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ABSTRACT
ESTIMATION IN TRUNCATED EXPONENTIAL FAMILY
OF DISTRIBUTIONS
LAXMAN M. HEGDE
0l1d Dominion University, 1986

Director: Dr. Ram C. Dahiya

Estimating the parameters of a truncated distribution
is a well known problem in statistical inference. The
non-existence of the maximum likelihood estimator (m.l.e.)
with positive probability in certain truncated
distributions is not well known. To mention a few results
in the literature:

i) Deemer and Votaw [1955] show that the maximum
likelihood estimator does not exist in a truncated

negative exponential distribution on [0,T], T>0 known,

whenever the sample mean x 2 T/2.

ii) Broeder [1955] shows that the maximum likelihood
estimator of the scale parameter of a truncated gamma
distribution, with the shape parameter being known,

becomes infinite with positive probability whenever the

sample mean x 2 «/a+l, « > 0.
iii) Mittal [1984] derives a sufficient condition

for the non-existence of the maximum likelihood estimator
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in a two parameter doubly truncated normal distribution on
[A,B], A < B known. The m.l.e.'s become infinite whenever
the sample variance exceeds (B-3A)2/12.

iv) Barndoff-Neilsen [1978] (BN) gives a set of
general conditions for the existence and uniqueness of a
solution to the maximum likelihood equations in a minimal
representation of a k-parameter exponential family which
depend upon a few results from convex analysis.

Using certain results from BN [1978], we give a
unified approach to the problem of maximum likelihood
estimation in the two parameter doubly truncated normal,
truncated gamma, and singly truncated normal families, and
obtain a set of necessary and sufficient conditions in
terms of observable sample quantities. This approach
basically depends upon characterizing the population and
the sample moment spaces using a monotonicity property of
the moments.

We also study the Bayes modal estimator introduced by
Blumenthal and Marcus [1975] and the harmonic mean
estimator introduced by Joe and Reid [1984]. We present
certain computational results for solving the maximum
likelihood equations in the above families. Simulation
results for the probability of non-existence of the
m.l.e., for the bias vector, and for the mean square error
of the Bayes modal, the harmonic mean and the mixed

estimator are presented.
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l. INTRODUCTION

Research articles on inferential procedures based on
truncated and censored samples appear in the statistical
literature right from the period of R.A. Fisher. There
are a number of examples, particularly in life testing and
reliability theory, wherein truncation and censoring of
observations occur naturally. Typically in life testing
problems, n items are put on test for a fixed period of
time T and inferences are made on the basis of the random
number n of failures during time T under some
distributional assumption for failure times (usually the
negative exponential, gamma, Weibull or log-normal).
Blumenthal and Marcus [1975] consider the above situation
in which a particular defect is identifiable only after
the item fails and study the problem of estimating N, the
total number of items having the defect, under exponential
failure times. There are other examples of truncation and
censoring in quality control, biological studies, and
genetic investigations. We present below a few examples.

i) Cohen [1950a] considers the estimation of
parameters of a normal distribution based on truncated
samples. He illustrates a doubly truncated normal sample

with an example in which a certain bushing is sorted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



through go, no-go gauges, with the result that the items
of diameter in excess of 0.6015 in. and those less than
0.5985 in, are discarded. This is an example in
quality control.

ii) Deemer and Votaw [1955] give applications of a
a truncated negative exponential distribution in bombing
accuracy studies with an example of gun camera missions in
which the view angle of the camera is restricted.

iii) The truncated Poisson typically arises when the
zero class is unobservable, owing to the fact that only
the cases where at least one event occurs are reported
while the total number of cases are unknown. Blumenthal,
Dahiya, and Gross [1973] consider estimating the complete
sample size from an incomplete Poisson sample.

iv) Another interesting example in software
reliability is studied by Joe and Reid [1985]. They
consider estimating the unknown number of bugs in
software based on truncated negative exponential failure
times.

v) In general whenever a random variable assumes
values over a finite interval, it would be reasonable to
model the data by truncated distribution. Student GPA
one such example.

In a survey article, Blumenthal [1981] clearly
defines the problem of estimation of distributional
parameters and the sample sizes from truncated/censored

samples and lists a good number of references on this
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subject.

The censoring or truncation of a random variable X
considered here means that there is a fixed region R where
if X belongs to R, X is not observable. Though both the
concepts have the same definition, they differ in practice
as to how the scheme of obtaining a sample is carried out.
In censored data, the total sample size and hence the
number of missing observations is known, while in
truncated data the number of missing observations is
unknown. It is clear that in truncation problems, both
the distributional parameters and the sample size may be
of interest depending upon the situation. In some
situations, only one of them is of concern and the other
is incidental. Blumenthal [1981] gives an exhaustive
account of the problem of estimating the unknown sample
size. In estimating the distributional parameters, the
conditional approach is followed. That is, the unknown
total sample size is eliminated from consideration by
assuming the number of observations to be fixed and then
examining the conditional distribution of the given
observatons'namely'the truncated distribution. We assume
the truncation region to be known.

The important papers dealing with the estimation in
truncated distributions belong to a general exponential
family such as normal, gamma, log-normal and Poisson. A

thorough survey of such articles may be found in the book
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by Johnson and Kotz (JK) [1980]. A partial review of some
papers is done here in Chapter two. Derivation of the
maximum likelihood estimators is émphasized in most of the
articles. 1In general, the method of maximum likelihood
estimation in a truncated exponential family leads to
solving a system of non-linear equations. Solving the
maximum likelihood equations iteratively is one of the
main concerns in those research papers. The question of
existence and uniqueness of the m.l.e. in truncated
distributions, with all the parameters being unknown,
needs further investigation. However in the simple cases
of one parameter truncated negative exponential and
truncated gamma (shape parameter known) distributions,
non-existence of the m.l.e. is discussed by Deemer and
Votaw [1955] and Broeder [1955] respectively. Mittal
[1984] points out these facts and obtains a sufficient
condition for non-existence of the m.l.e. in a doubly
truncated normal distribution.

Barndorff-Neilsen (BN) [1978] studies maximum
likelihood estimation in exponential families using the
concepts of fullness, regularity, and steepness. As a
particular case, BN [1978] shows the non-existence of
maximum likelihood estimators in the case of a doubly
truncated normal distribution. However, BN does not
give conditions for the existence or non-existence of

m.l.e.'s. Here, we follow BN's exponential

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



theory [1978] and obtain a necessary and sufficient
condition for the existence of a solution to the maximum
likelihood equations in the cases of the doubly truncated
normal, truncated gamma, and truncated log-normal
families.

As an alternate method of estimating the parameters,
Blumenthal and Marcus [1975] introduce the Bayes modal
estimator, which is a mode of the posterior distribution
of the parameter given a prior and the data. The Bayes
modal estimators do not generally have the problem of
non-existence and are asymptotically equivalent to the
maximum likelihood estimators. Also the parameters of the
conjugate prior distributions are selected to minimize the
asymptotic bias. We discuss this estimator for the
truncated gamma and singly truncated normal distributions.

Joe and Reid [1984] introduce the notion of
likelihood intervals and develop a new estimator based on
the harmonic mean of the end points of a likelihood
interval. One of the ideas in this method is that the
harmonic mean of infinity and a positive real number is
again a positive real number. The derivation of the
harmonic mean estimator requires unimodality, with a
possible maximum at infinity, of the likelihood function
which is true for the truncated distributions studied
here. We discuss the performance of the harmonic mean
estimator over the mixed and the Bayes modal estimators

using mean square error and probability of nearness in the
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case of doubly truncated normal distribution.

The scheme of presentation of this dissertation is as
follows:

i) Chapter two contains a review of the literature.
Section 2.1 reviews exponential theory. Sections 2.2-2.4
consider estimation in truncated normal, gamma, and
log-normal families. Finally Section 2.5a deals with an
asymptotic theory of Bayes modal estimators and Section
2.5b introduces the harmonic mean estimator.

ii) Chapter three investigates a two parameter
truncated normal distribution from the point of view of
BN's exponential theory. Derivation of a necessary and
sufficient condition for the existence of maximum
likelihood estimators is discussed. The performance of
the harmonic mean estimator in relation to the Bayes
modal and mixed estimators is evaluated. Certain
interesting computational results are also presented.

iii) Chapter four deals with a two parameter
truncated gamma family. The question of existence of the
m.l.e. and the Bayes modal estimator is discussed. Some
computational results pertaining to solving the maximum
likelihood equations are presented. Simulation results
for the probability of non-existence of the
m.l.e., the mean square error, the bias vector (the length
and direction), and the probability of nearness are
discussed.

iv) In Chapter five, the same problems considered in
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Chapter three are studied for thesingly truncated normal
distribution. Using the parabolic cylinder function, a
recurrence relation for the moments of the singly
truncated normal distribution is derived, which in turn
simplifies computation of the roots of the maximum

likelihood equations.
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2. REVIEW

An exclusive review of some important results from
BN's exponential theory is presented first in Section 2.1.
In Sections 2.2-2.4, a brief discussion of the research
work related to the maximum likelihood estimation in
truncated normal, gamma, and log-normal families is done.
In Section 2.5a, a review of the asymptotic theory of the
Bayes modal estimation (Blumental [1982]) is made.
Finally in Section 2.5b, the notion of harmonic mean

estimation is presented.

2.1 Exponential Theory

We discuss the exponential theory, BN [1978], through
the subsections a) ~ e). As we are concerned with only
the two parameter family of densities, the general
k-parametér results are summarized for k=2. In further

discussions, the following notations are repeatedly used:

}_( = (Xll"'lxn)l X = (x]_:-'-rxn)l w = (“’]_l“’z)l
6 = (91162)1 t = (tlltZ)l t = (Ellfz)l

T(X) = (T(X),Ta((X)), 7() = (71(w),75(w),
T(X) * 7(v) = Typ(X)r1(w) + Ty(X)7g(w).

e + t = 91t1 + 02t2, and dt = dtl dtz.
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a) Formulation of an Exponential Family

Let 3 = [L(Xjw) ¢ X€ ¥ ; v € 2] be an indexed family

of density functions, where & is a sample space in R", and
@ is an indexing parameter space in R2. 1In the subsequent
discussions, the indexed family represents a family of
joint distributions of n i.i.d. random variables of
inferential interest. Then 3 is said to be an exponential

family provided

L(Xjw) = a(w)b(x)e” () T(X) | (2.1)

where

’I'(W) :9"9, 9=[(61,62):61=Tl(w1,w2), 62 = 7‘2((91,0)2), w € Q],
T(x):2 > S, 8§ = [(t1,t3):ty = T1(X), ty = Ta(x), X € 1],

and a(w):2 - R, and b(x): ¥ - R.

In the representation (2.1), =(w) is known as a
parameterization if and only if = is a one-one mapping on

. Also T(X) is known as a canonical statistic. If both

t = (t;,t3) and ¢ = (65,65) do not satisfy any linear
constraint in R2, then (2.1) is said to be minimal. We
assume only the minimal representations. 1In applications,
2 is usually a parent parameter space of interest and e is
a parameterization under the exponential representation.

For the purposes of discussing some intrinsic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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properties of an exponential family, we consider the

family of distributions of T(X) which is again an

exponential family. It can be shown that distribution of

T(X) is of the form

g(tie) = [c(e)]™ln(t)e? t, (2.2)

where h(t) is a function of t only and c(e) is given by

c(e) = srh(t)e®  tat,

Note that S is the support of g(t;e). 1In (2.2), we may
without loss of generality assume, (0,0) in © so that h(t)
is a proper density function on S. That is, c(0,0)=1. We

may rewrite (2.2) in a more convenient form as

g(t;e) = h(t)e® t-K(o), (2.3)

where K(e) = log c(e).

In fact c(e) is the moment generating function of
h(t) and hence K(¢) is the cumulant function of h(t). It
is a well known result that K(e) is strictly convex and
differentiable on the interior of . Note that K(e) plays
an important role in discussing the maximum likelihood

estimation in an exponential family.
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1

Let

4 = [g(tie):e ¢ 8, g(tje) as in (2.3)]. (2.4)

Let 8 = [(67,635): Ifh(t)ee'tdt < @]. In other words © is
the set of all possible values of ¢ ¢ R? for which g(t;e)

is proper density on S. In the classical exponential
theory, ® is known as the natural parameter space. We

also use 8 to mean "the natural parameter space" and @ to
mean "the parameter space of interest". Next, we state
some important properties of «.

b) Some Properties of «

In this subsection, we discuss the fullness, the
regularity and the steepness of an exponential family «.
Also we discuss a monotonicity property of the derivative
of K(o).

i) Full: An exponential family «# is said to be full

if and only if e = B.

ii) Regular: An exponential family « is said to be

regular if and only if ® = § and © is open in R2.

iii) Steep: Let o* be the boundary of ©, 8° the
interior of @ and DK(e) = (2K/2e3, 2K/26,). Here, DK(e)
is the partial derivative vector of K(e) for e in ©°.
Then « is said to be steep whenever K(e¢) is steep. K(o)

is said to be steep if and only if
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(6-6*)-DK(r6 + (1-2)6*)+ », as » — o0, (2.5)

* in e*. The product

for every e in ©° and e
(e-6¥)DK(re + (i-a)e*) in (2.5) be interpreted as the
inner product for a given Aa. The following Theorem 2.1
proved in BN [1978] states an important result for a

regular exponential family.

Theorem 2.1: Let #£ be an exponential family as defined in
(2.4). If 4 is regular, then it is steep.
Note that the converse of Theorem 2.1 is not true (see BN

[1978], example 8.4).

iv) Monotonicity of DK(e): Let DK(e) be the partial

derivative vector of K(e) and

2K (o) _ 2K(9)

Boy ! = cryalll e € 0 ]. (2.6)

I=1[(m,my) 2 m =

Theorem 2.2 below states a monotonicity property of DK(e).

Theorem 2.2: Let I be as defined in (2.6). Then DK(e) is
a continously differentiable mapping between the two open
sets 8° and I. Furthermore, DK(e) is strictly increasing

in the sense that

(91 - ;1) (ml-fﬁl) + (92-32) (mz-ﬁz) > 0, (2.7)
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where (m;,my) and (ﬁl,ﬁz) are values of DK(e) at e and 6
respectively. Theorem 2.2, implies that the boundary of I
occurs on the boundary of €. Next, we state a key result

of this section given in BN [1978], page 142.

Theorem 2.3: Let C* be the interior of the convex hull of
the support of g(t;e), where g(tie) is as in (2.3). Then
I=C° if and only if K(e) is steep.

Theorem 2.3 has direct implications on the problem of

maximum likelihood estimation in the exponential family.

c) Maximum Likelihood Estimation

A set of general conditions for the uniqueness and
the existence of maximum likelihood estimator are
presented here. For details, one may refer to BN [1978]
Sections 9.5 and 9.6.

By the definition (2.1) of an exponential family, it

is clear that the log-likelihood function is
l(e:t) = et - K(¢e) + log h(t).

A

Now for a given t, the maximum likelihood estimator, e, is
defined to be the set of ¢ ¢ 8 which maximizes 1(e;t).

That is,
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6 =[0¢c 6" : 1(o:t) = sup(l(e:t))]. (2.8)

In Theorems 2.4a and 2.4b below, the existence and the

A
uniqueness properties of e are stated, for the cases when

the family is full and not full repsectively.

A
Theorem 2.4a: Let o be the maximum likelihood estimator
of 6 as defined in (2.8) in a full exponential family. If

K(e) is steep, then the following holds:

i)

D>

exists if and only if t ¢ cC°.

