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Abstract

If the blocks of a balanced incomplete block design (BIBD) with v treatments and with param-
eters (v; b1; r; k1) are each partitioned into sub-blocks of size k2, and the b2 = b1k1=k2 sub-blocks
themselves constitute a BIBD with parameters (v; b2; r; k2), then the system of blocks, sub-blocks
and treatments is, by de4nition, a nested BIBD (NBIBD). Whist tournaments are special types
of NBIBD with k1 = 2k2 = 4. Although NBIBDs were introduced in the statistical literature in
1967 and have subsequently received occasional attention there, they are almost unknown in
the combinatorial literature, except in the literature of tournaments, and detailed combinatorial
studies of them have been lacking. The present paper therefore reviews and extends mathe-
matical knowledge of NBIBDs. Isomorphism and automorphisms are de4ned for NBIBDs, and
methods of construction are outlined. Some special types of NBIBD are de4ned and illustrated.
A 4rst-ever detailed table of NBIBDs with v616, r630 is provided; this table contains many
newly discovered NBIBDs. c© 2001 Elsevier Science B.V. All rights reserved.
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1. De�nitions and historical background

In standard notation (as in [37,62]), a balanced incomplete block design (BIBD) with
parameters (v; b; r; k) is an arrangement of v treatments (sometimes called ‘varieties’
or ‘points’) in b blocks, each of size k, where k ¡v, such that

(i) each treatment appears exactly r = bk=v times overall,
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(ii) each treatment occurs no more than once per block, and
(iii) each unordered pair of its treatments appears in exactly 	 = r(k − 1)=(v − 1)

blocks, the parameter 	 often being referred to as the ‘concurrence parameter’ of
the BIBD.

A BIBD is ‘unreduced’ if its blocks are the distinct k-subsets of the treatments, each
such subset occurring just once. Thus an unreduced BIBD has

b=
(
v
k

)
; r =

(
v− 1
k − 1

)
:

The ‘complement’ of a BIBD D with parameters (v; b; r; k) is the BIBD whose param-
eters are (v; b; b − r; v − k) and each of whose blocks contains only those treatments
that are absent from the corresponding block of D. The complement of an unreduced
BIBD is also unreduced.
A BIBD is ‘resolvable’ [2] if its set of blocks can be partitioned into subsets such

that each subset is a ‘replicate’ or ‘resolution class’ or ‘parallel class’, i.e. such that
each subset contains each treatment exactly once. Following [10,11], we say that a
resolvable BIBD (RBIBD) has been ‘resolved’ if it is presented with its blocks arranged
in replicates. A BIBD is ‘�-resolvable’ if its set of blocks can be partitioned into
subsets each containing each treatment exactly � times; we refer to such a subset as
an ‘�-resolution class’. We say that an �-resolvable BIBD has been ‘�-resolved’ if it is
presented with its blocks arranged in �-resolution classes. A BIBD with v treatments
is ‘almost resolvable’ [40, p. 954] or ‘near resolvable’ [2, p. 88] if its set of blocks
can be partitioned into ‘near-resolution classes’, i.e. into subsets each lacking one of
the treatments but containing each of the other treatments exactly once. If an almost
resolvable BIBD is presented with its blocks partitioned in such a way, we say that it
has been ‘almost resolved’.
If the blocks of a BIBD D1 with parameters (v; b1; r; k1) are each partitioned into

sub-blocks of size k2, where k2 (¿ 1) is a submultiple of k1, and the b2 = b1k1=k2
sub-blocks themselves constitute a BIBD D2 with parameters (v; b2; r; k2), then, fol-
lowing [42], we de4ne the system of blocks, sub-blocks and treatments to be a ‘nested
BIBD’ (NBIBD) with parameters (v; b1; b2; r; k1; k2) satisfying vr = b1k1 = b2k2. The
nesting here is thus that of blocks of size k2 within blocks of size k1, not (as for
some other ‘nested’ designs in the combinatorial literature) of designs within designs.
We refer to D1 and D2 as the ‘component BIBDs’ of the NBIBD, with concurrence
parameters 	1 and 	2, respectively. To avoid cumbersome notation, we henceforth use
the concurrence parameters only when they are needed for formal proofs and construc-
tions.
As an example of an NBIBD, consider the following NBIBD with treatments

0; 1; 2; 3; 4 and parameters (5; 5; 10; 4; 4; 2); where, as elsewhere in this paper, each
block is within round brackets, and sub-blocks within a block are separated by a
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vertical bar:

(1 4 | 2 3)(2 0 | 3 4)(3 1 | 4 0)(4 2 |0 1)(0 3 | 1 2)

This NBIBD has the further property that each successive block is obtainable from the
previous one by means of cyclic substitutions modulo 5; this NBIBD can therefore be
speci4ed by a single initial block, and may be written more concisely as

(1 4 | 2 3) mod 5:

By analogy with the de4nition of a resolvable BIBD, we say that an NBIBD is
‘resolvable’ if its set of blocks of size k1 can be partitioned into subsets each of
which is a resolution class. We say that a resolvable NBIBD has been ‘resolved’ if
it is presented with its blocks of size k1 arranged in resolution classes. An NBIBD
is ‘�-resolvable’ if its set of blocks of size k1 can be partitioned into subsets each
containing each treatment exactly � times. We say that an ‘�-resolvable’ NBIBD has
been ‘�-resolved’ if it is presented with its blocks of size k1 arranged in �-resolution
classes. An NBIBD with v treatments is ‘almost resolvable’ if its set of blocks of
size k1 can be partitioned into subsets each of which is a near-resolution class. If
an almost resolvable NBIBD is presented with its blocks so partitioned, it is ‘almost
resolved’.
As an example of a resolved NBIBD, we may take the following NBIBD with

treatments 0; 1; 2; 3; 4; 5; 6;∞ and parameters (8; 14; 28; 7; 4; 2), where the blocks within
square brackets constitute a resolution class, and the treatment ∞ is invariant under
the cyclic development of the initial blocks:

[(0 1 | 4 2)(3 6 | 5 ∞)] mod 7:

As an example of an almost resolved NBIBD, we may take the following NBIBD with
treatments 0; 1; : : : ; 12 and parameters (13; 39; 78; 12; 4; 2); where the blocks within the
angled brackets constitute a near-resolution class:

〈(1 4 | 2 7)(3 12 | 6 8)(9 10 | 5 11)〉 mod 13

The two examples of the previous paragraph are ‘whist tournaments’ [5–8,21], the
literature of which goes back to Moore’s 1896 paper [39] and earlier (see [9]). If
v ≡ 0 or 1, modulo 4, then a whist tournament Wh(v) is a resolved (if v ≡ 0) or
almost resolved (if v ≡ 1) NBIBD with k1 = 2k2 = 4 and r = v − 1; the 4 treatments
in a block of size k1 are 4 players of the card-game ‘whist’ who are seated at the
same table in the current game, and the 2 treatments in a sub-block of size k2 are
2 players who are partners of one another in the current game. Whist tournaments
exist for all v = 4; 8; : : : and all v = 5; 9; : : : ; and are also used when the card-game
‘bridge’ is played without 4xed partnerships [15]. More generally, any NBIBD with
k1 = 2k2 = 4 is a ‘balanced doubles schedule’ (BDS) as considered by Healey [24],
who followed [15] by using 	1 and 	2 to denote the values that are equal, in the
notation of the present paper, to 	2 and 	1−	2, respectively. The further generalization
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to k1 = 2k2, without the restriction k2 = 2, gives schedules for competitions where
the team size may be greater than 2. These schedules may be used as calibration
designs where objects are to be weighed or measured in some other way [15,16].
Taking k1 = 2k2 = 8, r = v − 1, v ≡ 0 or 1 modulo 8, we have ‘pitch tournament’
designs [1,22]. In general with k1 = 2k2, we have ‘team tournaments’ in the sense of
[13].
In 1950, independently of the literature of tournaments, Kleczkowski [32,

Table 2] reported using an experimental design based on a resolved NBIBD for a
biological experiment on the e>ect of inoculating plants with virus. Further use of
this design was reported in 1965 by Kassanis and Kleczkowski [31, p. 211]. This
experimental background led to Preece’s 1967 statistical paper [42] where
NBIBDs were de4ned for the 4rst time and an incomplete table of them was given,
r615.
The subsequent literature of NBIBDs has been small, and mostly statistical or re-

lating to whist tournaments. Apart from the literature of tournaments, relevant papers,
with years of publication, are as follows, but not all of them speci4cally mention
NBIBDs:

1975: Homel and Robinson [26]; Preece and Cameron [44];
1981: Street [58];
1982: Agrawal and Prasad [3];
1983: Agrawal and Prasad [4]; Jimbo and Kuriki [29];
1984: Bailey et al. [12];
1986: Cheng [17]; Dey et al. [19];
1989: Sreenath [56];
1990: Uddin and Morgan [60];
1991: Iqbal [27]; Uddin and Morgan [61];
1992: Uddin [59];
1993: Jimbo [28]; Yin and Miao [64];
1994: Gupta and Kageyama [23];
1996:Morgan [40]; Sinha et al. [54]; Srivastav and Morgan [57];
1998: Das et al. [18]; Kageyama and Miao [30]; Saha et al. [50];
1999: Bailey [11]; Sinha and Mitra [53].

In particular, Morgan [40] gave a table listing references for NBIBDs for almost
all possible sets of parameters with v614 and r630. Readers should however take
particular care to note that Morgan [40], unlike Preece [42] and the present pa-
per, used b2 to denote k1=k2, not b1k1=k2. We now prefer the parameters of D1 and
D2 to be, respectively, (v; b1; r; k1) and (v; b2; r; k2), thereby facilitating reference to
the important table of BIBDs in [37], where the parameters are taken in the order
(v; b; r; k).
Gupta and Kageyama [23], followed by Das et al. [18], proposed the use of

NBIBDs with k2 = 2 for diallel-cross experiments in plant-breeding investigations of v
cultivars.
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As Preece [42, p. 481] pointed out in 1967, and Morgan [40, pp. 945–946] in
1996, the concept of an NBIBD can be extended to that of a ‘doubly nested BIBD’
(DNBIBD) [45] with blocks and sub-blocks as before, but also with sub-sub-blocks
nested within sub-blocks, where the sub-sub-blocks too constitute a BIBD. Obvious
further extensions can be made to ‘triply nested BIBDs’ and, in general, ‘multiply
nested BIBDs’ (MNBIBDs) with multiple nesting of blocks of smaller sizes within
blocks of larger sizes. Our main emphasis in this paper is on NBIBDs (singly nested),
but we give a general powerful result that enables us to construct not only NBIBDs
but also multiply nested BIBDs.
Another extension of the concept of an NBIBD can be visualised by supposing

that the k1 elements in each block of an NBIBD are arranged in a rectangular ar-
ray with one row per sub-block. Writing k3 = k1=k2, the array will then have k3
rows (each containing k2 treatments) and k2 columns (each containing k3 treatments).
The de4nition of an NBIBD requires the full set of b2 = b1k3 rows to constitute a
BIBD. If we additionally require the full set of b3 = b1k2 columns to constitute a
BIBD, the overall arrangement can [42, p. 481] be called a ‘criss-cross nested BIBD’
(CCNBIBD). Some CCNBIBDs can readily be obtained from NBIBDs given in the
present paper, but we do not discuss them further. Generalizing the CCNBIBDs, Singh
and Dey [52] introduced a class of designs that they referred to as ‘balanced in-
complete block designs with nested rows and columns’ (BIBRCs). In the terminol-
ogy of Morgan [40, p. 960], ‘completely balanced BIBRCs’ are identical to CCN-
BIBDs.
A t-design (see, e.g., [35]) with parameters (v; b; r; k) has v treatments disposed in

b blocks, each of size k, where k ¡v, with

(i) each treatment appearing exactly r = bk=v times overall,
(ii) each treatment occurring no more than once per block, and
(iii) each t-subset of (distinct) treatments occurring in exactly

r

(
k − 1

t − 1

)/(
v− 1

t − 1

)

blocks.

If the blocks of a t-design T1 with parameters (v; b1; r; k1) are each partitioned into
sub-blocks whose size k2 (¿ 1) is a submultiple of k1, and the b2 =b1k1=k2 sub-blocks
themselves constitute a t-design T2 with parameters (v; b2; r; k2), then the system of
blocks, sub-blocks and treatments can be de4ned as a ‘nested t-design’. A nested
t-design must have k1¿2t. A t-design with t = 2 is a BIBD, and a nested t-design
with t=2 is an NBIBD. Clearly, concepts of resolvability can be de4ned for t-designs
and nested t-designs as for BIBDs and NBIBDs. Clearly, too, de4nitions given above
can be adapted to give us the concepts of a ‘doubly nested t-design’, etc., and of a
‘criss-cross nested t-design’.



