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ABSTRACT 

Highly Accurate Fragment Library for Protein Fold Recognition 

Wessam Elhefnawy  

Old Dominion University, 2019 

Director: Dr. Yaohang Li 

Proteins play a crucial role in living organisms as they perform many vital tasks in every 

living cell. Knowledge of protein folding has a deep impact on understanding the heterogeneity 

and molecular functions of proteins. Such information leads to crucial advances in drug design and 

disease understanding. Fold recognition is a key step in the protein structure discovery process, 

especially when traditional computational methods fail to yield convincing structural homologies. 

In this work, we present a new protein fold recognition approach using machine learning and data 

mining methodologies. 

First, we identify a protein structural fragment library (Frag-K) composed of a set of 

backbone fragments ranging from 4 to 20 residues as the structural “keywords” that can effectively 

distinguish between major protein folds. We firstly apply randomized spectral clustering and 

random forest algorithms to construct representative and sensitive protein fragment libraries from 

a large-scale of high-quality, non-homologous protein structures available in PDB. We analyze the 

impacts of clustering cut-offs on the performance of the fragment libraries. Then, the Frag-K 

fragments are employed as structural features to classify protein structures in major protein folds 

defined by SCOP (Structural Classification of Proteins). Our results show that a structural 

dictionary with ~400 4- to 20-residue Frag-K fragments is capable of classifying major SCOP 

folds with high accuracy. 



 
 

 
 

Then, based on Frag-k, we design a novel deep learning architecture, so-called DeepFrag-

k, which identifies fold discriminative features to improve the accuracy of protein fold recognition. 

DeepFrag-k is composed of two stages: the first stage employs a multimodal Deep Belief Network 

(DBN) to predict the potential structural fragments given a sequence, represented as a fragment 

vector, and then the second stage uses a deep convolution neural network (CNN) to classify the 

fragment vectors into the corresponding folds. Our results show that DeepFrag-k yields 92.98% 

accuracy in predicting the top-100 most popular fragments, which can be used to generate 

discriminative fragment feature vectors to improve protein fold recognition.
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CHAPTER I 

1 INTRODUCTION  

The basic life processes and several vital functions occur inside cells, with the help of 

specialized proteins. Proteins are complex organic compounds created by chains of amino acids. 

A protein's chain composition, commonly referred to as the primary structure, is determined by 

the gene which encodes for it; the primary structure determines the protein's tertiary structure 

(fold), which in turn determines the protein's function. The relationship between the protein chain 

and structure is the result of a free energy minimization process at the molecular level, which 

cannot be explicitly solved just with the rules of physics and mathematics. Hence, computational 

techniques are usually applied to protein structure prediction. 

1.1 Problem Statement 

Predicting protein folds from proteins’ amino acid sequences is considered a grand 

challenge in computational biology. The major difficulties are: (1) the space of possible protein 

structure conformations is extremely large; and (2) the physics of protein tertiary structural 

stability is not fully understood. In order to better understand the protein structure universe, protein 

structure domains have been classified into structural folds according to their topologies and 

evolutionary relationships. Protein domains in the same fold exhibit similar structural 

characteristics, which are uniquely different compared to the other folds. Moreover, proteins often 
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perform their functions using a limited number of residues, making it meaningful to find structural 

similarities at the level of short protein fragments. These short protein structure fragments can be 

treated as structural “keywords” that uniquely distinguish one fold from the others. Consequently, 

a set of keyword fragments forms the signature features of a fold. 

This dissertation work focuses on developing a novel computational fold recognition 

approach. First, we attempt to identify a set of fragments that are capable of differentiating among 

common protein folds. Similar to the famous Google search engine in the Internet that recommends 

the best related websites to view when simply supplied with a few keywords (features). Second, 

we present a novel protein fold recognition approach. The fundamental idea is to convert a target 

protein sequence into structural fragments that popularly exist in protein structures, which contains 

highly discriminative features to distinguish the protein fold. The proposed approach allows the 

recognition of the protein fold of a given target protein sequence, even if the target protein does 

not seem to share any evolutionary relationship with another protein of known structure, and 

traditional fold recognition methods fail to obtain a significant model.  

1.2 Contributions of This Dissertation 

In this dissertation, we focus on protein fold recognition using deep learning approaches. 

The specific research tasks presented in this work include: 



3 
 

 
 

1) Generating Frag-K: we apply the randomized spectral clustering algorithm to process 

large-scale protein backbone fragment sets derived from the continuously growing PDB (Protein 

Data Bank) [1] to generate Frag-K libraries containing 4- to 20-residue protein fragments. The 

Frag-K libraries are used as structural features to encode protein structures. We train random 

forests model on Frag-K fragments to classify major SCOP (Structural Classification of Proteins) 

[2] folds. Our results show that, using about 400 4- to 20-residue fragments as structural key-

words, one can classify major SCOP folds with high accuracy. 

2)    Building DeepFrag-k: we present a novel deep neural network architecture, so-called 

DeepFrag-k, to classify target protein sequences into known protein folds. The fundamental idea 

is to convert a target protein sequence into structural fragments that popularly exist in protein 

structures, represented as a fragment vector, which contains highly discriminative features to 

distinguish the protein fold. Deep-Frag-k is composed of two stages. The first stage uses a multi-

modal Deep Belief Network (DBN) to fuse multiple groups of features, including sequence 

composition, amino acid physicochemical properties, and evolutionary information, to precisely 

predict potential structure fragments for a given sequence, which are represented as a fragment 

vector. Then, a 1-D Convolution Neural Network (CNN) is employed to classify the fragment 

vector into the appropriate fold. Our results show that DeepFrag-K is more accurate, sensitive, and 

robust than the existing methods. 
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1.3 Background   

1.3.1 Proteins 

The primary components of all living things are proteins [3], as they carry out most of the 

cell functions. They present the infrastructure and structural support that holds a creature together 

by making the chemical reactions necessary for life, and controlling gene expression. Proteins can 

be categorized into two categories based on their shapes in their natural environment [4], globular 

and non-globular. Most of the proteins are globular, while an important non-globular class of 

proteins is membrane proteins, whose shapes depend on the interaction with the cell membrane. 

Proteins are complex molecules composed of amino acids bonded together in long chains. 

In nature, there are twenty amino acids [5]. Each protein chain may consist of dozens to thousands 

of amino acids assembled by peptide bonds. A peptide bond occurs between the nitrogen atom at 

the end of one amino acid and the carbon atom at the carboxyl end of another [5]. The portion of 

the original amino acid molecule integrated into the protein is often called a residue. 

 

Fig. 1. The general structure of an amino acid. Reproduced from [5]. 
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1.3.1.1 Amino Acid 

Naturally, there are twenty amino acids, sharing a basic structure consisting of a central 

carbon atom (C), an amino group (NH3) at one end, a carboxyl group (COOH) at the other end, 

and a variable sidechain (R), as shown in Figure 1. The side chain determines the properties of an 

amino acid, where amino acids are classified based on the side chain properties [5]: 

 Polar/non-polar: polar amino acids are the ones whose electrons are distributed 

asymmetrically, while non-polar ones have a relatively even distribution of charge. 

Some polar amino acids are positively or negatively charged in solution.  

 Hydrophobic/Hydrophilic: hydrophobic amino acids tend to repel from water by 

coming together to form a compact core. Since the environment inside cells is 

primarily water, these hydrophobic residues tend to be on the inside of a protein, 

rather than on its surface.  

 Aromatic: an aromatic amino acid forms closed rings of carbon atoms with 

alternating double bonds. 

 Aliphatic: the side chain of an aliphatic amino acid side chain contains only carbon 

or hydrogen atoms. 
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 Figure 2 shows a representation of the amino acids and their properties. Table 1 shows the 

amino acids nomenclature and comprehends alternatives. 

Table 1  

Nomenclature for amino acids. 

Amino Acid 

Three letter 

code 

One letter 

code 

Alanine ALA A 

Arginine ARG R 

Asparagine ASN N 

Aspartic Acid ASP D 

Cysteine CYS C 

Glutamic Acid GLU E 

Glutamine GLN Q 

Glycine GLY G 

Histidine HIS H 

Isoleucine ILE I 

Leucine LEU L 

Lysine LYS K 

Methionine MET M 

Phenylalanine PHE F 

Proline PRO P 

Serine SER S 
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Threonine THR T 

Tryptophan TRY W 

Tyrosine TYR Y 

Valine VAL V 

 

1.3.1.2 Primary Structure 

Protein's primary structure is formed by the sequence of amino acid residues. The primary 

structure can be represented as a sequence using the one letter code for amino acids. More general 

representation of the primary structure is given by profiles, which is a matrix that associates a 

vector to each amino acid of a protein. 
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Fig. 2. Amino acid properties. Reproduced from [5]. 

 

1.3.1.3 Secondary Structure 

The local conformations of amino acid residues that are seen repeatedly in proteins indicate 

the secondary structure [6]. Secondary structures are stabilized by hydrogen bonds. Figure 3 shows 

the two main kinds of secondary structure: α-helices and β-sheets (also known as β-pleated sheets).  

The α-helices are corkscrew-shaped conformations where the amino acids are packed tightly 

together. The β-sheets are made up of two or more adjacent strands of the molecule.  The adjacent 

strands extend so that the amino acids are stretched out as far from each other as they can. Each 

extended chain is called a β-strand. Two or more β-strands are held together by hydrogen bonds 
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to form a β-sheet. There are also two main categories of β-sheet: if strands run in the same direction 

it is a parallel β-sheet; if they run in the opposite direction it is an anti-parallel β-sheet.  

Other kinds of secondary structure are defined, as follows: The 310-helix and π-helix, are 

less common helix patterns. Strands formed by isolated residues are also called β-bridges. Tight 

turns and loose, flexible loops link the more ‘regular’ secondary structure elements. The 

conformations that are not associated with a regular secondary structure are called random loops 

or coils. 

 

Fig. 3. Spatial arrangements of amino acid backbone occurring in α-helices and β-sheets. Reproduced from [7]. 
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1.3.1.4 Super-Secondary Structure 

It is observed in [8] that structural motifs are comprised of a few α-helices or β-strands, 

which are frequently repeated within structures. They are called “super-secondary structures” as 

they represent an intermediate structure between secondary and tertiary structures.  It is suggested 

that these structures might be due to evolutionary convergence. A variety of recurring structures 

are subsequently recognized, such as the “Helix-loop-helix” and the “Greek key”, as shown in 

Figure 4. Some of these structural motifs can be associated with a function, while the others have 

no specific biological function alone, but are part of larger structural and functional assemblies. 

 

  
  

 

Helix-loop-helix βαβ unit Hairpin β-meander Greek key 

 

Fig. 4. Common super secondary structure motifs.  

 

1.3.1.5 Tertiary Structure 

The three-dimensional fold of a protein is what gives them their specific chemical 

functionality. The link between amino acids provided by the peptide bond has two degrees of 
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rotational freedom, the Φ and Ψ dihedral angles. The shape when protein folds is known as the 

conformation of a protein backbone, which can be described as a series of Φ / Ψ angles, using the 

Cartesian coordinates of the central backbone atoms (the alpha carbon Ca), or using various other 

representational schemes. The position of the atoms in a folded protein is called its tertiary 

structure (Figure 5). 

 

 

Fig. 5. Protein tertiary structure [9]. 

 

A protein's structure can be usually identified by one or more active sites that are directly 

associated with its functions. Some proteins bind to other proteins or groups of atoms that are 

required for them to function [5]. Often, several structural domains, i.e., parts of the protein that 

can evolve, function, and exist independently of the rest of the protein chain, can be also identified. 

Moreover, protein structures are not static: they can move and flex in constrained ways, which can 

have a significant role in their biochemical functions. 
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1.3.1.6 Quaternary Structure 

Active conformation of multiple protein chains in one larger complex is known as the 

quaternary structure. A chain may bond with copies of itself or with other proteins to cooperate. 

Figure 6 shows an example of proteins with a quaternary structure, including DNA polymerase 

and ion channels. 

 
Fig. 6. Quaternary structure of viral protein, PDB id 3EPC [10]. 

 

1.3.2 From Sequence to Structure 

The biological function and activity of a protein are determined from its tertiary structure 

[3, 4, 5], which is defined by its amino acid sequence. It is ultimately indefinite, how the properties 

of the amino acids in the primary structure of a protein interact to determine the protein's 

conformation [8]. Despite the role that amino acids properties play in protein folding, there are 

few absolute rules. The conformation of protein assumes the minimization of total free energy of 

the molecule. According to the estimation presented in [11, 12], the folding process has on average 

3300 degrees of freedom. This may generate numerous alternatives, which is intractable in 

computer simulations. The enormous difference between the actual speed of the folding process 
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and the computational complexity of evaluating the corresponding model is also called Levinthal's 

paradox [11, 12]. Despite the development of molecular simulators that use some heuristics for 

reducing the search space, the uncertainty about the degree of approximation of the actual structure 

limits their use to only very short chains or small perturbations around a known structure. Due to 

the limits of molecular simulators, in most cases, a protein structure must be determined 

experimentally with the help of predictors. 

1.3.3 Experimental Determination of Tertiary Structure 

Mostly protein structures are solved experimentally using X-ray crystallography, which 

provides structural data of high resolution, but doesn’t give time-dependent information on the 

protein's conformational flexibility. Another technique to solve protein structures is NMR, which 

provides very high resolution data in general and is limited to relatively small proteins, but can 

give time-dependent information about the motion of a protein in solution. Mainly, there are more 

discoveries about the tertiary structural features of soluble globular proteins than about membrane 

proteins, because the membrane proteins are extremely difficult to study using these methods. 

