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ABSTRACT 

AN INTEGRATED PROBABILITY-BASED APPROACH FOR 

MULTIPLE RESPONSE SURFACE OPTIMIZATION 

Okay Isik 
Old Dominion University, 2009 

Co-Directors of Advisory Committee: Dr. Resit Unal 
Dr. Ghaith Rabadi 

Nearly all real life systems have multiple quality characteristics where individual 

modeling and optimization approaches can not provide a balanced compromising 

solution. Since performance, cost, schedule, and consistency remain the basics of any 

design process, design configurations are expected to meet several conflicting 

requirements at the same time. Correlation between responses and model parameter 

uncertainty demands extra scrutiny and prevents practitioners from studying responses in 

isolation. Like any other multi-objective problem, multi-response optimization problem 

requires trade-offs and compromises, which in turn makes the available algorithms 

difficult to generalize for all design problems. Although multiple modeling and 

optimization approaches have been highly utilized in different industries, and several 

software applications are available, there is no perfect solution to date and this is likely to 

remain so in the future. Therefore, problem specific structure, diversity, and the 

complexity of the available approaches require careful consideration by the quality 

engineers in their applications. 

The purpose of this dissertation is to suggest strategies in order to improve the 

quality of processes and products with multiple quality characteristics. An integrated 



probability-based approach will be applied in the modeling and optimization of the 

problem, which will utilize strengths of probability-based and desirability approaches. A 

conformance probability metric is the most commonly used optimization criterion for 

probability-based approaches and it will be shown that particularly when conformance 

probability is high it can prematurely stop the search process and give biased solutions in 

mean response values. Another concern is when the number of responses increases a 

feasible solution set may not exist due to the response constraints. Therefore, penalization 

of infeasible solutions can help to identify near feasible solutions and also help decision 

makers articulate their preference information efficiently in order to find compromising 

solutions. 

The proposed approach is coded in MATLAB by the help of readily available 

tools in the MATLAB Toolbox. Several cases from published literature are implemented 

and simulations are conducted to show the quality of proposed and existing 

methodologies. The results showed that, operating conditions obtained by the proposed 

approach are always superior in terms of mean targets, and almost equally good in terms 

of conformance probability. 
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1 

1 INTRODUCTION 

1.1 BACKGROUND 

Response Surface Methodology (RSM) is a collection of statistical and 

mathematical techniques useful for empirically developing, improving, and optimizing 

processes. It also has important applications in the design, development, and formulation 

of new products, as well as in the improvement of existing product designs (Myers and 

Montgomery, 2002). RSM, first developed by Box and Wilson in 1951 has been 

successfully utilized in many industries for the design and improvement of systems where 

efficient design characteristics are sought. 

RSM can be generalized in three sequential steps: 

1. Designing an optimal experimentation plan that encompasses adequate and 

reliable information for the modeling and optimization of responses; 

2. Determining a mathematical model that best fits the data collected from 

the design chosen; and, 

3. Determining the optimal settings of input factors that produce the best 

settings of response. 

Much of the RSM studies, particularly in recent years focus on multiple responses 

where several characteristics of a system are of interest. Nearly all systems have multiple 

quality characteristics and one direction of improvement for a response might give poorer 

performances for the others (as shown in Figure 1.1). Simultaneous optimization of 

This dissertation uses the APA style 



multiple quality characteristics of a system emanates from the need to consider different, 

conflicting, and often correlated responses which use the same resources in a system. 

Performance 

Schedule 
Products and 

Processes Risk 

Cost 

Figure 1.1 Multiple and Conflicting Quality Characteristics of a Product or a Process 

However, it is not easy to maintain a balance among responses when they have different 

measurement units, correlations, and when the types of responses are of different variety. 

Therefore, solution procedures which will efficiently lead decision makers (DM) to 

compromising solutions are of great importance. 

1.2 PROBLEM DEFINITION AND DISSERTATION OUTLINE 

Although considerable attention is given to the multiresponse surface 

optimization field, complexity of both the problem and proposed solutions leave room for 

further research in order to help practitioners test the validity and confidence of applied 

procedures. Moreover, there are several statistical properties that should be considered 

when establishing sound procedures in both modeling and the optimization of procedures. 

These properties help in the classification of available approaches and with diversifying 
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the production of new approaches for problems. These statistical properties can be 

summarized as follows: 

• Correlation structure among responses 

• Robustness of responses 

o Robustness to uncontrollable (noise) factors 

• Quality of response models 

o Quality of description (R2) 

o Quality of prediction (/?2prediction) 

Moreover, typically of any multi-criteria optimization problem, decision makers 

preferences need to be considered as well as and how preference information is 

articulated during the optimization process. In a multiple response problem when the 

number of factors or responses grows moderately high and the responses are strictly 

constrained, relative weighting of responses can be cumbersome and, in most cases, a 

common set of input variables satisfying all the responses may not be possible. Hence, a 

procedure that defines efficient DM involvement to find compromising solutions with the 

least number of iterations should be a required characteristic of any multiple response 

surface optimization technique. 

Since Harrington (1965), the desirability approach has been highly utilized by 

several researches due to its flexibility in the DM articulation process and its applicability 

to different response types. However when the desirability approach is used in the 

optimization, correlation among responses, which is the primary characteristic of multiple 

responses, can not be incorporated and there is little or no study in this regard. Another 

important and new emerging paradigm is the probability-based approaches which are 
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able to account satisfactorily for statistical considerations. However there is still a need 

for exploiting its applicability in the optimization of multiple responses and several 

improvements are possible when these methods are used in unison. 

The main focus of this research will be on the second (mathematical modeling) 

and third step (optimization) of response surface methodology when multiple responses 

are considered. In Chapter 2, the basics of regression formulations used in the calculation 

of response surface model parameters for single and multiple response cases will be 

given. In Chapter 3, a brief summary of existing work on multiple response surface 

methodology (MRSM) will be given regarding statistical properties and DM involvement 

issues. Then the research effort will be mapped as to how an integrated approach can help 

to overcome limitations in previous studies, along with what would be the possible 

contributions to the body of knowledge with the intended study. In Chapter 4, the 

proposed approach will be formulated and its applicability will be shown with an 

example. In Chapter 5, in order to test the performance of the proposed approach, several 

examples from published literature will be studied regarding response types, optimization 

method, and number and type of responses used in the study. 

The conclusion and directions for future research are discussed in Chapter 6. 
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2 RESPONSE MODELING AND OPTIMIZATION 

In this chapter, the basics of regression formulations used in the calculation of 

response surface model parameters for single and multiple response cases will be given. 

A response is an empirically obtained approximation for the actual quality characteristic. 

Therefore, it is important to understand the limitations and the underlying assumptions 

while developing response functions as well as finding optimum operating conditions 

with the help of these functions. 

Correlation structure between responses were also emphasized as well as why 

individual optimization strategies are not sufficient for multiple responses. As the 

multiple criteria nature of the problem necessitates, the DM preference articulation 

process is an important characteristic of MRS and several alternatives were discussed 

regarding their pros and cons that will be used in the proposed methodology. 

2.1 RESPONSE SURFACE METHODOLOGY (RSM) 

As the second stage in RSM, building trusted regression models for responses is 

very important since results in the optimization stage cannot be trusted unless the 

established models approximate the true responses well. A response is generally an 

empirically obtained approximation on a quality characteristic of interest defined as: 

y = f(x1,x2,...,xk) + s (2.1) 
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where x forms a set of controllable factors, ands is the unexplained variation by / , 

which is assumed to have a normal distribution with mean 0 and variance Var{s). If the 

mean of s is zero, the expectation of (1) is: 

E(yi) = E[fl(xi,x2,...,xk)\ + E(el) 

= Vt (2-2) 

Since the true response function ft is usually unknown, it is approximated by 

employing mathematical modeling techniques to experimentally obtained data. If the true 

response rji depends on a set of controllable factors xl,x2,...,xk (i.e., ijt=f(x), and 

x = (xl,x2,...,xk)
T), it is possible to approximate it locally to any degree of accuracy with 

a Taylor Series Expansion around some arbitrary point xo as follows: 

r?i=f(x0) + Vfi(x0)
T(x-x0) + -(x~x0)

rUi(x0)(x-x0) + ..., (2.3) 

where H;(x0) is the Hessian of ft at ;to-

Neglecting higher-order terms in (2.3), the expansion reduces to polynomial function of 

the form: 

17, = ft{x) s A + t ^ + i i ^ J + I t fax,, (2.4) 
j=\ y=l 7=1 </=2, 

where /30, fij, f5}j and /3tj are called the parameters or regression coefficients. The second 

order model is widely used in RSM for several reasons. First, it is flexible and can take a 

wide variety of functional forms. Second, it is easy to estimate the parameters with the 

least squares method. Finally, there is considerable practical experience indicating that 

second-order models work well solving real life problems. For example, if the 

controllable variables are standardized to have a zero mean and equal standard deviations 



(see Box and Wilson, 1951), the resulting experimental region can be interpreted easily 

as some geometric figure with the center point as the origin. Thus, a radial constraint 

(xTx < p1) is appropriate for optimization purposes when the region of experimentation 

is spherical or near spherical. 

2.2 ORDINARY LEAST SQUARES ESTIMATION 

In order to estimate /? parameters with the method of least squares, Equation (2.4) 

can be written as (Myers and Montgomery, 2002): 

y = X$ + £ (2.5) 

Where 

y = 

~y\ 
yi 

_y*. 

3 

P= 

x = 

"A" 
A 

_A_ 

"1 

1 

1 

, and 

•*n x\2 

x2l x22 

Xn\ Xn2 

s-

£\ 

£2 

-£n_ 

' • ' X 

X2k 

m"Xnk. 

We wish to find the vector of least squares estimators, p, that minimizes: 

^ = Z ^ 2 = ^ = (y-xp)r(y-xp) 

Note that L may be expressed as: 

L = yT y - PTxTy - /xp+p rx rxp 
= yTy-2pTXTy + pTXTXp 
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since $TXTy is a scalar, and its transpose ($TXTy)T = yTX$ is the same scalar. The least 

squares estimators must satisfy: 

dp 

which simplifies to: 

XrXp = XTy (2.6) 

In order to solve (2.6), we multiply both sides with the inverse of X rX. Thus the least 

squares estimator of p is: 

$ = (xrxy*xT
y 

The vector of fitted values j> corresponding to the observed values yi is: 

y = X(XTX)-lXTy 

For a quadratic model like in Equation (2.4), if we decompose p into its linear 

and quadratic terms we get: 

y = b0+xTb + xrBx 

where b0, b and B are the estimates of the intercept, linear, and second order 

coefficients respectively. For a single response, optimum settings of x, xs, can be 

calculated differentiating y in the direction of x. 

- ^ = b + 2Bx 
ax 

Setting the derivative to 0, one can find the optimum (stationary) point of the system: 

1 - i 
x = - - B _ 1 b . 



The predicted response for any design point can now be estimated, for the stationary 

point: 

j) = 60+x'sb + x'sBx5 

= &o + 2X 'S
b 

Since the B coefficients are estimates, based on normality assumption, the confidence 

interval information may account for the parameter uncertainty. 

2.3 ESTIMATION OF A MULTIRESPONSE SYSTEM 

"Simultaneous consideration of multiple responses involves first building an 

appropriate response surface model for each response and then trying to find a set of 

operating conditions that in some sense optimizes all responses or at least keeps them in 

desired ranges" (Myers, R., Montgomery D. 2002). 

Let y\, yi,.. • ,ym be a set of responses which can be measured at each of N settings 

for a group of k coded controllable factors, x\, X2,... M- Hence, the rth response model can 

be written in vector form (Khuri and Cornell 1996): 

y, =XtJSi+£t, i = l,2,...,m, (2.7) 

where yt is an TVx 1 vector of observations on the rth response, X, is an Nxp 

matrix of the levels of the independent variables, fi\ is a pxl is the vector of the 

unknown regression coefficients, and e,- is an Nxl random error vector associated with 

the rth response. It is assumed that: 

£(«;. ) = 0, i-\,2,...,m 

=>E(yl) = X,fil 
' ' ' (2.8) 

Varfo ) = <rtt\n, i = l, 2,..., m 
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The m x m variance-covariance matrix whose (i, j)'h element is 

aij 0 *• h and i, j -1,2,..., m) and (i, i)'h element is cr., (i = 1,2,..., m) and denoted by 2 . 

To the extent of the unknown matrix E, homogenity for each component atj is assumed 

herein (homogenity implies that the within-group variances and covariances are similar, 

and can therefore be pooled together to create a common variance-covariance matrix for 

the multiple groups). An unbiased estimator of S is Z, given by the formula: 

± Y r[Iw-X(X rX)-']Y (29) 

N-p 

where IJV is an identity matrix of order N x N. With m<N-p, £ will be nonsingular 

provided that Y is of rank m. Therefore, detecting linear dependencies among response 

data is crucial. Box et al. (1973) showed that with r many linearly independent 

relationships must exist among the multiresponse data if and only if the matrix DDrhas a 

zero eigenvalue of multiplicity r, where D = (djj) is a matrix of order mxN whose (/,/)th 

element is dtj,= ytj,- yt.., where ^ is the y'th component of y{ and 

N 

yt = ĵT y.j I N,i = 1,2,..., m; j = 1,2,..., N. In matrix form D is written as: 

» = YT{ln-lnl
T

n/N), 

where IJV is a vector of ones of dimension N. lfq is the multiplicity of the zero eigenvalue 

of DDT, then it is possible to find a set of m - q responses among which no linear 

functional relationships exist. This necessitates the dropping of q responses that are linear 

functions of the remaining m-q responses. 

