
reference TDM matrix elements (the denominator in Equation
(8); these are available from the authors on request). pgopher
multiplies 〈η′Λ′|T k

q (J ′ = Ω′Ω′J = ΩΩ)|ηΛ〉 by the appropriate
polynomial value according to the value of mJ ′Ω′JΩ, ΔJ and the
spin component for each transition.

Please note that this differs from the standard definition of the
Herman–Wallis effect (Bernath 2005), and so the coefficients
calculated here are not standard. The subscripts “TDM” and
“J ′Ω′JΩ” are present to indicate this.

3.2.1.3. Output of the calculations. The final output of this
calculation consists of line positions, Einstein A-values and
f-values for 295 possible vibrational bands (63 observed), and
rotational lines with J up to between 25.5 and 120.5, depending
on the band (Table 4; see the online line list header for a detailed
description of which lines are reported). Using the Einstein
A-values obtained from this calculation, the radiative lifetimes
for some lower vibrational levels (v = 1–4) of the A2Π state were
calculated (as described in the following sections) and compared
with the available experimental and theoretical lifetimes (see
Table 5).

3.2.2. The B2Σ+–X2Σ+ System

The calculations for the B2Σ+–X2Σ+ transition were per-
formed in a similar manner as described for the A2Π–X2Σ+

transition. In this case a 1Σ–1Σ transition was calculated by
level. The Herman–Wallis effect was again included as it is
of a similar magnitude as the A2Π–X2Σ+ system. For example,
the maximum Herman–Wallis effect (defined in Section 3.2.1)
is 0.4% for the 0–0 band, 10% for the 6–3 band, and 42% for
the 9–7 band (the greatest difference for an observed band). For
several of the unobserved bands, this difference is above 1000%.
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Table 6
Comparison of Current and Previous Einstein Av′v′′ Values for Several

Vibrational Bands within the X2Σ+ Ground State of CN

Band Einstein Av′v′′ (s−1)

Langhoff & Bauschlicher (1989) Our Value

1–0 13.02 8.85
2–1 24.20 16.5
3–2 33.77 22.9
4–3 41.92 28.2
5–4 48.81 32.3
2–0 1.75 0.661
3–1 4.88 2.33
4–2 9.12 5.02
5–3 14.22 8.43
3–0 0.10 0.00563
4–1 0.38 0.0404
5–2 0.95 0.180

The Hund’s case (b) matrix elements calculated by level
were again converted to the Hund’s case (a) version for input into
pgopher, using Equation (11). Here, only three polynomials
were required to be fitted to Equation (12) for each band, as
there is only one spin component in both states.

The final line list (Table 4) consists of line positions and
intensities for 253 bands of this transition with v′ = 0–15, v′′ =
0–15, and J up to between 25.5 and 70.5, depending on the
band. The lifetimes of the B2Σ+ state levels calculated using
the Einstein A-values agree well with the values obtained in
previous experimental and theoretical studies.

3.2.3. The X2Σ+ Rovibrational Transitions

The main focus of this paper was to calculate intensities
for the two electronic transitions mentioned. As this involved
the calculation of a dipole moment function and a potential
energy curve for the X2Σ+ ground state, intensities were also
calculated and reported for the rovibrational and rotational
transitions within the ground state. The calculations for these
transitions were the same as those for the B2Σ+–X2Σ+ system,
but with the upper state wavefunctions replaced by X2Σ+,
and using the X2Σ+ state dipole moment function as opposed
to the TDM function. Again, the Herman–Wallis effect was
included, as the maximum effect (defined in Section 3.2.1) was
more than 5% for most bands. For example, it is 7.0% for
the purely rotational transitions, 81% for the 2–0 band (the
greatest difference for an observed band) and above 100% for
several of the unobserved bands. The final reported line list
(Table 4) contains line positions and intensities for 253 bands of
rovibrational transitions with v = 0–15, and J up to between 25.5
and 120.5, depending on the band. Einstein Av′v′′ values have
been calculated and compared to previous values in Table 6.