1.3.4 Computational Determination of Tertiary Structure 

The prediction of protein tertiary structure from its amino acid sequence remains a 

fundamental scientific problem and it is often considered as one of the challenges in computational 

biology. Generally, in computational biology, five different approaches are commonly in use for 
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protein tertiary structure prediction. First, comparative modeling is the most accurate approach 

that uses experimentally clarified structures of related protein family members as templates to 

model the structure of a protein of interest. This approach can only be employed when a detectable 

template of known structure is available. Second, fold recognition and threading methods are used 

to model proteins that have low or statistically insignificant sequence similarity to proteins of 

known structure. Third, ab initio (de-novo) methods aim to predict the structure of a protein purely 

from its primary sequence, using principles of physics that govern protein folding and/or using 

information derived from known structures but without relying on any evolutionary relationship 

to known tertiary structures. Fourth, fragments-based methods reduce the problem to a search for 

the best model among a finite set of conformations. Fragments-based methods construct a 

complete protein structure even when it does not seem to share any relationship with a protein of 

known structure and traditional methods fail to obtain significant models. Finally, hybrid methods 

that combine information from a varied set of computational and experimental sources, including 

all those listed above. 

1.3.4.1 Comparative Modeling 

The goal of protein structure modeling, also known as homology protein structure 

modeling, is to build a useful tertiary structure model for a protein of unknown structure (target 

protein) based on one or more related proteins with known structure (templates). The most 
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important conditions are the detectable similarity between the target and template sequences and 

the possible construction of a correct alignment between them [13]. Using this approach for protein 

tertiary structure prediction is feasible because a slight change in the protein sequence usually only 

results in a slight change in its tertiary structure [13]. 

Comparative modeling remains the only method that can reliably predict the tertiary 

structure of a protein with an accuracy comparable to that of low-resolution experimental 

structures. Even such low-resolution models are useful to address biological questions, because 

the function can sometimes be predicted from only coarse structural features of a model. 

 

Fig. 7. Steps in comparative protein structure modeling. See text for description of each step. 
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As shown in Fig. 7, comparative modeling usually consists of the following five steps: 

search for templates, selection of one or more templates, target-template alignment, model 

building, and model evaluation. If the model is not satisfactory, some or all of the steps can be 

repeated.  

The experimental knowledge about the protein structure and its function is an important 

evaluation tool, where the model should be consistent with experimental observations such as site-

directed mutagenesis, crosslinking data, ligand binding, etc. In cases of the best template selection 

and alignment are not clear, one powerful way of improving a comparative model is to change the 

alignment and/or the template selection and recalculate the model iteratively until no improvement 

in the model is detected [14]. The more exhaustive the exploration of the templates and alignments, 

the more likely to improve the accuracy of the final model. 

 

1.3.4.2 Fold Recognition and Threading  

Fold recognition and threading methods are used when there is no clear homology between 

sequences to match their tertiary structures to the target protein sequence [14]. Proteins often adopt 

similar folds despite even when there is no significant sequence or functional similarity [15]. 

Unfortunately, due to the insignificant sequence similarity, many of these fold similarities are 

undetected until the tertiary structure of the new protein sequence is solved. Fold recognition and 
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threading methods have a significant impact on protein structural biology by providing an ability 

to accurately identify a protein with known structures that share common tertiary structures with 

a target sequence. The identified tertiary structures can then be used as templates for modeling the 

tertiary structure of the target sequences [14]. Although these methods do not yield to equivalent 

models as those from experimental methods, they are faster and cheaper ways to build an 

approximation of a tertiary structure from a sequence [14]. 

 

Fig. 8. A conceptual outline of fold recognition as a solution to the protein-folding problem. A given sequence (target) 

is fitted to the backbones of known structures (fold library), and the goodness-of-fit in each case is evaluated by one 

of many available model evaluation procedures (potentials). 
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Fold recognition and threading methods aim to assign folds to target sequences that have 

very low sequence identity to known structures. The original concept of early threading methods 

is to turn the problem of comparative modeling upside down, commonly called inverse protein 

folding [14]. The aim is to calculate how well each potential structure can fit a sequence, rather 

than how well each sequence fits a structure. In fact, fold recognition methods work by comparing 

each target sequence against a library of potential fold templates using energy potentials and/or 

similarity scoring methods. The template with the lowest energy or the highest similarity score is 

then assumed to best fit the fold of the target protein (Figure 8).  

1.3.4.3 Ab Initio (De Novo) 

In many cases, comparative modeling and fold recognition cannot provide a useful model 

for a target sequence, due to the lack of significant sequence similarity between the target protein 

sequence and a template protein sequence [14]. The chances for these methods to find a protein 

fold in protein structure databases increases steadily as more protein structures are solved [16]. In 

fact, the real problem in protein structure prediction is to know when a suitable structure is present 

in the PDB. In such cases, the ab initio methods are implemented to predict the protein secondary 

structure of a target sequence.  

Ab initio tertiary structure prediction employs some means, which generate different 

protein-chain conformations and a potential function, to evaluate each conformation. Classical 
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force field inductive nature and knowledge-based deductive nature [17] are two different 

approaches that are used to obtain a potential energy function. In classical force field approaches, 

without previous knowledge about the protein model properties a mathematical model that 

describes the protein model is assumed. In these approaches, spectroscopic and thermodynamic 

experimental data and results from mechanical calculations in simple molecules are used to fit the 

adopted mathematical model. The resulting potential is directly extrapolated to more complex 

molecules by assuming that a common behavior exists in both cases. In knowledge-based 

approaches, the potential energy function of a large macro-molecular-solvent of the protein system 

is complex and cannot be modeled by a simple and pre-conceived mathematical model. Thus, to 

obtain an accurate description of the potential energy function, experimental data from large 

macro-molecular-solvent protein systems must be used. The potentials obtained by knowledge-

based approach are called empirical potentials, statistical potentials or scoring functions. 

The knowledge-based approaches do not classify types of forces, but instead, based on 

geometrical descriptions (i.e. distance, angles, etc.) they extract information from experimental 

data of known protein structures, by deriving the propensities for the interaction of two or more 

bodies [18]. Using principles of statistical mechanics, these approaches describe microstates of 

atomic interactions within protein structures as probabilities of discrete events normalized about 

the whole protein system. Based on the holistic nature of the knowledge-based approaches, which 
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accounts for atom-atom interactions as well as solvation effects, they are commonly referred to as 

effective energy functions. Furthermore, their strong foundations in statistical mechanics allow us 

to recognize a physical basis in phenomena alternative to the purely statistical one. The knowledge-

based approach is not only useful for tertiary structure prediction, but also for assisting in the 

determination of NMR structures, where only limited data are available. 

 

Fig. 9 ROSETTA protocol Flowchart 

 

The knowledge-based approaches are informatics methods. Their capacity to properly 

describe the recurrent atomic interactions in native protein conformations depends on many 

parameters and on how the data are expressed and classified. In addition, the knowledge-based 

approaches do not only depend on how the information is extracted, expressed and classified, but 

also, on how the information is used. The knowledge-based approaches are widely used in protein 

tertiary structure prediction because of their relative simplicity, accuracy, and computational 
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efficiency. Among their applications, the assessment of experimentally determined and 

computationally predicted protein tertiary structures [13], ab initio protein structure prediction 

[17], fold recognition or threading[60], detection of native-like protein conformations [15] and 

prediction of protein stability [18].  

Some ab initio methods diverge from the basic recipe described and attempt to minimize a 

given potential function using some simplified representation of a protein chain. Conformations 

of this chain can be restricted to points on a lattice [15] or restricted by choosing discrete main 

chain torsion angles [5, 15, 17]. Monte Carlo optimization is used, either based on some simulated 

annealing variants or more recently based on a genetic algorithm [18], Figure 9. Several studies 

are made on this aspect of protein structure prediction with some assumption differences. Although 

it is certainly possible to predict specific contacts in protein structures from sequences, it is difficult 

to use this information due to the relatively large numbers of false positives in predicted protein 

structures.  

1.3.4.4 Fragment-Based Methods  

The recently developed fold prediction methods allow the construction of a complete 

tertiary structure for a target protein, even when it does not seem to share any evolutionary 

relationship with a protein of known structure and traditional fold recognition methods fail to 
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obtain a significant model [19].  These new fold prediction methods are usually fragment based. 

They combine fragments of known structures to construct a model for a target protein.  

The main idea behind the fragment-based methods is that the distribution of conformations 

(fragments) within a given sequence can be related to the propensity of that sequence to assume 

each of these conformations. Fragments with identical sequence can assume different 

conformations in different structures. Fragment-based protein structure prediction methods search 

for fragments of known structure that have a similar sequence to some fragments of the target 

protein and then join them together to generate a protein model. Such methods retrieve all 

fragments sharing some local sequence similarity with each of the fragments of the target protein 

and join them in many combinations. This procedure generates a large but finite set of models that 

can be optimized by evolutionary methods. Figure 10 shows the fragment generation protocol. 

The protein folding problem is then reduced to a search for the “best” model among a given 

finite set of conformations, and we can use a sequence to structure score to rank the generated 

models. These methods raise an enormous interest because they seem to be the only current way 

to obtain a full tertiary structure of a protein that has no sequence or structural relationship with 

the set of structurally known proteins. [20].  
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Fig. 10. Fragment Generation Protocol. 

 

1.3.4.5 Hybrid Methods 

Hybrid fully automated fold recognition servers are developed to extend the strengths of 

comparative modeling or fold recognition methods while limiting their weaknesses. The traditional 

fold recognition methods are useful for recognizing both distant homologous and analogous folds; 

however, they are difficult to automate and produce poor models due to inaccurate sequence to 

structure alignments, Fig. 11. Alternatively, computational modeling methods are applied to extend 

our knowledge of protein tertiary structure, i.e. how they interact and what are their functional 

roles in the biological context. Frequently, the predicted protein structures are not the same as their 

experimental determined protein structures. Generally, the high false prediction rate comes from 

the need for extensive expertise to produce high-quality models and the difficulty to measure the 

confidence that can be associated with computationally solved structures. 
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Fig. 11. Example of comparative hybrid protein tertiary modeling. 

 

Hybrid methods aim to overcome the above weaknesses by incorporating experimental 

measurements, and reliable computed structural models. Hybrid approaches take advantage of data 

derived from a range of very different biochemical and biophysical methods, most of which are 

now regularly available in many laboratories. These methods are of increasing interest in view of 

the increasing easiness in accessing analytical instruments, such as high-resolution mass 

spectrometers and high-frequency electron paramagnetic resonance EPR spectrometers. Similarly, 

small angle neutron scattering and small angle X-ray scattering data become routinely accessible 
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through advanced neutron and synchrotron light sources. Recently large protein systems are made 

amenable to analyze due to the developments in NMR. The combination with site-specific isotope 

labeling opens unprecedented possibilities to obtain sparse structural data on selected regions 

within an entire system. Moreover, hybrid approaches show great promise in complementing high-

resolution structural biology. To fully characterize the function in dynamically interacting 

assemblies where both the components and their structures may vary throughout a complex 

multistep process, structures need to be determined at each step. By using structural models, it is 

possible to design and analyze new hypothesis-driven experiments and thus significantly speed up 

high-resolution structure determination.  

1.4 Dissertation Organization 

The rest of this dissertation is organized as follows: Chapter 2, focuses on protein fold 

recognition resource and methods; Chapter 3, presents our generated large-scale protein fragment 

libraries Frag-K; Chapter 4, presents our two-stages deep neural network (DeepFrag-k) to classify 

a target protein sequence into known protein folds; Chapter 5, concludes the dissertation and 

discusses our future (post-dissertation) research directions.  
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CHAPTER II 

2 MACHINE LEARNING FOR PROTEIN FOLD RECOGNITION 

 

Experimental and theoretical studies lead to the emergence of a unified general mechanism 

for protein folding that serves as a framework for the design and interpretation of research in this 

area [14]. In consequence, the starting point is mainly based on some knowledge of protein folding 

to understand the heterogeneity and molecular function of proteins. Accordingly, computational 

recognition of protein folds becomes a hotspot in bioinformatics and computational biology 

research. Many computational efforts lead to a variety of computational prediction methods. In 

this chapter, we conduct a comprehensive review of recent computational methods, especially 

machine learning-based methods, for protein fold recognition. The characteristics of the protein 

fold recognition problem are described from a computational point of view. 

2.1 Characteristics of Protein Folding Problem 

The protein folding problem is the question of how protein’s amino acids fold into a unique 

three-dimensional conformation. The first emergence of the protein folding notion was around 

1960, with the appearance of the first atomic-resolution protein structures. The firstly discovered 

protein structures have helices that are packed together in unexpected irregular ways. However, 

some form of internal crystalline regularity has been previously estimated [5, 8, 13], and α-helices 
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have been anticipated [5, 8, 14]. Since then, the protein folding problem has been regarded as three 

different problems:  

 The folding code: for a given amino acid sequence, what balance of interatomic 

forces dictates the structure of the protein (thermodynamic)? 

 Protein structure prediction: how to predict a protein’s native structure from its 

amino acid sequence (computational)? 

  The folding process: what routes or pathways some proteins use to fold so quickly 

(Kinetics)?  