The m equations in (2.7) can be written as a single linear multi-response model of 

the form: 
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y2 

x, o 
0 X, 

0 0 

0 

. 

x m 

fix 
fii 

fim 

+ 

*1 

e2 

£m 

(2.10) 

y = xp+£-, 

where Y = [yl yl.^J,$ = [# fi...fl'J,e = [e( el...e'J, and X is the block 

diagonal matrix. Percy (1992) called this the seemingly unrelated regressions (SUR) 

model. His choice of name reflects the fact that model (2.10) may be written as m 

separate multiple linear regressions which contains different parameters and are thus 

seemingly unrelated. However, they are connected because the responses in the different 

regressions are correlated with each other. It is common practice to assume Xi= X2=...= 

Xm= Xo, Xo has full rank and all responses can be approximated with the same function 

(i.e., quadratic) : 

X = 
1 x, xik xt, xkl xnxn 

1 
linear terms pure quadratic terms interaction terms 

then model (2.10) called traditional multivariate regression model and 

^=(XT
QXorXT

Qyi (2.11) 

can be estimated using ordinary least squares (OLS) method. As common to almost all 

multiple response optimization schemes proposed so far, the assumption is that all 

response functions in the system depend on the same set of controllable variables and that 

they can be represented by polynomial regression models of the same degree within a 

certain region of interest. 
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2.4 SIGNIFICANCE OF CORRELATION STRUCTURE AND THE NEED FOR 

MULTIVARIATE MONITORING 

Correlation structure, mostly dealing with linear correlations, is one of the most 

important issues that necessitates simultaneous treatment of multiple responses, and also 

has not been considered in many of the proposed methods. As a graphical explanation, 

Figure 2.1 presents comparisons of two bivariate response distributions with different ft 

and T. parameters (Chiao and Hamada 2001). The square in the middle of each graph is 

the specification region given for two responses. The 95% contours for Y indicate the 

shape of the distribution and gives an idea of the likeliness that the product will meet 

specifications. In Figure 2.1 (a), we see two responses having independent distribution 

(i.e. cr. =0 and <ru = crJj). Only the means of both Y\ and Y2 are different, and case a\ is 

better since (a{) and (#2) have proportions of conformance of 0.366 and 0.119 

respectively. In Figure 2.1 (b) only the variance values for Y2 changes. Case (62) is 

preferred because the variance for Yi for this case is smaller. Proportions of conformance 

are 0.366 and 0.911 respectively. These proportions can be calculated with MATLAB's 

"mvncdf command provided the parameters of the bivariate normal distribution. In 

Figure 2.1 (c), Y\ and Y2 have significant negative correlation (cr^ =-0.9) revealing that 

they are not independently distributed. Case (ci) is preferred because it has proportion of 

conformance 0.501, which is 0.366 in case (c\). As expected, accumulation inside the 

specification region is due to the tilted cigar shape distribution that is higher in cr case. 

A conclusion can be made that the correlation structure may have a significant 

effect on quality of the product or process when quality characteristics are correlated. In 

order to improve quality or make quality robust, one needs to first identify what 
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controllable variables impact the mean and variances (<jft) of responses as well as the 

correlations (<jl I cr^^) between responses. Therefore, an optimization algorithm should 

take these distributional parameters into consideration and then find the values of 

controllable variables that make quality goals achievable. 

6 t 

2 t 

s o t 

-2 t 

-4 t 

-6 t 

4 t 

2 + 

s o t 
Bi 

-2 + 

-4 + 

-6 + 

-2 0 2 

Response 1 

6 t 

4 t 

2 + 

S 0 + 

-2 t 

•A t 

-6 t 

-2 0 2 

Response 1 

Figure 2.1 Some 95% Contours and Specification Region for Bivariate Responses. 
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2.5 MODEL ADEQUACY CHECKING 

It is always necessary to (a) examine the fitted model to ensure that it provides an 

adequate approximation to the true system and (b) verify that none of the least squares 

regression assumptions are violated in (2.8) (Myers and Montgomery, 2002). For this 

purpose, nearly all mathematical software packages provide ANOVA tables to check the 

significance of regression model as shown in Table 2.1. 

Table 2.1 Analysis of Variance for Significance of Regression 

Source of e „ e Degrees of A . „ „ 
. . . x. Sum of Squares „ ^ , Mean Square Fn 
Variation n Freedom n 

Regression 

Residual 

Total 

ssR 

SSE 

SST 

p-\ 

N-p 

N-\ 

MSR = SSR/(p-\) 

MSE = SSE/(N-p) 

MSR/MSE 

The entries in the table represent measures of information concerning the separate 

sources of variation in the data. The total variation in a set of data is called the total sum 

of squares (SST). It is calculated summing squared deviations of individual response 

values from their mean value: 

SST=ft(yJ-y)2 

7=1 

The total sum of squares can be decomposed into two parts, the sum of squares 

that can be explained by regression model (SSR) and the sum of squares of error or 

residuals (SSE). SSR can be computed as: 

ssR=Z(yj-y)2 

7=1 
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and SSE can be computed as: 

SS,=2>y-J>,)2 

Using the above statistics, the hypothesis Ho can be tested. All /?,• parameters (except /?o) 

are equal to zero, against the null hypothesis Ho', at least one /?, parameter (except /?o) is 

not equal to zero. Assuming normality of the errors, FQ statistics in the table follows an F 

distribution with/? - 1 and N-p degrees of freedom. The null hypothesis can be rejected 

at a level if F0 exceeds Fa,p _ 1, N-P, revealing that variation accounted by the model is 

significantly greater than the unexplained variation. 

An ancillary statistic to the F statistic is the coefficient of determination which is 

the ratio of the regression sum of squares to the total sum of squares: 

^2 _ SSR 

The value of/?2 is a measure of the amount of reduction in the variability of y when x\, xi, 

..., Xk are used in the model. However by artificially increasing the number of /?,-

parameters in the model, R2 can be inflated. A more realistic statistic is the adjusted R2 

which will not increase with the addition of insignificant model parameters, as follows 

(Myers and Montgomery 2002): 

Adj- SST/(N-l) 

f N-l 

N-p, 

Therefore, R2 and /^va lues would be very close to each other when only significant 

terms are used in the model. 

PRESS (prediction error sum of squares) is another useful method which is 

indicative of predictive power of a regression model. To calculate PRESS, with JV runs in 
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the data set, the model equation y(j) is fitted to N - 1 runs and a prediction is taken from 

this model for the remaining one. The difference between the recorded data value and the 

value given by the model (at the value of the omitted run) is called a prediction residual, 

PRESS = 1 ^ =£[>>,•-j\0]. (2-12) 
1=1 !=1 

PRESS is the sum of squares of the prediction residuals. Over fitting problems can be 

eliminated when PRESS is minimized in the calculation of the second order models. It is 

useful to compare PRESS RMSE with RMSE as this may indicate problems with over 

fitting. RMSE is minimized when the model gets very close to each data point; 'chasing' 

the data will therefore improve RMSE. However chasing the data can sometimes lead to 

strong oscillations in the model between the data points; this behavior can give good 

values of RMSE but is not representative of the data and will not give reliable prediction 

values where you do not already have data. The PRESS RMSE statistic guards against 

this by testing how well the current model will predict each of the points in the data set 

(in turn) if they were not included in the regression. A small PRESS RMSE usually 

indicates that the model is not overly sensitive to any single data point. 

2.6 ARTICULATION OF THE DECISION MAKER'S PREFERENCE 

INFORMATION 

"Human intervention in the solution process is one of the characteristics that 

distinguish the methods of multiple criteria optimization from those of single criterion 

optimization" (Steuer, 1986). The problem of optimizing multiple response models is 
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similar to the problems addressed in multi-criteria or multi-objective mathematical 

programming algorithms. A DM can articulate his\her preference information by 

imposing relative weights or using a utility function. Another need arises when the 

responses are strictly constrained; a common set of input variables satisfying all the 

responses may not be possible. Hence, the DM's involvement may be required 

throughout the optimization process to find a compromising solution. 

When a feasible solution does not exist, the DM's involvement may be needed to 

relax the constraints on responses. This can be done by either changing the target values 

of responses or allowed ranges of responses. Various multi-objective optimization 

methods are classified into three major categories by the timing of a DM's preference 

information articulation into the model including prior preference articulation, 

progressive preference articulation, and posterior preference articulation methods (Jeong 

and Kim, 2005). Prior preference articulation methods require that all the preference 

information of a DM be extracted prior to solving the problem. The preference of the DM 

is specified through interviews between the DM and an analyst. The major disadvantage 

of such methods is the difficulty a DM has in specifying the required preference 

information. The optimization process, however, is usually relatively simple since the 

problem has typically been reduced to a single objective. 

Progressive preference articulation methods (interactive methods) require that a 

DM input his/her preference information into a model during the problem solving 

process. These methods are initiated through the finding of a solution for examination. As 

a result of the examination, the DM provides some information concerning his/her 

preference structure on outcomes arising from this solution. This process is repeated until 
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the DM either converges toward a best-compromise solution or terminates the process 

prior to reaching this point. Compared with the prior preference articulation methods, 

progressive preference articulation methods have the advantages that: 

• show initial preference information may be enough and the DM may not be 

required to provide redundant information or answer hypothetical questions. 

• provide an opportunity for a DM to learn his/her own tradeoff space is given, 

and, 

• garner an obtained solution that has a better prospect of being implemented. 

There are some shortcomings that 

• for some cases it is not guaranteed that the preferred solution can be obtained 

within a limited number of iterations, 

• have considerable cognitive effort is required of a DM, and 

• have an extra computational load for solving the problem at each iteration is 

required. 

The first progressive preference articulation method STEM (Step Method) was 

proposed by Benayoun, et al in 1971. Mollaghasemi and Evans (1994) developed a 

modified STEM in order to reduce the cognitive burden on the DM in the sense that s/he 

needs only to identify the least satisfactory performance measure value. Jeong and Kim 

(2005) proposed D-STEM that utilizes the desirability function approach, which can also 

be useful in modeling nonlinear preference information of a DM. 

Posterior preference articulation methods do not need any substantial DM 

involvement before or during the problem solving process. They first find all (or most) of 

the efficient solutions. The DM then chooses the best one from the set of efficient 
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solutions. The main advantage of the posterior method is that no explicit preference of a 

DM is required to generate all the efficient solutions. However the number of efficient 

solutions generated may be too large to analyze. 

Jeong and Kim (2007) proposed a posterior articulation process where the 

desirability approach is used for a dual response problem. They first generate several 

non-dominated solutions (Pareto optimal) with different weights of estimated mean and 

variance values of a single response. A solution to a multi-objective problem (call it A) is 

Pareto optimal if no other feasible solution is at least as good as A with respect to every 

objective and strictly better than A with respect to at least one objective (Winston, 2003). 

Hence, a non-dominated solution cannot be improved at the expense of other objective 

functions. Then, they let DM communicate with a set of alternative non-dominated 

solutions to accomplish the DM's best compromise solution. 
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3 OVERVIEW OF PREVIOUS AND RELATED RESEARCH 

In this chapter, an extended overview of existing methodologies for computing 

optimum point in a MRSM study is presented. One of the primary objectives of a RSM is 

the determination of operating conditions on a set of input variables that results in an 

optimum response. In a multiresponse situation however, several response variables are 

considered and the optimization problem is more complex than in single response cases. 

Only rarely do all response variables achieve their respective optima with the same set of 

conditions (Khuri and Cornell, 1996). Moreover, a DM may have different priorities on 

responses and the optimization process should consider statistical properties that were 

mentioned before. 

In this Chapter, cited literature will be criticized considering, correlation, 

robustness, quality of response models, the DM's preference articulation, and the 

applicability to different response types. Then, a brief summary of literature and a gap 

analysis will be provided in order to map the research effort and signify the contribution 

of the expected results. A formal research hypothesis will be formulated and the specific 

research directions to test the hypothesis will be presented. 

3.1 PRIORITY-BASED APPROACH (DUAL RESPONSE APPROACH) 

Myers and Carter (1973) considered a multiresponse optimization problem with 

only two responses (dual response optimization). One is taken as the primary and the 
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other is taken as the secondary response. They attempt to solve dual response problems 

analytically. The same approach can be generalized for more than two responses. 

Suppose there are m responses y = (yi, yi, . . . , ym) which are determined by a set of 

input variables x = (xi, X2, . . . , Xk). If one of the responses has priority on others and the 

others can be tolerated with upper and lower specification limits, a multiresponse 

problem can be defined as: 

Optimize j>, 

Subject to /,. < j>,. <M,., i = 2,3,...,m (3.1) 

x e / ? \ 

where yx denotes the primary response and /,• and ut are lower and upper specifications of 

remaining responses. In cases where these specifications are not known a priori, these 

specifications can be obtained by optimizing each response function individually. The 

last constraint represents the solution set x that must be in the experimental region R. For 

cubodial designs, this constraint usually takes the form -1 < JC < 1 and for spherical 

designs, the constraint is xTx < r2, where r is the design radius. 

The priority-based approach, that consists of formulating the multiple-response 

problem to a constrained optimization problem, utilizes the ideas in the multi-criteria 

optimization literature and several arrangements can be made for the model above 

including giving different weights to responses. Without any transformation on 

responses, such as a desirability function, this strategy could be used when the primary 

quality characteristic is a large-is-better (LTB) or small-is-better (STB) while the 

secondary characteristics are nominal: the best (NTB), LTB, or STB variety. Minimum 

and maximum specifications would need to be stated for the LTB and STB 
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characteristics, respectively. These specification limits serve as the constraints that are to 

be satisfied at the optimal x. 