3.3. Vibrational Av′v′′ and fv′v′′ Values

The Av′v′′ values for each vibrational band of the two
transitions were calculated by adding the rotational Einstein
A-values for all possible transitions within the relevant band
originating from the J′ = 1.5 level of the A2Π3/2 spin component
in the case of the A2Π3/2–X2Σ+ sub-bands and J′ = 0.5 of the
A2Π1/2 component in the case of the A2Π1/2–X2Σ+ sub-bands.
We have found that the Av′v′′ values for the A2Π1/2–X2Σ+ and
A2Π3/2–X2Σ+ sub-bands are slightly different. This difference is
mainly due to the wavenumber difference of the two sub-bands.
As can be noted from Equation (3), AJ′→J′′ ∝ ν3; therefore, the

Table 7
The Vibrational Av′v′′ and fv′v′′ Values of the CN A2Π–X2Σ+ and

B2Σ+–X2Σ+ Systems and X2Σ+ State Vibrational Transitions

Electronic System v′ v′′ Upper Spin Component

2Π1/2
2Π3/2

Av′v′′ fv′v′′ Av′v′′ fv′v′′

A2Π–X2Σ+ 0 0 6.595(+4) 2.366(−3) 6.483(+4) 2.350(−3)
A2Π–X2Σ+ 0 1 2.193(+4) 1.305(−3) 2.145(+4) 1.293(−3)
A2Π–X2Σ+ 0 2 2.263(+3) 2.626(−4) 2.195(+3) 2.595(−4)
A2Π–X2Σ+ 0 3 7.333(+1) 2.298(−5) 6.969(+1) 2.252(−5)
A2Π–X2Σ+ 0 4 2.808(−1) 6.594(−7) 2.437(−1) 6.236(−7)

Note. Numbers in parentheses indicate the exponent.

(This table is available in its entirety in a machine-readable form in the online
journal. A portion is shown here for guidance regarding its form and content.)

AJ′→J′′ values of the two spin components can be related by the
equation

AJ ′→J
′′ (2Π3/2) =

(
ν2Π3/2

ν2Π1/2

)−3

AJ ′→J
′′ (2Π1/2). (13)

After conversion from one spin component to the other using the
above equation, the Av′v′′ values of the two sub-bands become
almost identical. The Einstein Av′v′′ values for individual bands
have been used to calculate the oscillator strength (fv′v′′ ) for
different bands using the equation

fv′→v
′′ = 1.49919368

1

ν̃2

(2 − δ0,Λ′ )

(2 − δ0,Λ′′ )
A

v′→v
′′ , (14)

where δ0,Λ = 1 for a 2Σ+ state and 0 for a 2Π state. In this calcula-
tion, the wavenumber of the qQ2(0.5) line for the A2Π1/2–X2Σ+

sub-band and the rR1(0.5) line for the A2Π3/2–X2Σ+ sub-band,
located close to the band origins, were used in the above equa-
tion. We have computed the Einstein coefficients Av′v′′ and os-
cillator strengths fv′v′′ for 290 bands of the red system with v′ =
0–22 and v′′ = 0–15, 250 bands of the B2Σ+–X2Σ+ transition
with v = 0–15 for both states, and 120 bands of the rovibra-
tional transitions within the X2Σ+ state with v = 0–15. The
calculated Av′v′′ and fv′v′′ values are provided in Table 7. The
final line list including line positions and their AJ′−J′′ and fJ′−J′′

values are provided in Table 4.

3.4. Radiative Lifetimes of the A2Π and B2Σ+ States

The radiative lifetime of a vibrational level of the A2Π1/2
component was calculated by taking the reciprocal of the sum
of the Einstein A-values of all possible transitions originating
from J’ = 0.5 of that vibrational level. Similarly, the lifetime
of an A2Π3/2 vibrational level was calculated by taking the
reciprocal of the sum of the A-values of all the transitions from
that vibrational level, the 2Π3/2 spin component and with J′ =
1.5. The radiative lifetimes of both spin components of the A2Π
state are provided in Table 5. The lifetimes of v = 0–5 in the
B2Σ+ state are provided in Table 8. Values from some selected
experimental and theoretical studies of the two transitions have
also been provided in these tables for comparison.