A variety of factors are identified to determine the probable folding scenarios [13, 15, 14]. 

Many of the distinct folding mechanisms that emerge depend on the temperatures, which 

determine the phases of the amino acid chain [14]. Such findings explicitly link the underlying 

thermodynamic properties of proteins and their folding mechanisms. Several studies focus on the 

factors that determine the folding rates of two-state proteins. Probable relationships between 

folding rates and the contact order [14], which emphasize the role of structures involving proximal 

residues, stability, and Z-score, are established.  

Several computational and phenomenological approaches are employed to find the general 

principles that control the folding rates and mechanisms of single-domain globular proteins [14]. 

It may be naively thought that the computational protocol for describing protein folding is 



28 
 

 
 

straightforward. Because Newton equations of motion fully describe the folding dynamics, and 

folding may be directly monitored from an appropriately long trajectory. However, there are two 

severe limitations that prevent this approach from studying protein folding. First, the force fields 

for such a complex system are not precisely known. As a result, one needs to rely on the 

transferability hypothesis that interactions derived for small molecules can be used in larger 

systems, such as proteins. The second problem is simple: the limitations of current computation 

power. Repeated folding of even a single-domain protein requires the generation of multiple 

trajectories on a millisecond timescale. Even the creative use of massively parallel computing 

systems does not entirely address the simulation problem under this severe numerical constraint 

[15, 14]. 

Due to these challenges, machine learning approaches for protein fold recognition take the 

central stage since the emergence of the work described in [21]. Many methods are developed, 

which are used to assign folds to protein sequences. Machine learning-based methods for protein 

fold recognition assume [21] that the number of protein folds in the universe is limited, and 

therefore the protein fold recognition can be viewed as a fold classification problem: using 

sequence-derived features of proteins whose structure is known, so-called the learning or training 

set for the construction of a classifier that can then be used to assign a structure-based label to an 

unknown protein. The procedure of constructing a classifier is called supervised learning or 
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classifier training. Its role in the fold classification task is to induce a mapping from primary 

sequences to folding classes. 

 

Fig. 12. Supervised Machine learning model for fold recognition. Reproduced from [21]. 

 

Fig. 12 shows that the overall procedure in protein fold recognition by machine learning-

based methods include two phases: (1) model training and (2) prediction.  In the first phase, model 

training, target protein sequences are first submitted into a feature representation model, in which 

sequences of different lengths are encoded with fixed-length. The algorithms often used in fold 

recognition model building include Artificial Neural Network (ANN), Deep Learning (DL), 

Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB), and Logistic 

Regression (LR).  
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In the second phase (prediction), uncharacterized target proteins are submitted into the 

same feature representation model as in the first phase. Finally, the resulting feature vectors are 

fed into the trained prediction model, wherein the protein fold class to which the query proteins 

belong is predicted. 

2.1.1 Deep Neural Networks  

The basic structure of Deep Neural Networks (DNN) consists of an input layer, multiple 

hidden layers, and an output layer, as shown in Fig. 13. After the input data are given to the DNN, 

the output values are computed sequentially along the layers of the network. The input vector at 

each layer, comprising the output values of each unit in the layer below, is multiplied by the weight 

vector for each unit in the current layer to produce the weighted sum [22]. Then, a nonlinear 

function, such as a sigmoid, hyperbolic tangent, or rectified linear unit (ReLU) [23], is applied to 

the weighted sum to compute the output values of the layer. The computation in each layer 

transforms the representations in the layer below into slightly more abstract representations [22, 

23]. Based on the types of layers used in the DNN and the corresponding learning method, DNN 

can be classified as Multi-Layer Perceptron (MLP), Stacked Auto-Encoder (SAE), or Deep Belief 

Network (DBN). 
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Fig. 13. Deep Neural Network basic architecture. 

 

MLP structure is similar to the usual neural network structure, but includes more stacked 

layers. It is a purely supervised training system that uses only labeled data. Since the training 

method is a process of optimization in high-dimensional parameter space, MLP is typically used 

when a large number of labeled data are available [22, 23]. 

 

Fig. 14. Different architecture of deep neural network 
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SAE and DBN use Auto-Encoders (AE) and Restricted Boltzmann Machine (RBM) as 

building blocks of the architectures, respectively. The main difference between these and MLP is 

that training is executed in two phases: unsupervised pre-training and supervised fine-tuning. First, 

in unsupervised pre-training (Fig. 14), the layers are stacked sequentially and trained in a layer-

wise manner as an AE or RBM using unlabeled data. Afterwards, in supervised fine-tuning, an 

output classifier layer is stacked, and the whole neural network is optimized by retraining with 

labeled data. Since both SAE and DBN exploit unlabeled data and can help avoid overfitting, 

researchers are able to obtain regularized results, even when labeled data are insufficient, which is 

a common situation in the real world [23]. 

DNNs, as hierarchical representation learning methods, can discover previously unknown 

highly abstract patterns and correlations to better understand the nature of the data. However, the 

capabilities of DNNs have not yet fully been exploited. Although the key characteristic of DNNs 

is that hierarchical features are learned solely from data, human-designed features are given as 

inputs instead of raw data forms. The progress of DNNs comes from investigations into proper 

ways to encode raw data and learn suitable features from them. 

2.1.1.1 Convolutional Neural Networks Architectures 

Convolutional Neural Networks (CNNs) are directly inspired by the visual cortex of the 

brain. In the visual cortex, there is a hierarchy of two basic cell types: simple cells and complex 
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cells [23]. Simple cells react to primitive patterns in sub-regions of visual stimuli, and complex 

cells synthesize the information from simple cells to identify more intricate forms. Hence, CNNs 

are applied to imitate three key ideas: local connectivity, invariance to location, and invariance to 

local transition. The basic structure of CNNs consists of convolution layers, nonlinear layers, and 

pooling layers, as shown in Fig. 15. In order to use highly correlated sub-regions of data, feature 

maps, which are groups of local weighted sums, are obtained at each convolution layer. The feature 

maps are achieved by computing convolutions between local patches and weight vectors called 

filters. Furthermore, since identical patterns can appear regardless of the location in the data, filters 

are applied repeatedly across the entire dataset, which also improves training efficiency by 

reducing the number of parameters to learn. Then nonlinear layers increase the nonlinear properties 

of feature maps. At each pooling layer, maximum or average subsampling of non-overlapping 

regions in feature maps is performed. This non-overlapping subsampling enables CNNs to handle 

fairly different but semantically similar features and thus aggregate local features to identify more 

complex features. Currently, CNNs are one of the most successful deep learning architectures 

owing to their outstanding capacity to analyze spatial information.  
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Fig. 15. CNN 

 

Over the years, variants of this fundamental architecture are developed, leading to amazing 

advances in the field. A good measure of this progress is the error rate in competitions, such as the 

ILSVRC ImageNet challenge. In this competition LeNet-5 architecture [24], AlexNet [25], 

GoogLeNet [26], and ResNet [27] contribute to image classification domain, where the top-5 error 

rate fall from over 26% to barely over 3% in just five years. 

2.1.2 Random forest 

In [28] the decision tree methods are introduced, it is widely used in many domains due to 

its simplicity and good interpretability. Conversely, the accuracy of a single decision tree is often 

lower than more advanced classification methods such as support vector machines or neural 

networks. The recent developments in the decision tree find that using an ensemble of decision 

trees, constructed from randomly selected features and training data, often yield to significantly 
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higher accuracy [29]. This advanced approach is called random forest. Random forest is a meta-

learning algorithm for classification, which consists of a bag of separately trained decision trees. 

Therefore, it inherits the advantages of decision tree methods such as easy training, fast prediction, 

and good interpretability. In the random forest, the average prediction of the decision trees is robust 

against the existence of irrelevant features, because it selects a random subset of the input features 

to construct each decision tree. Furthermore, the random selection of a subset of the training data 

to train each tree also leads to an ensemble of decision trees that are resistant to noise and 

disproportional class distribution in the training data. Fig. 16 illustrates how the random forest 

makes a prediction. 

 

 

Fig. 16. Random Forest method. 
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2.2 Protein Fold Recognition Datasets 

A public benchmark dataset of protein fold recognition is usually used to examine the 

effectiveness of existing machine learning-based methods. In the literature of protein fold 

recognition, there are three popular benchmark datasets:  Ding and Dubchak (DD) [14], Taguchi 

and Gromiha (TG) [30], and Extended-DD (EDD) [31] (see Appendix 1).  

DD-dataset, designed by Ding and Dubchak [14], is used in several studies as shown in 

Table 2. It is comprised of a training dataset and a testing dataset, both of which cover 27 protein 

folds in the SCOP database, which belong to different structural classes containing α, β, α/β, 

and α+β, comprehensively. DD’s training dataset contains 311 protein sequences with ≤40% 

residue identity, and the testing dataset contains 383 protein sequences with ≤35% residue identity. 

Additionally, the sequences in the training dataset have identity ≤35% with that in the testing 

dataset, thus ensuring to provide an unbiased performance evaluation. The sequence distribution 

of each of the 27-fold classes can be seen in Error! Reference source not found. (Appendix I). 

The DD dataset suffers some limitations. For instance, the DD dataset is imbalanced, as 

shown in Table 8. (Appendix I) the ratio of the smallest class, EF hand-like, against the largest 

class, immunoglobulin-like β-sandwich is roughly 1:4. Moreover, the sample size is small for each 

fold class, only 383 training sequences belong to 27-fold classes, the samples in each class range 

from 6 to 30. 

_Ref500063998
_Ref500063998
http://www.mdpi.com/1422-0067/17/12/2118/htm#table_body_display_ijms-17-02118-t002
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The second benchmark is TG dataset, which contains 1,612 protein sequences belonging 

to 30 different folds from SCOP version 1.73 constructed by Taguchi and Gromiha [30]. The 

benchmark with the detailed information of the 30 different fold types is described in [14], and the 

sequence identity between two proteins is no more than 25%. Table 10 (Appendix I) shows the 

TG benchmark. 

EDD dataset is the third benchmark. EDD contains 3,418 protein sequences, which belong 

to the 27 different folds that are essentially used in the DD dataset from SCOP version 1.75. EDD 

has more sequences in each fold than DD, and TG [14], and the sequence identity between the two 

proteins is no more than 40% (Table 9 Appendix I). 

2.3 Framework of Machine Learning-Based Methods for Protein Fold Recognition 

One of the most essential tasks in structural bioinformatics is protein fold classification. 

As protein folding information is helpful in identifying the tertiary structure and functional 

information of a protein [5]. Recently, many protein fold recognition studies have been developed 

by means of machine learning. Machine learning-based protein fold recognition methods can be 

categorized into two classes according to the learning algorithms used: (1) single classifier-based 

methods; and (2) ensemble classifier-based methods.  

http://www.sciencedirect.com/topics/medicine-and-dentistry/peptide-sequence
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2.3.1 Single Classifier-Based Methods 

Currently, most of the single classifier methods used in protein fold recognition are based 

on SVM. Since SVM is a well-known classification algorithm and is highly efficient in several 

fields of bioinformatics. Some for SVM-based protein fold recognition methods are: [32], 

ACCFold_AC and ACCFold_ACC [31], TAXFOLD [33], and Alok Sharma’s method [34]. The 

main difference between these methods is their feature representation methods. For instance, [32] 

uses secondary structural state and solvent accessibility state frequencies of amino acids and amino 

acid pairs as feature vectors. Hence, among these features, the secondary structural state 

frequencies are the most effective features for fold class discrimination. However, combining the 

secondary structural state frequencies with the other two features can further improve the accuracy 

of fold discrimination.  

In ACCFold_AC and ACCFold_ACC methods, the features are based on the distant 

evolutionary relationships of protein sequences, which can effectively capture the evolutionary 

information embedded in the form of Position-Specific Score Matrices (PSSM) [35]. The 

TAXFOLD [33], suggests using global and local sequential and structural features for protein fold 

classification. Given that an increase in the number of features is probably not an informative mean 

to further improve recognition accuracy. Thus, a classification method that can assess the 

contribution of these potentially heterogeneous object descriptors must be developed. Therefore, 
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[36] proposes a single multi-class kernel machine that informatively combines available feature 

groups. 

 In addition to SVM classifier, other single classifiers, such as Random Forest [37] and 

HMM [38], are used to construct a prediction engine for protein fold recognition methods. For 

instance, [37] proposes an RF-based protein fold recognition method called PFP-RFSM. The 

structure of PFP-RFSM involves a comprehensive feature representation algorithm that can 

capture distinctive sequential information from the protein sequence and structural information 

from predicted structures. These features have seven perspectives, namely: amino acid 

composition, secondary structure contents, predicted relative solvent accessibility, predicted 

dihedral angles, PSSM matrix, nearest neighbor sequences, and sequence motifs. PFP-RFSM is 

the first protein fold recognition method to utilize features based on sequence motifs. Furthermore, 

the PFP-RFSM method is the first to use the RF classifier as its prediction engine. RF classifier is 

superior over the other commonly used classifiers in the overall performance. Alternatively, [38] 

proposed an optimization method for protein fold classification; the prediction model of this 

method is constructed based on a Markov chain trained on the primary structure of proteins. 

Additionally, the presented model is tested on a reduced state-space HMM, which is an effective 

means of classifying proteins in fold categories with low computational cost.  
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2.3.2 Ensemble Classifier-Based Methods  

The most recently developed methods for protein fold recognition are based on ensemble 

classifier models. In [39], a popular ensemble classifier method is presented (PFP-FunDSeqE), 

which has a new feature extraction method to explore the functional domain information and 

sequential evolution information. This method generates 17,402 functional domain features and 

220 Pseudo PSSM features. The two feature groups are separately fed into an optimized evidence-

theoretic K-Nearest Neighbor OET-KNN classifier to build prediction models.  

