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Abstract

Estimation in a Marked Poisson Error Recapture 

Model of Software Reliability

Rajan Gupta 
Old Dominion University, 1991 

Director: Dr. Larry Lee

Nayak’s {1988) model for the detection, removal, and recapture 
of the errors in a computer program is extended to a larger 
family of models in which the probabilities that the successive 
programs produce errors are described by the tail probabilities 
of discrete distribution on the positive integers. Confidence 
limits are derived for the probability that the final program 
produces errors. A comparison of the asymptotic variances of 
parameter estimates given by the error recapture and by the 
repetitive-run procedure of Nagel, Scholz, and Skrivan (1982) 
is made to determine which of these procedures efficiently uses 
the test time.
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Chapter 1

Introduction

A great many papers have appeared concerning software 
reliability and reliability growth models during the 
debugging of a program. This is due, in part, to an early 
realization that the reliability of many systems may depend 
critically upon the reliability of computer programs; 
although the hardware component of these systems may be 
highly reliable, the total system reliability is often 
limited by that of the software component. Software 
reliability research is generally aimed at providing the 
capability to design and build reliable software systems in 
a cost-effective way.

One of the major factors contributing to the very high 
levels of reliability that can now be achieved in hardware 
systems, is the use of component redundancy to provide

1
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Chapter 1: Introduction 2

tolerance to physical faults. Software redundancy tech
niques, such as recovery blocks and N-version programming 
(e.g., [1], [38]) have been proposed which aim to provide
tolerance to design faults, the main cause of unreliability 
in software systems. These techniques are based on the 
implementation of functionally equivalent, but indepen
dently developed modules of diverse design, with provision 
for either state restoration or replication, and of some 
means for co-ordinating between the outputs from the 
replicated modules.

Some highly critical systems have relied on the 
construction of independently designed versions of the 
entire software system (e.g., Space Shuttle, A310 Airbus, 
railway signalling). Many database systems and telephone 
switching systems employ sophisticated recovery techniques 
which can prevent corruption of data by certain categories 
of software faults.

One of the more commonly used techniques for predicting 
software reliability utilizes reliabilty growth models. 
Reliability improves as a result of the process of fault 
identification and correction known as debugging. These 
models require failure data and place stringent requirements 
upon the testing strategy which generates the data.
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Chapter 1: Introduction 3

To obtain more data than is provided by the usual 
debugging experiment, Nagel, et. al. (1984) proposed a 
repetitive-run procedure in which a program is restored to 
its original form and the debugging sequence repeated, 
perhaps several times, using independently generated series 
of inputs. The extra information provided by this procedure 
has been used to check the assumption of exponentially 
distributed inter-failure times and also to show that 
distinct errors may have different occurrence rates. Except 
for the work of Scholz (1986), models that treat specific 
features of this design do not seem to have been studied in 
the literature.

In other experiments such as seeding and tagging, 
inference is not based on the usual observed failure data. 
The method described in the following paragraphs is based 
on the one used for many years to estimate the size of animal 
and fish populations.

Feller (1957) gives a procedure for estimating the 
number of a certain type of fish in a lake. A new catch is 
made and the tagged fish as well as untagged fish are counted. 
Tagged fish are assumed to mix randomly with the untagged 
fish. The number of fish in the lake can then be estimated 
by assuming that the proportion of the tagged fish which are 
re-caught is equal to the proportion of fish in the lake

contained within the second catch.
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Chapter 1: Introduction 4

There are two ways of applying these ideas to software 
reliability. The first is known as seeding, originally 
suggested by Mills (1970), and consists of inserting a known 
number of bugs into a program, and monitoring the proportion 
of inserted bugs found during the debugging process. The 
second alternative is tagging, suggested by Rudner (1977) 
which is carried out by giving the program to two 
programmers. The number of faults found by the first 
programmer are regarded as tagged, and inferences are drawn 
from the proportion of the second programmer's faults which 
have been tagged.

There are a number of drawbacks with these methods, 
especially with regard to the implicit assumptions which 
have to be made. For example, both methods assume that all 
faults are equally likely to be found, seeding assumes that 
the seeded faults are representative of the indigenous 
faults, and tagging assumes that the programmers can act 
independently.

In seeding and tagging procedures, the estimation 
problem for the number of faults, however, is not onerous. 
The maximum likelihood estimator is biased, but a modified 
estimator due to Chapman (1951) has a lower bias and 
generally better properties, when the the number of faults 
is more than 50.
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Chapter 1: Introduction 5

Another drawback is that one can not estimate quantities 
such as failure rates. This method is only useful for bug 
counting.

The most important criticism for the simple reliability 
growth models is that they essentially treat software as a 
'black box' . No account is taken of internal structure or 
other known properties of the program under study. There is 
a need for models that can utilize the large amount of 
structural information usually available. Hardware reli
ability theory provides an interesting parallel. One of the 
most important achievements of this theory is the ability 
to combine information about component reliability with 
structural information about the design of the overall 
system. Unfortunately, software structure tends to be much 
more complex than hardware structure. Also, the simple 
component/design dichotomy is less obviously applicable to 
software, which can be viewed as solely levels of design.

To resolve some of the existing problems associated with 
models for the usual debugging experiment, Nayak (1988) 
introduced recapture debugging as a way to get extra 
information for estimating the number of faults remaining 
in a system. By placing counters in the software (for an 
alternative to software testing counters, see p. 25) we 
observe, in addition to the usual sequence of failure (i.e.,
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Chapter 1: Introduction 6

error detection) times, the hitting frequencies of detected 
faults. Nayak's (1988) discussion concerns the Jelinski- 
Moranda (1972) model and procedures useful for estimating 
the number of remaining faults.

Chapter 2 describes the classification and motivation 
for a number of software reliability growth models. The main 
body of new material begins in Chapter 3 and concerns a family 
of marked Poisson process models for the recapture debugging 
procedure. In one form, the model describes a stationary 
event series and an attached Markov chain. An equivalent 
form, in the sense of giving the same likelihood function, 
is that of a nonstationary series of main events together 
with a collection of independent counting processes. The 
latter form of the model was originally suggested by Nayak 
(1988), although he considered only the case in which the 
main event series is a linear pure death process, also known 
as the Jelinski-Moranda (1972) model. The main contributions 
of the present work are (i) a procedure for estimating the 
probability that the final program version produces errors 
and (ii) a comparison of the error recapture and repetitive- 
run procedures in terms of the asymptotic variances of 
parameter estimates obtained by the two procedures. Chapter 
A, the final chapter, studies, by using repetitive-run data, 
the goodness of fit of certain models based on parameterizations 
introduced in Chapter 3.
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Chapter 2

Background

2.1 Introduction

The software segment of a computer system involves 
instructions or codes used to program the hardware system. 
Some of the inputs for which a specific job data set or 
function does not produce the desired output lead to what 
is termed as software failures. These failures are either 
due to errors in the coding of the instructions (the program) 
or an input that is incompatible with the design of the 
software system.

Early debugging designs consist of detecting and 
correcting a series of errors during a specified period of 
testing. If the software is executed on a series of inputs, 
it may work satisfactorily until time S,, when the first

7
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Chapter 2: Background 8

failure occurs. The programmer then repairs the program, it 
works satisfactorily until time S2, then it is repaired, and 
so on. This process is sometimes referred to as a debugging 
experiment. The models used to describe the failure times 
Sj, S2, ..., are called reliability growth models since, 
typically the gaps Y =  S1-Si_1 (S0sO), i=l,2,..., between 
failures will increase as faults are removed from the 
software.

This may not be exactly so due to the fact that the 
failure times are random, and thus they are subject to 
statistical fluctuations. A number of models have been 
proposed in the literature to study such failures. These 
models assume that failure times have distributions with 
parameters that depend on the residual faults in the software 
system. The assumed distributions reflect the software 
quality as faults are detected and removed from the system.