As the Herman–Wallis effect has been included, we also
observed a change in the lifetimes with J. For all of the
vibrational levels in the A2Π state the lifetime increases with
increasing J, and the higher the vibrational level, the smaller the
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Table 8
Comparison of Calculated Lifetimes (in ns) with the Available Experimental and Theoretical Lifetimes

of the v = 0–5 Vibrational Levels of the CN B2Σ+ State

v This Work Experimental Theoretical

DEL J LB NSH BLT KWHC LSA CH
(Ref 1) (Ref 2) (Ref 3) (Ref 4) (Ref 5) (Ref 6) (Ref 7) (Ref 8)

0 62.74 66.2 ± 0.8 65.6 ± 1.0 60.8 ± 2.0 65.0 ± 2.0 62.69 60.73 66.80 62.29
1 62.97 66.3 ± 0.8 . . . . . . . . . 63.25 61.21 66.63 62.88
2 63.46 64.3 ± 2.0 . . . . . . . . . 64.19 61.97 67.10 63.67
3 64.25 65.6 ± 3.0 . . . . . . . . . 65.52 63.13 68.22 64.84
4 65.39 68.2 ± 4.0 . . . . . . . . . 67.23 65.00 69.72 66.42
5 66.95 67.3 ± 5.0 . . . . . . . . . 69.32 66.44 71.43 68.42

References. (1) Duric et al. 1978; (2) Jackson 1974; (3) Luk & Bersohn 1973; (4) Nishi et al. 1982; (5) Bauschlicher & Langhoff 1988;
(6) Knowles et al. 1988; (7) Larsson et al. 1983; (8) Cartwright & Hay 1982.

relative increase of the lifetime per J level. In the X2Σ+ state, the
opposite is observed. In the B2Σ+ state, the lifetime decreases
with J at lower vibrational levels, but increases with J at higher
vibrational levels.

Since we did not observe the B2Σ+–A2Π transition in our
experiment, we did not take into account the contribution of
this transition to the lifetime of the B2Σ+ state. Bauschlicher &
Langhoff (1988) have found that the inclusion of this transition
lowers the lifetime of the B2Σ+ state by ∼1%.

4. RESULTS AND DISCUSSION

4.1. The A2Π State

There is generally good agreement between other theoretical
values and our calculated A2Π1/2–X2Σ+ oscillator strengths. For
example, Knowles et al. (1988) have predicted f3′0′′ = 3.34 ×
10−4, compared to 3.35 × 10−4 predicted by Bauschlicher &
Langhoff (1988). The corresponding values from our calculation
agree well, as f3′0′′ = 3.40 × 10−4 for A2Π1/2 and f3′0′′ = 3.39 ×
10−4 for A2Π3/2. A value of f3′0′′ = 4.58 × 10−4 was calculated
by Larsson et al. (1983) but it was pointed out by Gredel et al.
(1991) and Bakker & Lambert (1998) that the f-values of Larsson
et al. (1983) were probably too large. Based on the calculations
by Knowles et al. (1988) and Bauschlicher & Langhoff (1988),
Bakker & Lambert (1998) have adopted the following fv′v′′

values with a small correction: f0′0′′ = 23.7 × 10−4, f1′0′′ = 19.1 ×
10−4, f2′0′′ = 9.0 × 10−4, f3′0′′ = 3.3 × 10−4, and f4′0′′ = 1.1 ×
10−4. These values are in very good agreement with our values
of f0′0′′ = 23.60 × 10−4, f1′0′′ = 19.15 × 10−4, f2′0′′ = 9.15 ×
10−4, f3′0′′ = 3.39 × 10−4, f4′0′′ = 1.10 × 10−4 (values shown
are for the A2Π1/2 component). Adamczak & Lambert (2013)
have used the red system lines in their N abundance analysis of
weak G-band stars. In this study they have used a line list of
the red system provided by B. Plez (2011, unpublished data),
which used the fv′v′′ values recommended by Bakker & Lambert
(1998). The wavelengths of the useful lines were re-computed
from energy levels given by Ram et al. (2010a, 2010b).