Moreover, a protein fold recognition method called PFPA is presented in [40]. PFPA 

employs a novel feature representation algorithm that considers the sequential evolutionary 

information and structural information. The sequential evolutionary information is resulting from 

PSI-BLAST [35] profiles which are produced by searching query proteins against a non-

redundancy database. Based on the PSI-BLAST profiles, PFPA computes 20 PSSM features and 

420 amino acid compositional features from consensus sequences, which contain rich evolutionary 

information. The structural information is resulting from PSI-PRED [41] profiles. To sufficiently 

explore the structural information, PFPA calculates 27 local and 6 global secondary structure 

features from PSI-PRED profiles. Regularly, an integration of all the sequential and structural 

features is developed to construct comprehensive feature representations of target proteins. For the 

prediction engine, an ensemble classifier model is constructed, which makes use of five basic 
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classifier models RF, NB, Bayes Net, LibSVM, and Sequential Minimal Optimization SMO with 

an average probability strategy.  

Recently, [42] has developed a recognition method called ProFold. ProFold initially 

considers using protein tertiary structure information in its feature extraction framework. 

Successively, other commonly used features, such as global features of amino acid sequence, 

PSSM features, functional domain features, and physiochemical features are used. The tertiary 

structure features are employed to compute eight types of secondary structure states from PDB 

files by using DSSP. ProFold proposes a novel strategy to construct an ensemble classifier. 

Primarily, the paper selects 10 widely used basic classifiers, such as Logistic model tree [43], RF, 

LibSVM, Simple Logistic, Rotation Forest, SMO, NB, Random Tree, Functional tree, and Simple 

Cart. Subsequently, distinct types of feature representations are trained using these 10 basic 

classifiers. For each feature type, the model with the highest accuracy is chosen, generating four 

single classifier models for the four feature types. These models are DSSP model, AAsCPP model, 

PSSM model, and functional domain model. The average probability strategy is used to fuse the 

four single classifier models, similar to that in the PFPA method. 

Table 2 lists the evaluation of twenty methods published in the past twelve years, from 

2006 to present, on the DD dataset. From the evaluation, we observe the following:  



42 
 

 
 

 ProFold shows the best performance among other methods. The overall accuracy 

of ProFold is 76.2%, which is 2.6%–15.7% higher than the other methods. It is 

illustrated that the ProFold has great power to distinguish the 27-fold classes in the 

DD dataset. This significant enhancement of ProFold is due to the use of the DSSP 

features. These results indicate that integrating the DSSP features into feature 

representations is a remarkable enhancement [44].  

 Fourteen methods are based on an ensemble classifier, while six methods are based 

on a single classifier.  

 Nine methods that obtain an overall accuracy >70% are PFP-FunDSeqE 70.5%, 

TAXFOLD 71.5%, Marfold 71.7%, Kavousi et al. 73.1%, PFPA 73.6%, Feng and 

Hu 70.2%, Feng et al. 70.8%, and ProFold 76.2%, respectively. Notice that 

TAXFOLD is the only method that is based on a single classifier while the other 

methods are based on ensemble classifier.  

The results in Table 2 indicate that ensemble classifiers are more effective than single 

classifiers for protein fold recognition. They demonstrate accurate, robust, and reliable 

performance. Also, they can be applied in large-scale protein fold recognition. They can effectively 

address the intrinsic limitations of experimental methods, that is, being time consuming and 

expensive.  
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Table 2  

Top 20 protein fold recognition methods results on DD datasets. 

Index Methods Year Classifier Type 
Overall 

Accuracy (%) 

1 Nanni et al.  [45] 2006 Ensemble 61.1 

2 PFP-Pred [46] 2006 Ensemble 62.1 

3 Shamim et al. [32] 2007 Single  60.5 

4 PFRES [47] 2007 Ensemble 68.4 

5 Damoulas et al.  [36] 2008 Single  68.1 

6 ALHK  [48] 2008 Ensemble 61.8 

7 GAOEC  [49] 2008 Ensemble 64.7 

8 PFP-FunDSeqE  [39] 2009 Ensemble 70.5 

9 ACCFold_AC [31]  2009 Single  65.3 

10 ACCFold_ACC  [31] 2009 Single  66.6 

11 Ghanty et al.  [50] 2009 Ensemble 68.6 

12 TAXFOLD [33]  2011 Single  71.5 

13 Alok Sharma et al.  [34] 2012 Single  69.5 

14 Marfold  [51] 2012 Ensemble 71.7 

15 Kavousi et al.  [52] 2012 Ensemble 73.1 

16 PFP-RFSM  [37] 2013 Single  73.7 

17 Feng and Hu  [53] 2014 Ensemble 70.2 

18 PFPA  [40] 2015 Ensemble 73.6 

19 Feng et al.  [54] 2016 Ensemble 70.8 

20 ProFold  [42] 2016 Ensemble 76.2 
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CHAPTER III 

3 DECODING THE STRUCTURAL KEYWORDS IN PROTEIN STRUCTURE 

UNIVERSE 

Protein fragments are widely used in a varied range of applications, such as comparing 

protein structures through reduced representations of fragments, modeling homologs at the 

fragment level, investigating sequence-structure relationships, approximating tertiary structures, 

modeling loop conformations, and predicting novel folds. The quality of the fragment libraries 

plays a critical role in these structural biology applications.  

The continuously increasing number of high-resolution, experimentally determined protein 

structures provides rich protein structure sources that enable us to generate high-quality fragment 

libraries. Moreover, regarding the length of the appropriate fragments, Handl et al. [55] report that 

the longer the fragments are, the more useful they are in structure prediction. The increasing 

number of experimentally determined protein structures also enables us to derive libraries of longer 

fragments and then use them together with the short ones to form a rich fragment dictionary to 

decode the protein structure universe. Usually, protein fragment libraries are constructed based on 

clustering similar protein backbone conformations. 
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In this chapter, we present a generated large-scale protein fragment sample sets, called 

Frag-K, with lengths ranging from 4 to 20 residues. Frag-K is developed from a large number of 

non-homogenous protein structures covering diverse conformations in the protein structure 

universe. To generate Frag-K, we apply a spectral clustering algorithm to aggregate these fragment 

samples according to their structural similarity. A rank-revealing randomized singular value 

decomposition (R3SVD) algorithm [56] is employed to fast approximate the dominant 

eigenvectors of the fragment affinity matrices, which enables the spectral clustering method to 

scale up to large fragment sample sets. The representative fragment in each cluster is then collected 

to assemble the fragment library. Moreover, with fragment sample sets of significantly larger sizes, 

we are able to generate long protein backbone fragment libraries up to 20 residues. We further 

identify the most sensitive clustering cut-off values with respect to fragment libraries of different 

lengths in distinguishing protein folds. Finally, these fragments are collected as a structural 

dictionary to train a random forest to classify protein structures in popular SCOP folds. Our feature 

selection results show that a structural dictionary with ~400 fragments of different lengths is 

capable of classifying major SCOP folds with high accuracy and fragments of different lengths 

contribute. 
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3.1 Methodology 

3.1.1 Generation of Fragment Libraries 

By applying randomized spectral clustering, iterative bi-partitioning, and random forest 

classifier, we generate 4- to 20-residue fragment libraries that can be effectively encoded as 

structural features in distinguishing between protein folds. First of all, for all fragment samples of 

the same length, we construct a fragment affinity graph whose edges are weighted by the pairwise 

𝐶𝛼 Root Mean Square Deviation (RMSD) between every two fragments. Then, a randomized 

spectral clustering algorithm is applied to the affinity matrix corresponding to the weighted 

fragment graph to approximate the dominant eigenvector to bi-partition the graph into two 

complementary sub-graphs. The bi-partitioning process is repeated on the subsequent subgraphs 

until the pairwise 𝐶𝛼 RMSD among all fragments in the subgraphs is within a pre-specified cutoff 

value. All fragments in each subgraph form a cluster sharing structural similarity. The fragment 

having most similar fragments in the cluster given the clustering cutoff is exacted as a 

representative fragment of the cluster and is then deposited into the Frag-K fragment libraries. The 

small clusters with less than 3 fragments are ignored. By specifying RMSD cutoffs from 0.1�̇� to 

4.0�̇� with 0.1�̇� increment, we generate fragment libraries with respect to different clustering 

cutoffs. Afterward, for each fragment library of a certain length, we encode all fragments in the 

fragment library into a structural feature vector and then apply a random forest classifier to classify 

the SCOP-40 proteins into four major protein structure classes (all-α, all-β, α/β, and α+β). 
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According to the performance of the fragment library with different clustering cutoffs in 

classifying SCOP-40 proteins, we identify the most appropriate RMSD cutoffs for each fragment 

length. Figure 17 illustrates the overall flowchart of generating Frag-K libraries. 

 

 

Fig. 17. Generation of Frag-K Libraries. 

 

3.1.2 Fragment Affinity Matrices 

Given a pair of fragments 𝑓𝑖 and 𝑓𝑗 of the same length, we superimpose them to minimize 

the 𝐶𝛼 atom deviations between the fragment pair then calculate the RMSD values of the 

corresponding 𝐶𝛼 atoms, which gives the distance score between these two fragments. An 

undirected, weighted fragment affinity graph 𝐺 = (𝑉, 𝐸, 𝑎) is created where 𝑓𝑖  ∈ 𝑉 and (𝑓𝑖 , 𝑓𝑗) ∈
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𝐸 if the RMSD value between fragments 𝑓𝑖 and 𝑓𝑗 is within the pre-specified RMSD cut-off 𝜏. The 

corresponding connection affinity 𝑎(𝑓𝑖  , 𝑓𝑗) is calculated by applying the Gaussian kernel to 

convert the RMSD value to the affinity score such that 

𝑎(𝑓𝑖 , 𝑓𝑗) = {
exp (−

𝑟𝑚𝑠𝑑(𝑓𝑖,𝑓𝑗)

𝜎2 ) 𝑟𝑚𝑠𝑑(𝑓𝑖 , 𝑓𝑗) ≤ 𝜏

0 𝑟𝑚𝑠𝑑(𝑓𝑖 , 𝑓𝑗) > 𝜏
, 

where 𝜎2 is the overall standard deviation of the RMSD distribution of the fragment sample set. 

Then, a fragment affinity matrix 𝐴 corresponding to 𝐺 is generated, where 𝐴𝑖𝑗 = 𝑎(𝑓𝑖, 𝑓𝑗). Due to 

the nonnegative property of the Gaussian kernel and the commutative property of RMSD, 𝐴 is 

Symmetric Positive Definite (SPD). Moreover, 𝐴 is sparse when an efficient RMSD cutoff is 

applied. 

3.1.3 Randomized Spectral Clustering 

Randomized spectral clustering is a scalable spectral clustering method designed to reduce 

the computation cost operation of calculating the bi-partitioning eigenvectors of the large affinity 

matrix. Unlike the classical clustering techniques such as the k-means approaches, the spectral 

clustering method is able to produce clusters with concave cluster boundaries due to the nonlinear 

separation hyper-surfaces obtained. As a result, spectral clustering does not need any prior 

information on the shapes of the clusters. Moreover, if the bi-partitioning eigenvectors are 

computed accurately, spectral clustering yields more robust clustering results because it does not 

rely on the initial, randomly selected cluster centers. 
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Spectral clustering [57] is a graph-based clustering technique [58] that can be viewed as 

finding the bi-partitions of a graph by minimizing the graph cut property. The fundamental idea of 

spectral clustering [59] is to make use of the spectrum (eigenvalues/eigenvectors) of the affinity 

matrix with respect to a graph 𝐺 = (𝑉, 𝐸, 𝑎) to perform dimensionality reduction before clustering 

in lower dimensions. Starting from the fragment affinity matrix 𝐴 of 𝐺, a diagonal matrix 𝐷 is 

defined as 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗
𝑛
𝑗=1 . Then, a normalized Laplacian matrix 𝐿 is constructed such that 𝐿 =

𝐷−1/2𝐴𝐷−1/2. Given two complementary partitions 𝑆 and 𝑆̅ such that 𝑆, 𝑆̅ ⊆ 𝑉, 𝑆 + 𝑆̅ = 𝑉, and 

𝑆 ∩ 𝑆̅ = ∅, the normalized cut property 𝑛𝑐𝑢𝑡(𝑆, 𝑆̅) is defined as  

𝑛𝑐𝑢𝑡(𝑆, 𝑆̅) =
𝑤(𝑆, 𝑆̅)

𝑤(𝑆, 𝑉)
+  

𝑤(𝑆, 𝑆̅)

𝑤(𝑆̅, 𝑉)
 

where 𝑤(𝑋, 𝑌) is the weight function summing all pairwise weights between vertices in 𝑋 and 

those in 𝑌. Hence, 𝑛𝑐𝑢𝑡(𝑆, 𝑆̅) measures the balanced similarity between 𝑆 and 𝑆̅. According to the 

theory of spectral clustering, the eigenvector corresponding to the largest eigenvalue of 𝐿 forms a 

graph cut that minimizes 𝑛𝑐𝑢𝑡(𝑆, 𝑆̅). Therefore, we calculate the eigenvector with respect to the 

largest eigenvalue of the Laplacian matrix 𝐿 generated from the fragment affinity matrix 𝐴 to bi-

partition fragments of the same length. The bi-partitioning process is repeated until the pairwise 

distance among the fragments in the partition is less than the pre-specified RMSD cut-off value 𝜏. 