A
ii) e is one-one and single valued.

A
iii) Whenever e exists, it is the unique solution

of DK(e) = t, for e in 8" .

Note that Theorem 2.4a assumes the fullness of a
family. If a family is not full, then we actually deal
with a proper subfamily. The problem of maximum
likelihood estimation in an arbitrary subfamily of a full
exponential family requires an advanced theory of convex
analysis. However, if the parameter space of interest is
an open convex set, BN [1978] shows that a result similar

to Theorem 2.4a can be stated for such subfamilies.

Let £y = [g(tie) : e € 8], 67 C€ ® and @, is an open

convex set and
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2K (o) m, = 2K (o)
20 ' EY)
1 2

Iy=0(my,mp):my = , and e€84]. (2.9)

Note that I;, in (2.9), is the range of (%)DK(O) with the

restricted domain ©;. The subscrpits are used to denote

that these results are applicable only in a subfamily.

A
Theorem 2.4b: Let 6 be the maximum likelihood estimator

in the subfamily #;. Then the following holds:

A
i) e exists if and only if t ¢ I;, I; defined in

(2.9).
. 8 A »
ii) e is one-one and single valued.

A
iii) Whenever e exists, it is the unique solution

of the equation DK(e) = t, e € ©;.

Whenever we restrict ourselves to a proper subfamily
in the sense mentioned earlier, it is possible that the
maximum likelihood equation may not admit a solution,

because I; < I and I may be equal to C° while I; may not.

d) Some Special Results

BN [1978] makes two interesting comments (without
proof) on a truncated exponential family which we think
worth mentioning here in view of its relevence to our

problem. Also, a short proof of the same is given here.
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These two results are presented through Theorems 2.5a and

2.5b=

Theorem 2.5a: Let # be an exponential family as defined
in (2.4), with s as the support of g(t;e). If « is

regular, then every truncation is regular.

Proof: Let S' be the support of the minimal canonical
statistic T in the truncated family generated by «.

Obviously S' c S due to truncation. Hence the result.

Theorem 2.5b: Let # be an exponential family as defined
in (2.4) with s as the support of g(t;e). If S is a
bounded set in R?, then the natural parameter space is the

whole of R2. That is, « is regular.

Proof: Note that the natural parameter space e is

@ = [e € R%: sv h(t)e? tat < «J.

Since S is a bounded set, e®'t < M (M finite) and h(t) is

a density function on S, we have
JIn(t)e®tat < «  for all e ¢ R2.

Hence the result.
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e) Some Remarks

As a concluding part of the review of the exponential
theory discussed above, some relevant points are presented
in this section as guidelines while dealing with the
maximum likelihood estimation in an exponential family.

i) Given any indexed family of distribution, check
whether it is representable in some minimal exponential

family.

ii) Let e be a parameter space of interest and § be
the natural parameter space of the minimal representation

in (i). Check whether the minimal representation is

regular. That is, 6 is open and 8 = 8. We know, due to
Theorem 2.1, that the regularity implies the steepness.
Hence in a regular family, the probem of non-existence of
the maximum likelihood estimators does not arise.

iii) If the minimal family in (i) is not regular,

then either 8 ¢ 8 or © is a closed set. If e c ®, then

the family is not full and Theorem 2.4b is applicable.

iv) If in (iii), e = @ but © is a closed set, then we
deal with a full family and Theorem 2.4a is applicable.
That is, the equation DK(e) = t, 6 ¢ ©® and t ¢ C°, admits
a solution if and only if K(¢) is steep. Therefore we are
required to check the steepness of K(¢) in order to
determine the existence of a solution.

As a special remark, the case of a truncated
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exponential family being not regular may often be due to
the parameter space of interest being a proper subset of
the natural parameter space. This may happen because the
support of T is a bounded set and hence the natural
parameter space is the whole of R2 (Theorem 2.5b) while
the parameter space of interest is a proper subset of R2.
Also the natural parameter space associated with the
untruncated family may be extendable due to truncation
while the parameter space of interest is the same both in
the truncated and the untruncated families. 1In any case,
Theorem 2.4b is more likely to be referred to in the
maximum likelihood estimation problems of a truncated

exponential family.

2.2 Doubly Truncated Normal Distribution

A brief review of the problem of estimating the
parameters of doubly truncated normal distribution is
presented here.

In terms of the notations of Section 2.1, the indexed

family of doubly truncated normal distributions is

$1=[L(§;u,02) X=(X1...Xp) € ¢ , (2,02)en],
i = [x:A<x4<B , i=1,2,...,n, A<B known],

Q = [(#,02) 1 - o<u<w, 0<o<o],

and
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n 2
-1 ST [Ei:ﬁ]
2 £ o
o i=1
L(xiu,02) = = . (2.10)
_5[22]2
2 o
IB e du
A

Here, with L(x;u,c2) as in (2.10) is an exponential

family. The details of the representation are shown in

Chapter three. It is also shown that the distribution of

the canonical statistic T(X) = (zxi,zxi) with the

parameterization e; = %2 ; 69 =1 - 5%2 is of the form
g(tie) = h(t)e® ' t-K(®), £t e 5, 6 ¢ ®, (2.11)

-1yu2 1®
where K(¢) = log c(e), c(e) = [mi ef1ut(e2-1)u du] ,

9=[(01,62):-°°<61<°°,-°°<92<l],
§=[(91,92):—°°<91<°°,‘°°<92<°°],

and § = [(ty,t3): t; = 2Zx4,ty = Exi, (%X7...%p) € 2],

In (2.11), ® is the parameter space of interest and ® is
the natural parameter space.

There are many research articles, listed by JK

[1970], on the estimation problems in a truncated normal
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distribution. We discuss here the work of Cohen [1950a],
Crain [1979], Shah and Jaiswal [(1964], Bar-lev [1984], and
BN [1978]. The work of Cohen seems to be one of the most
pioneering and is frequently referred to by many authors.
Mittal [1984] also studies this problem in detail and
gives a good review of the work of Cohen and Crain in
particular. Cohen, Shah and Jaiswal, and Mittal study
with respect to an indexed family as in (2.10) while
Crain, Bar-lev, and BN study with respect to exponential
representation similar to (2.11).

Cohen [1950a] deals with estimating («,02) by the
method of maximum likelihood estimation which is the same
as the method of moments. It is known that the maximum
likelihood equations are complicated non-linear equations
in functions of («,02). Cohen simplifies these equations
from a computational point of view, by computing the
cumulative distribution function of the complete normal
distribution. The maximum likelihood estimates are
obtained by Newton-Raphson method iteratively. 1In a
subsequent paper, Cohen [1957] pursues the work done in
Cohen {1950a] with a slight modification of the likelihood
equations. The new equations as reviewed by Mittal [1984]

are given below:

[(ho-21)/(22-23)] - [¥X-A)/(B-A)] = 0

[(1+h1-h§)/(zz-zl)2] - [s2/(B-A)2] = 0 (2.12)
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-zi/z -zz /2
z;e -2y e

where z1=(A-x)/o¢ ,z3=(B-z)/c,h;= % (25) - &(27)

2 2
zl/2 -zz/z
e - e

Bo = S(z5) -z

, s2 = Z(xq - X)2/mn , X = Zxi/n ,

and ¢ is the cumulative distribution function of the
complete normal distrtibution.

Given the sample quantities s2/(B-A)2 and

(X-A)/ (B~A), Cohen uses a graphical method of obtaining
quick estimates of the roots of equations (2.12). However
the graphical chart for reading the estimates of (z,s2)
does not contain any information whenever s2 > (B-a)2/12.
Cohen [1957] does not address the problem of non-existence
at all. Mittal [1984] mentions this fact and obtains a
sufficient condition that the maximum likelihood equations
in the indexed family do not admit a solution whenever the
sample variance is greater than (B-a)2/12.

Crain [1979] studies this problem in the family 3,
using a minimal exponential representation after

transforming L(xi«,02) as in (2.10) to L(yix,o2) with

¥Y=[2(X-A)/(B-A)]-1,
so that the truncation interval [A,B] transforms into

[-1,1]. Crain [1979] uses a complicated exponential
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representation of (2.10) with the canonical statistics
TI(Y) = (3/2)Y/22¥;, Tp(¥) = (45/8)1/25¥% - (5n/8)
and the parameterization

(45/8)1/2(2/B-n)20,,

(3/2)1/2(2/B-A)6 1~ (45/8)1/2 421::2;92 .

UE %j;-

Using BN's exponential theory, without mentioning the
applicable results, Crain [1979] proves the existence of
maximum likelihood estimators of (61,05) with probability
one under the assumption of the natural parameter space
(R2). Finally, Crain (1979) erroneously concludes the
same result for the («,¢2) parameterization also.

As can be seen in (2.11) that the natural parameter
space is the whole of R2 and hence family is regular
implying the existence of maximum likelihood estimators
with probability one. However the important point Crain
[1979] misses is that the problem of maximum likelihood
estimation in a truncated normal distribution with the
parameter space of interest 2, comes under the purview of
Theorem 2.4b of Chapter two. Hence, Crain's conclusion
about (z,02) is not wvalid.

Bar-lev [1984] deals with only the asymptotic
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properties of the maximum likelihood estimator (cmle) in a
full truncated exponential family with the truncation
region unknown. Shah and Jaiswal [1964] try to estimate
(2,02) using three moment equations involving the first
four moments. It is interesting to note that Shah and
Jaiswal approach does not require solving any non-linear
equations.

From the review, it is observed that the problem of
non-existence of maximum likelihood estimators in 3, needs
further investigation. Mittal [1984] only obrtains a
sufficient condition for the non-existence of m.l.e.

BN [1978] does not investigate any condition in terms of
the sample quantities for the existence of m.l.e. In this
dissertation, we study the same problem and obtain a
necessary and sufficient condition for the existence of
m.l.e.'s. It is important to note that a necessary and
sufficient condition is useful in developing some improved
estimators of which mixing of the m.l.e. with the Bayes
modal estimator is one proposed by Mital [1984]. Also the
harmonic mean estimator studied here depends on a
necessary and sufficient condition.

2,3 Truncated Gamma Distribution.

The truncated gamma distribution is another important
distribution of interest due to its applications in life
testing and reliability problems. We discuss a few
research papers in this family. The indexed family of

truncated gamma distributions is
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By = [L(XiB,x):X = (X1...Xp)€ &, (8,a)e 2],

g =[x 0< x4y <U, i=1,2,...,n , U > 0 known],
Q = [(B,x): 0 <K B <®, 0<a<x],

and

1
- szi+(a-1)zlog X4

L(XiB,0) = — . (2.13)

-1 u+(a=-1l)log u
U 8
$oe du

Note that (2.13) is an exponential family (details are
shown in Chapter four). The distribution of the canonical

statistic T(X) = (T1(X) = =X§,T7(X) = =log Xj)

with the parameterization e, = 1-U/3, and 6, = a-1 is of

the form
g(tie) = h(t)e? tK(®), t e 5, 0 ¢ 0, (2.14)

where K(e) = logc(e) and c(e) is given by
c(e) =

[ 1 (e3-1l)ute,log u]n
J‘oe 7

with

& = [(07,02): = ® <637 <1, -1 <6y <],
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@]

= [(61,02): - <6 <®, =1 <06y <=®],

and S

[(t1,82): £y = 2x3, £ty = 2log X3, (Xy...%p) € §].

In (2.14), © is the parameter space of interest and & is
the natural parameter space of interest.

Broeder [1955], Chapman [1956], and Gross [1971] deal
with the estimation in the truncated gamma distribution.
Deemer and Votaw [1955] study a truncated negative
exponential distribution which is a special case of the
truncated gamma family with « = 1. Cohen [1950b], and
Des Raj [1953] deal with estimating the parameters of the
truncated Pearson Type III distributions of which the
truncated gamma is a member.

Broeder [1955] considers the maximum likelihood
estimator of 8, with a-known, in the truncated gamma

distribution with the density function

-BXyo=1
£(x:8,0) = — S X ,
{rge‘Buu“'ldui

where 0 < x < 1, 8 > 0 and « > 0.
The maximum likelihood estimator of 8 is the solution of

F(B) = 0, where
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ng“e‘ﬂxdx
F(8) = -% . (2.15)

e Tebray

As Broeder [1955] mentions, it is easy to see that the
range of F(8) is (0, «/a+l) while the range of X is [0,1].

Hence (2.15) does not admit a solution whenever X > o/a+l.
The same result also indicates the non-existence of m.l.e.
in a truncated negative exponential distribution (with
a=1). Deemer and Votaw (DV) [1955] consider the problem of
estimation in a negative exponential deistribution and

define the maximum likelihood estimator of & as zero

whenever X > 1/2 which is undesirable since zero does not
belong to the parameter space of interest.

Gross [1971] proves a monotonicity of rth moment,
about the origin, of the truncated gamma distribution.
Note that monotonicity of the first moment of X and log X
follows from the monotonicity result (2.7) stated in
Section 2.1. Des Raj [1953] and Cohen [1950b] deal with
obtaining a solution to the maximum likelihood equations
in the truncated pearson Type III distribution. They do
not investigate the question of existence/non-existence of
m.l.e. Chapman [1956] proposes a method of estimating the
parameters of a truncated gamma distribution with the

density
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f(x;8,0) = [H(B,a)] le BXyx-1 |

where 0<x< U, U>0 is known, and H(8,x) = Ige'Bxx“‘ldx.

The method proposed by Chapman [1956] requires subdividing
the truncation interval [0,U] into r subintervals [¢ith;],
with i=1,2,...,r and ¢1~-h; = 0, ¢yx-h, = U. Let v; be the
frequency of the original data in the iR class interval.
Then f£(x;8,a) is approximated in [tj * hj] by Pir

i=1,2,...,r, where

-8% s -
p; = e 1e41¢ 1(2hi).

Consider gi = vj/n (n is sample size) as an estimate of

Pi- It is easy to see that

¢n pj = &N pi41 = 6(§i+1-ci)+(a-1)Ln(ci/§i+1) (2.16)

+en(hij/higq).

Replacing pj by qj in (2.16) and defining yj=enqj.j;-¢n gy,

we have a system of linear equations
Yi=B (S i41-%1) + (x=l)en(z3/5541) + en(hj/hisq) .,

for i=1,...,r. Hence Chapman [1956] proposes a least

square estimator of (8,«) by minimizing the quadratic form

1—1
(Y-EY) Sy (Y-EY)
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where 2y is the variance-covariance matrix of Y.

The method proposed by Chapman [1956] is an adhoc
procedure of estimating the parameters (8,«). Using y; in
lieu of xj causes a loss of the information in the
original data. Also H(B8,a) is completely ignored.

It is clear from the review that the estimation
problem in the two-parameter truncated gamma family (3B,)
is not studied in greater depth. However, Mittal [1984]
addresses the problem with a partial treatment and leaves
it open due to the intractability of the mathematics
invoived. In Chapter four of this dissertation, we study
the two-parameter truncated gamma family with the
representation (2.11) and obtain a necessary and
sufficient condition for the existence of solution of the
maximum likelihood equations. Solving the m.l. equations
in the truncated gamma family is complicated (compared to
the truncated normal) due to the singularity of the
functions involved at x=0 whenever 0<o<l. A simple method

for handling the same is shown in Chapter four.

