Comparison of a Head Mounted Impact Measurement Device to the Hybrid III Anthropomorphic Testing Device in a Controlled Laboratory Setting

Eric Schussler
Old Dominion University, eschussl@odu.edu

David Stark
John H. Bolte
Yun Seok Kang
James A. Onate

Follow this and additional works at: https://digitalcommons.odu.edu/pt_pubs

Part of the Nervous System Commons, Neurology Commons, Sports Sciences Commons, and the Sports Studies Commons

Original Publication Citation

This Article is brought to you for free and open access by the Rehabilitation Sciences at ODU Digital Commons. It has been accepted for inclusion in Rehabilitation Sciences Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
ABSTRACT

Background: Reports estimate that 1.6 to 3.8 million cases of concussion occur in sports and recreation each year in the United States. Despite continued efforts to reduce the occurrence of concussion, the rate of diagnosis continues to increase. The mechanisms of concussion are thought to involve linear and rotational head accelerations and velocities. One method of quantifying the kinematics experienced during sport participation is to place measurement devices into the athlete’s helmet or directly on the athlete’s head.

Purpose: The purpose of this research to determine the accuracy of a head mounted device for measuring the head accelerations experienced by the wearer. This will be accomplished by identifying the error in Peak Linear Acceleration (PLA), Peak Rotational Acceleration (PRA) and Peak Rotational Velocity (PRV) of the device.

Study Design: Laboratory study.

Methods: A helmeted Hybrid III 50th percentile male headform was impacted via a pneumatic ram from the front, side, rear, front oblique and rear oblique at speeds from 1.5 to 5 m/s. The X2 Biosystems xPatch® (Seattle, WA) sensor was placed on the headform’s right side at the approximate location of the mastoid process. Measures of PLA, PRA, PRV from the xPatch® and Hybrid III were analyzed for Root Mean Square Error (RMSE), and Absolute and Relative Error (AE, RE).

Result: Seventy-six impacts were analyzed. All measures of correlation, fixed through the origin, were found to be strong: PLA $R^2 = 0.967$ $p<0.01$, PRA $R^2 = 0.933$ $p<0.01$, PRV $R^2 = 0.999$ $p<0.00$. PLA RMSE was 34%, RE 31.0% ± 14.0, and AE 31.1% ± 13.7. PRA RMSE was 23.4%, RE -6.7 ± 22.4 and AE 18.9% ± 13.8. PRV RMSE was 2.2%, RE 0.1 ± 2.2, and AE 1.8 ± 1.3.

Conclusion: Without including corrections for effect of skin artifact, the xPatch® produces measurements highly correlated with the gold standard yet above the average error of testing devices in both PLA and PRA, but a low error in PRV. PLA measures from the xPatch® system demonstrated a high level of correlation with the PLA data from the Hybrid III mounted data collection system.

Level of Evidence: 3

Key words: Concussion, head acceleration, head velocity

Eric Schussler, PhD, PT, ATC
David Stark, MS
John H. Bolte, IV, PhD
Yun Seok Kang, PhD
James A. Onate, PhD, ATC, FNATA

1 Old Dominion University, Norfolk, VA, USA
2 The Ohio State University, Columbus, OH, USA

Disclosure

None

Acknowledgements

We thank Sam Goldman, Alex Redrow, Arrianna Willis for testing setup and data acquisition.

CORRESPONDING AUTHOR

Eric Schussler
Old Dominion University
3107 Health Sciences Bldg, Norfolk, VA 23529
E-mail: ESchussl@odu.edu
INTRODUCTION

Reports estimate that between 1.6 and 3.8 million cases of concussion occur in sports and recreation each year in the United States. Despite continued efforts to reduce the occurrence of concussion, the rate of diagnosis continues to increase. The rate of occurrence has increased from 0.23 to 0.51 per 1000 high school athlete exposures in the period from 2005-2006 to 2011-2012. The cause of these concussions is often contact of a player’s head with the opponent’s head, body, or the ground. Sports related concussions affect more than 5% of high school and collegiate football players. Nearly 15% of the affected population goes on to sustain repeat concussions within the same season. Concussion has been identified as a potential risk factor for neurodegenerative dementia and decreased neurocognitive performance. Researchers utilize measurement devices to quantify the head impacts experienced by players in order to improve safety of athletes, but the technology of these devices often moves faster than the ability to independently test their accuracy.