356 J.P. Morgan et al. / Discrete Mathematics 231 (2001) 351–389

As an example of a nested 3-design, we o>er the following specimen due to D. H.
Rees; it is an NBIBD with parameters (12; 165; 330; 110; 8; 4) :

( 2 3 6 8 | 9 7 5 4 ) ( 8 1 2 10 | 3 6 9 5 )
( 10 4 8 7 | 1 2 3 9 ) ( 7 5 10 6 | 4 8 1 3 )
( 6 9 7 2 | 5 10 4 1 ) ( 5 8 2 ∞ | 10 3 9 7 )
( 9 10 8 ∞ | 7 1 3 6 ) ( 3 7 10 ∞ | 6 4 1 2 )
( 1 6 7 ∞ | 2 5 4 8 ) ( 4 2 6 ∞ | 8 9 5 10 )
( ∞ 6 5 0 | 8 2 10 9 ) ( ∞ 2 9 0 | 10 8 7 3 )
( ∞ 8 3 0 | 7 10 6 1 ) ( ∞ 10 1 0 | 6 7 2 4 )
( ∞ 7 4 0 | 2 6 8 5 ) mod 11:

NBIBDs are component designs of ‘nested pergolas’ [48].

2. Isomorphism of NBIBDs; automorphism groups

If two BIBDS D and D∗ have the same parameters (v; b; r; k), then D∗ is de4ned
to be isomorphic to D if D can be obtained from D∗ by a combination of

(i) a permutation of the blocks of D∗, and
(ii) a relabelling of the treatments of D∗.

The permutation in (i) may be the identity permutation, and the relabelling in (ii)
may be the identity relabelling. Likewise, if two NBIBDs N and N∗ have the same
parameters (v; b1; b2; r; k1; k2), we de4ne N∗ to be isomorphic to N if N can be
obtained from N∗ by a combination of

(i) a permutation of the blocks of N∗,
(ii) a permutation of sub-blocks within blocks of N∗, and
(iii) a relabelling of the treatments of N∗.

Either or both of the permutations may be an identity permutation, and the relabelling
may be the identity relabelling.
For two NBIBDs to be isomorphic to one another, it is necessary but not suOcient

for both of the following conditions to hold:

(a) their component BIBDs with block size k1 must be isomorphic to one another;
(b) their component BIBDs with block size k2 must be isomorphic to one another.

With the above de4nitions of isomorphism in place, the concepts of automorphism
of a BIBD or NBIBD, and of the automorphism group of a BIBD or NBIBD, follow
so naturally that we omit the formal de4nitions.
Let A denote the automorphism group of an NBIBD N, and let A1 and A2

denote, respectively, the automorphism groups of the component BIBDs D1 (with
b1 blocks) and D2 (with b2 blocks) of N. An automorphism of N is an auto-
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morphism of D1 and also of D2. However, the converses are not necessarily true.
In a sense that we illustrate in the next two paragraphs, an automorphism of D1

need not respect the sub-blocks of D2, or the nesting of sub-blocks within blocks,
so we must have |A| equal to, or a factor of, |A1|. Likewise an automorphism
of D2 need not respect the blocks of D1, so we must have |A| equal to, or a
factor of, |A2|.
For illustration, consider the following NBIBD with treatments 0; 1; 2; : : : ; 6 and pa-

rameters (7; 7; 14; 6; 6; 3):

Block Sub-blocks

A a | b (1 2 4 | 6 5 3)
B c | d (2 3 5 | 0 6 4)
C e | f (3 4 6 | 1 0 5)
D g | h (4 5 0 | 2 1 6)
E i | j (5 6 1 | 3 2 0)
F k | l (6 0 2 | 4 3 1)
G m | n (0 1 3 | 5 4 2)

For this NBIBD, |A|= |A2|=42 but |A1|=5040=120|A|. Clearly automorphisms of
D1 include (A B)(0 1), but this converts sub-block a to 0 2 4 , which does not appear
in the NBIBD; thus the automorphism (A B)(0 1) does not respect the sub-blocks of
the NBIBD.
Now, consider again the following NBIBD with parameters (5; 5; 10; 4; 4; 2):

Block Sub-blocks

A a | b (1 4 | 2 3)
B c | d (2 0 | 3 4)
C e | f (3 1 | 4 0)
D g | h (4 2 | 0 1)
E i | j (0 3 | 1 2)

For this NBIBD, |A|= 20 and |A1|= |A2|= 120. The automorphisms of D1 include
(3 4)(D E), which converts block A to (1 3 | 2 4), whose sub-blocks appear in the
NBIBD but not within the same block; thus the automorphism (3 4)(D E) does not
respect the nesting of sub-blocks within blocks. The automorphisms of D2 include
(3 4)(a e)(b g)(f i), which does not respect blocks.
This last NBIBD must have |A1| = |A2|, as each of D1 and D2 is an unreduced

BIBD, and the automorphism group of an unreduced BIBD has order v!.
If we have two non-isomorphic NBIBDs with the same parameters (v; b1; b2; r; k1; k2),

then any one of the following properties may hold:

(1) Their component BIBDs with block size k1 are not isomorphic to one another,
nor are their component BIBDs with block size k2.
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(2) Their component BIBDs with block size k1 are isomorphic to one another, but
their component BIBDs with block size k2 are not.

(3) Their component BIBDs with block size k2 are isomorphic to one another, but
their component BIBDs with block size k1 are not.

(4) Their component BIBDs with block size k1 are isomorphic to one another, as are
their component BIBDs with block size k2.

Consider, for example, the following three NBIBDs with parameters (13; 26; 52; 12; 6; 3);
each of these has two initial blocks that are to be developed modulo 13:

(A) (1 3 9 | 4 12 10) (2 6 5 | 7 8 11)mod 13;
(B) (3 4 10 | 1 9 12) (5 6 8 | 2 7 11)mod 13;
(C) (0 6 7 | 3 11 1) (0 1 3 | 11 2 7)mod 13:

Property (1) holds for pair (A) and (C); property (2) holds for (A) and (B); and
property (3) holds for (B) and (C).
By analogy with a situation encountered for perfect Graeco–Latin balanced in-

complete block designs (pergolas) [49], we de4ne an NBIBD as ‘synchronous’ if
|A|= |A1|= |A2|, these equations implying that the three groups are all isomorphic to
one another. Examples of synchronous NBIBDs include (A) and (C) from the previous
paragraph; (A) has |A|= |A1|= |A2|=156, whereas (C) has |A|= |A1|= |A2|=13.
If two resolved (or �-resolved) NBIBDs N and N∗ have the same parameters

(v; b1; b2; r; k1; k2), we can de4ne N∗ to be isomorphic to N if N can be obtained
from N∗ by a combination of

(i) a permutation of the resolution classes (or �-resolution classes) of N∗,
(ii) a permutation of blocks within resolution classes (or �-resolution classes) of N∗,
(iii) a permutation of sub-blocks within blocks of N∗, and
(iv) a relabelling of the treatments of N∗.

Under this de4nition, the automorphism group of a resolved (or �-resolved) NBIBD
might well be smaller than the automorphism group of the same design with its resolv-
ability (or �-resolvability) ignored. Such a situation would not, however, be important
for the present paper, and we restrict ourselves to automorphisms ignoring resolvability
(or �-resolvability, or indeed the near-resolvability of almost resolved NBIBDs).

3. Two special classes of NBIBDs

3.1. NBIBDs with k1 + k2 = v

A very few NBIBDs with parameters (v; b1; b2; r; k1; k2) have k1 + k2 = v; we de4ne
such NBIBDs to be ‘conformal’. If the component BIBDs of a conformal NBIBD are
D1 (with b1 blocks, as before) and D2 (with b2 = mb1; m¿ 1), then the complement
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of D1 is a BIBD with parameters

(v; b1; b1k2=v; k2) = (v; b2=m; b2k2=mv; k2):

We de4ne a conformal NBIBD to be ‘regular’ if it has D2 isomorphic to m identical
copies of the complement of D1, no relabelling of the treatments being permitted
when the copies are made. The following example of a regular conformal NBIBD has
parameters (6; 15; 30; 10; 4; 2) and m= 2:

(1 2 | 3 4) (1 3 | 2 5) (1 5 | 2 4)mod 6; last block PC(3);

where the notation PC(3) relating to the third initial block indicates that only a Partial
Cycle, of length 3, is to be used in developing this particular block cyclically modulo
6. In this NBIBD, D1 is an unreduced BIBD, so |A1|=v!=720, whereas D2 is m (=2)
copies of an unreduced BIBD with b1 blocks, so

|A2|= v!(m!)b1 = 720 · 215 = 23; 592; 960:

Alternatively, the example just given of a regular conformal NBIBD may be pre-
sented in 2-resolved form as follows, where the blocks within each set of double square
brackets constitute a 2-resolution class:

[[(1 3 | 2 5) (4 0 | 5 2) (3 1 | 4 0)]] PC(3);

[[(1 2 | 3 4) (3 4 | 5 0) (5 0 | 1 2)]] PC(2) mod 6:

This and other regular and non-regular conformal NBIBDs are included in the table
of NBIBDs that is given later in this paper. A non-regular example is the following,
which has parameters (12, 33, 66, 22, 8, 4) and treatments 0; 1; 2; : : : ; 10;∞:

(0 1 2 3 | 4 7 8 10) (0 1 4 7 | 2 3 9 ∞)

(0 2 6 8 | 3 7 9 ∞) mod 11:

A possibility for a non-regular conformal NBIBD is for D2 to be partitionable into
m BIBDs which are each isomorphic to the complement of D1, and so are isomorphic
to one another, but are not all identical copies (without treatment relabelling) of D1.
We de4ne a non-regular conformal NBIBD with this weaker property than regularity to
be ‘semi-regular’. An example of a semi-regular conformal NBIBD for the parameters
(9; 12; 24; 8; 6; 3) is

[[(1 3 4 | 2 6 ∞) (5 7 0 | 6 2 ∞) (0 1 3 | 4 5 7)]]

PC(4); mod 8:

The semi-regularity is seen by noting that the complement of the component D1 in
this NBIBD is

[(5 7 0) (1 3 4) (2 6 ∞)] PC(4); mod 8;

which is isomorphic to

[(3 1 0) (7 5 4) (6 2 ∞)] PC(4); mod 8:

We have attempted no systematic study of regular or non-regular conformal NBIBDs.
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The de4nition of a conformal NBIBD can be extended in an obvious way to that of
a conformal nested t-design, t¿2. The nested 3-design given at the end of Section 1
above is a conformal nested t-design.

3.2. NBIBDs with k1 = v=2

As pointed out by Preece [43] and others, a BIBD whose parameters (v; b; r; k) satisfy
v= 2k may or may not be self-complementary in the sense of being isomorphic to its
complement. Thus NBIBDs whose parameters (v; b1; b2; r; k1; k2) satisfy k1=v=2 include
some for which the component BIBD D1 (with block size k1) is self-complementary
and some for which it is not.
If, for a particular parameter set with k1 = v=2, N is an NBIBD whose component

BIBD D1 is not self-complementary, and N∗ is an NBIBD whose D1 is the comple-
ment of that in N, then N and N∗ may, nevertheless, have component BIBDs D2

(with block size k2) that are isomorphic to one another. Two such NBIBDs are

(0 1 | 3 7 | 8 10)(1 7 | 2 10 | 8 ∞) mod 11

and

(4 9 | 5 6 | 2 ∞) (0 3 | 4 6 | 5 9) mod 11

4. Existence and enumeration of NBIBDs

Necessary but not suOcient conditions for the existence of an NBIBD with param-
eters (v; b1; b2; r; k1; k2), where vr = b1k1 = b2k2 and k2¡k1, are

(a) the existence of a BIBD with parameters (v; b1; r; k1), and
(b) the existence of a BIBD with parameters (v; b2; r; k2).

That the conditions are not suOcient is illustrated by the fact that there are 3 non-isomorphic
BIBDs with parameters (10; 15; 9; 6) and 960 non-isomorphic BIBDs with parameters
(10; 30; 9; 3) but [25] there is no NBIBD with parameters (10; 15; 30;
9; 6; 3).

Necessary but not suOcient conditions for the existence of a resolvable NBIBD with
parameters (v; b1; b2; r; k1; k2), where vr = b1k1 = b2k2 and k2¡k1, are

(a) the existence of a resolvable BIBD with parameters (v; b1; r; k1), and
(b) the existence of a resolvable BIBD with parameters (v; b2; r; k2).

If, for a particular pair of values v; r, there exist BIBDs with parameters (v; b1; r; k1)
and (v; b2; r; k2), where k2¡k1, but there is no NBIBD with parameters (v; b1; b2; r; k1; k2),
there may nevertheless be an NBIBD with parameters (v; mb1; mb2; mr; k1; k2) for some
integers m greater than 1. (This situation is akin to that for BIBDs, where a ‘multiple’
design may exist even though a ‘basic’ design does not.) Thus, with m = 2 and 3,
NBIBDs with parameters (10; 30; 60; 18; 6; 3) and (10; 45; 90; 27; 6; 3) exist even though,
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as mentioned above, one with parameters (10; 15; 30; 9; 6; 3) does not [25]. We refer to
the NBIBDs with m= 2 and 3 as ‘double’ and ‘triple’ NBIBDs.
If, for a particular pair of values v; r, there exist n1 non-isomorphic BIBDs D1 with

parameters (v; b1; r; k1) and n2 non-isomorphic BIBDs D2 with parameters (v; b2; r; k2),
where k2 is a factor of k1, the enumeration of corresponding non-isomorphic NBIBDs
can be considered at two levels:

(a) For how many of the n1n2 pairs D1;D2 does an NBIBD exist?
(b) For any particular pair D1;D2, how many non-isomorphic NBIBDs exist?