Although the calculated values agree well with the values
obtained from several theoretical calculations for the A2Π state,
they were significantly larger than the most recent experimental
lifetimes (Taherian & Slanger 1984; Lu et al. 1992). Also, the
experimental lifetimes of the A2Π state measured by different
groups do not agree with each other, as can be seen in Table 5.
Among the experimental values, the lifetimes reported most
recently by Taherian & Slanger (1984) and Lu et al. (1992)
have better agreement. Lifetimes of 8.5 ± 0.05, 8.02 ± 0.6,
6.67 ± 0.5, 5.5 ± 0.5, and 4.70 ± 0.2 μs have been reported

for v = 0, 1, 2, 3, and 4, respectively, by Taherian & Slanger
(1984). Unfortunately, Lu et al. (1992) did not determine the
lifetimes for v = 0 and 1 for the A2Π state, but have provided
the values 6.96 ± 0.3, 5.09 ± 0.2, and 3.38 ± 0.2 μs for v = 2,
3, and 4, respectively. Their values for v = 2 and 3 agree within
their quoted error with the values of Taherian & Slanger (1984).
Our A2Π1/2 (A2Π3/2) lifetimes are 11.08 (11.29), 9.60 (9.76),
8.53 (8.66), 7.73 (7.84), and 7.11 (7.21) μs for v = 0, 1, 2, 3,
and 4, respectively. If the dipole moment function is increased
by 15%, these values become 8.38 (8.54), 7.27 (7.38), 6.45
(6.55), 5.85 (5.93), and 5.38 (5.45) μs. These modified values
agree better with the lifetimes reported by Taherian & Slanger
(1984) and Lu et al. (1992), as well as the theoretical values
of Larsson et al. (1983). However, there is no basis for such an
adjustment.

The high level ab initio calculations (except Larsson et al.
1983) of lifetimes agree with each other, and given the excellent
quality of the calculations we do not think that the ab initio
values would change with an even higher level method. There
are potentially problems with the experimental work, of which
the most serious is collisional population transfer as discussed by
Lu et al. (1992), which would reduce the experimental lifetimes.
More experiments are needed, for example, on cold molecules
in a collisionless environment with selective excitation of the
upper state levels.

4.2. The B2Σ+ State

The calculated lifetimes of the B2Σ+ state agree well with
the known experimental and theoretical values reported from
previous studies. In particular, the present values of 62.74,
62.97, 63.46, 64.25, 65.39, 66.95 ns agree within ∼5% with the
experimental values of Duric et al. (1978), obtained with the high
frequency deflection technique. The theoretical calculations of
the oscillator strength of the B2Σ+–X2Σ+ bands by Knowles
et al. (1988) and Bauschlicher & Langhoff (1988) predict f0′0′′ =
0.0345 and 0.0335, respectively, compared to f0′0′′ = 0.0337 in
the present study. An earlier calculation by Larsson et al. (1983)
has provided a value of f0′0′′ = 0.0324. Since the experimental
lifetimes of the B2Σ+ state (Nishi et al. 1982; Duric et al.
1978; Jackson 1974; Luk & Bersohn 1973) agree well with
theoretical results (Cartwright & Hay 1982; Larsson et al. 1983;
Lavendy et al. 1984; Knowles et al. 1988; Bauschlicher &
Langhoff 1988), an average value of f0′0′′ = 0.033 was adopted
by Bakker & Lambert (1998) in their study of the 12CN and
13CN lines of the red and violet systems in the spectrum of
the post-asymptotic giant branch star HD 56126. Our value of
f0′0′′ = 0.0337 also supports the value adopted by Bakker &
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Figure 2. Theoretical dipole moment functions for the CN X2Σ+ ground state.

(A color version of this figure is available in the online journal.)

Lambert (1998). The much shorter lifetime of the B2Σ+ state
means that the experimental measurements will be much less
sensitive to neglected loss mechanisms in the excited state, so
the existence of discrepancies in only the A2Π state lifetimes is
not surprising.