The models described in Sections 2.2-2.7 are based on 
assumptions concerning the failure gaps {YJ, the event 
occurrence times {St, S2, o r  the counting process 
{N(t) : t >0} where N(t) is determined by N(t)=n if and only 
if Sn< t < Sn+1, with S0 = 0.
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Chapter 2: Background 9

2.2 The Jelinski-Moranda Model

One of the earliest and most widely referenced models 
is that of Jelinski and Moranda (1972) . The model assumes 
that the failure rate at any point in time is proportional 
to the current fault content of the program. The initial 
fault content is denoted by v and the contribution of each 
fault by <j>. The failure rate initially is v<J>, and decreases 
to (v—1) <}» after the first fault is detected and eliminated, 
and so on. This model views the occurrence times of the first, 
second, .. ., and rth failure as the first r order statistics, 
in a sample of size v from an exponential distribution. The 
times between failures are distributed as independent 
exponential random variables with rate parameters (v-i+l)<|>, 
i=l,2, . .., v.

Moranda (1979) points out that most models assume that 
a system is restored to its initial state after repair. For 
reliability growth models where the failure rate varies, it 
is generally assumed that this rate changes deterministi- 
cally or continuously with time. As noted by Littlewood 
(1981), the failure rate of J-M model changes in discrete 
steps and this is an essential feature to represent 
reliability growth.
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Chapter 2: Background 10

An inherent assumption of the model is that each bug 
contributes the same amount <}> to the overall failure rate. 
This has been criticized in particular by Littlewood (1981) 
who argues that the different frequencies of execution of 
different portions of code will in itself lead to different 
occurrence rates of faults, all other things being equal. 
The assumptions of constant failure rate and exponential 
distributions for the times between successive failures have 
also been criticized by Schick and Wolverton (1978).

Forman and Singpurwalla (1979) show that the maximum 
likelihood estimator of v is unstable, and can be highly 
misleading when the number of remaining faults is anything 
but small. Sukert (1977) has observed that the estimate of 
v does not always exist, and Littlewood and Verrall (1981) 
give a condition for its existence which reduces to a 
requirement that the data exhibit the assumed reliability 
growth. Littlewood and Verrall (1973) suggest a Bayesian 
version of the model, but they note that the improvement in 
estimation properties is marginal in most cases.

2.3 The Musa Execution Time Model

This is perhaps the most practical model of all and has 
been developed to the extent that it takes into account
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Chapter 2: Background 11

various personnel and resource constraints.
The model is based on the Jelinski-Moranda (1972) model, 

but introduces a number of refinements. One of these is an 
error reduction factor B representing the average ratio of 
the rate of fault correction to the failure rate. There is 
an implicit assumption, that the fault correction rate is 
proportional to the failure rate - not equal to it as assumed 
by the Jelinski-Moranda (1972), Shooman (1973), Schick- 
Wolverton (1978) and Littlewood (1980) models. Also 
introduced is a testing compression factor C which is the 
average ratio of the failure rate during test to that during 
operational use.

This model also differs from others in its treatment of 
time. The program execution time is taken as the time 
variable, and this in turn is related to calendar time via 
constraints on fault coirection personnel, and computer 
time. These aspects make the model potentially valuable as 
a management tool.

The assumptions of this model answer some of the 
criticisms of the Jelinski-Moranda (1972) model, but the 
underlying assumption that each fault contributes the same 
amount to the overall failure rate is often considered to 
be a weakness. Chenoweth (1981) suggests a generalization 
where
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B = B0 eat

to allow for improved debugging in the later stages.
Since the basic model structure is identical to that 

of the Jelinski-Moranda model, the same parameter estimation 
problems are encountered.

2.4 Poisson Models

If each fault is removed the first time it produces a 
failure, then the failure rate will decrease as in the 
previous models, but it may depend on the time of the most 
recent repair rather than on the total number of repairs that 
have been made. This is a basic assumption underlying time 
dependent Poisson process models.

A nonhomogeneous Poisson process {N(t): t > 0} with 
intensity function X(x) (e.g., Parzen, p. 252) is defined 
by the following conditions:

(i) N (0) =0.
(ii) N(t), t > 0 has independent increments.
(iii) The number of events N(s,t) occuring in the interval

t(s,t) has a Poisson distribution with mean J A.(x)dx.
s
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Chapter 2: Background 13

These assumptions imply that the occurrence time S, of 
the first event has distribution

P(S1 > t)= P (N (t) =0)

t
= exp (-J X(x)dx), t > 0

0

= 1, t < 0

By varying X(x) over the entire class of nonnegative 
functions that are integrable over bounded intervals and 
which satisfy

t
lim / X.(x)dx = oo, for t —* oo 

0

we obtain all possible continuous distributions for Sl. The 
importance of the nonhomogeneous Poisson process lies in the 
fact that the increments of the process are not required to 
be stationary. Most applications of the model assume that 
Mt) is either constant, increasing, or decreasing in t > 
0. The mean number of events occurring in the interval (0,t), 
denoted by m(t), is given by

t
m (t) = J X (x) dx 

0
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Chapter 2: Background 14

If events occur at times S:, S2, ..., over a fixed interval 
(0,t) and follow a non-homogeneous Poisson process, then the 
joint density function of Sj, S2,— , SN(t) and N(t) is

n t
n  M s , ) e x p [ - J  X(x)dx] (2.1)

i=i 0

(0< Sj < s2<...< sn < t, n=0,1,2,... )

where if n=0, the product factor is equal to one.
The most widely known Poisson model of software 

reliability growth was proposed by Goel and Okumoto (1979) . 
Their model assumes an intensity function and mean of the 
form

^,(x)= a(3e'px , x > o, a, J3>0

m(t)= a(l- e'pt), t > 0, a, p>0 (2.2)

Since lim m(t) = a as t -♦ oo, the parameter a  is the 
expected total number of failures that may eventually occur, 
while large values of {3 imply rapid reliability growth.

Under this model the conditional joint density function 
of Sj, S2, ..., SN(tl, given N (t) =n, is
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n
n! n pe'^ifl-e'^)'1, 0< s1 < s2<...< sn < t 

i=l
(2.3)

Thus Sjf S2, . . ., Sn are conditionally distributed as an 
ordered sample of size n from a truncated exponential 
distribution with density function

P e"Px (1- e-Pc) , 0< x < t (2.4)

The J-M model has this same property and thus the 
likelihood functions given by the two models only differ in 
the probability distribution of N(t) . That is, the J-M model 
implies that N(t) has a binomial distribution with 
parameters V and (l-e-̂ ) , whereas any Poisson model implies 
that N(t) has a Poisson probability distribution.

2.5 Littlewood-Verrall Bayesian Model

Littlewood and Verrall (1973) consider the software 
failure process to be the result of two sources of 
uncertainty. One pertains to the randomness of input and the 
other to the state of the program. They assume that a 
particular subset of the input space that will cause system
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failure will be encountered randomly. This leads to the 
assumption that successive times between failures are 
independently and exponentially distributed with failure 
rate ̂  for the ith failure. The second source of uncertainty 
is the fault-fixing operation. The uncertainty of fault- 
fixing is modeled by additionally assuming that is 
stochastically less than or equal to k ^ , that is,

< x} > PfXj.j < x}, for all x, i.

The growth in reliability is thus stochastic rather than 
deterministic, the ^  being regarded as random variables. 
Littlewood and Verrall assume that each ^  has a gamma 
distribution with parameters a  and {Yt}# where the growth 
function \^l is increasing in i and describes the quality of 
the programmer and the difficulty of the programming task.

Combining the two sources of randomness by Bayesian 
techniques leads to a decreasing failure rate, and a low 
failure rate as more time is observed without failure. The 
assumptions of this model seem reasonable, though Ramamoorthy 
and Bastani (1980) criticize the model as being too 
restrictive, because it does not permit perfect debugging 
(i.e., unlike for the the J-M model, removing a finite number 
of faults will not, according to the model, produce a perfect
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program) . One main problem with this model is the choice of 
{\J/1 >, which determines the stochastic growth pattern. It is 
not clear how to choose the functional forms of however
Littlewood (1980) has suggested linear and quadratic 
functions, which lead to two and three parameter models.

2.6 Order Statistics Models

Besides the Jelinski-Moranda model a number of other 
models have been derived that belong to the order statistics 
class of models (e.g., Miller 1986) . These derivations are 
typically based on the assumption that the failure gaps {Y^ 
are independent and exponentially distributed with rate 
parameters where the are also random quantities.