2.4 Truncated Log-normal Distribution.

A singly truncated log-normal distribution is
equivalent to a singly truncated normal and a doubly
truncated log-normal is equivalent to a doubly truncated
normal distribution. This may perhaps be one reason that
we see a few research papers exclusively on the truncated

log-normal distribution. We consider the indexed family
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truncated log-normal distributions as

[L(Xiu:”2)=(Y1---Yn)6§: (“l"z)€ Q],

=[y: 0<y;<U, i=1,2,...,n, U> 0 known],

[(uldz): =® < u<»® 0< a2 < ],

= . (2.17)

-

By changing X = log Y , it is obvious that X has the

singly truncated normal distribution. We designate 3, as

the family of singly truncated normal distributions. That

is,

By

[L(X7 #,02): X = (X1,+.+,%Xp) €87 (u,02)e 2],

I = [X: =» < xXj £1logU, i =1,2,...,n, U> 0 known],
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and

L(X: u,02) = . (2.18)

du

_1 [u-u ]
2 o
Ilog 8] e
= J

As in the case of doubly truncated normal, 3, is also

an exponential family with the canonical statistic
T(X) = (T1(X) = = X3,Tp(X) = = X;) and the

parameterization 61 = %2 r €3 =1 - 5%2 . Then the

distribution of T(X) is

g(tie) = h(t)e® ' t-K(®) t ¢ 5, o ¢ o, (2.19)
log U 6qu+(6,-1)u2, 1"
where K(¢) = log c(e), c(e) = [f_wg el 2 du] ,
& = [(07,03): =® < 0] <® , =~» < 65 < 1] ,
6 = [(61,92):-w<elso,-w<ez<1]U[0<el<w,—w<ezs1] ,
2
S = [(t1,t3): £ty =2 x4,t5 == xi,(xl,...,xn)e 5].

In (2.19), ® is the parameter space of interest and o is
the natural parameter space.
Cohen [1950a, 1957], and Thompson [1951] are the two

prominent authors who deal with estimation in a singly
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truncated normal distribution. Cohen deals with the
single truncation as a special case of the double
truncation with the right truncation equal to infinity.
Though the title of the paper is "Truncated Log-normal
Distributions", Thompson [1951] presents the main results
for the singly truncated normal distribution only.
Thompson considers the density function of the singly

truncated normal as

f(x:u,02) = 0, x <A,

_1 [ﬂ]z
2 o
= IS@ S, du , x = A,
\]27ro'
1 [x=)?
1 2 o
N S , x > A, (2.20)
\1271’0'

where A > == is known.

Thompson assumes positive mass at x = A and considers
estimating («,02) based on the moment equations, the
moments being about the truncation point x = A. It is

easy to see that the moment equations are

ai(A) (z=-ug)o = (§-A)/n =ny

u;(A) = (g-uz + u2q)or2 = =z (xi-A)z/n = mq (2.21)
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-112
where u = (A-ux)/oc , 2 = 1 7w/ ,» a=[ z du.
\127r u
Define,
] 1
By = [ul(A)]z/[uz(A)], and ¢, = z-uq.

It is obvious that ¢, is independent of ¢2. Hence a table
for ¢, and ¢, is given for different values of u in [-4,2]

with an increment of 0.1. Given the sample quantity

ni/wz, the value of u and hence ¢, can be read from the

table. With such estimates of u and ¢;, it is easy to see
A A A

that o =#n;/9,, and « = A - ou. Note that the estimates

(;,;) are the only rough estimates which can be obtained
quickly. With the assumption of positive mass at x = A,
in the definition of truncated density, solution to moment
equations (2.21) always exists. However such a definition
of giving positive mass at a point of truncation is not
considered in our study. In fact (2.20) does not belong
to B4. If we take the usual definition as in (2.18), the
Thompson method does not always work. It is easy to see
that ¢; and ¢, with respect to (2.18) are

69 = (z-uq)z/(q-uz + uzq)q and ¢5 = z-uq.

If we compute ¢, now for u in (-»,~), we observe that
$2>1/2. Hence if a sample quantity of ni/nz is less than

0.5, which can occur with positive probability, we cannot
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obtain u from the table and hence (u,dz) cannot be
estimated.
Cohen [1950a, 1957] with the definition (2.18),

proposes a similar estimating procedure by defining

¢; = (u;(A))/ (u:;.(A))2 , and ¢J', =z - udg, (2.22)

which is known as the Pearson-Lee-Fisher equation. Note
] !
that »_ is the reciprocal of ¢,. It is obvious that »,<2.

Hence it is clear that the singly truncated normal
distribution does have the problem of non-existence.

In Chapter five, we study the singly truncated
log-normal distribution, equivalently the singly truncated
normal distribution, using the representation (2.19) and

prove the non-existence of a solution to the maximum
1
likelihood equations. In fact, the result that ¢2 < 2

follows from the result E(Xz) < 2(E(X))2 which we prove in
Theorem 5.1 of Chapter five. We also derive an easily
computable recurrence relation for the moments of the
singly truncated normal distribution (2.19) which
simplifies a computational work.
2.5a Bayes Modal Estimation

From the review of the estimation in truncated normal
(Section 2.2) and truncated gamma (Section 2.3), we know

that the maximum likelihood estimator has the problem of
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non-existence. Blumenthal and Marcus [1975] encounter a
similar problem while dealing with the estimation of
distributional parameter (¢) and total sample size (N)
based on a sample from truncated negative exponential
distribution. They resolve this problem by introducing a
new method of estimation called "Bayes Modal Estimation"
which is based on the principle of maximizing the
posterior distribution of the parameter vector, given a
sample and a prior distribution.

Subsequent to the paper by Blumenthal and Marcus
[1975], we see the Bayes modal estimation being employed
in the work of Blumenthal ([1981], Blumenthal, Dahiya, and
Gross [1978], and Mittal [1984] in a variety of
situations. Mittal [1984], studies the behavior of Bayes
modal estimators in relation to the maximum likelihood and
the mixed estimators in the cases of the doubly truncated
normal, one parameter truncated gamma, and the truncated
Weibull distributions. We discuss the Bayes modal
estimators in the cases of two parameter truncated gamma
and two parameter singly truncated normal distributions.

It is clear that choosing a proper prior distribution
and the optimum parameters of the prior distribution is an
important part of the Bayes modal estimation. Usually the
conjugate prior distribution is assumed to be a realistic
choice. Blumenthal [1984] outlines a method of choosing
the parameters of a prior distribution. This method

depends upon minimizing the asymptotic bias by assuming
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the stochastic expansion of the type

e =0 + A/Nn' + b/n + 0(n~3/2) , (2.23)

where A, B are polynomials in sums of i.i.d. random
variabales and ¢ is a scalar parameter. We now give a
brief summary of the work of Blumenthal [1982] and utilize
these results in Chapters four and five.

Let X = (X3,+..,%p) be i.i.d. observations with the
density function f£(xj;e). Then the modified likelihood of

the sample x = (X3,...,%,) is

L*(xie) = h(e),x, f(xie),

[Ra¥e)

i=1

where h(e) is some appropriate prior distribution. Then

the Bayes modal estimator (5) is a solution of

alogL*(§;e)
0= — =D S(xpie) + (o), (2.24)
where
.. _alog £(x;e) _ £'(x;e)
S(xie) = 20 T f(xie) !
and

2 log h(e)

= =h'(e)/h(e).

£(e) =

Note that here the prime notation denotes the

differentiation with respect to . Sufficient regularity
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conditions like differentiation under the integral sign,
and measuribility conditions are assumed in further

discussions. Let i,j,k,¢=0,1,2,... and

i LI 1y 1
Lijke = [ 8, (Sp) (8, )k(sp )e£ (x;0)dx,

= si(s')j s. )k (s''")e - n Lis
Z3jke = ———P - =y
NnvVi gy,

Vijke = L2i,25,2k,2¢~(Lijke) 2 o
and Sp = S(xp;e).

Generally, we encounter i,j,k,2=0,1. In the above

notations, trailing zeros are omitted. That is,
Lijoo = Lij -
Expanding S(x;;) and s(;) in Taylor series around e

in (2.24), using (2.23), leads to

0=\IT(ZI\IL2 —ALz)

+ (=BLp + A Zo3N\Vgy'+ (A2Lgg1/2) + £ (o)

+ 0(n~1/2y, (2.25)

Equating to zero the coefficients of \In' and the constant

term in (2.25) and solving for A, and B, we get
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A = Zl/( JIQ ) , and
B = ng[zleI‘JVOILZ' + (ZiL001/2) + Lok (0)]. (2.26)

From (2.23) and (2.26), we can see that
E(6) = 6 + E(B)/n + 0(n~3/2), (2.27)

where E(B) is regarded as the asymptotic bias of 6 and it

is easy to see that
-2
E(B) = L2 (L + (LOOI/Z) + Lzﬁ(e)]. (2.28)

We may express L's with the more fundamental
quantities
wijk = J(£'76)1 &''/6)3 ('K £ ax,

where i,j,k = 0,1,2,... Hence (2.28) can be rewritten in

terms of «'s as

E(B) = u;z[-(ull/Z) + qu(G)], (2.29)

by noting Lo=wxg, Lpi= =u3, Lyy=w#y1=#3, Log1==3x3131+2u3.
We use (2.29) in determining the optimum parameters of a
prior distribution in a single parameter family. In other

words, the optimum parameters of a prior are chosen such
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that E(B) is minimum.

The above analysis is applicable to one parameter
families only. Here we deal with two parameter truncated
normal and gamma families. Note that we modify the
likelihood function with respect to only one parameter by
properly chosen prior while using a noninformative prior
for the other. 1In this way we may still use the above
analysis in finding the optimum parameters of a prior
distribution. We mainly present a proof of the existence
of the Bayes modal estimator for the truncated gamma and
singly truncated normal distributions in Chapters four and
five respectively. Also we present simulation results for

comparing the Bayes modal and the mixed estimators.

2.5b Harmonic Mean Estimation

Joe and Reid [1984] consider estimating the number of
faults (N) of a reliability system under a truncated
negative exponential failure times which is similar to the
problem studied by Blumenthal and Marcus [1975]. However
in the paper of Joe and Reid [1984], blowing up of the
maximum likelihood estimator N is remedied by the harmonic
mean estimator which always exists and has finite
expectation. The harmonic mean estimator can be studied
only in the particular situations wherein the parameter of
interest is non-negative and the likelihood function is
unimodal, possibly maximum occuring at infinity. The

concepts of deriving the harmonic mean estimator is
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explained next in one parameter family with the density
f(xs0).

Let X = (X;...Xn) be a random sample with the common

density f(x;e) where e is a scalar parameter. Then the

likelihood functin of X is
n

L(xie) = [[ £(xie).
i=1

A
Let e be the unique maximum likelihood estimator of e.

Then assuming that L(x;e) is finite, define

A(xie) = L(g;e)/L(g;g).

Given ¢ in (0,1), the likelihood interval is defined to be

(2)

=inf(e:x (x;e)2c], and o

(1)

where ec =sup[e:x (xje)=2c]. We
call ¢ the likelihood coefficient in further references.

A
Then the harmonic mean estimator 6o is defined to be the

harmonic mean of endpoints of I,. That is,
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0o (1), (2)
C

(o] . A
if e < «», (2.30)

<D >

cT o m, @ '
(o] C

= 2 eél) if e = =,

The subscript c denotes the dependency on c¢. In
simulation studies, we may choose any c in (0,1) and

generate a sequence of harmonic mean estimators. In fact,
A A
as c—1, e,—>6. The key idea of using the harmonic

estimator is that ;c < ® even if 6 = =,

Note that the above discussion is valid in one
parameter families only. Though we are dealing with two
parameter families, we are mainly interested in modifying
one of the parameters which is found to have the problem
of non-existence as mentioned in the review of the Bayes

modal estimators. Hence we reduce our case to one
A A
parameter family by considering L(xiey,63) where o, is the

m.l.e. of ;. In other words, we study the harmonic mean
estimator of one of the parameters while keeping the
m.l.e. of the other. As mentioned in Section 2.2, we
study the harmonic mean estimator of e, in the doubly
truncated distribution while keeping the maximum

likelihood estimator of 07
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3. DOUBLY TRUNCATED NORMAL DISTRIBUTION

We discuss here the two parameter doubly truncated
normal distribution. The results are mainly presented in
an exponential family representation. We deal with the
family representation in Section 3.1, derivation of the
maximum likelihood equations and the question of existence
of m.l.e. in Section 3.2, computational results in Section

3.3, and simulation results in Section 3.4.

3.1 Family Representation
A doubly truncated normal population is described by

a random variable with density

-1y
e 2 o
£(yin,02) = , (3.1)
1l u=-u 2
B - 5 ( o )
I e du
A

where A < y < B, A <B known, and («,02) € @ with

Q = [(#,02): =® < p<®, 0< a2 <],
Since the truncation interval [A,B] is assumed to be
known, we may change X=2[ (Y¥-A)/(B=A)] - 1 so that the
truncation interval becomes [-1,1]. In other words, (3.1)

may be rewritten as
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c2
Cq (u=C5) _ 1 2
. ] 5 _ e—l—z—z—a X 2—7 X
(X7p,0¢) = P (3.2)
2 2
fl ecl(u-cz)u - © du
-1 o< 20

]

where ¢y = (B-A)2 , Cy; = (A+B)/2.
Here, (u«,02) is the parameter vector of interest,
given a sample of n i.i.d. observations from (3.2). Hence

the indexed family of truncated normal distribution

By = [L(Xie,02): X = (X1,...,%) € 8, (z,02)eR],
§ =[x -1<x3<1, i=1,2,...n],
and
Cq (u=C»y) c
, e -L>"2" = x; - 5%2 2 x42
L(xXu,0¢) = . (3.3)
= 2

In (3.3), L(X;«,02) is known as the likelihood of a
sample. Now it is easy to see that B is an exponential
family since L(§;u,a2) can be represented as in the

definition (2.1) of Chapter two with
2 2y.7yp2 7R
a(“rﬁz)=9—9R:a(#,¢2)=[Ii1e71(“'0 Jut(rg (1,0%)=1)u du} ,

- , 2
b(x): IR, b(x) = e = Xi ,
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T(x):3—S8, S=[(t3,ty):t;== x;, ty=2 xiz,(xl...xn)eﬁ],

T(n,02) 198 ,8=[(07,65) 101=" (1,02) ,0 5=75 (1,02) , (x,02)€Q]

2
C -C (o]
and 'rl(u,az) = —(Hz—Zl , and Tz(u,a'z) =1 - -2—3_-2.

Note that r is one-one on 2 with the inverse mapping
u = (c101/2(1-63)) + cp, and o2 = c;2/2(1-6,).
We may express the density function of X in the (61,02)

parameterization as

- 2
e91x+(92 1)x
f(x;el,ez) = . (3.4)

[Iileelu+(ez-1)u2du]

The representation (3.4) is frequently referred to in
further discussions. The distribution of

T(X)=(=Xj,= Xi2) is of the form

g(tie) = h(t)e®'t -~ K(6) | t e 5, 0 ¢ 0. (3.5)

In (3.5), K(¢) = log c(e) and c(e) is given by

-1)u2_ 1"
c(e) = [J‘i-leOJ_U'*‘(ez l)u du] .

Since ® is one-one mapping of @, it is easy to see that
e=[(91,92):-°°<91<°°,-°°<92<l].