4.3. The X2Σ+ State

The calculated Einstein Av′v′′ values have been compared
to those of Langhoff & Bauschlicher (1989) in Table 6. Our
values are noticeably smaller; they are around 2/3 of the 1989
values for the Δv = 1 sequence, and as low as about 1/10
in one case (the 4–1 band). The reason for this can be seen
in Figure 2, which shows the difference between the 1989
dipole moment function and ours. The differences here cause
the discrepancies in the final Einstein Av′v′′ values. To confirm
this, the full calculations described in this paper were performed
using the 1989 dipole moment function, and the Einstein Av′v′′

values were calculated to be almost identical to those reported
by Langhoff and Bauschlicher.

4.4. Validation of Computed Results

The spectrum of the A2Π–X2Σ+ transition is spread over a
wide wavenumber range (from 4000–21,500 cm−1), so it was
recorded in two parts with different experimental conditions. As
mentioned earlier, spectra were observed in emission from an
active nitrogen afterglow source in which energy transfer takes
place from the metastable triplet A3Σu

+ and vibrationally excited
ground state of N2 to higher vibrational levels of the excited and
ground states of CN. In such a case, the vibrational and rotational
temperatures are very different, and because of incomplete
relaxation the concept of a vibrational temperature has little
meaning. In this case, we started by adjusting the Lorentzian
and Gaussian contributions to linewidths in pgopher to find the
best match between the observed and calculated line shapes.
Next, the rotational temperature was estimated by monitoring
the intensity distribution of a large number of rotational lines in
a branch while varying the rotational temperature in small steps.
A value of 500 K was estimated for the A2Π–X2Σ+ bands in the
4000–12,000 cm−1 region. In order to simulate the spectrum
of sequence bands, the rotational temperature was held fixed
but the vibrational temperature was adjusted in steps. It was

Figure 3. Comparison of the observed (upper) and simulated (lower) spectra
of the Δv = −1 sequence of the A2Π–X2Σ+ transition of CN. The unmarked
emission lines near the 6–7 and 7–8 bands are vibration–rotation lines of the
2–0 overtone of HCl, present as an impurity. The absence of 5–6 band in both
spectra is consistent with the very small Franck–Condon factor calculated by
level.

(A color version of this figure is available in the online journal.)

Figure 4. Comparison of a part of the observed (upper) and simulated (lower)
spectra of the A2Π–X2Σ+, 0–1 band near the R2 head showing a very good
correspondence between the two spectra.

(A color version of this figure is available in the online journal.)

found that a vibrational temperature of 15,000 K produced a
reasonable correspondence between the observed and simulated
spectra. A part of the spectrum of the Δv = −1 sequence of the
A2Π–X2Σ+ transition is presented in Figure 3, over a range of
about 2000 cm−1. As can be seen, the intensity of the 0–1,
1–2, 2–3, 3–4, 4–5, and 5–6 bands decrease rapidly and the 5–6
band is almost absent in the observed and simulated spectra.
The higher vibrational bands again appear gradually in both
the observed and simulated spectra. An expanded portion
of the spectrum of the 0–1 band near the R2 head is presented
in Figure 4, and the sR21 branch of the 1–0 band is provided in
Figure 5, showing good agreement between the observed and
simulated spectra.

For the B2Σ+–X2Σ+ transition, a similar comparison is more
difficult because of the formation of a head of band heads in
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Figure 5. Comparison of the observed (upper) and simulated (lower) spectra of
the A2Π–X2Σ+, 1–0, sR21 branch.

(A color version of this figure is available in the online journal.)

Figure 6. A section of the observed (upper) and simulated (lower) spectra of
the B2Σ+–X 2Σ+, 13–13 band comparing the intensity distribution of the R and
P branches.

(A color version of this figure is available in the online journal.)

the different sequences. Also, interactions between the excited
state and nearby perturbing levels cause abnormal intensities in
some of the vibrational bands so the relative intensity of the

simulated bands differs somewhat from the observations. For
this transition, rotational and vibrational temperatures of 300 K
and 3400 K result in a reasonable match between the observed
and simulated spectra. A section of the 13–13 band showing
very good agreement between observed and simulated spectra
is provided in Figure 6.