Using Bayes' theorem, Littlewood (1973) derived a 
generalization of the Jelinski-Moranda model in which the 
ordered failure times S2, S2, ..., Sn are distributed as the 
first n order statistics in a sample of size v (v is a 
parameter) from a Pareto distribution. Arguing from simpler 
assumptions, he shows that if the ith failure occurs at time 
Sj=T, then the failure rate A is the sum of v-i i.i.d random 
variables, each having a gamma density with scale parameter 
P+ t and shape parameter a. Then A also has a gamma density
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Chapter 2: Background 18

g(X\x) = (P + T) exp[-(p + x) X]/na(v-i) ],
(X > 0 , p>0) (2.5)

and the distribution of Y1+1 given T, is

CO
P(Yi+1 > y i s = x ) = J e-^g(Xlx) dX

o

= [ (P + T) /(p + T + y) ] y > 0
(2 .6)

Assuming that the conditional distribution of Ynn, given the 
past history Slf S2, ..., Sn, only depends on the time Sn of
entering the nth state, Littlewood also obtains the joint
density of Sj, S2, Sn, which is identical to that of the 
first n order statistics in a sample of size V from a Pareto 
distribution.

This Pareto order statistics model differs from the 
model in Section 2.5 in that (a) the gaps {Yj} are not 
independent and (b) the Littlewood-Verrall (1973) model of 
Section 2.5 does not include the total error count parameter 
v. Joe and Reid (1985a,b) give an alternative, and simpler, 
derivation of the Pareto order statistics model and 
conjecture that, for any order statistics model, the maximum 
likelihood estimate of v will be infinite with positive 

probability.
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2.7 Scale Parameter Models

A key assumption made in a number of models is that the 
failure gaps {Y1) are independent and have distributions 
that differ only by scale parameters, the latter being a 
function of the serial index of events. A scale parameter 
family of reliability growth models is defined by letting 
{Y^ be independent with distribution functions

Fj (y)=G(\|f1'1y) (2.7)

where {\j/j} are scale parameters and G(x) is a continuous cdf 
with G(0)=0.

Examples of models within this class, the first two of 
which were described in Sections 2.2 and 2.5, are the 
following:

(i) = (v-i+l)$, i=l, 2,..., v, <{)> 0
G(x) = 1-exp(-x), x >0
(i.e., the Jelinski-Moranda (1972), model)

(ii) = a + pi, a> 0, p> 0
G(x) = 1 - (1 + x)-p, x >0, p> 0
(Littlewood and Verrall, 1973)
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(iii) Yj'1 = aexpt-ifii), a, <{) > 0 
G(x) = 1 - exp(-x), x >0 
(Cox and Lewis, 1966; Moranda, 1975)

To show that (i) and (ii) imply a limitation on reliability 
growth, let Zx, Z2, . . ., be i.i.d with cdf G(x) . Further, let

qXJ = log (v/vfj), 1 <i<j (2.8)

and consider the following representation implied by (2.7) :

logtYj/Yj) = q1} + log (Zj/Zj), 1 <i<j (2.9)

If each q^is bounded above by a known constant, say q °, that 
depends on i and j, then the distribution of logtY^/Yj) is 
shifted below that of

q^0 + log ( Z j / Z , )

The latter implies
P(Y3> Yj exp (q13°)) = P (log (Ŷ  /Yi) > qiJ° )

= P(qtJ + log (Z3 / Z 1) > q L ° )

< P(Zj > zt)
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00
= J [l-G(x) ]dG(x) = 0.5 (2.10)

o

Thus for i < j, Yj can exceed a certain scalar multiple 
of Yj with probability not exceeding 0.5.

To determine the constant q^0 in case (i), write

= log [(1 -yi) (1 -yj)'1] (2.11)

where, y={v +1)_1, and i, j < V implies yi < 1 and yj < 1. Since 
qtj is nondecreasing in y, and y <  (j+1)"1 it follows that q^0 
= log(j-i+l) is an upper bound on q^.

Similarly, in case (ii),

qu= log [(1 + Yj) (1 +Yi>'1], 1 <j (2.12)

where y = p/a and qXj is nondecreasing in y. In this case the 
maximum value, obtained in the limit as y-* oo, is q^^ log(j/ 
i) -

The existence of known upper limits implies a limitation 
on reliability growth since the intervals between failures 
are unlikely to increase rapidly if the model giving the 
upper limit is the true model. However, the simplicity of
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these models is attractive and they can be a useful tool for 
estimating the reliability achieved during debugging.

2.8 Stopping Rules

Stopping rules for deciding when a program is completely 
debugged have been proposed by Nayak (1988) and Goudie 
(1990). The context of their discussion, described in more 
detail in Chapter 3, is a Markov chain (Xn, Yn) where Xn is 
the number of distinct errors detected by the nth epoch and 
¥,= n - Xn. A transition occurs from (Xn, Yn) = (x, y) to (x+1, 
y) with probability (v-x)/v, or to (x, y+1) with probability 
x/v. The parameter v is the initial number of errors in a 
program and thus debugging must terminate after a fixed 
number of transitions occur. A well known property of Markov 
chains is that the waiting times in states i=l,2,...,v- 
1 (i.e., between distinct error occurrences or, equiva
lently, between changes in Xn) are independent random 
variables with geometric distributions.

Nayak (1988) proposed deciding that all errors have been 
eliminated when Wj first exceeds a positive integer chosen 
so that

a > p(Wj > k4; v =i+l) (2.13)
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where a is a prechosen error level. Since

P (W4 > kt; v =i+l) = [i/(i+l) ]

(2.13) is satified if [aj + 1
where

a= (log a)/ [log i - log(l+i)] (2.14)

and [x] is the integer part of the real number x. Nayak (1988) 
determined the probability of correcting all errors and 
tabled these probabilities for various values of a and v.

Since P (Xj= 1) = 1, the likelihood function based on 
observing Wt/ W2, ..., Wx_j and Xn = x is

where wx = n-1- (wx + w2+...+ w^) . This takes the simpler form 
(Goudie, 1990)

x-1 wr l 
L (V) = { n (j/V) (l-j/v) } (x/v)

w

(2.15)

(2.16)

where c does not depend upon v.
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Goodie's (1990) stopping rule is to decide that all 
errors have been eliminated when

L(x)/L(x+1) = (x+l)n_1/xn

achieves or exceeds a preassigned level A. Goudie (1990) 
derives the probability of correcting all errors and shows 
that the true error level is closely approximated by A"1. In 
comparison to Nayak's (1988) procedure, the likelihood- 
based rule yields a small reduction in the average time taken 
to reach a decision.

For the usual debugging procedure, Forman and Singpurwalla 
(1977) propose an empirical stopping rule based upon a 
relative likelihood function. In a similar context Ross 
(1985) studies a stopping rule which takes into account the 
error level and provides an upper bound on the proportion 
of the time testing terminates with the total failure rate 
exceeding a prior chosen constant.
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Chapter 3

Estimation in a Family of Marked 
Poisson Error Recapture Models

3.1 Introduction

To describe the detection, removal, and recapture of the 
errors in a computer program, Nayak (1988) assumed that the 
first occurrence times follow the Jelinski-Moranda (1972) 
model and that each of the errors again occur according to 
independent homogeneous Poisson processes with a common rate 
parameter <jj. Let n lt ..., icR denote the sequence of programs 
obtained by correcting errors in an initial program jcd at 
times Sl7 S2, ..., SR. A comparative method, known as back- 
to-back testing (e.g., Vouk, 1990), may be used to observe 
repeated error occurrences; e.g., if an error is detected

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3: Estimation 26

in 7ti_1 at time SJf then comparing the outputs of Jti_1 and K l 
gives the number of times this error again occurs during the 
remaining test time. Since 71̂  and 7tA differ only by the 
correction made at time Si, any differences in their outputs 
are due to the fault that resides in which has been
corrected in jij. This method continuously replicates error 
detection and thus it is likely to yield more data per unit 
of test time than other designs.

Empirical evidence (Nagel, Scholz, and Skrivan, 1982) 
indicates that errors may occur with different probabilities 
and that errors with the highest occurrence rates are likely 
to be detected early. Since errors are seldom detected in 
the final program, inference about its reliability must be 
based on the error frequencies observed in the previous 
versions.