In Model (3.1), one of the responses might be a process mean and the other might 

be a process variance that can be referred as response surface approach to Robust 

Parameter Design (RPD). Myers and Montgomery (2002) showed how control and noise 

factor interactions can be modeled with response surfaces, particularly with combined 

arrays. Del Castillo (1996) found confidence limits for the solution set of the above 

constrained problem both for linear and quadratic responses that can be generalized to 

RPD case. 

The key issue in formulating the multiresponse problem is the choice of the 

optimization criterion. In practice there is no absolute need to rely solely on a single-

number criterion; it would also be informative to separately study the mean and variance 

of each response, as provided, for example, by the Dual Response Model (Romano, 

2004). However, applicability of these approaches becomes difficult as the number of 

responses increases. Other disadvantages for the priority-based approach are: 

• that it does not consider the correlation structure between responses, and, 

• for some cases, it might be difficult to prioritize the responses. 

3.2 OVERLAYING CONTOUR PLOTS APPROACH 

When a small number of responses and input variables, say two or three, included 

in the problem, overlaying contour plots can be used to find a "sweet spot" where 

responses meet their respective requirements. "The collection of such depictions could be 

helpful in identifying new regions to explore for possible quality improvement and may 
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yield further insight into the relationships between the controllable variables and the 

quality characteristics and between the quality characteristics themselves" (Pignatiello, 

1993). Application of graphical approaches is limited if the number of responses and 

input variables grows higher. Besides, it does not produce a certain solution and 

understanding the correlation structure is not easy through visual inspection of response 

graphs, which may also complicate the DM's involvement. 

3.3 DESIRABILITY APPROACH 

The desirability approach, first introduced by Harrington (1965), allows the 

involvement of the DM in the optimization process to incorporate economic information 

through the definition of the individual desirability functions. Since Harrington, this 

approach has been highly utilized and improved in the multiple response optimization 

field by several authors (Derringer and Suich, 1980; Kim and Lin, 2000; Ribardo and 

Allen, 2003; Kim and Lin, 2006; Lee and Kim, 2007). 

In the desirability approach, response functions, usually obtained via least square 

regression, are transformed into an individual desirability function d that varies over the 

range0 < d{y})< 1, j = l,...,m. The transformation in a unit interval might be linear or 

nonlinear depending on the response type and the decision maker preferences as follows 

in Figure 3.1: 
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Figure 3.1 Desirability Function Transformations for Different Types of Responses 

When the shape parameter 5 = 1 , the desirability function is linear. Choosing s > 1 

places more emphasis on being close to the target value, and choosing 0 < s < 1 makes 
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this less important. For asymmetric responses around a target si and S2 parameters can be 

chosen unequal in the NTB type. 

These individual desirability functions can be aggregated into a single overall 

desirability function which should be maximized. 

D(x) = [d(y1)d(y2)..J(ym)]Um (3.2) 

This is the most commonly used desirability metric (Derringer and Suich, 1980). The 

rationale behind using the geometric mean is that if any quality characteristic has an 

undesirable value (i.e., d{yt) = 0) at some operating conditions, x = xo, then the overall 

result is 0 regardless of the values taken by the other responses (Del Castillo et al., 1996). 

Moreover, it provides a better balance between responses. For example, the arithmetic 

mean is indifferent for an overall desirability value composed of 2 responses, such as 

Z>, = (.9 +. 1) / 2 = .5 and D2 = (.5 + .5) / 2 = .5. Geometric mean on the other hand would 

prefer D2 = yj.5(.5) = .5 to D^ = y].\(.9) = .3. Therefore, it is superior to arithmetic mean 

in the optimization process. 

Several modifications have been proposed for Equation (3.2). Kim and Lin (2000) 

proposed modifications for transformation functions in order to incorporate predictive 

capability of response functions. Kim and Lin (2006) proposed dual response 

optimization for robustness. 

Ortiz et al. (2004) made an important step by incorporating a penalty component 

to Equation (3.2) that can be very helpful when the number of responses is high and the 

problem is infeasible due to the tight constraints of responses. This idea is used in 

conjunction with the probability-based approach which will be detailed in the "Proposed 
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Approach" section of this study. A summary of the penalized desirability approach will 

now be provided. 

The Penalized Desirability Function, PD(x), includes an overall desirability 

component and an overall penalty component. The overall penalty function P(x), which is 

also a combined function of the individual fitted responses, is particularly important 

because it reflects the overall severity of the infeasibility. The overall penalty function for 

the rth design setting is: 

P(xi) = [(P(yl)p(y2)...p(ym))1"" - c j (3.3) 

where the corresponding individual penalties p(j),-) are found again by similar 

transformations, as shown in Figure 3.2: 
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Figure 3.2 Penalization for Different Types of Responses 

y{x) 

where c is a relatively small constant used to force p(yt) > 0. Requiring a nonzero p(yt) 

ensures that some nonzero overall penalty P(x) is assessed for each infeasible solution. 

Smaller or larger values of c may be used according to the DM's understanding of 

penalization beyond the lower and upper values of responses. Incorporating this overall 

penalty function into a combined fitted response metric, the proposed overall desirability 

function for /th design setting can be estimated as: 

PD{xt) = [d(yl)d{y2)...d{ymj\'m -[(p(yl)...p(ym))Vm -t 
- |2 

(3-4) 
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The purpose accomplished by the overall penalty function is to ensure design 

space locations x are appropriately ranked relative to each other based on their degree of 

infeasibility. Once feasible solutions are found, their associated penalty function becomes 

P(x) = 0, removing any penalty function influence from PD(x). Therefore, PD(x) reduces 

to Derringer and Suich's (1980) D(x) metric when there is no infeasibility in the 

responses. 

A penalized desirability metric can be particularly important when a feasible 

solution cannot be found through optimization efforts. Infeasibility may occur due to 

inconsistent constraints of design variables or due to inconsistent constraints of 

responses. The first case may result from false selection of ranges of controllable 

variables or an important factor in the screening experiments may be assumed as 

insignificant. Either way, a more comprehensive study is required to resolve that kind of 

infeasibility and this problem was excluded from the research as it is more related to 

design phase of the RSM. 

For the later case however, a compromise may be achieved with DM involvement 

by relaxing the constraints on responses. Prioritization of infeasible points according to 

their degree of infeasibility helps progressive articulation of DM preferences with 

minimum number of iterations. 

The desirability approach is very effective when incorporating a DM's 

preferences through an optimization process. It aggregates the overall utility of a product 

into a single desirability metric, which can be defined as a measure of overall quality of a 

product or a process. This is particularly important when comparing different operating 

conditions in the optimization process. Harrington (1965) developed a scale relating the 
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overall desirability of a product to its perceived quality. Harrington's (1965) scale is 

shown in Table 3.1. 

Table 3.1 Harrington's Rating System for Interpreting the Desirability, D(x) (adapted from Ribardo 
and Allen (2003) 

Rating Description 

1.00 The ultimate in satisfaction and quality (an improvement beyond this point would have 
no appreciable value) 

1.00-0.80 Acceptable and excellent (represents unusual quality or performance well beyond 
anything commercially available) 

0.80-0.63 Acceptable and good (represents an improvement over the best commercial quality) 

0.63-0.40 Acceptable but poor (quality is acceptable to the specification limits but improvement is 
desired) 

0.40-0.30 Borderline (if specification exists, then some of the product quality lies exactly on the 
specification maximum or minimum) 

0.30-0.00 Unacceptable (materials of this quality would lead to failure) 

0.00 Completely unacceptable 

Moreover, desirability approach can handle any type of responses (LTB, STB and 

NTB) efficiently. Jeong (2005) proposed an interactive desirability approach for the 

progressive articulation of a DM's preference information where shape, target, and bound 

parameters update during the optimization process. The basic weaknesses of desirability 

function approach are: 

• Correlation structure between responses cannot be incorporated. 

• It is not straightforward to account for model parameter uncertainty. 

• Selection of bounds, target values and also the shape of the desirability 

function may not be straightforward. 

• Commonly used individual desirability functions are discontinuous; hence 

gradient-base algorithms may have difficulty finding the optimum. Cahya (2002) 



30 

provided continuous desirability functions that provide good approximations for all 

response types. 

3.4 SQUARED ERROR LOSS APPROACH (QUADRATIC LOSS APPROACH) 

The squared error loss approach, or quadratic loss approach, is the multivariate 

analog of Taguchi's loss function approach. In a multiresponse case, loss is defined as: 

Z = [y(x) -efc[y(x)-0] 

where C is a positive definite matrix of weights or costs, 8 is the vector of target values 

for each response (Pignatiello 1993). Vinning (1998) proposes minimizing estimated 

expected loss of above function: 

E[L] = [y(x)-9f C[y (x ) -0 ]+ / r a ce [c l - w ] (3.5) 

where 

ZHx)=xT
0(X

TXylx0i. (3.6) 

The first part of the right hand side of (3.5) shows the penalty or loss due to the deviance 

from the target values and the second half represents the penalty imposed by the quality 

of the prediction or penalty due to the uncertainty in the predicted responses. Vinning 

(1998) demonstrates several alternatives for the C matrix. For the case C = KZ~\ a 

correlation structure can be incorporated into the optimization. Here, K is a diagonal 

matrix with the diagonal elements reflecting the relative economic importance of quality 

characteristics. 

The squared error loss approach has several advantages. First of all, it regards the 

correlation structure between responses. Second, the DM's preference information and 
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tradeoffs can be carried through the C matrix: and finally, it considers the penalty 

imposed by the prediction error. Romano et al. (2004) used the Finite Element simulation 

tool for the design of an elastic element of a force transducer. Their methodology 

decomposed the scalar value of loss into two different components as consumer loss and 

producer loss and they successfully and comprehensively applied most of the response 

surface arguments in the multiresponse case, such as handling robustness, response 

correlations, DM preferences, and model parameter uncertainty. 

On the other hand, the multivariate squared error loss function is designed to 

model NTB type of responses and is not suitable for STB and LTB type of responses 

(Seshadri and Savage, 2002). In particular, a finite target does not exist for STB or LTB 

type responses and forcing target values for responses and trying to minimize deviations 

from those hypothetical targets may cause bias from the optimum. Maghsoodlo and 

Huang (1997) studied necessary calculations to estimate loss functions for mixed type of 

responses for bivariate cases and their results showed that even for bivariate cases loss 

function calculations might be cumbersome and each combination (i.e., LTB-NTB or 

STB-LTB) leads to a different loss function formulation. Therefore, for large number of 

responses, a general loss function formulation is difficult and has yet to be proposed. 

Calculation of the K matrix can also pose problems for the DM. 

3.5 PROBABILITY-BASED (BAYESIAN PREDICTIVE) APPROACH 

Chiao and Hamada (2001) proposed a very novel approach to MRSM called the 

probability-based,or Bayesian predictive, approach for replicated experiments. This 

approach is also followed by Peterson (2000 and 2004) and Miro-Quesada, et al. (2004) 
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later for unreplicated experiments. Generally speaking, Bayesian data analysis essentially 

involves: 

1. Setting up a probability model that posits a distribution for observables 

(measurements or attributes) conditional on unobservables (parameters) where functions 

of some or all of the unobservables and observables (target quantities) is the object of 

inference, 

2. A prior distribution that summarizes a priori uncertainty about the likely 

values of the parameters, and 

3. Computing and interpreting the posterior distribution of the target quantities 

of interest (Raghunathan 2000). 

These steps also constitute the basics of probability-based approaches for the 

multiple response surface optimizations developed so far. In a multivariate optimization 

problem, the probability of multiple responses simultaneously meeting their 

corresponding specifications provides an intuitive and easily interpreted statistic. Given 

the experimentally acquired data, that can also be named observables, a multivariate 

distribution can be posited, which is a function of design settings for the quality 

characteristics of interest. Then the cumulative distribution function (cdf) of this 

probability distribution can be maximized over the entire design space in order to find the 

design setting that gives the optimized quality characteristics. In other words, the 

Bayesian approach utilizes the posterior predictive distribution of the multiple responses 

in order to compute the probability that a future multivariate response will satisfy 

specified quality conditions. 
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As an example, Chiao and Hamada (2001) address the assessment and 

optimization of a replicated multiresponse experiment. Consider m responses Y=(Y\, Y2, 

..., Ym), each having a lower and upper specification region that can be represented by (/,-, 

Ui). In a multivariate setting, these individual bounds construct a common specification 

region, an m dimensional hypercube, S, whose sides are individual specifications. Then, a 

measure of quality, m, can be infered with responses being simultaneously in that 

specification region: 

P(YeS). (3.7) 

The above metric can be estimated and optimized by several methods. Chiao and 

Hamada (2001) assumed that Y follows an m dimensional multivariate normal 

distribution for each design setting, such as;: 

f(Y;M,-L) = (27r) (m/2) I ,1-1/2 
xexp -^(Y-fiY^iY-fi) (3.8) 

After estimating E and ft parameters, and integrating the pdf in (3.8) over the 

specification region, the proportion of conformance can be estimated for different design 

settings. However, E and // first need to be estimated for the settings that were not 

included in the experimental design (unobservables). This can be achieved by fitting 

regression functions to the estimates of variance-covariance matrix E and mean 

responses//. Chiao and Hamada (2001) fit first order regression models for E and // , 

where logarithmic transformations are used for the estimated variance-covariance matrix, 

for it to be positive definite. 

Using regression models, conformance probability can be optimized applying an 

extended design grid, and the calculating P(Y e S) value for each point in the grid. The 
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optimum design setting should be the one giving the maximum conformance probability. 

The integration can be done using a cdf of the multivariate normal distribution, which is 

provided as a built-in function in many programming packages such as MATLAB. 