The example earlier in this section, with 2880 pairs D1;D2 but no NBIBD, suggests
that, more generally, the number of pairs D1;D2 that are productive of NBIBDs is
likely to be small. This is hardly surprising, as the requirement that the blocks of D1

should partition to give the blocks of D2 is a strong one.
If k1 = v=2 and D is a possible non-self-complementary choice for D1, it is tempting

to conjecture that

(a) an NBIBD exists for as many pairs D1, D2 with D1 =D as with D1 =D∗, where
D∗ is the complement of D, and

(b) there are as many non-isomorphic NBIBDs with D1 =D as with D1 =D∗.

We can, however, see no way in which such conjectures could be proved in general.
Indeed, the second conjecture suggests a one–one correspondence between the NBIBDs
with D1 = D and those with D1 = D∗, but we can see no way in which any such
one–one correspondence could be set up.

5. NBIBDs with k1 = v− 1 , k2 = 2 and v = b1

If v is odd, a ‘starter’ [20,62,63] in an abelian group of order v is a partition of
the non-zero elements of the group into pairs xi; yi (i = 1; 2; : : : ; (v − 1)=2) such that
the v− 1 di>erences (xi − yi) and (yi − xi) are all di>erent. The v− 1 di>erences are
thus the v− 1 non-zero elements of the group. With only a slight notational change, a
starter can thus be used to produce the initial block in the representation of an NBIBD
with b1 = v, k1 = v− 1 and k2 = 2; the initial block contains the non-zero elements of
the group, and the pairs of elements in the sub-blocks are the pairs in the starter. For
example, the sole starter in Z5 is

1; 4 2; 3

which gives the initial block (1 4 | 2 3) of the NBIBD

(1 4 | 2 3)mod 5 (with|A|= 20)

discussed in Section 2 above.
The number of distinct starters in Zv has been enumerated [20, p. 469, Table 45:18]

for v=5; 7; : : : ; 27, which is helpful for the enumeration of the corresponding NBIBDs.



362 J.P. Morgan et al. / Discrete Mathematics 231 (2001) 351–389

However, for a 4xed v, distinct starters do not necessarily produce non-isomorphic
NBIBDs. For example, Z7 has three distinct starters:

1; 6 2; 5 3; 4;
1; 3 2; 6 4; 5;
1; 5 2; 3 4; 6;

but the third of these can be obtained by multiplying the elements of the second by 3
and reducing the products modulo 7. Thus the second and third starters are ‘equivalent’
[20, p. 469] in a sense that implies that the corresponding NBIBDs are isomorphic.
The 4rst starter is, however, not equivalent to either of the other two. So, for Z7, there
are just two ‘equivalence classes’ of starters; these can be shown to correspond to 2
non-isomorphic NBIBDs, namely

(1 6 | 2 5 | 3 4)mod 7 (with|A|= 42);
(1 3 | 2 6 | 4 5)mod 7 (with|A|= 168):

The group Z9 has nine distinct starters, falling into just three equivalence classes,
represented by the following three starters:

1; 8 2; 7 3; 6 4; 5;
1; 2 3; 6 4; 8 5; 7;
1; 6 2; 8 3; 4 5; 7:

These give the respective NBIBDs

(a) (1 8 | 2 7 | 3 6 | 4 5)mod 9 (with | A|= 54);
(b) (1 2 | 3 6 | 4 8 | 5 7)mod 9 (with | A|= 54);
(c) (1 6 | 2 8 | 3 4 | 5 7)mod 9 (with | A|= 9):

However, applying the permutation (2 5 8) throughout all blocks of (a), and then
doing some re-ordering of blocks and of sub-blocks within blocks, gives (b). So (a)
is isomorphic to (b), even though (a) and (b) come from di>erent equivalence classes
of starters. As (a) and (b) are not isomorphic to (c), the 4nal result for Z9 is that the
nine distinct starters give just two non-isomorphic NBIBDs.
The group Z11 has 25 distinct starters. These fall into 4ve equivalence classes con-

taining, respectively, 1; 2; 2; 10 and 10 starters. These 4ve equivalence classes yield 4ve
non-isomorphic NBIBDs, whose respective values of |A| are 110; 55; 55; 11 and 11.
Similarly Z13 has 133 distinct starters, falling into 14 equivalence classes. The num-

bers of distinct starters per equivalence class are 1 (for just one class), 4 (for each of
three classes), and 12 (for each of ten classes). The 14 equivalence classes yield 14
non-isomorphic NBIBDs, whose values of |A| are 156 (for the single class containing
just 1 starter), 39 (for each of the three classes each containing 4 distinct starters),
and 13 (for each of the ten classes each containing 12 distinct starters).
Thus, for v= 5, 11 and 13, but not for v= 7 and 9, the number of non-isomorphic

NBIBDs is the same as the number of equivalence classes, and all the NBIBDs have

|A|= v(v− 1)
size of equivalence class

:
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6. Our new table of NBIBDs

Table 1 lists over 200 NBIBDs. Subject to the restrictions v616 and r630, the ta-
ble covers all parameter sets for which at least one NBIBD might be expected to
exist, except that, if an NBIBD is known to exist for a particular parameter set,
then no multiple of that parameter set is included in the table. The table includes
only NBIBDs that can be generated easily or fairly easily from initial blocks. The
results of some exhaustive searches for selected NBIBDs, together with information
on some relationships to other designs, are reported on the third author’s website:
http://www.davidhywel.freeserve.co.uk .
For parameter sets nos. 29 and 30 in Table 1, the component design D1 would have

parameters (v; b; r; k) = (15; 21; 14; 10) and so would be the complement of a BIBD
with parameters (15; 21; 7; 5); but no such BIBD exists. Thus, there is no NBIBD
for either of the parameter sets nos. 29 and 30, but the table gives NBIBDs for the
corresponding double parameter sets, namely nos. 60 and 61. As pointed out earlier
in the paper, no NBIBD exists for parameter set no. 11, namely (v; b1; b2; r; k1; k2) =
(10; 15; 30; 9; 6; 3), but the table gives NBIBDs for the double and triple parameter
sets, namely nos. 47 and 58. No NBIBD has been found for parameter set no. 39,
but the table gives an NBIBD for the corresponding double parameter set, namely no.
68.
For the most part, we have made no attempt to provide a complete list of NBIBDs for

an individual parameter set. We have, however, provided a wide selection of NBIBDs,
to illustrate the wide diversity of types that exist. Thus, for example, a parameter set
in the table may have NBIBDs with several di>erent values of |A|, or it may have
some NBIBDs that are generated modulo v and others that are generated modulo v−1.
Where Table 1 gives more than one NBIBD for a particular parameter set, k �= v=2,

each NBIBD has a composite label, e.g. Cd2, which includes a capital letter followed by
a lower-case letter. Throughout the parameter set, two NBIBDs have the same capital
letter if and only if their component designs D1 are isomorphic to one another, and have
the same lower-case letter if and only if their component designs D2 are isomorphic to
one another. If two NBIBDs have isomorphic D1 designs and isomorphic D2 designs,
they are distinguished by the integer following the lower-case letter. The same scheme
of labelling is used for a parameter set with k = v=2, save that a re4nement is used if
D1 is not self-complementary; this happens for parameter set nos. 17 and 36, where
the label SC refers to the complement of the non-self-complementary BIBD whose label
is C.

7. Some methods of construction for NBIBDs

Several general methods for constructing NBIBDs are given here. Each is formulated
as an MNBIBD construction, from which NBIBDs in Table 1 can be found as special
cases. The 4rst is a recursive technique.
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Table 1
Nested balanced incomplete designsa, v616; r630
aA letter w, p or c in the 4rst column signi4es a parameter set for, respectively, a whist tournament, a pitch tournament design, or a conformal NBIBD. Round
brackets are used for blocks of size k1. In resolved designs, square brackets [ ] are used for resolution classes. In 2-resolved designs, bracketting [[ ]] is used for
2-resolution classes. And so on. In almost resolved designs, angled brackets 〈 〉 are used for the incomplete resolution classes that contain each of v − 1 treatments
exactly once. The letter u in either of the last 2 columns indicates that the component BIBD is unreduced, whereas 2u and 3u denote, respectively, 2 and 3 copies
of the unreduced design. If a design is known to exist for a particular set of parameters, no multiple of that parameter set is included in the table.
∗ Denotes D1 is a 3-design.

v b1 b2 r k1 k2 Blocks |A| |A1| |A2|

2. 7 7 21 6 6 2 Aa1 (1 6 | 2 5 | 4 3)mod 7 42 u u
Aa2 (1 3 | 2 6 | 4 5)mod 7 168 u u

3. 7 7 14 6 6 3 (1 2 4 | 6 5 3)mod 7 42 u 42

4:w 8 14 28 7 4 2 Aa [(0 1 | 4 2) (3 6 | 5 ∞)]mod 7 56 1344∗ u
Ba (0 1 | 2 4) (1 4 | 2 ∞)mod 7 7 21 u

5:w 9 18 36 8 4 2 〈(01 02 | 10 20) (11 22 | 12 21)〉mod (3; 3) 144 144 u

6. 9 12 36 8 6 2 Aa1 [[(1 2 | 3 6 | 4 ∞) (5 6 | 7 2 | 0 ∞) (0 4 | 1 7 | 3 5)]] PC(4); mod 8 144 432 u
Aa2 [[(0 7 | 2 6 | 3 4) (4 1 | 7 5 | 6 ∞) (0 5 | 3 1 | 2 ∞)]] PC(4); mod 8 72 432 u
Aa3 [[(2 3 | 1 4 | 6 ∞) (6 7 | 5 0 | 2 ∞) (0 4 | 1 7 | 3 5)]] PC(4); mod 8 8 432 u

7:c 9 12 24 8 6 3 Aa [[(1 3 4 | 2 6 ∞) (5 7 0 | 2 6 ∞) (1 3 4 | 5 7 0)]] PC(4); mod 8 432 432 ¿ 106

Ab [[(1 3 4 | 2 6 ∞) (5 7 0 | 6 2 ∞) (0 1 3 | 4 5 7)]] PC(4); mod 8 16 432 512

8. 9 9 36 8 8 2 Aa1 (1 8 | 2 7 | 3 6 | 4 5)mod 9 54 u u
Aa2 (1 6 | 2 8 | 3 4 | 5 7)mod 9 9 u u
Aa3 (01 02 | 10 20 | 11 22 | 12 21)mod (3; 3) 432 u u

9:p 9 9 18 8 8 4 (01 02 10 20 | 11 22 12 21)mod (3; 3) 144 u 144

10. 10 15 45 9 6 2 (00 20|30 21|31 41) (20 30|00 31|40 01) (00 01|10 31|21 41) 5 720 u
mod 5, suOxes 4xed
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11. 10 15 30 9 6 3 No NBIBD exists, but doubles (No 47) and triples (No 58) exist.

12. 10 10 30 9 9 3 (10 20 41 | 30 40 31 | 01 11 21) (20 31 00 | 10 21 30 | 11 40 41) 10 u 60
mod 5, suOxes 4xed

13:c 6 15 30 10 4 2 Aa1 [[(1 3 | 2 5) (4 0 | 5 2) (3 1 | 4 0)]] PC (3) 120 u 2u
[[(1 2 | 3 4)(3 4 | 5 0) (5 0 | 1 2)]] PC (2)
both mod 6

Aa2 [[(0 1 | 2 4) (3 4 | 5 1)(2 0 | 3 5)]] PC (3) 6 u 2u
[[(0 3 | 1 2) (2 5 | 3 4) (4 1 | 5 0)]] PC (2)
both mod 6

Aa3 [[(0 2 | 1 3) (∞ 0 | 3 4) (∞ 4 | 1 2)]]mod 5 5 u 2u
Aa4 [[(∞ 2 | 1 4) (∞ 0 | 3 4) (0 3 | 1 2)]]mod 5 5 u 2u

14. 11 11 55 10 10 2 Aa1 (1 10 | 2 9 | 3 8 | 4 7 | 5 6)mod 11 110 u u
Aa2 (1 2 | 3 6 | 4 8 | 5 10 | 9 7)mod 11 55 u u
Aa3 (1 7 | 2 5 | 3 10 | 4 6 | 8 9)mod 11 55 u u
Aa4 (1 2 | 3 8 | 4 6 | 5 9 | 7 10)mod 11 11 u u
Aa5 (1 3 | 2 5 | 4 9 | 6 10 | 7 8)mod 11 11 u u

15. 11 11 22 10 10 5 (1 3 4 5 9 | 2 6 8 10 7)mod 11 110 u 110

16:w 12 33 66 11 4 2 Aa1 [(0 1 | 3 7)(10 2 | 9 4) (8 6 | 5 ∞)]mod 11 11 11 u
Aa2 [(0 7 | 1 3) (10 2 | 9 4) (5 6 | 8 ∞)]mod 11 11 11 u
Ba1 (0 1 | 3 7) (10 2 | 9 4) (2 4 | 5 ∞)mod 11 11 11 u
Ba2 (0 7 | 1 3) (10 2 | 9 4) (5 4 | 2 ∞)mod 11 11 11 u