We can easily see that the natural parameter space, ©, is
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R? since the integral

[‘rilee 1u+ (9 2"1) uzdu]

is finite for all e in R2.
Since the parameter space of interest is a proper

subset of the natural parameter space,
4 = [g(tie) : 6 € O] (3.6)

is not full. 1In (3.6), # is a proper subfamily of a full

exponential family. Next, we discuss monotonicity

property of DK(e) [aK(e) 2K (e)

e ’ 2o, ] , the partial

derivative vector of K(¢). By the definition of K(e) in
(3.5), it is easy to check that

2K (o)
361

2K(e)

= 2
5o, = P E(X%),

= n E(X) , and

where E(X) and E(Xz) are expected values of X and X2 with
respect to (3.4).
Let

I=[(m,my): m = E(X),my = E(X2), 0 ¢ 0]. (3.7)

In (3.7), I is the range of (1/n)DK(e). It may be
appropriate to call I the "population moment space”. By
the exponential theory as reviewed in Chapter two, it is

clear that (1/n)DK(e) satisfies the monotonicity result
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(2.7). That is,

(61-01) (my-Mmy) + (05-65) (my=My) > 0O (3.8)
where (m;,m;) and (31,;2) are values of %DK(@) at 6 and 6

respectively. The said monotonicity result (3.8) also
implies the following:
i) The strict monotonicity of E(X) for a fixed 65,
ii) The strict monotonicity of E(X2) for a fixed 07.

(3.9)

Next, we discuss the maximum likelihood estimation in «.
3.2 Maximum Likelihood Estimation
Given a sample quantity t, the log-likelihood
function is
1l(eit) =6+t - K(¢) + log h(t)
where K(e) and h(t) are as defined in (3.5). Hence by the

A
definition (2.8), the maximum likelihood estimator, e, is

the solution of

DK(e) = t, e € ©.

Let £1 = (3)(£1), t3 = (3) (t), and
S = [(ty,ty) : (t1,tp) € SI.

It may be appropriate to call S the "sample moment space"
as a counterpart of the set I defined in (3.7). Hence the

equation DK(e) = t can equivalently be stated as

E(X) = t;,
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where E(X) = fflx f(x;0), E(X2) = filxz f(x;e) and f(x;e)

is as defined in (3.4). 1In furfher discussion, we refer
to (3.10) as the maximum likelihood equations. Now the
question of uniqueness and existence of a solution to
(3.10) is of concern to us and the same is discussed next.
Since we are dealing with a proper subfamily of a

full exponential family and & is an open convex subset of

®, Theorem 2.4b is applicable. That is,
N -
i) e exists if and only if t e I.

A
ii) e is one-one and single valued.

iii) o is the unique solution of (3.10) whenever E € I.
Hence the existence question needs further investigation.
The condition (i) of Theorem 2.4b requires determining the
set I. That is, we must express the range of E(Xz) as a
function of the range of E(X). This is done in

Theorem 3.1.
Theorem 3.1 Let Dml = [(e31,03) ¢ E(X) =my], -1 <my < 1,
and e* be the boundary of ©. Then for (e1,02) in Dy,
2 2 *
my < E(X?) < 1 - (2/00)my, (3.11)

*
where o, is such that H(e; *) =m; and
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Proof: It is easy to see that

e*=[(e*1) --oo<e*<oo]
1’ ' 1 :

%*
Given (6,,1) in e*, it can be shown that

limit E(X) = limit jflx f(x;0)dx,
* *
] l—-)e 1 2] l—-)e 1
92—)1 92—>1
*
= H(e,), (3.12a)
and

limit E(X2) = limit Iilxzf(x;e)dx,

* *
91_>91 61_)61
92—>l 92_>1 .
=1 - (2/el)H(el*). (3.12b)

*
where f£(xje) is as defined in (3.4) and H(el) as in

(3.11). By elementary calculus, we can verify that

* *
i) H(el) is a strictly increasing function of ©.s

ii) Limit H(e1¥) == 1,
e l—):!:oo
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iii) continuity of H(e;*) together with (ii) imply
that -1 < H(e,*) < 1.

Due to i) - iii) above, given -1 < m; < 1, there exist a
unique 61* such that H(e;*) = m;. In other words, (e1%*,1)
is the boundary point of Dml’ Due to the continuity and

the monotonicity property (3.8) and the limiting quantity
(3.12b),

ng E(X2) =1 - (2/67%)m;.
1

Note that —» < 65 < 1 on Dp,. The lower inequality,

E(X2)>m2 follows from the well known result E(X2)>(E(X))2.

1
Hence the result.
As a consequence of Theorem 4.1, we may write the set

I explicitly as

2 *
I=[(my,mp): =1<m; < 1, m1 <my <1- (2/el)ml], (3.13)

%*
where m; = H(el).

Theorem 3.1 gives the required necessary and
sufficient condition for the existence of a solution for
the m.1l. equations (3.10), and is stated in Corollary 3.1

below.
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Corollary 3.1: Given t = (t;,ty), -1 < t; < 1, the m.1.

equations (3.10) admit a solution in e if and only if

-5 AT
tl < tz <1- (2/91 )tl’ (3.14)
A * . * -
and o4 is the unique solution of H(el) -t = 0.

Proof: Given (t;,t,), =1<t;<1, it is obvious that the

solution to the equations

E(X) = tl
E(X2) = t,
must lie in the set D_ . By Theorem 3.1, E(X2) satisfies

t1
the inequality (3.11). Hence (3.14) follows.
It may be worth noting that the m.l. equations (3.10)

in the regular family « = [g(t;e) : e ¢ @ = R2] admit the
solution with probability one.
As a by-product result, we may answer the question of

existence of the m.l.e.'s in the subfamilies

4 = [g(tie) : =» <67 <], 65 < 1 is known,
°2

and
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4 = [g(tie) ¢ == <65 < 1], lejl < = is known.
1

Note that ﬂe and de are not exactly the same as u«-known
1

2
and o2-known with respect to the representation (3.1).
However the cases of u-known and o2-known can be dealt
with similarly using a slightly modified canonical

statistics. We discuss the m.l. equation only in < and
2

ﬁe here. It is easy to see that the maximum likelihood
1

estimator of ¢, in 4 _ is the solution of
2

E(X) = tp, (3.15)

and the maximum likelihood estimator of e, in 4 is the
1

solution of

E(X2) = t, (3.16)

Due to the monotonicity results stated in (3.9), we have

the following results:

i) E(X) is strictly increasting in de with the
2

range (-1,1),

ii) E(x2) is strictly increasing in da with
1

the range (0,1-(2/e7)H(07)) .

where H(e;) is the same as defined in (3.11). Hence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

(3.15) always admit a solution while (3.16) does admit a

solution if and only if 0 <t, < 1 - (2/61)H(e3). Note
that if e; = 0 in del’ this states that (3.16) does not

admit a solution whenever Ez > 1/3 since the limit of
H(ey)/e1 is 1/3 as ¢31 goes to zero. These results are
equivalent to the results obtained by Mittal [1984] in the
case of a single parameter doubly truncated normal

distribution.

Next we consider characterizing the set S, similar to

the set I in Theorem 3.2 below.

Theorem 3.2. Let -1 <x;<1, i=1,2,...,n and (t1,t3)

2(k-1) _ - 2k
n

be as defined earlier. Then for 1<ty < rulls 1,

k=1,2,...,n
t, < tzs t2 3.17)
1 ! (3.

where 1-:2* = (n-1)/n + (1/n) [nt-:l - {2(k-1) - (n-1)}]2.

Proof: Let Ny = [ELEZEL -1, %E - 1], k=1,2,...,n be

subintervals dividing [-1,1]. Let

§ = [X3seee4%p) ¢ =1L <x3<1,1i=1,...,n],
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and 3 = [(X3,e00,Xpn)€E T2 %2 Xj = t1]1, t; in Ny for some
H
k. We know that 3_ is a hyperplane intersecting .
€
- -2
Since t; 2 t; is a well known result, we need to show

only the upper inequality in (3.17). Now t, = = x| is a
convex function on g and hence attains its maximum on
t;

the set of extreme points of 3 . The set of extreme
ti

point of 3_ consists of just the permutations of
t

(X7..%5,..Xn) where, for k > 1,
1 3 n

x5 =1, for j =1,2,...,k-1,
=n t;- (k-1)+(n-k) for j = k,
= =1 for j = k+1,...,n.

Since t; is invariant under permutation, it attains the

same maximum value for all thz extreme points of ¥ . Now
t1

it can be checked that

yax ;2 = _(n-l) + 1

— = [nty-{2(k-1)=(n-1)}]12 = t,*.
t

Hence the result.

Using Theorem 3.2, we may express S explicitely as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

- - - - -2 - -
§ = Plt1,t2) : t1e N, t; <ty < £5%] . (3.18)

Let C denote the convex hull of S. It is easy to check
that

- - - -2 -
C=[(tl,t2) :—lStlsl,tl Stle].

In the general review of exponential theory, BN

[1978] considers convex hull C of S for discussion of the

existence and the uniqueness of maximum likelihood

estimators. However for a given n, S being the support of

an absolutely continuous function, the observed value of %
belongs to S with probability one. Also it is interesting

to note that S tends to C as n tends to «. Hence, the
results discussed in BN [1978] hold for all n.
As a corollary to Theorem 3.2, we state a result for

the sample variance below.

Corollary 3.2

Let -1 < x3<1,1=1,2,...,n and

- - * %
(t1, ty) be as defined in Theorenm 3.2 and 52 be the

- -2
maximum of the sample variance, s2 = t; - t; , over the

sample space %. Then
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o kk . . -
1 if n is even (when t; = 0),

1 - 1/n2 if n is odd (when t; = % 1/n). (3.19)

=%
Proof: Let Ny and t, be as defined in Theorem 3.2.

From Theorem 3.2 we know that, on g_,
t1

ti < t; < t_ for a given t; on Nk, k=1,2,...,n.

. -
Hence 82 =t - t

=N N %

is the maximum of s2 on T . By
€
*
elementary calculus,we can show that s2 attains its local

maximum at the end points of Ny, hence

2**

o*
s = max s< ,

= max [1-(23/n - 1)2].

j=0,.%.,n

Now evaluating j_Omax n[1-(2j/n-1)2], we get the desired
"','n.,

result.
We can obtain a similar result about the population
variance of the doubly truncated normal population (3.4)

and is given below.
Corollary 3.3: Let X be the doubly truncated normal

random variable with the density function f(x;e) as

defined in (3.4). Then the supremum of variance of X over
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6 is equal to 1/3.
Proof: Let Dp, be as defined in Theorem 3.1. Then by
Theorem 3.1, for (e;,65) in Dp,, we have
2 2 *
ml < E(X<) < 1-(2/el)m1, -1 <m <1,

* *
where H(el) = m; and H(el) is defined in (3.11). Hence

V*

B:p Var (X),
1

Bup (E(X2) - my),
1

= +—z = F(e:) (say) .

*
Note that V is the supremum of variance of X in the

subfamily [f(x:e) : o ¢ Dml]. Now it is easy to see that

V**

sup Var(X),

sup V¥,

F(6.)
fgx (e1 .
1

*
But Max F(el) 1/3 which follows by noting that
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*
i) H(el) is an odd function,

*
" dH(el)
ii) F(el) = ——— is an even function,
de
1
%*
dF(el) *
iii) — is an odd function. That is F(el) is
del

*
strictly monotone for 61 # 0,

] .. L L *
iv) Limit F(el) = 0 and L%mlt F(el) = 1/3.

—% —
el © 61 0

Hence the result.

Note that V* = 1/3 corresponds to the variance of a
uniform random variable on [-1,1]. It may be of interest
to know that a sufficient condition for the non-existence
of the m.l.e. derived by Mittal [1984] with respect to the
representation (3.1) is equivalent to saying that the
maximum likelihood estimators of («,c2) do not exist
whenever s2 > 1/3 which follows by Corollary 3.3.

Contents of Theorem 3.1 through Corollary 3.3 are
presented graphically in Figure 3.1. Note that in

Figure 3.1, the set I as in (3.12) is superimposed on the

set S as in (3.17). Hence, the m; axis is the same as t;

axis and the mp; axis is the same as t, axis.
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In the following graph, the solution to (3.10) exists

if and only if (t;,t;) is in the shaded area.

A\, -
=1
41?”/’ - =
i ) S t,=t,
== - 2
6 t,=t,
-
(0,0) 4

Y

Population and Sample Moment Spaces

Figure 3.1

3.3 Computational Results

In this section, we present a brief account of
computational aspects in the truncated normal
distribution. Note that the necessary and sufficient

condition (3.14) requires solving the non-linear equation
* -
H(el) = t;. Also obtaining the m.l.e. of e, whenever it

exists, requires solving two simultaneous non-linear

equations. Hence we discuss these aspects next in
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subsections (a) - (d).

(a) Computing Necessary and Sufficient Condition

We know that the m.l. equations (3.10) admits a
- - ~ -
solution in ® if and only if ti <ty <1l- (2/91*)t1,

*

where 31 is the solution of

. -
H(e,) - t; = 0 (3.20)

The equation (3.20) can be solved by Newton's method or by
IMSL subroutines ZSPOW or ZSCNT. Next in Theorem 3.3, we
state a result about a root of (3.20).

Ak
Theorem 3.3: Let °, be a solution of the equation

* -
H(el) - t; = 0. Then the following results are true:

i) 61 is unique and exists for all -1 < t; <1,
A% . -
ii) °, has the same sign as t,,
* 8 0 A* -
111) lell > 31t,1.

*
Proof: The result in i) follows from the fact that H(el)

is a strictly increasing function with the range (-1,1),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

and ii) follows from i) by noting H(0) = 0. Finally, iii)
follows from the following arguments.

Let

* _ * *
G(e)) =1 - (2/0 )H(o,).

*
dG(e.) *

It is easy to check that has the same sign as o,

d*
°1

* *
Also limit G(e ) = 1 and ljmitG(e.) = 1/3. Hence the
1 1
6_—% ® e_—0
1 1
result.
Theorem 3.4 warns that the root of (3.20) must be

accepted only if ii) and iii) are met. In actual

computation, whenever t; is in a small neighborhood of

zero, we observe a violation of these conditions in some

Ak

cases. In such cases, e, can be rejected or re-tried with

a new initial guess.
Giving a good starting guess while solving non-linear

equations is an important step. Due to Theorem 3.4,

*
el = 3t; can be one starting guess. Next we state a

result about generating a good guess for (3.20). One
simple idea behind generating a starting value is to use

the inverse function of some function that behaves similar

*
to H(el). It is observed that
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*
* le. |
h(el) = sign(el) e , = < 6_ < o,

%*
is one such function which approximates H(el) closely. It

is easy to check that the inverse function of h(eI)
is
h‘l(t-:l) = -sign("ﬁl)/log(lgll) , |§1| < 1.
It is observed that e; = h'l(t-':l) is quite efficient

in generating a starting value to (3.20). In fact when

= *

, agrees with the root up to 3 decimal

places.

b) Solving M.L. Equation

The m.l. equation (3.10) may be rewritten as

- _ |Ua(e)

U(e) = 0, and U(e) = [Uz(e)]' (3.21)
- 1 2K(e) _ o _ 1 2K(e) T

In (3.21), Uy(e) = 2 oy " ty and Up(e) = = S0, " t,.

We already know that (3.21) can be solved only when (3.14)
is satisfied. We may solve (3.21) by two-dimensional
version of Newton's method or by IMSL subroutine ZSPOW.

By Newton's method, iterative solution at (i+1)th
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iteration is

o (itl) = (1) - [g(e(i)y)1~L(u(e (1))), i=0,1,2,... (3.22)

where 6 (0) is an initial guess and

(22K 22K ]
aez ! 26 520 1
_1 1
Je) =3 | 22k 22g| "
26 lae 2 26 2
2

By using the definiton of K(e¢) in (3.5), we can check that

22K (6
ana 22K()

22K(0) 22K (0)

=Var(X), =Var (X2) , =Cov (X,X?%).