Parallel to Chiao and Hamada (2001), Peterson (2000, 2004) and Miro-Quesada et 

al. (2004) developed a probability-based approach for unreplicated experiments. They 

proposed multivariate-^ distribution for responses and rather than using cdf function they 

used simulation to estimate the conformance probabilities. Their approach has the 

advantage of applying different performance metrics in the optimization process which 

this research intends to expand in the research methodology section. 

A serious drawback of the probability-based approach is that it does not consider 

different degrees of satisfaction within the acceptable region. As an example, in 

desirability approach terms, two operating conditions, say xi and X2, having an overall 

desirability D , D > 0 and D ^ D are assumed to be equally satisfactory as long as all 

the responses lie within their specifications. In reality however, the DM may have 

differing degrees of satisfaction for the two operating conditions. 

Moreover, Chiao and Hamada (2001) do not take into account the uncertainty of 

the model parameters. The model parameters are simply replaced by their point estimates. 

This study's verification study showed that, for some design settings, probability 

measures can be noticeably higher than they should be, revealing that the normality 

assumption may not be a good approximation. Another issue is that in order to estimate 

Z and/i replicates are required, hence the costs of experimentation for this approach 

may be expensive. 
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3.6 LITERATURE SUMMARY - GAP ANALYSIS 

In this section, this research aimed to provide a snapshot of what was previously 

done for each optimization approach regarding statistical properties and DM involvement 

issues that were presented in the previous section. Table 3.2 summarizes previous 

research on multiple response surface optimization with respect to the authors' 

contributions to the problem space. 

The synopsis and findings on the literature are as follows: 

• The desirability based approach is the most studied approach due to its 

flexibility to handle DM involvement. However, none of the desirability approaches in 

Table 3.2 have considered correlation structure among responses. The quality of response 

models can not be incorporated with desirability method either. 

• Correlation among responses can be captured more efficiently with the 

squared error loss approach and probability-based approach. The squared error loss 

approach is designed to handle NTB-type responses only. 

• Robustness to noise variables is the most considered statistical property. 

• The quality of response models is least considered statistical property. This 

may lead to an incorrect prediction and bias at the optimum operating conditions. 

• All approaches prefer prior articulation of the DM except the desirability 

approach. Posterior articulation is never used. 
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Table 3.2 Literature Summary and Research Mapping. 

Authors 
MIRO-QUESADA and DEL 
CASTILLO (2004) 

MYERS and CARTER (1973) 

BENAYOUNetal(1971) 

DEL CASTILLO et al. (1996) 

DERRINGER and SUICH (1980) 

HARRINGTON (1965) 

JEONG (2005) 

JEONG and KIM (2005) 

KIM and LIN (2000) 

KIM and LIN (2006) 

LEE and KIM (2007) 

ORTIZ et al. (2004) 
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• Although probability-based approaches can handle any type of response, 

all of the proposed studies used conformance probability as an optimization metric. 

Conformance probability assumes response estimates are equally good as long as they lie 

between the specifications. This may provide serious bias in the optimization process and 

high conformance does not imply high quality responses all the time. This issue will be 

further explained in the research question and motivation section. 

In this study, an integrated approach will be developed, that will utilize the 

strengths of probability-based and desirability approaches in a unique algorithm. The 

proposed approach will use the penalized desirability metric in order to avoid bias in the 

optimization process and to also efficiently consider the statistical properties through the 

use of a probability-based approach. 

3.7 RESEARH QUESTIONS AND MOTIVATION 

For an effective compromise among the responses, the analyst wishes to find the 

optimal setting with three desirable properties, namely, small bias, high robustness, and 

high quality of predictions. That is, it is desired that the expected responses be close to 

their targets, and the variances of the true and predicted responses be small at the optimal 

setting (Ko et.al. 2005). Probability-based approaches, or Bayesian predictive 

approaches, use conformance probability as an optimization metric, which is a function 

of response specifications, experimental design, and correlations among responses. 

Therefore, it is highly intuitive and seriously takes into account the statistical properties 

of multiple responses. 
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However, as an optimization criterion, conformance probability does not 

incorporate a degree of satisfaction throughout the optimization process. This can create a 

bias in terms of response targets that is explained through the following example. 

Suppose that design settings x\ and xj provide a good balance between bivariate 

responses Y\ and Y2, and have equally large conformance probabilities 

pl = P(Y e S|JC,) = 1, p2 = P(Y e S\x2) = 1 over the specification region, as depicted in 

Figure 3. Let us further assume that each ellipsoid represents the 99% contour plots for 

multivariate normal distributions having similar £ but having different// parameters. 

j>2(*2) 

Jp2(*i) 

y, (LTB) 

Figure 3.3 Two Different Operating Conditions Having the Same Conformance Probability and 
Different Mean Response Value for Bivariate Responses 

In Figure 3.3, the shaded area shows the specification region for two LTB type 

responses, Y\ and Y2. Two operating conditions xi and X2 provide almost equal 

conformance probabilities but different mean responses. According to conformance 
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probability criteria both operating conditions are equally good. However, in reality, the 

DM or customer would observe a significantly higher quality with X2 on the average. 

Therefore, the assumption of higher conformance implies that higher quality 

should be checked carefully for multiresponse surface optimization. In this study, a 

penalized desirability function was incorporated to probability-based approach which 

forces the search procedure through highly desirable values within the specification 

region. PD(x) is the penalized desirability function and by sampling from a posterior 

predictive distribution of Y for a given x value, it is possible to average PD(x) over the 

solution space. The optimum value for PD(x) should have an equal conformance 

probability but a higher desirability with respect to the optimum which is obtained by 

conformance probability. This is known as the integrated probability-based approach, 

and it compares the performance by means of validation runs for each solution obtained 

by this research's proposed approach with those obtained via the probability-based 

approach. The details of the simulation will be explained in the "Proposed Approach" 

section. 

A formal hypothesis can be constructed with the following scenario. Let us 

assume xi* represents an optimum operating condition found by the probability-based 

approach, and xj* represents an optimum operating condition found by the integrated 

probability-based approach PD(x). By means of validation runs it will be found provided 

that/?(x,*) = p(x2*) 

H0:PD(Xl)>PD(x2) 

Hx:PD{xx)<PD(x2)' 
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We can reject the null hypothesis if, on the average, the operating condition X2 

produces higher quality responses. Since the distributional properties of multiple 

responses is a function of: 

• experimental design, 

• number of controllable factors, 

• number of responses, and 

• number of experimental runs 

the above hypothesis should be checked for different levels of these factors. Therefore, 

several examples will be studied from recently published literature to develop a 

generalized integrated approach that can be applicable to broad range of multiresponse 

problems. 

Another concern is the articulation of the DM's preference information through 

an optimization process. DM involvement is particularly needed when a feasible 

compromising solution cannot be obtained with the first optimization attempt. The DM 

requires an informative procedure while encompassing his/her trade offs on the 

parameters (targets, bounds, and shapes) of different responses. A progressive 

articulation process will be followed in conjunction with the desirability approach in the 

proposed method section as well. 

3.8 RESEARCH OBJECTIVES 

The specific goal of this research is to develop computational methods for 

multiresponse modeling and optimization that will account for statistical properties and 

also allow for efficient DM involvement. This goal will be accomplished by integrating 
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the desirability approach and the probability-based approach by considering the following 

specific objectives. 

• To develop an extended probability-based approach by studying different 

optimization schemes with the penalized desirability approach, that can be applied to a 

mixed type of responses. 

• To assess the performance of the proposed approach by making comparisons with 

the probability-based approach; by studying several examples in the published literature. 

• To apply Bayesian analysis methods using Monte Carlo simulation in order to: 

o Check the reliability of solutions found in terms of conformance 

probabilities, and 

o Identify response model quality issues by estimating uncertainty in 

response models. 

• To develop a user-friendly computer code for the intended approach that is 

capable of modeling and optimizing any type of multiresponse optimization problem. 
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4 PROPOSED APPROACH 

4.1 INTRODUCTION 

The strength of the desirability approach is in its flexibility for DM involvement 

through an adjustment of a set of parameters. However, transforming individual 

responses to desirability functions does not consider correlations among responses. On 

the other hand, a probability-based approach can incorporate correlations as well as 

parameter uncertainty. The key idea of the proposed methodology is to integrate the 

probability-based approach with the desirability approach in order to push the search 

process to highly desirable and highly reliable operating conditions. This strategy would 

also provide efficient DM involvement particularly when a feasible solution does not 

exist, while still meeting the statistical requirements. 

In a multiresponse problem, when the number of factors or responses grows 

moderately high and the responses are strictly constrained, in most cases, a common set 

of input variables satisfying all the responses may not be possible. Hence, a penalized 

desirability metric providing information for the degree of infeasibility to differentiate 

between several partially infeasible points might help the DM articulate his/her 

preferences in an informative way. From that point on, a progressive articulation of the 

DM's preferences can be embedded to relax the constraints on infeasible responses with a 

minimum number of adjustments. In this Chapter, details of the proposed methodology 

are presented to show necessary formulations and calculations when a penalized 

desirability metric is used as an optimization criteria in accordance with the probability-
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based approach. The proposed methodology will be illustrated using an example from the 

literature. 

4.2 PROPOSED MATHEMATICAL APPROACH 

Following Peterson (2004)'s notation, we let Y = {Yx,Y2...Ym)T be the multivariate 

(mxl) response vector and let x = (xl,x2,...,xk)
T be the (kxl) vector of factor variables. 

Suppose we have unreplicated experimental data for Y and we are simply interested in Y 

being in some desirable subset of the response space S, then we can consider the discrete 

desirability function, I(Y eS), where /(•) is the 0-1 indicator function. (If YGS, 

I(Y(=S) =l ,else0). 

Bayesian predictive density for Y can be obtained in closed form and is given by a 

multivariate t- distribution with v degrees of freedom (Press, 1989) 

, v + m 
• 2 f^-^r1^ l + -(F-|3 rJc) rH(y-p rx) 

-|-(v+m)/2 

(4.1) 

where V = N - / » - A M + 1, |3 is the Ordinary Least Squares (OLS) estimator of P, T(.) 

denotes the gamma function and H is the estimate of the variance-covariance matrix of 

y{x), the predicted mean response at x and given by: 

H 
( v } s:1 

\n-p) 1 + JC ' (X 'X ) - ' JC 
(4.2) 

and 

±£=—(y-xpY(r-xp) (4.3) 
n — p 
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The covariance matrix of y|(jc,data) exists if v > 2 and is given by: 

Var(Y I x, data) = —— H ' 
v - 2 

Therefore, we have that: 

Y\x,data-Aft x,^-YlA (4.4) 
V v - 2 J 

To obtain p(x) we need to integrate (4.1) over the specification region S: 

p(x) = \sf(y\x,data)dy (4.5) 

One way of performing this integration numerically is by Monte Carlo simulation. 

Given that Y\x,data is distributed as multivariate t, the following equation can be used to 

generate random Y values from multivariate /-distributions for different settings of input 

variables: 

Y = H-V2z>fv/s+pTx (4.6) 

Where z is sampled from a Nm(0, Im) and s is sampled from a chi-square 

distribution with v degrees of freedom. It follows that Y has a multivariate /-distribution 

with v degrees of freedom. Since we are simply interested in Y being in some desirable 

subset of the response space S, integral in (4.5) can be approximated as: 

pW^^IiYeS) (4.7) 

where N is the number of simulations performed for each design setting x. The dispersion 

of probability distribution depends on both the natural variability of data and model 

parameter uncertainty, which of course is intimately related to the sample size and 

experimental design used in the study. As we notice from (4.2) and (4.6), the H matrix 

used in simulating response data considers the scaled prediction 
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variance, l + xT(XTX)~lx, which reflects the parameter uncertainty of the regression 

models therefore avoiding poor prediction properties. 

Here, all we need to do is sample from the posterior predictive distribution of Y 

for a given x value, then construct the posterior predictive distribution of I(Y e S) 

conditional on x. From a quality perspective, this gives us a measure of the reliability of 

Y being in S for a given x. As can be seen from the formulations, this measure takes into 

account the variance-covariance structure of the data and the uncertainty of the model 

parameters through the posterior predictive distribution of Y. A search of the x-space then 

provides the experimenter with information on conditions for optimizing the reliability of 

Y being in S. 

Peterson (2004) used a conformance probability metric both in the optimization of 

multiresponses and also in the calculation of the reliability of optimum solutions found 

by different optimization methods such as desirability and squared error loss methods. 

For example, JC is the optimum operating condition found by desirability approach and D* 

represents a certain proportion of the optimum value expected by DM. Then 

P(D(Y)>D*\x) gives a reliability measure in probability units showing how future 

responses are likely to satisfy DM expectations. Peterson (2004) also studied the effect of 

how reducing process variability and increasing sample size can improve the 

conformance probability by simulating artificial data from posterior predictive 

distribution with an intent to evaluate the value of information from additional replication 

runs. Later Colosimo and Castillo (2006) mathematically showed that augmenting the 

initial design in such an artificial way would not provide any valuable information. Miro 
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Quesada et al (2004) extended the approach for a robust case by simulating noise factors 

from normal distribution and averaging p(x) over noise variables. 

However, conformance probability assumes all responses are equally good as 

long as they are within the specification limits and do not provide any information on the 

overall degree of satisfaction. It is very likely that for one design setting most of the 

simulated responses will conform to the specifications but will perform poorly on the 

desirability scale. To avoid that type of bias, as an optimization criterion, here, Ortiz et 

al's (2004) penalized desirability function should be used, which was explained in the 

literature search section: 

PD(x) = [d(yl)d{y2)..Jd(y„)fm-

The PD(x) metric can be simulated and averaged for different design settings as: 

WxJz^-itpDix,) (4.8) 

and the optimum operating conditions can be found by the same approaches such as in 

conformance probability that will be detailed in the next section. 