17. 12 22 66 11 6 2 Aa [(0 3 | 1 5 | 4 9) (8 10 | 7 6 | 2 ∞)]mod 11 11 7920∗ u
Ba (0 3 | 1 5 | 4 9) (1 3 | 4 5 | 9 ∞)mod 11 11 55 u
Ca1 (0 1 | 3 7 | 8 10) (1 7 | 2 10 | 8 ∞)mod 11 11 11 u
Ca2 (1 5 | 7 9 | 2 ∞) (1 7 | 2 10 | 8 9)mod 11 11 11 u
SCa1 (4 9 | 5 6 | 2 ∞) (0 3 | 4 6 | 5 9)mod 11 11 11 u
SCa2 (0 3 | 4 10 | 6 8) (0 4 | 5 6 | 3 ∞)mod 11 11 11 u



366
J.P

.
M
organ

et
al./D

iscrete
M
athem

atics
231

(2001)
351–389

Table 1. (continued)

v b1 b2 r k1 k2 Blocks |A| |A1| |A2|
18. 12 22 44 11 6 3 Aa [(0 1 3 | 4 5 9) (10 7 ∞| 6 8 2)]mod 11 11 7920∗ 11

Bb (0 1 3 | 4 5 9) (1 4 ∞| 5 3 9)mod 11 11 55 11

19. 7 21 42 12 4 2 Aa (0 1 | 4 2)(0 2 | 1 4)(0 4 | 2 1)mod 7 168 ¿ 106 2u

Ba (0 1 | 4 2)(0 2 | 1 4)(0 3 | 5 6)mod 7 7 2688 2u

Ca1 (0 3 | 1 2)(0 6 | 2 4)(0 2 | 3 6)mod 7 42 42 2u

Ca2 (0 1 | 3 ∞)(0 2 | 1 ∞)(0 2 | 1 4) 6 42 2u
(0 1 | 3 4)mod 6; last block PC(3)

20.w 13 39 78 12 4 2 Aa 〈(1 12 | 5 8)(2 11 | 3 10)(4 9 | 6 7)〉mod 13 156 156 u

Ba 〈(1 4 | 2 7)(3 12 | 6 8)(9 10 | 5 11)〉mod 13 39 39 u

Ca (0 1 | 3 9)(0 3 | 1 9)(0 9 | 1 3)mod 13 5616 ¿ 106 u

Da (1 4 | 2 7)(3 12 | 6 8)(3 2 | 7 1) mod 13 13 13 u

Ea 〈(∞ 11 | 4 7)(2 10 | 9 8)(6 1 | 5 3)〉mod 12 12 12 u
〈(0 6 | 3 9)(1 7 | 4 10)(2 8 | 5 11)〉

21. 13 26 78 12 6 2 Aa1 〈(3 10 | 4 9 | 1 12)(5 8 | 11 2 | 6 7)〉mod 13 156 156 u

Aa2 〈(1 4 | 3 12 | 9 10)(2 7 | 6 8 | 5 11)〉mod 13 39 156 u

Aa3 〈(∞ 3 | 2 5 | 11 10)(6 1 | 7 9 | 8 4)〉mod 12 12 156 u
〈(0 6 | 2 8 | 4 10)(1 7 | 3 9 | 5 11)〉

Aa4 〈(∞ 3 | 2 11 | 5 10)(4 6 | 9 1 | 7 8)〉mod 12 12 156 u
〈(0 6 | 2 8 | 4 10)(1 7 | 3 9 | 5 11)〉

Ba (2 9 | 4 12 | 8 10)(2 11 | 5 8 | 6 7)mod 13 39 39 u
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Ca (2 4 | 8 12 | 9 10)(4 9 | 5 8 | 6 12)mod 13 13 39 u

Da (0 3 | 6 11 | 7 1)(0 11 | 1 2 | 3 7)mod 13 13 13 u

Ea (∞ 11 | 3 2 | 5 10)(5 8 | 4 6 | 3 11) 12 12 u
(0 6 | 2 8 | 4 10)mod 12; last block PC(2)

22. 13 26 52 12 6 3 Aa 〈(1 3 9 | 4 12 10)(2 6 5 | 7 8 11)〉mod 13 156 156 156

Ab 〈(3 4 10 | 1 9 12)(5 6 8 | 2 7 11)〉mod 13 13 156 13

Bb (0 6 7 | 3 11 1)(0 1 3 | 11 2 7)mod 13 13 13 13

Cc (∞ 3 5 | 11 2 10)(8 6 3 | 5 4 11) 12 12 12
(0 4 8 | 2 6 10)mod 12; last block PC(2)

23. 13 13 78 12 12 2 Aa1 (1 12 | 2 11 | 3 10 | 4 9 | 5 8 | 6 7)mod 13 156 u u

Aa2 (1 4 | 2 7 | 3 12 | 5 11 | 6 8 | 9 10)mod 13 39 u u

Aa3 (1 2 | 3 6 | 4 11 | 5 9 | 7 12 |8 10)mod 13 39 u u

Aa4 (1 5 | 2 3 | 4 11 | 6 9 | 7 12 | 8 10)mod 13 39 u u

Aa5 (1 2 | 3 7 | 4 11 | 5 10 | 6 8 | 9 12)mod 13 13 u u

Aa6 (1 2 | 3 6 | 4 9 | 5 12 | 7 11 | 8 10)mod 13 13 u u

Aa7 (1 2 | 3 6 | 4 11 | 5 10 | 7 9 | 8 12)mod 13 13 u u

Aa8 (1 2 | 3 11 | 4 10 | 5 7 | 6 9 | 8 12)mod 13 13 u u

Aa9 (1 2 | 3 9 | 4 12 | 5 7 | 6 10 | 8 11)mod 13 13 u u

Aa10 (1 2 | 3 7 | 4 12 | 5 11 | 6 9 | 8 10)mod 13 13 u u
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Table 1. (continued)

v b1 b2 r k1 k2 Blocks |A| |A1| |A2|
Aa11 (1 2 | 3 10 | 4 8 | 5 7 | 6 11 | 9 12)mod 13 13 u u

Aa12 (1 2 | 3 12 | 4 10 | 5 8 | 6 11 | 7 9)mod 13 13 u u

Aa13 (1 3 | 2 6 | 4 11 | 5 8 | 7 12 | 9 10)mod 13 13 u u

Aa14 (1 3 | 2 5 | 4 11 | 6 10 | 7 12 | 8 9)mod 13 13 u u

24. 13 13 52 12 12 3 Aa (1 3 9 | 4 12 10 | 2 6 5 | 7 8 11)mod 13 156 u 156

Ab (3 4 10 | 1 9 12 | 5 6 8 | 2 7 11)mod 13 13 u 13

25. 13 13 39 12 12 4 Aa (1 12 5 8 | 2 11 3 10 | 4 9 6 7)mod 13 156 u 156

Ab (1 4 2 7 | 3 12 6 8 | 9 10 5 11)mod 13 39 u 39

26. 13 13 26 12 12 6 (1 3 9 4 12 10 | 2 6 5 7 8 11)mod 13 156 u 156

27. 15 35 105 14 6 2 (11 00|21 01| 41 ∞)(00 30|01 50|∞ 60)(20 10|40 31|11 01) 7 21 u
(20 01|50 11|31 30)(40 11|50 00|01 31)
mod 7; suOxes 4xed

28. 15 35 70 14 6 3 (11 21 41|00 01 ∞)(00 01 ∞|30 50 60)(20 40 11|10 31 01) 21 21 2688
(20 50 31|01 11 30)(40 50 01|11 00 31)
mod 7; suOxes 4xed

29. 15 21 105 14 10 2 No D1 exists; so no NBIBD exists; but a double exists (No 60):

30.c 15 21 42 14 10 5 No D1 exists; so no NBIBD exists; but a double exists (No 61):
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31. 15 15 105 14 14 2 Aa1 (1 14 | 2 13 | 3 12 | 4 11 | 5 10 | 6 9 | 7 8)mod 15 120 u u

Aa2 (∞ 01|40 61|10 51|11 50|20 31|41 60|21 30) 21 u u
(00 ∞|20 60|40 50|51 41|10 30|61 21|31 11)
mod 7; suOxes 4xed;with
(01 00|11 10|21 20|31 30|41 40|51 50|61 60)

32. 15 15 30 14 14 7 (∞ 401011 20 41 21|01 61 51 50 3160 30) 21 u 21
(00 20 40 51 10 61 31|∞ 60 50 41 30 21 11)
mod 7, suOxes 4xed, with
(01 11 21 31 41 51 61|00 10 20 30 40 50 60)

33.w 16 60 120 15 4 2 Aa [(∞ 0 | 5 10) (1 2 | 4 8) (6 9 | 7 13) (11 3 | 12 14)] mod 15 5760 ¿ 106 u

Ba [(∞ 0 | 3 14) (1 4 | 9 7) (2 8 | 6 13) (5 10 | 11 12)] mod 15 240 480 u

Ca (∞ 0 | 5 10) (1 2 | 4 8) (6 9 | 7 13) (3 11 | 2 0) mod 15 30 ¿ 106 u

Da (∞ 0 | 3 14) (1 4 | 9 7) (2 8 | 6 13) (9 4 | 3 2) mod 15 15 15 u

34. 16 40 120 15 6 2 Aa1 (0 1 | 9 3 | 5 12) (0 3 | 1 12 | 6 2) (11 9 | 1 3 | 0 8) mod 16; last block PC(8) 16 16 u

Aa2 (0 9 | 5 3 | 12 1) (6 3 | 12 0 | 1 2) (1 11 | 8 0 | 9 3) mod 16; last block PC(8) 16 16 u

Ba1 (0 1 | 9 3 | 5 12) (0 13 | 15 4 | 10 14) (11 9 | 1 3 | 0 8) mod 16; last block PC(8) 16 16 u

Ba2 (0 9 | 5 3 | 12 1) (10 13 | 4 0 | 15 14) (1 11 | 8 0 | 9 3) mod 16; last block PC(8) 16 16 u

Cb [[[(0 5 | 1 4 | 7 13) (2 6 | 8 10 | 9 ∞) (5 10 | 6 9 | 12 3) (7 11 | 13 0 | 14 ∞) 15 60 u
(10 0 | 11 14 | 2 8) (12 1 | 3 5 | 4 ∞) (1 9 | 6 14 | 11 4) (8 7 | 13 12 | 3 2)]]] PC(5); mod 15

35. 16 40 80 15 6 3 (00 01 02|11 21 31) (10 30 02|12 01 21) 5 5 160
(10 30 01|00 32 41) (20 30 41|40 02 12)
(00 01 02|12 22 42) (∞ 30 40|00 31 42)
(∞ 21 42|00 31 12) (∞ 31 12|00 11 32) mod 5; suOxes 4xed
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Table 1. (continued)

v b1 b2 r k1 k2 Blocks |A| |A1| |A2|
36. 16 30 120 15 8 2 Aa [(∞ 0 | 3 14 | 1 4 | 9 7) (2 8 | 6 13 | 5 10 | 11 12)] mod 15 240 322560 u

Ba (∞ 0 | 11 14 | 1 12 | 8 6) (2 8 | 6 13 | 5 10 | 11 12) mod 15 15 60 u

Ca (∞ 7 | 2 4 | 9 14 | 10 13) (0 6 | 2 10 | 7 11 | 8 9) mod 15 15 15 u

SCa (∞ 14 | 1 4 | 3 12 | 5 13) (0 1 | 3 5 | 6 11 | 8 12) mod 15 15 15 u

37:p 16 30 60 15 8 4 Aa [(0 1 3 7 | 4 9 14 ∞) (2 10 11 13 | 5 6 8 12)] mod 15 5760 322560 ¿ 106

Ab1 [(1 4 7 9 | 0 3 14 ∞) (2 6 8 13 | 5 10 11 12)] mod 15 480 322560 480

Ab2 [(3 7 9 14 | 0 1 4 ∞) (2 5 8 10 | 6 11 12 13)] mod 15 240 322560 480

Ac [(0 3 4 14 | 1 7 9 ∞) (2 5 11 12 | 6 8 10 13)] mod 15 15 322560 15

Bd [(1 4 7 9 | 0 3 14 ∞) (12 8 6 1 | 9 4 3 2)] mod 15 30 60 30

38. 16 24 120 15 10 2 (∞1 01|∞2 02|12 13|22 24|23 14) 1 72 u
(∞2 03|∞3 02|11 24|21 23|13 14)
(∞1 03|∞3 01|11 22|21 14|12 24)
(∞2 24|∞3 23|∞4 02|01 22|11 12)
(∞1 02|∞3 24|∞4 03|21 13|12 23)
(∞1 24|∞2 11|∞4 01|21 03|22 13)
(∞4 04|11 21|12 22|13 23|14 24)
mod 3, suOxes 4xed, with
(∞1 ∞2|∞3 ∞4|21 24|22 14|23 04)
(∞1 ∞3|∞2 ∞4|01 04|02 24|03 14)
(∞1 ∞4|∞2 ∞3|11 14|12 04|13 24)