20 2e
1 2

In the next paragraph, we mention an interesting result

which is observed while solving (3.21).
We know that, given (t;,t;), the solution to (3.21)

must lie in D_ = [(e1,63) : E(X) = t;], -1 < t; < 1. The
t1

graph of D_ is observed to be like in Figure (3.2).
t;

Ak
In the following graph, the point (el,l) denotes the

Ak
boundary point of D_ and e, is the solution of (3.20).
t

A%k
Though not theoretically estabalished, (el,l) is found to

be a good starting value for solving (3.21).
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(67,1) (6;,1)
1 7 N

3
[0,0]

D_ (%,<0) D_ (£,>0)

Y

Solution Set

Figure 3.2

c) The Information Matrix
Let f(x;e) be as defined in (3.4). Then the

information matrix (in one observation) is defined to be

I(e) = (Ijiy(e)) , 1,3 = 1,2, (3.23)
and
Ijj(e) = Cov [(aloge:(X;e) ) alogafgx;e))].

Using (3.4), it can be checked that

Var(X) , Cov(X,X2)

I(e) _[COV(X,XZ) , Var(Xz)] )

Now we can see that I(e) is the same as J(¢) defined in
(3.22) and hence I(¢) can be obtained as a by-product

result in the process of solving m.l. equation in

simulation studies. It can be noted that the information
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matrix I(z,02) with respect to the representation (3.1)

can be obtained as
I(«z,02) = Q I(e) Q', (3.24)

where

26 20
Y aai
205 26
ou ' aua
With e; and e, as defined in (3.4), it is easy to see that

-cy (u=cC
Cl/az ’ —11—2—:‘ )
Q = L
o, Ci/2¢4
Now given the information matrix I(e), the asymptotic
variance-covariance matrix of the m.l.e.'s can be computed

as

2. = (/n)[171(e)]. (3.25)

e

d) Some Advantages of the (61,62) Parameterization over

(u,vz).

i) The necessary and sufficient condition (3.14)

is computable only in the (e;,6,) parameterization since
the inverse mapping of (ey,1) is (x «, »). Hence it is

felt that deriving a necessary and sufficient condition
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directly under the (u,az) parameterization would be
difficult.

ii) As mentioned in the subsection b) above, we
Ak
could give (el,l) as a starting value to the m.l.

equations (3.21) while giving such a starting value is not
possible under the (ux,02) parameterization, particularly
in the case of real life data.

iii) The derivation and computation of the
information matrix, under the (e1,93) parameterization is
relatively easy due to the fact that the integrals
involved in J(e) are easily computable even when 645 is
near 1, while the same is not possible under the (,02)

parameterization since ¢2—w as 651,

3.4 Simulation Results

In this section, we discuss the relative performances
of the Bayes modal, the harmonic mean and the mixed
estimators. Since the maximum likelihood estimator does
not exist with probability one, its performance is not
considered for comparison. The performances of these
estimators are judged with respect to the simulated values
of the bias vector (the length and the direction), the
mean square error (MSE), and the probability of nearness.
Since the behaviour of the harmonic mean estimator of
(#,0) is of interest, the results here are presented for
the («,0) parameterization. However the actual

computational work is done in the (61,02)
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parameterization. This study is based upon 500 random
samples of sizes 10, 20, and 40. The details are
discussed in subsections (a) - (c).
a) Plan of Simulation

All the computation work is carried out in Fortran
interactively with IMSL subroutines. Since the simulated
values of the bias, the MSE, and the probability of
nearness do not vary with «, we present the results for

i

~r

# = =5, o = 0.5,
ii) «=-5, ¢ = 2.0, and
iii) w« = =5, o = 4.0.
For a given (u«,s), we consider the cases of left
truncation probability (q;) and right truncator

probability (q,) as

i) o
ii) gy = 0.05, g3 = 0.10, and

0.05, g, = 0.05,

Then, using IMSL routine GGNML, we obtain a random
observation (z) from Normal (0,1) and transform to y=u+oz.
We retain y if it lies in [A,B], otherwise GGNML is called
again. For a given value of (d1,92), we obtain [z;,25]

from IMSL routine MDNRIS such that

-12 © -112
qQ = le L e U 24 , and g, = Iz 1 /zdu,
— 2= 2 2=

and hence A = uto 27 , B = uto Zz5. The above procedure is
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continued until we get a required sample (Y1reees¥n)-
Then, (Yj,..+,¥n) are transformed into (X3,+++,%y) using

2 (Y-B)
(B-a)

the transformation X -1 . We then compute the

1l

- 1
5 Z Xis and ty; = =

sz . Once
n 1

sample statistics t;

(t1,t3) are computed, we obtain the different estimates as
follows. All the non-linear equations involved are solved

using IMSL routine ZSPOW.

i) Maximum Likelihood Estimates: The maximum

A A
likelihood estimates (o;,0,) are the solutions of (3.21)

*

- AR - A
whenever t,; < 1 - (2/el)tl where °, is the solution of the

equation defined in (3.20).

ii) Bayes Modal Estimates: The Bayes modal
estimates (31,32) are the solutions of

E(X) = tp ,

E(X2) - a/n + b/(n(l-653)) Ez, a=1l2, b=1,

where E(X) and E(Xz) are evaluated with respect to (3.4).

A A
iii) Mixed Estimates: The mixed estimates (e 1ms©2m)

are obtained as

A A
1m < 91 ) )
if (3.14) if true,
A A
%2m = 92
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and

A

61.= 6
1 1 .
m otherwise.

A

O2m = 92

Note that the mixed estimator studied by Mittal [1984]
depends upon a mixing criterion as a function of the

sufficient condition for the non existence of the m.l.e.

iv) Harmonic Mean Estimates: Before obtaining the

harmonic mean estimates, we need to solve the equation

a - A A
(63-62)t; = K(63,03) + K(e7,65) - (1/n)log ¢ = 0,  (3.26)

where K(e3,6;) is as defined in (3.5) and ¢ is a
likelihood coefficient as mentioned in Section 2.5b. In

(3.26) above, we take

I A
1 =93
if (3.14) is true,

~N A

62 = 92

and
A A ®
e = @
h 1 .

A otherwise,
62 =1

A A Ak
where (e;,65) are the m.l.e.'s and el is the solution of

(3.20). Due to unimodality of the likelihood function, we
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can show that the equation (3.26) admits two solutions

with the possibility of one of the solutions on the

boundary, 65 = 1, for certain samples. Let (92): and
++ .
(ez)c be the two solutions of (3.26) such that
+ . .
(92)Z<(92):+. Given [(92): ,(92)c+], we first invert the

same to [(az)z,(az)z+] using the inverse relation

cZ
1l

2=—-—
o=l 2(1-05)

. Note that whenever 65 = 1, 02 = o,

A
Hence we obtain the harmonic mean estimate (§2), of o2 as

Ay + ++
. 2(02)" (02)
(02)g = +c °++ if (@)™ <o
(¢2)" + (o2) ©
C C

+ . ++
= 2(02) if (02) ) == .

A
Once (o). is computed, we obtain the harmonic mean

A
estimate of « as (uxg)

~ A Ay
eq(0c“)cC B-A A+B
/“’c = _1(5'-1—) + cy , C1 = T and Coyp = T .

Different values of ¢ in (0,1) are tried and ¢ = 0.01 is

observed to be the optimum in the sense of minimum mean
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square error. Hence, we use the same for comparing with

the Bayes modal and the mixed estimators.
) Bias, MSE, and Probability of Nearness
* %
Let T = (Ty,T3) and ™ = (Tl,Tl) be any two
. * *
estimators of e = (e7,05). Let (t1i,t241) and (tli’tzi) be

* %
the values of (T;,T;) and (Tl’Tz) respectively for the ith

sample where i = 1,2,...,M. We use M=500 in this study.
Then the simulated values of the bias vector of T, the MSE
of T, the probability of nearness of T with respect to T*
are obtained as follows.

Bias: The magnitude of the bias of T in estimating e

is defined to be [b| = |(bi + bz) where

M M
by = (/M) |3 t13] - ey, and by = (/M) |3] tpi| - o,.

Hence, we compute the direction angle of b as
Dir = cos(b,/ubu).

MSE: The simulated mean square error (MSE) of T is

defined to be
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M

MSE(T) = (1/M) D, [(t3j - 07)2 + (ty; - 05)2].
i=1

Hence, we define the efficiency of T* with respect to T as
EFF(T*,T) = MSE(T*)/MSE(T).
Probability of Nearness: The probability of nearnes

of T with respect to T*, p(T,T*), is defined as follows.

Let E represent the event

[\I(T1 -901)% + (Ty - 65)2' < \I(TI -01)2 + (T; -065)2 |.

Then, p(T,T*) = m/M, where m is the number of times E
occurs.

The Probability of Non-existence: Let ny be the
number of times (3.14) istg;ue. Then the probability of

non-existence of the m.l.e. is py = ng/M.

c) Comments on Table 3.1 and Table 3.2

Table 3.1 contains the asymptotic variances of the

A A
maximum likelihood estimators («,0) for different values

of (#,0) and the truncation probabilities. Table 3.2
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contains the simulated values of the bias, the MSE, the
efficiency, and the probability of nearness for different
estimators. Next, a brief account of the performances of
these estimators is presented.

Bias: The magnitude of bias of the Bayes modal is
relatively smaller compared to the mixed and the harmonic
mean estimators for all the chosen levels of the
parameters. The harmonic mean estimator has relatively
larger length of the bias vector. By looking at the
directional angle, we can see that the Bayes modal, and
the harmonic mean estimators have approximately the same
angles in the range of 250-280 degrees. In other words
both the components of the bias vector are negative. On
the contrary, the directional angle for the mixed
estimator lies in the first quadrant and hence it has the
tendency of overestimating both the parameters. Another
important point observed is that the length of bias of the
Bayes modal estimator converges to zero faster while the
harmonic mean estimator has a slower rate of convergence.

Efficiency: We compare the MSE's of the Bayes modal
and the harmonic mean estimators with that of the mixed
estimator. By studying the efficiencies reported in Table
3.2, it is strikingly obvious that the harmonic mean
estimator has uniformly smaller MSE compared to the Bayes
modal estimator. Note that both the estimators (Bayes
modal and harmonic mean) have efficiencies larger than one

with respect to the mixed estimator. Another important
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point noted from Table 3.1 and Table 3.2 together is that
the variances of all the estimators are close to the
asymptotic variance of the maximum likelihood estimator
for n=40.

Probability of Nearness: In Table 3.2, pP] represents
the probability of nearness of the mixed estimator with
respect to the Bayes modal estimator, P, represents the
probability of nearness of the mixed estimator with
respect to the harmonic mean estimator, and p3 is the
probability of nearness of the Bayes modal with respect to
the harmonic mean estimator. It is clear that pP; < 0.5,
P2 > 0.5, and p3 > 0.5. In other words, the Bayes modal
is relatively near to the parameter more often while the
harmonic mean estimator does not behave well with respect
to this criterion.

Probability of Non-existence: 1In Table 3.2, Po
represents the probability of non-existence of the maximum
likelihood estimator. We can see that Po is as high as
20%, particularly when the truncation probabilities are
high. Note that the probability of non-existence of the
m.l.e. as reported by Mittal [1984] are based opon the
sufficient condition while the ones reported here are
based upon the necesary and sufficient condition and hence
the figures reported here are more accurate.

As a concluding remark to the above comments,

i) The Bayes modal estimator is preferable to the
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mixed and the harmonic mean estimators if the
bias or the probability of nearness is a

criterion,

ii) The harmonic mean estimator is preferable if MSE

is a criterion.
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4. TRUNCATED GAMMA DISTRIBUTION

In this chapter, we discuss a two parameter gamma
distribution. The scheme of presentation is as follows:
i) Section 4.1: Family representation.

ii) section 4.2: Derivation of the maximum
likelihood equations and discussion of the
existence of a solution.

iii) Section 4.3: Computational results for solving
the maximum likelihood equations.

iv) Section 4.4: Derivation of the Bayes modal
estimator.

v) Section 4.5: Discussion of simulation results.
The discussion is mainly in an exponential family
representation. Theorem 4.1 is the key result of this

chapter.
4.1 Family Representation

A truncated gamma population is described by a random

variable Y with density function

f(yis,x) = ’ (4.1)

77
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where 0 < y < U, U > 0 known, and (8,«) in @ with

Q@ =[(B,a) : 0<B<®, 0<a<c<wm],

Since the truncation point U is assumed to be known, we

can change X = Y/U in (4.1) so that the truncation

interval becomes [0,1]. That is, we may rewrite (4.1) as

f(x:8,a) = . (4.2)

Given n i.i.d. observations from (4.2), (8,«) is the
parameter of interest. 1In other words, the indexed family

of interest is

= [L(x:8,0) ¢ X = (X7...%p) € & , (B,x)ex],

&
(N
I

ot
Il

[x : 0<x3;<1, i=1,2,...,n],
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- ;—J Z x; + (a—l)z log x4
L(x ; 8,a) = = = . (4.3)
- g u + (a¢=l)log u

1
Io e du

In (4.3), L(x:8,«) is the likelihood of the sample. Here
B, is an exponential family. It is easy to see that

L(x:8,x) can be expressed in a standard minimal

exponential representation of the type (2.1) with

-n
a(B,a) e Q—)R, a(B,OL) = [J‘:)- e(Tl(B,Ol)-l)u'*"rz(B,cx)log u:|

-3 X4

1

b(x) : ¥I—R, b(x) = e
T(x) : a—8, § = [(E1,t3) ¢ 7 =2 x4, t5 = =log Xj, X1},
T(8,x) 1980, G=[(91,9 2)3 91=7'1(Bl°‘)l 92="'2(BI°‘)I(BIO‘)EQJI

U
and T1(8,2)=1 =~ i Tz(B,a)=oc—1.

It is easy to see that + is one-one with the inverse

mapping

8 =U/(1l-e7), and o« =06, + 1.
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We may represent the truncated gamma population (4.2)

under the (e;,6;) parameterization as

e(el-l)x+92 log x
f(x:el,ez) = . (4.4)
f; e(el-l)u+ezlogudu]

In our later discussions, we refer (4.4) as the truncated
gamma distribution and find it to be useful.

The distribution of T{X)=(Ty (X)=% X1,T2(X)== log Xj)

with the parameterization (¢61,63) is of the form

o-t-K(e)

g(t;e) = h(t)e te S, 6 € 0, (4.5)

In (3.5), K(¢) = log c(¢), and c(e) is given by

n
c(e) = [J‘é e(f1-1)uteylog udu] .

Note that @ is one-one mapping of @ and hence
0 = [(61,92): - < Ol <1, -1« 62 <°°]-

Here © is parameter space of interest. It is easy to

check that the natural parameter space © is
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@
I

[(61,62)3 Ié e(017l)uteslog u, w],

[(91,02): -0 <91 <®® , =] <92 <°°].

Now it is clear that the parameter space of interest
is a proper subset of the natural parameter space. In

other words,

4 = [g(tse): e ¢ 8] (4.6)

is a proper subfamily of the full family. Now, we discuss

2 2
a monotonicity property of DK(e) where DK(e) =[—§—,—§—].
ael 862

From the definition of K(e) in (4.5), we can verify that

2K 2K
5;; = nE(X) , and 5;; = nE(log X),

where E(X) and E(log X) are expected values of X and log X
with respect to (4.4) respectively.