5. SUMMARY

TDM functions for the A2Π–X2Σ+ and B2Σ+–X2Σ+ systems
and a dipole moment function for the X2Σ+ state of CN were
calculated, and employed in the program level to calculate
TDM matrix elements. An equation was derived to convert
matrix elements from Hund’s case (b) to (a), their J depen-
dence was quantified and the effect of rotation on the matrix
elements was included before their input into pgopher. This
program was used to calculate Hönl–London factors and Ein-
stein A coefficients. A line list consisting of line positions, Ein-
stein A coefficients and f-values for 290 bands of the A2Π–X2Σ+

transition with vibrational levels v′ = 0–22, v′′ = 0–15, 250
bands of the B2Σ+–X2Σ+ transition with v′ = 0–15, v′′ =
0–15 and 120 bands of the rovibrational transitions within
the X2Σ+ state with v = 0–15 has been generated. The Ein-
stein A-values have been used to compute radiative lifetimes
in the A2Π and B2Σ+ states. The calculated f-values of the two
transitions agree with the theoretical values of Knowles et al.
(1988), Bauschlicher & Langhoff (1988), and Cartwright & Hay
(1982), and the values adopted by Bakker & Lambert (1998).
The A2Π state lifetimes have also been calculated with the mod-
ified TDMs (increased by 15%) which compare well with the
recent experimental values for the lower vibrational levels of
the A2Π state, but we recommend the use of the unmodified ab
initio values. Our B2Σ+ state lifetimes and f-values have good
agreement with the previously reported experimental and the-
oretical values as well as the values adopted values by Bakker
& Lambert (1998) in their chemical abundance analyses. The
Einstein Av′v′′ values for the X2Σ+ state rovibrational transitions
are significantly smaller than previous values from Langhoff &
Bauschlicher (1989), but we believe the new dipole moment
function to be more accurate. To validate the calculated rela-
tive line intensities, laboratory spectra were simulated and good
agreement has been found between observed and calculated
spectra.

The research described here was supported by funding from
the Leverhulme Trust of UK and the NASA laboratory astro-
physics program. The spectra used in this work were recorded
at the National Solar Observatory at Kitt Peak, USA.

APPENDIX

DERIVATION OF THE EQUATION (EQUATION (11)) FOR CONVERTING HUND’S CASE (B)
MATRIX ELEMENTS TO HUND’S CASE (A) MATRIX ELEMENTS

A.1. Relationship between Hund’s Case (a) and Case (b) Wavefunctions

Starting from the general relationship given by Brown & Howard (1976),

|ηΛ; NKSJM〉 =
∑
Σ,Ω

(−1)N−S+Ω
√

2N + 1

(
J S N
Ω −Σ −K

)
|ηΛ; SΣ; JMΩ〉 , (A1)

and applying the constraint K = Λ appropriate for linear molecules we have

|ηΛ;NΛSJM〉 =
∑

Σ

(−1)N−S+Λ+Σ
√

2N + 1

(
J S N

Λ + Σ −Σ −Λ

)
|ηΛ; SΣ; JMΩ〉 . (A2)
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The transformation between Hund’s case (a) and (b) should be orthogonal, so we can essentially invert the transformation by
inspection. Both sides are multiplied by a trial function to verify this:

(−1)N−S+Λ+Σ
√

2N + 1

(
J S N

Λ + Σ −Σ −Λ

)
|ηΛ;NΛSJM〉

=
∑

Σ′
(−1)Σ′−Σ (2N + 1)

(
J S N

Λ + Σ′ −Σ′ −Λ

) (
J S N

Λ + Σ −Σ −Λ

)
|ηΛ; SΣ′; JMΩ′〉. (A3)

Summing both sides over N gives

∑
N

(−1)N−S+Λ+Σ
√

2N + 1

(
J S N

Λ + Σ −Σ −Λ

)
|ηΛ;NΛSJM〉

=
∑
N

∑
Σ′

(−1)Σ′−Σ (2N + 1)