39. 16 24 48 15 10 5 No NBIBD has been found, but a double exists (No 68).
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40. 16 20 120 15 12 2 Aa1 [[[(1 2 | 4 8 | 6 13 | 7 9 | 0 5 | 10 ∞) (6 7 | 9 13 | 11 3 | 12 14 | 5 10 | 0 ∞) 960 5760 u

(11 12 | 14 3 | 1 8 | 2 4 | 10 0 | 5 ∞) (1 4 | 6 9 | 11 14 | 2 8 | 7 13 | 12 3)]]]
PC(5), mod 15

Aa2 [[[(0 5 | 1 4 | 7 13 | 2 6 | 8 10 | 9 ∞) (5 10 | 6 9 | 12 3 | 7 11 | 13 0 | 14 ∞) 15 5760 u
(10 0 | 11 14 | 2 8 | 12 1 | 3 5 | 4 ∞) (1 9 | 6 14 | 11 4 | 8 7 | 13 12 | 3 2)]]]
PC(5), mod 15

41. 16 20 80 15 12 3 [[[(0 1 5 | 2 8 10 | 6 7 9 | 13 4 ∞) (5 6 10 | 7 13 0 | 11 12 14 | 3 9 ∞) 15 5760 15
(10 11 0 | 12 3 5 | 1 2 4 | 8 14 ∞) (2 7 12 | 1 4 8 | 6 9 13 | 3 11 14)]]]
PC(5), mod 15

42:c 16 20 60 15 12 4 [[[(1 2 4 8 | 6 7 9 13 | 0 5 10 ∞) (6 7 9 13 | 11 12 14 3 | 5 10 0 ∞) 5760 5760 ¿ 106

(11 12 14 3 | 1 2 4 8 | 10 0 5 ∞) (1 2 4 8 | 6 7 9 13 | 11 12 14 3)]]]
PC(5), mod 15

43. 16 20 40 15 12 6 [[[(0 5 1 4 7 13 | 2 6 8 10 9 ∞) (5 10 6 9 12 3 | 7 11 13 0 14 ∞) 60 5760 60
(10 0 11 14 2 8 | 12 1 3 5 4 ∞) (1 9 6 14 11 4 | 8 7 13 12 3 2)]]]
PC(5),mod 15

44. 16 16 80 15 15 3 Aa (1 5 8 | 2 10 12 | 3 4 7 | 6 11 13 | 9 14 15) mod 16 16 u 16

Ab (0001 0110 0111 | 0010 1100 1110 | 5760 u 5760
0100 1011 1111 | 1000 0101 1101 | 0011 1010 1001)
mod (2,2,2,2)

45. 16 16 48 15 15 5 Aa (3 14 10 2 1 | 12 5 8 6 11 | 9 15 4 7 13) mod 16 16 u 16

Ab (10 13 3 4 8 | 9 7 1 2 5 | 6 12 11 14 15) mod 16 16 u 16

Ac (0001 1000 1100 1010 1111 | 960 u 960
0010 0011 1011 0111 1101 | 0100 0110 0101 1110 1001)
mod (2,2,2,2)
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Table 1. (continued)

v b1 b2 r k1 k2 Blocks |A| |A1| |A2|
46. 10 45 90 18 4 2 Aa (1 2 | 3 5) (1 4 | 3 7) (0 2 | 4 5) (0 3 | 1 6) 10 10 2u

(1 7 | 2 6) mod 10; last block PC(5)

Ba (1 3 | 2 5) (1 4 | 3 7) (0 8 | 3 4) (0 5 | 7 8) 10 10 2u
(1 7 | 2 6) mod 10; last block PC(5)

Ca1 (1 4 | 2 ∞) (5 8 | 1 ∞) (2 4 | 1 8) (1 6 | 2 3) (1 6 | 2 3) mod 9 4608 4608 2u

Ca2 (2 4 | 1 ∞) (5 8 | 1 ∞) (1 2 | 4 8) (1 2 | 3 6) (1 3 | 2 6) mod 9 9 4608 2u

Da1 (1 4 | 2 ∞) (5 8 | 1 ∞) (2 4 | 1 8) (1 6 | 2 3) (3 8 | 6 7) mod 9 9 9 2u

Da2 (2 4 | 1 ∞) (5 8 | 1 ∞) (1 2 | 4 8) (1 2 | 3 6) (3 7 | 6 8) mod 9 9 9 2u

47. 10 30 60 18 6 3 Aa (1 2 4 | 5 6 9)(1 2 7 | 3 5 8)(1 2 4 | 3 5 9)mod 10 10 10 10240

Ab (1 6 9 | 2 4 5)(1 5 8 | 2 3 7)(1 5 9 | 2 3 4)mod 10 10 10 10

Bb (1 6 9 | 2 4 5)(1 5 8 | 2 3 7)(1 5 7 | 2 3 4)mod 10 10 10 10

Bc (1 2 4 | 5 6 9)(1 2 7 | 3 5 8)(1 3 7 | 2 4 5)mod 10 10 10 10

Cd1 (1 3 5 | 2 6 ∞)(1 2 3 | 5 7 ∞)(1 2 5 | 3 4 7) 9 9 36864
(1 4 7 | 2 5 8)mod 9; last block PC(3)

Cd2 (1 2 6 | 3 5 ∞)(1 5 7 | 2 3 ∞)(1 5 7 | 2 3 4) 9 9 36864
(1 4 7 | 2 5 8)mod 9; last block PC(3)

Ce1 (1 2 6 | 3 5 ∞)(1 2 7 | 3 5 ∞)(1 5 7 | 2 3 4) 9 9 36864

Ce2 (1 5 6 | 2 3 ∞)(1 5 7 | 2 3 ∞) (1 2 4 | 3 5 7) 9 9 36864
(1 4 7 | 2 5 8)mod 9; last block PC(3)
(1 4 7 | 2 5 8)mod 9; last block PC(3)
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Cf (1 5 6 | 2 3 ∞)(1 2 7 | 3 5 ∞)(1 2 4 | 3 5 7) 9 9 72

(1 4 7 | 2 5 8)mod 9; last block PC(3)

48. 13 26 78 18 9 3 Aa (2 6 5 | 4 12 10 | 8 11 7)(2 4 8 | 6 12 11 | 5 10 7)mod 13 39 ¿ 106 39

Bb (2 6 5 | 4 12 10 | 8 11 7)(1 3 9 | 4 12 10 | 8 11 7)mod 13 39 39 ¿ 106

49. 11 55 110 20 4 2 Aa (10 9 | 1 2)(9 7 | 2 4)(7 3 | 4 8)(3 6 | 8 5)(6 1 | 5 10)mod 11 110 110 2u

Ba1 (8 7 | 10 6)(10 6 | 7 2)(7 2 | 6 8)(6 8 | 2 10)(2 10 | 8 7)mod 11 55 660 2u

Ba2 (8 7 | 10 6)(10 7 | 6 2)(6 7 | 2 8)(6 8 | 2 10)(2 7 | 8 10)mod 11 11 660 2u

Ca (∞ 1 | 0 3)(∞ 0 | 2 4)(0 1 | 3 4)(0 7 | 1 3)(0 6 | 1 5) 320 320 2u
(0 5 | 2 7)mod 10; last block PC(5)

Da (∞ 1 | 0 3)(∞ 0 | 2 6)(0 1 | 3 4)(0 2 | 1 5)(0 8 | 2 5) 10 10 2u
(0 5 | 1 6)mod 10; last block PC(5)

50:c 8 28 84 21 6 2 Aa1 (2 3 | 4 5 | 6 7) ( 1 3 | 4 6 | 5 7)(4 7 | 1 6 | 2 5) 32 u 3u
(1 5 | 2 6 | 3 7)mod 8; last block PC(4)

Aa2 (2 3 | 4 7 | 5 6)(1 3 | 4 6 | 5 7)(1 4 | 6 7 | 2 5) 16 u 3u
(1 5 | 2 6 | 3 7)mod 8; last block PC(4)

Aa3 [[[(1 3 | 2 6 | 4 5)(∞ 0 | 4 5 | 2 6)(4 5 | ∞ 0 | 1 3)(2 6 | 1 3 | ∞ 0)]]]mod 7 1344 u 3u

Aa4 [[[(1 6 | 2 5 | 4 3)(∞ 0 | 2 5 | 4 3)(∞ 0 | 4 3 | 1 6)(∞ 0 | 1 6 | 2 5)]]]mod 7 42 u 3u

Aa5 [[[(1 6 | 2 5 | 4 3)(∞ 2 | 0 5 | 4 3)(∞ 4 | 0 3 | 1 6)(∞ 1 | 0 6 | 2 5)]]]mod 7 21 u 3u

Aa6 [[[(1 6 | 2 5 | 4 3)(∞ 2 | 0 4 | 3 5)(∞ 4 | 0 1 | 6 3)(∞ 1 | 0 2 | 5 6)]]]mod 7 21 u 3u

51. 8 28 56 21 6 3 Aa (0 1 3 | 2 6 7)(0 5 7 | 2 4 6)(0 1 3 | 2 5 6) 16 u ¿ 106

(0 1 6 | 4 5 2)mod8; last block PC(4)

Ab1 [[[(1 2 4 | 3 6 5)(∞ 4 2 | 0 5 6)(4 ∞ 1 | 5 0 3)(2 1 ∞ | 6 3 0)]]]mod 7 168 u 40320

Ab2 [[[(1 2 4 | 6 5 3)(∞ 2 4 | 0 5 3)(∞ 4 1 | 0 3 6)(∞ 1 2 | 0 6 5)]]]mod 7 21 u 40320
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Table 1. (continued)

v b1 b2 r k1 k2 Blocks |A| |A1| |A2|
52. 15 35 105 21 9 3 (01 41 52|11 31 42|21 51 22)(01 11 31|02 12 32|22 42 52)(01 22 32|21 31 12|41 62 ∞) 7 21 7

(11 12 42|21 31 02|61 62 ∞)(01 21 12|11 32 52|51 42 ∞)mod 7; suOxes 4xed

53. 12 33 132 22 8 2 Aa1 [[(2 10 | 4 9 | 6 8 | 5 ∞)(0 1 | 3 7 | 6 8 | 5 ∞)(0 1 | 3 7 | 2 10 | 4 9)]]mod 11 11 11 2u

Aa2 [[(2 4 | 9 10 | 6 8 | 5 ∞)(0 1 | 3 7 | 5 8 | 6 ∞)(0 3 | 1 7 | 2 9 | 4 10)]]mod 11 11 11 2u

Aa3 [[(2 4 | 9 8 | 6 5 | 10 ∞)(0 3 | 1 5 | 6 8 | 7 ∞)(0 3 | 1 7 | 2 9 | 4 10)]]mod 11 11 11 2u

Ba (0 1 | 3 8 | 4 7 | 5 6)(0 2 | 3 6 | 5 9 | 4 ∞)(0 4 | 1 6 | 7 9 | 5 ∞)mod 11 11 11 2u

54:c 12 33 66 22 8 4 Aa [[(2 10 4 9 | 6 8 5 ∞)(0 1 3 7 | 6 8 5 ∞)(0 1 3 7 | 2 10 4 9)]]mod 11 11 11 ¿ 106

Bb (0 1 2 3 | 4 7 8 10)(0 1 4 7 | 2 3 9 ∞)(0 2 6 8 | 3 7 9 ∞)mod 11 11 11 11

55. 13 39 156 24 8 2 Aa (1 12 | 5 8 | 2 11 | 3 10)(4 9 | 6 7 | 1 12 | 5 8)(2 11 | 3 10 | 4 9 | 6 7)mod 13 156 156 2u

Ba (1 5 | 8 10 | 9 6 | 7 12)(3 2 | 11 4 | 1 5 | 8 10)(9 6 | 7 12 | 3 2 | 11 4)mod 13 39 39 2u

Ca (1 4 | 2 8 | 3 12 | 6 11)(9 10 | 5 7 | 1 4 | 2 8)(3 12 | 6 11 | 9 10 | 5 7)mod 13 39 39 2u

Da (0 6 | 4 7 | 8 12 | 10 11)(3 8 | 5 6 | 9 11 | 10 12)(0 10 | 2 8 | 4 12 | 5 9)mod 13 13 13 2u

Ea1 (0 6 | 4 8 | 7 10 | 11 ∞)(4 11 | 6 7 | 9 10 | 0 ∞)(0 5 | 3 6 | 8 10 | 7 11) 12 12 2u
(0 2 | 3 5 | 6 8 | 9 11)mod 12; last block PC(3)

Ea2 (0 11 | 4 8 | 7 10 | 6 ∞)(4 11 | 6 7 | 0 10 | 9 ∞)(0 6 | 5 10 |8 11 | 3 7) 12 12 2u
(0 2 | 3 5 | 6 8 | 9 11)mod 12; last block PC(3)

56. 13 39 78 24 8 4 Aa (1 12 5 8 | 2 11 3 10)(4 9 6 7 | 1 12 5 8)(2 11 3 10 | 4 9 6 7)mod 13 156 156 ¿ 106

Bb (1 5 8 10 | 9 6 7 12)(3 2 11 4 | 1 5 8 10)(9 6 7 12 | 3 2 11 4)mod 13 39 39 ¿ 106