The most computationally costly operation in the spectral clustering method is the 

calculation of the bi-partitioning eigenvector from the Laplacian matrix 𝐿 to bi-partition 𝐺 as well 
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as its subsequent sub-graphs, particularly when a large number of fragment samples are involved. 

Fortunately, we only need the dominant eigenvector and thus there is no need to calculate the 

whole spectrum of 𝐿. Moreover, because the normalized Laplacian matrix 𝐿 is SPD, its eigenvalue 

decomposition and singular value decomposition (SVD) coincide. Therefore, we adopt a rank-

revealing randomized singular value decomposition (R3SVD) algorithm [56] to fast approximate 

the dominant eigenvector of the normalized Laplace 𝐿 matrix. 

The R3SVD algorithm includes four major steps: Gaussian sampling, QB decomposition, 

error estimation, and SVD. First of all, in Gaussian sampling, given an 𝑛 × 𝑛 Laplacian matrix 𝐿, 

an 𝑛 × 𝑘 Gaussian matrix 𝛺 is randomly generated and an 𝑛 × 𝑘 matrix 𝑌 is obtained by projecting 

𝐿 onto 𝛺 such that 𝑌 = 𝐿𝑞𝛺 using power iteration, where 𝑘 ≪ 𝑛 is the guessed rank and 𝑞 is the 

number of power iterations. Here, we adopt 𝑞 = 2 as recommended by [60]. Then, a QB 

decomposition is carried out, where 𝑄 is generated by a QR decomposition on 𝑌 such that [𝑄, 𝑅] =

𝑞𝑟(𝑌) and 𝐵 is obtained by projecting 𝑄𝑇 onto 𝐿 such that 𝐵 = 𝑄𝑇𝐿. Consequently, 𝑄𝐵 ≈ 𝐿 is a 

𝑘-rank approximation of 𝐿. The relative error of the 𝑄𝐵 decomposition can be efficiently computed 

by calculating the squares of the Frobenius norms of 𝐿 and 𝐵 such that  

‖𝐿 − 𝑄𝐵‖𝐹
2

‖𝐿‖𝐹
2 =  

‖𝐿‖𝐹
2 − ‖𝐵‖𝐹

2

‖𝐿‖𝐹
2 . 

The mathematical proof of the above property can be found in [61]. Due to the assumption 

that there is a limited number of independent factors that determine the formations of structures of 
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short protein fragments, the Laplacian matrix 𝐿 is of low rank. As shown in [62], if the relative 

error of the QB decomposition is sufficiently small, the dominant eigenvector of 𝐿 can be 

approximated with high precision. R3SVD employs an adaptive way by repeating the Gaussian 

sampling step with a gradually increasing rank 𝑘 to control the relative error of the QB 

decomposition below the desired threshold. Afterward, the low-rank approximated SVD of 

𝐿, 𝑈𝐿𝛴𝐿𝑉𝐿
𝑇, is obtained by carrying out SVD on the “short-and-wide” matrix 𝐵 such that 

[𝑈𝐵, 𝛴𝐵, 𝑉𝐵] = 𝑠𝑣𝑑(𝐵). Then, 𝑈𝐿 = 𝑄𝑇𝑈𝐵, 𝛴𝐿 = 𝛴𝐵, and 𝑉𝐿 = 𝑉𝐵. 𝑈𝐿𝛴𝐿𝑉𝐿 is a low-rank 

approximation of 𝐿. Finally, the approximated dominant eigenvector of 𝐿 can be extracted from 

𝑈𝐿. The R3SVD algorithm is able to adaptively estimate the appropriate rank of the approximated 

𝑈𝐿𝛴𝐿𝑉𝐿
𝑇 to calculate the dominant eigenvector of 𝐿. In the randomized algorithm, most numerical 

linear algebraic operations are carried out on “tall-and-skinny” block matrices, which are both 

efficient in computation and memory. This allows the spectral clustering method to scale up to 

handle the large datasets in this study with close to half a million protein fragments. 

3.1.4 Finding the Optimal RMSD Cutoffs 

We use the randomized spectral clustering algorithm to generate a series of fragment 

libraries subject to RMSD cutoffs from 0.1 Å to 4.0 Å with 0.1 Å increment. In fact, these fragment 

libraries are sensitive to the RMSD cutoff values in the randomized spectral clustering algorithm. 

If the RMSD cutoff is too small, there may be too many highly structurally similar clusters. On 
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the other hand, if the RMSD cutoff is too big, some important fragments may be missed due to 

being included into another cluster represented by the other fragments during the clustering 

process. Moreover, the most appropriate RMSD cutoffs for fragment libraries of different lengths 

are likely to be different, which need to be carefully justified. 

Here, we employ the SCOP-40 dataset to measure the performance of the generated 

fragment libraries with respect to different RMSD cutoffs as structural features to classify protein 

structures into four major protein structure classes (all-α, all-β, α/β, and α+β) so as to identify the 

most appropriate clustering RMSD cutoffs for fragment libraries of different lengths. We use a 

“bag-of-words” model to represent a protein structure as a structural feature vector. More 

precisely, given a fragment library of length 𝑙, a fragment feature vector is formulated as 𝐹 =

[𝑓1, 𝑓2, … , 𝑓𝑛]𝑇, where 𝑓𝑖 is the frequency of the 𝑖th fragment in the fragment library and 𝑛 is the 

size of the fragment library. Then, we use a sliding window of length 𝑙 to consecutively segment 

a protein structure into overlapping 𝑙-residue fragments. Gaps are excluded. If the pairwise RMSD 

of a fragment in the protein structure to a fragment in the fragment library is within the RMSD 

cutoff threshold, it is regarded as a match. As a result, a protein structure is encoded as a fragment 

vector. 

A random forests classifier based on growing unbiased trees [63], which can effectively 

avoid the uncertainty of feature rankings, is trained to classify the protein structures in SCOP-40 
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into four major protein structure classes (all-α, all-β, α/β, and α+β). The random forest training 

process is carried out on each fragment library with respect to different lengths and RMSD cutoffs. 

Then, the fragments in the fragment library are ranked according to the impurity decrease in the 

random forest and the RMSD cutoffs in generating the fragment libraries are justified according 

to the testing results.  

We randomly select 70% of the protein structures in each structure class in the SCOP-40 

dataset to construct a training set and the rest 30% forms a test set. The training set is used to train 

the random forest classifiers via 10-fold cross validation for fragment libraries of different lengths 

and generated with different RMSD cutoffs. Figure 18 shows the accuracies of the random forest 

classifiers on the test set using our 4-, 12-, and 20-residue fragment libraries generated with RMSD 

cutoffs ranging from 0.1Å to 4.0Å. One can find that the optimal accuracy occurs at RMSD cutoffs 

of 0.4 Å, 1.3Å, and 2.2Å for fragment libraries of lengths of 4, 12, and 20 residues, respectively. 

In a word, the clustering RMSD cutoff plays an important role in the performance of the generated 

fragment library as structural features. Moreover, Table 3 lists the RMSD cutoffs for fragment 

libraries of lengths ranging from 4 to 20 residues as well as the total number of fragments with the 

optimal capability to be encoded as structural features to distinguish among protein folds. Without 

surprise, the optimal RMSD cutoffs increase nearly proportionally with fragment lengths. 

Moreover, it is interesting to notice that the sizes of the fragment libraries do not increase either 
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monotonically or proportionally. For example, the number of 8-residue fragments is over three 

times more than that of the 7-residue ones. This is due to the fact that a significant portion of 7-

residue fragments forms α-helices, which result in a smaller number of clusters. Moreover, the 

numbers of fragments in fragment libraries over 13 residues start to decrease with length. This is 

because the longer fragments are more structurally diversified, which results in a lot of small 

clusters with the fragments below the specified threshold.  

 

Fig. 18. Comparison of classification accuracies of major protein structure classes (all-α, all-β, α/β, and α+β) on SCOP-

40 proteins using 4-, 12-, and 20-residue fragments as structural features. The performance of the fragment libraries 

is sensitive to the RMSD cutoffs. The optimal RMSD cutoffs for 4-, 12-, and 20-residue fragment libraries are 0.4A, 

1.0A, and 2.2A, respectively. 
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Table 3  

The optimal RMSD cutoffs and the number of fragments for Frag-K of different lengths 

Length Optimal 

RMSD Cutoff 

(A) 

# of 

Fragments 

4 0.4 496 

5 0.6 1145 

6 0.7 682 

7 0.7 1250 

8 0.7 4050 

9 0.7 4500 

10 0.8 7745 

11 1 7945 

12 1 7370 

13 1 7434 

14 1.1 6947 

15 1.2 5414 

16 1.3 6153 

17 1.4 4425 

18 1.6 4202 

19 1.9 4154 

20 2.2 4012 

3.2 Datasets 

3.2.1 Fragment Sets 

We use the Protein Sequence Culling Server (PISCES) [64] to extract a non-redundant and 

non-homologous set (Cull20) of protein chains from PDB. Cull20 contains 2,491 protein chains 

with at most 20% sequence identity, 1.6 Å resolution cut-off, and 0.25 R-factor. For each protein 

chain in Cull20, a fixed-length sliding window is used to consecutively segment the protein 

sequence into overlapping fragments. Fragments with gaps are excluded. We repeatedly use 

sliding windows with sizes ranging from 4 to 20 residues to generate 4- to 20-residue fragment 
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samples, respectively. A reduced fragment representation is employed such that each residue in a 

fragment sample is encoded by the spatial coordinates of 𝐶𝛼 atoms while the other backbone atoms 

and side chains are removed. Residue identities in each fragment are also ignored. Table 4 lists the 

total numbers of generated protein fragment samples of different lengths from protein chains in 

Cull20. 

Table 4 Total numbers of fragment samples with respect to fragment lengths in Cull20. 

Length 
# of 

Fragments 

4 503,252 

5 498,792 

6 494,382 

7 490,044 

8 485,766 

9 481,540 

10 477,375 

11 473,266 

12 469,210 

13 465,188 

14 461,217 

15 457,295 

16 453,421 

17 449,583 

18 445,785 

19 442,018 

20 438,295 

 

3.2.2 Testing and Validation Datasets  

We use the EDD [31] dataset to train random forests to classify protein structures belonging 

to different folds where the generated fragment libraries are used as structural features. As shown 

https://link.springer.com/chapter/10.1007/978-3-319-59575-7_10#Tab1
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in Table 9 (Appendix I), the 27 fold classes in EDD cover most of the SCOP database structures. 

The EDD dataset is used to compare Frag-K with similar studies in the literature.  

The effectiveness of using the fragment libraries as structural features to distinguish 

between protein folds is sensitive to the RMSD cutoffs used to generate the fragment clusters. We 

herein construct a SCOP-40 dataset to analyze the impact of the clustering cutoffs on the 

performance of Frag-K. SCOP-40 is a dataset that hosts proteins with less than 40% sequence 

identity extracted from SCOPe v2.07 [2]. It contains four major protein structure classes (all-α, 

all-β, α/β, and α+β) covering approximately 90% of SCOPe v2.07. We use SCOP-40 to build 

training and test sets to justify Frag-K fragment libraries generated with different RMSD cutoffs 

in classifying all-α, all-β, α/β, and α+β structure classes. All proteins that belong to EDD dataset 

are excluded from SCOP-40.  

3.2.3 Performance Measures 

Fold classification is conducted on the EDD dataset to measure the effectiveness of protein 

structure classification using fragment libraries as structural features. The classification 

performance is measured in terms of precision, recall, F-measure, and accuracy such that 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
, 

where TP, TN, FP, and FN denote the numbers of true positive, true negatives, false positive, and 

false negatives, respectively. 

3.3 Results 

3.3.1 Analysis of Fixed-length Fragment Libraries 

We compare Frag-K with Fragbag developed by Kolodny et al. [65] in their capabilities of 

distinguishing major protein structural folds in the EDD dataset. To ensure that the test set contains 

samples from all folds, 30% of protein structures in each fold are randomly selected to form the 

test set while the rest become the training set. Then, for a fragment library of each length, we train 

a random forest classifier using Frag-K to encode each protein structure. Similar classifiers are 

constructed using Fragbag libraries. Figure 19 compares the performance of Frag-K and Fragbag 

of lengths ranging from 4 to 12 residues, where the X and Y coordinates of each subfigure are the 

classification accuracies of using Fragbag and Frag-K, respectively. In protein fold classification 

using short fragments, Frag-K outscores Fragbag in 22, 24, 22, and 25 fold classes out of 27 in 4-

, 5-, 6-, and 7-residue fragments, respectively. The advantage of Frag-K widens for longer 

fragments. In particular, for 12-residue fragments, the classification accuracies of our library are 

higher than those of Fragbag in almost all fold classes. This is due to the fact that Frag-Ks libraries 

are effectively derived from many more protein structures available in PDB today than 15 years 
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ago when Kolodny et al. generated Fragbag, which better represent the structural feature space, 

particularly for long fragments, in the protein structure universe. 