In this chapter we consider a family of marked Poisson 
process models in which the first and subsequent error 
occurrences are described by a Markov chain. The transition 
probabilities (Section 3.2) are determined by a discrete 
distribution G with tail probabilities G(i, 0), which are 
also the probabilities that the successive programs produce 
errors. Nayak's (1988) model assumes G is a discrete uniform 
distribution with mass at 1,2,...,v where vis an integer 
parameter that represents the number of errors in the initial
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program xc0. The family of models considered in Section 3.2 
does not embed Nayak’s model, although it is a more robust 
family since G(i,0) may decrease in i=0,l,2,.. at different 
rates for particular cases.

The probability G(R, 8) that the final program produces 
errors necessarily depends on the number R of faults 
eliminated during the period of testing. In this way, the 
problem of estimating G(R, 8) is analogous to that of 
estimating the number V-R of remaining errors in Nayak’s

— -  A  A

model. An estimate of G(R,0) is G(R, 0) where 0 is the maximum 
likelihood estimator of the parameter vector 0. In Section

*— ^  A3.3, a scaled logarithmic function of G(R, 0) and G(R, 0) is 
shown to have a limiting distribution identical to that of 
a linear function of N 1/2 (0-0) where N is the number of events 
observed during the period of testing. Confidence levels for 
estimating G(R, 0) are obtained by simulation and compared 
with the nominal confidence level given by the limiting 
normal distribution.

Similar, though usually different models have been used 
in a biological context (Sandland and Cormack, 1984, 
Huggins, 1989, Goodman, 1953) to estimate the size of animal 
populations. The model studied by Sandland and Cormack 
(1984) seems most closely related to the model studied in 
this chapter, although it does not describe the time
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dependency of subsequent error occurrences. A more recent 
paper by Nayak (1991) considers a model derived from the 
superposition of independent homogeneous Poisson processes.

A comparison of the asymptotic variances of parameter 
estimators given by recapture debugging and by the 
repetitive-run procedure of Nagel, Scholz, and Skrivan 
(1982) is made in Sections 3.5 and 3.6 to determine which 
of these procedures efficiently uses the test time. The 
comparison assumes identical models for the first occurrence 
times and that testing is performed for time periods of equal 
length under the two testing strategies.

3.2 The Model and Likelihood Function

The first and subsequent error occurrences can be 
modeled by a Markov chain { (RJ# Z J } where Rt is the number 
of distinct errors detected by the ith epoch and Zl is the 
error state at the ith epoch. At each epoch either a distinct 
new error is detected or a previously detected error again 
occurs. From state (R£, Zt) = (r, z), z=l,2,...,r, a transition 
occurs to state {r+l,r+l) (a new error is detected) with 
probability G(r,0) or to state (r,i), i < r, whenever a 
previous error again occurs, with probability g(i,0). The
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times Tj, T2, . . at which these events occur are assumed to 
follow a homogeneous Poisson process, where {(Rx, ZA)} and 
{Tj} are assumed to be independent. As a consequence of our 
assumption that {T£> is a homogeneous Poisson process, the 
number N of events occurring in a fixed interval (0,t) has 
a Poisson distribution with mean at. The model for the event 
occurrence times and the first and subsequent error 
ocurrences can be specified by the initial error rate a and 
the distribution function G(x,0) of a discrete random 
variable with mass g(i,0) on the positive integers. The 
survivor function G (x, 0) =1-G (x, 9) determines the probabil
ity G(i,0) that the ith program produces errors.

Let B denote the set of epochs at which previously
detected errors again occur; that is, B={i: z{ < rM ,
i=l, 2, ..., n}. The likelihood function based on observing N=n
and (R^Z^Tj), i=l,2,— ,n is

r
ng(zif0) ndi-1,0) = L.taJL^O), (3.1) 
i e  b  i = 1

(0<t:<.. .<tn<t, i=ra < r2<...< rn < n, 

Zj=i, 2, -.., rj, i=i, 2, ..., n),

where L, (0) = 1 if n=0 and where R = r is the number of distinct2 n
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errors detected during the first n epochs/ that is, during 
the interval (0,t).

The hitting frequencies MJf M2, ..., of the first, second, 
etc., detected faults are given by M= X,__I(Z=i), where1 Jv D J
I (A) is the indicator function of the set A. Since does 
not include the first time that the ith detected error 
occurs, we have 5^ ML + R = N. In terms of M2, MR,
(3.1) can be written

r  m i -a n e‘at II [g(i,0) ] G(i-1,0) . (3.2)
i=l

It should be noted that, (3.2) reduces to the likelihood 
function studied by Nayak (1988) when G is a discrete uniform 
distribution with mass at l,2,...,v where v is an integer 
parameter.

Let n..< n,, < ... < n, denote the ordered elements oflu ii i nt(u
{j: z =i, j=l,2...,n}, i=l,2,— ,r. Then Su= T defines 
the first occurrence times S10 < S20 < ... < Sr0, hereafter 
denoted by S:, S2, ..., Sr, and also the times Su < S12 < ... 
< Sj n at which the ith detected error again occurs during 
the interval (Sl7t), i=l,2,...,r.

The Jacobian of this transformation is equal to one and 
thus the joint density function of (R, Ml7 M2, Sx,
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S2'***' Sr' Sn, S12, ..., SR1, SM, . .., SRK(R)) is

r mi _a n e-0' n [g(i,0) ] G(i-1,0)
i-1
r

(n= r + £ 11̂ , mA=0, X# 2, . . ., 0<s1<s2<, .. <st<t, 
1=1
si<su<si2<* * • mtu . . ., r)

The marginal density function of (R, MJf M2, .. . ,M , S2, S2, ..., 
SR> is

r m. _ m.
a ne-at n [g(i,6) ] lG(i-l,0) (t-st)1 /m^ (3.3)

i=l

(0<s1<s2<.. . <sr<t, m^O, 1,2,...,
r

i=l,2,...,r, n= r + Z m t/ r=l,2,...)
1=1

and is e*a!: if r=0. Since N = R + Mt, it follows from (3.3) 
that (R, M:, M2,...,Mr) is a sufficient statistic and thus 
applications of the model do not require observation of the 
event occurrence times. The latter information, however, may 
be useful for checking whether the spacings St- Sj.,, (So=0) 
have nonexponential distributions.
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Our discussion concerns the family of models defined by

G(i,8) = expC-Qj alt - 82 a2i), i=0,l,2,... (3.4)

g(i,0) = [l-exp(-01bli- 02b21)] exp (-0X a ^ -  e2a2>1_,),

l 1,2,. . « .,

where 81 > 0, i=l,2 are unknown parameter values, bn = aa- 

ai,i-i' b2i = a2i"a2,i-i' and ân ^ {a2i} are known constants that 
satisfy a10= a20= 0, an, a2i are nondecreasing in i=0,l,2, ..., 
and lim au= lim a21= oo, as i tends to infinity. The latter 
conditions are implied by the requirement that G(i,0) be a 
survivor function. Particular cases of (3.4) are an= i, a21=i2 
or au= i, a2i=log(l+i) .

In Section (3.4), we note the equivalence of the model 
defined in the present Section to another form of the model 
in which the gaps Y: = Sj-S^, (SQsO) between the first 
occurrence times have independent exponential distributions 
with rate parameters X =aG(i-l, 0) . In the latter context, 
setting 02=O and au=i in (3.4) gives the log linear rate model 
studied by Moranda (1975) and Cox and Lewis (1966).