A method of quantifying head impulses experienced during sport is to place measurement devices such as accelerometers and gyroscopes into the athlete’s helmet or directly on the athlete’s head. Such technology allows potentially injurious accelerations to be quantified immediately during participation as well as for the collection of cumulative impact data from multiple players over the course of a season. Current wearable systems, often worn on or in helmets, have shown to be ineffective in accurately measuring the kinematics of the head. The X2 Biosystems’ xPatch® system (Seattle, WA) is an option to measure head kinematics directly from the scalp. This system consists of a triaxial linear accelerometer and a triaxial gyroscope contained in a 1½ in by ½ in device that attaches directly to the skin over the mastoid process of the athlete (Figure 1A). The system allows measurement of head accelerations for activities whose participants do not typically wear headgear or helmets. Previous research on the accuracy of a mouthguard based system manufactured and tested by the same company indicated the design may be capable of accurately measuring the accelerations experienced by the head yet limited research currently exists on the ability of the xPatch® device to accurately measure head accelerations.

The purpose of this study is to determine the measurement error of the xPatch® system when compared to a gold standard Hybrid III 50th percentile male headform (HIII) in a laboratory setting. Accurate measurements of the kinematics of the head during athletic competition are important in determining the risk of concussion, alerting medical personnel of the need for secondary evaluation and for developing concussion prevention strategies and equipment. It is theorized that these devices will have error percentages equivalent to other equipment currently commercially available.

METHODS

A helmeted HIII headform (Humanetics, Plymouth MA) was impacted via a pneumatic ram at varying impact speeds and directions. The HIII headform was attached to a HIII neck secured to a 40.23 kg mass on roller bearings which approximates the mass of a human thorax. The head was level (i.e. 0° of tilt) for all impacts. The xPatch® sensor was placed on the headform’s right side at the approximate location of the mastoid process. Orientation of the sensor was set with the front of the device oriented perpendicular to the plane of testing (Figure 1A). The sensor was attached utilizing the manufacturer provided adhesive patch. The headform was then fitted with a Schutt Stallion lacrosse helmet (STX, Model: Stallion 500, Baltimore, MD) under which a wig comprised of human hair was placed and kept moist with a spray bottle, to simulate sweat. A Cascade STX chinstrap (Cascade Sports, Liverpool, NY) was used to secure the helmet to the headform and the helmet was fitted using manufacturer’s recommendations.

A pneumatic ram weighing 23.9 kg was utilized to impact the helmet (Figure 1B). The impacting surface of the ram was an 8.25 inch diameter cylinder made of ultrahigh molecular weight polyethylene (UHMWPE). The helmet was impacted at four different speeds: 1.5, 2.5, 3.75, and 5 m/s from five different locations: frontal, side, rear, front-oblique and rear-oblique (Figure 2) to create a kinematic profile of impacts previously described to be representative of impacts experienced during play in light helmeted sports. Ram speed was controlled to within 0.1 m/s. These speeds of impact were shown to produce accelerations at the head which have been reported during sports participation.
All oblique impacts were directed 45° from the mid-sagittal plane. Each impact was directed through the center of gravity of the headform. Four impacts were performed at each selected speed for each selected direction. The number, location and velocity of the impacts were controlled rather than resultant kinematics.

Linear accelerations and angular velocities of the HIII were recorded utilizing sensors placed within the headform. Piezoelectric accelerometers (Meggitt's Endevco, Model #:7246C-2000, Irvine CA) were used to measure linear acceleration while Angular Rate Sensors (ARS) (DTS ARS P18K Pro, Seal Beach CA) were used to measure angular velocity. Accelerometers were organized within the headform in a 3-2-2-2 configuration described by Padgaonkar typical for acquiring head impact data. Linear accelerations and angular velocities were stored using data acquisition system TDAS G5* (DTS, Seal Beach CA). Data were imported into DIAdem (National Instruments, Austin TX) where it was zeroed and filtered using CFC 1000 filters as per standard practices described in the Society of Automotive Engineers standard J211-1. While angular accelerations were not directly measured within the headform, they were calculated using algebraic equations as described by Padgaonkar.

Immediately prior to data collection, the xPatch® units were synced with the data recording system which set the time stamp on each device to the computer generated time. This same computer was utilized to run to HIII data acquisition system. Data from the xPatch® sensor were downloaded from the device into the manufacturer's software at the completion of testing. This software automatically converts the linear acceleration data from the lateral aspect of the head (a_p) to the center of gravity (a_{cg}) (Equation 1) where ω is angular velocity, $\ddot{\omega}$ is angular acceleration and r_{p-CG} is the geometrical relationship between point P, the location of the
device on the head and Q, the location of the center of gravity of the head.24

\[a_{CG} = a_p + \omega \times (\omega \times r_{pCG}) \omega \times r_{pCG} \quad (Eq. 1) \]

These calculations take place within the system utilizing manufacturer preset \(r_{pCG} \) distance and orientation which are not altered by the user. All data were transferred to excel spreadsheets to coordinate time stamps. The impacts measured by the xPatch® and sensors within the HIΠ were matched utilizing the time stamp on the xPatch® device and the data acquisition system regardless of the system determination of an actual impact or a non-intentional impact. The xPatch® system identifies false impacts through two methods including comparison to a set of wave form parameters and comparison to a reference waveform using cross-correlation.25 Two hundred and forty eight impacts were recording during testing.