It is important to notice that the longer fragments tend to exhibit better classification 

capability. Moreover, the α/β folds often yield higher classification accuracy. This is because these 

longer fragments often capture long segments of secondary structures as well as super-secondary 

structures [66] such as β-hairpins, short β-sheets, helix-loop-helix, helix-turn-helix, etc., which 

effectively represent the structural traits of each protein fold. However, for certain folds, shorter 

fragments seem to be more effective. For example, using 11-residue Frag-K as structural features 

completely misclassifies a.3 and a.26; however, 4- and 5-residue fragments in Frag-K demonstrate 

certain success. This indicates that a structural dictionary consisting of fragments of different 

lengths is likely to demonstrate better classification capabilities than the one with fragments of the 

same length.  

 
(a). 4-residue fragments    (b). 5-residue fragments 
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(c). 6-residue fragments    (d). 7-residue fragments 

 

(e). 9-residue fragments    (f). 10-residue fragments 

a.39

c.23

c.47

c.69

a.1

a.3

c.2

c.3

c.1b.1

b.6

b.40

b.42

c.93

b.47

b.60
c.37

b.29

g.3

a.26

a.24

c.55

d.15

a.4

d.58

b.121
b.34

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FR
A

G
-K

FRAGBAG

a.39 c.23

c.47
c.69

a.1

a.3

c.2

c.3

c.1
b.1

b.6

b.40

b.42

c.93

b.47

b.60

c.37

b.29

g.3

a.26

a.24

c.55

d.15 a.4

d.58b.121
b.34

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FR
A

G
-K

FRAGBAG

a.39 c.23

c.47

c.69

a.1

a.3

c.2
c.3

c.1
b.1

b.6

b.40

b.42

c.93 b.47

b.60

c.37

b.29

g.3

a.26

a.24

c.55

d.15

a.4d.58

b.121

b.34

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FR
A

G
-K

FRAGBAG

a.39
c.23

c.47c.69
a.1

a.3

c.2
c.3

c.1 b.1

b.6

b.40

b.42

c.93

b.47b.60
c.37

b.29

g.3

a.26

a.24

c.55

d.15
a.4
d.58

b.121

b.34

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FR
A

G
-K

FRAGBAG



61 
 

 
 

   

(g). 11-residue fragments    (h). 12-residue fragments 

Fig. 19. Comparison of classification accuracies of different fold classes using Frag-K and Fragbag fragments of 

different lengths as structural features in EDD dataset. The red dots represent the classification accuracies of different 

fold classes. 

 

3.3.2 Structural Dictionary of Fragments with Variable Lengths 

 Here, we use all of the top-100 fragments in the fragment libraries of different lengths to 

train a random forest to classify the protein structures in EDD datasets into SCOP fold classes. A 

super structural feature vector is constructed to represent a protein structure, which is a 

concatenation of feature vectors representing fragment libraries of different lengths. Table 5 

compares the 10-fold cross-validation results of precisions, recalls, and F-measures in 27 protein 

structure folds based on the 4- to 12-residue fragments in Frag-K as well as Fragbag. We adopt the 

same parameters in the random forest training procedures for both fragment libraries. Similar to 

the results described in Section 3.3.1, one can find that the random forest classifier trained using 
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Frag-K fragments as structural features yields higher overall precision, recall, and F-measure than 

the one using Fragbag. Indeed, the F-measure, a metric combining precision and recall, of the 

classifier using Frag-K is higher than that using Fragbag in almost every single SCOP fold class 

except for b.47, which indicates that the classifier using Frag-K demonstrates a good balance 

between precision and recall. Table 5 also shows the performance of random forest classifier 

includes longer Frag-K fragments up to 20 residues, resulting in 0.93 precision, 0.89 recall, and 

0.90 F-measure in classifying all fold classes, which are higher than the classifier using only 4- to 

12-residue fragments (0.85 precision, 0.79 recall, and 0.81 F-measure). This indicates that the 

longer fragments, which often represent the super secondary structure motifs, contribute 

significantly to fold classification. They are important structural keywords in the protein structure 

universe.

Table 5  

Comparison of precision, recall, and F-measure of random forest classifiers using Frag-K and Fragbag as 

structure features on proteins in EDD dataset. 

 Fragbag Frag-K 

 L4 to L12 L4 to L12 L4 to L20 

SCOP 

Fold 

Classes 

Precision Recall F Precision Recall F Precision Recall F 

a.39 1.00 0.60 0.75 1.00 0.67 0.80 1.00 0.87 0.93 

c.23 0.90 0.69 0.78 0.78 0.90 0.84 0.85 0.96 0.9 

c.47 0.79 0.65 0.71 0.95 0.91 0.93 0.95 0.89 0.92 

c.69 0.89 0.74 0.81 1.00 0.96 0.98 1.00 1.00 1.00 

a.1 0.80 0.80 0.80 0.90 0.9 0.90 1.00 0.90 0.95 

a.3 1.00 0.14 0.25 0.71 0.71 0.71 0.88 1.00 0.93 

c.2 0.75 0.78 0.76 0.98 0.95 0.96 1.00 0.98 0.99 

c.3 1.00 0.32 0.48 1.00 0.82 0.90 1.00 0.95 0.98 

c.1 0.66 0.94 0.78 0.85 0.96 0.90 0.98 0.96 0.97 
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b.1 0.64 0.80 0.71 0.90 0.94 0.92 0.93 0.98 0.95 

b.6 0.25 0.12 0.17 0.38 0.38 0.38 1.00 0.63 0.77 

b.40 0.84 0.36 0.50 0.78 0.80 0.79 0.93 0.84 0.88 

b.42 0.40 0.18 0.25 1.00 0.82 0.90 1.00 1.00 1.00 

c.93 1.00 0.56 0.71 0.92 0.67 0.77 1.00 1.00 1.00 

b.47 1.00 0.89 0.94 0.80 0.89 0.84 1.00 0.89 0.94 

b.60 1.00 0.62 0.77 1.00 0.75 0.86 1.00 0.75 0.86 

c.37 0.86 0.52 0.65 1.00 0.80 0.89 0.95 0.9 0.92 

b.29 0.83 0.36 0.50 1.00 0.71 0.83 1.00 0.93 0.96 

g.3 0.39 0.64 0.48 0.96 0.92 0.94 0.91 0.84 0.87 

a.26 0.33 0.12 0.18 0.63 0.63 0.63 0.75 0.75 0.75 

a.24 0.73 0.53 0.62 0.89 0.53 0.67 0.83 0.67 0.74 

c.55 0.67 0.19 0.30 0.39 0.67 0.49 0.61 0.90 0.73 

d.15 0.56 0.7 0.62 0.88 0.81 0.85 0.93 0.93 0.93 

a.4 0.56 0.93 0.70 0.82 0.97 0.89 0.89 0.99 0.93 

d.58 0.61 0.79 0.69 0.76 0.76 0.76 0.84 0.84 0.84 

b.121 0.75 0.55 0.63 0.80 0.73 0.76 1.00 0.91 0.95 

b.34 0.62 0.49 0.55 0.90 0.70 0.79 0.86 0.81 0.83 

Avg/total 0.73 0.56 0.60 0.85 0.79 0.81 0.93 0.89 0.90 

We rank the effectiveness of the Frag-K fragments according to the impurity decrease in 

the random forest classifier. Figure 20 shows the average classification precision when the top-

100, … , 1600 fragments are used for the random forest classifiers. One can find that when the 

top-400 fragments are employed, average precision of 0.92 is achieved, although using more 

fragments may lead to slightly higher average precision. This means that using only 400 Frag-K 

fragments as structural keywords can effectively classify major SCOP folds. Figure 21 depicts the 

top-200 most effective Fold-K fragments for fold classification. One can find that secondary 

structures as well as many super-secondary structure motifs such as β-hairpins, short β-sheets, 

helix-loop-helix, and helix-turn-helix, are included. Figure 22 shows the distribution of the lengths 

of the top-200 most effective fragments, which indicates that fragments of all lengths contribute. 
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Fig. 20. Average classification precisions using top-k (ranging from 100 to 1,600) fragments. 

 

Fig. 21. Top-200 most effective Frag-K fragments for fold classification. 
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Fig. 22. Length distribution of the top-200 most effective fragment 

 

3.3.3 Assembling Protein Structure using Fragment Libraries 

In addition to serving as structural keywords to distinguish folds in the structural universe, 

the Frag-K fragment libraries can be used to effectively assemble protein structures. The protein 

structure assembling process aims at generating protein backbone trace by using Frag-K fragments 

that can approximate the protein backbone structure with good precision. The assembly is based 

on the geometry of the target protein, where the amino acid label information is ignored and only 

its secondary structure information is used. We adopt a global fit strategy to obtain a good 

approximation. An iterative fragment selection procedure is performed over all possible Frag-K 

fragments of different lengths, where the fragments yielding a sufficiently small RMSD value 

compared to the original structure are favored. Starting from one end of the protein, the protein 

assembling process selects the most appropriate fragment that best approximates the first segment 
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of the protein backbone. Afterward, we search the Frag-K library to build a set of feasible candidate 

fragments with a good local match with the already constructed segment. Typically, a good local 

match requires the RMSD values between the last three residues of the constructed segment and 

the overlapping first three residues of the selected fragments are within a certain threshold. Then, 

we select the fragment from the feasible candidate set yielding the minimum RMSD value with 

respect to the corresponding segment in the target structure to extend the constructed segment. If 

no feasible fragments are found, the one with minimum RMSD to the corresponding segment in 

the target structure is selected. The fragment assembling process is repeated until the complete 

protein backbone trace is generated. 

Figure 23 displays the backbone traces of several protein structures by Frag-K fragments 

with variable lengths. These protein structures belong to different fold classes. One can find that 

all assembled structures yield resolutions less than 2A. This indicates that the Frag-K fragments 

can be used effectively as a reduced representation of native protein structures, which can be 

applied to a wide variety of applications such as ab initio protein structure modeling [67], protein 

loop modeling [68], and protein design [69]. 
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d4maka_ d.58: Ferredoxin-like 
alpha+beta sandwich with antiparallel beta-sheet; 

(beta-alpha-beta), 0.51Å. 

d4j20a_ a.3: Cytochrome 
core: 3 helices; folded leaf, opened, 0.64Å.  

 

 
d1dp7p_ a.4: DNA/RNA-binding 3-helical bundle 
core: 3-helices; bundle, closed or partly opened, 

right-handed twist; up-and down, 1.41Å.  

d1r7ja_ a.4: DNA/RNA-binding 3-helical bundle 
core: 3-helices; bundle, closed or partly opened, 

right-handed twist; up-and down, 1.27Å 

  
d2ve8a_  a.4: DNA/RNA-binding 3-helical bundle 
core: 3-helices; bundle, closed or partly opened, 

right-handed twist; up-and down, 0.40Å.  

d1ls1a1 a.24: Four-helical up-and-down bundle 
core: 4 helices; bundle, closed or partly opened, 

left-handed twist; up-and-down, 0.39Å. 

  
d3uzqb_ b.1: Immunoglobulin-like beta-sandwich  
sandwich; 7 strands in 2 sheets; Greek-key, 1.78Å 

d3eina1 c.47: Thioredoxin fold core: 3 layers, 
a/b/a; mixed beta-sheet of 4 strands, order 4312; 

strand 3 is antiparallel to the rest, 0.65Å.  
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d3phxb d.15: beta-Grasp (ubiquitin-like) core: 
beta(2)-alpha-beta(2); mixed beta-sheet, 0.78Å.  

d1edmb_ g.3:knottins (small inhibtors, toxins, 
lectins), disulfide-bound fold; contains beta-
hairpin with two adjacent disulfides, 0.33Å. 

 

Fig. 23. Approximations of 10 protein structures using 4- to 20-residue Frag-K fragments. The native is in blue and 

the assembled structure is in red.  

3.4 Summary 

In this chapter, we apply the randomized spectral clustering algorithm to process large-

scale protein backbone fragment sets derived from the continuously growing PDB to generate 

Frag-K libraries containing 4- to 12-residue protein fragments. The Frag-K libraries are used as 

structural features to encode protein structures. We train random forests based on Frag-K 

fragments to classify major SCOP folds. Our results show that using about 400 4- to 12-residue 

fragments as structural keywords, one can classify major SCOP folds with high accuracy.  

The Frag-K fragment libraries are deposited at http://hpcr.cs.odu.edu/FragK/. Frag-K can 

also be used to investigate interactions between fragments [70], study motif formations in protein 

families, monitor structural keywords formation during protein folding process, and de novo 

protein structure design.  

 

 

 

http://hpcr.cs.odu.edu/FragK/
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CHAPTER IV 

4 DEEPFRAG-K: A FRAGMENT-BASED DEEP LEARNING APPROACH FOR 

PROTEIN FOLD RECOGNITION 

In this chapter, we present a novel deep neural network architecture, so-called DeepFrag-

k, to classify target protein sequences into known protein folds. The fundamental idea is to convert 

a target protein sequence into structural fragments that popularly exist in protein structures [71], 

represented as a fragment vector, which contains highly discriminative features to distinguish the 

protein fold [72]. Deep-Frag-k is composed of two stages. The first stage uses a multi-modal Deep 

Belief Network (DBN) to fuse multiple groups of features, including sequence composition, amino 

acid physicochemical properties, and evolutionary information, to precisely predict potential 

structure fragments for a given sequence, which are represented as a fragment vector. Then, a 1-D 

Convolution Neural Network (CNN) is employed to classify the fragment vector into the 

appropriate fold.  