Since the second factor of (3.2) does not depend on a,
Athe maximum likelihood estimate of a is a= n/t. With g(i,0)
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given by (3.4), the log likelihood function given by the 
second factor of (3.2) is

r r
/2(0) = Enijlog [1-exp (- 0a bn- 02b21)] - OjZfn^+l) a: ̂  

i“i i=i
r

-02 Z (rn̂ l) a2 ̂  (3.5)
i=i

If n< 1, then r< 1, m^O and l2 (0) is constant in 0. If n>l 
and r=l, then (3.5) takes its maximum value at i=l,2.
Otherwise, l2 (0) is concave in 0 (see Appendix A), and an

A
estimate 0 that maximizes (3.5) is the unique solution to 

r r
2m1bji[exp(01b11 + 02b21)-l]_1= Z (n̂ +1) a^^, (j=l,2) (3.6)
i=l i=l

3.3 Confidence Limits

An estimate of the probability that the final program
— A A

produces errors is G (R, 0 ) where 0 is the maximum likelihood 
estimate of 0. Let a1 = au + a21. Then

N 1/2 aR_1 [log G (R, 0 ) - log G (R, 0 ) ]

• -N >«a,- [<0~- 0.) a„ + < ea - 0;) a„] <3.7)
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In a later Section we show that (3.7) has a limiting (t—► 
oo) normal distribution with mean zero and variance a'I.1 av

where a!=(alf a2) , a^ lim au/aj/ a2= lim a21/aj, as i—*oo, and 
Ig1 is the covariance matrix of the joint limiting 
distribution of N 1/2 ( 0X - 0t) and N 1/2 ( 02- 02) . This assumes 
that the limits a: and a2 are finite, which is true if au=i, 
a2J= i2 and for other models within the family defined by 
(3.4) . The basic idea behind (3.7) is related to the 8-method 
as discussed, for example, by Rao (1973, pp. 385-388).

Approximate 100(1 —p) percent confidence limits (L̂ Uj) 
for G (R, 0) are

Lj = G(R, 0 ) exp(-N -1/2 aR Y1/2 z,.p/2)

Uj = G(R, 0) exp ( N _1/2 aR Y1/2 Z ^ )

vjhere Z 2 is the upper l-p/2 percentage point of the
standard normal distribution. Since R diverges (t —»oo) in 
probability to infinity, y can be consistently estimated by 
y= b'l^b, where b'^b^ b2), and b  = a1R/aa, b2= a2R/aR.

The probability that the final program produces no 
errors during any subsequent time period of length y also 
depends on R and is
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Qr = exp(-X.Rtly), y > 0

— A A - A

where, A.j= aG (i-1, 0) . Letting QR = exp[-aG (R, 0 ) y], we have

N 1/2 aR_1 log [ (log QR ) / (log QR) ] = N 1/2 aR_1 (log a - log a)

- N-'=a„-> [ C e7 -ex) a1B + (8,- e2) a;>) (3.8)

where since aR diverges to infinity in probability, the first 
term on the right of (3.8) converges in probability to zero 
and the second term has the same limiting normal distribution 
as the quantity in (3.7). Confidence limits for -log Qa are

L2 = (-log qr) exp[-N~1/2aR y1/2 Z1-p/2]

U2= (-log Qr) exp [ N ~1'2 aRy1/2 Z ^ ]

Table 3.1 shows simulated percentages of the time that 
the confidence limits cover G(R,0) and QR. The simulated 
percentages fall close to the nominal 95 percent level when 
E (N) is large, and are sometimes about 10 percentage points 
below the 95 percent level when E(N) is small. Since G(R,
0) and Qr will tend to take values at the extreme endpoints 
of the interval (0,1) whenever E (N) is large, the quantities 
being estimated are necessarily extreme values as t —»oo. As
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shown in Table 3.1, the widths of confidence limits are 
similar in magnitude to G(c,0) and Qc where c=E(R), although 
the confidence limits are not designed to cover the latter 
quantities.

The simulations were performed by generating 1,000 
realizations of the sufficient statistic (N,R, M1# , MR) .
Each replicate requires generating a realization N=n of a

/N
Poisson random variable having mean at. If Rn<l, then 0n 
is undefined; if this event occurs, it is counted as one trial 
for which the confidence limits do not include the quantity 
being estimated. If n>l, the sufficient statistic can be 
written as a function of i.i.d random variables X:, X2, ..., 
Xn with density function g(i,0). That is,

Ro=0, Rj=l, and R  = Rw  + I (Xt > Rw ), i=2,3, ...,n

n
I(Xj < R h , Xj =i), i=l, 2, . . . ,Rn.

j=l

From this it follows that the sufficient statistic can be 
computed sequentially from independent random variables 
having a uniform distribution on the interval (0,1).
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3.4 An Equivalent Form of the Model

We now show that the following assumptions give a 
likelihood function identical to (3.3).

(i) The spacings Y =  S^S^, (Sa=0) between the first
occurrence times are independent random variables with 
density functions X L exp(-Xj y), y > 0 where, Xj= a G(i- 
1, 8) .

(ii) Counts Mj= M^S^t) of subsequent error occurrences have 
distributions determined by a collection (M^t)} of 
independent homogeneous Poisson processes with rate 
parameters X - X U1.

(iii) {Sj} and (M^t) } are independent collections of random 
variables.

This form of the model, originally suggested by Nayak (1988), 
explicitly describes the first occurrence times and thus it 
directly relates error recapture models to the more common 
reliability growth models.

By interpreting X L as the hitting rate of the remaining 
faults after i-1 faults have been corrected, 2̂ = X t~ X uiis 
then the change in this rate due to correcting the ith
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detected error and 2̂ , i;2, ... can be interpreted as the 
hitting rates of the first, second, etc., detected faults. 
These are average rates in that the errors that are detected 
first, second, etc., may vary from one repetition of the 
experiment to another. The model assumes that the effect of 
correcting faults is additive in that 2̂  + 2; 2 +.. . + £r + Ar+1 = 
A . The parameterization A:= aG(i-l, 0) assumes A; decreases 
to zero. However, A. 4 must decrease to model reliability 
growth and 2; is not a meaningful quantity otherwise.

Let Mj= MjfS^t) denote the number of times the error 
detected at time again occurs during the interval (St,t) . 
The joint density function of (R,Sx, S2, ..., SR, Mr, M2, ...,MH) 
is easily obtained from the fact that M, M, ...,M are 
conditionally, given (R, S1# S2, ..., SR), independent Poisson 
random variables with means 2; (t-Sj) . Since this joint 
density function is identical to (3.3), the model described 
by (i)-(iii) is equivalent to the model in Section 3.2. The 
intervals (S^t) have random length and thus the uncondi
tional distribution of Mx is not Poisson; this seems to be 
the precise way that (i)-(iii) differ from the model studied 
by Sandland and Cormack (1984).
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3.5 The Distributions of R and Svk
If the are all distinct, then Hk(x) = P(Sk< x) can 

be written (Cox, 1962, p.17)

H0(x) =1, H^x) = 1-exp (-XjX), x > 0
k k

Hk(x) = Zxlk [1-exp (-^x) ], x > 0, n lk = n
fi

where the weights 7tik (possibly negative) have a sum equal 
to one. Since P (R > k) = Hk (t) , the distribution of R is given 
by P (R=k) = Hk(t) - Hk+1(t), k=0,l,2, ... By noting that R> 
k and Sk< t are identical events, we also have

P(SR< x | R> k) = Hk(x) /Hk(t), 0< x <t (3.9)

= 1, t < x.

3.6 A Comparison of the Error Recapture and 
Repetitive-Run procedures.

Nagel, Scholz, and Skrivan (1982, 1984) proposed a 
repetitive-run procedure where, after restoring a program
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to its original form, the debugging sequence is repeated, 
perhaps several times, using independently generated series 
of inputs. A run is initiated by randomly selecting an input 
according to a usage distribution, defined as part of the 
original problem specification. Each run consists of testing 
the program on a random series of inputs and correcting 
errors whenever they are detected. The order of detecting 
errors as well as the gaps between the error detection times 
may vary from one replication to another. The repetitive- 
run procedure has been used by Nagel, Scholz, and Skrivan 
(1982, 1984) and also by Dunham and Pierce (1985) to study 
the effect of debugging on the reliability of several 
programs. In this Section we compare the asymptotic 
variances of parameter estimates obtained under the error 
recapture and repetitive-run procedures.

Let VJf V2, ..., Vm denote independent random vectors 
having the same distribution as V= (R, S1# S2, . .., SR) . As in 
Section 3.4, the gaps Y = Sj-S^, between the first occurrence 
times are assumed to be independent and have exponential 
density functions exp (-^ y), y > 0 where, aG(i-l, 0) . 
If testing in each replicate extends over a time period of 
length s, the total test time is then ms. To compare the error 
recapture and repetitive-run procedures, we assume test
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periods of equal length (i.e., ms=t) and that the first 
occurrence times have the same distribution under both 
models. That is, A^is assumed to be given by A,̂  aexp[-0(i-
1)], where a and 0 are positive scalar parameters.