(
J S N

Λ + Σ′ −Σ′ −Λ

) (
J S N

Λ + Σ −Σ −Λ

)
|ηΛ; SΣ′; JMΩ′〉

=
∑

Σ′
(−1)Σ′−Σ

∑
N

(2N + 1)

(
J S N

Λ + Σ′ −Σ′ −Λ

) (
J S N

Λ + Σ −Σ −Λ

)
|ηΛ; SΣ′; JMΩ′〉

= |ηΛ; SΣ; JMΩ〉 . (A4)

The last step follows from the orthogonality relationship:

∑
N,γ

(2N + 1)

(
J S N
α β γ

) (
J S N
α′ β ′ γ

)
= δαα′δββ ′ , (A5)

given that the additional sum over γ collapses to the term with α + β + γ = 0 = α’ + β’ + γ . Overall

|ηΛ; SΣ; JMΩ〉 =
∑
N

(−1)N−S+Ω
√

2N + 1

(
J S N
Ω −Σ −Λ

)
|ηΛ;NΛSJM〉. (A6)

A.2. Relationship between Hund’s Case (a) and Case (b) Electronic Transition Moments

For transition strengths, we require the matrix elements of the space fixed electric dipole operator:

T k
p (μ) =

∑
q

Dk
p,q (ω)∗ T k

q (μ). (A7)

The matrix elements of this are well known; in a Hund’s case (a) basis they are〈
η′Λ; SΣ′; J ′M ′Ω′ ∣∣T k

p (μ)
∣∣ ηΛ; SΣ; JMΩ

〉 =
∑

q

(−1)M
′−Ω′ √

(2J ′ + 1) (2J + 1)

×
(

J ′ k J
−Ω′ q Ω

) (
J ′ k J

−M ′ p M

) 〈
η′Λ′ ∣∣T k

q (J ′Ω′JΩ)
∣∣ ηΛ

〉
. (A8)

This is essentially Equation (6.320) of Brown & Carrington (2003) generalized to any value of p and q. In addition, to a first
approximation the electronic matrix element 〈η′Λ′|T k

q (J ′Ω′JΩ)|ηΛ〉 should not depend on J or Ω, but these have been added as
parameters here to allow for centrifugal distortion.

A similar equation can be derived for Hund’s case (b) wavefunctions:

〈
η′Λ′;N ′SJ ′M ′ ∣∣T k

p (μ)
∣∣ ηΛ; NSJM

〉 = (−1)J
′−M ′

(
J ′ k J

−M ′ p M

)
(−1)N

′+S+J+k
√

(2J ′ + 1) (2J + 1)

{
N ′ J ′ S
J N k

}

×
∑

q

(−1)N
′−Λ′ √

(2N ′ + 1) (2N + 1)

(
N ′ k N
−Λ′ q Λ

) 〈
η′Λ′ ∣∣T k

q (N ′, N )
∣∣ ηΛ

〉
. (A9)

This is a generalization of Equation (6.321) of Brown & Carrington (2003). Again the purely electronic matrix element〈
η′Λ′ ∣∣T k

q

(
N ′, N

)∣∣ ηΛ
〉

should not depend on N, but we allow it to do so to allow for centrifugal distortion.
We now need to relate these two using the transformation between bases derived above:

〈
ηΛ′; SΣ; J ′MΩ′ ∣∣T k

p (μ)
∣∣ ηΛ; SΣ; JMΩ

〉 =
∑
N,N ′

(−1)N
′−N+Λ′−Λ

√
(2N + 1) (2N ′ + 1)

(
J ′ S N ′
Ω′ −Σ −Λ′

) (
J S N
Ω −Σ −Λ

)

× 〈
ηΛ′;N ′Λ′SJM

∣∣T k
p (μ)

∣∣ ηΛ;NΛSJM
〉
. (A10)
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Substituting on both sides

∑
q

(−1)M
′−Ω′ √

(2J ′ + 1) (2J + 1)