Let

I = [(my,my): m = E(X), my = E(log X), e € 8]. (4.7)
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In (4.7), I is the range of (%)DK(O) on 8. As mentioned
in Chapter three, I may be called the population moment
space. Note that (%)DK(O) satisfies the monotonicity

result (2.7). That is,
(01-67) (my-mp) + (65-63) (my=Mp) > O (4.8)

where (m;,my;) and (ﬁl,ﬁz) are the values of(%)DK(e) at o

and 6 respecttively. It can be seen that the result (4.8)

also implies the following:

i) The strict montonicity of E(X) for fixed 64,

ii) The strict montonicity of E(log X) for fixed 0q.

(4.9)

These monotonicity properties of E(X) and E(log X)
are useful ir discussing the maximum likelihood estimation

in certain subfamilies of «.

4.2 Maximum Likelihood Estimation

The log likelihood of the sample t = (t;,t,) is
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l(e:;t) =e.t - K(¢) + log h(t),

where K(e) and h(t) are as defined in (4.5). Hence the

maximum likelihood estimator of e is a solution of

DK(e) = t, e € 8,

Let £; = t3/n, t5; = t3/n and s = [(t1,t3)2(ty,tpy) € 8],

We may call S the sample moment space. Hence the

equation, DK(e¢) = t, can equivalently be written as

t1,

ty. (4.10)

E(X)

E(log X)

The equation (4.10) is referred to as the maximum
likelihood equations. We now discuss the question of

existence of a solution to (4.10).

Since 8 is an open convex subset of 5, Theorem 2.4b
is applicable. Hence the question of existence of a
solution to the m.l. equations requires determining the
set I. It means that the range of E(log X) be expressed
as an explicit function of m;. This is done in Theorem

4.1 below.
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Theorem 4.1l: Let Dml = [(01,03) tE(X) = my], 0 <my <1,
and 8* be the boundary of 6. Then for e in Dml’ the

following result holds:
1l -1/m; < E(log X) < log(m;). (4.11)

Proof: The upper inequality in (4.11) follows from the
well known result that E(log X) < log (E(X)). Hence we

need to show only the lower inequality in (4.11). It is

* *
clear that e* = e, U e, where

9* * 1 < *Sl d 9* 1 * < *
= - ? = = ? - o],

* *
Note that {1,-1} is the only common point in 91 and 02.

* * * %
Let (el,-l) and (1,02) be any given points in el and @2

respectively. Then the following results hold:

i) limit E(X ) = limit [sqolx £(x:0)ax],
* *
el—>el el-—->el

62'—)-1 62—>-l
= 0'
and

limit E(log X)
*
[*] 1‘—)9

limit [Iollog x £(x;0)dx]
*
—
1 °17%
92—')"'1 92_)-1

= w0,
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ii) 1limit E(X) = limit [solx £(x;e)dx],
611 611

*
62—)62 92—>62

* *
(62+1)/(62+2) ’

*
= Fl(ez), say, (4.12a)
and
limit E(log X) = limit [syllog x £(x;e)dx],
91—>l 91“)1
* %*
92—992 92—962

_ *
= -l/(62+1),

*
Fz(ez), say. (4.12Db)
The direct proof of (i) is difficult. However, the same
*
follows by noting that the limit of f£(x;e), as el—eel and

65— =1, is a degenerate function at x = 0. The proof of
(ii) follows by a straight forward evaluation of the
limiting integrals. It is easy to check that in

4.12a and 4.12b, the following are true:

*
i) Fl(ez) is strictly increasing function of e
with the range (0,1).
*
ii) Fz(ez) is strictly increasing function of e

the with range (-=,0).
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*
Due to the montonicity of Fl(ez), for a given 0 < my < 1,
] 3 * *
there exists a unique 62 such that Fl(ez) =my.
*
In other words, (1,92) is the boundary point of Dml' Note

*
that Dml does not have any boundary point in el. In fact

e, = (2m3~-1)/(1-my).
We may check that
* *
Fz(ez) =] = l/Fl(el) = 1 =-1/m,.

Now the monotonicity property (4.8) of E(log X) in Dml and

*
the fact that 65 > 92

in Dml together imply that
Inf E(log X) =1 - 1/m;.

Dml

Hence the result.
Theorem 4.1 characterizes the set I completely and
hence we may write the set I (population moment space)

explicitely as
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I=1[(mg,mp): 0<m <1, 1=-1/m <my < log my]. (4.13)

Now using Theorem 4.1, we derive a necessary and
sufficient condition for the existence of a solution to
the equation (4.10) and it is stated in Corollary 4.1

below.

Corollary 4.1: Given t = (t;,ty), 0 < t; < 1, the maximum
likelihood equation (4.10) admits a solution in ® if and

only if

£

Proof: Given (t;,t;), 0 < t; < 1, it is obvious that the

solution to equations (4.10) must lie in

D_ = [91,92):E(X) = tl]'
t1

By Theorem 4.1, on Dtl’ 1l - %— < E(log X) < log t;. Hence
t1
the equations E(X) = t; and E(log X) = t, admit a solution

in & if and only if (4.14) is true.
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As an important remark, the equation (4.10) admit a

solution with probability one in the full family

4 = [g(tje):e ¢ 8]. Next we discuss the existence of a

solution to the m.l. equations in subfamilies

do, = [g(tje): = <67 < 1], 6,5 > -1 is known ,

Q&
It

[g(tie): -1 <65 < »], 61 < 1 is known,

where g(tje) is as defined in (4.5). Note that &62 is the
same as « ~known and del is the same as Bs-known in the

representation (4.1). It may be checked that the m.1.

estimator of e; in 2o is a solution of

E(X) = t,1, (4.15)

and the m.l. estimator of e, in g | is a solution of

E(log X) = t,. (4.16)
The results in (4.9) imply the following:

i) E(X) is strictly increasing in dez with the

range (0, (ey+1)/(65+2)),
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ii) E(log X) is strictly increasing in ael with the

range (—,0).

Now it is obvious that (4.15) admits a solution if and

only if tj < (e5+l)/(e5+2) while (4.16) always admits a

solution. The subfamily 2o with e; = 0 is the truncated

negative exponential distribution. These results about

402 are equivalent to results obtained by Broeder [1955].

Next we discuss figuring out the set S (sample moment

space) on the similar lines of Theorem 3.2.

Theorem 4.2: Let 0<x;<1, t; = %2 Xji , ta = %ZIOg Xi.

Then
-» < ty; < log t; , for 0 < t; < (n-1)/n,
and
1 " " " n-1 T
Elog(ntl—(n-l))<t2310g t1 for - <t;<1. (4.17)

Proof: Let Ny = [(k-1)/n, (k/n)], k= 1,2,...,n be

subintervals dividing [0,1]. Let

8 = [(X1...%Xp): 0 < %3 <1, i=1,...,n] and
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8 = [(%1...%p) € 8: (1/n)= Xj=tj], 0 < £ < 1.
t1

Given t;, it is well known that t, < log t; due to
E(log X) < log(E(X)). Hence we need to show only the

lower inequality in (4.17). Since ty = % (igllog Xi) is a

concave function, it attains its minimum on the set of
extreme points of §_ . As stated in Theorem 3.2, the set
t
of extreme points of i_ , t; in Ny for some k, consists of
ty
all the permutations of (xl..xj...xn),

where

X3 =1, i=1,2,...,k,
= nt; - (k-1), j = Kk,
=0 , j = k+1,...,n.

Since t, is invariant under permutation, it attains the
same minimum for every point in the set of extreme points

of 3_ . Another important point to be noted is that at
t1

least one of the coordinates of any extreme points of g _
t1

(n-1)
n

is zero for t; in [0, ] and none of the cordinates
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of any extreme point of 2 is zero for t; in ((n-1)/n,1].
t1

Hence,

min t, -, for t; in [0, (n-1)/n],

(l/n)(log(ngl-(n-l)) for El in ((n-1)/n, 1].

Hence the result,

Now it is easy to characterize the set s (sample

moment space) as

S = Sl U Sz, (4.18)

where

S = [(t1:ity):0<t1<(n-1)/n, - o<ty<log t31],

S, = [(El;gz):(n-l)/n<21S1, % (log(nzl-(n-l))<EZSIog El].

Let C denote the convex hull of S. We can check that
C = [(tl,tz):o < tl <1, = o < tl < log tl]'

Note that S—C as n—= as noted in the case of doubly

truncated normal distribution.
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Next we show a graphical presentation of the
discussions in Theorem 4.1 and Theorem 4.2 through Figure

4.1. Note that the set I as of (4.13) is superimposed on

the set S as of (4.18) and hence the mj-axis is the same as

the tj;-axis and the my-axis is the same as the tj,-axis.

In the following Figure 4.1, the solution to the

maximum likelihood equations (4.10) exists if and only if

(ty,t5) lies in the shaded area.

AL,

[0,0] -
t2=log(t1)
= - -
ty= log(nt,~(n-1)) - 1,1
S
;2=l_ l 7 v
%
Population and Sample Moment Spaces
Figure 4.1
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4.3 Computational Results
The main computatinal interest in the truncated gamma
family (B3) is in solving the maximum likelihood

equations. Recall that the m.l. equations are given by

1 -
Io x £(x;0)dx = tq,

tz-

1l

I; log x f(x;e)dx

For computational convenience, we may introduce the

following notations:

A =963-1 , B =965 and hence - » <A< 0, -1<B<w»,

v(a,B,J)

J‘; eAXyB+Jgy
W(A,B,J) = I; log x eRXxBi+Jgy, (4.19)
z(aA,B,J) = I; (logx) 2ePAXyB+JIgx,

In (4.19), J = 0,1,2,.... With the notations (4.19), it

is easy to see that the m.l. equations may be written as

= |U1(2,B) [ _
U(A,B) = [UZ(A’B)] = 0, (4.20)
where
_ V(a,B,1) _ = - W(a,B,0) _ o
Ul(A,B) = V(A,B,O) tl' and U2 (A,B) = V(&,B,0) t2.
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24

We may solve (4.20) by Newton's method or by IMSL routine
ZSPOW. By Newton's method, a solution at (i+l)th
iteration is

(i+1) (i) ) . ‘
[g(i+1)] = [:(i)] - (3@ali)y1-lya(d), (i),

where i=0,1,2,..., and (a(9),B(0)) is an initial guess and

J(A,B) is given by

J(a,B) = [aUl/aA , aUl/agl

aU,/2A , 2U,/2B|" (4.21)

It is easy to see that

oA V(A,B,0) V(a,B,0)f '

2Up _ 2U; _ W(A,B,1) _ V(A,B,1)-W(A,B,0)
2A 2B V(A,B,0) Cv(a,B,0)]2 !

and

2U, _ Z(A,B,0) _ [W(A,B,0) 2
2B V(A,B,0) V(A,B,0) :
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We can check that
2 2 2
—1 = var(X); —% = cov(X, logX); and 5%2 = Var(logX).

Hence at each iteration, we need to evaluate the integrals
(v(a,B,J), j=0,1,2), (W(a,B,J), j=0,1), and Z(a,B,0).

Note that zero is the point of singularity of the
integrals (V(A,B,0), W(A,B,0), Z(A,B,0)) whenever

-1 < B < 0. The integration by parts would remove the
singularity and the same can be seen in the following
recurrence relation. We obtain the following results by

integrating (4.19) by parts for j=0,1,2,....

i) v(a,B,J) = [eP-A V(A,B,J+1)]/(B+J+1), (4.22)

ii) w(a,B,J) - [V(A,B,J)+A W(A,B,J+1) ]/ (B+J+1),

iii) z(a,B,J)

- [2W(A,B,J) + A Z(A,B,J+1) ]/ (B+J+1).

We first compute V(A,B,J), for some j > 1, and hence
we can compute the other integrals using the recurrence
relation (4.22). The key integral in solving the m.1l.
equations is V(A,B,J). It may be noted that IMSL routine
MDGAM computes V(A,B,J), J > 0, efficiently using
Chebychev's polynomials. We use the same in computing the

integrals (4.22). IMSL routine MDGAM provides
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1 8 o -
Po(B,a) = P IO e~ Uyt-lgy,

and hence we can check that
V(a,B,J) = (-1/a) (B+J+1)r (B+J+1)pg(-A,B+I+1) . (4.23)

c) The Information Matrix

The information matrix I(A,B) can be obtained as done
in the case of doubly truncated normal distribution in
Chapter three. That is, I(A,B) = J(A,B) where J(A,B) is
the same as in (4.21). Given I(A,B), we can easily see

that
1(61,02) = R I(A,B)R'

where

2A 2A
26, ' 26,
R = |°°1 °2¢ |
2B 2B
207 ' 20,

Hence I(A,B) = I(e;,63). Now given I(A,B), we can derive
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the information matrix under the (8,«) parameterization as
I(B,2) = Q I(8B,x)Q"',

where

A
Since \n' (e - o)

R

Multivariate Normal (O,I‘l(e)),

the asymptotic variance - ccvariance matrix of the m.l.e.

is

o =% [171¢e)] . (4.24)

A
(]

4.4 Bayes Modal Estimation

Here we consider the Bayes modal estimation in two
parameter truncated gamma family (3,). We derive the
Bayes modal estimator as defined and discussed in Section
2.5a of Chapter two. For the sake of simplicity of the
discussion, we rewrite the truncated gamma distribution

(4.4) as
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eAx+B log x
f(x:;A,B) = ’ (4.25)

[fi eAx+B log xﬂ

where A = e;-1, B = ®, and hence - ® < A < 0, -1 < B < =,
In further discussions in this section, E(X) and E(logX)
are assumed to be evaluated with respect to (4.25). We
consider the conjugate prior, the gamma prior, for A and
the noninformative prior for B. 1In other words, prior for

(A,B) is
P(A,B) « edA+b log(—A)'

where 0 < a < w; -1 < b < »;, are the parameters of the
prior. Hence the modified likelihood of the sample of

i.i.d. observations from (4.25) is

ty+a)A+Bt,-K(A,B)+b log(~-A
L*(A,B,tl,tz)a e( 1t+a) 2-K(A,B) g ( ),

n
where t;=£xj, ty=Slogx;, and K(A,B)=1og[I;eAx+Blogx1 .

The Bayes modal estimator of (A,B) is the solution of

E(X) - a/n - (b/n)/A = Elr and
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E(logX) = t, (4.26)

/

1 2K 1l 2K
where E(X) = o 33 ! E(logX) = 5 5B °

Except for the term (a/n + b/nA) in the first
equation, (4.26) is the same as the m.1l. equations (4.10).
Hence the question of existence of a solution to (4.26)

can easily be studied using Theorem 4.1. TILet

sz = [(A,B) : E(logX) = my] , = < my < 0.

Here cm is the subset of the parameter space of (A,B)
2

with E(logX) being constant. Again arguing on similar

lines of Theorem 4.1, we can show that, for (A,B) in cm ’
2

e"2 < E(X) < 1/(1-my). (4.27)

Also it is important to note that - » < A < 0 in cm .
2

Using these two facts, we state a result about the

existence of a solution to equations (4.26) next.