Since Vt, V2, ..., Vn are i . i .d random vectors, it suffices 
to consider the log likelihood function based on one 
observation of V, namely,

00/3(a,0) = Zlog X 1 I (R > i) - 2 (A,1 - A.ltl) st I (R > i)
i=l ir=l

00

- s 2A, 1+1 I (R=i) 
i=0

00 00
= loga 2 il (R=i) + a s 2 [e-41 - e'tt ,1'11 ] (S, /s) I (R > i) 

i=l i=l
00 00

- 0 2 [i (i-1) /2] I (R=i) - as 2 e'°1 I (R=i) 
i=l ia0 (3.10)

The information on (a, 0) given by V is 

bn = -e (d2/da2/3) = E(R) /a2

00

blz = -E(92/3a30i3) = - s E(Re-°R) + s2cilt E[ (sys)l (R > k) ]
k=l
00

b22 = -E (92/90 2 /3)= as E(R2 e-«R) - a s 2 C 21cE[ (Sk/s)I(R > k) ]
k=l
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Cu =k e'ok-(k-l) e** tlc'1’, C2k =k2 e"0k-(k-1)2 e-1 k=l,2,...,

s
E [ (S /s) I (R > k) ] = (l/s) / x dH (x) (3.11)

0
This last expression follows from (3.9) and is also given 
by

 ̂ k
E[(Sk/s)I(R > k)] =Zjclk (1/^3) tl-expf-^s) ] - Znlk exp (■-\s)

i=l i=l

Let (a, 0) denote the maximum likelihood estimator of 
(a, 0) given by m replicates in the repetitive-run procedure, 
and let (a, 0 ) denote similar estimators given by the error 
recapture procedure. The asymptotic variances are

Var(a) = (at)'1 a2 Var(0) = (at)'1 e0(l-e'V

Var(a) = (mb)-1 a2 b22 Var(0) = (mb)'1E(R)

b = b22E(R)-(ab12)

where, in the expressions given for the variances of a and
a
0, N has been replaced by at=E(N).

By substituting t= ms, the asymptotic relative efficien
cies are
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recapture (a, 6) estimators; efficiencies are variance ratios
var( 0) in the numerators.
as e E(R.) e(a, a ) e(e7 e )
80 0.10 22.2 0.22 0.50

0.20 14.4 0.16 0.42
0.30 11.0 0.13 0.34
0.40 9.0 0.11 0.28
0.50 7.7 0.10 0.24

100 0.10 24.2 0.20 0.49
0.20 15.4 0.15 0.38
0.30 11.7 0.11 0.30
0.40 9.5 0.09 0.24
0.50 8.1 0.08 0.20

120 0.10 25.9 0.19 0.47
0.20 16.3 0.13 0.35
0.30 12.3 0.10 0.26
0.40 10.0 0.08 0.21
0.50 8.5 0.07 0.17

150 0.10 28.0 0.17 0.44
0.20 17.4 0.11 0.30
0.30 13.0 0.09 0.22
0.40 10.5 0.07 0.17
0.50 8.9 0.06 0.13

200 0.10 30.7 0.14 0.39
0.20 18.8 0.09 0.24
0.30 14.0 0.07 0.17
0.40 11.2 0.06 0.12
0.50 9.5 0.05 0.09
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Var(a)/Var( a) = b (as b^)'1 (3.12)

Var ( 0 ) /Var ( 6 ) = b[as E (R) ]-1 e® (l-e"6)2 

where these quantities depend only on as and 0.

The calculated efficiencies in Table 3.2 are based on
(3.11), (3.12), and the distribution of R given in Section 
3.5. The relative efficiency varies from about 1 to 13 
percent and thus the time period of testing for the 
repetitive-run procedure may need to be more than eight times 
that of error recapture to obtain the same amount of 
information. The greatest gain in information occurs when 
E (R) is small and this corresponds to programs for which the 
error detection rate is small. The low efficiencies in Table 
3.2 are due to the fact that the repetitive-run procedure 
permits each error to be observed at most one time during 
each replicate.

3.7 Limiting Distributions
A

Let 0 denote the maximum likelihood estimator of 0basedn

on observing (R^Zj), (R2,Z2), ..., (Rn, Zn) . In this section we
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A

show that the limiting (n —»oo) distribution of n 1/2(0n-0) 
is identical to the limiting distribution that would be 
obtained if 0n were computed from i.i.d random variables X lf 
X2, ..., Xnthat have density function g(i,0) . The asymptotic 
covariance matrix is then Ig1, I0=(I13), where I = E0{-32/ 
30^0^ [log g(X,0)]} and X has density function g(i,0).

In terms of Xx, X2 , ..., X n, the log likelihood function 
based on the second factor of (3.1> is

n n
l2 (0) = Slog g(Xt,0) I(Xx < R^) + E log GfR^,©) I (Xt > RH ) 

i=l i=l

where Rfl=0, R:=l, and R  = R|t_1 + I (X̂  > R^), k=2,3, ... 
n

Let / (0) = 2 log g(X1,0) and note that 
i=l
n _

l2 (0) - / (0) = L K X ^  R^) [log g(X1#0) -log G(R1_1,0)] 
i=l

To simplify this last expression, let 1=^ < n2<...< nr<n 
denote the epochs at which X L > R1-a. Conditionally, given Nx= 
n1# N2= n2, ..., Nr = nr , and Rn = r, the set Xn(1), Xn{2) , .. 
Xn(r), consists of independent random variables with density 
functions hk (i,0)=g(i,0)/G(k-1,0), i=k,k+l,...
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Since the conditional distribution of XN(1), XN{21 , ..., 
XN(r), depends on N, , N2 , ..., NR and Rn only through Rn, it is 
simpler to let Y1 , Y2, ..., Yrbe independent random variables 
with density functions h^fi,©), k=l,2,...,r. Then

Rn

l2 <0) - /(9) = 2 log h^Y^S) (3.13)
k=l

and

-32/30p30q log hk(i,0) = bplbql [exp (01 bn + 82b2i) -I]'2

exp (8X bn+ 02 b2i) (p,q=l,2, i=k,k+l,...)

By using the relations ex{ ex-l)-2 ={ex +e_x-2)_1 and ex 
+ e"x -2 > x2, we obtain

|-32/30p30q [log hk(i,8) ] | < (0p0q)_1 (p,q=l,2) (3.14)

Our remaining discussion requires the notation

U 1=  3 / 0 0 ^ 2 ( 6 ) ,  v=  3/ a e 1 / < © ) ,

Wlk- S/S^log hk(Yk#6)# (k=l,2, . . ., r)
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Since E(Wlk) = 0 and E (Wlk2) - - E [d2/d%i dQ1 log hk(Yk,0)] 

we have from (3.13) and (3.14) that
R n

Var (U.-V ) = E ( Z W 2) 
k=l

< E(R), (i=l,2)

Thus n‘1/2 (Vj - Uj) converges (n —*co) in probability to zero 
providing limit n'1E(Rn)=0.

The representation of Rn given earlier in Section 3.3 
implies

n
Rn = 1 + 2 I (Xj > Rj.j) ]

i=2
n-1

E(Rn) = 1 + 2 E  [G (Rj, 0) ] (3.15)
i=l

where, since n_1E(Rn) is an average of the terms on the right 
of (3.15), it suffices to show that lim E [G(Rft,0)3=0. This 
limit is easily obtained from the fact that Rn tends to 
infinity in probability, and thus further details are 
omitted.