(
J ′ k J

−Ω′ q Ω

) (
J ′ k J

−M ′ p M

) 〈
η′Λ′ ∣∣T k

q

(
J ′Ω′JΩ

)∣∣ ηΛ
〉

=
∑
N,N ′

(−1)N
′−N+Λ′−Λ

√
(2N + 1) (2N ′ + 1)

(
J ′ S N ′
Ω′ −Σ −Λ′

)(
J S N
Ω −Σ −Λ

)

× (−1)J
′−M ′

(
J ′ k J

−M ′ p M

)
(−1)N

′+S+J+k
√

(2J ′ + 1) (2J + 1)

{
N ′ J ′ S
J N k

}

×
∑

q

(−1)N
′−Λ′ √

(2N ′ + 1) (2N + 1)

(
N ′ k N
−Λ′ q Λ

) 〈
η′Λ′ ∣∣T k

q

(
N ′, N

)∣∣ ηΛ
〉
. (A11)

The terms in M cancel out:

∑
q

(−1)J
′−Ω′ √

(2J ′ + 1) (2J + 1)

(
J ′ k J

−Ω′ q Ω

) 〈
η′Λ′ ∣∣T k

q

(
J ′Ω′JΩ

)∣∣ ηΛ
〉

=
∑
N,N ′

(−1)N
′−N+Λ′−Λ

√
(2N + 1) (2N ′ + 1)

(
J ′ S N ′
Ω′ −Σ −Λ′

) (
J S N
Ω −Σ −Λ

)

× (−1)N
′+S+J+k

√
(2J ′ + 1) (2J + 1)

{
N ′ J ′ S
J N k

}

×
∑

q

(−1)N
′−Λ′ √

(2N ′ + 1) (2N + 1)

(
N ′ k N
−Λ′ q Λ

) 〈
η′Λ′ ∣∣T k

q

(
N ′, N

)∣∣ ηΛ
〉
, (A12)

and with a little more simplification:

∑
q

(−1)J
′−Ω′

(
J ′ k J

−Ω′ q Ω

) 〈
η′Λ′ ∣∣T k

q

(
J ′Ω′JΩ

)∣∣ ηΛ
〉

=
∑
N,N ′

(−1)N
′−N+Λ′−Λ (2N + 1)

(
2N ′ + 1

) (
J ′ S N ′
Ω′ −Σ −Λ′

) (
J S N
Ω −Σ −Λ

)

× (−1)N
′+S+J+k

{
N ′ J ′ S
J N k

} ∑
q

(−1)N
′−Λ′

(
N ′ k N
−Λ′ q Λ

) 〈
η′Λ′ ∣∣T k

q

(
N ′, N

)∣∣ ηΛ
〉
. (A13)

Λ and Λ′ are the same on both sides, so the equation can be used for a single value of q:

(−1)J
′−Ω′

(
J ′ k J

−Ω′ q Ω

) 〈
η′Λ′ ∣∣T k

q

(
J ′Ω′JΩ

)∣∣ ηΛ
〉

=
∑
N,N ′

(−1)N−N ′+S+J+k+Λ (2N + 1)
(
2N ′ + 1

) (
J ′ S N ′
Ω′ −Σ −Λ′

) (
J S N
Ω −Σ −Λ

)

×
{
N ′ J ′ S
J N k

}(
N ′ k N
−Λ′ q Λ

) 〈
η′Λ′ ∣∣T k

q

(
N ′N

)∣∣ ηΛ
〉
. (A14)

Finally,

〈
η′Λ′ ∣∣T k

q

(
J ′Ω′JΩ

)∣∣ ηΛ
〉

= (−1)J
′−Ω′

(
J ′ k J

−Ω′ q Ω

)−1 ∑
N,N ′

(−1)N−N ′+S+J+k+Λ (2N + 1)
(
2N ′ + 1

) (
J ′ S N ′
Ω′ −Σ −Λ′

) (
J S N
Ω −Σ −Λ

)

×
{
N ′ J ′ S
J N k

}(
N ′ k N
−Λ′ q Λ

) 〈
η′Λ′ ∣∣T k

q

(
N ′N

)∣∣ ηΛ
〉
. (A15)

(Equation (11) in main text)
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