Cb (1 4 2 8 | 3 12 6 11)(9 10 5 7 | 1 4 2 8)(3 12 6 11 | 9 10 5 7)mod 13 39 39 ¿ 106
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Ad (6 3 8 7 | ∞ 9 2 5)(10 ∞ 0 7 | 5 1 11 3)(9 1 10 2 | 7 6 0 5) 12 156 96

(1 7 10 4 | 2 8 5 11)mod 12; last block PC(3)

Ae (8 2 3 ∞ | 9 7 5 6)(11 10 1 ∞ | 0 5 3 7)(9 10 2 6 | 5 0 7 1) 12 156 96
(1 7 10 4 | 2 8 5 11)mod 12; last block PC(3)

57. 14 91 182 26 4 2 Aa (0 1 | 9 8)(0 2 | 5 3 ) ( 0 8 | 1 9)(0 3 | 2 5)(0 4 | 7 11)( ∞ 0 | 2 9)(∞ 0 | 3 9)mod 13 13 ¿ 106 2u

Ba (1 2 | 4 9)(2 4 | 8 5)(4 8 | 3 10)(8 3 | 6 7)(3 6 | 12 1)(∞ 0 | 1 5)(∞ 0 | 4 10)mod 13 13 13 2u

Ca1 (01 02|11 12)(01 22|21 02)(01 41|02 42)(21 31|02 12)(61 02|41 22) 14 42∗ 2u
(11 02|51 42)(41 02|51 12)(11 31|02 22)(61 02|21 42)
(02 12|61 32)(21 31|01 42)(02 32|22 42)(01 21|11 41)mod 7; suOxes 4xed

Ca2 (01 02|11 12)(01 21|02 22)(01 41|02 42)(21 31|02 12)(41 02|61 22) 7 42∗ 2u
(11 02|51 42)(51 02|41 12)(11 22|31 02)(21 02|61 42)
(12 32|61 02)(01 31|21 42)(22 32|02 42)(01 11|21 41)mod 7; suOxes 4xed

Ca3 (01 02|11 12)(01 21|02 22)(01 41|02 42)(21 02|31 12)(41 02|61 22) 7 42∗ 2u
(11 02|51 42)(41 51|02 12)(11 22|31 02)(61 02|21 42)
(02 12|61 32)(01 31|21 42)(02 32|22 42)(01 11|21 41)mod 7; suOxes 4xed

58. 10 45 90 27 6 3 Aa (2 3 4 | 1 6 ∞)(1 2 5 | 3 6 ∞)(1 3 5 | 2 8 ∞)(1 3 5 | 2 8 7)(1 2 7 | 3 4 6)mod 9 9 9 ¿ 106

Ab (1 3 ∞ | 6 4 2)(1 ∞ 3 |6 2 5)( 5 2 8 | 1 ∞ 3)(7 3 8 | 1 5 2)(4 3 2 | 6 7 1)mod 9 9 9 ¿ 106

Ac (6 4 3 | ∞ 2 1)(∞ 5 3 | 1 6 2)(5 8 ∞ | 3 2 1)(3 8 2 | 7 1 5)(6 1 3 | 4 2 7)mod 9 9 9 ¿ 106

59. 15 105 210 28 4 2 Aa1 (1 6 | 3 10)(1 13 | 2 8)(1 2 | 6 8)( 1 2 | 7 14)(1 4 | 2 8)(1 12 | 2 4)(1 5 | 2 7)mod 15 15 15 2u

Aa2 (1 3 | 6 10)(1 8 | 2 13)(1 6 | 2 8)(1 2 | 7 14)(1 4 | 2 8)(1 4 | 2 12)(1 2 | 5 7)mod 15 15 15 2u

Ba (1 3 | 6 10)( 1 8 |2 13)(1 11 | 3 9)(1 2 | 7 14)(1 4 | 2 8)(1 6 | 2 5)(1 2 | 5 7)mod 15 15 15 2u

Ca (0 1 | 2 6)(0 2 | 5 3)(0 3 | 7 14)(0 4 | 9 10)(0 5 | 12 7)(0 6 | 4 13)(0 7 | 1 4)mod 15 15 15 2u
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Table 1. (continued)

v b1 b2 r k1 k2 Blocks |A| |A1| |A2|
Da (0 1 | 2 10)(0 2 | 5 6)(0 3 | 7 1)(0 4 | 9 11)(0 5 | 12 2)(0 6 | 4 7)(0 7 | 1 12)mod 15 15 15 2u

Ea (0 1 | 6 10)(0 2 | 3 6)(0 3 | 14 1)(0 4 | 10 11)(0 5 | 7 2)(0 6 | 13 7)(0 7 | 4 12)mod 15 15 15 2u

Fa (0 2 | 6 10)(0 5 | 3 6)(0 7 | 14 1)(0 9 | 10 11)(0 12 | 7 2)(0 4 | 13 7)(0 1 | 4 12)mod 15 15 15 2u

Ga (1 2 | 6 10)(2 5 | 3 6)(3 7 | 14 1)(4 9 | 10 11)(5 12 | 7 2)(6 4 | 13 7)(7 1 | 4 12)mod 15 15 15 2u

Ha1 (0 3 | 1 ∞)(3 9 | 0 ∞)(0 3 | 1 7)(0 1 | 5 7)(0 4 | 3 8)(0 1 | 4 6)(0 4 | 1 6)(0 7 | 2 9) 14 229376 2u
mod 14; last block PC(7)

Ha2 (0 3 | 1 ∞)(0 9 | 3 ∞)(0 3 | 1 7)(0 7 | 1 5)(0 8 | 3 4)(0 4 | 1 6)(0 1 | 4 6)(0 2 | 7 9) 14 229376 2u
mod 14; last block PC(7)

Ia1 (0 3 | 1 ∞)(3 9 | 0 ∞)(0 3 | 1 7)(0 1 | 5 7)(0 4 | 3 8)(0 1 | 4 6)(0 10 | 13 8)(0 7 | 2 9) 14 14 2u
mod 14; last block PC(7)

Ia2 (0 3 | 1 ∞)(0 9 | 3 ∞)(0 3 | 1 7)(0 7 | 1 5)(0 8 | 3 4)(0 4 | 1 6)(0 13 | 10 8)(0 2 | 7 9) 14 14 2u
mod 14; last block PC(7)

Ja [[[[(12 02|62 52)(32 31|42 ∞)(01 51|21 41)(52 02|41 11)(61 22|12 01)(62 ∞|31 32) 7 7 2u
(11 ∞|61 42)(21 52|02 32)(62 51|22 01)(01 11|02 51)(21 ∞|42 61)(12 41|22 31)
(52 32|31 61)(12 41|42 51)(22 62|11 21)]]]]mod 7; suOxes 4xed

Ka [[[[(62 31|52 11)(42 61|02 01)(32 21|12 ∞)(32 41|02 21)(12 61|62 01)(22 51|52 ∞) 7 7 2u
(32 01|42 41)(22 11|02 51)(62 52|31 ∞)(22 02|01 41)(12 42|61 51)(11 31|21 ∞)
(32 22|51 21)(12 52|62 42)(31 41|11 61)]]]]mod 7; suOxes 4xed

La [[[[(41 ∞|62 52)(32 02|51 12)(42 21|01 61)(51 22|62 31)(11 01|32 ∞)(12 41|52 02) 7 7 2u
(22 11|32 31)(61 ∞|52 62)(21 42|01 02)(01 31|41 61)(42 22|11 02)(51 21|∞ 12)
(52 22|32 51)(42 31|41 61)(12 21|62 11)]]]]mod 7; suOxes 4xed

60. 15 42 210 28 10 2 (0 2|3 11|4 13|5 12| 6 9)(0 1|2 5|3 13|4 10| 9 ∞)(0 1|3 5|7 11|8 13|10 ∞)mod 14 14 14 2u
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61:c 15 42 84 28 10 5 Aa (0 7 8 9 11|2 3 4 5 10)(0 5 6 9 10|1 4 7 8 ∞)(0 2 5 7 11|4 8 10 12 ∞)mod 14 14 14 14

Bb (0 7 6 5 3|12 11 10 9 4)(0 5 6 9 10|1 4 7 8 ∞)(0 2 5 7 11|4 8 10 12 ∞)mod 14 14 14 14

62. 15 35 210 28 12 2 Aa1 [[[[(12 02|62 52|32 31|42 ∞|01 51|21 41)(52 02|41 11|61 22|12 01|62 ∞|31 32) 7 20160 2u
(11 ∞|61 42|21 52|02 32|62 51|22 01)(01 11|02 51|21 ∞|42 61|12 41|22 31)
(52 32|31 61|12 41|42 51|22 62|11 21)]]]]mod 7; suOxes 4xed

Aa2 [[[[(62 31|52 11|42 61|02 01|32 21|12 ∞)(32 41|02 21|12 61|62 01|22 51|52 ∞) 7 20160 2u
(32 01|42 41|22 11|02 51|62 52|31 ∞)(22 02|01 41|12 42|61 51|11 31|21 ∞)
(32 22|51 21|12 52|62 42|31 41|11 61)]]]]mod 7; suOxes 4xed

Ba [[[[(41 ∞|62 52|32 02|51 12|42 21|01 61)(51 22|62 31|11 01|32 ∞|12 41|52 02) 7 21 2u
(22 11|32 31|61 ∞|52 62|21 42|01 02)(01 31|41 61|42 22|11 02|51 21|∞ 12)
(52 22|32 51|42 31|41 61|12 21|62 11)]]]]mod 7; suOxes 4xed

63:c 15 35 140 28 12 3 Aa (0 3 14 | 7 8 11 | 9 10 13 | 4 6 12)(0 2 8 | 4 11 13 | 5 12 14 | 6 7 10) 15 20160 ¿ 106

(1 6 11 | 2 7 12 | 3 8 13 | 4 9 14)mod 15; last block PC(5)

Ab1 [[[[(01 02∞|32 52 62|41 31 12|21 51 42)(11 61 22|01 02 ∞|32 52 62|41 31 12) 168 20160 ¿ 106

(21 51 42|11 61 22|01 02 ∞|32 52 62)(41 31 12|21 51 42|11 61 22|01 02 ∞)
(32 52 62|41 31 12|21 51 42|11 61 22)]]]]mod 7; suOxes 4xed

Ab2 [[[[(01 02 ∞|32 52 62|21 61 12|11 31 42)(41 51 22|01 02 ∞|32 52 62|21 61 12) 168 20160 ¿ 106

(11 31 42|41 51 22|01 02 ∞|32 52 62)(21 61 12|11 31 42|41 51 22|01 02 ∞)
(32 52 62|21 61 12|11 31 42|41 51 22)]]]]mod 7; suOxes 4xed

Bc [[[[(01 02 ∞|32 52 62|41 51 12|21 61 42)(11 31 22|01 02 ∞|32 52 62|41 51 12) 21 21 ¿ 106

(21 61 42|11 31 22|01 02 ∞|32 52 62)(41 51 12|21 61 42|11 31 22|01 02 ∞)
(32 52 62|41 51 12|21 61 42|11 31 22)]]]]mod 7; suOxes 4xed

64. 15 35 105 28 12 4 Aa [[[[(12 02 62 52|32 31 42 ∞|01 51 21 41)(52 02 41 11|61 22 12 01|62 ∞ 31 32) 7 20160 7
(11 ∞ 61 42|21 52 02 32|62 51 22 01)(01 11 02 51|21 ∞ 42 61|12 41 22 31)
(52 32 31 61|12 41 42 51|22 62 11 21)]]]] mod 7, suOxes 4xed
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Table 1. (continued)

v b1 b2 r k1 k2 Blocks |A| |A1| |A2|
Ab [[[[(62 31 52 11|42 61 02 01|32 21 12 ∞)(32 41 02 21|12 61 62 01|22 51 52 ∞) 7 20160 7

(32 01 42 41|22 11 02 51|62 52 31 ∞)(22 02 01 41|12 42 61 51|11 31 21 ∞)
(32 22 51 21|12 52 62 42|31 41 11 61)]]]] mod 7, suOxes 4xed

Bc [[[[(41 ∞ 62 52|32 02 51 12|42 21 01 61)(51 22 62 31|11 01 32 ∞|12 41 52 02) 7 21 7
(22 11 32 31|61 ∞ 52 62|21 42 01 02)(01 31 41 61|42 22 11 02|51 21 ∞ 12)
(52 22 32 51|42 31 41 61|12 21 6211)]]]] mod 7, suOxes 4xed

65. 15 35 70 28 12 6 Aa [[[[(01 02 ∞ 21 51 42|32 52 62 41 31 12)(11 61 22 41 31 12|01 02 ∞ 32 52 62) 7 20160 168
(21 51 42 32 52 62|11 61 22 01 02 ∞)(41 31 12 01 02 ∞|21 51 42 11 61 22)
(32 52 62 11 61 22|41 31 12 21 51 42)]]]] mod 7, suOxes 4xed