Since V=(V1,V2) is a linear function of i.i.d random 
variables, the preceeding discussion shows that n'1/2 V and 
n"1/2 U are asymptotically equivalent and that n~1/2 U has a 
limiting bivariate normal distribution with mean vector zero
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and covariance matrix I0. The usual consistency and Taylor 
series arguments (e.g., Cox and Hinkley, 1974) imply that

A

n 1/2(0n-9) has a limiting bivariate normal distribution with 
covariance matrix I,,1. Since {Tn} and {Rt,Zj) } are independent, 
n 1/2(0n- 6) and n 1/2(n/Tn - a ) are also independent. By Theorem 
8.1 of Serfozo (1975), (see also Karr, 1986, p. 406) N 1/2(a

A

- a) and N 1/z(0 - 0) have asymptotically (t —*oo) independent 
normal distributions with variance a2 and covariance matrix 
Ig1, respectively.
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Application to Repetitive-Run Data

4.1 Introduction

Nagel, Scholz and Skrivan (1984) observed that many 
models have been introduced in the literature, but without 
a clear statement about the mathematical and statistical 
foundations that motivated the model. They pointed out that 
for a consistent theoretical foundation, a deeper under
standing of the process is needed. As an attempt in this 
direction, they conducted a series of experiments consisting 
of simulations conducted on code prepared according to a set 
of requirements and executed with randomly selected inputs. 
The code is initialized to an original state then tested on 
randomly generated inputs. Errors are corrected as they are 
encountered until a stopping rule is satisfied. Replication 
is introduced by repeating the entire process from

50
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initialization. The following section gives further details 
concerning the testing process.

4.2 Description

The simulations are initiated by generating random 
inputs according to a distribution, called the usage 
distribution, defined as part of the original problem 
specification. After correcting an error in the program, 
other inputs are generated independently and the process is 
repeated. If for some execution an error is indicated, the 
error is recorded together with the number of executions 
since the last error, and the error is corrected.

The simulation begins with the program in its initial 
state. This state is reached when the program successfully 
compiles and correctly executes a number of predetermined 
test cases. These tests are defined as static tests for a 
given specification and the program must pass these static 
tests as well as successfully execute the input causing 
failure before simulation can be reinitiated. Once reini
tiated, the process is repeated error by error until a 
stopping rule is satisfied. Termination of the experiment 
occurred when an error is detected that is too costly to fix
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or an upper bound on the number of inputs is reached, 
whichever comes first.

Traditional tests on software force the experimenter to 
predict the reliability of the program from a single 
manifestation of the error process. To observe different 
realizations of the order of detecting errors the program 
is restored to its original state and testing is repeated, 
using another randomly selected input sequence. The 
experimental flow for each run is exactly the same except 
for the consequences of using different inputs. Each run may 
generate different random errors in different orders and 
with varying spacings between the error detection times.

4.3 Software Error Categories

The following list describes the category of different 

possible software errors in a program:

Computational Errors

Incorrect operand in logical sequence 
Incorrect use of parenthesis 
Sign convention error 
Unit or data conversion error
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Computation produces an over/under flow 
Incorrect/inaccurate equation used 
Precision loss due to mixed mode 
Missing computation 
Rounding or truncation error

Logical Errors

Incorrect Operand in logical expression
Logic activities out of sequence
Wrong variable being checked
Missing logic or condition tests
Too many/few statements in loop
Loop iterated incorrect number of times
Duplicate logic

Data Input Error

Invalid input read from correct data file 
Input read from incorrect data file 
Incorrect input format 
Incorrect format statement referenced 
End of file encountered prematurely 
End of file missing
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Data Handling Errors

Data file not rewound before reading 
Data initialization not done 
Data initialization done improperly 
Variable referred to by the wrong name 
Bit manipulation done incorrectly 
incorrect variable type 
Data packing/unpacking error 
Sorting error 
Subscripting error

Data Output Error

Data written on wrong file
Data written according to the wrong format statement
Data written in wrong format
Data written with wrong carriage control
Incomplete or missing output
Output field size too small
Line count or page eject problem
Output garbled misleading
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Interface Errors
wrong subroutine called
Call to subroutine not made or made in wrong place 
Subroutine arguments not consistent in type, units 
Subroutine called is nonexistent 
Software/data base interface error 
Software/Software interface error

Data Definition Errors

Data not properly defined/dimensioned 
Data referenced out of bounds 
Data being referenced at incorrect location 
Data pointers not incremented properly

Data Base Errors

Data not initialized in data base 
Data initialized to incorrect value 
Data units are incorrect

Operation Errors

Operating system error 
Hardware error 
Operator error
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Test execution error 
User misunderstanding/error 
Configuration control error

Documentation Errors 

User manual
Interface specification 
Design specification 
Requirements specification 
Test documentation

4.4 The Likelihood Function

The repetitive-run procedure yields several realiza
tions of (R, S1,S2, . ..,Sa), where R is the number of failures 
observed during an interval (0,s) and S:,S2, ...,SR are the 
ordered failure times. As before, the gaps Y =  Sj-S^ (SQsO), 
i=l,2,... are assumed to be independent random variables 
with exponential density functions

f (y) = ^exp (-\y), y > 0  (4.1)
where

\=aG{i-l,0) (4.2)
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Although this parameterization is identical to the one 
studied in Chapter 3, the two models differ in fundamental 
ways; e.g., except for the fact that R has a discrete 
distribution, the observations here have continuous distri
butions whereas the sufficient statistic for the error 
recapture model has a discrete distribution.

Let s1 denote the length of the period of testing in the 
ith replicate and let V i = (R^ Yn, Y12, . . ., YlR(1J+1) , i=l,2,..., 
m denote the observations obtained in m replicates, where 

YiR(iin is the sPacin9 between Sj and S1R(1) with Su, Si2,
• * -'Siru> the times at which errors are detected in the
ith replicate. Under the assumption that V1#V2, ...,V are 
independent random vectors and that Y2, ..., have indepen
dent exponential distributions, the full likelihood func
tion is

m Rt R^l
L(a,0) = n I I n exp(—X3y1;J) (4.3)

i=i j = i  j=iwhere

X 3 = aexp(-01 a 1 ̂  - 02 a2 , j=l,2,..., (4.4)

and

a1/3=j, a2(3 = j2
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Let Dk= {i: Rj> k}, k=l,2,... and note that ylk is an 
observed quantity whenever i 6 D̂ . By substituting from 
(4.4), the log likelihood can be written as

lnL(a,0)=A1lna-eiBI-02B2- aCr aG (1,0)C2 -aG (2,0) C3
(4.5)

where
m

A, = ZR,
ial

m Ri
B = 2 2 a1 , j , l.Mi=l j-1

m Rt
B2= 2 2 a

i=i j=i

ck = 2 y (k=l,2, ...)

G(k,0) = exp <- 0j alk - 02 a2k) 

G(0, 0) = 1.
k=l,2,..., (4.6)

An estimate (a,0) that maximizes (4.5) is the solution
to the system of equations
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A1/a-[Cl+G(l,8)Ca+ G(2,8)C3 = 0  (4.7)

B: +
Airau G{l,8)C2 + 3,36(2,8)03 +...+...) 

[C1+G(1,0)C2 + G (2,0)C3 +... + ...]
= 0 (4.8)

B2 +
AJaj, G (1,0)02+3220(2,0)03 +

[0^0(1,0)02+ G (2, 0) C3 ]
- 0 (4.9)

Since (4.8) and (4.9) depend only on 0, 0 can be obtained
A

by solving the last two equations and then substituting 0 
into (4.7) to get a.

Under the stopping rule described earlier in this 
chapter, the period of observation in each replicate ends 
with a failure. A common data modification in such cases 
(e.g., Pedersen, 1979) is to treat the period of observation 
as being a fixed interval (0,3^, where Sjis actually the 
occurrence time of the last observed event.

4.5 A Test of Fit

Each replicate may produce a different final program, 
so the main parameter of interest is less clear than for the
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error recapture procedure. However, the constants {au } and 
(a21) must be selected prior to fitting a model.

Consider the case au= i, a21= i2 and the following two 
submodels of (4.4)

XU1 = a exp (-8j i), a > 0, 0X > 0 (4.10)

X1+1 = aexp(-02 i2), a > 0, 02 > 0 (4.11)

and we determine whether an adequate fit can be achieved with 
the latter.