4.3 RESPONSE MODELING AND OPTIMIZATION 

In the modeling of response functions j>, instead of the ordinary least square 

(OLS) approach, a prediction error sum of squares (PRESS) is used to prevent over-

fitting. Insignificant model parameters are also dropped from further calculations for 

same reasons. 

(KPi)-PCP«)) "" ~C • 
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For the optimization of conformance probability, Miro-Quesada et al. (2004) 

propose applying a fine grid over the experimental region and generating Y values using 

Equation (4.6). After a Monte Carlo simulation, thep(x) value for each setting in the grid 

can be estimated. The design setting giving maximum p(x*) is the optimum solution for 

the multiresponse problem. If the number of input factors is more than three, a moderate 

grid can be applied and a logistic regression model can be fitted to the p(x) values. The 

optimum setting can be found by maximizing this regression function. However, fitting a 

regression function to the averaged simulated responses is not an easy task due to large 

number of design points having zero conformance probability. Miro-Quesada et al. 

(2004) used a 4l order logistic regressions function which they called a "meta-model", 

for two controllable factors where a l l full factorial design is used in the simulation. 

Moreover, optimizing highly nonlinear functions depending on several factors is not 

guaranteed and requires multiple starting points to converge to best local optima. 

As an alternative, Peterson (2004) proposes applying a finer grid over the sub-

regions of the experimental region after performing a screening simulation. This process 

continues until a standard quadratic model for the constrained region of interest is 

reached. Similar arguments can be applied to the simulation and optimization of the 

PD(x) metric. In this research, validation runs have shown that a constrained simulation 

approach with a possibly finer grid produces better results than those obtained by 

optimizing a meta-model fitted to both simulated metrics. When available computer 

power is considered, even for controllable factor numbers larger than three, simulation 

times are reasonable, and constrained volume filling designs can be used. Another 

disadvantage of using a meta-model approach is during the DM articulation process; 
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when the constraints on responses are modified a new meta-model should be estimated at 

each iteration. Therefore, it has been experimentally shown that, with respect to both 

metrics, the best design setting obtained with this approach is always better than the 

optimum design setting obtained by maximizing meta-models. 

Specifically, first a grid of moderate number of (150) design points according to 

alphabetical optimality criteria (A, D, V-optimality, etc.) is generated. After performing 

an initial simulation, by sorting according to PD(x) metric, some of the factor levels 

which have negative or too small PD(x) value are constrained. Then a finer volume 

filling design grid is applied to constrained factor intervals. The design setting given the 

maximum PD(x) value is assumed to be the optimal. This approach can save reasonable 

simulation time for most of the cases. 

Montgomery (2002) proposes several computer-generated design alternatives 

with different optimality criteria for constrained factors and factor level combinations. 

There are several readily available software programs like Design Expert™ or 

MATLAB™ that can create optimal designs according to different optimality criteria for 

constrained factor levels. A simulation can be stopped when the different design points in 

the grid have very close PD(x) values revealing that a plateau has been reached within 

close proximity of the optimum point. This research used MATLAB™'s "Model Based 

Calibration Tool" in order to estimate the quadratic PRESS response functions and to 

create optimal and space-filling designs in the simulations. 

The results of both optimization strategies with an example are shown in the 

following sections. 
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4.4 ARTICULATION OF DM'S PREFERENCE 

One of the most important advantages of desirability transformations is the ability 

of the DM to revisit his/her utility when trade-offs are required among responses. A DM 

can change his/her initial considerations by easily adjusting bound, shape, or target of the 

responses. Figure 4.1 shows how a DM can articulate his/her preference information by 

adjusting three types of response parameters for a NTB-type response (Jeong and Kim, 

2009). 

Shape Adjustment 

I T u y(x) 

Tightening 

Bound Adjustment 

d(y) 

I T u y(x) 

Tightening 

Target Adjustment 

d(y) 

' *min '•max W y{X) 

Tightening 

/ T u y{x) I T u y(x) l * min * max U ^v*-/ 

Relaxation Relaxation Relaxation 

mm *• max 

Figure 4.1 Examples of Parameter Adjustment for NTB-Type Response (adapted from Jeong and 
Kim,2009) 
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It turns out that, as a natural byproduct of proposed approach, the marginal 

probabilities and individual d{yt) values corresponding to marginal events of some of 

the _y, values can also be easily computed. Hence by adjusting the bound, shape, and 

target parameters of those responses having small values of d{yt), the optimization can 

be rerun so as to achieve a compromise among responses. In the following example, 

progressive tightening and relaxing is defined to show how it can work for parameter 

adjustment as two possible strategies. For all of the examples in this study, multiple 

responses are assumed to be equally important. For the cases where the DM has different 

priorities on responses, this proposed PD metric can be modifying as in Derringer (1994): 

D(x) = [d(ytr d(y2P -d(ymr p • 

This allows different importance levels to be assigned to different quality characteristics. 

In the same fashion, it is possible to assign different weights for penalty components. 

However, since the relative evaluation of quality characteristics is required with the 

weighting approach, when the number of responses grows high this can complicate the 

articulation process. Therefore, an individual shape-based and bound-based progressive 

articulation process is suggested as they fit well with the proposed methodology. 

4.5 AN ILLUSTRATIVE EXAMPLE 

The following example was taken from Miro-Quesada et al. (2004) and also used 

by Peterson (2004) and Miro-Quesada and Castillo (2004). It involves the optimization of 

a high performance liquid chromatography (HPLC) system to detect mixtures of 

impurities. The performance of the assay was based upon four quantitative response 

variables: the critical resolution (Rs), total run time, signal-to-noise ratio of the last peak, 
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and the tailing factor of the major peak. Three controllable factors affecting the HPLC 

assay were included: IPA%, temperature and pH. To extend this method for the robust 

design case, the controllable factor IPA% was assumed to be the noise variable, which 

was further assumed to be normally distributed with a mean of zero and a standard 

deviation of 0.1, as in Miro-Quesada et al. (2004) and Miro-Quesada and Castillo (2004). 

A Box-Behnken design with three center points was used. 

4.5.1 RESPONSE MODELING 

The response data on the coded factor levels ( - 1 < X < 1 ) are presented in 

APPENDIX A:. Complete second order response surface models were fitted to all three 

responses using coded versions of the controllable factors. The resulting adjusted R 

statistics were higher than 98% and very close to R prediction statistics for all of the 

responses. This indicates that the models fit the data very well. 

The conformance region for responses specified as: 

S = {y = [ySs yTime ySIN yTauV-yRs * 1.8,yTime < 15,ySIN >300,0.75<ymi <0.85} 

Estimated second order response functions are: 

j>, =2.19 + 0.23*, -0.2h:2 -0.015*,2 -0.02*2
2 

y2 =13.92 -1.75*, -4* 2 +0.25x, +0.385*2 +0.75x,x! +0.25*,x3 + 0.885*2 

j>3 = 279.29 + 37JC, +82.375JC2 -5.125JC3 +12JC,JC2 + 3.09*2 

j>4 = 0.786 - 0.013JC, + 0.06*2 + 0.004*,2 + 0.014x2
2 

The same second order regression model was assumed for each response, 

although some of the parameters were found insignificant and zeroed. Individual 

inspection of the residuals did not indicate deviations from normality. Small 

discrepancies observed between RMSE and PRESS RMSE values indicate that models 
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can be used for prediction. Interested readers may refer to Raghunathan (2000) for an 

extensive discussion on model checking for multivariate normality of simulated 

responses in a Bayesian fashion. Chiao and Hamada (2001) used Mahalonobis distance to 

check for the multivariate normality for the replicated experiments case. Mecklin and 

Mundform (2005) compared performance of several multivariate normality tests using a 

Monte Carlo simulation. 

For desirability function transformations, initial bounds on responses can be 

determined based on the physical range of the response or by subjective judgments. In 

this example STB type responses were individually minimized to determine the lower 

limits, and LTB type response functions were maximized to determine the upper limits 

subject to experimental region constraint (-1 < x < 1). MATLAB's "fmincon" routine is 

used as an optimization tool. Shape parameter is assumed equal to 1 for all responses. 

The resulting desirability functions are depicted in Figure 4.2. Wurl and Albin (1999) 

give an excellent discussion for parameter selection for different multiresponse 

optimization techniques. Their results showed that different parameters may result 

different optimum solutions also depending on the optimization technique used. 
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Figure 4.2 Desirability Function Graphs for the Responses for HPLC Example 

4.5.2 SIMULATION AND OPTIMIZATION 

It is now possible to generate response data for the design settings that were not 

included in the original design. First we need to estimate the residual covariance matrix 

in (4.3): 

s 
1 (Y-

n-p 

' .0006 

-xp)r(y-xp) 

.0029 .0132 

.1346 .3370 

2.3423 

0 

.0001 

-.0022 

0 

Then, using (4.4) it is possible to generate response data conditional on the design 

settings. Note that these estimations are only valid within the experimental region of 

interest. Response functions nor the meta-model would not work outside the initial input 

factors' boundaries ( -1 < x < 1). 
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In order to get an estimate for conformance probability p(x) conditional on design 

settings, a moderate size grid should first be built for controllable factors. Each 

controllable factor is represented at 11 levels {-1, - .8 , -.6, -.4, -.2, 0, .2, .4, .6, .8, 1} 

totaling 11 =121 design settings. 5000 simulations were performed for each setting in 

the design grid and MATLAB code used in the simulation as can be seen in Appendix B. 

In order to interpolate between grid points, a fourth order polynomial logistic 

regression model was fit to the simulated p(x) values using MATLAB's "regress" 

multiple linear regression command. Since probability value changes between 0-1, a 

logistic regression transformation is applied to p(x) values: 

logf-^U = /(x) (4.9) 

where f[x) consist of regression coefficients. The fitted model is given by the following 

equation: 

/ (*) = -11.45 + 53.6h:2 -1.91*3 -1.62*2*3 +2.73*2
2 +2.84*3

2 +12.21*2
2*3 

-8.75*2*3
2 +6.02*2

2*32 -125.3*2
3 -0.35*3

3 -8.88*2
3*3 +0.59*2*3

3 (4.10) 

+ 78.58*24-0.08*3
4 

with R2 — 0.9925 and p < 0.00005. In order to use above model for predicting 

conformance probability for different settings, Equation (4.10) must be transformed as: 

2 
\-e 

H*)=T-=m- <4-n> 

Our problem now reduces to: 

max p(x) yK J . (4.12) 
sJ. - 1 < J C < 1 

Since there are only two dependent variables, conformance probability can be 

depicted graphically. Figure 4.3 and Figure 4.4 show the surface and contour plots of 
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p(x) dependent on X2 (pH) and x^ (temperature) respectively. It can also be seen from the 

graph that conformance probability is insensitive to the changes in X3, and the optimum is 

located around X2 = [0.4, 0.6]. Therefore, JC2 = [-1, 0] points were excluded from the grid 

and the remaining points were used while fitting regression functions. 

Figure 4.3 Surface Plot of p(x) Found by Logistic Regression Function 
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Figure 4.4 Contour Plot of p(x) Found by Logistic Regression Function 

An important point worth mentioning here is that conformance probability is 

"bathtub U-shaped" and is too high as one can assume that the product will be of superior 

quality with the optimum settings. However, conformance probability does not carry any 

information on the degree of satisfaction and assumes highly desirable points will be 

included in the solution obtained. Therefore, the search for highly desirable points will 

stop when the maximum conformance probability achieved and it lacks the incentive to 

move towards the more highly desirable points. 

In order to check the assumption that high conformance provide high desirability 

the penalized desirability metric PD(x) must be calculated as in (4.8), for the same 

simulated responses and fit another regression model for it. As the meta-model for 



57 

conformance probability, the meta-model for PD(x) metric is of the fourth order and is 

obtained via the ordinary least square approach: 

PD(x) = - 0 . 3 3 + 1.62JC2 -0.246JC3 +0.754JC2JC3 + 3.5X2 + 0.156*2
 -0.895JC2X, 

-0329x2x* +0.198^3
2 -9.266x2 -0.016.x3 +0.39;t2;c3 -0.02x,;c3

3 

+ 4.52JC2
4-0.02JC3

4 

with R2 = 0.994 and/? < 0.00005. Figure 4.5 and Figure 4.6 show the surface plot of the 

PD(x) dependent on xj (pH) and X?, (temperature) respectively. Although it may seem 

similar to graph of p(x) in Figure 4.5, the saddle shape can be distinguished, more 

specifically tilted, towards two extremes of the x^ variable. The plot of p(x) has a larger 

flat surface or is "bathtub U-shaped" at the peak revealing that specifications are 

attainable for several design points. On the other hand, the plot of PD(x) has a ridge type 

peak which is indicative of a narrow optimal region. This relationship is depicted more 

eloquently in Figure 4.7. For small values of P(x), an almost absolute linear relationship 

exists between two simulated metrics. For large values of P(x) however, dispersion of the 

PD(x) metric increases and it is possible to obtain different PD(x) values for different 

design points which have the same P(x) values, and vice versa. Therefore it is important 

to differentiate among these points to move towards highly desirable and highly reliable 

points at the same time. 
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Figure 4.7 Scatter Diagram of Simulated P(x) and PD(x) values 

The fitted responses are highly nonlinear and MATLAB's "fmincon" routine was 

used for the optimization with different starting points. Table 4.1 shows the optimization 

results obtained by two different meta-models. In the first column of Table 4.1, we see 

two optimum operating conditions, x\* found by the conformance probability p(x) 

metric, andaf2* found by the integrated approach, the PD(x) metric. Column 2 shows the 

conformance probability and Column 3 shows the penalized desirability value at each 

optimum point. As a validation, the third and fourth columns give the estimates of each 

metric obtained from 100,000 Monte Carlo samples (denoted by p(x) and PD(x)). The 
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standard error, which is given in the last column and estimated by 

&.(x) = yjp(l-p) 7100,000 , indicates that the differences are significant. 