Ab [[[[(01 02 ∞ 11 31 42|32 52 62 21 61 12)(41 51 22 21 61 12|01 02 ∞ 32 52 62) 7 20160 168
(11 31 42 32 52 62|41 51 22 01 02 ∞)(21 61 12 01 02 ∞|11 31 42 41 51 22)
(32 52 62 41 51 22|21 61 12 11 31 42)]]]] mod 7, suOxes 4xed

Bc [[[[(01 02 ∞ 21 61 42|32 52 62 41 51 12)(11 31 22 41 51 12|01 02 ∞ 32 52 62) 7 21 21
(21 61 42 32 52 62|11 31 22 01 02 ∞)(41 51 12 01 02 ∞|21 61 42 11 31 22)
(32 52 62 11 31 22|41 51 12 21 61 42)]]]] mod 7, suOxes 4xed

66. 11 55 165 30 6 2 Aa (0 2|8 7|10 6)(0 8|10 6|7 2)(0 10|7 2|6 8)(0 7|6 8|2 10)(0 6|2 10|8 7) mod 11 55 ¿ 106 3u

Ba (0 9|3 4|1 5)(0 8|10 6|7 2)(0 10|7 2|6 8)(0 7|6 8|2 10)(0 6|2 10|8 7) mod 11 11 ¿ 106 3u

Ca (0 9|3 4|1 5)(0 3|1 5|4 9)(0 10|7 2|6 8)(0 7|6 8|2 10)(0 6|2 10|8 7) mod 11 11 ¿ 106 3u

Da1 (4 5|8 9|6 ∞)(2 6|4 8|9 ∞)(2 8|4 5|9 ∞)(4 7|5 8|6 9)(1 9|3 5|6 8)(2 7|3 8|4 9) 10 10 3u
mod 10, last block PC(5)

Da2 (4 5|8 9|6 ∞)(2 6|4 8|9 ∞)(2 4|5 8|9 ∞)(4 8|5 6|7 9)(1 3|5 8|6 9)(2 7|3 8|4 9) 10 10 3u
mod 10, last block PC(5)

Da3 (4 5|6 8|9 ∞)(2 9|4 8|6 ∞)(2 8|4 5|9 ∞)(4 6|7 9|5 8)(1 5|3 6|8 9)(2 7|3 8|4 9) 10 10 3u
mod 10, last block PC(5)
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67. 11 55 110 30 6 3 Aa (0 2 8 | 7 10 6)(0 6 2 | 10 8 7)(0 7 6 | 8 2 10)(0 10 7 | 2 6 8)(0 8 10 | 6 7 2) mod 11 55 ¿ 106 110

Ba (10 4 6 | 1 7 5)(4 6 9 | 7 5 2)(6 9 8 | 5 2 3)(9 8 1 | 2 3 10)(8 1 7 | 3 10 4) mod 11 110 110 110

Cb (0 9 3 | 4 1 5)(0 6 2 | 10 8 7)(0 7 6 | 8 2 10)(0 10 7 | 2 6 8)(0 8 10 | 6 7 2) mod 11 11 ¿ 106 ¿ 106

Dc (0 9 3 | 4 1 5)(0 5 9 | 1 3 4)(0 7 6 | 8 2 10)(0 10 7 | 2 6 8)(0 8 10 | 6 7 2) mod 11 11 ¿ 106 ¿ 106

Ed (4 5 8 | 6 9 ∞)(2 8 9 | 4 6 ∞)(4 5 9 | 2 8 ∞)(4 7 9 | 5 6 8)(1 5 9 | 3 6 8)(2 3 4 | 7 8 9) 10 10 ¿ 106

mod 10, last block PC(5)

Ee (4 5 8 | 6 9 ∞)(2 8 9 | 4 6 ∞)(4 5 9 | 2 8 ∞)(4 6 9 | 5 7 8)(1 5 9 | 3 6 8)(2 3 4 | 7 8 9) 10 10 10240
mod 10, last block PC(5)

Ff (4 5 8 | 6 9 ∞)(8 2 1 | 6 4 ∞)(4 5 9 | 2 8 ∞)(4 6 9 | 5 7 8)(1 5 9 | 3 6 8)(2 3 4 | 7 8 9) 10 10 10
mod 10, last block PC(5)

68. 16 48 96 30 10 5 (1101 0011 0111 0010 1011 |0110 1110 0100 0101 1001) 960 960 ¿ 106

(0110 1110 0100 0101 1001 | 1111 1000 1010 0001 1100)
(1111 1000 1010 0001 1100 | 0011 0111 0010 1011 1101)
mod (2; 2; 2; 2)
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7.1. A recursive construction

Let M1 be an MNBIBD ( Sv; Sb1; Sb2; : : : ; Sbs; Sr; Sk1; Sk2; : : : ; Sks) with s¿1 component de-
signs (if s = 1 then M1 is a BIBD; if s = 2 then an NBIBD; and if s¿ 2 then an
MNBIBD). Let M2 be an MNBIBD (v̂; b̂1; b̂2; : : : ; b̂t ; r̂; k̂1; k̂2; : : : ; k̂ t) with t¿2 compo-
nent designs, and with k̂1=k̂q = Sv for some 26q6t.
From M1 and M2, a new design is constructed as follows. Select one block of

size k̂1 from M2 and label its sub-blocks of size k̂q with the symbols 1; 2; : : : ; Sv,
which are the treatment symbols of M1. Now replace each symbol in M1 by the
correspondingly labeled sub-block of the selected block from M2. Each large block of
the so modi4ed M1 is now of size k1 = Sk1k̂q and contains successively nested blocks
of sizes k2; k3; : : : ; ks+t−q+1 where

k2 = Sk2k̂q; : : : ; ks = Sksk̂q

and

ks+1 = k̂q; ks+2 = k̂q+1; : : : ; ks+t−q+1 = k̂ t :

Repeat this process b̂1 times, using a new copy of M1 for each of the b̂1 blocks of M2.
The resulting design M is an MNBIBD (v; b1; b2; : : : ; bs+t−q+1; r; k1; k2; : : : ; ks+t−q+1)
with v = v̂, r = Srr̂, block sizes kj (j = 1; : : : ; s + t − q + 1) as speci4ed above, and
numbers of blocks

b1 = Sb1b̂1; b2 = Sb2b̂1; : : : ; bs = Sbsb̂1

and

bs+1 = Sks Sbsb̂1; bs+2 = Sks Sbsb̂1k̂q=k̂q+1; : : : ; bs+t−q+1 = Sks Sbsb̂1k̂q=k̂ t :

To see that M is indeed an MNBIBD, we must show that each of its s+ t − q+ 1
component designs is a BIBD. Let the concurrence parameters of the designs M1, M2,
and M be respectively S	j for j=1; : : : ; s; 	̂j for j=1; : : : ; t; and 	j for j=1; : : : ; s+t−q+1.
For 16j6s, two treatments appear together in a block of M of size kj exactly Sr

times for each time they occur together in a block of size k̂q of M2, and exactly S	j
times for each time they occur together in a block of size k̂1 of M2 without being
together in a block of size k̂q. Hence

	j = Sr	̂q + S	j(	̂1 − 	̂q):

For s+16j6s+ t− q+1, two treatments appear together in a block of M of size
kj exactly Sr times for each time they occur together in a block of size k̂q+j−s−1 of
M2, and so

	j = Sr	̂q+j−s−1:

There are several important special cases of our construction of M, some of which
have appeared previously in the literature. To tie these all together we broaden our
de4nition of MNBIBD to include certain limiting cases (this is done for the context
of this discussion only). We allow Sk1 to be equal to Sv, so that M1 is then a resolved
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(and, if s¿ 2, nested) BIBD. Similarly, M2 is allowed to be resolved. For M2 we
allow k̂q= k̂ t =1, in which case we e>ectively have only t− 1 component designs and
thus M will have s+ t − q component designs; if this is done with t = 2 then M2 is
a BIBD with no nesting, Sv= k̂1, and M has s (not s+ 1) component designs.
Special case 1. Let s=1, t=2, k̂2 = 1, and v̂¿ k̂1 = Sv. Then M is the composition

of the two BIBDs M1 and M2, i.e. it is the BIBD(v = v̂; b = Sb1b̂1; r = Srr̂, k = Sk1)
consisting of b̂1 copies of M1, where the Sv treatments in the ith copy (i = 1; : : : ; b̂1)
are the Sv treatments from block i of M2.
Special case 2. Let s = 1 so that M1 is a BIBD, and t = 2 with v̂¿ k̂1¿k̂2¿ 1.

Then this is the NBIBD construction of Theorem 4:2 of Morgan [40], which appears
again as Theorem 3:1 of Sinha and Mitra [53]. If v̂ = k̂1 then M2 is an RBIBD and
this is construction (ii) of Dey et al. [19, p. 163].
Special case 3. Let s= t = 2, Sv= Sk1, and k̂2 = 1. Then the NBIBD(v; b1; b2; r; k1; k2)

M is found by constructing the RBIBD M1 for the treatments in each block of the
BIBD M2. This method was employed, though not elucidated as a general technique,
in construction (i) of Dey et al. [19, p. 162].
Special case 4. Let s= t=2, Sv¿ Sk1, and k̂2 = 1. Then the NBIBD(v; b1; b2; r; k1; k2)

M is found by constructing the NBIBD M1 for the treatments in each block of the
BIBD M2. This is Theorem 1 of Jimbo and Kuriki [29].
This recursive technique is most e>ective for constructing MNBIBDs, tending to

produce relatively large r for NBIBDs. However, designs for four parameter sets within
the range of Table 1 can be produced. The numbers of these sets, followed by parameter
speci4cations of M1 and M2, are

49: NBIBD(5,5,10,4,4,2):BIBD(11,11,5,5),
63: BIBD(5,5,4,4):RBIBD(15,7,35,7,15,3),
66: RBIBD(6,5,15,5,6,2):BIBD(11,11,6,6), and
67: RBIBD(6,5,10,5,6,3):BIBD(11,11,6,6).

7.2. A di7erence construction

Our second method of constructing MNBIBDs is a di>erence construction, using
4nite 4elds GFv where v is a prime power. We use x to denote a primitive element of
GFv, and we use a Kronecker product notation for initial blocks of size k1. Thus, for
example, an initial block of an MNBIBD with k1 = 12, k2 = 6, k3 = 3 might be

(x0 x4 x8 : x2 x6 x10 | x1 x5 x9 : x3 x7 x11)
= (x0; x1)⊗ (x0 x4 x8 | x2 x6 x10)
= (x0; x1)⊗ (x0; x2)⊗ (x0; x4; x8):

Theorem 1. Let v be a prime power of the form v= a0a1a2 · · · an + 1 (a0¿1; an¿1
and ai¿2 for 16i6n−1 are integers). Then there is an MNBIBD with n component
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designs having

k1 = ua1a2 · · · an; k2 = ua2a3 · · · an; : : : ; kn = uan

and with a0v blocks of size k1; for any integer u with 16u6a0 and u¿ 1 if an = 1.
If integer t¿2 is chosen so that 26tu6a0; then there is an MNBIBD with n + 1
component designs; with the same number of big blocks but of size k0 = tk1; and with
its n other block sizes being k1; : : : ; kn as given above.

Proof: The designs are cyclically constructed using the 4nite 4eld GFv with primitive
element x. To specify the initial blocks, let the sets Lj for j = 1; : : : ; t be disjoint
u-subsets of {x0; x1; : : : ; xa0−1}, where t = 1 if the n-component design is desired and
t ¿ 1 for n+ 1 components. The initial blocks of size k1 are

xs ⊗ (x0; xa0 ; x2a0 ; : : : ; x(a1−1)a0 )

⊗ (x0; xa0a1 ; x2a0a1 ; : : : ; x(a2−1)a0a1 )

⊗ (x0; xa0a1a2 ; x2a0a1a2 ; : : : ; x(a3−1)a0a1a2 )

...