Let Lfot/O^O) denote the likelihood function corre
sponding to (4.10) and similarly let L(a, 0,0 } be the 
likelihood function corresponding to (4.11). Then

lnL(a,01,O)=AIlna-01BI-aC-aG(l,01,O)C2 -aG(2,01, 0)C3 -...
(4.12)

lnL{a,O,02)=A1lna-02B2-aC-aG(l,O,02)C2-aG(2,O/02)C3 . .
(4.13)

The estimating equations corresponding to (4.10) and (4.11)
are obtained by setting 02=O in (4.8) and 0^0 in (4.9).
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Consider the following subsets of the total set of 
parameter values,

Q' = {(ctjê Bj): a>0, 0^0, 02>O} 

ft10= {(a,©̂ ©.,): a>0, 0^0, 02=O} 

Q01= {(a,0:,02): a >0, 0^0, 02>O}

where Q 10 and £201 denote the parameter sets corresponding to 
models (4.10) and (4.11), respectively. In this context, a 
test of fit of the model defined by (4.10) is a test of the 
composite null hypothesis 02=O versus the one sided 
alternative 02>O.

Let Wjbe the likelihood ratio statistic for the simpler 
model (4.10). For a large number of replicates and under 
suitable regularity conditions (Cox and Hinkley, 1974), the 
null distribution of the likelihood ratio statistic W is 
approximately a chi-square distribution with 1 degree of 
freedom where Wxis given by

max LfCt/Q̂ Qj)
(a, QltQ2) e Q 10

0-i/2 =   (4.14)
max L (a, Gx, 02)

(a,01,02)6Q
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and fi = £210 + £lr is parameter space for the full model. 
Similarly, with Q=£201+Q/the likelihood ratio statistic W2 
corresponding to (4 .11) can be defined in a form like (4.14) .

4.6 Numerical Example
The data in Appendix B was collected by Nagel, Scholz, 

and Skrivan (1984) and are times between failures observed 
in 50 replicates when using the repetitive-run procedure. 
A program run consists of testing the program on a randomly 
selected input series and correcting errors whenever they 
are detected. The runs are replicated by restoring the 
program to its original form and testing it again on another 
randomly selected input series. Each run terminates when an 
error is detected that is too costly to fix or when an upper 
bound on the length of an input series is reached.

Part of the analysis of the data in Appendix B given by 
Nagel, Scholz, and Skrivan (1984) assumes that the waiting 
times (i.e., numbers of executions) between failures have 
independent geometric distributions with parameters {pt) . 
They define p1 as as the conditional probability that a random 
execution of the program will result in an error given that 
i-1 errors have been corrected. By plotting estimates of log
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pj, i=l,2,..., they conclude that log pt is linear in i, 
i-l,2, » . .

As noted by Miller (1988), the geometric distributions 
can be approximated by exponential distributions whenever 
the quantities ptare small. A continuous approximation to 
the geometric model assumes that the waiting times have 
independent exponential distributions with rate parameters 
Xj = pj. Then log pt is linear in i, i=l, 2, . .., only if takes 
the form A,s=aexp[-0 (i-l) ], a>0, where Bis positive whenever 
reliability improves as faults are removed from a program. 
The log linear rate model was proposed by Moranda (1975) and 
also appears in Cox and Lewis (1966) .

Using the data in Appendix B and fitting the more general 
form of the model described in Sections 4 .4 and 4.5, we obtain

A A  A

the estimates (a, 9ir 02) = (0.37, 1.07, 0.0). The maximum of 
the log likelihood (4.5) is -2232.92. The estimates (a, 
0t) = (0 .37,1.07) and (a, 02) = (O.O64, 0.132) maximize the
likelihood functions corresponding to the simpler models
(4.10) and (4.11), respectively. The respective maximum 
values of the log likelihood are -2232.92 and -2356.41. 
Further the necessary calculations for W: and w2 yield their 
respective values as W^O.O and W2=246.98. The upper tail 
value of the chi-square distribution with one degree of 
freedom at the 5 percent level of significance is 3.84. Since
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W2exceeds this value, the full model (4.4) is preferred over 
the corresponding simpler model (4.11), and the small value 
of Wj indicates no difference in the fit of models (4.4) and
(4.10). Further, since (4.11) is rejected and (4.10) is 
accepted by the likelihood ratio test, (4.10) (i.e., the log 
linear rate model) is the best fitting model.

The Newton-Raphson method was used to solve the 
nonlinear estimating equations (4.8) and (4.9). We began 
with an initial approximation (810/820) t îe positive
quadrant close to the origin and repeatedly improved it. At 
the ith stage when there is no further improvement, (0u/82i) 
is the approximation to (0X, 02) .

To check whether the estimates found above actually 
maximize the likelihood, the values of likelihood function 
were calculated inside a fairly large grid of (8^6^ values. 
These values, not shown here, indicate that the calculated 
values of the estimates yield the maximum of the likelihood 
function.

Our purpose in this section is not that of proving that 
any particular model will give a better fit than another 
model. Since the rate at which errors are detected and 
eliminated is likely to vary from one program to another, 
the goodness of fit of a model must generally be examined 
to avoid overly optimistic prediction of reliability.
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In comparison to the log linear rate model (4.10), the 
above results indicate that no improvement is realized by 
including the extra term a2i = i2. This conclusion was also 
reached by Nagel, Scholz, and Skrivan (1984), not only for 
the data in Appendix B, but also for other programs they 
tested. Miller (1988) has pointed out, however, that the log 
linear rate model is unlikely to be a universal model. The 
example he gives is a system consisting of two software 
modules which, if tested separately, the failure times are 
assumed to follow a log linear rate model. If the two modules 
are then combined and tested as one system, he argues that 
the failure rates cannot then exhibit a log-linear pattern.
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Lemma A: Show that l2 (0) in equation (3.5) is concave in 0^0, 
i=l,2.
Proof: Let U=(uw) , p,q=l,2 where

A h’1 h« c'

q  = e x p t O j b ^  02b2l) [expfOjb^t 02b21) - l ] -2

We have uu > 0 and

<uu»»-»»> (SC,)- - <S Vf,) (L V  *!>-(* b„ b„ f,)!
i=l i=l 1=1 i“l
r

where f =  CL/ ZC^. Since bu >0 andb21>0, Holder’s inequality 

implies un u22 - u122 > 0. Thus U is positive semidefinite and 
the latter implies that l2 (0) is concave in 0t>O, i=l,2, (e.g., 
Beltrami, 1970, p. 74).

66
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Table B.l: Times between the occurrence of program errors 
in m=50 replicates. (Nagel, Scholz, Skrivan, 1984)

1 3 26 72 51 1039 16 1898
1 3 45 10 257 112 6 1032
2 23 115 500 111 1969 9887 
1 10 5 16 69 1059 909 256
3 2 45 96 461 129 404
1 1 29 16 100 2052 1081 1025 
1 23 8 17 83 4140 8842 2120 
1 1 55 75 17 33 929 597 
3 62 116 147 472 2551 4353 
1 4 1 88 20 40 372 940 
1 1 24 3 129 255 3514 12613 
1 58 36 105 777 83 2380
1 4 13 37 43 6 435 789
2 5 5 17 175 323 3865
1 1 1 44 698 210 462
2 36 112 57 348 857 248 440 
1 3 82 220 227 898 4906 310 
1 4 25 179 46 634 2261 2947
1 2 24 23 237 132 866 27273
3 4 13 17 65 1165 70 1236
2 50 62 64 89 2504
1 1 1 26 109 137 5662 2359 
1 3 20 9 2285 171 5491
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2 3 26 164 434 1040 2890
1 3 24 21 3 375 108 445 330
3 2 14 210 390 412 308 2162
1 2 32 24 133 213 292 1532 1771
1 1 24 93 118 833 462 758
1 3 5 73 130 393 361 8285 622 
1 3 52 26 115 707 22 1855 1252
1 1 15 60 114 135 110 38
1 4 2 55 77 1007 89 391 
1 5 89 173 351 80 765 4801 
1 3 17 2 543 4171 4262 
1 6 1 44 28 771 862 2292 
1 10 104 39 113 1058 622 
1 2 41 12 258 120 3207 
1 1 56 98 91 949 455 9238 
1 2 1 8 120 2232 42 137 444 
3 1 57 29 272 254 1281 5914 
1 2 1 7 34 35 1717 714
1 2 55 25 87 172 143 1382
3 1 11 25 88 344 614 675 294
2 4 23 98 81 89 1057 354 43
1 6 17 215 186 1061 1789
3 1 26 18 123 13 1088 710
2 3 5 8 3 743 199 2477 
1 16 8 84 648 86 62
1 1 25 22 70 335 1037 4270 
1 2 13 63 7 77 306 924
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