Table 4.1 Optimal Solutions Found by Meta-models 

JC* 

X* =[0.4549,-1] 

X* =[0.5275,-1] 

p( y e s | x) 

0.9981 

0.9974 

PD{x) 

0.5252 

0.5416 

p(yes\x) 

0.9803 

0.9762 

PD(x) 

0.5068 

0.5130 

&PM 

0.0004 

0.0005 

As expected, each meta-model produced different but very close optimal 

operating conditions and the function evaluations at the optima are very close. Each 

method favors its own metric in the optimization process. However, while JCI* gives 

slightly better ((0.9803 - 0.9762) / 0.9762 s 0.42% ) conformance probability, x2* gives a 

lot better ((0.5130-0.5068)/0.5068 =s 1.21%) desirability. This result showed that when 

both metrics are considered only Pareto optimums are possible and relying solely on the 

p(x) metric in the optimization can give biased solutions with respect to response means. 

As mentioned in Section 4.3, using a meta-model in the optimization has several 

disadvantages and as another alternative exploring a solution space using direct 

simulation is desirable. First x2 was constrained to the [0.25, 0.75] interval and created a 

finer grid. MATLAB's "mbcmodel" tool with "Halton Sequence" is used as a space 

filling design type in order to sample from the remaining constrained region. 1,000 

design points were generated and 5,000 screening simulations were performed at each 

setting. The best solutions were selected with respect to both metrics and performed 

100,000 validation runs. Results are shown in Table 4.2. 
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Table 4.2 Optimal Solutions Found by Direct Simulation 

X* 

JC* =[0.4351,-0.8128] 

** =[0.5195,-0.9918] 

p(yeS\x) 

0.9973 

0.9975 

PD(x) 

0.5025 

0.5406 

p(yes\ x) 

0.9816 

0.9769 

PD(x) 

0.4899 

0.5127 

&PM 

0.0004 

0.0005 

In the first column of Table 4.2, we see the best operating conditions obtained 

according to both metrics with direct simulation. x^* and X4* represents the best operating 

conditions according to conformance probability and the penalized desirability metric, 

respectively. The results are parallel and similar to those obtained via the meta-model 

approach. When the validation runs were checked, the average conformance probability 

achieved was slightly greater than that obtained via the meta-model approach ((0.9816-

0.9803)/0.9803 = 0.013%), and the average PD(x) value was slightly less than that 

obtained via the meta-model approach ((0.5127 - 0.5130) / 0.5130 = 0.05%), a formal 

hypothesis on the equality of proportions obtained by either methods could not be 

rejected at a = 0.01 level. Here, the results are dependent on the grid size used in the 

simulation. Considering available computer power, it is believed that even for 

controllable factors larger than two using a constrained and possibly finer grid in the 

simulation is the simpler optimization strategy. Therefore a direct simulation strategy is 

recommended with the proposed approach and will be applied as an optimization method 

for the examples in the rest of the study. 

There is supportive evidence to reject the hypothesis in (3.9). However, for a 

multiresponse problem, optimal operating condition is the function of experimental 

design, number of controllable factors, number of responses, and number of experimental 
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runs used in the study. Therefore in order to generalize these results, in the next section 

the methodology is applied to several examples from published literature. 

As a byproduct of this simulation, it is possible to estimate the individual response 

values and associated desirability values. The vectors of expected responses at optimality 

given by each method are: 

Y(x{) = 

2.09 

12.04 

324.97 

0.82 

, ?&) = 

2.07 

11.81 

330.95 

0.82 

in desirability units: 

d(Y(X;)) 

0.51 

0.67 

0.36 

0.67 

d(Y(x2)) 

0.48 

0.72 

0.44 

0.56 

Note that X2* gives a better balance among responses in the sense that relatively 

smaller differences are observed among mean response values. In general, the difference 

between maximum and minimum desirability values is expected to be smaller in the 

PD(x) metric. Assuming each response has the same importance from the DM 

perspective, X2* would be preferable. Therefore, the first example showed that the 

methodology is very promising while satisfying statistical properties such as correlation, 

robustness, and parameter uncertainty but also giving higher desirability for mean 

responses overall. 
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4.5.3 PROGRESSIVE ARTICULATION OF DM'S PREFERENCE 

INFORMATION 

As an example of progressive articulation of DM preferences; a third response 

may be found unsatisfactory and may need further improvement. Tightening and relaxing 

are the two basic strategies that can be considered. Specifically, either of the following 

options can be applied as the tightening strategy: 

• Because it is an LTB type response, its lower bound can be increased by an 

amount of A in order to push it to higher expected response values, as depicted in Figure 

4.8. 

dfo) 

yfc) 
300 370 

Figure 4.8 Bound Adjustment for Tightening Strategy for HPLC Example 

For example, lets assume a DM is convinced that A = 20 and a new lower limit 

for ̂ 3 is 320. When the optimization problem was resolved by using the direct simulation 

approach, the new best solution according to the PD(x) metric and respective 

performance metric values are shown in Table 4.3. Note that these values are calculated 

according to initial lower bound of ̂ 3. 

Table 4.3 New Best Solution After Bound Adjustment 

X* 

X* =[0.6329,-0.9924] 

p(yeS\ x) 

0.9886 

PD(x) 

0.5072 

p(y*s\x) 

0.9570 

PD(x) 

0.4561 
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The vector of expected responses at new optimum point is: 

Y(x) = 

2.05 

11.50 

339.55 

0.83 

in desirability units: 

d(Y(x)) = 

0.43 

0.79 

0.57 

0.40 

As you notice, a significant improvement is obtained in j 3 . 

• Shape parameter can be chosen as $3>1 in order to reward higher desirability 

values respectively (Figure 4.9). 

d(y3) ' 
1 

l 

• / 
• / 

• / * / 
• / 

y / 
• / 

300 4 H9 
ysW 

Figure 4.9 Shape Adjustment for Tightening Strategy for HPLC Example 

Relaxing strategy might be more costly since the other three responses other than y3 

should be considered simultaneously in the articulation process. Note that either strategy 

requires sacrifices from other responses, which may result smaller d(y() values in the 

new optimum solution for the rest of the responses. 
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4.6 PROPOSED APPROACH SUMMARY 

In this section, a proposed integrated probability-based approach has been 

formalized to apply unreplicated multiresponse experiments. Two different optimization 

strategies are also discussed, namely meta-model and direct simulation using a finer grid, 

which can be used with the proposed method. A constrained direct simulation strategy is 

empirically shown to have an easier applicability over the meta-model approach. The 

applicability of the proposed method is shown with an example and the initial results 

showed that the proposed approach produces satisfactory points with respect to 

conformance ratio and better results with respect to response targets. In Figure 4.10, a 

flowchart summarizing the basic steps of the proposed approach is presented. 

The improvements obtained by using the proposed method are dependent on the 

size of the grid used in the simulation, the experimental design, the number of 

controllable factors, and the number and type of the responses used in the study. 

Therefore, in order to generalize results obtained by the proposed methodology, in the 

next chapter, several examples from published literature will be studied regarding these 

dependencies. 
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Perform Validation 
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Apply bounds, target and shape adjustment on responses 
concentrate on the responses which has lower d(yi) value 

Figure 4.10 Basic Steps of the Proposed Approach 
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5 EVALUATION OF THE INTEGRATED PROBABILITY-
BASED APPROACH 

5.1 TEST CASES 

In order to compare our methodology, five different test data sets were selected 

from published literature on MRSM, varying according to number of controllable factors, 

response types and number of runs. All the designs allow standard second order models 

which can model pure quadratic effects and two-way interactions. Table 5.1 summarizes 

the data sets sorted according to number of runs which is also a function of number of 

controllable factors. While the first and second cases have only LTB type responses, the 

rest of the cases have mixed type responses. The second and fourth cases have noise 

variables to show the applicability in a robust case. 

Table 5.1 Summary of the Test Data Sets Used in the Study 

Test Data 

1. Schmidt (1979) 

2. Quesada (2004) 

3. Derringer and 
Suich(1980) 

4. Romano (2004) 

5. Khuri and 
Conlon(1981) 

Type of Design 

CCD with 5 center 
points 

Box-Behnken with 
3 center points 

CCD with 6 center 
points 

CCD with 3 center 
points 

CCD with 6 center 
points 

Number of Cont. 
Factors (+Noise 

Var.) 

2 

2+1 

3 

3+2 

5 

Number of 
Responses 

4 

4 

4 

2 

4 

Response Types 

LTB(4) 

STB(1),LTB(2), 
NTB(l) 

LTB(2), NTB(2) 

NTB(l), STB(l) 

LTB(4) 

Number of 
Runs 

13 

15 

20 

25 

32 
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For all of the cases, controllable factors are coded between [-1, 1] and the 

response function parameters are estimated according to PRESS residuals provided in 

APPENDIX A. R2Ady, R2 prediction and PRESS RMSE values are also reported. Except the 

second responses in the third and fifth cases, the second order models are adequate for 

prediction. Since there is not any justification behind these poor fits, for the sake of 

illustration the data was retained and used the same quadratic models. In practice, 

however, poor prediction properties need to be resolved before further analysis is done. 

For those cases where specification limits are not provided, STB type responses 

were individually minimized to determine the lower limits and maximized LTB type 

response functions to determine the upper limits, subject to experimental region 

constraint (-1 < x < 1). These limits are used in conformance probability and penalized 

desirability calculations. Shape parameter is assumed equal to 1 for all responses. 

For each data set in Table 5.1, after performing 5,000 screening simulations at 

150 design points, some of the controllable factors are constrained and a finer grid is 

applied with the same number of simulations. A Latin Hypercube sampling is used as a 

space filling design in order to equally sample among the remaining constrained regions. 

Table 5.2 shows constrained factor limits in coded units and the number of design points 

used in the simulation. 
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Table 5.2 Constrained Factor Limits 

Test Data 

1. Schmidt (1979) 

2. Quesada (2004) 

3. Derringer and 
Suich (1980) 

4. Romano (2004) 

5. Khuri and 
Conlon(1981) 

Constrained Factor Intervals 

xl =[-0.7072, 0.7072], x2=[-l,l] 

x2=[0.25 0.75], x3=[-1,1] 

xl=[-0.63, 0.63], x2=[-0.63, 0.7], x3=[-0.7,0.7] 

xl=[0.25 l],x2=[-0.6 l],x3=[-l 1] 

xl=[-l,0.5], x2[-l,l], x3=[-0.5,l], x4=[-l,l], x5=[-l,l] 

Number of Design 
Points 

1000 

1000 

1500 

1000 

1500 

The maximum conformance probability and penalized desirability settings are 

reported in Table 5.3. In the column, denoted by** , x*p{x) is the best setting attained 

with the conformance ratio and x*PD(x) is the best setting attained with the penalized 

desirability function. As a validation, the third and fourth columns give the estimates of 

each metric obtained from 100,000 Monte Carlo samples (denoted by p(x) and PD(x)). 

Relative comparisons of each validation run with respect to PD(x) are also provided. 

For example for the first data set, the best setting obtained by PD{x) metric produces 

0.346% worse conformance probability but 2.061% better overall desirability than those 

obtained by p(x) metric on the average. The standard error of simulation for the p(x) 

calculated using J(p(x)(l-p(x)))/100,000 formula and averaged PD(x)values have 

very similar standard errors for 100,000 samples. 
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Table 5.3 Comparison of Proposed Method at the Best Solution Obtained for Different Data Sets 

Test Data 

1. Schmidt (1979) 

2. Quesada (2004) 

3. Derringer and 
Suich(1980) 

4. Romano (2004) 

5. Khuri and 
Conlon(1981) 

X* 

V ) = [ 0 - 0 7 8 6 , -0.4575] 

x*PD(x)= [-0.1635, -0.0831] 

x* =[0.4351, -0.8128] 

x*PD(x)=[0-5195' - ° " 1 8 1 

x* ,x) = [-0.3350, 0.3211, 
-0.5879] 

x*pDM =[-0.1685, 0.3966, 
-0.6346] 

x* = [0.5345, 0.4074, 
-0.8919] 

xPD(x) = [°-3686> °-7021> 
-0.9499] 

xp(x) = [°0 6 0 7> 0.3983, 
0.1815, 0.2515,-0.9239] 

x*pD(x)= [-0.8069,-0.3169, 
0.4837,0.6891, 0.984] 

P(x) 

0.9867 

0.9833 

0.9816 

0.9769 

0.2944 

0.2959 

0.9877 

0.9868 

0.9917 

0.9748 

PD(x) 

0.6129 

0.6258 

0.4899 

0.5127 

0.1366 

0.1404 

0.4491 

0.4556 

0.4617 

0,5596 

p(x)% 

-0.346 

-0.482 

0.490 

-0.091 

-1.734 

PD(x)% 

2.061 

4.434 

2.706 

1.427 

17.495 

&p(x) 

0.0004 

0.0004 

0.0004 

0.0005 

0.0014 

0.0014 

0.0003 

0.0004 

0.0003 

0.0005 

As can be seen from Table 5.3, due to the small standard error in the validation 

runs, difference between estimated means for the PD(x) metric is always significant. For 

the p(x) metric however, for some data the PD(x) metric provides very close 

conformance ratio and for the third data set it has even better conformance. A general 

observation, on the other hand, when the proposed approach is used in the optimization, 

relative improvement obtained in the overall desirability is always bigger than the relative 

reduction in conformance probability. This is because while calculating the PD(x) metric 

both the spread and the desirability of responses are considered. This conclusion can be 
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generalized to the robust case where noise variables are included (second and fourth data 

sets). 