4.1 Methodology 

4.1.1 DeepFrag-k Fold Recognition Architecture 

 
Fig. 24. Two-stage protein fold recognition architecture. 
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Figure 24 presents the two-stage deep neural network architecture of DeepFrag-k. In the 

first stage, we predict a fragment vector representation of a target protein sequence using a 

fragment prediction model based on multimodal DBN [73], which predicts the potential fragments 

that the target protein sequence will form during protein folding process. In particular, we focus 

on the top-100 most popular fragments, with 4- to 20-residue in length, described in our Frag-K 

fragment libraries [71, 72]. Our results in section 3.3 show that these fragments can be used as the 

structural “keywords” to effectively distinguish between major protein folds. In the multimodal 

DBN, the DBNs interact with each other to learn fragment latent representation on the set of 

features derived from sequence composition, physicochemical properties, and evolutionary 

information. The output of the first stage is a fragment vector with respect to the target protein 

sequence. Afterwards, in the second stage, this fragment vector is fed to a 1D Convolution Neural 

Network (1D-CNN) [74, 23] classifier, as the feature vector of the target protein sequence, to 

predict the likeliness of the protein folds.   

4.1.1.1 Fragment Prediction (Stage 1) 
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Fig. 25. Fragments prediction multimodal DBN architecture. 

 

A protein fold distinguish itself by forming certain unique secondary structures and super-

secondary structure motifs, such as β-hairpins, short β-sheets, helix-loop-helix, and helix-turn-

helix, which are represented as structural fragments. Correctly predicting these fragments from a 

given sequence can lead to effective features for fold recognition. However, the sequence features 

to predict fragments hold distinct statistical properties and the correlations between them are highly 

non-linear [75]. For a shallow model, it is difficult to capture these correlations and form an 

integrated informative representation. Our fragment prediction model consists of a multimodal 

DBN and a fully-connected network. Our motivation for the pro-posed multimodal DBN is to 
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tackle the above challenge by using an integrated representation to enhance the fragment prediction 

accuracy [73, 23]. Figure 25 summarizes the framework of our proposed fragment prediction 

model. We use the Frag-K fragment libraries to train the fragment prediction model. First, we use 

the extracted sequence composition [76], physicochemical properties [76], and evolutionary 

information [76, 77, 78, 79] as feature groups to learn the latent representations of the top-100 

Frag-K fragments. As shown in section 3.3, the top-100 Frag-K fragments are capable of 

classifying major SCOP folds in high accuracy and can also be used to assemble most protein 

structures in high precision. The multiple feature representations learned by the DBNs are 

concatenated to train a Restricted Boltzmann Machine (RBM) model [73] to fuse a latent feature 

representation for the feature groups. Finally, two fully-connected 1,000x1,000 neural network 

layers followed by a SoftMax layer of 100 output nodes, representing the top-100 Frag-K 

fragments, are trained with these latent feature representations to make the fragment prediction. 

Such layer-by-layer learning helps gradually extract the effective features from the original feature 

groups [80]. The multimodal DBN learns discriminative latent features as a joint distribution 

determined by the hidden variables of non-correlated feature groups input [73]. As a result, the 

hybrid framework of multi-modal learning fuses an abstraction level representation, which enables 

the fragment predictor to integrate different feature groups for fragments of different lengths 

flexibly.  
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The training of the fragment prediction model is performed via Stochastic Gradient 

Descent method. During the training process, the Frag-K fragment library, with 1,000 samples in 

each fragment class, is randomly split into batches, each of which contains 500 samples. In order 

to prevent overfitting, dropout layers are inserted after every hidden layer with 0.5 dropout rate 

and an early stop-ping strategy is employed. 

4.1.1.2 Fold prediction (Stage 2) 

 

Fig. 26. Protein Fold Classification 1D-CNN model. 

 

The fragment feature vector generated from stage 1 is fed to a 1D-CNN architecture to 

predict protein fold, as shown in Figure 26. The proposed 1D-CNN comprises two pairs of 

convolutional and max pooling layers (COV1-MP1 and COV2-MP2 ), two fully-connected layers 

FC1 and FC2, and a SoftMax layer. Between 𝑀𝑃1 and 𝐶𝑂𝑉2, we include a stacking layer 𝑆𝑇. The 

COV1 layer contains 10 convolution filters, producing 10 filtered versions of the fragment feature 
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vector as output. These filtered versions are then subsampled in max pooling layer MP1. The 

stacking layer rearranges the output of MP1 so that a 2D stack of the generated features from 

COV1 is sent to the second convolutional layer COV2. The convolution filters in COV2 are 2D 

filters, with the same height as the ST layer. The purpose of these 2D filters is to capture the 

relationships across the latent features produced by the convolution filters of the original fragment 

vector in COV1. Then the generated output is subsampled in max pooling layer MP2. In order to 

classify the flattened output of MP2 into corresponding folds, two fully-connected layers, FC1 and 

FC2, followed by a SoftMax layer are employed. 

4.1.2 Feature Extraction 

Table 6  

Protein sequence features. 

Feature Type Dimension 

Sequence Composition Frequency of Function Group 10 

 Information Entropy 2 

 Distribution 20 

 Transition 45 

Physicochemical properties Pseudo Amino Acid Composition 40 

 Discrete Wavelet Transformation 42 

Evolutionary Information P-PSSM 400 

 PSSM-DC 400 

 Bi-Gram PSSM 400 

 ED-PSSM 400 

 

Constructing a proper feature vector from proteins is a key step for a successful protein 

fragment prediction [77, 81]. Using multiple features extraction strategy, representing sequence, 

evolutionary, physicochemical information of a protein sequence fragment, maximizes the 
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discriminative capability of the fold recognizer [82, 83]. The sequence features for fragments used 

in DeepFrag-k include frequencies of functional groups, information entropy of amino acids and 

dipeptides [84], distribution of amino acids relative positions [83], and transitions of functional 

groups [85]. The physicochemical features include PseAAC (Pseudo Amino Acid Composition) 

[86, 87] and Discrete Wavelet Transform (DWT) [88] of hydrophobicity, flexibility, and average 

accessible surface area of amino acids in a fragment. The evolutionary features are described by 

various forms of position-specific scoring matrix (PSSM) profiles [35] including profile PSSM (P-

PSSM), PSSM-Dipeptide Composition (PSSM-DC) [76], Bi-gram PSSM (Bi-PSSM) [34], and 

Evolutionary Difference-PSSM (ED-PSSM) [89]. These features are summarized in Table 6. 

4.2 Results 

4.2.1 Fragment Prediction Model 

The extracted sequence composition, physicochemical properties, and evolutionary 

information features of the Frag-K fragments are fed to the fragment prediction model to predict 

their potential corresponding fragments classes. We investigate the performance of the classifier 

measured by specificity, sensitivity, and accuracy, which are defined as the percentage of predicted 

fragment classes that are true positives, the percentage of true positives that are correctly predicted, 

and the fraction of fragments that are correctly classified, respectively. 
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We first examine the classification of sequence fragments of the same length. Figure 27 

shows the accuracy, specificity, and sensitivity of the ten-fold cross-validation results for top-100 

Frag-K fragment targets of each length, ranging from 4 to 20 residues. One can find that the 

prediction accuracies of longer fragments (≥10 residues) are better than those of the shorter ones, 

where both specificity and sensitivity are over 80%. This is due to the fact that the longer fragments 

encompass richer discriminative information.  However, when the top-100 Frag-K fragments with 

variable lengths are used as the target classes, the prediction accuracy reaches over 90%, because 

these top-100 Frag-K fragments with variable lengths are more representative structural keywords 

in the protein structure universe, as we showed in section 3.3. 

 

Fig. 27. Accuracy, specificity, and sensitivity of fragment libraries models. 
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We analyze the effectiveness of the three feature groups (Table 6) used to represent the 

sequence fragments on variable length Frag-K fragment prediction accuracy. We compose 

individual and combined sequence composition, physicochemical properties, and evolutionary 

information feature vectors to train the fragment prediction model showed in Figure 55. The ten-

fold cross-validation accuracy results are reported in Figure 28.  The evolutionary information 

plays the most important role; however, all of these feature groups contribute to fragment accuracy 

improvements. 

 

Fig. 28. Accuracy of variable length Frag-K fragment prediction when different feature groups and their combinations 

are applied.  
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In section 3.3.2 it is indicated that the Frag-K variable length fragment library achieves 

higher fold classification accuracy than fixed length fragment library over EDD dataset. This 

demonstrates that the diversity of the fragments representing the super secondary structure motifs 

contributes significantly to fold classification. Additionally, it is established in section 3.3.3 that 

the Frag-K variable length fragment library can be used effectively to assemble the protein 

backbone trace with good precision. The Frag-K variable length fragment library can be used with 

a global fit strategy to obtain a good approximation of a target protein. The higher classification 

accuracy and the ability to reconstruct protein backbone trace of Frag-K variable length fragment 

library are due to its selection and ranking methodologies which are explained in section 3.1.4. 

4.2.2 Fold Classification Model  

As shown in section 3.3, the Frag-K fragment library with variable length achieves higher 

fold classification accuracy than fixed-length ones. Moreover, our results in the previous section 

show that the prediction accuracy on variable length Frag-K fragments is higher than individual 

fixed-length fragments. Therefore, we used the fragment vectors based on variable-length 

fragment predictions from the fragment prediction model for the fold recognition model.   

We use the sequences in DD, EDD, and TG datasets to evaluate the performance of 

DeepFrag-k. First, for a given sequence, we use a sliding window of 4 to 20 residues to 

consecutively segment it into a set of overlapping fragments, where gaps and non-protein residues 

are excluded. Figure 29 and Figure 30 compare the fold recognition accuracy of DeepFrag-k with 
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other fold recognition methods, including PFP-Pred [46], GAOEC [49], ThePFP-FunDSeqE [39], 

Dehzangi et al. [90, 91], MarFold [51], PFP-RFSM [37], Feng and Hu [53], Feng et al. [54], PFPA 

[40], Paliwal et al. [92, 93], Dehzangi et al. [94], HMMFold [95], Saini et al. [87], Lyons et al. 

[96], and Profold  [42] in protein fold recognition.  

 

Fig. 29. Comparison with existing ensemble learning methods on DD-dataset. 
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Figure 29 summarizes the ten-fold cross-validation results of DeepFrag-k and other fold 

recognition methods on the DD dataset. DeepFrag-k outperforms the other methods by yielding 

85.3% accuracy, which is 9.1% higher than the second highest, proFold (76.2%). More detailed 

comparisons between DeepFrag-K and ProFold for each individual protein fold are listed in Table 

7. One can find that DeepFrag-k demonstrates better fold recognition accuracy than ProFold in 18 

out of 27 protein folds. It is also important to notice that DeepFrag-k shows more balanced 

prediction accuracy. In particular, for the folds, such as b.34, b.47, c.3, c.37, and d.15, that ProFold 

exhibits poor prediction results, DeepFrag-k yields significant improvements. 

 

Table 7  

DeepFrag-K and ProFold folds classifications accuracies for DD-dataset. 

# 
Fold 

ID 
Fold Name 

 Accuracy 

DeepFrag-K ProFold 

1 a.1 Globin-like 98 100 

2 a.3 Cytochrome c 95 100 

3 a.4 DNA/RNA-binding 3-helical bundle 85.9 60 

4 a.24 4-Helical up-and-down bundle 91.5 87.5 

5 a.26 4-Helical cytokines 98.9 88.9 

6 a.39 EF hand-like 90.8 77.8 

7 b.1 Immunoglobulin-like β-sandwich 91.1 84.1 

8 b.6 Cupredoxin-like 78.7 66.7 

9 b.121 Nucleoplasmin-like/VP 91.3 92.3 
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10 b.29 ConA-like lectins/glucanases 76.7 66.7 

11 b.34 SH3-like barrel 78 50 

12 b.40 OB-Fold 80.4 68.4 

13 b.42 β-Trefoil 89 100 

14 b.47 Trypsin-like serine proteases 75 50 

15 b.60 Lipocalins 90.5 100 

16 c.1 TIM β/α-barrel 93.8 93.8 

17 c.2 FAD/NAD(P)-binding domain 89.7 91.7 

18 c.3 Flavodoxin-like 60.2 46.2 

19 c.23 NAD(P)-binding Rossmann 90.2 85.2 

20 c.37 P-loop containing NTH 79.5 50 

21 c.47 Thioredoxin-fold 97.5 87.5 

22 c.55 Ribonuclease H-like motif 75.3 58.3 

23 c.69 α/β-Hydrolases 78.4 71.4 

24 c.93 Periplasmic binding protein-like 92 100 

25 d.15 β-Grasp (ubiquitin-like) 69.35 25 

26 d.58 Ferredoxin-like 76.8 59.3 

27 g.3 Knottins (small inhibitors, toxins, lectins) 88.2 96.3 

Accuracy 85.25 76.18 

We further evaluate the performance of DeepFrag-k on the EDD and TG datasets.  The 

ten-fold cross-validation results in comparison with other methods are illustrated in Figure 30. 

DeepFrag-k yields 96.1% and 97.5% accuracies on EDD and TG datasets, respectively, which are 
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higher than the other fold recognition methods. Due to significantly more samples are available in 

EDD and TG datasets, which is particularly helpful for our deep learning model to capture the 

discriminative features of the protein folds in sequence space, the DeepFrag-k yields better fold 

recognition accuracies in EDD and TG datasets than that in DD dataset. 

 

Fig. 30. Comparing DeepFrag-k with other fold recognition methods on the TG and EDD datasets. 