STATISTICAL METHODS

Correlational analysis of peak linear acceleration, peak rotational acceleration and velocity were computed utilizing SPSS version 24 (IBM Armonk, NY). Error between the devices was calculated in Percent Relative Error (Equation 2), Percent Absolute Error (Equation 3) and Root mean square error (RMSE) (Equation 4) for each of the peak accelerations and velocities14.

\[\text{Percent Relative Error} = \frac{\text{HIΠ Measure} - \text{xPatch Measure}}{\text{HIΠ Measure}} \times 100 \quad (Eq. 2) \]

\[\text{Percent Absolute Error} = \left| \frac{\text{HIΠ Measure} - \text{xPatch Measure}}{\text{HIΠ Measure}} \right| \times 100 \quad (Eq. 3) \]

\[\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{N} \text{(Relative Error)}^2}{N}} \quad (Eq. 4) \]

RESULTS

Seventy-six tests were utilized for comparison of the xPatch® and HIΠ systems. Front and front oblique low speed tests included two impacts each that were below the 10g threshold of the xPatch® system as confirmed by the HIΠ system, thus they have been excluded from analysis. All remaining tests were identified as impacts by the xPatch® system and were not determined to be non-impact signals referred to by the manufacturer as “clacks”.

Resultant peak linear accelerations from the HIΠ headform ranged from 7.1 to 134.5g (average = 40.4g ± 27.5), resultant peak rotational accelerations ranged from 606.8 to 8328.6 rad/s² (average = 2862.9 rad/s² ± 1889.2) and resultant peak rotational velocity ranged from 7.5 to 42.5 rad/s (average = 22.7 rad/s ± 9.7).

Analysis of the data indicated high correlations between the xPatch® and the HIΠ system. A correlation of linear acceleration fixed through the origin was found to be strong (p<0.01, \(R^2 = 0.967 \)). The results of rotational velocity were strongly correlated (p<0.00, \(R^2 = 0.999 \)) along with rotational acceleration (p<0.01, \(R^2 = 0.933 \)) when regressed through the origin (Figure 3).

Analysis of the RE, AE and RMSE for Linear, and Rotational Acceleration and Rotational Velocity are presented in Table 1. RMSE for PLA in all combined directions was 34%, 2.8% for PRV and 23.4% for PRA. Percent relative error by averaged HIΠ and xPatch® measurements indicate an average error of 31% ± 14.1 PLA, -6.7% ± 22.6 PRA and 1.7% ± 2.2 PRV (Table 1).

Bland-Altman Plots are presented (Figure 4) for the percent error of each of the measures at the average measure of each of the devices. Average percent error for PLA was 31.0 (Limit of Agreement; 58.6, -3.3), average percent error for PRA was -6.7 (Limit of agreement: 37.6, -51.0), indicating an under estimation of the acceleration by the xPatch® system and average percent error for PRV was 1.7 (Limit of agreement: 6.0, -2.6).

Significantly higher error was found between devices in RE and AE between the oblique measures over the non- oblique measures of PLA (Figure 5). Significant differences in AE: Front to Front Oblique (p=0.029), Front to Rear Oblique (p<0.001), Front-Oblique to Rear (p=0.018), Side to Rear Oblique (p=0.010), Rear Oblique to Rear (p<0.001). Significant Differences in RE: Front to Rear Oblique (p<0.001), Front-Oblique to Rear
Significant differences were found in PRV between rear oblique measures and all other measures in RE and AE at p<0.001 (Figure 6). No significant difference was found between front, front-oblique, and rear-oblique measures in RE or AE (p=0.044), Side to Rear Oblique (p=0.016), Rear Oblique to Rear (p<0.001).

Table 1. Error by Type and Measurement

<table>
<thead>
<tr>
<th></th>
<th>Peak Linear Acceleration</th>
<th>Peak Rotational Velocity</th>
<th>Peak Rotational Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Relative</td>
<td>31.0 ± 14.0</td>
<td>0.1 ± 2.2</td>
<td>-6.7 ± 22.4</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent Absolute</td>
<td>31.1 ± 13.7</td>
<td>1.8 ± 1.3</td>
<td>18.9 ± 13.8</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent Root Mean</td>
<td>34.0</td>
<td>2.8</td>
<td>23.4</td>
</tr>
<tr>
<td>Square Error</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Correlation of Measurements from xPatch to HIII system.