Theorem 4.3: Given (t;,t;), 0 < t; < 1, a solution to the
Bayes modal equations (4.26) exists with probability one

provided b > 0.
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Proof: Given (t;,t;), there exists a set C_ in the space
t2

of (A,B) and the solution to (4.26) lies in C_  where
t2

C_ = [(AIB) : E(logX) = t2]l - < t2 < 0.
t2

Since - @ < A < 0 on C_ , using (4.27), we can show that
)

limit [E(X)-a/n - b/(na)] = et a/n,
A =

and

limit [E(X)-a/n - b/(nA)] = «, provided b>0.
A—0

Before concluding the result, we should note the

following:

i) E(X) is strictly monotone on C_ due to (4.8),
)

ii) The range of t; is [etz » 1], for a given t,.

Hence the result.
The previous analysis holds for any a > 0, and b > 0

in the prior distribution. However, the question is how
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to choose the optimum values of a and b. As mentioned in
Section 2.5a, we may use Blumenthal's analysis of one
parameter family since we are using noninformative prior

for B. In fact, Mittal [1984] shows that a = % s b=1

are the optimum values in the sense of asymptotic minimum
bias as derived in (2.29). Hence we use these values in

simulation studies.

4.5 Simulation Results

Here, we discuss the comparative behaviour of the
Bayes modal and the mixed estimators based on 500 random
samples of sizes 10, 20, and 40. The mixed estimator is
defined to be the mixture of the maximum likelihood
estimator and the Bayes modal estimator based on the
necessary and sufficient condition (4.14). All the
simulated results are presented for the (61,93)
parameterization. The details are discussed next in

subsections a) - b).

a) Plan of Simulation: The general sketch of the

simulation work in this family is similar to the one
described in Section 3.4 except that the truncation
interval here is fixed to be [0,1] in advance. The

parameters chosen for simulations are:

o3 = -3, -1, -0.3, 0, and e, = -0.6, -0.4, 0, 1.0.
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The parameters are chosen such that the truncation
probability (gg) ranges approximately in the interval
[0.01, 0.25]. The samples are drawn using IMSL subroutine

GGAMR. Here, the sample statistics of interst are

ty = % 2 %Xy, ty = % Z logxy , and 0 < x < 1.

Once (t;,t;) are computed, we obtain the maximum
A A
likelihood estimates (e;,9,), the Bayes modal estimates

(61,65), and the mixed estimates (glmIQZm) using the
appropriate equations as done in Chapter three. Note that
the computation of the bias vector, the probability of
nearness, the mean square error (MSE), and the probability

of non-existence of m.l.e. are as defined in Section 3.4.

b) Comments on Tabale 4.1: Table 4.1 contains the
simulated values of the bias (length and direction), the
MSE, the probability of nearness of the mixed and the
Bayes modal estimators. We next present the relative
performances of the Bayes modal and the mixed estimators

with respect to these criteria.

i) Bias: 1In Table 4.1, "Bias" represents the

length of the bias vector and "Dir" denotes the direction.
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We can see that bias of the Bayes modal is less than bias
of the mixed estimator in majority of the cases. The
directional angles of both these estimators vary in a
small neighborhood of 170 degrees. 1In other words, both
the estimators tend to underestimate 3 and overestimate
2. From the direction angle, it is interesting to note
that e, component of bias vector is relatively smaller
than 6, component. Also, bias (of both the estimators) is

small for n = 40 indicating the consistency.

ii) Probability of Nearness: In Tabale 4.1, Py
represents the probability of nearness of the Bayes modal
with respect to the mixed estimator. It is clear that
P; > 0.50 always. Hence the Bayes modal has the property
of being nearer to the true parameter more often compared

to the mixed estimatcer.

iii) Efficiency: The MSE's of the Bayes modal and
the mixed estimators are compared through the efficiency
as defined in Section 3.4. From Table 4.1, we can see
that the efficiency of the Bayes modal is greater than one
for all values of (61,92) and for all sample sizes
considered here. However, as n becomes large, both the
estimators tend to have the same MSE's. In the table, v,
and v, represent the asymptotic variances of the maximum

likelihood estimators of e; and e, respectively and
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(vy + v3) is comparabale with the MSE for large n. We
can see from the table that the MSE's of both the

estimators are close to (vy + v,) for n = 40.

iv) The Probability of Non-existence: 1In Table
4.1, po represents the probability of non-existence of the
m.l.e. Note that py is computed using the result (4.14)
We can see that py ranges in the interval (0,0.18). It is
important to note that Po is an increasing function of the
truncation probability (qg).

We conclude the discussion by noting that the Bayes

modal estimator is preferable to the mixed estimator with

respect to all the criteria chosen for comparison.
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5. SINGLY TRUNCATED LOG-NORMAL (or NORMAL)
DISTRIBUTION

This chapter deals with a singly truncated log-normal
which is equivalent to a singly truncated normal
distribution. The scheme of presentation is quite the
same as in Chapters three and four.

i) Section 5.1 deals with family representation.

ii) Section 5.2 deals with a derivation of the
maximum likelihood equations and the question
of existence of a solution.

iii) sSection 5.3 deals with computational results.

iv) Section 5.4 deals with a derivation of the
Bayes modal equations and the question of
existence of a solution.

V) Section 5.5 deals with simulation results.
5.1 Family Representation

A singly truncated log-normal population is described

by a random variable Y with density

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

£(yin,02) = , (5.1)

where 0 < y < U, U > 0 is known, and («,02) € 2 with
Q= [(x,02) t ~®w <u<®, 0<ol<ow].

Hence the indexed family of joint distributions of i.i.d.

random variables (Yj...Yp) is

By = [L(X7 ”7”2) fY = (Y]_'-'Yn) € g: (“raz)eg]r

where

1<t

= [y: 0< y; < U, i=1,2,...,n, U as in (5.1)1],

and
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f22 . - 1 Wy 2
B Y
1

i=1 ¥
I—'(}.”"‘r"’z)g n
w =log U _ 1 2
= -
log U _.
i e du

(5.2)

By changing X = ¥ - logU in (5.1), the singly truncated
log-normal becomes the singly truncated normal

distribution with density

w=logU 1 2
T2 |X T g2 ¥

o

£(xin,02) = = (5.3)

z—=logU 1
IlogU e

=00

where —» < %Xy < 0, and («,02)eq.
Now the indexed family of joint distributions of i.i.d.

random variables (X;...Xp) with the density (5.3) is

34_

|
-~
[
-~
%
R
Q
X}

X = (X3...Xp)e8, (u,02)eR],

§ = [%: == < x3 <0, i=1,2,...,n],

and
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u=logU 1
[ = ZXj = 37 zxiZJ
e
L(xiz,02) = = . (5.4)
v=logU 1
0 ol = 20-1 u
J_ e du

We can express 34 in a minimal exponential family as

defined in (2.1) with

-n

14

a(u,az) :9—R, a(u,o.z):[]‘(_)me'rl(u,a'z)u+(7‘2 (u,o-z)_l)uZdu:I

-y 2
b(x): I—R, Db(x) =e =X ,

T(x):3—8, S8 = [(t1,ty):1t1=2x3, t2=2xiz, (X7...Xp) €8],

'r‘(,u,,o"?‘) 10298,
8=[ (61192) :91=Tl(“r‘72) r 82773 (“1‘72) ) (“IUZ)EQ] ’
and

u=1logU
71(“1”2) = —o,zg_ ] "'2("1"'
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Note that = is one-one with the inverse mapping

= %21 2
“ 2(1-05) + logU, and o

1
T 2(1-e,)

We use this inverse mapping in getting the maximum
likelihood estimators of (u,¢2) from the maximum
likelihood estimators of (61,63). We may represent (5.3)

under the (e,,¢5) parameterization as

eelx+(92-l)x2
Igm eelu+(62-1)u du]

The representation (5.5) is quite useful in our later

discussions.
The distribution of T(X) = (£ X3, = Xi) is of the

form

o+ t-K(o)

g(t:;e) = h(t)e r te s, 0¢€ 0, (5.6)

where K(¢) = log c(e¢), and c(e) is given by

-1yu2 17
c(e) =[I2m e61u+(62 l)u du] ]
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Here, © being one-one mapping of 2, we can easily see that
& = [(67,032): = <67 <®, =®» <65 < 1].
It can be verified that the natural parameter space is

- 2
o = [(91r92)3 [o, efux*(eam gy w],

= [(61,62): "°°<61S0, -°°<92<1]U[(61,62):0<61<°°, -°°<62$l].

It is interesting to note that the natural parameter

space (8) and the parameter space of interest (8) differ
only in the partial boundary, [(63,03)301>0, 65 = 1], of

®. Hence we may study

4 = [g(tre): e ¢ ;], (5.7)

which is a full exponential family in contrast to the
cases we study in Chapters three and four where it is a
proper subfamily.

Next we discuss monotonicity property of the partial

) 2
derivative vector DK(e) = ng— ’ 5?—] of K(¢). By the
1 2
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definition of K(e), we can see that

2K 2K 2
'ée—l = nE(X), and % = nE(X<),

where E(X) and E(XZ) are evaluated with respect to (5.5).
Let

I=[(m,mp): my = E(X), my = E(X2), and 6 ¢ ©]. (5.8)

Then I is the range of (%)DK(O). I is called the

population moment space. Hence from (2.7), % DX (e)

satisfies the montonicity property
(el-gl) (ml-l‘;ll) + (62—52) (mz-;;lz) >0 (5.9)

where (mj,my), (ﬁl,ﬁz) are values of (ﬁ)DK(e) at e and 6

respectively.

The said montonicity result (5.9) implies the

following:

i) The strict montonicity of E(X) for fixed 65,
ii) The strict montonicity of E(X2) for fixed o;.

(5.10)

Above results are used in discussing the maximum
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likelihood estimators in certain subfamilies of «.

5.2 Maximum Likelihood Estimation

Given t, the log-likelihood function is
l(ezt) = et - K(e) + log h(t),

where K(e) and h(t) are defined in (5.7). By the
definition (2.8), the maximum likelihood estimator of e is

a solution of

DK(e) = t, o € ©.

Let t; = t3/n, t; = ty/n and define

S = [(tl,t2)= (tl,tz) € S].

We may call S the sample moment space as in earlier
chapters. Hence we may equivalently rewrite the equation

DK(e) = t as
E(X) = ;1,

E(X2) = 1-:2, (5.11)

where E(X) = Igwxf(x;e)dx, and E(X2) = Igmxzf(x;e)dx and
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f(x;e) is defined in (5.5). The equations (5.11) are
referred to as the maximum likelihood equations.

Our main concern is the question of existence of a
solution to (5.11). Since we are dealing with a full
exponential family, Theorem 2.4a of Chapter two is
applicable. As stated in Theorem 2.4a, we are required to
check the steepness of «, the steepness of K(¢), in order
to know the existence of a solution. Next in Proposition

5.1, we state the result about the steepness of K(e).

Proposition 5.1: Let « = [g(t;e):e in €], g(t;e) as
defined in (5.6). Then « is not steep.

* * =
Proof: Let (el,l), el>0, be a boundary point of ©. Then

we can check that the following results hold:

limit E(X) = limit [° x £(xs0)dx = -~ — ,
3 ¥* -®
e
8,29, 8,29, 1
6,1 6,*1
and
- o0 o 2
limit E(X) = limit [_ x2f(x:e)dx = — .
3 ¥* )
91+01 91+91 1
ezﬂ ezn

In order that K(e) is steep, at least one of the above

limits must be infinite. Since both the limiting
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*
quantities are finite for any el > 0, the result follows.
By Propositon 5.1, we know that K(e) is not steep and

hence the interior of convex hull of 5 is not equal to the
set I (Theorem 2.3) implying that the equations (5.11) do
not admit a solution with probability one. The fact that
these equations do not admit a solution is not useful in

itself for practical applications unless we obtain a

necessary and sufficient condition in terms of (t1,t3).

This result is shown in Theorem 5.1 and Corollary 5.1.

Theorem 5.1: Let Dml = [(e1,02): E(X) = m], ~ < m; < 0.

Then for (e;,65) in Dml' the following inequality holds:
2 2 2
ml < E(X<¢) < 2ml. (5.12)

Proof: Let ©* be the boundary of 6. It is easy to see
that

o* *1 <o’ <
= S = ®],
[(e,1) o, < =]
Since E(X2) > (E(X))2 is the well known result, we only

need to show the upper inequality in (5.12). Given any

*
boundary point (el,l) in 8%, we can obtain the following:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

Let
- 2
. j-O % e61+(62 l)x dx
N . -00
Fl(el) = 11m:it 5 ’ (5.13a)
8,29, [f 0 f1x*(opml)x dx]
62->1
and
- 2
. I?mxzeel}{"‘(ez l)x dx
Fa(e,) = limit > . (5.13b)
0,>0; I:J-gooeelx+(62-l)x dx]
92->1

By taking the limit under the intergal sign, we see that,

F * 1 *
1(61) = /ol ’ el > 0,
*
= =0 ’ ol < o'
and
P * 5 %2 *
¢} =
2( l) /91 7 61 > OI
* <0
= o e B
! 1

It is easy to see that

%
i) Fl(el) is strictly increasing in (=~ , «), with

the range (—,0)
i1) F,(8)) is strictly decreasing in (== , =), with
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the range (0,x).

Given any mj in (-», 0), due the above monotonicity

* *
properties of Fl(el) and Fz(el), there exists a unique

*
el>o such that

* * 2
Fl(el) =m;, and Fz(el) = 2 ml.

*
In other words, (el,l) is the boundary point of Dml.

Hence using the monotonicity result (5.9) and the result

(5.13b), we have

gup E(X2) = 2 mi,
my

which proves the result.
Theorem 5.1 gives an explicit expression for the set

I, the population moment space. That is,

2
I=[(m,mp): —~<m;<0, m1

2
<my< 2ml]. (5.14)
Having proved Theorem 5.1, obtaining a necessary and
sufficient condition for the existence of a solution to
the equation(5.11) is straight forward and stated in
Corollary 5.1 below.
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Corollary 5.1: Given (t;,t;), == < t; < 0, the maximum
likelihood equations (5.11) admit a solution in the

interior of ® if and only if

2 2
t] <ty <2t (5.15)

Proof: Given (tj,tj;), it is clear that a solution to the

equation (5.11) must lie in

D_ = [(91,93): E(X) = t1].
t1

By Theorem 5.1, on DEl, for t; < 0,

t12 < E(X2) < 2 ti .

Hence the result.
It may be worth noting that the m.l. equations (5.11)

in singly truncated normal distribution do not admit a

solution, whenever ZEi < t5, in the full family

d4 = [g(tse): e in ;],

unlike the cases of doubly truncated normal and truncated

gamma distributions wherein the non-existence is only in a
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proper subfamily. Next, we deal with the question of
existence of the maximum likelihood estimator in the

following subfamilies

i) 492 = [g(tie): =» < o] < ®], = ® <65 < 1 is known,

ii) 445, = [g(tie): =» < 65 < 1], =» < 69 < ® is known.
91 2 1

These subfamilies have the same meaning as explained
in the case of doubly truncated normal distributions.
Hence the cases of x-known and o2-known can be dealt in a
slightly different representation and we skip them here.

It is easy to check that the m.l. estimator of ey in ﬁez

is the solution of

E(X) = tl y =0 < tl < 0, (5.16)

and the m.l. estimator of e, in 4o, is the solution of

E(X2) =ty , 0 < ty < =, (5.17)
The monotonicity result (5.10) implies the following:

i) E(X) is strictly increasing in dez with the range

(=2,0) for all - < 65 < 1.

ii) E(X2) is strictly increasing in del with the range
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(0,2) for all e; < 0 and E(X2) is strictly
increasing in del with the range (O,Z/Gi) for all

61>0.