In order to visually inspect the relationship between the two metrics, histograms 

and scatter plots of simulated p(x) and PD(x) values of five test cases are depicted in 

Figure 5.1 through Figure 5.5. Except the 3rd test case in Figure 5.3 where low 

conformance and low desirability achieved, similar behavior is observed between 

simulated p(x) and PD(x) values. When the problem is tightly constrained however, a 

linear relationship is observed between the two metrics. 

The fifth data set has a very unique characteristic which benefits and also 

highlights the advantages of the proposed method. For this particular data set, the 

conformance ratio achieved with the/>(jc) metric is very high and all the responses are the 

LTB type. Note that the relative improvement achieved for the overall desirability with 

the PD(x) metric is so large (17.495%) with respect to the relative degradation against the 

p(x) metric (-1.734%). This result supports the idea that was explained in Section 3.7: 

when high conformance ratio is achieved, particularly for the problems where only single 

type and one-sided responses are included, optimization through the p(x) metric 

prematurely stops the search procedure, and this can cause a bias in mean responses. On 

the other hand, the PD(x) metric searches through more desirable and also low variance 

regions of the solution space, hence provide a better balance between these two 

performance measures. 
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Figure 5.1 Histogram and Scatter Diagram of Simulated P(x) and PD(x) Values for Scmidt (1979) 
Data 
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Figure 5.2 Histogram and Scatter Diagram of Simulated P(x) and PD(x) Values for Quesada (2004) 
Data 
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Figure 5.5 Histogram and Scatter Diagram of Simulated P(x) and PD(x) Values for Khuri and 
Conlon (1981) Data 
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For this example, because there are 5 input factors, it is not possible to visualize 

conformance probability or penalized desirability values dependent on all of the input 

factors at the same time. In Figure 5.5, histograms of simulated metrics for a 1500-point 

design grid shows that, while the maximum P(x) value can be achieved by several design 

points, only a few points can give maximum the PD (x) value. Again in Figure 5.5, the 

scatter diagram of two metrics shows that, although best design points with respect to 

PD(x) metric provide almost maximum conformance ratio, the best design points with 

respect to P(x) metric provide a vide range of the PD(x) metric. Moreover, the two 

metrics are correlated and the relation is very similar to that in Figure 4.7. 

This situation can be further exploited dependent on input factors. In Figure 5.6 

through Figure 5.10, we see the distribution of simulated metrics for a 1500-point design 

grid, dependent on controllable factors. Because the other factors are not fixed at some 

point, the simulated values look disperse, however it gives an idea about the influence of 

controllable factors on both metrics. For example, while the P(x) metric is slightly 

increasing towards x\ = 0, the PD(x) metric has distinctive maximum around x\ = -0.8. 

These points are marked with an ellipsoid in the figures. Although the dispersion of the 

two metrics seem correlated, the locations of the best point changes for all of the input 

variables. 
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Sodium lauryl sulfate(x5) Sodium lauryl sulfate(x5) 

Figure 5.10 Distribution ofP(x) and PD(x) Metrics with Respect to.v5 

Notice that the first data set also has single type and one sided responses but the 

conformance probability is little farther than the conformance achieved with the fifth data 

set; this may be caused because relative differences between two metrics are not as far 

apart as the fifth data set. 

Contrary to Quesada (2004), these results specifically show that the conformance 

ratio is not the ultimate methodology that ends the explicit trade-offs between mean and 

variance, therefore only Pareto optimums can be possible, and the proposed integrated 

approach maintains the balance between highly reliable and highly desirable points more 

efficiently. Since the second and fourth data sets include noise variables and have similar 

results in terms of relative performance values, the results can be generalized to the RPD 

problem, too. For the studied data sets, despite the fact that the PD(x) metric provided 

relatively poor but reasonably good solution points in terms of conformance probability, 

it is recommended that p{x) metric should be maintained and the DM must be informed 

about the reliability of the solutions obtained. Moreover, with the proposed approach, 



81 

reliability of each point in the grid can be estimated and for the problems where DMs like 

to behave risk aversely or where low variance solutions are preferred, a comprehensive 

set of nondominated solutions can help DMs find the best compromise solution. 

As a byproduct of the simulation runs, individual desirability averages are also 

estimated and reported in Table 5.4. Since the overall desirability is the geometric mean 

of individual desirabilities, it always tries to maintain the balance among responses, in the 

sense that relatively smaller differences are observed when they are equally important to 

DM. For this particular data set, the best setting obtained by the PD(x) gives greater 

desirability for the first three responses and only the fourth response's desirability is 

smaller. This explains why the overall desirability is a lot bigger than that obtained by the 

p(x) metric. 

Table 5.4 Individual Desirability Estimates at the Best Solution Obtained (Khuri and Conlon (1981) 

Model Terms 

* 
Xp(x) 

* 
XPD(x) 

d{yx) 

0.4530 

0.7852 

d(y2) 

0.4123 

0.4654 

d(y3) 

0.4366 

0.5856 

d(y4) 

0.6778 

0.6173 
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6 RESEARCH CONTRIBUTION AND FUTURE WORK 

This chapter concludes the dissertation work. Section 6.1 summarizes the main 

contributions of the proposed methodology in the optimization of multiple responses. 

Section 6.2 defines some additional research directions for further study. 

6.1 RESEARCH CONTRIBUTION 

A procedure initially proposed by Peterson (2000) was extended to employ a 

penalized desirability metric in order to take full advantage of both probability-based and 

desirability approaches. A probability-based paradigm provides statistically sound 

approaches for MRSM that can handle correlation structure between responses and also 

incorporate parameter uncertainty of the response models. Peterson (2004) estimated the 

reliability of solutions found according to several MRSM methods and also showed that 

conformance ratio produces very reliable solutions. On the other hand, conformance 

probability does not consider mean response values and particularly for problems where 

only single type and one-sided responses included can converge to biased solutions. 

Having utilized the advantages of probability-based and desirability approaches, 

the proposed approach provided better solutions in terms of response targets but also 

provided reliable solutions close to those obtained with conformance probability metric. 

Moreover, the proposed approach is superior not only in maintaining the balance between 

variation and desirability of responses but also meeting statistical requirements. It was 

shown that in addition to statistical considerations, like correlation and parameter 
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uncertainty, the proposed approach can handle different types of responses properly and 

allows progressive articulation of DMs to achieve compromising solutions efficiently. 

An optimization process was proposed not necessarily giving the optimum 

solution but the best solution depending on the grid structure used in the simulation of 

multiple responses. There are two approaches that can be used in the optimization of 

penalized desirability metric, the first is meta-model approach and the other is a direct 

simulation approach. For controllable factor numbers greater than three, considering 

modeling and optimization issues, the direct simulation approach has easier applicability 

than the meta-model approach. With the available computer power it is not difficult to 

exploit design space with a possibly fine grid composed of different levels of controllable 

factors. Moreover these cases showed that the direct simulation process provides better 

solutions with respect to overall desirability and also conformance probability metrics. 

6.2 FUTURE WORK 

An integrated probability-based approach was proposed for the optimization of 

multiple responses and showed that this methodology works satisfactorily with five 

different data sets. However there is still room for further improvement to use this 

methodology efficiently. 

It was assumed that users have advanced modeling capabilities, particularly for 

the simulation of multiple responses. The computer code provided in Appendix B is 

problem specific and needs modifications when the number of responses and input 

variables changes. This may pose problems regarding efficient use of this methodology. 

Therefore, a user friendly code should be developed both for the desirability 

transformations and also for simulations. 
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As another limitation to proposed approach, standard Monte Carlo methods that 

were used in the simulations produced a set of independent simulated values according to 

some prespecified distribution and these values may be too disperse, not allowing 

posterior analysis of the responses. MCMC methods on the other hand, produce chains in 

which each of the simulated values is mildly dependent on the preceding value (Gill, 

2002). These are the sample values that can be used to describe the posterior distribution 

of interest and may well fit the multiresponse optimization problem. There are several 

MCMC methods developed so far like Gibbs sampler and Metropolis-Hasting (M-H) 

algorithm. WinBUGS (Bayesian inference using Gibbs sampling) software is open source 

and can be used to implement Gibbs sampling method. These techniques can be 

incorporated with the proposed approach to work within a user friendly computer code. 

It is assumed that the noise variables are distributed normally with a zero mean 

and with a known constant variance. Therefore in the presence of noise variables, the 

assumption of normality and distribution parameters should be checked carefully before 

using the proposed methodology. That type of problem can be solved by prior 

experimentation to see the behavior of noise variables in effect. 

The test cases exhibited here can be characterized as typical applications in 

manufacturing industries. However, the applicability of proposed approach is not limited 

to the manufacturing industry where a unique discipline is involved, such as biochemistry 

or food production with a relatively small number of responses. The significance of the 

proposed approach will be best understood when it is applied to decision making 

problems where interdisciplinary engineering approaches are required. 

For example, in military air operations it is essential to have a high level of 

accessibility of aircraft and aircrew during battle conditions. Success of the operation can be 
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decomposed into several conflicting and correlated responses such as the number of missions 

accomplished, the number of maintenance actions performed, the cost of operation (fuel, 

ammunition, spares) and aircraft availability. These responses are related to several 

resources in the system like the number of repairmen, different repair schedules or sortie 

durations, and the type and the amount of ammunition being used. There are also noise 

variables like logistic delays and conflict duration, etc. Although it is hard or impossible 

to experiment with this type of problem, a simulation might be an alternative and the 

proposed approach can help DMs spend less time with the simulations and can help 

different stakeholders articulate their preferences with less compromise and can help 

them achieve robust operating conditions. 



NOMENCLATURE 

/? = regression coefficients 

c = penalization constant 

k = number of input variables 

/ = lower specification limit of a response 

m = number of responses 

N = number of experimental runs 

p = number of regression coefficients in the model 

q = number of linearly dependent responses 

r = number of linearly independent responses 

s = shape parameter of a response 

S = feasible region of multiple responses 

T = target specification for a response 

u = upper specification limit of a response 

y = response function 

y = estimate of a response function 

e = unexplained variation in the response model 

\i = response mean 

2 = variance covariance matrix of multiple responses 

H = estimate of variance covariance matrix of y 

0 = response targets 

STB = smaller the better type response 

LTB = larger the better type response 

NTB = nominal the best type response 

P(9i) = desirability value of rth response 

P(Pi) = penalty component of rth response in case of infeasibility 

P(xt) = overall penalty for the z'th design setting 

p(Xi) = conformance probability of rth design setting 
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p(JC.) = conformance probability of rth design setting in the validation runs 

PD{xt) = penalized desirability value of /th design setting 

PD(x() = penalized desirability value of rth design setting in the validation runs 
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APPENDIX A: TEST CASES 

In this appendix, the details of the experimental data used in the dissertation are 

presented. 

A.1 SCHMIDT (1979) 

Schmidt (1979) studied the effects of cysteine (x\) and calcium chloride (JC2) 

combinations on the textural and water-holding characteristics of dialyzed whey protein 

concentrates (WPC) gel systems. The texture characteristics are measured by hardness 

(yi), cohesiveness (y?), springiness (y3), and compressible water (y4). The first table gives 

the experimental design with coded input levels and response values and the second table 

gives estimated regression coefficients for the data. 

X\ 

-1 
1 
-1 
1 

-1.414 
1.414 

0 
0 
0 
0 
0 
0 
0 

X2 

-1 
-1 
1 
1 
0 
0 

-1.414 
1.414 

0 
0 
0 
0 
0 

y\ 
2.48 
0.91 
0.71 
0.41 
2.28 
0.35 
2.14 
0.78 
1.50 
1.66 
1.48 
1.41 
1.58 

yi 

0.55 
0.52 
0.67 
0.36 
0.59 
0.31 
0.54 
0.51 
0.66 
0.66 
0.66 
0.66 
0.66 

JV3 

1.95 
1.37 
1.74 
1.20 
1.75 
1.13 
1.68 
1.51 
1.80 
1.79 
1.79 
1.77 
1.73 

y* 
0.22 
0.67 
0.57 
0.69 
0.33 
0.67 
0.42 
0.57 
0.44 
0.50 
0.50 
0.43 
0.47 



Model Terms 
Specifications 
Intercept 
X\ 

X2 

* i * 

X21 

X\X2 

RMSE 
PRESS RMSE 
R'Adj. 
R 2 

*^ Prediction 

yx (LTB) 

(.35,3.178) 
1.526 
-.813 
-.7412 
-.341 
-.196 
.635 
.20 

.37 

.9169 

.691 

JMLTB) 
(.31,.685) 

.66 
-.1301 

0 
-.1912 
-.14 
-.116 
.023 

.037 

.9642 

.898 

y3 (LTB) 

(1.13,1.895) 
1.776 
-.353 
-.1097 
-.3122 
-.1572 
0 
.047 

0 

.9644 

.901 

yA (LTB) 

(.22, .691) 
.468 
.1858 
.1029 
.052 
.047 

-.165 
.041 

0 

.9094 

.741 
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A.2 QUESADA (2004) 

Quesada (2004) studied the optimization of a high performance liquid chromatography (HPLC) 

system to detect mixtures of impurities. The performance of the assay was based upon four 

quantitative response variables: the critical resolution (yi), total run time (yi), signal-to-noise 

ratio of the last peak (yj), and the tailing factor of the major peak (y*). Three controllable factors 

affecting the HPLC assay were included: %IPA (x\), temperature (xi) and pH (X3). The first 

table gives the experimental design with coded input levels and response values and 

second table gives estimated regression coefficients for the data. 