⊗ (x0; xa0a1···an−1 ; x2a0a1···an−1 ; : : : ; x(an−1)a0a1···an−1 )⊗ Lj (1)

for s=0; 1; : : : ; a0−1 and j=1; : : : ; t; if t ¿ 1 then for 4xed s these are the t sub-blocks
of size k1 in the sth block of size k0. For i¿ 1, the u(v− 1)=a0ki consecutive, disjoint
subsets of size ki in each of these a0t initial blocks of size k1 = u(v − 1)=a0 are the
initial sub-blocks for the component BIBD with block size ki.
The MNBIBD property is established if the di>erences from within the ta0 · · · ai−1

initial sub-blocks of size ki can be shown to be symmetrically repeated. Expression (1)
for an initial block of size k1 is the Kronecker product of xs, Lj, and n other terms,
the ith of which is a vector of length ai. Thus the general form of an initial sub-block
of size ki for any i¿1 is xs times the Kronecker product of Lj and the last n− i + 1
of these terms, multiplied by any single member of the Kronecker product of the 4rst
i − 1 terms. As the product of the last n − i + 1 terms yields all elements that can
be written as x raised to a multiple of a0a1a2 · · · ai−1 = u(v− 1)=ki, the general initial
sub-block is

xs+l(x0; x
u(v−1)

ki ; x
2u(v−1)

ki ; : : : ; x
(ki−u)(v−1)

ki )⊗ Lj: (2)

The collection of all of these initial sub-blocks in a given block of size k1 (that is,
4xing s and j) is generated as l takes all of its values

l= 0; a0; 2a0; : : : ; a0a1a2 · · · ai−1 − a0 =
u(v− 1)

ki
− a0: (3)

The di>erences within the displayed sub-block (2) may be written in two lists.
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First, the di>erences among elements of the sub-block that are multiplied by the
same element of Lj (xe, say) are

xs+l+e(x0; x
u(v−1)

ki ; x
2u(v−1)

ki ; : : : ; x
(ki−u)(v−1)

ki )

⊗ (1− x
u(v−1)

ki ; 1− x
2u(v−1)

ki ; : : : ; 1− x
(ki−u)(v−1)

ki ) (4)

which as s and l vary gives every non-zero element of GFv exactly ki=u − 1 times.
The di>erences between elements of (2) that are multiplied by two di>erent elements
of Lj (xe and xf, say) are

± xs+l(x0; x
u(v−1)

ki ; x
2u(v−1)

ki ; : : : ; x
(ki−u)(v−1)

ki )

⊗ (xe − xf; xe − xf+
u(v−1)

ki ; xe − xf+
2u(v−1)

ki ; : : : ; xe − xf+
(ki−u)(v−1)

ki ) (5)

which as s and l vary gives every non-zero element of GFv exactly 2ki=u times.
It remains to investigate the di>erences within the blocks of size k0 for t¿2. The

sth block of size k0 is composed of the size k1 sub-blocks (1) for j = 1; : : : ; t. Having
already established that the di>erences within the size k1 sub-blocks are balanced, it
remains to investigate di>erences between these sub-blocks. Analogous to (5), these
di>erences for 4xed s are

± xs(x0; x
u(v−1)

k1 ; x
2u(v−1)

k1 ; : : : ; x
(k1−u)(v−1)

k1 )

⊗ (xe − xf; xe − xf+
u(v−1)

k1 ; xe − xf+
2u(v−1)

k1 ; : : : ; xe − xf+
(k1−u)(v−1)

k1 ); (6)

where now xe ∈ Lj and xf ∈ Lj′ for j �= j′. Since u(v − 1)=k1 = a0, as s varies this
list generates every non-zero element of GFv exactly 2k1=u times. This establishes the
multiply nested BIBD property.

Theorem 2. With the conditions of Theorem 1; if a0 is even and ai is odd for i¿1;
then MNBIBDs can be constructed with the same block sizes but with a0v=2 blocks
of size k1.

Proof: The initial blocks are the same, except that now the range of s is restricted to
s= 0; 1; : : : ; a0=2− 1. To show that the di>erences are still balanced, consider 4rst the
right-most vector in list (4). Since for any w,

1− x(v−1)−w
u(v−1)

ki =−x−w
u(v−1)

ki (1− xw
u(v−1)

ki )

= x
ki
u
u(v−1)
2ki x−w

u(v−1)
ki (1− xw

u(v−1)
ki );
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then if ki=u is odd (assured by odd a1a2 · · · an) and u(v − 1)=ki is even (assured by
even a0) the list of di>erences (4) can be written

xs+l+e(x0; x
u(v−1)
2ki ; x

u(v−1)
ki ; : : : ; x

(2ki−u)(v−1)
2ki )

⊗ (1− x
u(v−1)

ki ; 1− x
2u(v−1)

ki ; : : : ; 1− x
(ki−u)(v−1)

2ki )

which as l varies through its range (3) and s= 0; 1; : : : ; a0=2− 1 gives every non-zero
element of GFv exactly (ki − u)=2u times. For (5), because −1 is an odd power of
xu(v−1)=2ki , this list similarly gives every non-zero element of GFv exactly ki=u times as
l and s vary. The same reasoning shows that (6) is balanced for the restricted range
of s.

Theorems 1 and 2 generalize previously known results for construction of NBIBDs.
Theorem 3 of Jimbo and Kuriki [29] results when n = 1 and t ¿ 1. Theorem 4 of
Jimbo and Kuriki [29] is the case n = 2 and t = 1. Setting n = t = 1 gives the BIBD
construction due to Sprott [55], while u= t = 1 gives the result of Preece et al. [45].
Parameter sets in Table 1 for which NBIBDs can be directly constructed from The-

orems 1 and 2, followed by values of the theorem variables (t; u; a0; a1; a2), are

1: (1,1,1,2,2), 2: (1,1,1,3,2), 3: (1,1,1,2,3) or (2,1,2,3,.), 5: (1,1,2,2,2),
8: (1,1,1,4,2), 9: (1,1,1,2,4), 14: (1,1,1,5,2), 15: (1,1,1,2,5) or (2,1,2,5,.),
19: (2,1,3,2,.), 20: (1,1,3,2,2), 21: (1,1,2,3,2), 22: (1,1,2,2,3) or (2,1,4,3,.),
23: (1,1,1,6,2), 24: (1,1,1,4,3), 25: (1,1,1,3,4), 26: (1,1,1,2,6), 44: (1,1,1,5,3),
45: (1,1,1,3,5), 48: (3,1,4,3,.), 49: (2,1,5,2,.), 56: (1,2,3,2,2) or (2,1,3,4,.),
66: (3,1,5,2,.), 68: (2,1,3,5,.).

7.3. Construction from perpendicular arrays

A ‘perpendicular array’ PAf(s; k; v) is a k × fv(v − 1)=2 array with v entries such
that the columns of each s × fv(v − 1)=2 subarray comprise each s-subset of the v
entries with equal frequency f. It is known that, if v is even and s¿2, then an array
PAf(s; k; v) must have f even.

Our interest is in perpendicular arrays of strength s=2. Let k1; k2; : : : ; kn be integers
such that k1¿4 and ki is a subfactor of ki−1 for i¿2. Then the columns of PAf(2; k1; v)
are the blocks of a MNBIBD with block sizes k1; k2; : : : ; kn and b1 = fv(v− 1)=2.
Perpendicular arrays have received considerable attention in the combinatorial liter-

ature in the past 20 years; see [14] for references and a summary of existence results.
Perpendicular arrays are known in the statistical literature as ‘semibalanced arrays’,
so renamed in 1973 by Rao [47], who had originally introduced them in 1961 as
‘orthogonal arrays of type II’ [46]. Recent statistical interest in semibalanced arrays
has focused on their use as ‘neighbour designs’; see [36] for a survey, or [41] which
introduced the arrays in that context.
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Within the bounds of Table 1, parameter sets for which a perpendicular array would
be a solution are nos. 19, 49, 59, 66, and 67. Perpendicular arrays can be found for all
of these, save no. 59, using Rao’s 1961 prime power construction [46]. For parameter
set no. 59, a 5-row and 15-symbols perpendicular array given by Schellenberg et al.
[51] may be used.

8. Constructing NBIBDs by a modi�ed Kramer–Mesner technique

For some parameter sets for which formal methods of construction such as those
described above are not available, search techniques can be used to produce NBIBDs.
Search techniques can also be used to produce further NBIBDs for parameter sets
for which formal methods are known. The techniques can be used to produce nested
t-designs too, but in this paper we restrict our description to NBIBDs.
One such technique is a much simpli4ed version of the method developed by Kramer

and Mesner [34] for 4nding t-designs, t ¿ 2. The method, as described by Kramer
et al. [33], employed large groups. Mutually exclusive and exhaustive orbits (under a
selected group) were derived from initial blocks, and for the t-sets of the treatments.
A matrix was then built up, one column for each block orbit, one row for each t-set
orbit, each entry in the matrix being the number of occurrences of the corresponding
t-set orbit in the corresponding block orbit.
A t-design was then obtained as a sum of multiples of the columns, such that, over

this sum of multiples, the total number of occurrences of each t-set was the required
constant 	(t). This is equivalent to 4nding integral solutions for the linear equations
Ax= b, where A is the matrix described in the previous paragraph and b is 	(t) times
the unit vector. Because of the sizes of the group and of the design considered, many
of these calculations were non-trivial. Solutions without repeated blocks were obtained
by restricting the values of the entries in x to 0 and 1.
Now suppose that an NBIBD is required with parameters (v; b1; b2; r; k1; k2) and that

its component BIBDs D1 and D2 have parameters (v; b1; r; k1; 	1) and (v; b2; r; k2; 	2),
respectively. Suppose further that a BIBD for D1 is known and that it has a known,
non-trivial automorphism group G, and p initial blocks, say

(a b c d e f : : :); : : : ; (u v w : : : x y z):

Partition each of these p initial blocks in all possible ways into blocks of size k2,
giving say pq initial blocks of the form

(a b c | : : : | d e f); : : : ; (u v w | : : : | x y z):

For each of the pq initial blocks, calculate the frequency of occurrence of each 2-set
orbit within all the sub-blocks of the initial block. Then set up a matrix with pq
columns and with one row for each distinct 2-set orbit. An NBIBD will be obtained,
as required, if one column can be selected from each of the p sets of q columns, such
that the selected columns add to 	2 times the unit vector. (The original D1 must, of
course, be preserved.)
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When G is cyclic or k1-rotational, the problem of 4nding the orbits of the 2-sets
is reduced to 4nding all the di>erences in a set of sub-blocks of a block. Cyclic and
k1-rotational groups are the most likely automorphism groups G to be used in looking
for NBIBDs.
The size of the matrix A can be reduced by eliminating duplicated columns, cycli-

cally equivalent columns, and columns that cannot possibly be part of an NBIBD. Elim-
ination of duplicate or equivalent columns may inUuence the search for non-isomorphic
designs.
The advantage of this technique is that, for the group selected, it gives all the

NBIBDs in one go if there are any, and proves non-existence otherwise. The disadvan-
tages include the rapid growth in the number of columns as parameter-values increase
(in particular the ratio of k1 to k2), the problems of determining the various orbits,
and the diOculty of solving the linear equations (specialized methods of solution be-
ing needed for all but the smallest NBIBDs). The matrix could be expanded to solve
for both BIBD and NBIBD simultaneously, if the available BIBDs are not suitable, or
alternative NBIBDs are sought. In practice, a two-stage investigation may be preferable.
For an example, suppose that we want all the NBIBDs that have the parameters

(10, 45, 90, 18, 4, 2) and that are based on the D1 with initial blocks:

(1 2 4 ∞) (1 5 8 ∞) (1 2 4 8) (1 2 3 6) (3 6 7 8) mod 9:

Each of the above blocks can be split in 3 ways: for the 4rst block this gives

(1 2 | 4 ∞); (1 4 | 2 ∞) and (1 ∞| 2 4):

From the 4rst of these, there are 2 orbits based on a di>erence of 1 and of ∞ (and
their negations); from the second, 3 and ∞; and from the third, 2 and ∞. Similar
calculations can be made for the other blocks. Hence the 5× 15 matrix below, where
the rows comprise one for the ∞ di>erence, and one each for the non-zero residues
1 to 4, modulo 9, in that order, and the columns represent the 5 sets of 3 di>erent
possible ways of selecting sub-blocks from the 5 initial blocks. There are duplicate
columns, but wherever this happens the 2 columns concerned belong to di>erent sets,
so it would not be appropriate to eliminate any columns in this instance:



1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 1 0 1 1 0 1
0 0 1 0 1 0 0 2 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 2 1 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 1 1 0 1 1


 :

An NBIBD is obtained for each selection of 5 columns of the above, one from each
set of 3, such that the 5 columns add to twice the unit vector. One such is based on
columns 3, 6, 7, 10, 14, given in the table as

(2 4 | 1 ∞) (5 8 | 1 ∞) (1 2 | 4 8) (1 2 | 3 6) (1 3 | 2 6) mod 9:
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9. Constructing NBIBDs by a randomised search technique

A second search technique for constructing NBIBDs is a randomised hill-climbing
(or, strictly speaking, hill-descending) search.
Suppose that a cyclic BIBD is given for D1. At random, partition each of the initial

blocks of D1 into the appropriate number of sub-blocks. Calculate the value of an
objective function measuring the discrepancy between (a) the observed number of oc-
currences of the di>erences between treatments within sub-blocks and (b) the required
number of occurrences 	2. If this value is not zero, exchange a pair of treatments
chosen at random from a pair of randomly chosen sub-blocks from a randomly chosen
initial block of D1. If the value of the objective function is thereby reduced, accept
the change and repeat the procedure. Continue the exchanges until the value of the ob-
jective function is zero or until some arbitrary stopping limit (based on the number of
iterations) is reached. In practice, the objective function may well have local minima,
so acceptance of some changes that do not reduce the value of the objective function
is desirable.
The advantage of this technique is its simplicity. Its disadvantage is that it does not

guarantee to 4nd any NBIBD for a particular parameter-set, let alone all of those that
exist. Repeating the search many times is desirable, as di>erent randomised starting
points may vary from each other by distances greater than those that the randomised
steps are likely to cover, or because the process may have diOculties emerging from
some of the local minima, and to get a spread of solutions. The restriction to cyclic
groups is not necessary.
Proceeding in the reverse direction, by combining the blocks of a known BIBD

D2 to obtain the blocks of D1, is not so straightforward. This is because each of
the sub-blocks within a block of D1 can be cyclically o>set with respect to the others
without destroying the properties of the nested design. This would very rapidly increase
the number of combinations to be considered.
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