[94]  

Figure 31 depicts the Class Activation Map (CAM) [97, 98] of DeepFrag-k on the EDD dataset 

to show how protein folds classified based on the fragment feature vectors from the protein 

sequences. The activation units that are most discriminative to fold classifications are identified, 

which are highly weighted. The combination of these class-specific units guides DeepFrag-k in 

distinguishing each fold. One can observe that the fold classification model makes use of more 
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activation units to classify α/β or α+β proteins (C.1 to C.93), when compared to all α (A.1 to A.39) 

and all β proteins (B.1 to B.60).  However, in folds of small proteins, such as G.3, only a few 

activation units are effective in the fold recognition process. 

 

 
Fig. 31. EDD fold classification class activation map. 

4.3 Summary 

In this chapter, we design DeepFrag-k, a two-stage deep learning neural network 

architecture, for fold recognition. The fragment prediction stage derives effective fragment feature 

vectors by fusing sequence composition, physicochemical properties, and evolutionary 

information features groups of sequence fragments to the fold recognition stage. Due to the 

discriminative capability of the fragment feature vectors, Deep-Frag-k yields significant accuracy 

enhancement compared to other fold recognition methods on the DD, EDD, and TG datasets. 

The features derived in DeepFrag-k are based on sequence fragments. They can be 

incorporated with other sequence or structure features [99], such as inter-residue interactions [81], 
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to further improve fold recognition. This will be our future research direction. The DeepFrag-k 

package can be downloaded at http://hpcr.cs.odu.edu/deepfragk. 
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CHAPTER V 

5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Protein folding is one of the major research areas in the bioinformatics field. Despite, the 

progress in protein fold research, there is a huge need for more work. Hence, the processes of fold 

formation and stabilization are still not fully understood. One of the important factors to correctly 

recognize the protein fold is the prediction of local backbone conformations. The favorable local 

backbone conformations can be carefully extracted to predict the conformation of a new sequence. 

Various methods are proposed for an efficient prediction of local backbone conformations. 

Accordingly, it is becoming increasingly clear that these methods can contribute significantly to 

improve the accuracy of recognizing related folds.  

In this work, we apply the randomized spectral clustering algorithm to process large-scale 

protein backbone fragment sets derived from the continuously growing PDB to generate Frag-K 

libraries containing 4- to 20-residue protein fragments. The Frag-K libraries are used as structural 

features to encode protein structures. We train random forests based on Frag-K fragments to 

classify major SCOP folds. Our results show that using about 400 4- to 20-residue fragments as 

structural keywords, can classify major SCOP folds with high accuracy.  
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Additionally, we design DeepFrag-k, a two-stage deep learning neural network 

architecture, for fold recognition. The fragment prediction stage derives effective fragment feature 

vectors by fusing sequence composition, physicochemical properties, and evolutionary 

information features groups of sequence fragments to the fold recognition stage. Due to the 

discriminative capability of the fragment feature vectors, Deep-Frag-k yields significant accuracy 

enhancement compared to other fold recognition methods on the DD, EDD, and TG datasets.   

5.2 Future Work 

One of the most important reactions in biology is protein folding. Since the discovery that 

proteins can fold naturally without outside help, an intensive work of research in protein folding 

has been done. However, the primary questions about protein folding are still not answered, such 

as: How do proteins fold? Why do they fold in that way? These questions are significantly 

important for protein science and its various applications. A large literature has been generated 

over the years based on these questions leading to different models for the folding process. 

Additionally, the advances in computational methods add a new perspective.  

We plan to consider Frag-K libraries and DeepFrag-k to answer the central questions of 

protein folding (how, why, and the encoding problem). There are several interesting aspects that 

we would like to explore. For instance, it would be interesting to monitor structural fragments 

formation during protein folding process in order to study the fold formation by analyzing the 
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motif dynamics in protein folding simulation. These will be our future research directions which 

shall provide important insights in the protein folding pathways.  

We expect that the proposed protein fragments libraries and protein folding recognition 

framework will lead to the discovery of more accurate and informative protein folding pathways. 

Also, they will be used to improve the understanding of various important steps of protein folding 

process ranging from template identification, alignment, and quality assessment by taking 

advantage of the continuous growth of protein sequence and structural database in the era of “Big 

Data”. Furthermore, we propose to rely on the solid ground of experiment rather than the often 

used suggestions that are less-definitive. 
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8 APPENDIX I 

 DD Protein Fold Dataset 

Table 8  

DD dataset folds from SCOP. 

Index Fold ID Fold Name Training Testing Total 

1 a.1 Globin-like 13 6 19 

2 a.3 Cytochrome c 7 9 16 

3 a.4 
DNA/RNA-binding 3-

helical bundle 
12 30 32 

4 a.24 
4-Helical up-and-down 

bundle 
7 8 15 

5 a.26 4-Helical cytokines 9 9 18 

6 a.39 EF hand-like 6 9 15 

7 b.1 
Immunoglobulin-like β-

sandwich 
30 44 74 

8 b.6 Cupredoxin-like 9 12 21 

9 b.121 Nucleoplasmin-like/VP 16 13 29 

10 b.29 
ConA-like 

lectins/glucanases 
7 6 13 

11 b.34 SH3-like barrel 8 8 16 

12 b.40 OB-Fold 13 19 32 

13 b.42 β-Trefoil 8 4 12 

14 b.47 
Trypsin-like serine 

proteases 
9 4 13 

15 b.60 Lipocalins 9 7 16 

16 c.1 TIM β/α-barrel 29 48 77 

17 c.2 
FAD/NAD(P)-binding 

domain 
11 12 23 

18 c.3 Flavodoxin-like 11 13 24 

19 c.23 
NAD(P)-binding 

Rossmann 
13 27 40 

20 c.37 P-loop containing NTH 10 12 22 

21 c.47 Thioredoxin-fold 9 8 17 

22 c.55 
Ribonuclease H-like 

motif 
10 12 22 

23 c.69 α/β-Hydrolases 11 7 18 
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24 c.93 
Periplasmic binding 

protein-like 
11 4 15 

25 d.15 β-Grasp (ubiquitin-like) 7 8 15 

26 d.58 Ferredoxin-like 13 27 40 

27 g.3 
Knottins (small 

inhibitors, toxins, lectins) 
13 27 40 

Total 311 383 694 

 EED Protein Fold Dataset 

Table 9  

EED dataset folds from SCOP 

Index Fold ID Fold Name # of Samples 

1 a.1 Globin-like 41 

2 a.3 Cytochrome c 35 

3 a.4 DNA/RNA-binding 3-helical bundle 322 

4 a.24 4-Helical up-and-down bundle 69 

5 a.26 4-Helical cytokines 30 

6 a.39 EF hand-like 59 

7 b.1 Immunoglobulin-like β-sandwich 391 

8 b.6 Cupredoxin-like 47 

9 b.121 Nucleoplasmin-like/VP 60 

10 b.29 ConA-like lectins/glucanases 57 

11 b.34 SH3-like barrel 129 

12 b.40 OB-Fold 156 

13 b.42 β-Trefoil 45 

14 b.47 Trypsin-like serine proteases 45 

15 b.60 Lipocalins 37 
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16 c.1 TIM β/α-barrel 336 

17 c.2 FAD/NAD(P)-binding domain 73 

18 c.3 Flavodoxin-like 130 

19 c.23 NAD(P)-binding Rossmann 195 

20 c.37 P-loop containing NTH 239 

21 c.47 Thioredoxin-fold 111 

22 c.55 Ribonuclease H-like motif 128 

23 c.69 α/β-Hydrolases 83 

24 c.93 Periplasmic binding protein-like 16 

25 d.15 β-Grasp (ubiquitin-like) 121 

26 d.58 Ferredoxin-like 339 

27 g.3 Knottins (small inhibitors, toxins, lectins) 124 

 

 TG Protein Fold Dataset 

Table 10  

TG-dataset. 

Index Fold ID Fold Name 

1 a.3 Cytochrome C 

2 a.4 DNA/RNA binding 3-helical bundle 

3 a.24 Four helical up and down bundle 

4 a.39 EF hand-like fold 

5 a.60 SAMdomain-like 
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6 a.118 a-a superhelix 

7 b.1 Immunoglobulin-like b-sandwich 

8 b.2 Common fold of diphtheria toxin/transcription 

factors/cytochrome f 

9 b.6 Cupredoxin-like 

10 b.18 Galactose-binding domain-like 

11 b.29 Concanavalin A-like lectins/glucanases 

12 b.34 SH3-like barrel 

13 b.40 OB-fold 

14 b.82 Double-stranded a-helix 

15 b.121 Nucleoplasmin-like 

16 c.1 TIM a/b-barrel 

17 c.2 NAD(P)-binding Rossmann-fold domains 

18 c.3 FAD/NAD(P)-binding domain 

19 c.23 lavodoxin-like 

20 c.26 Adenine nucleotide a hydrolase-like 

21 c.37 P-loop containing nucleoside triphosphate hydrolases 

22 c.47 Thioredoxin fold 

23 c.55 Ribonuclease H-like motif 

24 c.66 S-adenosyl-L-methionine-dependent methyltransferases 

25 c.69 a/b-Hydrolases 



108 
 

 
 

26 d.15 b-Grasp, ubiquitin-like 

27 d.17 Cystatin-like 

28 d.58 Ferredoxin-like 

29 g.3 Knottins 

30 g.41 Rubredoxin-like 

 SCOP 2.04 TOP 40 Folds 

Table 11  

SCOP 2.04 top 40 folds 

Fold Class Description # Proteins 

b.1 b: All beta proteins Immunoglobulin-like beta-sandwich 529 

c.1 c: Alpha and beta 

proteins (a/b) 

TIM beta/alpha-barrel 485 

d.58 d: Alpha and beta 

proteins (a+b) 

Ferredoxin-like 424 

a.4 a: All alpha proteins DNA/RNA-binding 3-helical bundle 387 

c.2 c: Alpha and beta 

proteins (a/b) 

NAD(P)-binding Rossmann-fold 

domains 

309 

c.37 c: Alpha and beta 

proteins (a/b) 

P-loop containing nucleoside 

triphosphate hydrolases 

307 

c.23 c: Alpha and beta 

proteins (a/b) 

Flavodoxin-like 216 
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c.47 c: Alpha and beta 

proteins (a/b) 

Thioredoxin fold 195 

b.40 b: All beta proteins OB-fold 174 

b.34 b: All beta proteins SH3-like barrel 170 

c.55 c: Alpha and beta 

proteins (a/b) 

Ribonuclease H-like motif 159 

c.94 c: Alpha and beta 

proteins (a/b) 

Periplasmic binding protein-like II 154 

a.118 a: All alpha proteins alpha-alpha superhelix 146 

d.15 d: Alpha and beta 

proteins (a+b) 

beta-Grasp (ubiquitin-like) 144 

c.66 c: Alpha and beta 

proteins (a/b) 

S-adenosyl-L-methionine-dependent 

methyltransferases 

140 

g.3 g: Small proteins Knottins (small inhibitors, toxins, 

lectins) 

138 

b.82 b: All beta proteins Double-stranded beta-helix 126 

c.69 c: Alpha and beta 

proteins (a/b) 

alpha/beta-Hydrolases 121 

c.67 c: Alpha and beta 

proteins (a/b) 

PLP-dependent transferase-like 118 

d.17 d: Alpha and beta 

proteins (a+b) 

Cystatin-like 103 
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d.144 d: Alpha and beta 

proteins (a+b) 

Protein kinase-like (PK-like) 100 

c.108 c: Alpha and beta 

proteins (a/b) 

HAD-like 99 

d.108 d: Alpha and beta 

proteins (a+b) 

Acyl-CoA N-acyltransferases (Nat) 92 

c.26 c: Alpha and beta 

proteins (a/b) 

Adenine nucleotide alpha hydrolase-

like 

91 

a.60 a: All alpha proteins SAM domain-like 87 

b.29 b: All beta proteins Concanavalin A-like lectins/glucanases 86 

b.36 b: All beta proteins PDZ domain-like 84 

b.55 b: All beta proteins PH domain-like barrel 84 

c.93 c: Alpha and beta 

proteins (a/b) 

Periplasmic binding protein-like I 84 

a.39 a: All alpha proteins EF Hand-like 80 

a.24 a: All alpha proteins BSD domain-like 77 

c.3 c: Alpha and beta 

proteins (a/b) 

FAD/NAD(P)-binding domain 74 

d.38 d: Alpha and beta 

proteins (a+b) 

Thioesterase/thiol ester dehydrase-

isomerase 

72 

g.37 g: Small proteins beta-beta-alpha zinc fingers 71 

a.25 a: All alpha proteins Ferritin-like 68 
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b.18 b: All beta proteins Galactose-binding domain-like 68 

b.121 b: All beta proteins Nucleoplasmin-like/VP (viral coat and 

capsid proteins) 

68 

g.39 g: Small proteins Glucocorticoid receptor-like (DNA-

binding domain) 

67 

c.56 c: Alpha and beta 

proteins (a/b) 

Phosphorylase/hydrolase-like 66 

c.14 c: Alpha and beta 

proteins (a/b) 

TTHA0583/YokD-like 64 

d.129 d: Alpha and beta 

proteins (a+b) 

TBP-like 63 

a.29 a: All alpha proteins Bromodomain-like 62 

d.110 d: Alpha and beta 

proteins (a+b) 

Profilin-like 62 
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