X\ 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

Xl 

-1 

1 

0 

0 

0 

1 

-1 

1 

-1 

0 

0 

-1 

1 

0 

0 

*3 

0 

0 

-1 

1 

0 

-1 

1 

1 

-1 

0 

1 

0 

0 

-1 

0 

y\ 
2.14 

1.73 

1.93 

1.95 

2.17 

1.97 

2.38 

1.98 

2.37 

2.2 

2.42 

2.61 

2.14 

2.42 

2.2 

yi 

22 

12 

16 

16 

14 

11 

19 

11 

18 

14 

13 

17 

10 

12 

14 

^3 

172 

311 

251 

241 

278 

371 

194 

360 

204 

280 

314 

223 

410 

324 

281 

74 

0.76 

0.88 

0.8 

0.8 

0.79 

0.86 

0.74 

0.86 

0.74 

0.78 

0.78 

0.73 

0.85 

0.78 

0.79 



Model Terms 
Specifications 
Intercept 
x\{noise) 
x2 

*3 

xf 
x? 

2 
X3 

X\ X2 

X\ X3 

RMSE 
PRESS RMSE 
R2Adj. 
R 2 

**- Prediction 

y, (LTB) 

(1.8,2.38) 
2.193 

.23 
-.21 
0 
-.0154 
-.0204 

0 
0 
0 
.019 
.025 
.9937 
.988 

y2 (STB) 

(10.56, 15) 

13.923 
-1.75 
-4 
.25 
.385 
.885 

0 
.75 
.25 
.34 
.554 
.9899 
.971 

y, (LTB) 

(300, 370) 

279.286 
37 
82.375 
-5.125 
0 
0 
3.089 

12 
0 
1.25 
1.88 
.9997 
.999 

y4 (NTB) 

(.75, .8, .85) 
.786 

-.013 
.06 
0 
.004 
.014 

0 
0 
0 
.0034 
.0041 
.9946 
.992 
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A.3 DERRINGER AND SUICH (1980) 

Derringer and Suich (1980) studied the effect of hydrated silica level (JCI), silane coupling 

agent level (x2) and sulfur level fa) to improve the quality of tire tread compounds which 

are characterized by four properties. The properties to be optimized and constraint levels 

were as follows: 

PICO Abrasion Index,y\ 120 <j^i 

200% Modulus, y2 1000 < y2 

Elongation at Break, yz 400 < y3 <600 

Hardness, y$ 60 < y$ < 75 

X\ 

-1 

-1 

-1 

-1 

-1.633 

1.633 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

X2 

-1 
-1 
1 
1 
-1 
-1 
1 
1 
0 
0 

-1.633 

1.633 

0 
0 
0 
0 
0 
0 
0 
0 

*3 

-1 
-1 

-1 

-1 
0 
0 
0 
0 

-1.633 

1.633 

0 
0 
0 
0 
0 
0 

y\ 
102 
120 
117 
198 
103 
132 
132 
139 
102 
154 
96 
163 
116 
153 
133 
133 
140 
142 
145 
142 

yi 

900 
860 
800 
2294 

490 
1289 

1270 

1090 

770 
1690 

700 
1540 

2184 

1784 

1300 

1300 

1145 

1090 

1260 

1344 

Yh 

470 
410 
570 
240 
640 
270 
410 
380 
590 
260 
520 
380 
520 
290 
380 
380 
430 
430 
390 
390 

J>4 

67.5 

65 
77.5 

74.5 

62.5 

67 
78 
70 
76 
70 
63 
75 
65 
71 
70 
68.5 

68 
68 
69 
70 



Model Terms 
Specifications 
Intercept 
Xl 

x2 

x3 

x,1 

x? 
x,1 

X\ X2 

X\ Xl 

X2X3 

RMSE 
PRESS RMSE 
R2Adj. 
^ Prediction 

yl (LTB) 

(120, 170) 
137.921 

16.494 
17.881 
10.907 
-3.897 
-3.335 

0 
5.125 
7.125 
7.875 
5.621 

9.436 
.9467 
.842 

y2 (LTB) 

(1000, 1300) 
1412.89 
268.151 
246.503 

0 
-97.794 

-139.044 

0 
0 
0 
0 

370.611 

396.241 

.3772 

.251 

y3 (NTB) 

(400, 500,600) 
400.7143 
-99.6664 
-31.3964 
-73.919 

7.9018 
0 
0 
8.75 
0 
0 

18.709 

23.00 

.9709 

.954 

y4 (NTB) 

(60, 67.5, 75) 
68.725 
-1.410 
4.320 
1.635 
1.575 
0 
0 
-1.625 
0 
0 
1.137 

1.467 

.9359 

.888 
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A.4 ROMANO (2004) 

Romano (2004) studied material behavior of a force transducer. The design of the 

element is intended to minimize the transducer's inaccuracy, which originates from two 

major sources, namely non-linearity (yi) and hysteresis (yi). Control factors are the three 

parameters defining the element configuration, lozenge angle (JCI), bore diameter (xi) and 

half-length of the vertical segment (̂ 3). On a force transducer noise factors are the 

deviation of the lozenge angle from its nominal value (x*) and the deviation of the bore 

diameter from its nominal value (xs) 

X] 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

0 

0 

0 

X2 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

0 

0 

-1 

1 

0 

0 

0 

0 

0 

*3 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

-1 

1 

0 

0 

0 

JC4 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

xs 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

y\ 
1.81 

1.69 

1.90 

1.78 

1.80 

1.63 

1.92 

1.78 

1.36 

1.22 

1.48 

1.44 

0.693 

0.616 

0.95 

0.817 

1.79 

1.03 

1.53 

1.22 

1.30 

1.44 

1.38 

1.39 

1.40 

yi 

1.10 

1.11 

1.07 

1.07 

1.47 

1.18 

1.41 

1.58 

1.57 

2.03 

1.38 

1.68 

3.37 

3.75 

2.81 

2.83 

1.24 

2.46 

1.23 

1.73 

1.63 

1.67 

1.73 

1.74 

1.74 



Model Terms 

Specifications 
Intercept 

X\ 

X2 

X3 

x^noise) 

Xf,{noise) 
x:> 

X\ X2 

X\ Xi 

X2X3 

RMSE 
PRESS RMSE 
R2 Adj. 
R 2 

^- Prediction 

yx (NTB) 

(.9, 1, 1.1) 
1.38 
-.361 
-.1547 
.0771 

-.0588 
-.0116 
.0481 

-.1484 
.0218 
.013 
.02 

.029 

.9970 

.994 

>>2(STB) 

0,3) 
1.6386 
.5917 
.4383 

-.095 
0 
0 
.2009 
.3006 

-.1431 
0 
.183 

.225 

.9359 

.899 



A.5 KHURI AND CONLON (1981) 

Khuri and Conlon (1981) studied the effects of heating temperature (x\), PH level {xj), 

Redox potential (x^), sodium oxalate (xj), and sodium lauryl sulfate (xs) on foaming 

properties of whey protein concentrates (WPC). Four dependent responses to be 

maximized are maximum overrun (y\), time at first drop (yj,), undenatured protein (yj), 

and soluble protein (y*). 
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Model Terms 
Specifications 
Intercept 
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x2 
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APPENDIX B: MATLAB CODE FOR SIMULATING MULTIPLE 

RESPONSES 

This computer algorithm is written in MATLAB to simulate multiple responses 

for HPLC test case. The code, which is specific to this example, can generate multiple 

responses either for 121 design points or 1,000 design points, and calculates conformance 

probability as well as the penalized desirability value for each setting in the grid. The 

same code can be modified for other cases by providing individual response parameters 

as well as experimental data such as x and y vectors. 

clear all; clc; 
%Initial design for independent variables 
x l = [ - l - 1 - 1 - 1 0 0 0 0 0 0 1 1 1 1 0 ] ' ; % n o i s e v a r i a b l e 
x 2 = [ - l 1 0 0 0 1 - 1 1 - 1 0 0 - 1 1 0 0 ] ' 
x3=[0 0 - 1 1 0 - 1 1 1 - 1 0 1 0 0 - 1 0 ] ' 
x = [ x l x2 x 3 ] ; 

%Response data 
yl=[2.14 1.73 1.93 1.95 2.17 1.97 2.38 1.98 2.37 2.2 2.42 2.61 2.14 
2.42 2.2] ' ; 
y2=[22 12 16 16 14 11 19 11 18 14 13 17 10 12 14]'; 
y3=[172 311 251 241 278 371 194 360 204 280 314 223 410 324 281]'; 
y4=[0.76 0.88 0.8 0.8 0.79 0.86 0.74 0.86 0.74 0.78 0.78 0.73 0.85 0.78 
0.79] ' ; 

n=length(xl); %number of experimental runs 
%second order terms and 2 way interactions included in the model 
xm=[ones(n,l) xl x2 x3 xl.^2 xl. *x2 xl. *x3 x2./s2 x3.^2]; 
y=[yl y2 y3 y4]; 

q=length(y(1,:));%number of responses 
m=length(x(l,:));%# of factors 
%Regression coefficients for individual responses obtained by mbcmodel 
tool (Model Terms in Appendix A.2) 
B=[2.1931 0.23 -0.21 0 -0.015385 0 0 -0.020385 0; 

13.9231 -1.75 -4 0.25 0.384615 0.75 0.25 0.884615 0; 
279.2857 37 82.375 -5.125 0 12 0 0 3.089286; 
0.78615 -0.0125 0.06 0 0.0042308 0 0 0.014231 0]'; 



p=length(B(:,1));%number of regression parameters 
v=n-p-q+l;%degrees of fredom 
U=y-xm*B;%residuals 
V=U'*U;%variance covariance of Y 

xminv=inv(xm'*xm); 
mvnmu=zeros(l,q);%mean for random variable z 
mvnsigma=eye(q);% var-covar for random variable z 

DDquesada_1000; %use to create 1000x3 design grid 
model = [1 0 0;0 1 0;0 0 1;2 0 0;1 1 0;1 0 1;0 2 0;0 0 2] ; 
D = x2fx(DD, model); 
D=[ones(length(D),1) D]; 

lyl=l.8;uyl=2.38;%LTB 
ly2=10.56;uy2=15;%STB 
ly3=300;uy3=369.88;%LTB 
ly4=.75;uy4=.85;ty4=.8;%NTB 

lowerspec=[lyl ly2 ly3 ly4]; 
upperspec=[uyl uy2 uy3 uy4]; 

xnstd=.l; %standard deviation of noise variable 
d=[];%desirability vector for responses 
cp=.0001;%penalization constant 
yrand=[];%vector for randomly generated responses 
N=5000; %# of simulation runs for each setting 
tic; 

for i=l:length(D); 
c=0; 
for j=l:N; 
randn('state' , j ) ; rand('state' , j ) ; 

s(j,1)=chi2rnd(v);%chi-square random variable 
z(j,:)=mvnrnd(mvnmu,mvnsigma);%multivariate normal random 

variable z 
xn=xnstd*randn; 
Yest=[l xn D(i,3:4) xn^2 xn*D(i,3) xn*D(i,4) D(i,8:9)]*B; 
sca_predvar=l+[l xn D(i,3:4) xnA2 xn*D(i,3) xn*D(i,4) 

D(i,8:9)]*xminv*[1 xnD(i,3:4) xnA2 xn*D(i,3) xn*D(i,4) 
D(i,8:9)]';%scaled prediction variance % 

yrand(j,:)=((sca_predvar/s(j,:))A.5)*z(j,:)*(VA.5)+Yest; 

if 
((yrand(j,1)>=lyl)&(yrand(j,2)<=uy2)&(yrand(j,3)>=ly3)&(yrand(j,4)>=ly4 
)&(yrand(j,4)<=uy4)); 

c=c+l; 
else c=c; 
end 

%Penalized desirability calculations 
if yrand(j,1)<=lyl;%yl:LTB, desirability and penalty function 

evaluations 
dyl=0;pyl=cp+abs((yrand(j,1)-lyl)/(uyl-lyl)); 

elseif yrand(j,l)<=uyl; 



dyl=(yrand(j,l)-lyl)/(uyl-lyl);pyl=cp; 
else dyl=l;pyl=cp; 

end 

if yrand(j,2)<=ly2;%y2:STB, 
dy2=l;py2=cp; 

elseif yrand(j,2)<=uy2; 
dy2=(uy2-yrand(j,2))/(uy2-ly2);py2=cp; 
else dy2=0;py2=cp+abs((yrand(j,2)-uy2)/(uy2-ly2)); 

end 

if yrand(j,3)<=ly3;%y3:LTB, 
dy3=0;py3=cp+abs((yrand(j,3)-ly3)/(uy3-ly3)); 

elseif yrand(j,3)<=uy3; 
dy3=(yrand(j,3)-ly3)/(uy3-ly3);py3=cp; 
else dy3 = l,-py3=cp; 

end 

if yrand(j,4)<=ly4;%y4:NTB, 
dy4=0;py4=cp+abs((yrand(j,4)-ly4)/(ty4-ly4)); 

elseif yrand(j,4)<=ty4; 
dy4=(yrand(j,4)-ly4)/(ty4-ly4);py4=cp; 
elseif yrand(j,4)<=uy4; 
dy4=(uy4-yrand(j,4))/(uy4-ty4);py4=cp; 

else dy4=0;py4=cp+abs((yrand(j,4)-uy4)/(uy4-ty4)); 
end 
d(j)=(dyl*dy2*dy3*dy4)~(1/q);%desirability component 
pp(j)=((pyl*py2*py3*py4)^(1/q)-cp)^2;%penalty component 
PD(j)=d(j)-pp(j); %overal penalized desirability function 

end 

%Vector of Probability of conformance 
Prob_c(i,:)=c/N; 
%Vector of average Penalized desirability 
PDmean(i)=mean(PD); 
end 
PDmean=PDmean1; 
toe; 
time=toc; 
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