Figure 4. Bland-Altman Plot of Percent Error in A) Linear Acceleration B) Rotational Acceleration C) Rotational Velocity.
between AE in PRA (p = 0.199), with the only difference in RE between Rear Oblique and Rear (p = 0.05, Figure 7).

DISCUSSION

As has been previously reported, there is a high correlation between the measurements of linear acceleration from a gold standard system and linear acceleration reported by the xPatch® system yet higher pooled RE and AE than other devices previously studied. All xPatch® measures of linear acceleration over-estimated the linear acceleration recorded by the HIII system. While pooled rotational acceleration measures were comparable to previously reported error seen in the X2 mouth guard and the Head Impact Telemetry® (HIT) System (Simbex, Lebanon, NH), the rotational velocity measures were quite accurate when compared to both the gold standard and other tested systems on market. Whereas linear accelerations were routinely over estimated, the RMSE of rotational acceleration from the xPatch® was found to be 24%, with errors

![Figure 5. Percent Error in Linear Acceleration](image)

![Figure 6. Percent Error in Rotational Velocity.](image)

![Figure 7. Percent Error in Rotational Acceleration.](image)
By directly placing the xPatch® on the head, this type of system may minimize the effect of interaction that has been found between the helmet and the head. Despite this, the design of the xPatch® has been shown to allow extraneous motion due to skin artifact. Accelerometers mounted on or within the helmet experience accelerations much larger than those that are experienced at the head. Athletes who do not wear tightly fitting equipment increase the disconnection between the accelerometers and the head, potentially introducing error. Studies identifying the motion artifact of the device during in vivo use found the device displaced on average 4mm from reference with the skull. This may affect the interpretation of these results, as the HIII skin may not accurately recreate the motion artifact of human skin. By placing the monitoring system directly on the head, the measure-

<table>
<thead>
<tr>
<th>Impact Magnitude</th>
<th>Front (%)</th>
<th>Front-oblique (%)</th>
<th>Side (%)</th>
<th>Rear-oblique (%)</th>
<th>Rear (%)</th>
<th>Average (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak linear acceleration</td>
<td>10 to <45g</td>
<td>25 (n=13)</td>
<td>47 (n=10)</td>
<td>32 (n=11)</td>
<td>40 (n=10)</td>
<td>22 (n=9)</td>
</tr>
<tr>
<td>45 to <80g (PLA)</td>
<td>15 (n=1)</td>
<td>27 (n=4)</td>
<td>51 (n=5)</td>
<td>23 (n=6)</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>>80g</td>
<td>12 (n=4)</td>
<td>37 (n=1)</td>
<td>61 (n=1)</td>
<td>38 (n=1)</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

Percent RMSE for PLA by Direction:

Peak rotational acceleration	<4000 rad/s²	24 (n=11)	12 (n=10)	20 (n=11)	24 (n=11)	15 (n=14)	19
4000 to 7000 rad/s² (PRA)	33 (n=3)	19 (n=2)	26 (n=3)	40 (n=5)	24 (n=2)	31	
>7000 rad/s²	36 (n=2)	36 (n=2)	36				

Percent RMSE for PRA by Direction:

Peak rotational velocity (PRV)	<20 rad/s	1.2 (n=3)	0.6 (n=2)	4.0 (n=8)	3.5 (n=8)	0.7 (n=8)	2.9
20 to 30 rad/s	2.2 (n=3)	1.9 (n=6)	2.6 (n=4)	5.2 (n=5)	1.4 (n=4)	3.0	
>30 rad/s	1.3 (n=8)	1.8 (n=6)	1.1 (n=4)	5.2 (n=3)	2.5 (n=4)	2.4	

Percent RMSE for PRV by Direction:

| PLA= Peak linear acceleration, PRA= Peak rotational acceleration, PRV= Peak rotational velocity | 1.5 | 1.5 | 3.2 | 4.5 | 1.5 | 2.8 |

Table 2. Percent Root Mean Square Error (RMSE) Measures by Direction and Magnitude of Impact
CONCLUSIONS

Accurate measurement of head accelerations experienced during sports participation is necessary for determining the specific mechanics of concussion in sport, determining methods to reduce concussions and identification of those who have experienced an impact that may have caused a concussion. The xPatch® System provides a strongly correlated overestimation of linear acceleration and a high level of accuracy in rotational velocity when compared to a gold standard measure. As linear acceleration is often the primary injury criteria used in sport at this time, consistent overestimation of the linear acceleration makes the xPatch® system a good tool to identify those in need of secondary injury screening by a qualified medical professional.

REFERENCES