Hence equation (5.16) always admits the solution in ﬂez'
But the equation (5.17) admits the solution in «, 1 with
probability one provided e; < 0 and does not admit a
solution whenever ;2 2 2/ei for e > 0.

In Theorem 5.2 below, we state a result on

characterizing the set S, the sample moment space.

Theorem 5.2: Let -»<x;<0, i=1,2,...n, tl=%2xi,

t2=%§:xiz. Then,

-5 - -
< < 2, .
tl tz ntl (5.18)
Proof: ©Let 7 = [(Xj...%Xp): —-° < x3 <0, i=1,2,...n],
and
1 -

t;

Note that #_ is a hyper plane intersecting &. Since
t1
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ty 2 ti is the known result (due to E(X2) > (EX2)), we
only need to show the upper inequality in (5.18). Since

12 . . . . ; .
ty = (H)EXi 1s a convex function, it attains its maximunm

on the set of extreme points of & . The set of extreme
t

points of g_  is just the permutations of (nty, 0,...0).
t

Hence on the similar lines of arguments of Theorem 3.2, we

get

Max t; = 1/n[n?t,2],
ty

Hence the result.

Theorem 5.2 figures out the set S explicitely as

- - - - -2 - -2
S = [(tl,tz): - < tl < 0, tl < t2 <n tl]. (5.19)

Let C denote the convex hull of S. Then, it is easy to

check that

C = [(t],tp): = <ty <0, t;2 < £, < =].
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As in the cases of doubly truncated normal and truncated
gamma, limit S = C as n goes to infinity. A natural

question now to ask is, if the limit S = ¢ is true in
general? The answer is not investigated here.
Note that the results stated in Corollaries 3.2 and

3.3 are not of interest here because of the following:

i) The supremum of the sample variance over the
sample sapce is infinity.
ii) The supremum of the population variance over the

parameter space of interest is infinity.

Hence we cannot state any sufficient condition for the
existence or the non-existence of a solution to the m.1.
equations in this family similar to the one obtained by
Mittal [1984] for the case of doubly truncated normal

distribution. As a final remark of this section, it is

interesting to note that the sample moment space (§) is
the same as the population moment space (I) for n = 2.
That is, the equations (5.11) admit a solution with
probability one for n = 2.

Next in Figure 5.1, we show a graphical presentation
of the contents of discussions in Theorem 5.1 and Theoremn

5.2. As done in Chapters three and four, in Figure 5.1,

the set I is superimposed on the set S and hence the
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m;-axis is the same as the tj-axis and the my-axis is the

same as the tjy-axis.

- 2 =
ty=nt, { A ts
- -2
t2=2't1
£2-1 _
g
ool Uk

'

Population and Sample Moment Spaces
Figure 5.1

We may note that in the above graph, the equations

(5.11) admit a solution in e if and ony if (t1,t3) belong

to the shaded area.

5.3 Computational Results

Recall that the singly truncated normal density is

- 2
eelx + (ex-1)x
f(xse) = .

[J'Sw eelx + (Oz-l)xzdx]

The maximum likelihood estimators of (e;,6,) are the
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solution of
0
I_wx f(x;e)dx = tq, (5.20)

and

jo X2f(x;0)dx
-0

I
ot
[\M]

By Corollary 5.1, we know that (5.20) admits a solution if
and only if t32 < t; < 2 t;2. Whenever the sample

quantities (t;,t,;) satisfy the said necessary and
sufficient condition, we solve (5.20) iteratively by

Newton's method. We need to compute the integral

2
a + -
Jlxreelx (02=1) %%y (5.21)

for r = 0,1,2,3,4 at each iteration. It is possible to
derive a recurrence relation to evaluate the integral
(5.21) for r > 2 and we discuss the same next. Let z be

any real, and

—r?2
D_p(z) = e 2%/2 s, P=0 (5.22)

2
~2¢/4 2
e 0 - =-Z2X=-X 2
= T I xp 1e / dx’ p > ol
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and

—u2
ERF(z) = —2 j: e U du.
\]‘K

In the table of integrals by Gradshteyn and Ryzhik [1980]
D_p(z) is known as the parabolic cylinder function and
ERF(z) is known as the error function. In the said table,
certain results are stated about D_p(z) and we state them

in Theorem 5.3 giving a brief sketch of the proof.

Theorem 5.3: Let D.p(z) be as defined in (5.22). Then
the following results hold:

z2

i) D_q(z) = E e* [1 - mrF 2,
N2

ii) D-(p+1)(2) = (-1/P)[2 D_p(2) = D_(p-1)(2)1,

-2
P21 and Dp(zZ) = e 2 /4.

Proof: By the definition of D_p(z) in (5.23),

-22/4 Ime-zx—xz/z

0 dx.

D.y(2) = e

By completing the square and substituting u = (z+x)/2, we

get
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D_y(z2) = NFX ezz/4ljw

il

\E ez2/4[1 } ERF[Z/\]?]}.

Hence (i) follows.

Replacing p by (p+l) in (5.23), it is obvious that

-22/4

ot 2
z) _ € -2X=-X%/2
D-(pe1) (B = Frmry foxpe ax,
+
22/4 - (x_-i-z)_z - [ZZX]
=2 ____ wap'l(x+z)e 2 ax-z["xp-1 d
r(p+1) |Jo o ¢ x| -

Integrating by parts and simplifying the results, we have

1
D-(p+1)(z) = FprD) [(P-l)r(p-l)D-(p_l)(Z)-sz D_p(z)],
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1
= - S [z D_p(z) - D_(p_l) (Z)] .
Hence (ii) follows.

Theorem 5.3 is useful for solving the equations (5.20)

and it is shown next. It is obvious that

2 . 2
o+ - - -(1-
IO r.©1X+(ex-1)x ('1)rfo r —01X-(l-63)X ax.

Then using the definition (5.22) of D_p(z), we get

JO xreelx-(l-ez)xzdx
-0

r+l 62
= (—l)r[2(1—62] 2 r(r+l) es(l-ez)D_(r+1) — % .
\]2(1-62)
(5.23)

Now applying Theorem 5.3, we state a recurrence relation
for the moments of singly truncated normal distribution in

Theorem 5.4 below.

Theorem 5.4: Let X be distributed with the density
function f(x;e) as defined in (5.5) and E(XY) be the rth
moment of X about the origin. Then E(XY) satisfies the

recurrence relation
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E(XY) = -—]iq[elE(xr) + (n=1)E(x*~2)], r > 2, (5.24)

2(

Proof: Using the equation (5.23), we can check that

_ (=1)T[2(1-05) 172 (r41) Do 249, (2)

E(%F) 5 (D) :

where z = el/‘J(Z(l-ez)) .

Now using the recurrence relation (ii) of Theorem 5.3,

E(Xr)=(_1)r+1[2(1_92]" r/zrrl:zn-r(z) - D-(r+1) (Z)] ,

D.; (2 D_;(2)
- r r=1
= (-1)T*1[2(1~6,)] ErrEﬁl-fir—_l (2(1-62))TZE(Xr-l)
r-2
- F‘—;?_—i;z <z(1-ez))TE<xr"2)], r = 2.

By simplifying the above expresdsion, we get the required
recurrence relation (5.24)

Theorem 5.4 simplifies solving the maximum likelihood
equations a great deal. Let us rewrite the m.l. equations

(5.20) as
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U ' 0
U(ey,03) = [U;EZizgg] - [0] (5.25)

where Uj (03,03) = E(X) - tj, and Uy(e1,0;) = E{X2) - t,.
By Newton's method, a solution to (5.25) at (i + 1)th

iteration is

o (1+1) = 6 (1) - [g(e(1))1-1ly(e(i)y, i = 0,1,2,..., where

6(0) is an initial guess, and

eu euy
ael ’ 362
J(e) = .
el k)
ael ' 392
It can be verified that

au

5oy = E(X?) - (E(X)Z,

ol _ 2y _ 2y = 2U2

o, E(X<) E(X) E(X<¢) o7 '

=)

552 = B(x%) - (8(x2))2,

392

where all the expectations are with respect to f(x;e).

Now it is obvious that we need to evaluate E(XY),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



131

r=12,3,4, at each iteration. Due to Theorem 5.3 and
Theorem 5.4, we may state a simple algorithm to compute

the above expected values as follows.

I Given (6;,05), 2z = el/\JZ(l-ez) ’

II C1 = ERF(z/\2"), (ERF from IMSL),

III D(0) = Exp(-z2/4),
IV D(-1) = 1/D(0) \E; [1 - c1],
V D(-2) = -1/2[zD(-1) ~ D(0)],

VI E(X) = -1/(2N(1-e,) )D(-2)/D(-1),
VII For J = 2,...M (M is a fixed integer),

E(xJ) = ETT%FZT [61E(J-1) + (J-1)E(J-2)],

Where E(J) = E(xY), E(0) = 1, and
D(-J) = D_j(z).

We can see that the entire computation work starts
with the calling of IMSL subroutine ERF(z) and computing
D(0). Note that ERF(2z) is a highly efficient routine in
calculating the integral (5.21).

b) The Information Matrix
Computation of the information matrix is similar to
the case discussed in the doubly truncated normal

distribution. That is, I(e) = J(e) where I(e) is the
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information matrix with respect to (5.5) and J(e) is
defined in (5.26). Hence the information matrix with

respect to the (z,02) parameterization can be obtained as
I(x,02) = Q I(e) Q', (5.26)

where

Hence the asymptotic variance-covariance matrix £, of the
(7]

maximum likelihood estimator can be computed as follows:

23 =r5! [I(e)]'1 . (5.27)

5.4 Bayes Modal Estimation

This section deals with derivation of the Bayes modal
equations and the question of existence of a solution.
Analysis of the Bayes modal equations is similar to the
one in the case of two parameter truncated gamma
distribution. We may rewrite the singly truncated normal

density (5.5) as
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Ax+Bx2
e

f(x:A,B) (5.28)

=70 Ax+BxZ2. '
[~ e dx

-0

where A = 67, B = (65-1) and hence -=» < A < 0, == < B < 0.
We consider a gamma prior for B and a noninformative

prior for A. In other words, a joint prior for (A,B) is

D(A,B) « eaB+blog(--B)

r

where a > 0, b > -1, are the prior parameters.

Given a sample x = (Xj,...Xp) of i.i.d. observations

from (5.28), the modified likelihood function is

L*(x; A,B) « e't1¥(B+a)ta-K(A,B)+blog(-B)

2 n
where K(A,B) = log [Igw PXTBX dxi .

Hence the Bayes modal estimator of (A,B) is a solution

of

E(X)

ti,

E(X2) - a/n -b/nB = t,, (5.29)
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oK 1l 23K
'a—A,a.l'ld.E(X)—-'r—1 a—B-

where E(X) = %
As in the case of truncated gamma family, the Bayes
modal equations (5.29) are similar to the maximum
likelihood equations except for the term (a/n + b/nB) in
the second equation. Now it is easy to analyse the
equations (5.29) with the help of Theorem 5.1. Let

Dp, = [(A,B): E(X) = my], -~ < m < O.

1

Note that Dy is equivalent to Dp, of Theorem 5.1. We

already know from Theorem 5.1 that for (A,B) in Dml’

mi < E(X2) < 2 mi. (5.30)

Hence using the equation (5.30), it is easy to prove the
existence of a solution to the Bayes modal equations and

it is stated in Theorem 5.5 below.

Theorem 5.5: Given a sample quantity (tp,t,), t; < 0, the
Bayes modal equations (5.29) admit a unique solution with

probability one, provided b > O.

Proof: Given (t;, t,), there exist a set D_ in the space
t1
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of (A,B) and a solution to (5.29) must lie in D_ . Also
t1

it is important to note that — < B < 0 in D_ . Hence
t)

from the montonicity property (5.9) of E(X2) in D_ along
t1

with (5.30), we can see that

limit [E(X?) - a/n -b/nB] = t;2 - a/n,
B— =

and

limit [E(X2) -a/n -b/nB] = », if b > 0.
B—0

Also we know that t;2 < t, < nt;2. Hence the result.

Note that a = 1/2 and b = 1 are the optimum prior
parameters (in the sense of asymptotic bias) which can be
shown using the analysis presented in Section 2.5a. We

use these values in simulation studies.

5.5 Simulation Results:

Here, we compare the simulated values of the bias, the
probability of nearness, and the MSE of the Bayes modal
and the mixed estimators. The results are presented for
the (¢;,6;) parameterization. The plan of simulation is
the same as in the case of doubly truncated normal

distribution. The simulation is based on 500 random
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samples (of sizzs 10, 20, and 40) and the samples are
drawn using IMSL subroutine GGNML. We choose the values
of truncation probability (qg) as

i) g9 = 0.25, ii) gg = 0.15, and iii) gg = 0.05.

The truncation interval (—»,U) is transformed to (-«, 0)

where U is such that

o1 xms,?
U 1 2 o
I e dx = dqg.

The sample statistics of interest are

[

Exiz.

Sl

t; = =x%; , and tp =

Given (t;,t,;), we obtain the maximum likelihood estimates

A A

(¢1,65), the Bayes modal estimates (31,32) and the mixed

estimates (glmIQZm) using the appropriate equations as
done in Section 3.4. Also note that the computational
definitions of the bias, the probability of nearness, and
the mean square error (MSE) and the probability of
non-existence of the maximum likelihood estimator are as
defined in Section 3.4.

It may be noted that obtaining the Bayes modal and the
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m.1l. estimators requires to evaluate E(XY), (r = 1,2,3,4),
at each iteration. Due to the fact that |E(XY)|—» as
21, we have a computational instability near e,=1. It
is observed tnat |E(XT)|—« faster when 67 < =30. Hence,
we could carry out the actual computational work only for
=30 < 63 <5 and -20 < 635 < b(e;), where b(eq) is a
computational upper bound such that E(XY) is computable.

Actual simulation results are presented in Table 5.1.
In Table 5.1, pgy represents the probability of
non-existence of the m.l.e. and p; represents the
probability of nearness of the Bayes modal with respect to
the mixed estimator. A brief discussion of the relative
performances of the Bayes modal and the mixed estimators
is made in the next paragraph.

Before actually presenting the final results in Table
5.1, several combinations of the parameter values of
(61,89) are tried and interestingly, it is observed that
the Bayes modal and the mixed estimators behave distinctly
different for 0 < ¢; < 1 as compared to 65 < 0. .ote that
02 = 0 is equivalent to ¢2 > 1. From the Table 5.1, we
can see that the Bayes estimator has smaller magnitude of
bias and MSE whenever ¢, = -1, and otherwise the mixed
estimator has smaller values. Further, it is observed
that the direction angle of the bias vector for both the
estimators lies in the third quadrant. In other words,
both the estimators tend to under estimate both 1 and e,.

Also with regard to the probability of nearness, the same
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pattern exists. That is, the Bayes modal is more often
(about 90% of the time) nearer the true values whenever

65 < 0, otherwise the mixed is nearer. Unlike we observed
in the cases of truncated gamma and doubly truncated normal,
the probability of non-existence of the m.l.e. is
relatively very small (about 0.0l to 0.02 for n= 10) even
when the truncation probability is as high as 0.25. It is
clear from Table 5.1 that pgy is zero up to 3 decimals
whenever the sample size is 20 or more. In Table 5.1,

(vy + v3) is the sum of the asymptotic variances of the
maximum likelihood estimators of e, and 6,. Note that

(vy + vp) is comparable with the MSE for large n. 1In fact
in Table 5.1, we can see that these two quantities are

close to each other for n = 40.
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